xref: /linux/fs/btrfs/scrub.c (revision ea518afc992032f7570c0a89ac9240b387dc0faf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "raid56.h"
20 #include "block-group.h"
21 #include "zoned.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "file-item.h"
25 #include "scrub.h"
26 #include "raid-stripe-tree.h"
27 
28 /*
29  * This is only the first step towards a full-features scrub. It reads all
30  * extent and super block and verifies the checksums. In case a bad checksum
31  * is found or the extent cannot be read, good data will be written back if
32  * any can be found.
33  *
34  * Future enhancements:
35  *  - In case an unrepairable extent is encountered, track which files are
36  *    affected and report them
37  *  - track and record media errors, throw out bad devices
38  *  - add a mode to also read unallocated space
39  */
40 
41 struct scrub_ctx;
42 
43 /*
44  * The following value only influences the performance.
45  *
46  * This determines how many stripes would be submitted in one go,
47  * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
48  */
49 #define SCRUB_STRIPES_PER_GROUP		8
50 
51 /*
52  * How many groups we have for each sctx.
53  *
54  * This would be 8M per device, the same value as the old scrub in-flight bios
55  * size limit.
56  */
57 #define SCRUB_GROUPS_PER_SCTX		16
58 
59 #define SCRUB_TOTAL_STRIPES		(SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
60 
61 /*
62  * The following value times PAGE_SIZE needs to be large enough to match the
63  * largest node/leaf/sector size that shall be supported.
64  */
65 #define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
66 
67 /* Represent one sector and its needed info to verify the content. */
68 struct scrub_sector_verification {
69 	bool is_metadata;
70 
71 	union {
72 		/*
73 		 * Csum pointer for data csum verification.  Should point to a
74 		 * sector csum inside scrub_stripe::csums.
75 		 *
76 		 * NULL if this data sector has no csum.
77 		 */
78 		u8 *csum;
79 
80 		/*
81 		 * Extra info for metadata verification.  All sectors inside a
82 		 * tree block share the same generation.
83 		 */
84 		u64 generation;
85 	};
86 };
87 
88 enum scrub_stripe_flags {
89 	/* Set when @mirror_num, @dev, @physical and @logical are set. */
90 	SCRUB_STRIPE_FLAG_INITIALIZED,
91 
92 	/* Set when the read-repair is finished. */
93 	SCRUB_STRIPE_FLAG_REPAIR_DONE,
94 
95 	/*
96 	 * Set for data stripes if it's triggered from P/Q stripe.
97 	 * During such scrub, we should not report errors in data stripes, nor
98 	 * update the accounting.
99 	 */
100 	SCRUB_STRIPE_FLAG_NO_REPORT,
101 };
102 
103 #define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)
104 
105 /*
106  * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
107  */
108 struct scrub_stripe {
109 	struct scrub_ctx *sctx;
110 	struct btrfs_block_group *bg;
111 
112 	struct page *pages[SCRUB_STRIPE_PAGES];
113 	struct scrub_sector_verification *sectors;
114 
115 	struct btrfs_device *dev;
116 	u64 logical;
117 	u64 physical;
118 
119 	u16 mirror_num;
120 
121 	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
122 	u16 nr_sectors;
123 
124 	/*
125 	 * How many data/meta extents are in this stripe.  Only for scrub status
126 	 * reporting purposes.
127 	 */
128 	u16 nr_data_extents;
129 	u16 nr_meta_extents;
130 
131 	atomic_t pending_io;
132 	wait_queue_head_t io_wait;
133 	wait_queue_head_t repair_wait;
134 
135 	/*
136 	 * Indicate the states of the stripe.  Bits are defined in
137 	 * scrub_stripe_flags enum.
138 	 */
139 	unsigned long state;
140 
141 	/* Indicate which sectors are covered by extent items. */
142 	unsigned long extent_sector_bitmap;
143 
144 	/*
145 	 * The errors hit during the initial read of the stripe.
146 	 *
147 	 * Would be utilized for error reporting and repair.
148 	 *
149 	 * The remaining init_nr_* records the number of errors hit, only used
150 	 * by error reporting.
151 	 */
152 	unsigned long init_error_bitmap;
153 	unsigned int init_nr_io_errors;
154 	unsigned int init_nr_csum_errors;
155 	unsigned int init_nr_meta_errors;
156 
157 	/*
158 	 * The following error bitmaps are all for the current status.
159 	 * Every time we submit a new read, these bitmaps may be updated.
160 	 *
161 	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
162 	 *
163 	 * IO and csum errors can happen for both metadata and data.
164 	 */
165 	unsigned long error_bitmap;
166 	unsigned long io_error_bitmap;
167 	unsigned long csum_error_bitmap;
168 	unsigned long meta_error_bitmap;
169 
170 	/* For writeback (repair or replace) error reporting. */
171 	unsigned long write_error_bitmap;
172 
173 	/* Writeback can be concurrent, thus we need to protect the bitmap. */
174 	spinlock_t write_error_lock;
175 
176 	/*
177 	 * Checksum for the whole stripe if this stripe is inside a data block
178 	 * group.
179 	 */
180 	u8 *csums;
181 
182 	struct work_struct work;
183 };
184 
185 struct scrub_ctx {
186 	struct scrub_stripe	stripes[SCRUB_TOTAL_STRIPES];
187 	struct scrub_stripe	*raid56_data_stripes;
188 	struct btrfs_fs_info	*fs_info;
189 	struct btrfs_path	extent_path;
190 	struct btrfs_path	csum_path;
191 	int			first_free;
192 	int			cur_stripe;
193 	atomic_t		cancel_req;
194 	int			readonly;
195 
196 	/* State of IO submission throttling affecting the associated device */
197 	ktime_t			throttle_deadline;
198 	u64			throttle_sent;
199 
200 	int			is_dev_replace;
201 	u64			write_pointer;
202 
203 	struct mutex            wr_lock;
204 	struct btrfs_device     *wr_tgtdev;
205 
206 	/*
207 	 * statistics
208 	 */
209 	struct btrfs_scrub_progress stat;
210 	spinlock_t		stat_lock;
211 
212 	/*
213 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
214 	 * decrement bios_in_flight and workers_pending and then do a wakeup
215 	 * on the list_wait wait queue. We must ensure the main scrub task
216 	 * doesn't free the scrub context before or while the workers are
217 	 * doing the wakeup() call.
218 	 */
219 	refcount_t              refs;
220 };
221 
222 struct scrub_warning {
223 	struct btrfs_path	*path;
224 	u64			extent_item_size;
225 	const char		*errstr;
226 	u64			physical;
227 	u64			logical;
228 	struct btrfs_device	*dev;
229 };
230 
231 static void release_scrub_stripe(struct scrub_stripe *stripe)
232 {
233 	if (!stripe)
234 		return;
235 
236 	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
237 		if (stripe->pages[i])
238 			__free_page(stripe->pages[i]);
239 		stripe->pages[i] = NULL;
240 	}
241 	kfree(stripe->sectors);
242 	kfree(stripe->csums);
243 	stripe->sectors = NULL;
244 	stripe->csums = NULL;
245 	stripe->sctx = NULL;
246 	stripe->state = 0;
247 }
248 
249 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
250 			     struct scrub_stripe *stripe)
251 {
252 	int ret;
253 
254 	memset(stripe, 0, sizeof(*stripe));
255 
256 	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
257 	stripe->state = 0;
258 
259 	init_waitqueue_head(&stripe->io_wait);
260 	init_waitqueue_head(&stripe->repair_wait);
261 	atomic_set(&stripe->pending_io, 0);
262 	spin_lock_init(&stripe->write_error_lock);
263 
264 	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, 0);
265 	if (ret < 0)
266 		goto error;
267 
268 	stripe->sectors = kcalloc(stripe->nr_sectors,
269 				  sizeof(struct scrub_sector_verification),
270 				  GFP_KERNEL);
271 	if (!stripe->sectors)
272 		goto error;
273 
274 	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
275 				fs_info->csum_size, GFP_KERNEL);
276 	if (!stripe->csums)
277 		goto error;
278 	return 0;
279 error:
280 	release_scrub_stripe(stripe);
281 	return -ENOMEM;
282 }
283 
284 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
285 {
286 	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
287 }
288 
289 static void scrub_put_ctx(struct scrub_ctx *sctx);
290 
291 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
292 {
293 	while (atomic_read(&fs_info->scrub_pause_req)) {
294 		mutex_unlock(&fs_info->scrub_lock);
295 		wait_event(fs_info->scrub_pause_wait,
296 		   atomic_read(&fs_info->scrub_pause_req) == 0);
297 		mutex_lock(&fs_info->scrub_lock);
298 	}
299 }
300 
301 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
302 {
303 	atomic_inc(&fs_info->scrubs_paused);
304 	wake_up(&fs_info->scrub_pause_wait);
305 }
306 
307 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
308 {
309 	mutex_lock(&fs_info->scrub_lock);
310 	__scrub_blocked_if_needed(fs_info);
311 	atomic_dec(&fs_info->scrubs_paused);
312 	mutex_unlock(&fs_info->scrub_lock);
313 
314 	wake_up(&fs_info->scrub_pause_wait);
315 }
316 
317 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
318 {
319 	scrub_pause_on(fs_info);
320 	scrub_pause_off(fs_info);
321 }
322 
323 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
324 {
325 	int i;
326 
327 	if (!sctx)
328 		return;
329 
330 	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
331 		release_scrub_stripe(&sctx->stripes[i]);
332 
333 	kvfree(sctx);
334 }
335 
336 static void scrub_put_ctx(struct scrub_ctx *sctx)
337 {
338 	if (refcount_dec_and_test(&sctx->refs))
339 		scrub_free_ctx(sctx);
340 }
341 
342 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
343 		struct btrfs_fs_info *fs_info, int is_dev_replace)
344 {
345 	struct scrub_ctx *sctx;
346 	int		i;
347 
348 	/* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
349 	 * kvzalloc().
350 	 */
351 	sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
352 	if (!sctx)
353 		goto nomem;
354 	refcount_set(&sctx->refs, 1);
355 	sctx->is_dev_replace = is_dev_replace;
356 	sctx->fs_info = fs_info;
357 	sctx->extent_path.search_commit_root = 1;
358 	sctx->extent_path.skip_locking = 1;
359 	sctx->csum_path.search_commit_root = 1;
360 	sctx->csum_path.skip_locking = 1;
361 	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
362 		int ret;
363 
364 		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
365 		if (ret < 0)
366 			goto nomem;
367 		sctx->stripes[i].sctx = sctx;
368 	}
369 	sctx->first_free = 0;
370 	atomic_set(&sctx->cancel_req, 0);
371 
372 	spin_lock_init(&sctx->stat_lock);
373 	sctx->throttle_deadline = 0;
374 
375 	mutex_init(&sctx->wr_lock);
376 	if (is_dev_replace) {
377 		WARN_ON(!fs_info->dev_replace.tgtdev);
378 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
379 	}
380 
381 	return sctx;
382 
383 nomem:
384 	scrub_free_ctx(sctx);
385 	return ERR_PTR(-ENOMEM);
386 }
387 
388 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
389 				     u64 root, void *warn_ctx)
390 {
391 	u32 nlink;
392 	int ret;
393 	int i;
394 	unsigned nofs_flag;
395 	struct extent_buffer *eb;
396 	struct btrfs_inode_item *inode_item;
397 	struct scrub_warning *swarn = warn_ctx;
398 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
399 	struct inode_fs_paths *ipath = NULL;
400 	struct btrfs_root *local_root;
401 	struct btrfs_key key;
402 
403 	local_root = btrfs_get_fs_root(fs_info, root, true);
404 	if (IS_ERR(local_root)) {
405 		ret = PTR_ERR(local_root);
406 		goto err;
407 	}
408 
409 	/*
410 	 * this makes the path point to (inum INODE_ITEM ioff)
411 	 */
412 	key.objectid = inum;
413 	key.type = BTRFS_INODE_ITEM_KEY;
414 	key.offset = 0;
415 
416 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
417 	if (ret) {
418 		btrfs_put_root(local_root);
419 		btrfs_release_path(swarn->path);
420 		goto err;
421 	}
422 
423 	eb = swarn->path->nodes[0];
424 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
425 					struct btrfs_inode_item);
426 	nlink = btrfs_inode_nlink(eb, inode_item);
427 	btrfs_release_path(swarn->path);
428 
429 	/*
430 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
431 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
432 	 * not seem to be strictly necessary.
433 	 */
434 	nofs_flag = memalloc_nofs_save();
435 	ipath = init_ipath(4096, local_root, swarn->path);
436 	memalloc_nofs_restore(nofs_flag);
437 	if (IS_ERR(ipath)) {
438 		btrfs_put_root(local_root);
439 		ret = PTR_ERR(ipath);
440 		ipath = NULL;
441 		goto err;
442 	}
443 	ret = paths_from_inode(inum, ipath);
444 
445 	if (ret < 0)
446 		goto err;
447 
448 	/*
449 	 * we deliberately ignore the bit ipath might have been too small to
450 	 * hold all of the paths here
451 	 */
452 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
453 		btrfs_warn_in_rcu(fs_info,
454 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
455 				  swarn->errstr, swarn->logical,
456 				  btrfs_dev_name(swarn->dev),
457 				  swarn->physical,
458 				  root, inum, offset,
459 				  fs_info->sectorsize, nlink,
460 				  (char *)(unsigned long)ipath->fspath->val[i]);
461 
462 	btrfs_put_root(local_root);
463 	free_ipath(ipath);
464 	return 0;
465 
466 err:
467 	btrfs_warn_in_rcu(fs_info,
468 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
469 			  swarn->errstr, swarn->logical,
470 			  btrfs_dev_name(swarn->dev),
471 			  swarn->physical,
472 			  root, inum, offset, ret);
473 
474 	free_ipath(ipath);
475 	return 0;
476 }
477 
478 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
479 				       bool is_super, u64 logical, u64 physical)
480 {
481 	struct btrfs_fs_info *fs_info = dev->fs_info;
482 	struct btrfs_path *path;
483 	struct btrfs_key found_key;
484 	struct extent_buffer *eb;
485 	struct btrfs_extent_item *ei;
486 	struct scrub_warning swarn;
487 	u64 flags = 0;
488 	u32 item_size;
489 	int ret;
490 
491 	/* Super block error, no need to search extent tree. */
492 	if (is_super) {
493 		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
494 				  errstr, btrfs_dev_name(dev), physical);
495 		return;
496 	}
497 	path = btrfs_alloc_path();
498 	if (!path)
499 		return;
500 
501 	swarn.physical = physical;
502 	swarn.logical = logical;
503 	swarn.errstr = errstr;
504 	swarn.dev = NULL;
505 
506 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
507 				  &flags);
508 	if (ret < 0)
509 		goto out;
510 
511 	swarn.extent_item_size = found_key.offset;
512 
513 	eb = path->nodes[0];
514 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
515 	item_size = btrfs_item_size(eb, path->slots[0]);
516 
517 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
518 		unsigned long ptr = 0;
519 		u8 ref_level;
520 		u64 ref_root;
521 
522 		while (true) {
523 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
524 						      item_size, &ref_root,
525 						      &ref_level);
526 			if (ret < 0) {
527 				btrfs_warn(fs_info,
528 				"failed to resolve tree backref for logical %llu: %d",
529 						  swarn.logical, ret);
530 				break;
531 			}
532 			if (ret > 0)
533 				break;
534 			btrfs_warn_in_rcu(fs_info,
535 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
536 				errstr, swarn.logical, btrfs_dev_name(dev),
537 				swarn.physical, (ref_level ? "node" : "leaf"),
538 				ref_level, ref_root);
539 		}
540 		btrfs_release_path(path);
541 	} else {
542 		struct btrfs_backref_walk_ctx ctx = { 0 };
543 
544 		btrfs_release_path(path);
545 
546 		ctx.bytenr = found_key.objectid;
547 		ctx.extent_item_pos = swarn.logical - found_key.objectid;
548 		ctx.fs_info = fs_info;
549 
550 		swarn.path = path;
551 		swarn.dev = dev;
552 
553 		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
554 	}
555 
556 out:
557 	btrfs_free_path(path);
558 }
559 
560 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
561 {
562 	int ret = 0;
563 	u64 length;
564 
565 	if (!btrfs_is_zoned(sctx->fs_info))
566 		return 0;
567 
568 	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
569 		return 0;
570 
571 	if (sctx->write_pointer < physical) {
572 		length = physical - sctx->write_pointer;
573 
574 		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
575 						sctx->write_pointer, length);
576 		if (!ret)
577 			sctx->write_pointer = physical;
578 	}
579 	return ret;
580 }
581 
582 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
583 {
584 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
585 	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
586 
587 	return stripe->pages[page_index];
588 }
589 
590 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
591 						 int sector_nr)
592 {
593 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
594 
595 	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
596 }
597 
598 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
599 {
600 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
601 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
602 	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
603 	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
604 	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
605 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
606 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
607 	u8 calculated_csum[BTRFS_CSUM_SIZE];
608 	struct btrfs_header *header;
609 
610 	/*
611 	 * Here we don't have a good way to attach the pages (and subpages)
612 	 * to a dummy extent buffer, thus we have to directly grab the members
613 	 * from pages.
614 	 */
615 	header = (struct btrfs_header *)(page_address(first_page) + first_off);
616 	memcpy(on_disk_csum, header->csum, fs_info->csum_size);
617 
618 	if (logical != btrfs_stack_header_bytenr(header)) {
619 		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
620 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
621 		btrfs_warn_rl(fs_info,
622 		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
623 			      logical, stripe->mirror_num,
624 			      btrfs_stack_header_bytenr(header), logical);
625 		return;
626 	}
627 	if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
628 		   BTRFS_FSID_SIZE) != 0) {
629 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
630 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
631 		btrfs_warn_rl(fs_info,
632 		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
633 			      logical, stripe->mirror_num,
634 			      header->fsid, fs_info->fs_devices->fsid);
635 		return;
636 	}
637 	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
638 		   BTRFS_UUID_SIZE) != 0) {
639 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
640 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
641 		btrfs_warn_rl(fs_info,
642 		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
643 			      logical, stripe->mirror_num,
644 			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
645 		return;
646 	}
647 
648 	/* Now check tree block csum. */
649 	shash->tfm = fs_info->csum_shash;
650 	crypto_shash_init(shash);
651 	crypto_shash_update(shash, page_address(first_page) + first_off +
652 			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
653 
654 	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
655 		struct page *page = scrub_stripe_get_page(stripe, i);
656 		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
657 
658 		crypto_shash_update(shash, page_address(page) + page_off,
659 				    fs_info->sectorsize);
660 	}
661 
662 	crypto_shash_final(shash, calculated_csum);
663 	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
664 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
665 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
666 		btrfs_warn_rl(fs_info,
667 		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
668 			      logical, stripe->mirror_num,
669 			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
670 			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
671 		return;
672 	}
673 	if (stripe->sectors[sector_nr].generation !=
674 	    btrfs_stack_header_generation(header)) {
675 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
676 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
677 		btrfs_warn_rl(fs_info,
678 		"tree block %llu mirror %u has bad generation, has %llu want %llu",
679 			      logical, stripe->mirror_num,
680 			      btrfs_stack_header_generation(header),
681 			      stripe->sectors[sector_nr].generation);
682 		return;
683 	}
684 	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
685 	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
686 	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
687 }
688 
689 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
690 {
691 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
692 	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
693 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
694 	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
695 	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
696 	u8 csum_buf[BTRFS_CSUM_SIZE];
697 	int ret;
698 
699 	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
700 
701 	/* Sector not utilized, skip it. */
702 	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
703 		return;
704 
705 	/* IO error, no need to check. */
706 	if (test_bit(sector_nr, &stripe->io_error_bitmap))
707 		return;
708 
709 	/* Metadata, verify the full tree block. */
710 	if (sector->is_metadata) {
711 		/*
712 		 * Check if the tree block crosses the stripe boundary.  If
713 		 * crossed the boundary, we cannot verify it but only give a
714 		 * warning.
715 		 *
716 		 * This can only happen on a very old filesystem where chunks
717 		 * are not ensured to be stripe aligned.
718 		 */
719 		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
720 			btrfs_warn_rl(fs_info,
721 			"tree block at %llu crosses stripe boundary %llu",
722 				      stripe->logical +
723 				      (sector_nr << fs_info->sectorsize_bits),
724 				      stripe->logical);
725 			return;
726 		}
727 		scrub_verify_one_metadata(stripe, sector_nr);
728 		return;
729 	}
730 
731 	/*
732 	 * Data is easier, we just verify the data csum (if we have it).  For
733 	 * cases without csum, we have no other choice but to trust it.
734 	 */
735 	if (!sector->csum) {
736 		clear_bit(sector_nr, &stripe->error_bitmap);
737 		return;
738 	}
739 
740 	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
741 	if (ret < 0) {
742 		set_bit(sector_nr, &stripe->csum_error_bitmap);
743 		set_bit(sector_nr, &stripe->error_bitmap);
744 	} else {
745 		clear_bit(sector_nr, &stripe->csum_error_bitmap);
746 		clear_bit(sector_nr, &stripe->error_bitmap);
747 	}
748 }
749 
750 /* Verify specified sectors of a stripe. */
751 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
752 {
753 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
754 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
755 	int sector_nr;
756 
757 	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
758 		scrub_verify_one_sector(stripe, sector_nr);
759 		if (stripe->sectors[sector_nr].is_metadata)
760 			sector_nr += sectors_per_tree - 1;
761 	}
762 }
763 
764 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
765 {
766 	int i;
767 
768 	for (i = 0; i < stripe->nr_sectors; i++) {
769 		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
770 		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
771 			break;
772 	}
773 	ASSERT(i < stripe->nr_sectors);
774 	return i;
775 }
776 
777 /*
778  * Repair read is different to the regular read:
779  *
780  * - Only reads the failed sectors
781  * - May have extra blocksize limits
782  */
783 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
784 {
785 	struct scrub_stripe *stripe = bbio->private;
786 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
787 	struct bio_vec *bvec;
788 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
789 	u32 bio_size = 0;
790 	int i;
791 
792 	ASSERT(sector_nr < stripe->nr_sectors);
793 
794 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
795 		bio_size += bvec->bv_len;
796 
797 	if (bbio->bio.bi_status) {
798 		bitmap_set(&stripe->io_error_bitmap, sector_nr,
799 			   bio_size >> fs_info->sectorsize_bits);
800 		bitmap_set(&stripe->error_bitmap, sector_nr,
801 			   bio_size >> fs_info->sectorsize_bits);
802 	} else {
803 		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
804 			     bio_size >> fs_info->sectorsize_bits);
805 	}
806 	bio_put(&bbio->bio);
807 	if (atomic_dec_and_test(&stripe->pending_io))
808 		wake_up(&stripe->io_wait);
809 }
810 
811 static int calc_next_mirror(int mirror, int num_copies)
812 {
813 	ASSERT(mirror <= num_copies);
814 	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
815 }
816 
817 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
818 					    int mirror, int blocksize, bool wait)
819 {
820 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
821 	struct btrfs_bio *bbio = NULL;
822 	const unsigned long old_error_bitmap = stripe->error_bitmap;
823 	int i;
824 
825 	ASSERT(stripe->mirror_num >= 1);
826 	ASSERT(atomic_read(&stripe->pending_io) == 0);
827 
828 	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
829 		struct page *page;
830 		int pgoff;
831 		int ret;
832 
833 		page = scrub_stripe_get_page(stripe, i);
834 		pgoff = scrub_stripe_get_page_offset(stripe, i);
835 
836 		/* The current sector cannot be merged, submit the bio. */
837 		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
838 			     bbio->bio.bi_iter.bi_size >= blocksize)) {
839 			ASSERT(bbio->bio.bi_iter.bi_size);
840 			atomic_inc(&stripe->pending_io);
841 			btrfs_submit_bio(bbio, mirror);
842 			if (wait)
843 				wait_scrub_stripe_io(stripe);
844 			bbio = NULL;
845 		}
846 
847 		if (!bbio) {
848 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
849 				fs_info, scrub_repair_read_endio, stripe);
850 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
851 				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
852 		}
853 
854 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
855 		ASSERT(ret == fs_info->sectorsize);
856 	}
857 	if (bbio) {
858 		ASSERT(bbio->bio.bi_iter.bi_size);
859 		atomic_inc(&stripe->pending_io);
860 		btrfs_submit_bio(bbio, mirror);
861 		if (wait)
862 			wait_scrub_stripe_io(stripe);
863 	}
864 }
865 
866 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
867 				       struct scrub_stripe *stripe)
868 {
869 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
870 				      DEFAULT_RATELIMIT_BURST);
871 	struct btrfs_fs_info *fs_info = sctx->fs_info;
872 	struct btrfs_device *dev = NULL;
873 	u64 physical = 0;
874 	int nr_data_sectors = 0;
875 	int nr_meta_sectors = 0;
876 	int nr_nodatacsum_sectors = 0;
877 	int nr_repaired_sectors = 0;
878 	int sector_nr;
879 
880 	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
881 		return;
882 
883 	/*
884 	 * Init needed infos for error reporting.
885 	 *
886 	 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
887 	 * thus no need for dev/physical, error reporting still needs dev and physical.
888 	 */
889 	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
890 		u64 mapped_len = fs_info->sectorsize;
891 		struct btrfs_io_context *bioc = NULL;
892 		int stripe_index = stripe->mirror_num - 1;
893 		int ret;
894 
895 		/* For scrub, our mirror_num should always start at 1. */
896 		ASSERT(stripe->mirror_num >= 1);
897 		ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
898 				      stripe->logical, &mapped_len, &bioc,
899 				      NULL, NULL);
900 		/*
901 		 * If we failed, dev will be NULL, and later detailed reports
902 		 * will just be skipped.
903 		 */
904 		if (ret < 0)
905 			goto skip;
906 		physical = bioc->stripes[stripe_index].physical;
907 		dev = bioc->stripes[stripe_index].dev;
908 		btrfs_put_bioc(bioc);
909 	}
910 
911 skip:
912 	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
913 		bool repaired = false;
914 
915 		if (stripe->sectors[sector_nr].is_metadata) {
916 			nr_meta_sectors++;
917 		} else {
918 			nr_data_sectors++;
919 			if (!stripe->sectors[sector_nr].csum)
920 				nr_nodatacsum_sectors++;
921 		}
922 
923 		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
924 		    !test_bit(sector_nr, &stripe->error_bitmap)) {
925 			nr_repaired_sectors++;
926 			repaired = true;
927 		}
928 
929 		/* Good sector from the beginning, nothing need to be done. */
930 		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
931 			continue;
932 
933 		/*
934 		 * Report error for the corrupted sectors.  If repaired, just
935 		 * output the message of repaired message.
936 		 */
937 		if (repaired) {
938 			if (dev) {
939 				btrfs_err_rl_in_rcu(fs_info,
940 			"fixed up error at logical %llu on dev %s physical %llu",
941 					    stripe->logical, btrfs_dev_name(dev),
942 					    physical);
943 			} else {
944 				btrfs_err_rl_in_rcu(fs_info,
945 			"fixed up error at logical %llu on mirror %u",
946 					    stripe->logical, stripe->mirror_num);
947 			}
948 			continue;
949 		}
950 
951 		/* The remaining are all for unrepaired. */
952 		if (dev) {
953 			btrfs_err_rl_in_rcu(fs_info,
954 	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
955 					    stripe->logical, btrfs_dev_name(dev),
956 					    physical);
957 		} else {
958 			btrfs_err_rl_in_rcu(fs_info,
959 	"unable to fixup (regular) error at logical %llu on mirror %u",
960 					    stripe->logical, stripe->mirror_num);
961 		}
962 
963 		if (test_bit(sector_nr, &stripe->io_error_bitmap))
964 			if (__ratelimit(&rs) && dev)
965 				scrub_print_common_warning("i/o error", dev, false,
966 						     stripe->logical, physical);
967 		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
968 			if (__ratelimit(&rs) && dev)
969 				scrub_print_common_warning("checksum error", dev, false,
970 						     stripe->logical, physical);
971 		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
972 			if (__ratelimit(&rs) && dev)
973 				scrub_print_common_warning("header error", dev, false,
974 						     stripe->logical, physical);
975 	}
976 
977 	spin_lock(&sctx->stat_lock);
978 	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
979 	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
980 	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
981 	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
982 	sctx->stat.no_csum += nr_nodatacsum_sectors;
983 	sctx->stat.read_errors += stripe->init_nr_io_errors;
984 	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
985 	sctx->stat.verify_errors += stripe->init_nr_meta_errors;
986 	sctx->stat.uncorrectable_errors +=
987 		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
988 	sctx->stat.corrected_errors += nr_repaired_sectors;
989 	spin_unlock(&sctx->stat_lock);
990 }
991 
992 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
993 				unsigned long write_bitmap, bool dev_replace);
994 
995 /*
996  * The main entrance for all read related scrub work, including:
997  *
998  * - Wait for the initial read to finish
999  * - Verify and locate any bad sectors
1000  * - Go through the remaining mirrors and try to read as large blocksize as
1001  *   possible
1002  * - Go through all mirrors (including the failed mirror) sector-by-sector
1003  * - Submit writeback for repaired sectors
1004  *
1005  * Writeback for dev-replace does not happen here, it needs extra
1006  * synchronization for zoned devices.
1007  */
1008 static void scrub_stripe_read_repair_worker(struct work_struct *work)
1009 {
1010 	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1011 	struct scrub_ctx *sctx = stripe->sctx;
1012 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1013 	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1014 					  stripe->bg->length);
1015 	int mirror;
1016 	int i;
1017 
1018 	ASSERT(stripe->mirror_num > 0);
1019 
1020 	wait_scrub_stripe_io(stripe);
1021 	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1022 	/* Save the initial failed bitmap for later repair and report usage. */
1023 	stripe->init_error_bitmap = stripe->error_bitmap;
1024 	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1025 						  stripe->nr_sectors);
1026 	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1027 						    stripe->nr_sectors);
1028 	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1029 						    stripe->nr_sectors);
1030 
1031 	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1032 		goto out;
1033 
1034 	/*
1035 	 * Try all remaining mirrors.
1036 	 *
1037 	 * Here we still try to read as large block as possible, as this is
1038 	 * faster and we have extra safety nets to rely on.
1039 	 */
1040 	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1041 	     mirror != stripe->mirror_num;
1042 	     mirror = calc_next_mirror(mirror, num_copies)) {
1043 		const unsigned long old_error_bitmap = stripe->error_bitmap;
1044 
1045 		scrub_stripe_submit_repair_read(stripe, mirror,
1046 						BTRFS_STRIPE_LEN, false);
1047 		wait_scrub_stripe_io(stripe);
1048 		scrub_verify_one_stripe(stripe, old_error_bitmap);
1049 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1050 			goto out;
1051 	}
1052 
1053 	/*
1054 	 * Last safety net, try re-checking all mirrors, including the failed
1055 	 * one, sector-by-sector.
1056 	 *
1057 	 * As if one sector failed the drive's internal csum, the whole read
1058 	 * containing the offending sector would be marked as error.
1059 	 * Thus here we do sector-by-sector read.
1060 	 *
1061 	 * This can be slow, thus we only try it as the last resort.
1062 	 */
1063 
1064 	for (i = 0, mirror = stripe->mirror_num;
1065 	     i < num_copies;
1066 	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
1067 		const unsigned long old_error_bitmap = stripe->error_bitmap;
1068 
1069 		scrub_stripe_submit_repair_read(stripe, mirror,
1070 						fs_info->sectorsize, true);
1071 		wait_scrub_stripe_io(stripe);
1072 		scrub_verify_one_stripe(stripe, old_error_bitmap);
1073 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1074 			goto out;
1075 	}
1076 out:
1077 	/*
1078 	 * Submit the repaired sectors.  For zoned case, we cannot do repair
1079 	 * in-place, but queue the bg to be relocated.
1080 	 */
1081 	if (btrfs_is_zoned(fs_info)) {
1082 		if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1083 			btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1084 	} else if (!sctx->readonly) {
1085 		unsigned long repaired;
1086 
1087 		bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1088 			      &stripe->error_bitmap, stripe->nr_sectors);
1089 		scrub_write_sectors(sctx, stripe, repaired, false);
1090 		wait_scrub_stripe_io(stripe);
1091 	}
1092 
1093 	scrub_stripe_report_errors(sctx, stripe);
1094 	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1095 	wake_up(&stripe->repair_wait);
1096 }
1097 
1098 static void scrub_read_endio(struct btrfs_bio *bbio)
1099 {
1100 	struct scrub_stripe *stripe = bbio->private;
1101 	struct bio_vec *bvec;
1102 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1103 	int num_sectors;
1104 	u32 bio_size = 0;
1105 	int i;
1106 
1107 	ASSERT(sector_nr < stripe->nr_sectors);
1108 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1109 		bio_size += bvec->bv_len;
1110 	num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
1111 
1112 	if (bbio->bio.bi_status) {
1113 		bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
1114 		bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
1115 	} else {
1116 		bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
1117 	}
1118 	bio_put(&bbio->bio);
1119 	if (atomic_dec_and_test(&stripe->pending_io)) {
1120 		wake_up(&stripe->io_wait);
1121 		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1122 		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1123 	}
1124 }
1125 
1126 static void scrub_write_endio(struct btrfs_bio *bbio)
1127 {
1128 	struct scrub_stripe *stripe = bbio->private;
1129 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1130 	struct bio_vec *bvec;
1131 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1132 	u32 bio_size = 0;
1133 	int i;
1134 
1135 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1136 		bio_size += bvec->bv_len;
1137 
1138 	if (bbio->bio.bi_status) {
1139 		unsigned long flags;
1140 
1141 		spin_lock_irqsave(&stripe->write_error_lock, flags);
1142 		bitmap_set(&stripe->write_error_bitmap, sector_nr,
1143 			   bio_size >> fs_info->sectorsize_bits);
1144 		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1145 	}
1146 	bio_put(&bbio->bio);
1147 
1148 	if (atomic_dec_and_test(&stripe->pending_io))
1149 		wake_up(&stripe->io_wait);
1150 }
1151 
1152 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1153 				   struct scrub_stripe *stripe,
1154 				   struct btrfs_bio *bbio, bool dev_replace)
1155 {
1156 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1157 	u32 bio_len = bbio->bio.bi_iter.bi_size;
1158 	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1159 		      stripe->logical;
1160 
1161 	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1162 	atomic_inc(&stripe->pending_io);
1163 	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1164 	if (!btrfs_is_zoned(fs_info))
1165 		return;
1166 	/*
1167 	 * For zoned writeback, queue depth must be 1, thus we must wait for
1168 	 * the write to finish before the next write.
1169 	 */
1170 	wait_scrub_stripe_io(stripe);
1171 
1172 	/*
1173 	 * And also need to update the write pointer if write finished
1174 	 * successfully.
1175 	 */
1176 	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1177 		      &stripe->write_error_bitmap))
1178 		sctx->write_pointer += bio_len;
1179 }
1180 
1181 /*
1182  * Submit the write bio(s) for the sectors specified by @write_bitmap.
1183  *
1184  * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1185  *
1186  * - Only needs logical bytenr and mirror_num
1187  *   Just like the scrub read path
1188  *
1189  * - Would only result in writes to the specified mirror
1190  *   Unlike the regular writeback path, which would write back to all stripes
1191  *
1192  * - Handle dev-replace and read-repair writeback differently
1193  */
1194 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1195 				unsigned long write_bitmap, bool dev_replace)
1196 {
1197 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1198 	struct btrfs_bio *bbio = NULL;
1199 	int sector_nr;
1200 
1201 	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1202 		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1203 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1204 		int ret;
1205 
1206 		/* We should only writeback sectors covered by an extent. */
1207 		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1208 
1209 		/* Cannot merge with previous sector, submit the current one. */
1210 		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1211 			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1212 			bbio = NULL;
1213 		}
1214 		if (!bbio) {
1215 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1216 					       fs_info, scrub_write_endio, stripe);
1217 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
1218 				(sector_nr << fs_info->sectorsize_bits)) >>
1219 				SECTOR_SHIFT;
1220 		}
1221 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1222 		ASSERT(ret == fs_info->sectorsize);
1223 	}
1224 	if (bbio)
1225 		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1226 }
1227 
1228 /*
1229  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1230  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1231  */
1232 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1233 				  unsigned int bio_size)
1234 {
1235 	const int time_slice = 1000;
1236 	s64 delta;
1237 	ktime_t now;
1238 	u32 div;
1239 	u64 bwlimit;
1240 
1241 	bwlimit = READ_ONCE(device->scrub_speed_max);
1242 	if (bwlimit == 0)
1243 		return;
1244 
1245 	/*
1246 	 * Slice is divided into intervals when the IO is submitted, adjust by
1247 	 * bwlimit and maximum of 64 intervals.
1248 	 */
1249 	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1250 	div = min_t(u32, 64, div);
1251 
1252 	/* Start new epoch, set deadline */
1253 	now = ktime_get();
1254 	if (sctx->throttle_deadline == 0) {
1255 		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1256 		sctx->throttle_sent = 0;
1257 	}
1258 
1259 	/* Still in the time to send? */
1260 	if (ktime_before(now, sctx->throttle_deadline)) {
1261 		/* If current bio is within the limit, send it */
1262 		sctx->throttle_sent += bio_size;
1263 		if (sctx->throttle_sent <= div_u64(bwlimit, div))
1264 			return;
1265 
1266 		/* We're over the limit, sleep until the rest of the slice */
1267 		delta = ktime_ms_delta(sctx->throttle_deadline, now);
1268 	} else {
1269 		/* New request after deadline, start new epoch */
1270 		delta = 0;
1271 	}
1272 
1273 	if (delta) {
1274 		long timeout;
1275 
1276 		timeout = div_u64(delta * HZ, 1000);
1277 		schedule_timeout_interruptible(timeout);
1278 	}
1279 
1280 	/* Next call will start the deadline period */
1281 	sctx->throttle_deadline = 0;
1282 }
1283 
1284 /*
1285  * Given a physical address, this will calculate it's
1286  * logical offset. if this is a parity stripe, it will return
1287  * the most left data stripe's logical offset.
1288  *
1289  * return 0 if it is a data stripe, 1 means parity stripe.
1290  */
1291 static int get_raid56_logic_offset(u64 physical, int num,
1292 				   struct btrfs_chunk_map *map, u64 *offset,
1293 				   u64 *stripe_start)
1294 {
1295 	int i;
1296 	int j = 0;
1297 	u64 last_offset;
1298 	const int data_stripes = nr_data_stripes(map);
1299 
1300 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
1301 	if (stripe_start)
1302 		*stripe_start = last_offset;
1303 
1304 	*offset = last_offset;
1305 	for (i = 0; i < data_stripes; i++) {
1306 		u32 stripe_nr;
1307 		u32 stripe_index;
1308 		u32 rot;
1309 
1310 		*offset = last_offset + btrfs_stripe_nr_to_offset(i);
1311 
1312 		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1313 
1314 		/* Work out the disk rotation on this stripe-set */
1315 		rot = stripe_nr % map->num_stripes;
1316 		/* calculate which stripe this data locates */
1317 		rot += i;
1318 		stripe_index = rot % map->num_stripes;
1319 		if (stripe_index == num)
1320 			return 0;
1321 		if (stripe_index < num)
1322 			j++;
1323 	}
1324 	*offset = last_offset + btrfs_stripe_nr_to_offset(j);
1325 	return 1;
1326 }
1327 
1328 /*
1329  * Return 0 if the extent item range covers any byte of the range.
1330  * Return <0 if the extent item is before @search_start.
1331  * Return >0 if the extent item is after @start_start + @search_len.
1332  */
1333 static int compare_extent_item_range(struct btrfs_path *path,
1334 				     u64 search_start, u64 search_len)
1335 {
1336 	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1337 	u64 len;
1338 	struct btrfs_key key;
1339 
1340 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1341 	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1342 	       key.type == BTRFS_METADATA_ITEM_KEY);
1343 	if (key.type == BTRFS_METADATA_ITEM_KEY)
1344 		len = fs_info->nodesize;
1345 	else
1346 		len = key.offset;
1347 
1348 	if (key.objectid + len <= search_start)
1349 		return -1;
1350 	if (key.objectid >= search_start + search_len)
1351 		return 1;
1352 	return 0;
1353 }
1354 
1355 /*
1356  * Locate one extent item which covers any byte in range
1357  * [@search_start, @search_start + @search_length)
1358  *
1359  * If the path is not initialized, we will initialize the search by doing
1360  * a btrfs_search_slot().
1361  * If the path is already initialized, we will use the path as the initial
1362  * slot, to avoid duplicated btrfs_search_slot() calls.
1363  *
1364  * NOTE: If an extent item starts before @search_start, we will still
1365  * return the extent item. This is for data extent crossing stripe boundary.
1366  *
1367  * Return 0 if we found such extent item, and @path will point to the extent item.
1368  * Return >0 if no such extent item can be found, and @path will be released.
1369  * Return <0 if hit fatal error, and @path will be released.
1370  */
1371 static int find_first_extent_item(struct btrfs_root *extent_root,
1372 				  struct btrfs_path *path,
1373 				  u64 search_start, u64 search_len)
1374 {
1375 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1376 	struct btrfs_key key;
1377 	int ret;
1378 
1379 	/* Continue using the existing path */
1380 	if (path->nodes[0])
1381 		goto search_forward;
1382 
1383 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1384 		key.type = BTRFS_METADATA_ITEM_KEY;
1385 	else
1386 		key.type = BTRFS_EXTENT_ITEM_KEY;
1387 	key.objectid = search_start;
1388 	key.offset = (u64)-1;
1389 
1390 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1391 	if (ret < 0)
1392 		return ret;
1393 
1394 	ASSERT(ret > 0);
1395 	/*
1396 	 * Here we intentionally pass 0 as @min_objectid, as there could be
1397 	 * an extent item starting before @search_start.
1398 	 */
1399 	ret = btrfs_previous_extent_item(extent_root, path, 0);
1400 	if (ret < 0)
1401 		return ret;
1402 	/*
1403 	 * No matter whether we have found an extent item, the next loop will
1404 	 * properly do every check on the key.
1405 	 */
1406 search_forward:
1407 	while (true) {
1408 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1409 		if (key.objectid >= search_start + search_len)
1410 			break;
1411 		if (key.type != BTRFS_METADATA_ITEM_KEY &&
1412 		    key.type != BTRFS_EXTENT_ITEM_KEY)
1413 			goto next;
1414 
1415 		ret = compare_extent_item_range(path, search_start, search_len);
1416 		if (ret == 0)
1417 			return ret;
1418 		if (ret > 0)
1419 			break;
1420 next:
1421 		ret = btrfs_next_item(extent_root, path);
1422 		if (ret) {
1423 			/* Either no more items or a fatal error. */
1424 			btrfs_release_path(path);
1425 			return ret;
1426 		}
1427 	}
1428 	btrfs_release_path(path);
1429 	return 1;
1430 }
1431 
1432 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1433 			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1434 {
1435 	struct btrfs_key key;
1436 	struct btrfs_extent_item *ei;
1437 
1438 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1439 	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1440 	       key.type == BTRFS_EXTENT_ITEM_KEY);
1441 	*extent_start_ret = key.objectid;
1442 	if (key.type == BTRFS_METADATA_ITEM_KEY)
1443 		*size_ret = path->nodes[0]->fs_info->nodesize;
1444 	else
1445 		*size_ret = key.offset;
1446 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1447 	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1448 	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1449 }
1450 
1451 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1452 					u64 physical, u64 physical_end)
1453 {
1454 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1455 	int ret = 0;
1456 
1457 	if (!btrfs_is_zoned(fs_info))
1458 		return 0;
1459 
1460 	mutex_lock(&sctx->wr_lock);
1461 	if (sctx->write_pointer < physical_end) {
1462 		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1463 						    physical,
1464 						    sctx->write_pointer);
1465 		if (ret)
1466 			btrfs_err(fs_info,
1467 				  "zoned: failed to recover write pointer");
1468 	}
1469 	mutex_unlock(&sctx->wr_lock);
1470 	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1471 
1472 	return ret;
1473 }
1474 
1475 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1476 				 struct scrub_stripe *stripe,
1477 				 u64 extent_start, u64 extent_len,
1478 				 u64 extent_flags, u64 extent_gen)
1479 {
1480 	for (u64 cur_logical = max(stripe->logical, extent_start);
1481 	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1482 			       extent_start + extent_len);
1483 	     cur_logical += fs_info->sectorsize) {
1484 		const int nr_sector = (cur_logical - stripe->logical) >>
1485 				      fs_info->sectorsize_bits;
1486 		struct scrub_sector_verification *sector =
1487 						&stripe->sectors[nr_sector];
1488 
1489 		set_bit(nr_sector, &stripe->extent_sector_bitmap);
1490 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1491 			sector->is_metadata = true;
1492 			sector->generation = extent_gen;
1493 		}
1494 	}
1495 }
1496 
1497 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1498 {
1499 	stripe->extent_sector_bitmap = 0;
1500 	stripe->init_error_bitmap = 0;
1501 	stripe->init_nr_io_errors = 0;
1502 	stripe->init_nr_csum_errors = 0;
1503 	stripe->init_nr_meta_errors = 0;
1504 	stripe->error_bitmap = 0;
1505 	stripe->io_error_bitmap = 0;
1506 	stripe->csum_error_bitmap = 0;
1507 	stripe->meta_error_bitmap = 0;
1508 }
1509 
1510 /*
1511  * Locate one stripe which has at least one extent in its range.
1512  *
1513  * Return 0 if found such stripe, and store its info into @stripe.
1514  * Return >0 if there is no such stripe in the specified range.
1515  * Return <0 for error.
1516  */
1517 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1518 					struct btrfs_path *extent_path,
1519 					struct btrfs_path *csum_path,
1520 					struct btrfs_device *dev, u64 physical,
1521 					int mirror_num, u64 logical_start,
1522 					u32 logical_len,
1523 					struct scrub_stripe *stripe)
1524 {
1525 	struct btrfs_fs_info *fs_info = bg->fs_info;
1526 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1527 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1528 	const u64 logical_end = logical_start + logical_len;
1529 	u64 cur_logical = logical_start;
1530 	u64 stripe_end;
1531 	u64 extent_start;
1532 	u64 extent_len;
1533 	u64 extent_flags;
1534 	u64 extent_gen;
1535 	int ret;
1536 
1537 	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1538 				   stripe->nr_sectors);
1539 	scrub_stripe_reset_bitmaps(stripe);
1540 
1541 	/* The range must be inside the bg. */
1542 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1543 
1544 	ret = find_first_extent_item(extent_root, extent_path, logical_start,
1545 				     logical_len);
1546 	/* Either error or not found. */
1547 	if (ret)
1548 		goto out;
1549 	get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1550 			&extent_gen);
1551 	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1552 		stripe->nr_meta_extents++;
1553 	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1554 		stripe->nr_data_extents++;
1555 	cur_logical = max(extent_start, cur_logical);
1556 
1557 	/*
1558 	 * Round down to stripe boundary.
1559 	 *
1560 	 * The extra calculation against bg->start is to handle block groups
1561 	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1562 	 */
1563 	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1564 			  bg->start;
1565 	stripe->physical = physical + stripe->logical - logical_start;
1566 	stripe->dev = dev;
1567 	stripe->bg = bg;
1568 	stripe->mirror_num = mirror_num;
1569 	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1570 
1571 	/* Fill the first extent info into stripe->sectors[] array. */
1572 	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1573 			     extent_flags, extent_gen);
1574 	cur_logical = extent_start + extent_len;
1575 
1576 	/* Fill the extent info for the remaining sectors. */
1577 	while (cur_logical <= stripe_end) {
1578 		ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1579 					     stripe_end - cur_logical + 1);
1580 		if (ret < 0)
1581 			goto out;
1582 		if (ret > 0) {
1583 			ret = 0;
1584 			break;
1585 		}
1586 		get_extent_info(extent_path, &extent_start, &extent_len,
1587 				&extent_flags, &extent_gen);
1588 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1589 			stripe->nr_meta_extents++;
1590 		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1591 			stripe->nr_data_extents++;
1592 		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1593 				     extent_flags, extent_gen);
1594 		cur_logical = extent_start + extent_len;
1595 	}
1596 
1597 	/* Now fill the data csum. */
1598 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1599 		int sector_nr;
1600 		unsigned long csum_bitmap = 0;
1601 
1602 		/* Csum space should have already been allocated. */
1603 		ASSERT(stripe->csums);
1604 
1605 		/*
1606 		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1607 		 * should contain at most 16 sectors.
1608 		 */
1609 		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1610 
1611 		ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1612 						stripe->logical, stripe_end,
1613 						stripe->csums, &csum_bitmap);
1614 		if (ret < 0)
1615 			goto out;
1616 		if (ret > 0)
1617 			ret = 0;
1618 
1619 		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1620 			stripe->sectors[sector_nr].csum = stripe->csums +
1621 				sector_nr * fs_info->csum_size;
1622 		}
1623 	}
1624 	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1625 out:
1626 	return ret;
1627 }
1628 
1629 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1630 {
1631 	scrub_stripe_reset_bitmaps(stripe);
1632 
1633 	stripe->nr_meta_extents = 0;
1634 	stripe->nr_data_extents = 0;
1635 	stripe->state = 0;
1636 
1637 	for (int i = 0; i < stripe->nr_sectors; i++) {
1638 		stripe->sectors[i].is_metadata = false;
1639 		stripe->sectors[i].csum = NULL;
1640 		stripe->sectors[i].generation = 0;
1641 	}
1642 }
1643 
1644 static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx,
1645 					    struct scrub_stripe *stripe)
1646 {
1647 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1648 	struct btrfs_bio *bbio = NULL;
1649 	unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start +
1650 				      stripe->bg->length - stripe->logical) >>
1651 				  fs_info->sectorsize_bits;
1652 	u64 stripe_len = BTRFS_STRIPE_LEN;
1653 	int mirror = stripe->mirror_num;
1654 	int i;
1655 
1656 	atomic_inc(&stripe->pending_io);
1657 
1658 	for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
1659 		struct page *page = scrub_stripe_get_page(stripe, i);
1660 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);
1661 
1662 		/* We're beyond the chunk boundary, no need to read anymore. */
1663 		if (i >= nr_sectors)
1664 			break;
1665 
1666 		/* The current sector cannot be merged, submit the bio. */
1667 		if (bbio &&
1668 		    ((i > 0 &&
1669 		      !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
1670 		     bbio->bio.bi_iter.bi_size >= stripe_len)) {
1671 			ASSERT(bbio->bio.bi_iter.bi_size);
1672 			atomic_inc(&stripe->pending_io);
1673 			btrfs_submit_bio(bbio, mirror);
1674 			bbio = NULL;
1675 		}
1676 
1677 		if (!bbio) {
1678 			struct btrfs_io_stripe io_stripe = {};
1679 			struct btrfs_io_context *bioc = NULL;
1680 			const u64 logical = stripe->logical +
1681 					    (i << fs_info->sectorsize_bits);
1682 			int err;
1683 
1684 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1685 					       fs_info, scrub_read_endio, stripe);
1686 			bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1687 
1688 			io_stripe.is_scrub = true;
1689 			err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1690 					      &stripe_len, &bioc, &io_stripe,
1691 					      &mirror);
1692 			btrfs_put_bioc(bioc);
1693 			if (err) {
1694 				btrfs_bio_end_io(bbio,
1695 						 errno_to_blk_status(err));
1696 				return;
1697 			}
1698 		}
1699 
1700 		__bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1701 	}
1702 
1703 	if (bbio) {
1704 		ASSERT(bbio->bio.bi_iter.bi_size);
1705 		atomic_inc(&stripe->pending_io);
1706 		btrfs_submit_bio(bbio, mirror);
1707 	}
1708 
1709 	if (atomic_dec_and_test(&stripe->pending_io)) {
1710 		wake_up(&stripe->io_wait);
1711 		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1712 		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1713 	}
1714 }
1715 
1716 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1717 				      struct scrub_stripe *stripe)
1718 {
1719 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1720 	struct btrfs_bio *bbio;
1721 	unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start +
1722 				      stripe->bg->length - stripe->logical) >>
1723 				  fs_info->sectorsize_bits;
1724 	int mirror = stripe->mirror_num;
1725 
1726 	ASSERT(stripe->bg);
1727 	ASSERT(stripe->mirror_num > 0);
1728 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1729 
1730 	if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1731 		scrub_submit_extent_sector_read(sctx, stripe);
1732 		return;
1733 	}
1734 
1735 	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1736 			       scrub_read_endio, stripe);
1737 
1738 	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1739 	/* Read the whole range inside the chunk boundary. */
1740 	for (unsigned int cur = 0; cur < nr_sectors; cur++) {
1741 		struct page *page = scrub_stripe_get_page(stripe, cur);
1742 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
1743 		int ret;
1744 
1745 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1746 		/* We should have allocated enough bio vectors. */
1747 		ASSERT(ret == fs_info->sectorsize);
1748 	}
1749 	atomic_inc(&stripe->pending_io);
1750 
1751 	/*
1752 	 * For dev-replace, either user asks to avoid the source dev, or
1753 	 * the device is missing, we try the next mirror instead.
1754 	 */
1755 	if (sctx->is_dev_replace &&
1756 	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1757 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1758 	     !stripe->dev->bdev)) {
1759 		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1760 						  stripe->bg->length);
1761 
1762 		mirror = calc_next_mirror(mirror, num_copies);
1763 	}
1764 	btrfs_submit_bio(bbio, mirror);
1765 }
1766 
1767 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1768 {
1769 	int i;
1770 
1771 	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1772 		if (stripe->sectors[i].is_metadata) {
1773 			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1774 
1775 			btrfs_err(fs_info,
1776 			"stripe %llu has unrepaired metadata sector at %llu",
1777 				  stripe->logical,
1778 				  stripe->logical + (i << fs_info->sectorsize_bits));
1779 			return true;
1780 		}
1781 	}
1782 	return false;
1783 }
1784 
1785 static void submit_initial_group_read(struct scrub_ctx *sctx,
1786 				      unsigned int first_slot,
1787 				      unsigned int nr_stripes)
1788 {
1789 	struct blk_plug plug;
1790 
1791 	ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1792 	ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1793 
1794 	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1795 			      btrfs_stripe_nr_to_offset(nr_stripes));
1796 	blk_start_plug(&plug);
1797 	for (int i = 0; i < nr_stripes; i++) {
1798 		struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1799 
1800 		/* Those stripes should be initialized. */
1801 		ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1802 		scrub_submit_initial_read(sctx, stripe);
1803 	}
1804 	blk_finish_plug(&plug);
1805 }
1806 
1807 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1808 {
1809 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1810 	struct scrub_stripe *stripe;
1811 	const int nr_stripes = sctx->cur_stripe;
1812 	int ret = 0;
1813 
1814 	if (!nr_stripes)
1815 		return 0;
1816 
1817 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1818 
1819 	/* Submit the stripes which are populated but not submitted. */
1820 	if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1821 		const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1822 
1823 		submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
1824 	}
1825 
1826 	for (int i = 0; i < nr_stripes; i++) {
1827 		stripe = &sctx->stripes[i];
1828 
1829 		wait_event(stripe->repair_wait,
1830 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1831 	}
1832 
1833 	/* Submit for dev-replace. */
1834 	if (sctx->is_dev_replace) {
1835 		/*
1836 		 * For dev-replace, if we know there is something wrong with
1837 		 * metadata, we should immediately abort.
1838 		 */
1839 		for (int i = 0; i < nr_stripes; i++) {
1840 			if (stripe_has_metadata_error(&sctx->stripes[i])) {
1841 				ret = -EIO;
1842 				goto out;
1843 			}
1844 		}
1845 		for (int i = 0; i < nr_stripes; i++) {
1846 			unsigned long good;
1847 
1848 			stripe = &sctx->stripes[i];
1849 
1850 			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1851 
1852 			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1853 				      &stripe->error_bitmap, stripe->nr_sectors);
1854 			scrub_write_sectors(sctx, stripe, good, true);
1855 		}
1856 	}
1857 
1858 	/* Wait for the above writebacks to finish. */
1859 	for (int i = 0; i < nr_stripes; i++) {
1860 		stripe = &sctx->stripes[i];
1861 
1862 		wait_scrub_stripe_io(stripe);
1863 		scrub_reset_stripe(stripe);
1864 	}
1865 out:
1866 	sctx->cur_stripe = 0;
1867 	return ret;
1868 }
1869 
1870 static void raid56_scrub_wait_endio(struct bio *bio)
1871 {
1872 	complete(bio->bi_private);
1873 }
1874 
1875 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1876 			      struct btrfs_device *dev, int mirror_num,
1877 			      u64 logical, u32 length, u64 physical,
1878 			      u64 *found_logical_ret)
1879 {
1880 	struct scrub_stripe *stripe;
1881 	int ret;
1882 
1883 	/*
1884 	 * There should always be one slot left, as caller filling the last
1885 	 * slot should flush them all.
1886 	 */
1887 	ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1888 
1889 	/* @found_logical_ret must be specified. */
1890 	ASSERT(found_logical_ret);
1891 
1892 	stripe = &sctx->stripes[sctx->cur_stripe];
1893 	scrub_reset_stripe(stripe);
1894 	ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1895 					   &sctx->csum_path, dev, physical,
1896 					   mirror_num, logical, length, stripe);
1897 	/* Either >0 as no more extents or <0 for error. */
1898 	if (ret)
1899 		return ret;
1900 	*found_logical_ret = stripe->logical;
1901 	sctx->cur_stripe++;
1902 
1903 	/* We filled one group, submit it. */
1904 	if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1905 		const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1906 
1907 		submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
1908 	}
1909 
1910 	/* Last slot used, flush them all. */
1911 	if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1912 		return flush_scrub_stripes(sctx);
1913 	return 0;
1914 }
1915 
1916 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1917 				      struct btrfs_device *scrub_dev,
1918 				      struct btrfs_block_group *bg,
1919 				      struct btrfs_chunk_map *map,
1920 				      u64 full_stripe_start)
1921 {
1922 	DECLARE_COMPLETION_ONSTACK(io_done);
1923 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1924 	struct btrfs_raid_bio *rbio;
1925 	struct btrfs_io_context *bioc = NULL;
1926 	struct btrfs_path extent_path = { 0 };
1927 	struct btrfs_path csum_path = { 0 };
1928 	struct bio *bio;
1929 	struct scrub_stripe *stripe;
1930 	bool all_empty = true;
1931 	const int data_stripes = nr_data_stripes(map);
1932 	unsigned long extent_bitmap = 0;
1933 	u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1934 	int ret;
1935 
1936 	ASSERT(sctx->raid56_data_stripes);
1937 
1938 	/*
1939 	 * For data stripe search, we cannot re-use the same extent/csum paths,
1940 	 * as the data stripe bytenr may be smaller than previous extent.  Thus
1941 	 * we have to use our own extent/csum paths.
1942 	 */
1943 	extent_path.search_commit_root = 1;
1944 	extent_path.skip_locking = 1;
1945 	csum_path.search_commit_root = 1;
1946 	csum_path.skip_locking = 1;
1947 
1948 	for (int i = 0; i < data_stripes; i++) {
1949 		int stripe_index;
1950 		int rot;
1951 		u64 physical;
1952 
1953 		stripe = &sctx->raid56_data_stripes[i];
1954 		rot = div_u64(full_stripe_start - bg->start,
1955 			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1956 		stripe_index = (i + rot) % map->num_stripes;
1957 		physical = map->stripes[stripe_index].physical +
1958 			   btrfs_stripe_nr_to_offset(rot);
1959 
1960 		scrub_reset_stripe(stripe);
1961 		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1962 		ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1963 				map->stripes[stripe_index].dev, physical, 1,
1964 				full_stripe_start + btrfs_stripe_nr_to_offset(i),
1965 				BTRFS_STRIPE_LEN, stripe);
1966 		if (ret < 0)
1967 			goto out;
1968 		/*
1969 		 * No extent in this data stripe, need to manually mark them
1970 		 * initialized to make later read submission happy.
1971 		 */
1972 		if (ret > 0) {
1973 			stripe->logical = full_stripe_start +
1974 					  btrfs_stripe_nr_to_offset(i);
1975 			stripe->dev = map->stripes[stripe_index].dev;
1976 			stripe->mirror_num = 1;
1977 			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1978 		}
1979 	}
1980 
1981 	/* Check if all data stripes are empty. */
1982 	for (int i = 0; i < data_stripes; i++) {
1983 		stripe = &sctx->raid56_data_stripes[i];
1984 		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1985 			all_empty = false;
1986 			break;
1987 		}
1988 	}
1989 	if (all_empty) {
1990 		ret = 0;
1991 		goto out;
1992 	}
1993 
1994 	for (int i = 0; i < data_stripes; i++) {
1995 		stripe = &sctx->raid56_data_stripes[i];
1996 		scrub_submit_initial_read(sctx, stripe);
1997 	}
1998 	for (int i = 0; i < data_stripes; i++) {
1999 		stripe = &sctx->raid56_data_stripes[i];
2000 
2001 		wait_event(stripe->repair_wait,
2002 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
2003 	}
2004 	/* For now, no zoned support for RAID56. */
2005 	ASSERT(!btrfs_is_zoned(sctx->fs_info));
2006 
2007 	/*
2008 	 * Now all data stripes are properly verified. Check if we have any
2009 	 * unrepaired, if so abort immediately or we could further corrupt the
2010 	 * P/Q stripes.
2011 	 *
2012 	 * During the loop, also populate extent_bitmap.
2013 	 */
2014 	for (int i = 0; i < data_stripes; i++) {
2015 		unsigned long error;
2016 
2017 		stripe = &sctx->raid56_data_stripes[i];
2018 
2019 		/*
2020 		 * We should only check the errors where there is an extent.
2021 		 * As we may hit an empty data stripe while it's missing.
2022 		 */
2023 		bitmap_and(&error, &stripe->error_bitmap,
2024 			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
2025 		if (!bitmap_empty(&error, stripe->nr_sectors)) {
2026 			btrfs_err(fs_info,
2027 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2028 				  full_stripe_start, i, stripe->nr_sectors,
2029 				  &error);
2030 			ret = -EIO;
2031 			goto out;
2032 		}
2033 		bitmap_or(&extent_bitmap, &extent_bitmap,
2034 			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
2035 	}
2036 
2037 	/* Now we can check and regenerate the P/Q stripe. */
2038 	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2039 	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2040 	bio->bi_private = &io_done;
2041 	bio->bi_end_io = raid56_scrub_wait_endio;
2042 
2043 	btrfs_bio_counter_inc_blocked(fs_info);
2044 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2045 			      &length, &bioc, NULL, NULL);
2046 	if (ret < 0) {
2047 		btrfs_put_bioc(bioc);
2048 		btrfs_bio_counter_dec(fs_info);
2049 		goto out;
2050 	}
2051 	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2052 				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2053 	btrfs_put_bioc(bioc);
2054 	if (!rbio) {
2055 		ret = -ENOMEM;
2056 		btrfs_bio_counter_dec(fs_info);
2057 		goto out;
2058 	}
2059 	/* Use the recovered stripes as cache to avoid read them from disk again. */
2060 	for (int i = 0; i < data_stripes; i++) {
2061 		stripe = &sctx->raid56_data_stripes[i];
2062 
2063 		raid56_parity_cache_data_pages(rbio, stripe->pages,
2064 				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
2065 	}
2066 	raid56_parity_submit_scrub_rbio(rbio);
2067 	wait_for_completion_io(&io_done);
2068 	ret = blk_status_to_errno(bio->bi_status);
2069 	bio_put(bio);
2070 	btrfs_bio_counter_dec(fs_info);
2071 
2072 	btrfs_release_path(&extent_path);
2073 	btrfs_release_path(&csum_path);
2074 out:
2075 	return ret;
2076 }
2077 
2078 /*
2079  * Scrub one range which can only has simple mirror based profile.
2080  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2081  *  RAID0/RAID10).
2082  *
2083  * Since we may need to handle a subset of block group, we need @logical_start
2084  * and @logical_length parameter.
2085  */
2086 static int scrub_simple_mirror(struct scrub_ctx *sctx,
2087 			       struct btrfs_block_group *bg,
2088 			       struct btrfs_chunk_map *map,
2089 			       u64 logical_start, u64 logical_length,
2090 			       struct btrfs_device *device,
2091 			       u64 physical, int mirror_num)
2092 {
2093 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2094 	const u64 logical_end = logical_start + logical_length;
2095 	u64 cur_logical = logical_start;
2096 	int ret;
2097 
2098 	/* The range must be inside the bg */
2099 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2100 
2101 	/* Go through each extent items inside the logical range */
2102 	while (cur_logical < logical_end) {
2103 		u64 found_logical = U64_MAX;
2104 		u64 cur_physical = physical + cur_logical - logical_start;
2105 
2106 		/* Canceled? */
2107 		if (atomic_read(&fs_info->scrub_cancel_req) ||
2108 		    atomic_read(&sctx->cancel_req)) {
2109 			ret = -ECANCELED;
2110 			break;
2111 		}
2112 		/* Paused? */
2113 		if (atomic_read(&fs_info->scrub_pause_req)) {
2114 			/* Push queued extents */
2115 			scrub_blocked_if_needed(fs_info);
2116 		}
2117 		/* Block group removed? */
2118 		spin_lock(&bg->lock);
2119 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2120 			spin_unlock(&bg->lock);
2121 			ret = 0;
2122 			break;
2123 		}
2124 		spin_unlock(&bg->lock);
2125 
2126 		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2127 					 cur_logical, logical_end - cur_logical,
2128 					 cur_physical, &found_logical);
2129 		if (ret > 0) {
2130 			/* No more extent, just update the accounting */
2131 			sctx->stat.last_physical = physical + logical_length;
2132 			ret = 0;
2133 			break;
2134 		}
2135 		if (ret < 0)
2136 			break;
2137 
2138 		/* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2139 		ASSERT(found_logical != U64_MAX);
2140 		cur_logical = found_logical + BTRFS_STRIPE_LEN;
2141 
2142 		/* Don't hold CPU for too long time */
2143 		cond_resched();
2144 	}
2145 	return ret;
2146 }
2147 
2148 /* Calculate the full stripe length for simple stripe based profiles */
2149 static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
2150 {
2151 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2152 			    BTRFS_BLOCK_GROUP_RAID10));
2153 
2154 	return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2155 }
2156 
2157 /* Get the logical bytenr for the stripe */
2158 static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
2159 				     struct btrfs_block_group *bg,
2160 				     int stripe_index)
2161 {
2162 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2163 			    BTRFS_BLOCK_GROUP_RAID10));
2164 	ASSERT(stripe_index < map->num_stripes);
2165 
2166 	/*
2167 	 * (stripe_index / sub_stripes) gives how many data stripes we need to
2168 	 * skip.
2169 	 */
2170 	return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2171 	       bg->start;
2172 }
2173 
2174 /* Get the mirror number for the stripe */
2175 static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
2176 {
2177 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2178 			    BTRFS_BLOCK_GROUP_RAID10));
2179 	ASSERT(stripe_index < map->num_stripes);
2180 
2181 	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2182 	return stripe_index % map->sub_stripes + 1;
2183 }
2184 
2185 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2186 			       struct btrfs_block_group *bg,
2187 			       struct btrfs_chunk_map *map,
2188 			       struct btrfs_device *device,
2189 			       int stripe_index)
2190 {
2191 	const u64 logical_increment = simple_stripe_full_stripe_len(map);
2192 	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2193 	const u64 orig_physical = map->stripes[stripe_index].physical;
2194 	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2195 	u64 cur_logical = orig_logical;
2196 	u64 cur_physical = orig_physical;
2197 	int ret = 0;
2198 
2199 	while (cur_logical < bg->start + bg->length) {
2200 		/*
2201 		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2202 		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2203 		 * this stripe.
2204 		 */
2205 		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2206 					  BTRFS_STRIPE_LEN, device, cur_physical,
2207 					  mirror_num);
2208 		if (ret)
2209 			return ret;
2210 		/* Skip to next stripe which belongs to the target device */
2211 		cur_logical += logical_increment;
2212 		/* For physical offset, we just go to next stripe */
2213 		cur_physical += BTRFS_STRIPE_LEN;
2214 	}
2215 	return ret;
2216 }
2217 
2218 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2219 					   struct btrfs_block_group *bg,
2220 					   struct btrfs_chunk_map *map,
2221 					   struct btrfs_device *scrub_dev,
2222 					   int stripe_index)
2223 {
2224 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2225 	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2226 	const u64 chunk_logical = bg->start;
2227 	int ret;
2228 	int ret2;
2229 	u64 physical = map->stripes[stripe_index].physical;
2230 	const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
2231 	const u64 physical_end = physical + dev_stripe_len;
2232 	u64 logical;
2233 	u64 logic_end;
2234 	/* The logical increment after finishing one stripe */
2235 	u64 increment;
2236 	/* Offset inside the chunk */
2237 	u64 offset;
2238 	u64 stripe_logical;
2239 	int stop_loop = 0;
2240 
2241 	/* Extent_path should be released by now. */
2242 	ASSERT(sctx->extent_path.nodes[0] == NULL);
2243 
2244 	scrub_blocked_if_needed(fs_info);
2245 
2246 	if (sctx->is_dev_replace &&
2247 	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2248 		mutex_lock(&sctx->wr_lock);
2249 		sctx->write_pointer = physical;
2250 		mutex_unlock(&sctx->wr_lock);
2251 	}
2252 
2253 	/* Prepare the extra data stripes used by RAID56. */
2254 	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2255 		ASSERT(sctx->raid56_data_stripes == NULL);
2256 
2257 		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2258 						    sizeof(struct scrub_stripe),
2259 						    GFP_KERNEL);
2260 		if (!sctx->raid56_data_stripes) {
2261 			ret = -ENOMEM;
2262 			goto out;
2263 		}
2264 		for (int i = 0; i < nr_data_stripes(map); i++) {
2265 			ret = init_scrub_stripe(fs_info,
2266 						&sctx->raid56_data_stripes[i]);
2267 			if (ret < 0)
2268 				goto out;
2269 			sctx->raid56_data_stripes[i].bg = bg;
2270 			sctx->raid56_data_stripes[i].sctx = sctx;
2271 		}
2272 	}
2273 	/*
2274 	 * There used to be a big double loop to handle all profiles using the
2275 	 * same routine, which grows larger and more gross over time.
2276 	 *
2277 	 * So here we handle each profile differently, so simpler profiles
2278 	 * have simpler scrubbing function.
2279 	 */
2280 	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2281 			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2282 		/*
2283 		 * Above check rules out all complex profile, the remaining
2284 		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2285 		 * mirrored duplication without stripe.
2286 		 *
2287 		 * Only @physical and @mirror_num needs to calculated using
2288 		 * @stripe_index.
2289 		 */
2290 		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2291 				scrub_dev, map->stripes[stripe_index].physical,
2292 				stripe_index + 1);
2293 		offset = 0;
2294 		goto out;
2295 	}
2296 	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2297 		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2298 		offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2299 		goto out;
2300 	}
2301 
2302 	/* Only RAID56 goes through the old code */
2303 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2304 	ret = 0;
2305 
2306 	/* Calculate the logical end of the stripe */
2307 	get_raid56_logic_offset(physical_end, stripe_index,
2308 				map, &logic_end, NULL);
2309 	logic_end += chunk_logical;
2310 
2311 	/* Initialize @offset in case we need to go to out: label */
2312 	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2313 	increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2314 
2315 	/*
2316 	 * Due to the rotation, for RAID56 it's better to iterate each stripe
2317 	 * using their physical offset.
2318 	 */
2319 	while (physical < physical_end) {
2320 		ret = get_raid56_logic_offset(physical, stripe_index, map,
2321 					      &logical, &stripe_logical);
2322 		logical += chunk_logical;
2323 		if (ret) {
2324 			/* it is parity strip */
2325 			stripe_logical += chunk_logical;
2326 			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2327 							 map, stripe_logical);
2328 			if (ret)
2329 				goto out;
2330 			goto next;
2331 		}
2332 
2333 		/*
2334 		 * Now we're at a data stripe, scrub each extents in the range.
2335 		 *
2336 		 * At this stage, if we ignore the repair part, inside each data
2337 		 * stripe it is no different than SINGLE profile.
2338 		 * We can reuse scrub_simple_mirror() here, as the repair part
2339 		 * is still based on @mirror_num.
2340 		 */
2341 		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2342 					  scrub_dev, physical, 1);
2343 		if (ret < 0)
2344 			goto out;
2345 next:
2346 		logical += increment;
2347 		physical += BTRFS_STRIPE_LEN;
2348 		spin_lock(&sctx->stat_lock);
2349 		if (stop_loop)
2350 			sctx->stat.last_physical =
2351 				map->stripes[stripe_index].physical + dev_stripe_len;
2352 		else
2353 			sctx->stat.last_physical = physical;
2354 		spin_unlock(&sctx->stat_lock);
2355 		if (stop_loop)
2356 			break;
2357 	}
2358 out:
2359 	ret2 = flush_scrub_stripes(sctx);
2360 	if (!ret)
2361 		ret = ret2;
2362 	btrfs_release_path(&sctx->extent_path);
2363 	btrfs_release_path(&sctx->csum_path);
2364 
2365 	if (sctx->raid56_data_stripes) {
2366 		for (int i = 0; i < nr_data_stripes(map); i++)
2367 			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2368 		kfree(sctx->raid56_data_stripes);
2369 		sctx->raid56_data_stripes = NULL;
2370 	}
2371 
2372 	if (sctx->is_dev_replace && ret >= 0) {
2373 		int ret2;
2374 
2375 		ret2 = sync_write_pointer_for_zoned(sctx,
2376 				chunk_logical + offset,
2377 				map->stripes[stripe_index].physical,
2378 				physical_end);
2379 		if (ret2)
2380 			ret = ret2;
2381 	}
2382 
2383 	return ret < 0 ? ret : 0;
2384 }
2385 
2386 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2387 					  struct btrfs_block_group *bg,
2388 					  struct btrfs_device *scrub_dev,
2389 					  u64 dev_offset,
2390 					  u64 dev_extent_len)
2391 {
2392 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2393 	struct btrfs_chunk_map *map;
2394 	int i;
2395 	int ret = 0;
2396 
2397 	map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
2398 	if (!map) {
2399 		/*
2400 		 * Might have been an unused block group deleted by the cleaner
2401 		 * kthread or relocation.
2402 		 */
2403 		spin_lock(&bg->lock);
2404 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2405 			ret = -EINVAL;
2406 		spin_unlock(&bg->lock);
2407 
2408 		return ret;
2409 	}
2410 	if (map->start != bg->start)
2411 		goto out;
2412 	if (map->chunk_len < dev_extent_len)
2413 		goto out;
2414 
2415 	for (i = 0; i < map->num_stripes; ++i) {
2416 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2417 		    map->stripes[i].physical == dev_offset) {
2418 			ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
2419 			if (ret)
2420 				goto out;
2421 		}
2422 	}
2423 out:
2424 	btrfs_free_chunk_map(map);
2425 
2426 	return ret;
2427 }
2428 
2429 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2430 					  struct btrfs_block_group *cache)
2431 {
2432 	struct btrfs_fs_info *fs_info = cache->fs_info;
2433 	struct btrfs_trans_handle *trans;
2434 
2435 	if (!btrfs_is_zoned(fs_info))
2436 		return 0;
2437 
2438 	btrfs_wait_block_group_reservations(cache);
2439 	btrfs_wait_nocow_writers(cache);
2440 	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2441 
2442 	trans = btrfs_join_transaction(root);
2443 	if (IS_ERR(trans))
2444 		return PTR_ERR(trans);
2445 	return btrfs_commit_transaction(trans);
2446 }
2447 
2448 static noinline_for_stack
2449 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2450 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
2451 {
2452 	struct btrfs_dev_extent *dev_extent = NULL;
2453 	struct btrfs_path *path;
2454 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2455 	struct btrfs_root *root = fs_info->dev_root;
2456 	u64 chunk_offset;
2457 	int ret = 0;
2458 	int ro_set;
2459 	int slot;
2460 	struct extent_buffer *l;
2461 	struct btrfs_key key;
2462 	struct btrfs_key found_key;
2463 	struct btrfs_block_group *cache;
2464 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2465 
2466 	path = btrfs_alloc_path();
2467 	if (!path)
2468 		return -ENOMEM;
2469 
2470 	path->reada = READA_FORWARD;
2471 	path->search_commit_root = 1;
2472 	path->skip_locking = 1;
2473 
2474 	key.objectid = scrub_dev->devid;
2475 	key.offset = 0ull;
2476 	key.type = BTRFS_DEV_EXTENT_KEY;
2477 
2478 	while (1) {
2479 		u64 dev_extent_len;
2480 
2481 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2482 		if (ret < 0)
2483 			break;
2484 		if (ret > 0) {
2485 			if (path->slots[0] >=
2486 			    btrfs_header_nritems(path->nodes[0])) {
2487 				ret = btrfs_next_leaf(root, path);
2488 				if (ret < 0)
2489 					break;
2490 				if (ret > 0) {
2491 					ret = 0;
2492 					break;
2493 				}
2494 			} else {
2495 				ret = 0;
2496 			}
2497 		}
2498 
2499 		l = path->nodes[0];
2500 		slot = path->slots[0];
2501 
2502 		btrfs_item_key_to_cpu(l, &found_key, slot);
2503 
2504 		if (found_key.objectid != scrub_dev->devid)
2505 			break;
2506 
2507 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2508 			break;
2509 
2510 		if (found_key.offset >= end)
2511 			break;
2512 
2513 		if (found_key.offset < key.offset)
2514 			break;
2515 
2516 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2517 		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2518 
2519 		if (found_key.offset + dev_extent_len <= start)
2520 			goto skip;
2521 
2522 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2523 
2524 		/*
2525 		 * get a reference on the corresponding block group to prevent
2526 		 * the chunk from going away while we scrub it
2527 		 */
2528 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2529 
2530 		/* some chunks are removed but not committed to disk yet,
2531 		 * continue scrubbing */
2532 		if (!cache)
2533 			goto skip;
2534 
2535 		ASSERT(cache->start <= chunk_offset);
2536 		/*
2537 		 * We are using the commit root to search for device extents, so
2538 		 * that means we could have found a device extent item from a
2539 		 * block group that was deleted in the current transaction. The
2540 		 * logical start offset of the deleted block group, stored at
2541 		 * @chunk_offset, might be part of the logical address range of
2542 		 * a new block group (which uses different physical extents).
2543 		 * In this case btrfs_lookup_block_group() has returned the new
2544 		 * block group, and its start address is less than @chunk_offset.
2545 		 *
2546 		 * We skip such new block groups, because it's pointless to
2547 		 * process them, as we won't find their extents because we search
2548 		 * for them using the commit root of the extent tree. For a device
2549 		 * replace it's also fine to skip it, we won't miss copying them
2550 		 * to the target device because we have the write duplication
2551 		 * setup through the regular write path (by btrfs_map_block()),
2552 		 * and we have committed a transaction when we started the device
2553 		 * replace, right after setting up the device replace state.
2554 		 */
2555 		if (cache->start < chunk_offset) {
2556 			btrfs_put_block_group(cache);
2557 			goto skip;
2558 		}
2559 
2560 		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2561 			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2562 				btrfs_put_block_group(cache);
2563 				goto skip;
2564 			}
2565 		}
2566 
2567 		/*
2568 		 * Make sure that while we are scrubbing the corresponding block
2569 		 * group doesn't get its logical address and its device extents
2570 		 * reused for another block group, which can possibly be of a
2571 		 * different type and different profile. We do this to prevent
2572 		 * false error detections and crashes due to bogus attempts to
2573 		 * repair extents.
2574 		 */
2575 		spin_lock(&cache->lock);
2576 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2577 			spin_unlock(&cache->lock);
2578 			btrfs_put_block_group(cache);
2579 			goto skip;
2580 		}
2581 		btrfs_freeze_block_group(cache);
2582 		spin_unlock(&cache->lock);
2583 
2584 		/*
2585 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2586 		 * to avoid deadlock caused by:
2587 		 * btrfs_inc_block_group_ro()
2588 		 * -> btrfs_wait_for_commit()
2589 		 * -> btrfs_commit_transaction()
2590 		 * -> btrfs_scrub_pause()
2591 		 */
2592 		scrub_pause_on(fs_info);
2593 
2594 		/*
2595 		 * Don't do chunk preallocation for scrub.
2596 		 *
2597 		 * This is especially important for SYSTEM bgs, or we can hit
2598 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
2599 		 * 1. The only SYSTEM bg is marked RO.
2600 		 *    Since SYSTEM bg is small, that's pretty common.
2601 		 * 2. New SYSTEM bg will be allocated
2602 		 *    Due to regular version will allocate new chunk.
2603 		 * 3. New SYSTEM bg is empty and will get cleaned up
2604 		 *    Before cleanup really happens, it's marked RO again.
2605 		 * 4. Empty SYSTEM bg get scrubbed
2606 		 *    We go back to 2.
2607 		 *
2608 		 * This can easily boost the amount of SYSTEM chunks if cleaner
2609 		 * thread can't be triggered fast enough, and use up all space
2610 		 * of btrfs_super_block::sys_chunk_array
2611 		 *
2612 		 * While for dev replace, we need to try our best to mark block
2613 		 * group RO, to prevent race between:
2614 		 * - Write duplication
2615 		 *   Contains latest data
2616 		 * - Scrub copy
2617 		 *   Contains data from commit tree
2618 		 *
2619 		 * If target block group is not marked RO, nocow writes can
2620 		 * be overwritten by scrub copy, causing data corruption.
2621 		 * So for dev-replace, it's not allowed to continue if a block
2622 		 * group is not RO.
2623 		 */
2624 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2625 		if (!ret && sctx->is_dev_replace) {
2626 			ret = finish_extent_writes_for_zoned(root, cache);
2627 			if (ret) {
2628 				btrfs_dec_block_group_ro(cache);
2629 				scrub_pause_off(fs_info);
2630 				btrfs_put_block_group(cache);
2631 				break;
2632 			}
2633 		}
2634 
2635 		if (ret == 0) {
2636 			ro_set = 1;
2637 		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2638 			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2639 			/*
2640 			 * btrfs_inc_block_group_ro return -ENOSPC when it
2641 			 * failed in creating new chunk for metadata.
2642 			 * It is not a problem for scrub, because
2643 			 * metadata are always cowed, and our scrub paused
2644 			 * commit_transactions.
2645 			 *
2646 			 * For RAID56 chunks, we have to mark them read-only
2647 			 * for scrub, as later we would use our own cache
2648 			 * out of RAID56 realm.
2649 			 * Thus we want the RAID56 bg to be marked RO to
2650 			 * prevent RMW from screwing up out cache.
2651 			 */
2652 			ro_set = 0;
2653 		} else if (ret == -ETXTBSY) {
2654 			btrfs_warn(fs_info,
2655 		   "skipping scrub of block group %llu due to active swapfile",
2656 				   cache->start);
2657 			scrub_pause_off(fs_info);
2658 			ret = 0;
2659 			goto skip_unfreeze;
2660 		} else {
2661 			btrfs_warn(fs_info,
2662 				   "failed setting block group ro: %d", ret);
2663 			btrfs_unfreeze_block_group(cache);
2664 			btrfs_put_block_group(cache);
2665 			scrub_pause_off(fs_info);
2666 			break;
2667 		}
2668 
2669 		/*
2670 		 * Now the target block is marked RO, wait for nocow writes to
2671 		 * finish before dev-replace.
2672 		 * COW is fine, as COW never overwrites extents in commit tree.
2673 		 */
2674 		if (sctx->is_dev_replace) {
2675 			btrfs_wait_nocow_writers(cache);
2676 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2677 					cache->length);
2678 		}
2679 
2680 		scrub_pause_off(fs_info);
2681 		down_write(&dev_replace->rwsem);
2682 		dev_replace->cursor_right = found_key.offset + dev_extent_len;
2683 		dev_replace->cursor_left = found_key.offset;
2684 		dev_replace->item_needs_writeback = 1;
2685 		up_write(&dev_replace->rwsem);
2686 
2687 		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2688 				  dev_extent_len);
2689 		if (sctx->is_dev_replace &&
2690 		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2691 						      cache, found_key.offset))
2692 			ro_set = 0;
2693 
2694 		down_write(&dev_replace->rwsem);
2695 		dev_replace->cursor_left = dev_replace->cursor_right;
2696 		dev_replace->item_needs_writeback = 1;
2697 		up_write(&dev_replace->rwsem);
2698 
2699 		if (ro_set)
2700 			btrfs_dec_block_group_ro(cache);
2701 
2702 		/*
2703 		 * We might have prevented the cleaner kthread from deleting
2704 		 * this block group if it was already unused because we raced
2705 		 * and set it to RO mode first. So add it back to the unused
2706 		 * list, otherwise it might not ever be deleted unless a manual
2707 		 * balance is triggered or it becomes used and unused again.
2708 		 */
2709 		spin_lock(&cache->lock);
2710 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2711 		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
2712 			spin_unlock(&cache->lock);
2713 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2714 				btrfs_discard_queue_work(&fs_info->discard_ctl,
2715 							 cache);
2716 			else
2717 				btrfs_mark_bg_unused(cache);
2718 		} else {
2719 			spin_unlock(&cache->lock);
2720 		}
2721 skip_unfreeze:
2722 		btrfs_unfreeze_block_group(cache);
2723 		btrfs_put_block_group(cache);
2724 		if (ret)
2725 			break;
2726 		if (sctx->is_dev_replace &&
2727 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2728 			ret = -EIO;
2729 			break;
2730 		}
2731 		if (sctx->stat.malloc_errors > 0) {
2732 			ret = -ENOMEM;
2733 			break;
2734 		}
2735 skip:
2736 		key.offset = found_key.offset + dev_extent_len;
2737 		btrfs_release_path(path);
2738 	}
2739 
2740 	btrfs_free_path(path);
2741 
2742 	return ret;
2743 }
2744 
2745 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2746 			   struct page *page, u64 physical, u64 generation)
2747 {
2748 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2749 	struct bio_vec bvec;
2750 	struct bio bio;
2751 	struct btrfs_super_block *sb = page_address(page);
2752 	int ret;
2753 
2754 	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2755 	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2756 	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2757 	ret = submit_bio_wait(&bio);
2758 	bio_uninit(&bio);
2759 
2760 	if (ret < 0)
2761 		return ret;
2762 	ret = btrfs_check_super_csum(fs_info, sb);
2763 	if (ret != 0) {
2764 		btrfs_err_rl(fs_info,
2765 			"super block at physical %llu devid %llu has bad csum",
2766 			physical, dev->devid);
2767 		return -EIO;
2768 	}
2769 	if (btrfs_super_generation(sb) != generation) {
2770 		btrfs_err_rl(fs_info,
2771 "super block at physical %llu devid %llu has bad generation %llu expect %llu",
2772 			     physical, dev->devid,
2773 			     btrfs_super_generation(sb), generation);
2774 		return -EUCLEAN;
2775 	}
2776 
2777 	return btrfs_validate_super(fs_info, sb, -1);
2778 }
2779 
2780 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2781 					   struct btrfs_device *scrub_dev)
2782 {
2783 	int	i;
2784 	u64	bytenr;
2785 	u64	gen;
2786 	int ret = 0;
2787 	struct page *page;
2788 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2789 
2790 	if (BTRFS_FS_ERROR(fs_info))
2791 		return -EROFS;
2792 
2793 	page = alloc_page(GFP_KERNEL);
2794 	if (!page) {
2795 		spin_lock(&sctx->stat_lock);
2796 		sctx->stat.malloc_errors++;
2797 		spin_unlock(&sctx->stat_lock);
2798 		return -ENOMEM;
2799 	}
2800 
2801 	/* Seed devices of a new filesystem has their own generation. */
2802 	if (scrub_dev->fs_devices != fs_info->fs_devices)
2803 		gen = scrub_dev->generation;
2804 	else
2805 		gen = btrfs_get_last_trans_committed(fs_info);
2806 
2807 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2808 		bytenr = btrfs_sb_offset(i);
2809 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
2810 		    scrub_dev->commit_total_bytes)
2811 			break;
2812 		if (!btrfs_check_super_location(scrub_dev, bytenr))
2813 			continue;
2814 
2815 		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2816 		if (ret) {
2817 			spin_lock(&sctx->stat_lock);
2818 			sctx->stat.super_errors++;
2819 			spin_unlock(&sctx->stat_lock);
2820 		}
2821 	}
2822 	__free_page(page);
2823 	return 0;
2824 }
2825 
2826 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2827 {
2828 	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2829 					&fs_info->scrub_lock)) {
2830 		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2831 
2832 		fs_info->scrub_workers = NULL;
2833 		mutex_unlock(&fs_info->scrub_lock);
2834 
2835 		if (scrub_workers)
2836 			destroy_workqueue(scrub_workers);
2837 	}
2838 }
2839 
2840 /*
2841  * get a reference count on fs_info->scrub_workers. start worker if necessary
2842  */
2843 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
2844 {
2845 	struct workqueue_struct *scrub_workers = NULL;
2846 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2847 	int max_active = fs_info->thread_pool_size;
2848 	int ret = -ENOMEM;
2849 
2850 	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2851 		return 0;
2852 
2853 	scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2854 	if (!scrub_workers)
2855 		return -ENOMEM;
2856 
2857 	mutex_lock(&fs_info->scrub_lock);
2858 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2859 		ASSERT(fs_info->scrub_workers == NULL);
2860 		fs_info->scrub_workers = scrub_workers;
2861 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
2862 		mutex_unlock(&fs_info->scrub_lock);
2863 		return 0;
2864 	}
2865 	/* Other thread raced in and created the workers for us */
2866 	refcount_inc(&fs_info->scrub_workers_refcnt);
2867 	mutex_unlock(&fs_info->scrub_lock);
2868 
2869 	ret = 0;
2870 
2871 	destroy_workqueue(scrub_workers);
2872 	return ret;
2873 }
2874 
2875 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2876 		    u64 end, struct btrfs_scrub_progress *progress,
2877 		    int readonly, int is_dev_replace)
2878 {
2879 	struct btrfs_dev_lookup_args args = { .devid = devid };
2880 	struct scrub_ctx *sctx;
2881 	int ret;
2882 	struct btrfs_device *dev;
2883 	unsigned int nofs_flag;
2884 	bool need_commit = false;
2885 
2886 	if (btrfs_fs_closing(fs_info))
2887 		return -EAGAIN;
2888 
2889 	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2890 	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2891 
2892 	/*
2893 	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2894 	 * value (max nodesize / min sectorsize), thus nodesize should always
2895 	 * be fine.
2896 	 */
2897 	ASSERT(fs_info->nodesize <=
2898 	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2899 
2900 	/* Allocate outside of device_list_mutex */
2901 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2902 	if (IS_ERR(sctx))
2903 		return PTR_ERR(sctx);
2904 
2905 	ret = scrub_workers_get(fs_info);
2906 	if (ret)
2907 		goto out_free_ctx;
2908 
2909 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2910 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2911 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2912 		     !is_dev_replace)) {
2913 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2914 		ret = -ENODEV;
2915 		goto out;
2916 	}
2917 
2918 	if (!is_dev_replace && !readonly &&
2919 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2920 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2921 		btrfs_err_in_rcu(fs_info,
2922 			"scrub on devid %llu: filesystem on %s is not writable",
2923 				 devid, btrfs_dev_name(dev));
2924 		ret = -EROFS;
2925 		goto out;
2926 	}
2927 
2928 	mutex_lock(&fs_info->scrub_lock);
2929 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2930 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2931 		mutex_unlock(&fs_info->scrub_lock);
2932 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2933 		ret = -EIO;
2934 		goto out;
2935 	}
2936 
2937 	down_read(&fs_info->dev_replace.rwsem);
2938 	if (dev->scrub_ctx ||
2939 	    (!is_dev_replace &&
2940 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2941 		up_read(&fs_info->dev_replace.rwsem);
2942 		mutex_unlock(&fs_info->scrub_lock);
2943 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2944 		ret = -EINPROGRESS;
2945 		goto out;
2946 	}
2947 	up_read(&fs_info->dev_replace.rwsem);
2948 
2949 	sctx->readonly = readonly;
2950 	dev->scrub_ctx = sctx;
2951 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2952 
2953 	/*
2954 	 * checking @scrub_pause_req here, we can avoid
2955 	 * race between committing transaction and scrubbing.
2956 	 */
2957 	__scrub_blocked_if_needed(fs_info);
2958 	atomic_inc(&fs_info->scrubs_running);
2959 	mutex_unlock(&fs_info->scrub_lock);
2960 
2961 	/*
2962 	 * In order to avoid deadlock with reclaim when there is a transaction
2963 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
2964 	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2965 	 * invoked by our callees. The pausing request is done when the
2966 	 * transaction commit starts, and it blocks the transaction until scrub
2967 	 * is paused (done at specific points at scrub_stripe() or right above
2968 	 * before incrementing fs_info->scrubs_running).
2969 	 */
2970 	nofs_flag = memalloc_nofs_save();
2971 	if (!is_dev_replace) {
2972 		u64 old_super_errors;
2973 
2974 		spin_lock(&sctx->stat_lock);
2975 		old_super_errors = sctx->stat.super_errors;
2976 		spin_unlock(&sctx->stat_lock);
2977 
2978 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2979 		/*
2980 		 * by holding device list mutex, we can
2981 		 * kick off writing super in log tree sync.
2982 		 */
2983 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
2984 		ret = scrub_supers(sctx, dev);
2985 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2986 
2987 		spin_lock(&sctx->stat_lock);
2988 		/*
2989 		 * Super block errors found, but we can not commit transaction
2990 		 * at current context, since btrfs_commit_transaction() needs
2991 		 * to pause the current running scrub (hold by ourselves).
2992 		 */
2993 		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
2994 			need_commit = true;
2995 		spin_unlock(&sctx->stat_lock);
2996 	}
2997 
2998 	if (!ret)
2999 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3000 	memalloc_nofs_restore(nofs_flag);
3001 
3002 	atomic_dec(&fs_info->scrubs_running);
3003 	wake_up(&fs_info->scrub_pause_wait);
3004 
3005 	if (progress)
3006 		memcpy(progress, &sctx->stat, sizeof(*progress));
3007 
3008 	if (!is_dev_replace)
3009 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3010 			ret ? "not finished" : "finished", devid, ret);
3011 
3012 	mutex_lock(&fs_info->scrub_lock);
3013 	dev->scrub_ctx = NULL;
3014 	mutex_unlock(&fs_info->scrub_lock);
3015 
3016 	scrub_workers_put(fs_info);
3017 	scrub_put_ctx(sctx);
3018 
3019 	/*
3020 	 * We found some super block errors before, now try to force a
3021 	 * transaction commit, as scrub has finished.
3022 	 */
3023 	if (need_commit) {
3024 		struct btrfs_trans_handle *trans;
3025 
3026 		trans = btrfs_start_transaction(fs_info->tree_root, 0);
3027 		if (IS_ERR(trans)) {
3028 			ret = PTR_ERR(trans);
3029 			btrfs_err(fs_info,
3030 	"scrub: failed to start transaction to fix super block errors: %d", ret);
3031 			return ret;
3032 		}
3033 		ret = btrfs_commit_transaction(trans);
3034 		if (ret < 0)
3035 			btrfs_err(fs_info,
3036 	"scrub: failed to commit transaction to fix super block errors: %d", ret);
3037 	}
3038 	return ret;
3039 out:
3040 	scrub_workers_put(fs_info);
3041 out_free_ctx:
3042 	scrub_free_ctx(sctx);
3043 
3044 	return ret;
3045 }
3046 
3047 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3048 {
3049 	mutex_lock(&fs_info->scrub_lock);
3050 	atomic_inc(&fs_info->scrub_pause_req);
3051 	while (atomic_read(&fs_info->scrubs_paused) !=
3052 	       atomic_read(&fs_info->scrubs_running)) {
3053 		mutex_unlock(&fs_info->scrub_lock);
3054 		wait_event(fs_info->scrub_pause_wait,
3055 			   atomic_read(&fs_info->scrubs_paused) ==
3056 			   atomic_read(&fs_info->scrubs_running));
3057 		mutex_lock(&fs_info->scrub_lock);
3058 	}
3059 	mutex_unlock(&fs_info->scrub_lock);
3060 }
3061 
3062 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3063 {
3064 	atomic_dec(&fs_info->scrub_pause_req);
3065 	wake_up(&fs_info->scrub_pause_wait);
3066 }
3067 
3068 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3069 {
3070 	mutex_lock(&fs_info->scrub_lock);
3071 	if (!atomic_read(&fs_info->scrubs_running)) {
3072 		mutex_unlock(&fs_info->scrub_lock);
3073 		return -ENOTCONN;
3074 	}
3075 
3076 	atomic_inc(&fs_info->scrub_cancel_req);
3077 	while (atomic_read(&fs_info->scrubs_running)) {
3078 		mutex_unlock(&fs_info->scrub_lock);
3079 		wait_event(fs_info->scrub_pause_wait,
3080 			   atomic_read(&fs_info->scrubs_running) == 0);
3081 		mutex_lock(&fs_info->scrub_lock);
3082 	}
3083 	atomic_dec(&fs_info->scrub_cancel_req);
3084 	mutex_unlock(&fs_info->scrub_lock);
3085 
3086 	return 0;
3087 }
3088 
3089 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3090 {
3091 	struct btrfs_fs_info *fs_info = dev->fs_info;
3092 	struct scrub_ctx *sctx;
3093 
3094 	mutex_lock(&fs_info->scrub_lock);
3095 	sctx = dev->scrub_ctx;
3096 	if (!sctx) {
3097 		mutex_unlock(&fs_info->scrub_lock);
3098 		return -ENOTCONN;
3099 	}
3100 	atomic_inc(&sctx->cancel_req);
3101 	while (dev->scrub_ctx) {
3102 		mutex_unlock(&fs_info->scrub_lock);
3103 		wait_event(fs_info->scrub_pause_wait,
3104 			   dev->scrub_ctx == NULL);
3105 		mutex_lock(&fs_info->scrub_lock);
3106 	}
3107 	mutex_unlock(&fs_info->scrub_lock);
3108 
3109 	return 0;
3110 }
3111 
3112 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3113 			 struct btrfs_scrub_progress *progress)
3114 {
3115 	struct btrfs_dev_lookup_args args = { .devid = devid };
3116 	struct btrfs_device *dev;
3117 	struct scrub_ctx *sctx = NULL;
3118 
3119 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3120 	dev = btrfs_find_device(fs_info->fs_devices, &args);
3121 	if (dev)
3122 		sctx = dev->scrub_ctx;
3123 	if (sctx)
3124 		memcpy(progress, &sctx->stat, sizeof(*progress));
3125 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3126 
3127 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3128 }
3129