xref: /linux/fs/btrfs/scrub.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32 
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45 
46 struct scrub_block;
47 struct scrub_ctx;
48 
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
65 
66 struct scrub_recover {
67 	refcount_t		refs;
68 	struct btrfs_bio	*bbio;
69 	u64			map_length;
70 };
71 
72 struct scrub_page {
73 	struct scrub_block	*sblock;
74 	struct page		*page;
75 	struct btrfs_device	*dev;
76 	struct list_head	list;
77 	u64			flags;  /* extent flags */
78 	u64			generation;
79 	u64			logical;
80 	u64			physical;
81 	u64			physical_for_dev_replace;
82 	atomic_t		refs;
83 	struct {
84 		unsigned int	mirror_num:8;
85 		unsigned int	have_csum:1;
86 		unsigned int	io_error:1;
87 	};
88 	u8			csum[BTRFS_CSUM_SIZE];
89 
90 	struct scrub_recover	*recover;
91 };
92 
93 struct scrub_bio {
94 	int			index;
95 	struct scrub_ctx	*sctx;
96 	struct btrfs_device	*dev;
97 	struct bio		*bio;
98 	int			err;
99 	u64			logical;
100 	u64			physical;
101 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
103 #else
104 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
105 #endif
106 	int			page_count;
107 	int			next_free;
108 	struct btrfs_work	work;
109 };
110 
111 struct scrub_block {
112 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 	int			page_count;
114 	atomic_t		outstanding_pages;
115 	refcount_t		refs; /* free mem on transition to zero */
116 	struct scrub_ctx	*sctx;
117 	struct scrub_parity	*sparity;
118 	struct {
119 		unsigned int	header_error:1;
120 		unsigned int	checksum_error:1;
121 		unsigned int	no_io_error_seen:1;
122 		unsigned int	generation_error:1; /* also sets header_error */
123 
124 		/* The following is for the data used to check parity */
125 		/* It is for the data with checksum */
126 		unsigned int	data_corrected:1;
127 	};
128 	struct btrfs_work	work;
129 };
130 
131 /* Used for the chunks with parity stripe such RAID5/6 */
132 struct scrub_parity {
133 	struct scrub_ctx	*sctx;
134 
135 	struct btrfs_device	*scrub_dev;
136 
137 	u64			logic_start;
138 
139 	u64			logic_end;
140 
141 	int			nsectors;
142 
143 	u64			stripe_len;
144 
145 	refcount_t		refs;
146 
147 	struct list_head	spages;
148 
149 	/* Work of parity check and repair */
150 	struct btrfs_work	work;
151 
152 	/* Mark the parity blocks which have data */
153 	unsigned long		*dbitmap;
154 
155 	/*
156 	 * Mark the parity blocks which have data, but errors happen when
157 	 * read data or check data
158 	 */
159 	unsigned long		*ebitmap;
160 
161 	unsigned long		bitmap[0];
162 };
163 
164 struct scrub_wr_ctx {
165 	struct scrub_bio *wr_curr_bio;
166 	struct btrfs_device *tgtdev;
167 	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
168 	atomic_t flush_all_writes;
169 	struct mutex wr_lock;
170 };
171 
172 struct scrub_ctx {
173 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
174 	struct btrfs_fs_info	*fs_info;
175 	int			first_free;
176 	int			curr;
177 	atomic_t		bios_in_flight;
178 	atomic_t		workers_pending;
179 	spinlock_t		list_lock;
180 	wait_queue_head_t	list_wait;
181 	u16			csum_size;
182 	struct list_head	csum_list;
183 	atomic_t		cancel_req;
184 	int			readonly;
185 	int			pages_per_rd_bio;
186 	u32			sectorsize;
187 	u32			nodesize;
188 
189 	int			is_dev_replace;
190 	struct scrub_wr_ctx	wr_ctx;
191 
192 	/*
193 	 * statistics
194 	 */
195 	struct btrfs_scrub_progress stat;
196 	spinlock_t		stat_lock;
197 
198 	/*
199 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
200 	 * decrement bios_in_flight and workers_pending and then do a wakeup
201 	 * on the list_wait wait queue. We must ensure the main scrub task
202 	 * doesn't free the scrub context before or while the workers are
203 	 * doing the wakeup() call.
204 	 */
205 	refcount_t              refs;
206 };
207 
208 struct scrub_fixup_nodatasum {
209 	struct scrub_ctx	*sctx;
210 	struct btrfs_device	*dev;
211 	u64			logical;
212 	struct btrfs_root	*root;
213 	struct btrfs_work	work;
214 	int			mirror_num;
215 };
216 
217 struct scrub_nocow_inode {
218 	u64			inum;
219 	u64			offset;
220 	u64			root;
221 	struct list_head	list;
222 };
223 
224 struct scrub_copy_nocow_ctx {
225 	struct scrub_ctx	*sctx;
226 	u64			logical;
227 	u64			len;
228 	int			mirror_num;
229 	u64			physical_for_dev_replace;
230 	struct list_head	inodes;
231 	struct btrfs_work	work;
232 };
233 
234 struct scrub_warning {
235 	struct btrfs_path	*path;
236 	u64			extent_item_size;
237 	const char		*errstr;
238 	sector_t		sector;
239 	u64			logical;
240 	struct btrfs_device	*dev;
241 };
242 
243 struct full_stripe_lock {
244 	struct rb_node node;
245 	u64 logical;
246 	u64 refs;
247 	struct mutex mutex;
248 };
249 
250 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
251 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
252 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
253 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
254 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
255 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
256 				     struct scrub_block *sblocks_for_recheck);
257 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
258 				struct scrub_block *sblock,
259 				int retry_failed_mirror);
260 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
261 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
262 					     struct scrub_block *sblock_good);
263 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
264 					    struct scrub_block *sblock_good,
265 					    int page_num, int force_write);
266 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
267 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
268 					   int page_num);
269 static int scrub_checksum_data(struct scrub_block *sblock);
270 static int scrub_checksum_tree_block(struct scrub_block *sblock);
271 static int scrub_checksum_super(struct scrub_block *sblock);
272 static void scrub_block_get(struct scrub_block *sblock);
273 static void scrub_block_put(struct scrub_block *sblock);
274 static void scrub_page_get(struct scrub_page *spage);
275 static void scrub_page_put(struct scrub_page *spage);
276 static void scrub_parity_get(struct scrub_parity *sparity);
277 static void scrub_parity_put(struct scrub_parity *sparity);
278 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
279 				    struct scrub_page *spage);
280 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
281 		       u64 physical, struct btrfs_device *dev, u64 flags,
282 		       u64 gen, int mirror_num, u8 *csum, int force,
283 		       u64 physical_for_dev_replace);
284 static void scrub_bio_end_io(struct bio *bio);
285 static void scrub_bio_end_io_worker(struct btrfs_work *work);
286 static void scrub_block_complete(struct scrub_block *sblock);
287 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
288 			       u64 extent_logical, u64 extent_len,
289 			       u64 *extent_physical,
290 			       struct btrfs_device **extent_dev,
291 			       int *extent_mirror_num);
292 static int scrub_setup_wr_ctx(struct scrub_wr_ctx *wr_ctx,
293 			      struct btrfs_device *dev,
294 			      int is_dev_replace);
295 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
296 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
297 				    struct scrub_page *spage);
298 static void scrub_wr_submit(struct scrub_ctx *sctx);
299 static void scrub_wr_bio_end_io(struct bio *bio);
300 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
301 static int write_page_nocow(struct scrub_ctx *sctx,
302 			    u64 physical_for_dev_replace, struct page *page);
303 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
304 				      struct scrub_copy_nocow_ctx *ctx);
305 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
306 			    int mirror_num, u64 physical_for_dev_replace);
307 static void copy_nocow_pages_worker(struct btrfs_work *work);
308 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
309 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
310 static void scrub_put_ctx(struct scrub_ctx *sctx);
311 
312 
313 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
314 {
315 	refcount_inc(&sctx->refs);
316 	atomic_inc(&sctx->bios_in_flight);
317 }
318 
319 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
320 {
321 	atomic_dec(&sctx->bios_in_flight);
322 	wake_up(&sctx->list_wait);
323 	scrub_put_ctx(sctx);
324 }
325 
326 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
327 {
328 	while (atomic_read(&fs_info->scrub_pause_req)) {
329 		mutex_unlock(&fs_info->scrub_lock);
330 		wait_event(fs_info->scrub_pause_wait,
331 		   atomic_read(&fs_info->scrub_pause_req) == 0);
332 		mutex_lock(&fs_info->scrub_lock);
333 	}
334 }
335 
336 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
337 {
338 	atomic_inc(&fs_info->scrubs_paused);
339 	wake_up(&fs_info->scrub_pause_wait);
340 }
341 
342 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
343 {
344 	mutex_lock(&fs_info->scrub_lock);
345 	__scrub_blocked_if_needed(fs_info);
346 	atomic_dec(&fs_info->scrubs_paused);
347 	mutex_unlock(&fs_info->scrub_lock);
348 
349 	wake_up(&fs_info->scrub_pause_wait);
350 }
351 
352 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
353 {
354 	scrub_pause_on(fs_info);
355 	scrub_pause_off(fs_info);
356 }
357 
358 /*
359  * Insert new full stripe lock into full stripe locks tree
360  *
361  * Return pointer to existing or newly inserted full_stripe_lock structure if
362  * everything works well.
363  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
364  *
365  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
366  * function
367  */
368 static struct full_stripe_lock *insert_full_stripe_lock(
369 		struct btrfs_full_stripe_locks_tree *locks_root,
370 		u64 fstripe_logical)
371 {
372 	struct rb_node **p;
373 	struct rb_node *parent = NULL;
374 	struct full_stripe_lock *entry;
375 	struct full_stripe_lock *ret;
376 
377 	WARN_ON(!mutex_is_locked(&locks_root->lock));
378 
379 	p = &locks_root->root.rb_node;
380 	while (*p) {
381 		parent = *p;
382 		entry = rb_entry(parent, struct full_stripe_lock, node);
383 		if (fstripe_logical < entry->logical) {
384 			p = &(*p)->rb_left;
385 		} else if (fstripe_logical > entry->logical) {
386 			p = &(*p)->rb_right;
387 		} else {
388 			entry->refs++;
389 			return entry;
390 		}
391 	}
392 
393 	/* Insert new lock */
394 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
395 	if (!ret)
396 		return ERR_PTR(-ENOMEM);
397 	ret->logical = fstripe_logical;
398 	ret->refs = 1;
399 	mutex_init(&ret->mutex);
400 
401 	rb_link_node(&ret->node, parent, p);
402 	rb_insert_color(&ret->node, &locks_root->root);
403 	return ret;
404 }
405 
406 /*
407  * Search for a full stripe lock of a block group
408  *
409  * Return pointer to existing full stripe lock if found
410  * Return NULL if not found
411  */
412 static struct full_stripe_lock *search_full_stripe_lock(
413 		struct btrfs_full_stripe_locks_tree *locks_root,
414 		u64 fstripe_logical)
415 {
416 	struct rb_node *node;
417 	struct full_stripe_lock *entry;
418 
419 	WARN_ON(!mutex_is_locked(&locks_root->lock));
420 
421 	node = locks_root->root.rb_node;
422 	while (node) {
423 		entry = rb_entry(node, struct full_stripe_lock, node);
424 		if (fstripe_logical < entry->logical)
425 			node = node->rb_left;
426 		else if (fstripe_logical > entry->logical)
427 			node = node->rb_right;
428 		else
429 			return entry;
430 	}
431 	return NULL;
432 }
433 
434 /*
435  * Helper to get full stripe logical from a normal bytenr.
436  *
437  * Caller must ensure @cache is a RAID56 block group.
438  */
439 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
440 				   u64 bytenr)
441 {
442 	u64 ret;
443 
444 	/*
445 	 * Due to chunk item size limit, full stripe length should not be
446 	 * larger than U32_MAX. Just a sanity check here.
447 	 */
448 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
449 
450 	/*
451 	 * round_down() can only handle power of 2, while RAID56 full
452 	 * stripe length can be 64KiB * n, so we need to manually round down.
453 	 */
454 	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
455 		cache->full_stripe_len + cache->key.objectid;
456 	return ret;
457 }
458 
459 /*
460  * Lock a full stripe to avoid concurrency of recovery and read
461  *
462  * It's only used for profiles with parities (RAID5/6), for other profiles it
463  * does nothing.
464  *
465  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
466  * So caller must call unlock_full_stripe() at the same context.
467  *
468  * Return <0 if encounters error.
469  */
470 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
471 			    bool *locked_ret)
472 {
473 	struct btrfs_block_group_cache *bg_cache;
474 	struct btrfs_full_stripe_locks_tree *locks_root;
475 	struct full_stripe_lock *existing;
476 	u64 fstripe_start;
477 	int ret = 0;
478 
479 	*locked_ret = false;
480 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
481 	if (!bg_cache) {
482 		ASSERT(0);
483 		return -ENOENT;
484 	}
485 
486 	/* Profiles not based on parity don't need full stripe lock */
487 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
488 		goto out;
489 	locks_root = &bg_cache->full_stripe_locks_root;
490 
491 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
492 
493 	/* Now insert the full stripe lock */
494 	mutex_lock(&locks_root->lock);
495 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
496 	mutex_unlock(&locks_root->lock);
497 	if (IS_ERR(existing)) {
498 		ret = PTR_ERR(existing);
499 		goto out;
500 	}
501 	mutex_lock(&existing->mutex);
502 	*locked_ret = true;
503 out:
504 	btrfs_put_block_group(bg_cache);
505 	return ret;
506 }
507 
508 /*
509  * Unlock a full stripe.
510  *
511  * NOTE: Caller must ensure it's the same context calling corresponding
512  * lock_full_stripe().
513  *
514  * Return 0 if we unlock full stripe without problem.
515  * Return <0 for error
516  */
517 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
518 			      bool locked)
519 {
520 	struct btrfs_block_group_cache *bg_cache;
521 	struct btrfs_full_stripe_locks_tree *locks_root;
522 	struct full_stripe_lock *fstripe_lock;
523 	u64 fstripe_start;
524 	bool freeit = false;
525 	int ret = 0;
526 
527 	/* If we didn't acquire full stripe lock, no need to continue */
528 	if (!locked)
529 		return 0;
530 
531 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
532 	if (!bg_cache) {
533 		ASSERT(0);
534 		return -ENOENT;
535 	}
536 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
537 		goto out;
538 
539 	locks_root = &bg_cache->full_stripe_locks_root;
540 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
541 
542 	mutex_lock(&locks_root->lock);
543 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
544 	/* Unpaired unlock_full_stripe() detected */
545 	if (!fstripe_lock) {
546 		WARN_ON(1);
547 		ret = -ENOENT;
548 		mutex_unlock(&locks_root->lock);
549 		goto out;
550 	}
551 
552 	if (fstripe_lock->refs == 0) {
553 		WARN_ON(1);
554 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
555 			fstripe_lock->logical);
556 	} else {
557 		fstripe_lock->refs--;
558 	}
559 
560 	if (fstripe_lock->refs == 0) {
561 		rb_erase(&fstripe_lock->node, &locks_root->root);
562 		freeit = true;
563 	}
564 	mutex_unlock(&locks_root->lock);
565 
566 	mutex_unlock(&fstripe_lock->mutex);
567 	if (freeit)
568 		kfree(fstripe_lock);
569 out:
570 	btrfs_put_block_group(bg_cache);
571 	return ret;
572 }
573 
574 /*
575  * used for workers that require transaction commits (i.e., for the
576  * NOCOW case)
577  */
578 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
579 {
580 	struct btrfs_fs_info *fs_info = sctx->fs_info;
581 
582 	refcount_inc(&sctx->refs);
583 	/*
584 	 * increment scrubs_running to prevent cancel requests from
585 	 * completing as long as a worker is running. we must also
586 	 * increment scrubs_paused to prevent deadlocking on pause
587 	 * requests used for transactions commits (as the worker uses a
588 	 * transaction context). it is safe to regard the worker
589 	 * as paused for all matters practical. effectively, we only
590 	 * avoid cancellation requests from completing.
591 	 */
592 	mutex_lock(&fs_info->scrub_lock);
593 	atomic_inc(&fs_info->scrubs_running);
594 	atomic_inc(&fs_info->scrubs_paused);
595 	mutex_unlock(&fs_info->scrub_lock);
596 
597 	/*
598 	 * check if @scrubs_running=@scrubs_paused condition
599 	 * inside wait_event() is not an atomic operation.
600 	 * which means we may inc/dec @scrub_running/paused
601 	 * at any time. Let's wake up @scrub_pause_wait as
602 	 * much as we can to let commit transaction blocked less.
603 	 */
604 	wake_up(&fs_info->scrub_pause_wait);
605 
606 	atomic_inc(&sctx->workers_pending);
607 }
608 
609 /* used for workers that require transaction commits */
610 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
611 {
612 	struct btrfs_fs_info *fs_info = sctx->fs_info;
613 
614 	/*
615 	 * see scrub_pending_trans_workers_inc() why we're pretending
616 	 * to be paused in the scrub counters
617 	 */
618 	mutex_lock(&fs_info->scrub_lock);
619 	atomic_dec(&fs_info->scrubs_running);
620 	atomic_dec(&fs_info->scrubs_paused);
621 	mutex_unlock(&fs_info->scrub_lock);
622 	atomic_dec(&sctx->workers_pending);
623 	wake_up(&fs_info->scrub_pause_wait);
624 	wake_up(&sctx->list_wait);
625 	scrub_put_ctx(sctx);
626 }
627 
628 static void scrub_free_csums(struct scrub_ctx *sctx)
629 {
630 	while (!list_empty(&sctx->csum_list)) {
631 		struct btrfs_ordered_sum *sum;
632 		sum = list_first_entry(&sctx->csum_list,
633 				       struct btrfs_ordered_sum, list);
634 		list_del(&sum->list);
635 		kfree(sum);
636 	}
637 }
638 
639 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
640 {
641 	int i;
642 
643 	if (!sctx)
644 		return;
645 
646 	scrub_free_wr_ctx(&sctx->wr_ctx);
647 
648 	/* this can happen when scrub is cancelled */
649 	if (sctx->curr != -1) {
650 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
651 
652 		for (i = 0; i < sbio->page_count; i++) {
653 			WARN_ON(!sbio->pagev[i]->page);
654 			scrub_block_put(sbio->pagev[i]->sblock);
655 		}
656 		bio_put(sbio->bio);
657 	}
658 
659 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
660 		struct scrub_bio *sbio = sctx->bios[i];
661 
662 		if (!sbio)
663 			break;
664 		kfree(sbio);
665 	}
666 
667 	scrub_free_csums(sctx);
668 	kfree(sctx);
669 }
670 
671 static void scrub_put_ctx(struct scrub_ctx *sctx)
672 {
673 	if (refcount_dec_and_test(&sctx->refs))
674 		scrub_free_ctx(sctx);
675 }
676 
677 static noinline_for_stack
678 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
679 {
680 	struct scrub_ctx *sctx;
681 	int		i;
682 	struct btrfs_fs_info *fs_info = dev->fs_info;
683 	int ret;
684 
685 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
686 	if (!sctx)
687 		goto nomem;
688 	refcount_set(&sctx->refs, 1);
689 	sctx->is_dev_replace = is_dev_replace;
690 	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
691 	sctx->curr = -1;
692 	sctx->fs_info = dev->fs_info;
693 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
694 		struct scrub_bio *sbio;
695 
696 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
697 		if (!sbio)
698 			goto nomem;
699 		sctx->bios[i] = sbio;
700 
701 		sbio->index = i;
702 		sbio->sctx = sctx;
703 		sbio->page_count = 0;
704 		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
705 				scrub_bio_end_io_worker, NULL, NULL);
706 
707 		if (i != SCRUB_BIOS_PER_SCTX - 1)
708 			sctx->bios[i]->next_free = i + 1;
709 		else
710 			sctx->bios[i]->next_free = -1;
711 	}
712 	sctx->first_free = 0;
713 	sctx->nodesize = fs_info->nodesize;
714 	sctx->sectorsize = fs_info->sectorsize;
715 	atomic_set(&sctx->bios_in_flight, 0);
716 	atomic_set(&sctx->workers_pending, 0);
717 	atomic_set(&sctx->cancel_req, 0);
718 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
719 	INIT_LIST_HEAD(&sctx->csum_list);
720 
721 	spin_lock_init(&sctx->list_lock);
722 	spin_lock_init(&sctx->stat_lock);
723 	init_waitqueue_head(&sctx->list_wait);
724 
725 	ret = scrub_setup_wr_ctx(&sctx->wr_ctx,
726 				 fs_info->dev_replace.tgtdev, is_dev_replace);
727 	if (ret) {
728 		scrub_free_ctx(sctx);
729 		return ERR_PTR(ret);
730 	}
731 	return sctx;
732 
733 nomem:
734 	scrub_free_ctx(sctx);
735 	return ERR_PTR(-ENOMEM);
736 }
737 
738 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
739 				     void *warn_ctx)
740 {
741 	u64 isize;
742 	u32 nlink;
743 	int ret;
744 	int i;
745 	struct extent_buffer *eb;
746 	struct btrfs_inode_item *inode_item;
747 	struct scrub_warning *swarn = warn_ctx;
748 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
749 	struct inode_fs_paths *ipath = NULL;
750 	struct btrfs_root *local_root;
751 	struct btrfs_key root_key;
752 	struct btrfs_key key;
753 
754 	root_key.objectid = root;
755 	root_key.type = BTRFS_ROOT_ITEM_KEY;
756 	root_key.offset = (u64)-1;
757 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
758 	if (IS_ERR(local_root)) {
759 		ret = PTR_ERR(local_root);
760 		goto err;
761 	}
762 
763 	/*
764 	 * this makes the path point to (inum INODE_ITEM ioff)
765 	 */
766 	key.objectid = inum;
767 	key.type = BTRFS_INODE_ITEM_KEY;
768 	key.offset = 0;
769 
770 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
771 	if (ret) {
772 		btrfs_release_path(swarn->path);
773 		goto err;
774 	}
775 
776 	eb = swarn->path->nodes[0];
777 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
778 					struct btrfs_inode_item);
779 	isize = btrfs_inode_size(eb, inode_item);
780 	nlink = btrfs_inode_nlink(eb, inode_item);
781 	btrfs_release_path(swarn->path);
782 
783 	ipath = init_ipath(4096, local_root, swarn->path);
784 	if (IS_ERR(ipath)) {
785 		ret = PTR_ERR(ipath);
786 		ipath = NULL;
787 		goto err;
788 	}
789 	ret = paths_from_inode(inum, ipath);
790 
791 	if (ret < 0)
792 		goto err;
793 
794 	/*
795 	 * we deliberately ignore the bit ipath might have been too small to
796 	 * hold all of the paths here
797 	 */
798 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
799 		btrfs_warn_in_rcu(fs_info,
800 				  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
801 				  swarn->errstr, swarn->logical,
802 				  rcu_str_deref(swarn->dev->name),
803 				  (unsigned long long)swarn->sector,
804 				  root, inum, offset,
805 				  min(isize - offset, (u64)PAGE_SIZE), nlink,
806 				  (char *)(unsigned long)ipath->fspath->val[i]);
807 
808 	free_ipath(ipath);
809 	return 0;
810 
811 err:
812 	btrfs_warn_in_rcu(fs_info,
813 			  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
814 			  swarn->errstr, swarn->logical,
815 			  rcu_str_deref(swarn->dev->name),
816 			  (unsigned long long)swarn->sector,
817 			  root, inum, offset, ret);
818 
819 	free_ipath(ipath);
820 	return 0;
821 }
822 
823 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
824 {
825 	struct btrfs_device *dev;
826 	struct btrfs_fs_info *fs_info;
827 	struct btrfs_path *path;
828 	struct btrfs_key found_key;
829 	struct extent_buffer *eb;
830 	struct btrfs_extent_item *ei;
831 	struct scrub_warning swarn;
832 	unsigned long ptr = 0;
833 	u64 extent_item_pos;
834 	u64 flags = 0;
835 	u64 ref_root;
836 	u32 item_size;
837 	u8 ref_level = 0;
838 	int ret;
839 
840 	WARN_ON(sblock->page_count < 1);
841 	dev = sblock->pagev[0]->dev;
842 	fs_info = sblock->sctx->fs_info;
843 
844 	path = btrfs_alloc_path();
845 	if (!path)
846 		return;
847 
848 	swarn.sector = (sblock->pagev[0]->physical) >> 9;
849 	swarn.logical = sblock->pagev[0]->logical;
850 	swarn.errstr = errstr;
851 	swarn.dev = NULL;
852 
853 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
854 				  &flags);
855 	if (ret < 0)
856 		goto out;
857 
858 	extent_item_pos = swarn.logical - found_key.objectid;
859 	swarn.extent_item_size = found_key.offset;
860 
861 	eb = path->nodes[0];
862 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
863 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
864 
865 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
866 		do {
867 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
868 						      item_size, &ref_root,
869 						      &ref_level);
870 			btrfs_warn_in_rcu(fs_info,
871 				"%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu",
872 				errstr, swarn.logical,
873 				rcu_str_deref(dev->name),
874 				(unsigned long long)swarn.sector,
875 				ref_level ? "node" : "leaf",
876 				ret < 0 ? -1 : ref_level,
877 				ret < 0 ? -1 : ref_root);
878 		} while (ret != 1);
879 		btrfs_release_path(path);
880 	} else {
881 		btrfs_release_path(path);
882 		swarn.path = path;
883 		swarn.dev = dev;
884 		iterate_extent_inodes(fs_info, found_key.objectid,
885 					extent_item_pos, 1,
886 					scrub_print_warning_inode, &swarn);
887 	}
888 
889 out:
890 	btrfs_free_path(path);
891 }
892 
893 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
894 {
895 	struct page *page = NULL;
896 	unsigned long index;
897 	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
898 	int ret;
899 	int corrected = 0;
900 	struct btrfs_key key;
901 	struct inode *inode = NULL;
902 	struct btrfs_fs_info *fs_info;
903 	u64 end = offset + PAGE_SIZE - 1;
904 	struct btrfs_root *local_root;
905 	int srcu_index;
906 
907 	key.objectid = root;
908 	key.type = BTRFS_ROOT_ITEM_KEY;
909 	key.offset = (u64)-1;
910 
911 	fs_info = fixup->root->fs_info;
912 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
913 
914 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
915 	if (IS_ERR(local_root)) {
916 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
917 		return PTR_ERR(local_root);
918 	}
919 
920 	key.type = BTRFS_INODE_ITEM_KEY;
921 	key.objectid = inum;
922 	key.offset = 0;
923 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
924 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
925 	if (IS_ERR(inode))
926 		return PTR_ERR(inode);
927 
928 	index = offset >> PAGE_SHIFT;
929 
930 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
931 	if (!page) {
932 		ret = -ENOMEM;
933 		goto out;
934 	}
935 
936 	if (PageUptodate(page)) {
937 		if (PageDirty(page)) {
938 			/*
939 			 * we need to write the data to the defect sector. the
940 			 * data that was in that sector is not in memory,
941 			 * because the page was modified. we must not write the
942 			 * modified page to that sector.
943 			 *
944 			 * TODO: what could be done here: wait for the delalloc
945 			 *       runner to write out that page (might involve
946 			 *       COW) and see whether the sector is still
947 			 *       referenced afterwards.
948 			 *
949 			 * For the meantime, we'll treat this error
950 			 * incorrectable, although there is a chance that a
951 			 * later scrub will find the bad sector again and that
952 			 * there's no dirty page in memory, then.
953 			 */
954 			ret = -EIO;
955 			goto out;
956 		}
957 		ret = repair_io_failure(BTRFS_I(inode), offset, PAGE_SIZE,
958 					fixup->logical, page,
959 					offset - page_offset(page),
960 					fixup->mirror_num);
961 		unlock_page(page);
962 		corrected = !ret;
963 	} else {
964 		/*
965 		 * we need to get good data first. the general readpage path
966 		 * will call repair_io_failure for us, we just have to make
967 		 * sure we read the bad mirror.
968 		 */
969 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
970 					EXTENT_DAMAGED);
971 		if (ret) {
972 			/* set_extent_bits should give proper error */
973 			WARN_ON(ret > 0);
974 			if (ret > 0)
975 				ret = -EFAULT;
976 			goto out;
977 		}
978 
979 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
980 						btrfs_get_extent,
981 						fixup->mirror_num);
982 		wait_on_page_locked(page);
983 
984 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
985 						end, EXTENT_DAMAGED, 0, NULL);
986 		if (!corrected)
987 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
988 						EXTENT_DAMAGED);
989 	}
990 
991 out:
992 	if (page)
993 		put_page(page);
994 
995 	iput(inode);
996 
997 	if (ret < 0)
998 		return ret;
999 
1000 	if (ret == 0 && corrected) {
1001 		/*
1002 		 * we only need to call readpage for one of the inodes belonging
1003 		 * to this extent. so make iterate_extent_inodes stop
1004 		 */
1005 		return 1;
1006 	}
1007 
1008 	return -EIO;
1009 }
1010 
1011 static void scrub_fixup_nodatasum(struct btrfs_work *work)
1012 {
1013 	struct btrfs_fs_info *fs_info;
1014 	int ret;
1015 	struct scrub_fixup_nodatasum *fixup;
1016 	struct scrub_ctx *sctx;
1017 	struct btrfs_trans_handle *trans = NULL;
1018 	struct btrfs_path *path;
1019 	int uncorrectable = 0;
1020 
1021 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
1022 	sctx = fixup->sctx;
1023 	fs_info = fixup->root->fs_info;
1024 
1025 	path = btrfs_alloc_path();
1026 	if (!path) {
1027 		spin_lock(&sctx->stat_lock);
1028 		++sctx->stat.malloc_errors;
1029 		spin_unlock(&sctx->stat_lock);
1030 		uncorrectable = 1;
1031 		goto out;
1032 	}
1033 
1034 	trans = btrfs_join_transaction(fixup->root);
1035 	if (IS_ERR(trans)) {
1036 		uncorrectable = 1;
1037 		goto out;
1038 	}
1039 
1040 	/*
1041 	 * the idea is to trigger a regular read through the standard path. we
1042 	 * read a page from the (failed) logical address by specifying the
1043 	 * corresponding copynum of the failed sector. thus, that readpage is
1044 	 * expected to fail.
1045 	 * that is the point where on-the-fly error correction will kick in
1046 	 * (once it's finished) and rewrite the failed sector if a good copy
1047 	 * can be found.
1048 	 */
1049 	ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
1050 					  scrub_fixup_readpage, fixup);
1051 	if (ret < 0) {
1052 		uncorrectable = 1;
1053 		goto out;
1054 	}
1055 	WARN_ON(ret != 1);
1056 
1057 	spin_lock(&sctx->stat_lock);
1058 	++sctx->stat.corrected_errors;
1059 	spin_unlock(&sctx->stat_lock);
1060 
1061 out:
1062 	if (trans && !IS_ERR(trans))
1063 		btrfs_end_transaction(trans);
1064 	if (uncorrectable) {
1065 		spin_lock(&sctx->stat_lock);
1066 		++sctx->stat.uncorrectable_errors;
1067 		spin_unlock(&sctx->stat_lock);
1068 		btrfs_dev_replace_stats_inc(
1069 			&fs_info->dev_replace.num_uncorrectable_read_errors);
1070 		btrfs_err_rl_in_rcu(fs_info,
1071 		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
1072 			fixup->logical, rcu_str_deref(fixup->dev->name));
1073 	}
1074 
1075 	btrfs_free_path(path);
1076 	kfree(fixup);
1077 
1078 	scrub_pending_trans_workers_dec(sctx);
1079 }
1080 
1081 static inline void scrub_get_recover(struct scrub_recover *recover)
1082 {
1083 	refcount_inc(&recover->refs);
1084 }
1085 
1086 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
1087 				     struct scrub_recover *recover)
1088 {
1089 	if (refcount_dec_and_test(&recover->refs)) {
1090 		btrfs_bio_counter_dec(fs_info);
1091 		btrfs_put_bbio(recover->bbio);
1092 		kfree(recover);
1093 	}
1094 }
1095 
1096 /*
1097  * scrub_handle_errored_block gets called when either verification of the
1098  * pages failed or the bio failed to read, e.g. with EIO. In the latter
1099  * case, this function handles all pages in the bio, even though only one
1100  * may be bad.
1101  * The goal of this function is to repair the errored block by using the
1102  * contents of one of the mirrors.
1103  */
1104 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
1105 {
1106 	struct scrub_ctx *sctx = sblock_to_check->sctx;
1107 	struct btrfs_device *dev;
1108 	struct btrfs_fs_info *fs_info;
1109 	u64 length;
1110 	u64 logical;
1111 	unsigned int failed_mirror_index;
1112 	unsigned int is_metadata;
1113 	unsigned int have_csum;
1114 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
1115 	struct scrub_block *sblock_bad;
1116 	int ret;
1117 	int mirror_index;
1118 	int page_num;
1119 	int success;
1120 	bool full_stripe_locked;
1121 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1122 				      DEFAULT_RATELIMIT_BURST);
1123 
1124 	BUG_ON(sblock_to_check->page_count < 1);
1125 	fs_info = sctx->fs_info;
1126 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1127 		/*
1128 		 * if we find an error in a super block, we just report it.
1129 		 * They will get written with the next transaction commit
1130 		 * anyway
1131 		 */
1132 		spin_lock(&sctx->stat_lock);
1133 		++sctx->stat.super_errors;
1134 		spin_unlock(&sctx->stat_lock);
1135 		return 0;
1136 	}
1137 	length = sblock_to_check->page_count * PAGE_SIZE;
1138 	logical = sblock_to_check->pagev[0]->logical;
1139 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
1140 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
1141 	is_metadata = !(sblock_to_check->pagev[0]->flags &
1142 			BTRFS_EXTENT_FLAG_DATA);
1143 	have_csum = sblock_to_check->pagev[0]->have_csum;
1144 	dev = sblock_to_check->pagev[0]->dev;
1145 
1146 	/*
1147 	 * For RAID5/6, race can happen for a different device scrub thread.
1148 	 * For data corruption, Parity and Data threads will both try
1149 	 * to recovery the data.
1150 	 * Race can lead to doubly added csum error, or even unrecoverable
1151 	 * error.
1152 	 */
1153 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1154 	if (ret < 0) {
1155 		spin_lock(&sctx->stat_lock);
1156 		if (ret == -ENOMEM)
1157 			sctx->stat.malloc_errors++;
1158 		sctx->stat.read_errors++;
1159 		sctx->stat.uncorrectable_errors++;
1160 		spin_unlock(&sctx->stat_lock);
1161 		return ret;
1162 	}
1163 
1164 	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
1165 		sblocks_for_recheck = NULL;
1166 		goto nodatasum_case;
1167 	}
1168 
1169 	/*
1170 	 * read all mirrors one after the other. This includes to
1171 	 * re-read the extent or metadata block that failed (that was
1172 	 * the cause that this fixup code is called) another time,
1173 	 * page by page this time in order to know which pages
1174 	 * caused I/O errors and which ones are good (for all mirrors).
1175 	 * It is the goal to handle the situation when more than one
1176 	 * mirror contains I/O errors, but the errors do not
1177 	 * overlap, i.e. the data can be repaired by selecting the
1178 	 * pages from those mirrors without I/O error on the
1179 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
1180 	 * would be that mirror #1 has an I/O error on the first page,
1181 	 * the second page is good, and mirror #2 has an I/O error on
1182 	 * the second page, but the first page is good.
1183 	 * Then the first page of the first mirror can be repaired by
1184 	 * taking the first page of the second mirror, and the
1185 	 * second page of the second mirror can be repaired by
1186 	 * copying the contents of the 2nd page of the 1st mirror.
1187 	 * One more note: if the pages of one mirror contain I/O
1188 	 * errors, the checksum cannot be verified. In order to get
1189 	 * the best data for repairing, the first attempt is to find
1190 	 * a mirror without I/O errors and with a validated checksum.
1191 	 * Only if this is not possible, the pages are picked from
1192 	 * mirrors with I/O errors without considering the checksum.
1193 	 * If the latter is the case, at the end, the checksum of the
1194 	 * repaired area is verified in order to correctly maintain
1195 	 * the statistics.
1196 	 */
1197 
1198 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
1199 				      sizeof(*sblocks_for_recheck), GFP_NOFS);
1200 	if (!sblocks_for_recheck) {
1201 		spin_lock(&sctx->stat_lock);
1202 		sctx->stat.malloc_errors++;
1203 		sctx->stat.read_errors++;
1204 		sctx->stat.uncorrectable_errors++;
1205 		spin_unlock(&sctx->stat_lock);
1206 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1207 		goto out;
1208 	}
1209 
1210 	/* setup the context, map the logical blocks and alloc the pages */
1211 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1212 	if (ret) {
1213 		spin_lock(&sctx->stat_lock);
1214 		sctx->stat.read_errors++;
1215 		sctx->stat.uncorrectable_errors++;
1216 		spin_unlock(&sctx->stat_lock);
1217 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1218 		goto out;
1219 	}
1220 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1221 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
1222 
1223 	/* build and submit the bios for the failed mirror, check checksums */
1224 	scrub_recheck_block(fs_info, sblock_bad, 1);
1225 
1226 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1227 	    sblock_bad->no_io_error_seen) {
1228 		/*
1229 		 * the error disappeared after reading page by page, or
1230 		 * the area was part of a huge bio and other parts of the
1231 		 * bio caused I/O errors, or the block layer merged several
1232 		 * read requests into one and the error is caused by a
1233 		 * different bio (usually one of the two latter cases is
1234 		 * the cause)
1235 		 */
1236 		spin_lock(&sctx->stat_lock);
1237 		sctx->stat.unverified_errors++;
1238 		sblock_to_check->data_corrected = 1;
1239 		spin_unlock(&sctx->stat_lock);
1240 
1241 		if (sctx->is_dev_replace)
1242 			scrub_write_block_to_dev_replace(sblock_bad);
1243 		goto out;
1244 	}
1245 
1246 	if (!sblock_bad->no_io_error_seen) {
1247 		spin_lock(&sctx->stat_lock);
1248 		sctx->stat.read_errors++;
1249 		spin_unlock(&sctx->stat_lock);
1250 		if (__ratelimit(&_rs))
1251 			scrub_print_warning("i/o error", sblock_to_check);
1252 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1253 	} else if (sblock_bad->checksum_error) {
1254 		spin_lock(&sctx->stat_lock);
1255 		sctx->stat.csum_errors++;
1256 		spin_unlock(&sctx->stat_lock);
1257 		if (__ratelimit(&_rs))
1258 			scrub_print_warning("checksum error", sblock_to_check);
1259 		btrfs_dev_stat_inc_and_print(dev,
1260 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1261 	} else if (sblock_bad->header_error) {
1262 		spin_lock(&sctx->stat_lock);
1263 		sctx->stat.verify_errors++;
1264 		spin_unlock(&sctx->stat_lock);
1265 		if (__ratelimit(&_rs))
1266 			scrub_print_warning("checksum/header error",
1267 					    sblock_to_check);
1268 		if (sblock_bad->generation_error)
1269 			btrfs_dev_stat_inc_and_print(dev,
1270 				BTRFS_DEV_STAT_GENERATION_ERRS);
1271 		else
1272 			btrfs_dev_stat_inc_and_print(dev,
1273 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1274 	}
1275 
1276 	if (sctx->readonly) {
1277 		ASSERT(!sctx->is_dev_replace);
1278 		goto out;
1279 	}
1280 
1281 	if (!is_metadata && !have_csum) {
1282 		struct scrub_fixup_nodatasum *fixup_nodatasum;
1283 
1284 		WARN_ON(sctx->is_dev_replace);
1285 
1286 nodatasum_case:
1287 
1288 		/*
1289 		 * !is_metadata and !have_csum, this means that the data
1290 		 * might not be COWed, that it might be modified
1291 		 * concurrently. The general strategy to work on the
1292 		 * commit root does not help in the case when COW is not
1293 		 * used.
1294 		 */
1295 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1296 		if (!fixup_nodatasum)
1297 			goto did_not_correct_error;
1298 		fixup_nodatasum->sctx = sctx;
1299 		fixup_nodatasum->dev = dev;
1300 		fixup_nodatasum->logical = logical;
1301 		fixup_nodatasum->root = fs_info->extent_root;
1302 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1303 		scrub_pending_trans_workers_inc(sctx);
1304 		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1305 				scrub_fixup_nodatasum, NULL, NULL);
1306 		btrfs_queue_work(fs_info->scrub_workers,
1307 				 &fixup_nodatasum->work);
1308 		goto out;
1309 	}
1310 
1311 	/*
1312 	 * now build and submit the bios for the other mirrors, check
1313 	 * checksums.
1314 	 * First try to pick the mirror which is completely without I/O
1315 	 * errors and also does not have a checksum error.
1316 	 * If one is found, and if a checksum is present, the full block
1317 	 * that is known to contain an error is rewritten. Afterwards
1318 	 * the block is known to be corrected.
1319 	 * If a mirror is found which is completely correct, and no
1320 	 * checksum is present, only those pages are rewritten that had
1321 	 * an I/O error in the block to be repaired, since it cannot be
1322 	 * determined, which copy of the other pages is better (and it
1323 	 * could happen otherwise that a correct page would be
1324 	 * overwritten by a bad one).
1325 	 */
1326 	for (mirror_index = 0;
1327 	     mirror_index < BTRFS_MAX_MIRRORS &&
1328 	     sblocks_for_recheck[mirror_index].page_count > 0;
1329 	     mirror_index++) {
1330 		struct scrub_block *sblock_other;
1331 
1332 		if (mirror_index == failed_mirror_index)
1333 			continue;
1334 		sblock_other = sblocks_for_recheck + mirror_index;
1335 
1336 		/* build and submit the bios, check checksums */
1337 		scrub_recheck_block(fs_info, sblock_other, 0);
1338 
1339 		if (!sblock_other->header_error &&
1340 		    !sblock_other->checksum_error &&
1341 		    sblock_other->no_io_error_seen) {
1342 			if (sctx->is_dev_replace) {
1343 				scrub_write_block_to_dev_replace(sblock_other);
1344 				goto corrected_error;
1345 			} else {
1346 				ret = scrub_repair_block_from_good_copy(
1347 						sblock_bad, sblock_other);
1348 				if (!ret)
1349 					goto corrected_error;
1350 			}
1351 		}
1352 	}
1353 
1354 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1355 		goto did_not_correct_error;
1356 
1357 	/*
1358 	 * In case of I/O errors in the area that is supposed to be
1359 	 * repaired, continue by picking good copies of those pages.
1360 	 * Select the good pages from mirrors to rewrite bad pages from
1361 	 * the area to fix. Afterwards verify the checksum of the block
1362 	 * that is supposed to be repaired. This verification step is
1363 	 * only done for the purpose of statistic counting and for the
1364 	 * final scrub report, whether errors remain.
1365 	 * A perfect algorithm could make use of the checksum and try
1366 	 * all possible combinations of pages from the different mirrors
1367 	 * until the checksum verification succeeds. For example, when
1368 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1369 	 * of mirror #2 is readable but the final checksum test fails,
1370 	 * then the 2nd page of mirror #3 could be tried, whether now
1371 	 * the final checksum succeeds. But this would be a rare
1372 	 * exception and is therefore not implemented. At least it is
1373 	 * avoided that the good copy is overwritten.
1374 	 * A more useful improvement would be to pick the sectors
1375 	 * without I/O error based on sector sizes (512 bytes on legacy
1376 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1377 	 * mirror could be repaired by taking 512 byte of a different
1378 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1379 	 * area are unreadable.
1380 	 */
1381 	success = 1;
1382 	for (page_num = 0; page_num < sblock_bad->page_count;
1383 	     page_num++) {
1384 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1385 		struct scrub_block *sblock_other = NULL;
1386 
1387 		/* skip no-io-error page in scrub */
1388 		if (!page_bad->io_error && !sctx->is_dev_replace)
1389 			continue;
1390 
1391 		/* try to find no-io-error page in mirrors */
1392 		if (page_bad->io_error) {
1393 			for (mirror_index = 0;
1394 			     mirror_index < BTRFS_MAX_MIRRORS &&
1395 			     sblocks_for_recheck[mirror_index].page_count > 0;
1396 			     mirror_index++) {
1397 				if (!sblocks_for_recheck[mirror_index].
1398 				    pagev[page_num]->io_error) {
1399 					sblock_other = sblocks_for_recheck +
1400 						       mirror_index;
1401 					break;
1402 				}
1403 			}
1404 			if (!sblock_other)
1405 				success = 0;
1406 		}
1407 
1408 		if (sctx->is_dev_replace) {
1409 			/*
1410 			 * did not find a mirror to fetch the page
1411 			 * from. scrub_write_page_to_dev_replace()
1412 			 * handles this case (page->io_error), by
1413 			 * filling the block with zeros before
1414 			 * submitting the write request
1415 			 */
1416 			if (!sblock_other)
1417 				sblock_other = sblock_bad;
1418 
1419 			if (scrub_write_page_to_dev_replace(sblock_other,
1420 							    page_num) != 0) {
1421 				btrfs_dev_replace_stats_inc(
1422 					&fs_info->dev_replace.num_write_errors);
1423 				success = 0;
1424 			}
1425 		} else if (sblock_other) {
1426 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1427 							       sblock_other,
1428 							       page_num, 0);
1429 			if (0 == ret)
1430 				page_bad->io_error = 0;
1431 			else
1432 				success = 0;
1433 		}
1434 	}
1435 
1436 	if (success && !sctx->is_dev_replace) {
1437 		if (is_metadata || have_csum) {
1438 			/*
1439 			 * need to verify the checksum now that all
1440 			 * sectors on disk are repaired (the write
1441 			 * request for data to be repaired is on its way).
1442 			 * Just be lazy and use scrub_recheck_block()
1443 			 * which re-reads the data before the checksum
1444 			 * is verified, but most likely the data comes out
1445 			 * of the page cache.
1446 			 */
1447 			scrub_recheck_block(fs_info, sblock_bad, 1);
1448 			if (!sblock_bad->header_error &&
1449 			    !sblock_bad->checksum_error &&
1450 			    sblock_bad->no_io_error_seen)
1451 				goto corrected_error;
1452 			else
1453 				goto did_not_correct_error;
1454 		} else {
1455 corrected_error:
1456 			spin_lock(&sctx->stat_lock);
1457 			sctx->stat.corrected_errors++;
1458 			sblock_to_check->data_corrected = 1;
1459 			spin_unlock(&sctx->stat_lock);
1460 			btrfs_err_rl_in_rcu(fs_info,
1461 				"fixed up error at logical %llu on dev %s",
1462 				logical, rcu_str_deref(dev->name));
1463 		}
1464 	} else {
1465 did_not_correct_error:
1466 		spin_lock(&sctx->stat_lock);
1467 		sctx->stat.uncorrectable_errors++;
1468 		spin_unlock(&sctx->stat_lock);
1469 		btrfs_err_rl_in_rcu(fs_info,
1470 			"unable to fixup (regular) error at logical %llu on dev %s",
1471 			logical, rcu_str_deref(dev->name));
1472 	}
1473 
1474 out:
1475 	if (sblocks_for_recheck) {
1476 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1477 		     mirror_index++) {
1478 			struct scrub_block *sblock = sblocks_for_recheck +
1479 						     mirror_index;
1480 			struct scrub_recover *recover;
1481 			int page_index;
1482 
1483 			for (page_index = 0; page_index < sblock->page_count;
1484 			     page_index++) {
1485 				sblock->pagev[page_index]->sblock = NULL;
1486 				recover = sblock->pagev[page_index]->recover;
1487 				if (recover) {
1488 					scrub_put_recover(fs_info, recover);
1489 					sblock->pagev[page_index]->recover =
1490 									NULL;
1491 				}
1492 				scrub_page_put(sblock->pagev[page_index]);
1493 			}
1494 		}
1495 		kfree(sblocks_for_recheck);
1496 	}
1497 
1498 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1499 	if (ret < 0)
1500 		return ret;
1501 	return 0;
1502 }
1503 
1504 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1505 {
1506 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1507 		return 2;
1508 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1509 		return 3;
1510 	else
1511 		return (int)bbio->num_stripes;
1512 }
1513 
1514 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1515 						 u64 *raid_map,
1516 						 u64 mapped_length,
1517 						 int nstripes, int mirror,
1518 						 int *stripe_index,
1519 						 u64 *stripe_offset)
1520 {
1521 	int i;
1522 
1523 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1524 		/* RAID5/6 */
1525 		for (i = 0; i < nstripes; i++) {
1526 			if (raid_map[i] == RAID6_Q_STRIPE ||
1527 			    raid_map[i] == RAID5_P_STRIPE)
1528 				continue;
1529 
1530 			if (logical >= raid_map[i] &&
1531 			    logical < raid_map[i] + mapped_length)
1532 				break;
1533 		}
1534 
1535 		*stripe_index = i;
1536 		*stripe_offset = logical - raid_map[i];
1537 	} else {
1538 		/* The other RAID type */
1539 		*stripe_index = mirror;
1540 		*stripe_offset = 0;
1541 	}
1542 }
1543 
1544 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1545 				     struct scrub_block *sblocks_for_recheck)
1546 {
1547 	struct scrub_ctx *sctx = original_sblock->sctx;
1548 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1549 	u64 length = original_sblock->page_count * PAGE_SIZE;
1550 	u64 logical = original_sblock->pagev[0]->logical;
1551 	u64 generation = original_sblock->pagev[0]->generation;
1552 	u64 flags = original_sblock->pagev[0]->flags;
1553 	u64 have_csum = original_sblock->pagev[0]->have_csum;
1554 	struct scrub_recover *recover;
1555 	struct btrfs_bio *bbio;
1556 	u64 sublen;
1557 	u64 mapped_length;
1558 	u64 stripe_offset;
1559 	int stripe_index;
1560 	int page_index = 0;
1561 	int mirror_index;
1562 	int nmirrors;
1563 	int ret;
1564 
1565 	/*
1566 	 * note: the two members refs and outstanding_pages
1567 	 * are not used (and not set) in the blocks that are used for
1568 	 * the recheck procedure
1569 	 */
1570 
1571 	while (length > 0) {
1572 		sublen = min_t(u64, length, PAGE_SIZE);
1573 		mapped_length = sublen;
1574 		bbio = NULL;
1575 
1576 		/*
1577 		 * with a length of PAGE_SIZE, each returned stripe
1578 		 * represents one mirror
1579 		 */
1580 		btrfs_bio_counter_inc_blocked(fs_info);
1581 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1582 				logical, &mapped_length, &bbio);
1583 		if (ret || !bbio || mapped_length < sublen) {
1584 			btrfs_put_bbio(bbio);
1585 			btrfs_bio_counter_dec(fs_info);
1586 			return -EIO;
1587 		}
1588 
1589 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1590 		if (!recover) {
1591 			btrfs_put_bbio(bbio);
1592 			btrfs_bio_counter_dec(fs_info);
1593 			return -ENOMEM;
1594 		}
1595 
1596 		refcount_set(&recover->refs, 1);
1597 		recover->bbio = bbio;
1598 		recover->map_length = mapped_length;
1599 
1600 		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1601 
1602 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1603 
1604 		for (mirror_index = 0; mirror_index < nmirrors;
1605 		     mirror_index++) {
1606 			struct scrub_block *sblock;
1607 			struct scrub_page *page;
1608 
1609 			sblock = sblocks_for_recheck + mirror_index;
1610 			sblock->sctx = sctx;
1611 
1612 			page = kzalloc(sizeof(*page), GFP_NOFS);
1613 			if (!page) {
1614 leave_nomem:
1615 				spin_lock(&sctx->stat_lock);
1616 				sctx->stat.malloc_errors++;
1617 				spin_unlock(&sctx->stat_lock);
1618 				scrub_put_recover(fs_info, recover);
1619 				return -ENOMEM;
1620 			}
1621 			scrub_page_get(page);
1622 			sblock->pagev[page_index] = page;
1623 			page->sblock = sblock;
1624 			page->flags = flags;
1625 			page->generation = generation;
1626 			page->logical = logical;
1627 			page->have_csum = have_csum;
1628 			if (have_csum)
1629 				memcpy(page->csum,
1630 				       original_sblock->pagev[0]->csum,
1631 				       sctx->csum_size);
1632 
1633 			scrub_stripe_index_and_offset(logical,
1634 						      bbio->map_type,
1635 						      bbio->raid_map,
1636 						      mapped_length,
1637 						      bbio->num_stripes -
1638 						      bbio->num_tgtdevs,
1639 						      mirror_index,
1640 						      &stripe_index,
1641 						      &stripe_offset);
1642 			page->physical = bbio->stripes[stripe_index].physical +
1643 					 stripe_offset;
1644 			page->dev = bbio->stripes[stripe_index].dev;
1645 
1646 			BUG_ON(page_index >= original_sblock->page_count);
1647 			page->physical_for_dev_replace =
1648 				original_sblock->pagev[page_index]->
1649 				physical_for_dev_replace;
1650 			/* for missing devices, dev->bdev is NULL */
1651 			page->mirror_num = mirror_index + 1;
1652 			sblock->page_count++;
1653 			page->page = alloc_page(GFP_NOFS);
1654 			if (!page->page)
1655 				goto leave_nomem;
1656 
1657 			scrub_get_recover(recover);
1658 			page->recover = recover;
1659 		}
1660 		scrub_put_recover(fs_info, recover);
1661 		length -= sublen;
1662 		logical += sublen;
1663 		page_index++;
1664 	}
1665 
1666 	return 0;
1667 }
1668 
1669 struct scrub_bio_ret {
1670 	struct completion event;
1671 	int error;
1672 };
1673 
1674 static void scrub_bio_wait_endio(struct bio *bio)
1675 {
1676 	struct scrub_bio_ret *ret = bio->bi_private;
1677 
1678 	ret->error = bio->bi_error;
1679 	complete(&ret->event);
1680 }
1681 
1682 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1683 {
1684 	return page->recover &&
1685 	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1686 }
1687 
1688 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1689 					struct bio *bio,
1690 					struct scrub_page *page)
1691 {
1692 	struct scrub_bio_ret done;
1693 	int ret;
1694 
1695 	init_completion(&done.event);
1696 	done.error = 0;
1697 	bio->bi_iter.bi_sector = page->logical >> 9;
1698 	bio->bi_private = &done;
1699 	bio->bi_end_io = scrub_bio_wait_endio;
1700 
1701 	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1702 				    page->recover->map_length,
1703 				    page->mirror_num, 0);
1704 	if (ret)
1705 		return ret;
1706 
1707 	wait_for_completion(&done.event);
1708 	if (done.error)
1709 		return -EIO;
1710 
1711 	return 0;
1712 }
1713 
1714 /*
1715  * this function will check the on disk data for checksum errors, header
1716  * errors and read I/O errors. If any I/O errors happen, the exact pages
1717  * which are errored are marked as being bad. The goal is to enable scrub
1718  * to take those pages that are not errored from all the mirrors so that
1719  * the pages that are errored in the just handled mirror can be repaired.
1720  */
1721 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1722 				struct scrub_block *sblock,
1723 				int retry_failed_mirror)
1724 {
1725 	int page_num;
1726 
1727 	sblock->no_io_error_seen = 1;
1728 
1729 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1730 		struct bio *bio;
1731 		struct scrub_page *page = sblock->pagev[page_num];
1732 
1733 		if (page->dev->bdev == NULL) {
1734 			page->io_error = 1;
1735 			sblock->no_io_error_seen = 0;
1736 			continue;
1737 		}
1738 
1739 		WARN_ON(!page->page);
1740 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1741 		if (!bio) {
1742 			page->io_error = 1;
1743 			sblock->no_io_error_seen = 0;
1744 			continue;
1745 		}
1746 		bio->bi_bdev = page->dev->bdev;
1747 
1748 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1749 		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1750 			if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) {
1751 				page->io_error = 1;
1752 				sblock->no_io_error_seen = 0;
1753 			}
1754 		} else {
1755 			bio->bi_iter.bi_sector = page->physical >> 9;
1756 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
1757 
1758 			if (btrfsic_submit_bio_wait(bio)) {
1759 				page->io_error = 1;
1760 				sblock->no_io_error_seen = 0;
1761 			}
1762 		}
1763 
1764 		bio_put(bio);
1765 	}
1766 
1767 	if (sblock->no_io_error_seen)
1768 		scrub_recheck_block_checksum(sblock);
1769 }
1770 
1771 static inline int scrub_check_fsid(u8 fsid[],
1772 				   struct scrub_page *spage)
1773 {
1774 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1775 	int ret;
1776 
1777 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1778 	return !ret;
1779 }
1780 
1781 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1782 {
1783 	sblock->header_error = 0;
1784 	sblock->checksum_error = 0;
1785 	sblock->generation_error = 0;
1786 
1787 	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1788 		scrub_checksum_data(sblock);
1789 	else
1790 		scrub_checksum_tree_block(sblock);
1791 }
1792 
1793 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1794 					     struct scrub_block *sblock_good)
1795 {
1796 	int page_num;
1797 	int ret = 0;
1798 
1799 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1800 		int ret_sub;
1801 
1802 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1803 							   sblock_good,
1804 							   page_num, 1);
1805 		if (ret_sub)
1806 			ret = ret_sub;
1807 	}
1808 
1809 	return ret;
1810 }
1811 
1812 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1813 					    struct scrub_block *sblock_good,
1814 					    int page_num, int force_write)
1815 {
1816 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1817 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1818 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1819 
1820 	BUG_ON(page_bad->page == NULL);
1821 	BUG_ON(page_good->page == NULL);
1822 	if (force_write || sblock_bad->header_error ||
1823 	    sblock_bad->checksum_error || page_bad->io_error) {
1824 		struct bio *bio;
1825 		int ret;
1826 
1827 		if (!page_bad->dev->bdev) {
1828 			btrfs_warn_rl(fs_info,
1829 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1830 			return -EIO;
1831 		}
1832 
1833 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1834 		if (!bio)
1835 			return -EIO;
1836 		bio->bi_bdev = page_bad->dev->bdev;
1837 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1838 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1839 
1840 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1841 		if (PAGE_SIZE != ret) {
1842 			bio_put(bio);
1843 			return -EIO;
1844 		}
1845 
1846 		if (btrfsic_submit_bio_wait(bio)) {
1847 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1848 				BTRFS_DEV_STAT_WRITE_ERRS);
1849 			btrfs_dev_replace_stats_inc(
1850 				&fs_info->dev_replace.num_write_errors);
1851 			bio_put(bio);
1852 			return -EIO;
1853 		}
1854 		bio_put(bio);
1855 	}
1856 
1857 	return 0;
1858 }
1859 
1860 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1861 {
1862 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1863 	int page_num;
1864 
1865 	/*
1866 	 * This block is used for the check of the parity on the source device,
1867 	 * so the data needn't be written into the destination device.
1868 	 */
1869 	if (sblock->sparity)
1870 		return;
1871 
1872 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1873 		int ret;
1874 
1875 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1876 		if (ret)
1877 			btrfs_dev_replace_stats_inc(
1878 				&fs_info->dev_replace.num_write_errors);
1879 	}
1880 }
1881 
1882 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1883 					   int page_num)
1884 {
1885 	struct scrub_page *spage = sblock->pagev[page_num];
1886 
1887 	BUG_ON(spage->page == NULL);
1888 	if (spage->io_error) {
1889 		void *mapped_buffer = kmap_atomic(spage->page);
1890 
1891 		clear_page(mapped_buffer);
1892 		flush_dcache_page(spage->page);
1893 		kunmap_atomic(mapped_buffer);
1894 	}
1895 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1896 }
1897 
1898 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1899 				    struct scrub_page *spage)
1900 {
1901 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1902 	struct scrub_bio *sbio;
1903 	int ret;
1904 
1905 	mutex_lock(&wr_ctx->wr_lock);
1906 again:
1907 	if (!wr_ctx->wr_curr_bio) {
1908 		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1909 					      GFP_KERNEL);
1910 		if (!wr_ctx->wr_curr_bio) {
1911 			mutex_unlock(&wr_ctx->wr_lock);
1912 			return -ENOMEM;
1913 		}
1914 		wr_ctx->wr_curr_bio->sctx = sctx;
1915 		wr_ctx->wr_curr_bio->page_count = 0;
1916 	}
1917 	sbio = wr_ctx->wr_curr_bio;
1918 	if (sbio->page_count == 0) {
1919 		struct bio *bio;
1920 
1921 		sbio->physical = spage->physical_for_dev_replace;
1922 		sbio->logical = spage->logical;
1923 		sbio->dev = wr_ctx->tgtdev;
1924 		bio = sbio->bio;
1925 		if (!bio) {
1926 			bio = btrfs_io_bio_alloc(GFP_KERNEL,
1927 					wr_ctx->pages_per_wr_bio);
1928 			if (!bio) {
1929 				mutex_unlock(&wr_ctx->wr_lock);
1930 				return -ENOMEM;
1931 			}
1932 			sbio->bio = bio;
1933 		}
1934 
1935 		bio->bi_private = sbio;
1936 		bio->bi_end_io = scrub_wr_bio_end_io;
1937 		bio->bi_bdev = sbio->dev->bdev;
1938 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1939 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1940 		sbio->err = 0;
1941 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1942 		   spage->physical_for_dev_replace ||
1943 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1944 		   spage->logical) {
1945 		scrub_wr_submit(sctx);
1946 		goto again;
1947 	}
1948 
1949 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1950 	if (ret != PAGE_SIZE) {
1951 		if (sbio->page_count < 1) {
1952 			bio_put(sbio->bio);
1953 			sbio->bio = NULL;
1954 			mutex_unlock(&wr_ctx->wr_lock);
1955 			return -EIO;
1956 		}
1957 		scrub_wr_submit(sctx);
1958 		goto again;
1959 	}
1960 
1961 	sbio->pagev[sbio->page_count] = spage;
1962 	scrub_page_get(spage);
1963 	sbio->page_count++;
1964 	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1965 		scrub_wr_submit(sctx);
1966 	mutex_unlock(&wr_ctx->wr_lock);
1967 
1968 	return 0;
1969 }
1970 
1971 static void scrub_wr_submit(struct scrub_ctx *sctx)
1972 {
1973 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1974 	struct scrub_bio *sbio;
1975 
1976 	if (!wr_ctx->wr_curr_bio)
1977 		return;
1978 
1979 	sbio = wr_ctx->wr_curr_bio;
1980 	wr_ctx->wr_curr_bio = NULL;
1981 	WARN_ON(!sbio->bio->bi_bdev);
1982 	scrub_pending_bio_inc(sctx);
1983 	/* process all writes in a single worker thread. Then the block layer
1984 	 * orders the requests before sending them to the driver which
1985 	 * doubled the write performance on spinning disks when measured
1986 	 * with Linux 3.5 */
1987 	btrfsic_submit_bio(sbio->bio);
1988 }
1989 
1990 static void scrub_wr_bio_end_io(struct bio *bio)
1991 {
1992 	struct scrub_bio *sbio = bio->bi_private;
1993 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1994 
1995 	sbio->err = bio->bi_error;
1996 	sbio->bio = bio;
1997 
1998 	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1999 			 scrub_wr_bio_end_io_worker, NULL, NULL);
2000 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
2001 }
2002 
2003 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
2004 {
2005 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2006 	struct scrub_ctx *sctx = sbio->sctx;
2007 	int i;
2008 
2009 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
2010 	if (sbio->err) {
2011 		struct btrfs_dev_replace *dev_replace =
2012 			&sbio->sctx->fs_info->dev_replace;
2013 
2014 		for (i = 0; i < sbio->page_count; i++) {
2015 			struct scrub_page *spage = sbio->pagev[i];
2016 
2017 			spage->io_error = 1;
2018 			btrfs_dev_replace_stats_inc(&dev_replace->
2019 						    num_write_errors);
2020 		}
2021 	}
2022 
2023 	for (i = 0; i < sbio->page_count; i++)
2024 		scrub_page_put(sbio->pagev[i]);
2025 
2026 	bio_put(sbio->bio);
2027 	kfree(sbio);
2028 	scrub_pending_bio_dec(sctx);
2029 }
2030 
2031 static int scrub_checksum(struct scrub_block *sblock)
2032 {
2033 	u64 flags;
2034 	int ret;
2035 
2036 	/*
2037 	 * No need to initialize these stats currently,
2038 	 * because this function only use return value
2039 	 * instead of these stats value.
2040 	 *
2041 	 * Todo:
2042 	 * always use stats
2043 	 */
2044 	sblock->header_error = 0;
2045 	sblock->generation_error = 0;
2046 	sblock->checksum_error = 0;
2047 
2048 	WARN_ON(sblock->page_count < 1);
2049 	flags = sblock->pagev[0]->flags;
2050 	ret = 0;
2051 	if (flags & BTRFS_EXTENT_FLAG_DATA)
2052 		ret = scrub_checksum_data(sblock);
2053 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2054 		ret = scrub_checksum_tree_block(sblock);
2055 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
2056 		(void)scrub_checksum_super(sblock);
2057 	else
2058 		WARN_ON(1);
2059 	if (ret)
2060 		scrub_handle_errored_block(sblock);
2061 
2062 	return ret;
2063 }
2064 
2065 static int scrub_checksum_data(struct scrub_block *sblock)
2066 {
2067 	struct scrub_ctx *sctx = sblock->sctx;
2068 	u8 csum[BTRFS_CSUM_SIZE];
2069 	u8 *on_disk_csum;
2070 	struct page *page;
2071 	void *buffer;
2072 	u32 crc = ~(u32)0;
2073 	u64 len;
2074 	int index;
2075 
2076 	BUG_ON(sblock->page_count < 1);
2077 	if (!sblock->pagev[0]->have_csum)
2078 		return 0;
2079 
2080 	on_disk_csum = sblock->pagev[0]->csum;
2081 	page = sblock->pagev[0]->page;
2082 	buffer = kmap_atomic(page);
2083 
2084 	len = sctx->sectorsize;
2085 	index = 0;
2086 	for (;;) {
2087 		u64 l = min_t(u64, len, PAGE_SIZE);
2088 
2089 		crc = btrfs_csum_data(buffer, crc, l);
2090 		kunmap_atomic(buffer);
2091 		len -= l;
2092 		if (len == 0)
2093 			break;
2094 		index++;
2095 		BUG_ON(index >= sblock->page_count);
2096 		BUG_ON(!sblock->pagev[index]->page);
2097 		page = sblock->pagev[index]->page;
2098 		buffer = kmap_atomic(page);
2099 	}
2100 
2101 	btrfs_csum_final(crc, csum);
2102 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
2103 		sblock->checksum_error = 1;
2104 
2105 	return sblock->checksum_error;
2106 }
2107 
2108 static int scrub_checksum_tree_block(struct scrub_block *sblock)
2109 {
2110 	struct scrub_ctx *sctx = sblock->sctx;
2111 	struct btrfs_header *h;
2112 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2113 	u8 calculated_csum[BTRFS_CSUM_SIZE];
2114 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2115 	struct page *page;
2116 	void *mapped_buffer;
2117 	u64 mapped_size;
2118 	void *p;
2119 	u32 crc = ~(u32)0;
2120 	u64 len;
2121 	int index;
2122 
2123 	BUG_ON(sblock->page_count < 1);
2124 	page = sblock->pagev[0]->page;
2125 	mapped_buffer = kmap_atomic(page);
2126 	h = (struct btrfs_header *)mapped_buffer;
2127 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
2128 
2129 	/*
2130 	 * we don't use the getter functions here, as we
2131 	 * a) don't have an extent buffer and
2132 	 * b) the page is already kmapped
2133 	 */
2134 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
2135 		sblock->header_error = 1;
2136 
2137 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
2138 		sblock->header_error = 1;
2139 		sblock->generation_error = 1;
2140 	}
2141 
2142 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
2143 		sblock->header_error = 1;
2144 
2145 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
2146 		   BTRFS_UUID_SIZE))
2147 		sblock->header_error = 1;
2148 
2149 	len = sctx->nodesize - BTRFS_CSUM_SIZE;
2150 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2151 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2152 	index = 0;
2153 	for (;;) {
2154 		u64 l = min_t(u64, len, mapped_size);
2155 
2156 		crc = btrfs_csum_data(p, crc, l);
2157 		kunmap_atomic(mapped_buffer);
2158 		len -= l;
2159 		if (len == 0)
2160 			break;
2161 		index++;
2162 		BUG_ON(index >= sblock->page_count);
2163 		BUG_ON(!sblock->pagev[index]->page);
2164 		page = sblock->pagev[index]->page;
2165 		mapped_buffer = kmap_atomic(page);
2166 		mapped_size = PAGE_SIZE;
2167 		p = mapped_buffer;
2168 	}
2169 
2170 	btrfs_csum_final(crc, calculated_csum);
2171 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2172 		sblock->checksum_error = 1;
2173 
2174 	return sblock->header_error || sblock->checksum_error;
2175 }
2176 
2177 static int scrub_checksum_super(struct scrub_block *sblock)
2178 {
2179 	struct btrfs_super_block *s;
2180 	struct scrub_ctx *sctx = sblock->sctx;
2181 	u8 calculated_csum[BTRFS_CSUM_SIZE];
2182 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2183 	struct page *page;
2184 	void *mapped_buffer;
2185 	u64 mapped_size;
2186 	void *p;
2187 	u32 crc = ~(u32)0;
2188 	int fail_gen = 0;
2189 	int fail_cor = 0;
2190 	u64 len;
2191 	int index;
2192 
2193 	BUG_ON(sblock->page_count < 1);
2194 	page = sblock->pagev[0]->page;
2195 	mapped_buffer = kmap_atomic(page);
2196 	s = (struct btrfs_super_block *)mapped_buffer;
2197 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
2198 
2199 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2200 		++fail_cor;
2201 
2202 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2203 		++fail_gen;
2204 
2205 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2206 		++fail_cor;
2207 
2208 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2209 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2210 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2211 	index = 0;
2212 	for (;;) {
2213 		u64 l = min_t(u64, len, mapped_size);
2214 
2215 		crc = btrfs_csum_data(p, crc, l);
2216 		kunmap_atomic(mapped_buffer);
2217 		len -= l;
2218 		if (len == 0)
2219 			break;
2220 		index++;
2221 		BUG_ON(index >= sblock->page_count);
2222 		BUG_ON(!sblock->pagev[index]->page);
2223 		page = sblock->pagev[index]->page;
2224 		mapped_buffer = kmap_atomic(page);
2225 		mapped_size = PAGE_SIZE;
2226 		p = mapped_buffer;
2227 	}
2228 
2229 	btrfs_csum_final(crc, calculated_csum);
2230 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2231 		++fail_cor;
2232 
2233 	if (fail_cor + fail_gen) {
2234 		/*
2235 		 * if we find an error in a super block, we just report it.
2236 		 * They will get written with the next transaction commit
2237 		 * anyway
2238 		 */
2239 		spin_lock(&sctx->stat_lock);
2240 		++sctx->stat.super_errors;
2241 		spin_unlock(&sctx->stat_lock);
2242 		if (fail_cor)
2243 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2244 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
2245 		else
2246 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2247 				BTRFS_DEV_STAT_GENERATION_ERRS);
2248 	}
2249 
2250 	return fail_cor + fail_gen;
2251 }
2252 
2253 static void scrub_block_get(struct scrub_block *sblock)
2254 {
2255 	refcount_inc(&sblock->refs);
2256 }
2257 
2258 static void scrub_block_put(struct scrub_block *sblock)
2259 {
2260 	if (refcount_dec_and_test(&sblock->refs)) {
2261 		int i;
2262 
2263 		if (sblock->sparity)
2264 			scrub_parity_put(sblock->sparity);
2265 
2266 		for (i = 0; i < sblock->page_count; i++)
2267 			scrub_page_put(sblock->pagev[i]);
2268 		kfree(sblock);
2269 	}
2270 }
2271 
2272 static void scrub_page_get(struct scrub_page *spage)
2273 {
2274 	atomic_inc(&spage->refs);
2275 }
2276 
2277 static void scrub_page_put(struct scrub_page *spage)
2278 {
2279 	if (atomic_dec_and_test(&spage->refs)) {
2280 		if (spage->page)
2281 			__free_page(spage->page);
2282 		kfree(spage);
2283 	}
2284 }
2285 
2286 static void scrub_submit(struct scrub_ctx *sctx)
2287 {
2288 	struct scrub_bio *sbio;
2289 
2290 	if (sctx->curr == -1)
2291 		return;
2292 
2293 	sbio = sctx->bios[sctx->curr];
2294 	sctx->curr = -1;
2295 	scrub_pending_bio_inc(sctx);
2296 	btrfsic_submit_bio(sbio->bio);
2297 }
2298 
2299 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2300 				    struct scrub_page *spage)
2301 {
2302 	struct scrub_block *sblock = spage->sblock;
2303 	struct scrub_bio *sbio;
2304 	int ret;
2305 
2306 again:
2307 	/*
2308 	 * grab a fresh bio or wait for one to become available
2309 	 */
2310 	while (sctx->curr == -1) {
2311 		spin_lock(&sctx->list_lock);
2312 		sctx->curr = sctx->first_free;
2313 		if (sctx->curr != -1) {
2314 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2315 			sctx->bios[sctx->curr]->next_free = -1;
2316 			sctx->bios[sctx->curr]->page_count = 0;
2317 			spin_unlock(&sctx->list_lock);
2318 		} else {
2319 			spin_unlock(&sctx->list_lock);
2320 			wait_event(sctx->list_wait, sctx->first_free != -1);
2321 		}
2322 	}
2323 	sbio = sctx->bios[sctx->curr];
2324 	if (sbio->page_count == 0) {
2325 		struct bio *bio;
2326 
2327 		sbio->physical = spage->physical;
2328 		sbio->logical = spage->logical;
2329 		sbio->dev = spage->dev;
2330 		bio = sbio->bio;
2331 		if (!bio) {
2332 			bio = btrfs_io_bio_alloc(GFP_KERNEL,
2333 					sctx->pages_per_rd_bio);
2334 			if (!bio)
2335 				return -ENOMEM;
2336 			sbio->bio = bio;
2337 		}
2338 
2339 		bio->bi_private = sbio;
2340 		bio->bi_end_io = scrub_bio_end_io;
2341 		bio->bi_bdev = sbio->dev->bdev;
2342 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2343 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2344 		sbio->err = 0;
2345 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2346 		   spage->physical ||
2347 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2348 		   spage->logical ||
2349 		   sbio->dev != spage->dev) {
2350 		scrub_submit(sctx);
2351 		goto again;
2352 	}
2353 
2354 	sbio->pagev[sbio->page_count] = spage;
2355 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2356 	if (ret != PAGE_SIZE) {
2357 		if (sbio->page_count < 1) {
2358 			bio_put(sbio->bio);
2359 			sbio->bio = NULL;
2360 			return -EIO;
2361 		}
2362 		scrub_submit(sctx);
2363 		goto again;
2364 	}
2365 
2366 	scrub_block_get(sblock); /* one for the page added to the bio */
2367 	atomic_inc(&sblock->outstanding_pages);
2368 	sbio->page_count++;
2369 	if (sbio->page_count == sctx->pages_per_rd_bio)
2370 		scrub_submit(sctx);
2371 
2372 	return 0;
2373 }
2374 
2375 static void scrub_missing_raid56_end_io(struct bio *bio)
2376 {
2377 	struct scrub_block *sblock = bio->bi_private;
2378 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2379 
2380 	if (bio->bi_error)
2381 		sblock->no_io_error_seen = 0;
2382 
2383 	bio_put(bio);
2384 
2385 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2386 }
2387 
2388 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2389 {
2390 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2391 	struct scrub_ctx *sctx = sblock->sctx;
2392 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2393 	u64 logical;
2394 	struct btrfs_device *dev;
2395 
2396 	logical = sblock->pagev[0]->logical;
2397 	dev = sblock->pagev[0]->dev;
2398 
2399 	if (sblock->no_io_error_seen)
2400 		scrub_recheck_block_checksum(sblock);
2401 
2402 	if (!sblock->no_io_error_seen) {
2403 		spin_lock(&sctx->stat_lock);
2404 		sctx->stat.read_errors++;
2405 		spin_unlock(&sctx->stat_lock);
2406 		btrfs_err_rl_in_rcu(fs_info,
2407 			"IO error rebuilding logical %llu for dev %s",
2408 			logical, rcu_str_deref(dev->name));
2409 	} else if (sblock->header_error || sblock->checksum_error) {
2410 		spin_lock(&sctx->stat_lock);
2411 		sctx->stat.uncorrectable_errors++;
2412 		spin_unlock(&sctx->stat_lock);
2413 		btrfs_err_rl_in_rcu(fs_info,
2414 			"failed to rebuild valid logical %llu for dev %s",
2415 			logical, rcu_str_deref(dev->name));
2416 	} else {
2417 		scrub_write_block_to_dev_replace(sblock);
2418 	}
2419 
2420 	scrub_block_put(sblock);
2421 
2422 	if (sctx->is_dev_replace &&
2423 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2424 		mutex_lock(&sctx->wr_ctx.wr_lock);
2425 		scrub_wr_submit(sctx);
2426 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2427 	}
2428 
2429 	scrub_pending_bio_dec(sctx);
2430 }
2431 
2432 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2433 {
2434 	struct scrub_ctx *sctx = sblock->sctx;
2435 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2436 	u64 length = sblock->page_count * PAGE_SIZE;
2437 	u64 logical = sblock->pagev[0]->logical;
2438 	struct btrfs_bio *bbio = NULL;
2439 	struct bio *bio;
2440 	struct btrfs_raid_bio *rbio;
2441 	int ret;
2442 	int i;
2443 
2444 	btrfs_bio_counter_inc_blocked(fs_info);
2445 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2446 			&length, &bbio);
2447 	if (ret || !bbio || !bbio->raid_map)
2448 		goto bbio_out;
2449 
2450 	if (WARN_ON(!sctx->is_dev_replace ||
2451 		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2452 		/*
2453 		 * We shouldn't be scrubbing a missing device. Even for dev
2454 		 * replace, we should only get here for RAID 5/6. We either
2455 		 * managed to mount something with no mirrors remaining or
2456 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2457 		 */
2458 		goto bbio_out;
2459 	}
2460 
2461 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2462 	if (!bio)
2463 		goto bbio_out;
2464 
2465 	bio->bi_iter.bi_sector = logical >> 9;
2466 	bio->bi_private = sblock;
2467 	bio->bi_end_io = scrub_missing_raid56_end_io;
2468 
2469 	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2470 	if (!rbio)
2471 		goto rbio_out;
2472 
2473 	for (i = 0; i < sblock->page_count; i++) {
2474 		struct scrub_page *spage = sblock->pagev[i];
2475 
2476 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2477 	}
2478 
2479 	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2480 			scrub_missing_raid56_worker, NULL, NULL);
2481 	scrub_block_get(sblock);
2482 	scrub_pending_bio_inc(sctx);
2483 	raid56_submit_missing_rbio(rbio);
2484 	return;
2485 
2486 rbio_out:
2487 	bio_put(bio);
2488 bbio_out:
2489 	btrfs_bio_counter_dec(fs_info);
2490 	btrfs_put_bbio(bbio);
2491 	spin_lock(&sctx->stat_lock);
2492 	sctx->stat.malloc_errors++;
2493 	spin_unlock(&sctx->stat_lock);
2494 }
2495 
2496 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2497 		       u64 physical, struct btrfs_device *dev, u64 flags,
2498 		       u64 gen, int mirror_num, u8 *csum, int force,
2499 		       u64 physical_for_dev_replace)
2500 {
2501 	struct scrub_block *sblock;
2502 	int index;
2503 
2504 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2505 	if (!sblock) {
2506 		spin_lock(&sctx->stat_lock);
2507 		sctx->stat.malloc_errors++;
2508 		spin_unlock(&sctx->stat_lock);
2509 		return -ENOMEM;
2510 	}
2511 
2512 	/* one ref inside this function, plus one for each page added to
2513 	 * a bio later on */
2514 	refcount_set(&sblock->refs, 1);
2515 	sblock->sctx = sctx;
2516 	sblock->no_io_error_seen = 1;
2517 
2518 	for (index = 0; len > 0; index++) {
2519 		struct scrub_page *spage;
2520 		u64 l = min_t(u64, len, PAGE_SIZE);
2521 
2522 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2523 		if (!spage) {
2524 leave_nomem:
2525 			spin_lock(&sctx->stat_lock);
2526 			sctx->stat.malloc_errors++;
2527 			spin_unlock(&sctx->stat_lock);
2528 			scrub_block_put(sblock);
2529 			return -ENOMEM;
2530 		}
2531 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2532 		scrub_page_get(spage);
2533 		sblock->pagev[index] = spage;
2534 		spage->sblock = sblock;
2535 		spage->dev = dev;
2536 		spage->flags = flags;
2537 		spage->generation = gen;
2538 		spage->logical = logical;
2539 		spage->physical = physical;
2540 		spage->physical_for_dev_replace = physical_for_dev_replace;
2541 		spage->mirror_num = mirror_num;
2542 		if (csum) {
2543 			spage->have_csum = 1;
2544 			memcpy(spage->csum, csum, sctx->csum_size);
2545 		} else {
2546 			spage->have_csum = 0;
2547 		}
2548 		sblock->page_count++;
2549 		spage->page = alloc_page(GFP_KERNEL);
2550 		if (!spage->page)
2551 			goto leave_nomem;
2552 		len -= l;
2553 		logical += l;
2554 		physical += l;
2555 		physical_for_dev_replace += l;
2556 	}
2557 
2558 	WARN_ON(sblock->page_count == 0);
2559 	if (dev->missing) {
2560 		/*
2561 		 * This case should only be hit for RAID 5/6 device replace. See
2562 		 * the comment in scrub_missing_raid56_pages() for details.
2563 		 */
2564 		scrub_missing_raid56_pages(sblock);
2565 	} else {
2566 		for (index = 0; index < sblock->page_count; index++) {
2567 			struct scrub_page *spage = sblock->pagev[index];
2568 			int ret;
2569 
2570 			ret = scrub_add_page_to_rd_bio(sctx, spage);
2571 			if (ret) {
2572 				scrub_block_put(sblock);
2573 				return ret;
2574 			}
2575 		}
2576 
2577 		if (force)
2578 			scrub_submit(sctx);
2579 	}
2580 
2581 	/* last one frees, either here or in bio completion for last page */
2582 	scrub_block_put(sblock);
2583 	return 0;
2584 }
2585 
2586 static void scrub_bio_end_io(struct bio *bio)
2587 {
2588 	struct scrub_bio *sbio = bio->bi_private;
2589 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2590 
2591 	sbio->err = bio->bi_error;
2592 	sbio->bio = bio;
2593 
2594 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2595 }
2596 
2597 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2598 {
2599 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2600 	struct scrub_ctx *sctx = sbio->sctx;
2601 	int i;
2602 
2603 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2604 	if (sbio->err) {
2605 		for (i = 0; i < sbio->page_count; i++) {
2606 			struct scrub_page *spage = sbio->pagev[i];
2607 
2608 			spage->io_error = 1;
2609 			spage->sblock->no_io_error_seen = 0;
2610 		}
2611 	}
2612 
2613 	/* now complete the scrub_block items that have all pages completed */
2614 	for (i = 0; i < sbio->page_count; i++) {
2615 		struct scrub_page *spage = sbio->pagev[i];
2616 		struct scrub_block *sblock = spage->sblock;
2617 
2618 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2619 			scrub_block_complete(sblock);
2620 		scrub_block_put(sblock);
2621 	}
2622 
2623 	bio_put(sbio->bio);
2624 	sbio->bio = NULL;
2625 	spin_lock(&sctx->list_lock);
2626 	sbio->next_free = sctx->first_free;
2627 	sctx->first_free = sbio->index;
2628 	spin_unlock(&sctx->list_lock);
2629 
2630 	if (sctx->is_dev_replace &&
2631 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2632 		mutex_lock(&sctx->wr_ctx.wr_lock);
2633 		scrub_wr_submit(sctx);
2634 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2635 	}
2636 
2637 	scrub_pending_bio_dec(sctx);
2638 }
2639 
2640 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2641 				       unsigned long *bitmap,
2642 				       u64 start, u64 len)
2643 {
2644 	u64 offset;
2645 	int nsectors;
2646 	int sectorsize = sparity->sctx->fs_info->sectorsize;
2647 
2648 	if (len >= sparity->stripe_len) {
2649 		bitmap_set(bitmap, 0, sparity->nsectors);
2650 		return;
2651 	}
2652 
2653 	start -= sparity->logic_start;
2654 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2655 	offset = div_u64(offset, sectorsize);
2656 	nsectors = (int)len / sectorsize;
2657 
2658 	if (offset + nsectors <= sparity->nsectors) {
2659 		bitmap_set(bitmap, offset, nsectors);
2660 		return;
2661 	}
2662 
2663 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2664 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2665 }
2666 
2667 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2668 						   u64 start, u64 len)
2669 {
2670 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2671 }
2672 
2673 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2674 						  u64 start, u64 len)
2675 {
2676 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2677 }
2678 
2679 static void scrub_block_complete(struct scrub_block *sblock)
2680 {
2681 	int corrupted = 0;
2682 
2683 	if (!sblock->no_io_error_seen) {
2684 		corrupted = 1;
2685 		scrub_handle_errored_block(sblock);
2686 	} else {
2687 		/*
2688 		 * if has checksum error, write via repair mechanism in
2689 		 * dev replace case, otherwise write here in dev replace
2690 		 * case.
2691 		 */
2692 		corrupted = scrub_checksum(sblock);
2693 		if (!corrupted && sblock->sctx->is_dev_replace)
2694 			scrub_write_block_to_dev_replace(sblock);
2695 	}
2696 
2697 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2698 		u64 start = sblock->pagev[0]->logical;
2699 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2700 			  PAGE_SIZE;
2701 
2702 		scrub_parity_mark_sectors_error(sblock->sparity,
2703 						start, end - start);
2704 	}
2705 }
2706 
2707 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2708 {
2709 	struct btrfs_ordered_sum *sum = NULL;
2710 	unsigned long index;
2711 	unsigned long num_sectors;
2712 
2713 	while (!list_empty(&sctx->csum_list)) {
2714 		sum = list_first_entry(&sctx->csum_list,
2715 				       struct btrfs_ordered_sum, list);
2716 		if (sum->bytenr > logical)
2717 			return 0;
2718 		if (sum->bytenr + sum->len > logical)
2719 			break;
2720 
2721 		++sctx->stat.csum_discards;
2722 		list_del(&sum->list);
2723 		kfree(sum);
2724 		sum = NULL;
2725 	}
2726 	if (!sum)
2727 		return 0;
2728 
2729 	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2730 	num_sectors = sum->len / sctx->sectorsize;
2731 	memcpy(csum, sum->sums + index, sctx->csum_size);
2732 	if (index == num_sectors - 1) {
2733 		list_del(&sum->list);
2734 		kfree(sum);
2735 	}
2736 	return 1;
2737 }
2738 
2739 /* scrub extent tries to collect up to 64 kB for each bio */
2740 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2741 			u64 physical, struct btrfs_device *dev, u64 flags,
2742 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2743 {
2744 	int ret;
2745 	u8 csum[BTRFS_CSUM_SIZE];
2746 	u32 blocksize;
2747 
2748 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2749 		blocksize = sctx->sectorsize;
2750 		spin_lock(&sctx->stat_lock);
2751 		sctx->stat.data_extents_scrubbed++;
2752 		sctx->stat.data_bytes_scrubbed += len;
2753 		spin_unlock(&sctx->stat_lock);
2754 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2755 		blocksize = sctx->nodesize;
2756 		spin_lock(&sctx->stat_lock);
2757 		sctx->stat.tree_extents_scrubbed++;
2758 		sctx->stat.tree_bytes_scrubbed += len;
2759 		spin_unlock(&sctx->stat_lock);
2760 	} else {
2761 		blocksize = sctx->sectorsize;
2762 		WARN_ON(1);
2763 	}
2764 
2765 	while (len) {
2766 		u64 l = min_t(u64, len, blocksize);
2767 		int have_csum = 0;
2768 
2769 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2770 			/* push csums to sbio */
2771 			have_csum = scrub_find_csum(sctx, logical, csum);
2772 			if (have_csum == 0)
2773 				++sctx->stat.no_csum;
2774 			if (sctx->is_dev_replace && !have_csum) {
2775 				ret = copy_nocow_pages(sctx, logical, l,
2776 						       mirror_num,
2777 						      physical_for_dev_replace);
2778 				goto behind_scrub_pages;
2779 			}
2780 		}
2781 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2782 				  mirror_num, have_csum ? csum : NULL, 0,
2783 				  physical_for_dev_replace);
2784 behind_scrub_pages:
2785 		if (ret)
2786 			return ret;
2787 		len -= l;
2788 		logical += l;
2789 		physical += l;
2790 		physical_for_dev_replace += l;
2791 	}
2792 	return 0;
2793 }
2794 
2795 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2796 				  u64 logical, u64 len,
2797 				  u64 physical, struct btrfs_device *dev,
2798 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2799 {
2800 	struct scrub_ctx *sctx = sparity->sctx;
2801 	struct scrub_block *sblock;
2802 	int index;
2803 
2804 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2805 	if (!sblock) {
2806 		spin_lock(&sctx->stat_lock);
2807 		sctx->stat.malloc_errors++;
2808 		spin_unlock(&sctx->stat_lock);
2809 		return -ENOMEM;
2810 	}
2811 
2812 	/* one ref inside this function, plus one for each page added to
2813 	 * a bio later on */
2814 	refcount_set(&sblock->refs, 1);
2815 	sblock->sctx = sctx;
2816 	sblock->no_io_error_seen = 1;
2817 	sblock->sparity = sparity;
2818 	scrub_parity_get(sparity);
2819 
2820 	for (index = 0; len > 0; index++) {
2821 		struct scrub_page *spage;
2822 		u64 l = min_t(u64, len, PAGE_SIZE);
2823 
2824 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2825 		if (!spage) {
2826 leave_nomem:
2827 			spin_lock(&sctx->stat_lock);
2828 			sctx->stat.malloc_errors++;
2829 			spin_unlock(&sctx->stat_lock);
2830 			scrub_block_put(sblock);
2831 			return -ENOMEM;
2832 		}
2833 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2834 		/* For scrub block */
2835 		scrub_page_get(spage);
2836 		sblock->pagev[index] = spage;
2837 		/* For scrub parity */
2838 		scrub_page_get(spage);
2839 		list_add_tail(&spage->list, &sparity->spages);
2840 		spage->sblock = sblock;
2841 		spage->dev = dev;
2842 		spage->flags = flags;
2843 		spage->generation = gen;
2844 		spage->logical = logical;
2845 		spage->physical = physical;
2846 		spage->mirror_num = mirror_num;
2847 		if (csum) {
2848 			spage->have_csum = 1;
2849 			memcpy(spage->csum, csum, sctx->csum_size);
2850 		} else {
2851 			spage->have_csum = 0;
2852 		}
2853 		sblock->page_count++;
2854 		spage->page = alloc_page(GFP_KERNEL);
2855 		if (!spage->page)
2856 			goto leave_nomem;
2857 		len -= l;
2858 		logical += l;
2859 		physical += l;
2860 	}
2861 
2862 	WARN_ON(sblock->page_count == 0);
2863 	for (index = 0; index < sblock->page_count; index++) {
2864 		struct scrub_page *spage = sblock->pagev[index];
2865 		int ret;
2866 
2867 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2868 		if (ret) {
2869 			scrub_block_put(sblock);
2870 			return ret;
2871 		}
2872 	}
2873 
2874 	/* last one frees, either here or in bio completion for last page */
2875 	scrub_block_put(sblock);
2876 	return 0;
2877 }
2878 
2879 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2880 				   u64 logical, u64 len,
2881 				   u64 physical, struct btrfs_device *dev,
2882 				   u64 flags, u64 gen, int mirror_num)
2883 {
2884 	struct scrub_ctx *sctx = sparity->sctx;
2885 	int ret;
2886 	u8 csum[BTRFS_CSUM_SIZE];
2887 	u32 blocksize;
2888 
2889 	if (dev->missing) {
2890 		scrub_parity_mark_sectors_error(sparity, logical, len);
2891 		return 0;
2892 	}
2893 
2894 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2895 		blocksize = sctx->sectorsize;
2896 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2897 		blocksize = sctx->nodesize;
2898 	} else {
2899 		blocksize = sctx->sectorsize;
2900 		WARN_ON(1);
2901 	}
2902 
2903 	while (len) {
2904 		u64 l = min_t(u64, len, blocksize);
2905 		int have_csum = 0;
2906 
2907 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2908 			/* push csums to sbio */
2909 			have_csum = scrub_find_csum(sctx, logical, csum);
2910 			if (have_csum == 0)
2911 				goto skip;
2912 		}
2913 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2914 					     flags, gen, mirror_num,
2915 					     have_csum ? csum : NULL);
2916 		if (ret)
2917 			return ret;
2918 skip:
2919 		len -= l;
2920 		logical += l;
2921 		physical += l;
2922 	}
2923 	return 0;
2924 }
2925 
2926 /*
2927  * Given a physical address, this will calculate it's
2928  * logical offset. if this is a parity stripe, it will return
2929  * the most left data stripe's logical offset.
2930  *
2931  * return 0 if it is a data stripe, 1 means parity stripe.
2932  */
2933 static int get_raid56_logic_offset(u64 physical, int num,
2934 				   struct map_lookup *map, u64 *offset,
2935 				   u64 *stripe_start)
2936 {
2937 	int i;
2938 	int j = 0;
2939 	u64 stripe_nr;
2940 	u64 last_offset;
2941 	u32 stripe_index;
2942 	u32 rot;
2943 
2944 	last_offset = (physical - map->stripes[num].physical) *
2945 		      nr_data_stripes(map);
2946 	if (stripe_start)
2947 		*stripe_start = last_offset;
2948 
2949 	*offset = last_offset;
2950 	for (i = 0; i < nr_data_stripes(map); i++) {
2951 		*offset = last_offset + i * map->stripe_len;
2952 
2953 		stripe_nr = div64_u64(*offset, map->stripe_len);
2954 		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2955 
2956 		/* Work out the disk rotation on this stripe-set */
2957 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2958 		/* calculate which stripe this data locates */
2959 		rot += i;
2960 		stripe_index = rot % map->num_stripes;
2961 		if (stripe_index == num)
2962 			return 0;
2963 		if (stripe_index < num)
2964 			j++;
2965 	}
2966 	*offset = last_offset + j * map->stripe_len;
2967 	return 1;
2968 }
2969 
2970 static void scrub_free_parity(struct scrub_parity *sparity)
2971 {
2972 	struct scrub_ctx *sctx = sparity->sctx;
2973 	struct scrub_page *curr, *next;
2974 	int nbits;
2975 
2976 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2977 	if (nbits) {
2978 		spin_lock(&sctx->stat_lock);
2979 		sctx->stat.read_errors += nbits;
2980 		sctx->stat.uncorrectable_errors += nbits;
2981 		spin_unlock(&sctx->stat_lock);
2982 	}
2983 
2984 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2985 		list_del_init(&curr->list);
2986 		scrub_page_put(curr);
2987 	}
2988 
2989 	kfree(sparity);
2990 }
2991 
2992 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2993 {
2994 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2995 						    work);
2996 	struct scrub_ctx *sctx = sparity->sctx;
2997 
2998 	scrub_free_parity(sparity);
2999 	scrub_pending_bio_dec(sctx);
3000 }
3001 
3002 static void scrub_parity_bio_endio(struct bio *bio)
3003 {
3004 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
3005 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
3006 
3007 	if (bio->bi_error)
3008 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3009 			  sparity->nsectors);
3010 
3011 	bio_put(bio);
3012 
3013 	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
3014 			scrub_parity_bio_endio_worker, NULL, NULL);
3015 	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
3016 }
3017 
3018 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
3019 {
3020 	struct scrub_ctx *sctx = sparity->sctx;
3021 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3022 	struct bio *bio;
3023 	struct btrfs_raid_bio *rbio;
3024 	struct btrfs_bio *bbio = NULL;
3025 	u64 length;
3026 	int ret;
3027 
3028 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
3029 			   sparity->nsectors))
3030 		goto out;
3031 
3032 	length = sparity->logic_end - sparity->logic_start;
3033 
3034 	btrfs_bio_counter_inc_blocked(fs_info);
3035 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3036 			       &length, &bbio);
3037 	if (ret || !bbio || !bbio->raid_map)
3038 		goto bbio_out;
3039 
3040 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3041 	if (!bio)
3042 		goto bbio_out;
3043 
3044 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
3045 	bio->bi_private = sparity;
3046 	bio->bi_end_io = scrub_parity_bio_endio;
3047 
3048 	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
3049 					      length, sparity->scrub_dev,
3050 					      sparity->dbitmap,
3051 					      sparity->nsectors);
3052 	if (!rbio)
3053 		goto rbio_out;
3054 
3055 	scrub_pending_bio_inc(sctx);
3056 	raid56_parity_submit_scrub_rbio(rbio);
3057 	return;
3058 
3059 rbio_out:
3060 	bio_put(bio);
3061 bbio_out:
3062 	btrfs_bio_counter_dec(fs_info);
3063 	btrfs_put_bbio(bbio);
3064 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3065 		  sparity->nsectors);
3066 	spin_lock(&sctx->stat_lock);
3067 	sctx->stat.malloc_errors++;
3068 	spin_unlock(&sctx->stat_lock);
3069 out:
3070 	scrub_free_parity(sparity);
3071 }
3072 
3073 static inline int scrub_calc_parity_bitmap_len(int nsectors)
3074 {
3075 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
3076 }
3077 
3078 static void scrub_parity_get(struct scrub_parity *sparity)
3079 {
3080 	refcount_inc(&sparity->refs);
3081 }
3082 
3083 static void scrub_parity_put(struct scrub_parity *sparity)
3084 {
3085 	if (!refcount_dec_and_test(&sparity->refs))
3086 		return;
3087 
3088 	scrub_parity_check_and_repair(sparity);
3089 }
3090 
3091 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3092 						  struct map_lookup *map,
3093 						  struct btrfs_device *sdev,
3094 						  struct btrfs_path *path,
3095 						  u64 logic_start,
3096 						  u64 logic_end)
3097 {
3098 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3099 	struct btrfs_root *root = fs_info->extent_root;
3100 	struct btrfs_root *csum_root = fs_info->csum_root;
3101 	struct btrfs_extent_item *extent;
3102 	struct btrfs_bio *bbio = NULL;
3103 	u64 flags;
3104 	int ret;
3105 	int slot;
3106 	struct extent_buffer *l;
3107 	struct btrfs_key key;
3108 	u64 generation;
3109 	u64 extent_logical;
3110 	u64 extent_physical;
3111 	u64 extent_len;
3112 	u64 mapped_length;
3113 	struct btrfs_device *extent_dev;
3114 	struct scrub_parity *sparity;
3115 	int nsectors;
3116 	int bitmap_len;
3117 	int extent_mirror_num;
3118 	int stop_loop = 0;
3119 
3120 	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
3121 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
3122 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
3123 			  GFP_NOFS);
3124 	if (!sparity) {
3125 		spin_lock(&sctx->stat_lock);
3126 		sctx->stat.malloc_errors++;
3127 		spin_unlock(&sctx->stat_lock);
3128 		return -ENOMEM;
3129 	}
3130 
3131 	sparity->stripe_len = map->stripe_len;
3132 	sparity->nsectors = nsectors;
3133 	sparity->sctx = sctx;
3134 	sparity->scrub_dev = sdev;
3135 	sparity->logic_start = logic_start;
3136 	sparity->logic_end = logic_end;
3137 	refcount_set(&sparity->refs, 1);
3138 	INIT_LIST_HEAD(&sparity->spages);
3139 	sparity->dbitmap = sparity->bitmap;
3140 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
3141 
3142 	ret = 0;
3143 	while (logic_start < logic_end) {
3144 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3145 			key.type = BTRFS_METADATA_ITEM_KEY;
3146 		else
3147 			key.type = BTRFS_EXTENT_ITEM_KEY;
3148 		key.objectid = logic_start;
3149 		key.offset = (u64)-1;
3150 
3151 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3152 		if (ret < 0)
3153 			goto out;
3154 
3155 		if (ret > 0) {
3156 			ret = btrfs_previous_extent_item(root, path, 0);
3157 			if (ret < 0)
3158 				goto out;
3159 			if (ret > 0) {
3160 				btrfs_release_path(path);
3161 				ret = btrfs_search_slot(NULL, root, &key,
3162 							path, 0, 0);
3163 				if (ret < 0)
3164 					goto out;
3165 			}
3166 		}
3167 
3168 		stop_loop = 0;
3169 		while (1) {
3170 			u64 bytes;
3171 
3172 			l = path->nodes[0];
3173 			slot = path->slots[0];
3174 			if (slot >= btrfs_header_nritems(l)) {
3175 				ret = btrfs_next_leaf(root, path);
3176 				if (ret == 0)
3177 					continue;
3178 				if (ret < 0)
3179 					goto out;
3180 
3181 				stop_loop = 1;
3182 				break;
3183 			}
3184 			btrfs_item_key_to_cpu(l, &key, slot);
3185 
3186 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3187 			    key.type != BTRFS_METADATA_ITEM_KEY)
3188 				goto next;
3189 
3190 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3191 				bytes = fs_info->nodesize;
3192 			else
3193 				bytes = key.offset;
3194 
3195 			if (key.objectid + bytes <= logic_start)
3196 				goto next;
3197 
3198 			if (key.objectid >= logic_end) {
3199 				stop_loop = 1;
3200 				break;
3201 			}
3202 
3203 			while (key.objectid >= logic_start + map->stripe_len)
3204 				logic_start += map->stripe_len;
3205 
3206 			extent = btrfs_item_ptr(l, slot,
3207 						struct btrfs_extent_item);
3208 			flags = btrfs_extent_flags(l, extent);
3209 			generation = btrfs_extent_generation(l, extent);
3210 
3211 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3212 			    (key.objectid < logic_start ||
3213 			     key.objectid + bytes >
3214 			     logic_start + map->stripe_len)) {
3215 				btrfs_err(fs_info,
3216 					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3217 					  key.objectid, logic_start);
3218 				spin_lock(&sctx->stat_lock);
3219 				sctx->stat.uncorrectable_errors++;
3220 				spin_unlock(&sctx->stat_lock);
3221 				goto next;
3222 			}
3223 again:
3224 			extent_logical = key.objectid;
3225 			extent_len = bytes;
3226 
3227 			if (extent_logical < logic_start) {
3228 				extent_len -= logic_start - extent_logical;
3229 				extent_logical = logic_start;
3230 			}
3231 
3232 			if (extent_logical + extent_len >
3233 			    logic_start + map->stripe_len)
3234 				extent_len = logic_start + map->stripe_len -
3235 					     extent_logical;
3236 
3237 			scrub_parity_mark_sectors_data(sparity, extent_logical,
3238 						       extent_len);
3239 
3240 			mapped_length = extent_len;
3241 			bbio = NULL;
3242 			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3243 					extent_logical, &mapped_length, &bbio,
3244 					0);
3245 			if (!ret) {
3246 				if (!bbio || mapped_length < extent_len)
3247 					ret = -EIO;
3248 			}
3249 			if (ret) {
3250 				btrfs_put_bbio(bbio);
3251 				goto out;
3252 			}
3253 			extent_physical = bbio->stripes[0].physical;
3254 			extent_mirror_num = bbio->mirror_num;
3255 			extent_dev = bbio->stripes[0].dev;
3256 			btrfs_put_bbio(bbio);
3257 
3258 			ret = btrfs_lookup_csums_range(csum_root,
3259 						extent_logical,
3260 						extent_logical + extent_len - 1,
3261 						&sctx->csum_list, 1);
3262 			if (ret)
3263 				goto out;
3264 
3265 			ret = scrub_extent_for_parity(sparity, extent_logical,
3266 						      extent_len,
3267 						      extent_physical,
3268 						      extent_dev, flags,
3269 						      generation,
3270 						      extent_mirror_num);
3271 
3272 			scrub_free_csums(sctx);
3273 
3274 			if (ret)
3275 				goto out;
3276 
3277 			if (extent_logical + extent_len <
3278 			    key.objectid + bytes) {
3279 				logic_start += map->stripe_len;
3280 
3281 				if (logic_start >= logic_end) {
3282 					stop_loop = 1;
3283 					break;
3284 				}
3285 
3286 				if (logic_start < key.objectid + bytes) {
3287 					cond_resched();
3288 					goto again;
3289 				}
3290 			}
3291 next:
3292 			path->slots[0]++;
3293 		}
3294 
3295 		btrfs_release_path(path);
3296 
3297 		if (stop_loop)
3298 			break;
3299 
3300 		logic_start += map->stripe_len;
3301 	}
3302 out:
3303 	if (ret < 0)
3304 		scrub_parity_mark_sectors_error(sparity, logic_start,
3305 						logic_end - logic_start);
3306 	scrub_parity_put(sparity);
3307 	scrub_submit(sctx);
3308 	mutex_lock(&sctx->wr_ctx.wr_lock);
3309 	scrub_wr_submit(sctx);
3310 	mutex_unlock(&sctx->wr_ctx.wr_lock);
3311 
3312 	btrfs_release_path(path);
3313 	return ret < 0 ? ret : 0;
3314 }
3315 
3316 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3317 					   struct map_lookup *map,
3318 					   struct btrfs_device *scrub_dev,
3319 					   int num, u64 base, u64 length,
3320 					   int is_dev_replace)
3321 {
3322 	struct btrfs_path *path, *ppath;
3323 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3324 	struct btrfs_root *root = fs_info->extent_root;
3325 	struct btrfs_root *csum_root = fs_info->csum_root;
3326 	struct btrfs_extent_item *extent;
3327 	struct blk_plug plug;
3328 	u64 flags;
3329 	int ret;
3330 	int slot;
3331 	u64 nstripes;
3332 	struct extent_buffer *l;
3333 	u64 physical;
3334 	u64 logical;
3335 	u64 logic_end;
3336 	u64 physical_end;
3337 	u64 generation;
3338 	int mirror_num;
3339 	struct reada_control *reada1;
3340 	struct reada_control *reada2;
3341 	struct btrfs_key key;
3342 	struct btrfs_key key_end;
3343 	u64 increment = map->stripe_len;
3344 	u64 offset;
3345 	u64 extent_logical;
3346 	u64 extent_physical;
3347 	u64 extent_len;
3348 	u64 stripe_logical;
3349 	u64 stripe_end;
3350 	struct btrfs_device *extent_dev;
3351 	int extent_mirror_num;
3352 	int stop_loop = 0;
3353 
3354 	physical = map->stripes[num].physical;
3355 	offset = 0;
3356 	nstripes = div64_u64(length, map->stripe_len);
3357 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3358 		offset = map->stripe_len * num;
3359 		increment = map->stripe_len * map->num_stripes;
3360 		mirror_num = 1;
3361 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3362 		int factor = map->num_stripes / map->sub_stripes;
3363 		offset = map->stripe_len * (num / map->sub_stripes);
3364 		increment = map->stripe_len * factor;
3365 		mirror_num = num % map->sub_stripes + 1;
3366 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3367 		increment = map->stripe_len;
3368 		mirror_num = num % map->num_stripes + 1;
3369 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3370 		increment = map->stripe_len;
3371 		mirror_num = num % map->num_stripes + 1;
3372 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3373 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3374 		increment = map->stripe_len * nr_data_stripes(map);
3375 		mirror_num = 1;
3376 	} else {
3377 		increment = map->stripe_len;
3378 		mirror_num = 1;
3379 	}
3380 
3381 	path = btrfs_alloc_path();
3382 	if (!path)
3383 		return -ENOMEM;
3384 
3385 	ppath = btrfs_alloc_path();
3386 	if (!ppath) {
3387 		btrfs_free_path(path);
3388 		return -ENOMEM;
3389 	}
3390 
3391 	/*
3392 	 * work on commit root. The related disk blocks are static as
3393 	 * long as COW is applied. This means, it is save to rewrite
3394 	 * them to repair disk errors without any race conditions
3395 	 */
3396 	path->search_commit_root = 1;
3397 	path->skip_locking = 1;
3398 
3399 	ppath->search_commit_root = 1;
3400 	ppath->skip_locking = 1;
3401 	/*
3402 	 * trigger the readahead for extent tree csum tree and wait for
3403 	 * completion. During readahead, the scrub is officially paused
3404 	 * to not hold off transaction commits
3405 	 */
3406 	logical = base + offset;
3407 	physical_end = physical + nstripes * map->stripe_len;
3408 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3409 		get_raid56_logic_offset(physical_end, num,
3410 					map, &logic_end, NULL);
3411 		logic_end += base;
3412 	} else {
3413 		logic_end = logical + increment * nstripes;
3414 	}
3415 	wait_event(sctx->list_wait,
3416 		   atomic_read(&sctx->bios_in_flight) == 0);
3417 	scrub_blocked_if_needed(fs_info);
3418 
3419 	/* FIXME it might be better to start readahead at commit root */
3420 	key.objectid = logical;
3421 	key.type = BTRFS_EXTENT_ITEM_KEY;
3422 	key.offset = (u64)0;
3423 	key_end.objectid = logic_end;
3424 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3425 	key_end.offset = (u64)-1;
3426 	reada1 = btrfs_reada_add(root, &key, &key_end);
3427 
3428 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3429 	key.type = BTRFS_EXTENT_CSUM_KEY;
3430 	key.offset = logical;
3431 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3432 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3433 	key_end.offset = logic_end;
3434 	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3435 
3436 	if (!IS_ERR(reada1))
3437 		btrfs_reada_wait(reada1);
3438 	if (!IS_ERR(reada2))
3439 		btrfs_reada_wait(reada2);
3440 
3441 
3442 	/*
3443 	 * collect all data csums for the stripe to avoid seeking during
3444 	 * the scrub. This might currently (crc32) end up to be about 1MB
3445 	 */
3446 	blk_start_plug(&plug);
3447 
3448 	/*
3449 	 * now find all extents for each stripe and scrub them
3450 	 */
3451 	ret = 0;
3452 	while (physical < physical_end) {
3453 		/*
3454 		 * canceled?
3455 		 */
3456 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3457 		    atomic_read(&sctx->cancel_req)) {
3458 			ret = -ECANCELED;
3459 			goto out;
3460 		}
3461 		/*
3462 		 * check to see if we have to pause
3463 		 */
3464 		if (atomic_read(&fs_info->scrub_pause_req)) {
3465 			/* push queued extents */
3466 			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3467 			scrub_submit(sctx);
3468 			mutex_lock(&sctx->wr_ctx.wr_lock);
3469 			scrub_wr_submit(sctx);
3470 			mutex_unlock(&sctx->wr_ctx.wr_lock);
3471 			wait_event(sctx->list_wait,
3472 				   atomic_read(&sctx->bios_in_flight) == 0);
3473 			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3474 			scrub_blocked_if_needed(fs_info);
3475 		}
3476 
3477 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3478 			ret = get_raid56_logic_offset(physical, num, map,
3479 						      &logical,
3480 						      &stripe_logical);
3481 			logical += base;
3482 			if (ret) {
3483 				/* it is parity strip */
3484 				stripe_logical += base;
3485 				stripe_end = stripe_logical + increment;
3486 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3487 							  ppath, stripe_logical,
3488 							  stripe_end);
3489 				if (ret)
3490 					goto out;
3491 				goto skip;
3492 			}
3493 		}
3494 
3495 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3496 			key.type = BTRFS_METADATA_ITEM_KEY;
3497 		else
3498 			key.type = BTRFS_EXTENT_ITEM_KEY;
3499 		key.objectid = logical;
3500 		key.offset = (u64)-1;
3501 
3502 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3503 		if (ret < 0)
3504 			goto out;
3505 
3506 		if (ret > 0) {
3507 			ret = btrfs_previous_extent_item(root, path, 0);
3508 			if (ret < 0)
3509 				goto out;
3510 			if (ret > 0) {
3511 				/* there's no smaller item, so stick with the
3512 				 * larger one */
3513 				btrfs_release_path(path);
3514 				ret = btrfs_search_slot(NULL, root, &key,
3515 							path, 0, 0);
3516 				if (ret < 0)
3517 					goto out;
3518 			}
3519 		}
3520 
3521 		stop_loop = 0;
3522 		while (1) {
3523 			u64 bytes;
3524 
3525 			l = path->nodes[0];
3526 			slot = path->slots[0];
3527 			if (slot >= btrfs_header_nritems(l)) {
3528 				ret = btrfs_next_leaf(root, path);
3529 				if (ret == 0)
3530 					continue;
3531 				if (ret < 0)
3532 					goto out;
3533 
3534 				stop_loop = 1;
3535 				break;
3536 			}
3537 			btrfs_item_key_to_cpu(l, &key, slot);
3538 
3539 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3540 			    key.type != BTRFS_METADATA_ITEM_KEY)
3541 				goto next;
3542 
3543 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3544 				bytes = fs_info->nodesize;
3545 			else
3546 				bytes = key.offset;
3547 
3548 			if (key.objectid + bytes <= logical)
3549 				goto next;
3550 
3551 			if (key.objectid >= logical + map->stripe_len) {
3552 				/* out of this device extent */
3553 				if (key.objectid >= logic_end)
3554 					stop_loop = 1;
3555 				break;
3556 			}
3557 
3558 			extent = btrfs_item_ptr(l, slot,
3559 						struct btrfs_extent_item);
3560 			flags = btrfs_extent_flags(l, extent);
3561 			generation = btrfs_extent_generation(l, extent);
3562 
3563 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3564 			    (key.objectid < logical ||
3565 			     key.objectid + bytes >
3566 			     logical + map->stripe_len)) {
3567 				btrfs_err(fs_info,
3568 					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3569 				       key.objectid, logical);
3570 				spin_lock(&sctx->stat_lock);
3571 				sctx->stat.uncorrectable_errors++;
3572 				spin_unlock(&sctx->stat_lock);
3573 				goto next;
3574 			}
3575 
3576 again:
3577 			extent_logical = key.objectid;
3578 			extent_len = bytes;
3579 
3580 			/*
3581 			 * trim extent to this stripe
3582 			 */
3583 			if (extent_logical < logical) {
3584 				extent_len -= logical - extent_logical;
3585 				extent_logical = logical;
3586 			}
3587 			if (extent_logical + extent_len >
3588 			    logical + map->stripe_len) {
3589 				extent_len = logical + map->stripe_len -
3590 					     extent_logical;
3591 			}
3592 
3593 			extent_physical = extent_logical - logical + physical;
3594 			extent_dev = scrub_dev;
3595 			extent_mirror_num = mirror_num;
3596 			if (is_dev_replace)
3597 				scrub_remap_extent(fs_info, extent_logical,
3598 						   extent_len, &extent_physical,
3599 						   &extent_dev,
3600 						   &extent_mirror_num);
3601 
3602 			ret = btrfs_lookup_csums_range(csum_root,
3603 						       extent_logical,
3604 						       extent_logical +
3605 						       extent_len - 1,
3606 						       &sctx->csum_list, 1);
3607 			if (ret)
3608 				goto out;
3609 
3610 			ret = scrub_extent(sctx, extent_logical, extent_len,
3611 					   extent_physical, extent_dev, flags,
3612 					   generation, extent_mirror_num,
3613 					   extent_logical - logical + physical);
3614 
3615 			scrub_free_csums(sctx);
3616 
3617 			if (ret)
3618 				goto out;
3619 
3620 			if (extent_logical + extent_len <
3621 			    key.objectid + bytes) {
3622 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3623 					/*
3624 					 * loop until we find next data stripe
3625 					 * or we have finished all stripes.
3626 					 */
3627 loop:
3628 					physical += map->stripe_len;
3629 					ret = get_raid56_logic_offset(physical,
3630 							num, map, &logical,
3631 							&stripe_logical);
3632 					logical += base;
3633 
3634 					if (ret && physical < physical_end) {
3635 						stripe_logical += base;
3636 						stripe_end = stripe_logical +
3637 								increment;
3638 						ret = scrub_raid56_parity(sctx,
3639 							map, scrub_dev, ppath,
3640 							stripe_logical,
3641 							stripe_end);
3642 						if (ret)
3643 							goto out;
3644 						goto loop;
3645 					}
3646 				} else {
3647 					physical += map->stripe_len;
3648 					logical += increment;
3649 				}
3650 				if (logical < key.objectid + bytes) {
3651 					cond_resched();
3652 					goto again;
3653 				}
3654 
3655 				if (physical >= physical_end) {
3656 					stop_loop = 1;
3657 					break;
3658 				}
3659 			}
3660 next:
3661 			path->slots[0]++;
3662 		}
3663 		btrfs_release_path(path);
3664 skip:
3665 		logical += increment;
3666 		physical += map->stripe_len;
3667 		spin_lock(&sctx->stat_lock);
3668 		if (stop_loop)
3669 			sctx->stat.last_physical = map->stripes[num].physical +
3670 						   length;
3671 		else
3672 			sctx->stat.last_physical = physical;
3673 		spin_unlock(&sctx->stat_lock);
3674 		if (stop_loop)
3675 			break;
3676 	}
3677 out:
3678 	/* push queued extents */
3679 	scrub_submit(sctx);
3680 	mutex_lock(&sctx->wr_ctx.wr_lock);
3681 	scrub_wr_submit(sctx);
3682 	mutex_unlock(&sctx->wr_ctx.wr_lock);
3683 
3684 	blk_finish_plug(&plug);
3685 	btrfs_free_path(path);
3686 	btrfs_free_path(ppath);
3687 	return ret < 0 ? ret : 0;
3688 }
3689 
3690 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3691 					  struct btrfs_device *scrub_dev,
3692 					  u64 chunk_offset, u64 length,
3693 					  u64 dev_offset,
3694 					  struct btrfs_block_group_cache *cache,
3695 					  int is_dev_replace)
3696 {
3697 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3698 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3699 	struct map_lookup *map;
3700 	struct extent_map *em;
3701 	int i;
3702 	int ret = 0;
3703 
3704 	read_lock(&map_tree->map_tree.lock);
3705 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3706 	read_unlock(&map_tree->map_tree.lock);
3707 
3708 	if (!em) {
3709 		/*
3710 		 * Might have been an unused block group deleted by the cleaner
3711 		 * kthread or relocation.
3712 		 */
3713 		spin_lock(&cache->lock);
3714 		if (!cache->removed)
3715 			ret = -EINVAL;
3716 		spin_unlock(&cache->lock);
3717 
3718 		return ret;
3719 	}
3720 
3721 	map = em->map_lookup;
3722 	if (em->start != chunk_offset)
3723 		goto out;
3724 
3725 	if (em->len < length)
3726 		goto out;
3727 
3728 	for (i = 0; i < map->num_stripes; ++i) {
3729 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3730 		    map->stripes[i].physical == dev_offset) {
3731 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3732 					   chunk_offset, length,
3733 					   is_dev_replace);
3734 			if (ret)
3735 				goto out;
3736 		}
3737 	}
3738 out:
3739 	free_extent_map(em);
3740 
3741 	return ret;
3742 }
3743 
3744 static noinline_for_stack
3745 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3746 			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3747 			   int is_dev_replace)
3748 {
3749 	struct btrfs_dev_extent *dev_extent = NULL;
3750 	struct btrfs_path *path;
3751 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3752 	struct btrfs_root *root = fs_info->dev_root;
3753 	u64 length;
3754 	u64 chunk_offset;
3755 	int ret = 0;
3756 	int ro_set;
3757 	int slot;
3758 	struct extent_buffer *l;
3759 	struct btrfs_key key;
3760 	struct btrfs_key found_key;
3761 	struct btrfs_block_group_cache *cache;
3762 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3763 
3764 	path = btrfs_alloc_path();
3765 	if (!path)
3766 		return -ENOMEM;
3767 
3768 	path->reada = READA_FORWARD;
3769 	path->search_commit_root = 1;
3770 	path->skip_locking = 1;
3771 
3772 	key.objectid = scrub_dev->devid;
3773 	key.offset = 0ull;
3774 	key.type = BTRFS_DEV_EXTENT_KEY;
3775 
3776 	while (1) {
3777 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3778 		if (ret < 0)
3779 			break;
3780 		if (ret > 0) {
3781 			if (path->slots[0] >=
3782 			    btrfs_header_nritems(path->nodes[0])) {
3783 				ret = btrfs_next_leaf(root, path);
3784 				if (ret < 0)
3785 					break;
3786 				if (ret > 0) {
3787 					ret = 0;
3788 					break;
3789 				}
3790 			} else {
3791 				ret = 0;
3792 			}
3793 		}
3794 
3795 		l = path->nodes[0];
3796 		slot = path->slots[0];
3797 
3798 		btrfs_item_key_to_cpu(l, &found_key, slot);
3799 
3800 		if (found_key.objectid != scrub_dev->devid)
3801 			break;
3802 
3803 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3804 			break;
3805 
3806 		if (found_key.offset >= end)
3807 			break;
3808 
3809 		if (found_key.offset < key.offset)
3810 			break;
3811 
3812 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3813 		length = btrfs_dev_extent_length(l, dev_extent);
3814 
3815 		if (found_key.offset + length <= start)
3816 			goto skip;
3817 
3818 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3819 
3820 		/*
3821 		 * get a reference on the corresponding block group to prevent
3822 		 * the chunk from going away while we scrub it
3823 		 */
3824 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3825 
3826 		/* some chunks are removed but not committed to disk yet,
3827 		 * continue scrubbing */
3828 		if (!cache)
3829 			goto skip;
3830 
3831 		/*
3832 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3833 		 * to avoid deadlock caused by:
3834 		 * btrfs_inc_block_group_ro()
3835 		 * -> btrfs_wait_for_commit()
3836 		 * -> btrfs_commit_transaction()
3837 		 * -> btrfs_scrub_pause()
3838 		 */
3839 		scrub_pause_on(fs_info);
3840 		ret = btrfs_inc_block_group_ro(fs_info, cache);
3841 		if (!ret && is_dev_replace) {
3842 			/*
3843 			 * If we are doing a device replace wait for any tasks
3844 			 * that started dellaloc right before we set the block
3845 			 * group to RO mode, as they might have just allocated
3846 			 * an extent from it or decided they could do a nocow
3847 			 * write. And if any such tasks did that, wait for their
3848 			 * ordered extents to complete and then commit the
3849 			 * current transaction, so that we can later see the new
3850 			 * extent items in the extent tree - the ordered extents
3851 			 * create delayed data references (for cow writes) when
3852 			 * they complete, which will be run and insert the
3853 			 * corresponding extent items into the extent tree when
3854 			 * we commit the transaction they used when running
3855 			 * inode.c:btrfs_finish_ordered_io(). We later use
3856 			 * the commit root of the extent tree to find extents
3857 			 * to copy from the srcdev into the tgtdev, and we don't
3858 			 * want to miss any new extents.
3859 			 */
3860 			btrfs_wait_block_group_reservations(cache);
3861 			btrfs_wait_nocow_writers(cache);
3862 			ret = btrfs_wait_ordered_roots(fs_info, -1,
3863 						       cache->key.objectid,
3864 						       cache->key.offset);
3865 			if (ret > 0) {
3866 				struct btrfs_trans_handle *trans;
3867 
3868 				trans = btrfs_join_transaction(root);
3869 				if (IS_ERR(trans))
3870 					ret = PTR_ERR(trans);
3871 				else
3872 					ret = btrfs_commit_transaction(trans);
3873 				if (ret) {
3874 					scrub_pause_off(fs_info);
3875 					btrfs_put_block_group(cache);
3876 					break;
3877 				}
3878 			}
3879 		}
3880 		scrub_pause_off(fs_info);
3881 
3882 		if (ret == 0) {
3883 			ro_set = 1;
3884 		} else if (ret == -ENOSPC) {
3885 			/*
3886 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3887 			 * failed in creating new chunk for metadata.
3888 			 * It is not a problem for scrub/replace, because
3889 			 * metadata are always cowed, and our scrub paused
3890 			 * commit_transactions.
3891 			 */
3892 			ro_set = 0;
3893 		} else {
3894 			btrfs_warn(fs_info,
3895 				   "failed setting block group ro, ret=%d\n",
3896 				   ret);
3897 			btrfs_put_block_group(cache);
3898 			break;
3899 		}
3900 
3901 		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3902 		dev_replace->cursor_right = found_key.offset + length;
3903 		dev_replace->cursor_left = found_key.offset;
3904 		dev_replace->item_needs_writeback = 1;
3905 		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3906 		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3907 				  found_key.offset, cache, is_dev_replace);
3908 
3909 		/*
3910 		 * flush, submit all pending read and write bios, afterwards
3911 		 * wait for them.
3912 		 * Note that in the dev replace case, a read request causes
3913 		 * write requests that are submitted in the read completion
3914 		 * worker. Therefore in the current situation, it is required
3915 		 * that all write requests are flushed, so that all read and
3916 		 * write requests are really completed when bios_in_flight
3917 		 * changes to 0.
3918 		 */
3919 		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3920 		scrub_submit(sctx);
3921 		mutex_lock(&sctx->wr_ctx.wr_lock);
3922 		scrub_wr_submit(sctx);
3923 		mutex_unlock(&sctx->wr_ctx.wr_lock);
3924 
3925 		wait_event(sctx->list_wait,
3926 			   atomic_read(&sctx->bios_in_flight) == 0);
3927 
3928 		scrub_pause_on(fs_info);
3929 
3930 		/*
3931 		 * must be called before we decrease @scrub_paused.
3932 		 * make sure we don't block transaction commit while
3933 		 * we are waiting pending workers finished.
3934 		 */
3935 		wait_event(sctx->list_wait,
3936 			   atomic_read(&sctx->workers_pending) == 0);
3937 		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3938 
3939 		scrub_pause_off(fs_info);
3940 
3941 		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3942 		dev_replace->cursor_left = dev_replace->cursor_right;
3943 		dev_replace->item_needs_writeback = 1;
3944 		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3945 
3946 		if (ro_set)
3947 			btrfs_dec_block_group_ro(cache);
3948 
3949 		/*
3950 		 * We might have prevented the cleaner kthread from deleting
3951 		 * this block group if it was already unused because we raced
3952 		 * and set it to RO mode first. So add it back to the unused
3953 		 * list, otherwise it might not ever be deleted unless a manual
3954 		 * balance is triggered or it becomes used and unused again.
3955 		 */
3956 		spin_lock(&cache->lock);
3957 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3958 		    btrfs_block_group_used(&cache->item) == 0) {
3959 			spin_unlock(&cache->lock);
3960 			spin_lock(&fs_info->unused_bgs_lock);
3961 			if (list_empty(&cache->bg_list)) {
3962 				btrfs_get_block_group(cache);
3963 				list_add_tail(&cache->bg_list,
3964 					      &fs_info->unused_bgs);
3965 			}
3966 			spin_unlock(&fs_info->unused_bgs_lock);
3967 		} else {
3968 			spin_unlock(&cache->lock);
3969 		}
3970 
3971 		btrfs_put_block_group(cache);
3972 		if (ret)
3973 			break;
3974 		if (is_dev_replace &&
3975 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3976 			ret = -EIO;
3977 			break;
3978 		}
3979 		if (sctx->stat.malloc_errors > 0) {
3980 			ret = -ENOMEM;
3981 			break;
3982 		}
3983 skip:
3984 		key.offset = found_key.offset + length;
3985 		btrfs_release_path(path);
3986 	}
3987 
3988 	btrfs_free_path(path);
3989 
3990 	return ret;
3991 }
3992 
3993 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3994 					   struct btrfs_device *scrub_dev)
3995 {
3996 	int	i;
3997 	u64	bytenr;
3998 	u64	gen;
3999 	int	ret;
4000 	struct btrfs_fs_info *fs_info = sctx->fs_info;
4001 
4002 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4003 		return -EIO;
4004 
4005 	/* Seed devices of a new filesystem has their own generation. */
4006 	if (scrub_dev->fs_devices != fs_info->fs_devices)
4007 		gen = scrub_dev->generation;
4008 	else
4009 		gen = fs_info->last_trans_committed;
4010 
4011 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
4012 		bytenr = btrfs_sb_offset(i);
4013 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
4014 		    scrub_dev->commit_total_bytes)
4015 			break;
4016 
4017 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4018 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4019 				  NULL, 1, bytenr);
4020 		if (ret)
4021 			return ret;
4022 	}
4023 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4024 
4025 	return 0;
4026 }
4027 
4028 /*
4029  * get a reference count on fs_info->scrub_workers. start worker if necessary
4030  */
4031 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4032 						int is_dev_replace)
4033 {
4034 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4035 	int max_active = fs_info->thread_pool_size;
4036 
4037 	if (fs_info->scrub_workers_refcnt == 0) {
4038 		if (is_dev_replace)
4039 			fs_info->scrub_workers =
4040 				btrfs_alloc_workqueue(fs_info, "scrub", flags,
4041 						      1, 4);
4042 		else
4043 			fs_info->scrub_workers =
4044 				btrfs_alloc_workqueue(fs_info, "scrub", flags,
4045 						      max_active, 4);
4046 		if (!fs_info->scrub_workers)
4047 			goto fail_scrub_workers;
4048 
4049 		fs_info->scrub_wr_completion_workers =
4050 			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4051 					      max_active, 2);
4052 		if (!fs_info->scrub_wr_completion_workers)
4053 			goto fail_scrub_wr_completion_workers;
4054 
4055 		fs_info->scrub_nocow_workers =
4056 			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
4057 		if (!fs_info->scrub_nocow_workers)
4058 			goto fail_scrub_nocow_workers;
4059 		fs_info->scrub_parity_workers =
4060 			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4061 					      max_active, 2);
4062 		if (!fs_info->scrub_parity_workers)
4063 			goto fail_scrub_parity_workers;
4064 	}
4065 	++fs_info->scrub_workers_refcnt;
4066 	return 0;
4067 
4068 fail_scrub_parity_workers:
4069 	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4070 fail_scrub_nocow_workers:
4071 	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4072 fail_scrub_wr_completion_workers:
4073 	btrfs_destroy_workqueue(fs_info->scrub_workers);
4074 fail_scrub_workers:
4075 	return -ENOMEM;
4076 }
4077 
4078 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
4079 {
4080 	if (--fs_info->scrub_workers_refcnt == 0) {
4081 		btrfs_destroy_workqueue(fs_info->scrub_workers);
4082 		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4083 		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4084 		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
4085 	}
4086 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
4087 }
4088 
4089 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4090 		    u64 end, struct btrfs_scrub_progress *progress,
4091 		    int readonly, int is_dev_replace)
4092 {
4093 	struct scrub_ctx *sctx;
4094 	int ret;
4095 	struct btrfs_device *dev;
4096 	struct rcu_string *name;
4097 
4098 	if (btrfs_fs_closing(fs_info))
4099 		return -EINVAL;
4100 
4101 	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4102 		/*
4103 		 * in this case scrub is unable to calculate the checksum
4104 		 * the way scrub is implemented. Do not handle this
4105 		 * situation at all because it won't ever happen.
4106 		 */
4107 		btrfs_err(fs_info,
4108 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4109 		       fs_info->nodesize,
4110 		       BTRFS_STRIPE_LEN);
4111 		return -EINVAL;
4112 	}
4113 
4114 	if (fs_info->sectorsize != PAGE_SIZE) {
4115 		/* not supported for data w/o checksums */
4116 		btrfs_err_rl(fs_info,
4117 			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4118 		       fs_info->sectorsize, PAGE_SIZE);
4119 		return -EINVAL;
4120 	}
4121 
4122 	if (fs_info->nodesize >
4123 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4124 	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4125 		/*
4126 		 * would exhaust the array bounds of pagev member in
4127 		 * struct scrub_block
4128 		 */
4129 		btrfs_err(fs_info,
4130 			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4131 		       fs_info->nodesize,
4132 		       SCRUB_MAX_PAGES_PER_BLOCK,
4133 		       fs_info->sectorsize,
4134 		       SCRUB_MAX_PAGES_PER_BLOCK);
4135 		return -EINVAL;
4136 	}
4137 
4138 
4139 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4140 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4141 	if (!dev || (dev->missing && !is_dev_replace)) {
4142 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4143 		return -ENODEV;
4144 	}
4145 
4146 	if (!is_dev_replace && !readonly && !dev->writeable) {
4147 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4148 		rcu_read_lock();
4149 		name = rcu_dereference(dev->name);
4150 		btrfs_err(fs_info, "scrub: device %s is not writable",
4151 			  name->str);
4152 		rcu_read_unlock();
4153 		return -EROFS;
4154 	}
4155 
4156 	mutex_lock(&fs_info->scrub_lock);
4157 	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
4158 		mutex_unlock(&fs_info->scrub_lock);
4159 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4160 		return -EIO;
4161 	}
4162 
4163 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
4164 	if (dev->scrub_device ||
4165 	    (!is_dev_replace &&
4166 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4167 		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
4168 		mutex_unlock(&fs_info->scrub_lock);
4169 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4170 		return -EINPROGRESS;
4171 	}
4172 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
4173 
4174 	ret = scrub_workers_get(fs_info, is_dev_replace);
4175 	if (ret) {
4176 		mutex_unlock(&fs_info->scrub_lock);
4177 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4178 		return ret;
4179 	}
4180 
4181 	sctx = scrub_setup_ctx(dev, is_dev_replace);
4182 	if (IS_ERR(sctx)) {
4183 		mutex_unlock(&fs_info->scrub_lock);
4184 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4185 		scrub_workers_put(fs_info);
4186 		return PTR_ERR(sctx);
4187 	}
4188 	sctx->readonly = readonly;
4189 	dev->scrub_device = sctx;
4190 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4191 
4192 	/*
4193 	 * checking @scrub_pause_req here, we can avoid
4194 	 * race between committing transaction and scrubbing.
4195 	 */
4196 	__scrub_blocked_if_needed(fs_info);
4197 	atomic_inc(&fs_info->scrubs_running);
4198 	mutex_unlock(&fs_info->scrub_lock);
4199 
4200 	if (!is_dev_replace) {
4201 		/*
4202 		 * by holding device list mutex, we can
4203 		 * kick off writing super in log tree sync.
4204 		 */
4205 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4206 		ret = scrub_supers(sctx, dev);
4207 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4208 	}
4209 
4210 	if (!ret)
4211 		ret = scrub_enumerate_chunks(sctx, dev, start, end,
4212 					     is_dev_replace);
4213 
4214 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4215 	atomic_dec(&fs_info->scrubs_running);
4216 	wake_up(&fs_info->scrub_pause_wait);
4217 
4218 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4219 
4220 	if (progress)
4221 		memcpy(progress, &sctx->stat, sizeof(*progress));
4222 
4223 	mutex_lock(&fs_info->scrub_lock);
4224 	dev->scrub_device = NULL;
4225 	scrub_workers_put(fs_info);
4226 	mutex_unlock(&fs_info->scrub_lock);
4227 
4228 	scrub_put_ctx(sctx);
4229 
4230 	return ret;
4231 }
4232 
4233 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4234 {
4235 	mutex_lock(&fs_info->scrub_lock);
4236 	atomic_inc(&fs_info->scrub_pause_req);
4237 	while (atomic_read(&fs_info->scrubs_paused) !=
4238 	       atomic_read(&fs_info->scrubs_running)) {
4239 		mutex_unlock(&fs_info->scrub_lock);
4240 		wait_event(fs_info->scrub_pause_wait,
4241 			   atomic_read(&fs_info->scrubs_paused) ==
4242 			   atomic_read(&fs_info->scrubs_running));
4243 		mutex_lock(&fs_info->scrub_lock);
4244 	}
4245 	mutex_unlock(&fs_info->scrub_lock);
4246 }
4247 
4248 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4249 {
4250 	atomic_dec(&fs_info->scrub_pause_req);
4251 	wake_up(&fs_info->scrub_pause_wait);
4252 }
4253 
4254 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4255 {
4256 	mutex_lock(&fs_info->scrub_lock);
4257 	if (!atomic_read(&fs_info->scrubs_running)) {
4258 		mutex_unlock(&fs_info->scrub_lock);
4259 		return -ENOTCONN;
4260 	}
4261 
4262 	atomic_inc(&fs_info->scrub_cancel_req);
4263 	while (atomic_read(&fs_info->scrubs_running)) {
4264 		mutex_unlock(&fs_info->scrub_lock);
4265 		wait_event(fs_info->scrub_pause_wait,
4266 			   atomic_read(&fs_info->scrubs_running) == 0);
4267 		mutex_lock(&fs_info->scrub_lock);
4268 	}
4269 	atomic_dec(&fs_info->scrub_cancel_req);
4270 	mutex_unlock(&fs_info->scrub_lock);
4271 
4272 	return 0;
4273 }
4274 
4275 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4276 			   struct btrfs_device *dev)
4277 {
4278 	struct scrub_ctx *sctx;
4279 
4280 	mutex_lock(&fs_info->scrub_lock);
4281 	sctx = dev->scrub_device;
4282 	if (!sctx) {
4283 		mutex_unlock(&fs_info->scrub_lock);
4284 		return -ENOTCONN;
4285 	}
4286 	atomic_inc(&sctx->cancel_req);
4287 	while (dev->scrub_device) {
4288 		mutex_unlock(&fs_info->scrub_lock);
4289 		wait_event(fs_info->scrub_pause_wait,
4290 			   dev->scrub_device == NULL);
4291 		mutex_lock(&fs_info->scrub_lock);
4292 	}
4293 	mutex_unlock(&fs_info->scrub_lock);
4294 
4295 	return 0;
4296 }
4297 
4298 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4299 			 struct btrfs_scrub_progress *progress)
4300 {
4301 	struct btrfs_device *dev;
4302 	struct scrub_ctx *sctx = NULL;
4303 
4304 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4305 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4306 	if (dev)
4307 		sctx = dev->scrub_device;
4308 	if (sctx)
4309 		memcpy(progress, &sctx->stat, sizeof(*progress));
4310 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4311 
4312 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4313 }
4314 
4315 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4316 			       u64 extent_logical, u64 extent_len,
4317 			       u64 *extent_physical,
4318 			       struct btrfs_device **extent_dev,
4319 			       int *extent_mirror_num)
4320 {
4321 	u64 mapped_length;
4322 	struct btrfs_bio *bbio = NULL;
4323 	int ret;
4324 
4325 	mapped_length = extent_len;
4326 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4327 			      &mapped_length, &bbio, 0);
4328 	if (ret || !bbio || mapped_length < extent_len ||
4329 	    !bbio->stripes[0].dev->bdev) {
4330 		btrfs_put_bbio(bbio);
4331 		return;
4332 	}
4333 
4334 	*extent_physical = bbio->stripes[0].physical;
4335 	*extent_mirror_num = bbio->mirror_num;
4336 	*extent_dev = bbio->stripes[0].dev;
4337 	btrfs_put_bbio(bbio);
4338 }
4339 
4340 static int scrub_setup_wr_ctx(struct scrub_wr_ctx *wr_ctx,
4341 			      struct btrfs_device *dev,
4342 			      int is_dev_replace)
4343 {
4344 	WARN_ON(wr_ctx->wr_curr_bio != NULL);
4345 
4346 	mutex_init(&wr_ctx->wr_lock);
4347 	wr_ctx->wr_curr_bio = NULL;
4348 	if (!is_dev_replace)
4349 		return 0;
4350 
4351 	WARN_ON(!dev->bdev);
4352 	wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
4353 	wr_ctx->tgtdev = dev;
4354 	atomic_set(&wr_ctx->flush_all_writes, 0);
4355 	return 0;
4356 }
4357 
4358 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
4359 {
4360 	mutex_lock(&wr_ctx->wr_lock);
4361 	kfree(wr_ctx->wr_curr_bio);
4362 	wr_ctx->wr_curr_bio = NULL;
4363 	mutex_unlock(&wr_ctx->wr_lock);
4364 }
4365 
4366 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4367 			    int mirror_num, u64 physical_for_dev_replace)
4368 {
4369 	struct scrub_copy_nocow_ctx *nocow_ctx;
4370 	struct btrfs_fs_info *fs_info = sctx->fs_info;
4371 
4372 	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4373 	if (!nocow_ctx) {
4374 		spin_lock(&sctx->stat_lock);
4375 		sctx->stat.malloc_errors++;
4376 		spin_unlock(&sctx->stat_lock);
4377 		return -ENOMEM;
4378 	}
4379 
4380 	scrub_pending_trans_workers_inc(sctx);
4381 
4382 	nocow_ctx->sctx = sctx;
4383 	nocow_ctx->logical = logical;
4384 	nocow_ctx->len = len;
4385 	nocow_ctx->mirror_num = mirror_num;
4386 	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4387 	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4388 			copy_nocow_pages_worker, NULL, NULL);
4389 	INIT_LIST_HEAD(&nocow_ctx->inodes);
4390 	btrfs_queue_work(fs_info->scrub_nocow_workers,
4391 			 &nocow_ctx->work);
4392 
4393 	return 0;
4394 }
4395 
4396 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4397 {
4398 	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4399 	struct scrub_nocow_inode *nocow_inode;
4400 
4401 	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4402 	if (!nocow_inode)
4403 		return -ENOMEM;
4404 	nocow_inode->inum = inum;
4405 	nocow_inode->offset = offset;
4406 	nocow_inode->root = root;
4407 	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4408 	return 0;
4409 }
4410 
4411 #define COPY_COMPLETE 1
4412 
4413 static void copy_nocow_pages_worker(struct btrfs_work *work)
4414 {
4415 	struct scrub_copy_nocow_ctx *nocow_ctx =
4416 		container_of(work, struct scrub_copy_nocow_ctx, work);
4417 	struct scrub_ctx *sctx = nocow_ctx->sctx;
4418 	struct btrfs_fs_info *fs_info = sctx->fs_info;
4419 	struct btrfs_root *root = fs_info->extent_root;
4420 	u64 logical = nocow_ctx->logical;
4421 	u64 len = nocow_ctx->len;
4422 	int mirror_num = nocow_ctx->mirror_num;
4423 	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4424 	int ret;
4425 	struct btrfs_trans_handle *trans = NULL;
4426 	struct btrfs_path *path;
4427 	int not_written = 0;
4428 
4429 	path = btrfs_alloc_path();
4430 	if (!path) {
4431 		spin_lock(&sctx->stat_lock);
4432 		sctx->stat.malloc_errors++;
4433 		spin_unlock(&sctx->stat_lock);
4434 		not_written = 1;
4435 		goto out;
4436 	}
4437 
4438 	trans = btrfs_join_transaction(root);
4439 	if (IS_ERR(trans)) {
4440 		not_written = 1;
4441 		goto out;
4442 	}
4443 
4444 	ret = iterate_inodes_from_logical(logical, fs_info, path,
4445 					  record_inode_for_nocow, nocow_ctx);
4446 	if (ret != 0 && ret != -ENOENT) {
4447 		btrfs_warn(fs_info,
4448 			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4449 			   logical, physical_for_dev_replace, len, mirror_num,
4450 			   ret);
4451 		not_written = 1;
4452 		goto out;
4453 	}
4454 
4455 	btrfs_end_transaction(trans);
4456 	trans = NULL;
4457 	while (!list_empty(&nocow_ctx->inodes)) {
4458 		struct scrub_nocow_inode *entry;
4459 		entry = list_first_entry(&nocow_ctx->inodes,
4460 					 struct scrub_nocow_inode,
4461 					 list);
4462 		list_del_init(&entry->list);
4463 		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4464 						 entry->root, nocow_ctx);
4465 		kfree(entry);
4466 		if (ret == COPY_COMPLETE) {
4467 			ret = 0;
4468 			break;
4469 		} else if (ret) {
4470 			break;
4471 		}
4472 	}
4473 out:
4474 	while (!list_empty(&nocow_ctx->inodes)) {
4475 		struct scrub_nocow_inode *entry;
4476 		entry = list_first_entry(&nocow_ctx->inodes,
4477 					 struct scrub_nocow_inode,
4478 					 list);
4479 		list_del_init(&entry->list);
4480 		kfree(entry);
4481 	}
4482 	if (trans && !IS_ERR(trans))
4483 		btrfs_end_transaction(trans);
4484 	if (not_written)
4485 		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4486 					    num_uncorrectable_read_errors);
4487 
4488 	btrfs_free_path(path);
4489 	kfree(nocow_ctx);
4490 
4491 	scrub_pending_trans_workers_dec(sctx);
4492 }
4493 
4494 static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
4495 				 u64 logical)
4496 {
4497 	struct extent_state *cached_state = NULL;
4498 	struct btrfs_ordered_extent *ordered;
4499 	struct extent_io_tree *io_tree;
4500 	struct extent_map *em;
4501 	u64 lockstart = start, lockend = start + len - 1;
4502 	int ret = 0;
4503 
4504 	io_tree = &inode->io_tree;
4505 
4506 	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4507 	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4508 	if (ordered) {
4509 		btrfs_put_ordered_extent(ordered);
4510 		ret = 1;
4511 		goto out_unlock;
4512 	}
4513 
4514 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4515 	if (IS_ERR(em)) {
4516 		ret = PTR_ERR(em);
4517 		goto out_unlock;
4518 	}
4519 
4520 	/*
4521 	 * This extent does not actually cover the logical extent anymore,
4522 	 * move on to the next inode.
4523 	 */
4524 	if (em->block_start > logical ||
4525 	    em->block_start + em->block_len < logical + len) {
4526 		free_extent_map(em);
4527 		ret = 1;
4528 		goto out_unlock;
4529 	}
4530 	free_extent_map(em);
4531 
4532 out_unlock:
4533 	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4534 			     GFP_NOFS);
4535 	return ret;
4536 }
4537 
4538 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4539 				      struct scrub_copy_nocow_ctx *nocow_ctx)
4540 {
4541 	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4542 	struct btrfs_key key;
4543 	struct inode *inode;
4544 	struct page *page;
4545 	struct btrfs_root *local_root;
4546 	struct extent_io_tree *io_tree;
4547 	u64 physical_for_dev_replace;
4548 	u64 nocow_ctx_logical;
4549 	u64 len = nocow_ctx->len;
4550 	unsigned long index;
4551 	int srcu_index;
4552 	int ret = 0;
4553 	int err = 0;
4554 
4555 	key.objectid = root;
4556 	key.type = BTRFS_ROOT_ITEM_KEY;
4557 	key.offset = (u64)-1;
4558 
4559 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4560 
4561 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4562 	if (IS_ERR(local_root)) {
4563 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4564 		return PTR_ERR(local_root);
4565 	}
4566 
4567 	key.type = BTRFS_INODE_ITEM_KEY;
4568 	key.objectid = inum;
4569 	key.offset = 0;
4570 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4571 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4572 	if (IS_ERR(inode))
4573 		return PTR_ERR(inode);
4574 
4575 	/* Avoid truncate/dio/punch hole.. */
4576 	inode_lock(inode);
4577 	inode_dio_wait(inode);
4578 
4579 	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4580 	io_tree = &BTRFS_I(inode)->io_tree;
4581 	nocow_ctx_logical = nocow_ctx->logical;
4582 
4583 	ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4584 			nocow_ctx_logical);
4585 	if (ret) {
4586 		ret = ret > 0 ? 0 : ret;
4587 		goto out;
4588 	}
4589 
4590 	while (len >= PAGE_SIZE) {
4591 		index = offset >> PAGE_SHIFT;
4592 again:
4593 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4594 		if (!page) {
4595 			btrfs_err(fs_info, "find_or_create_page() failed");
4596 			ret = -ENOMEM;
4597 			goto out;
4598 		}
4599 
4600 		if (PageUptodate(page)) {
4601 			if (PageDirty(page))
4602 				goto next_page;
4603 		} else {
4604 			ClearPageError(page);
4605 			err = extent_read_full_page(io_tree, page,
4606 							   btrfs_get_extent,
4607 							   nocow_ctx->mirror_num);
4608 			if (err) {
4609 				ret = err;
4610 				goto next_page;
4611 			}
4612 
4613 			lock_page(page);
4614 			/*
4615 			 * If the page has been remove from the page cache,
4616 			 * the data on it is meaningless, because it may be
4617 			 * old one, the new data may be written into the new
4618 			 * page in the page cache.
4619 			 */
4620 			if (page->mapping != inode->i_mapping) {
4621 				unlock_page(page);
4622 				put_page(page);
4623 				goto again;
4624 			}
4625 			if (!PageUptodate(page)) {
4626 				ret = -EIO;
4627 				goto next_page;
4628 			}
4629 		}
4630 
4631 		ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4632 					    nocow_ctx_logical);
4633 		if (ret) {
4634 			ret = ret > 0 ? 0 : ret;
4635 			goto next_page;
4636 		}
4637 
4638 		err = write_page_nocow(nocow_ctx->sctx,
4639 				       physical_for_dev_replace, page);
4640 		if (err)
4641 			ret = err;
4642 next_page:
4643 		unlock_page(page);
4644 		put_page(page);
4645 
4646 		if (ret)
4647 			break;
4648 
4649 		offset += PAGE_SIZE;
4650 		physical_for_dev_replace += PAGE_SIZE;
4651 		nocow_ctx_logical += PAGE_SIZE;
4652 		len -= PAGE_SIZE;
4653 	}
4654 	ret = COPY_COMPLETE;
4655 out:
4656 	inode_unlock(inode);
4657 	iput(inode);
4658 	return ret;
4659 }
4660 
4661 static int write_page_nocow(struct scrub_ctx *sctx,
4662 			    u64 physical_for_dev_replace, struct page *page)
4663 {
4664 	struct bio *bio;
4665 	struct btrfs_device *dev;
4666 	int ret;
4667 
4668 	dev = sctx->wr_ctx.tgtdev;
4669 	if (!dev)
4670 		return -EIO;
4671 	if (!dev->bdev) {
4672 		btrfs_warn_rl(dev->fs_info,
4673 			"scrub write_page_nocow(bdev == NULL) is unexpected");
4674 		return -EIO;
4675 	}
4676 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4677 	if (!bio) {
4678 		spin_lock(&sctx->stat_lock);
4679 		sctx->stat.malloc_errors++;
4680 		spin_unlock(&sctx->stat_lock);
4681 		return -ENOMEM;
4682 	}
4683 	bio->bi_iter.bi_size = 0;
4684 	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4685 	bio->bi_bdev = dev->bdev;
4686 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4687 	ret = bio_add_page(bio, page, PAGE_SIZE, 0);
4688 	if (ret != PAGE_SIZE) {
4689 leave_with_eio:
4690 		bio_put(bio);
4691 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4692 		return -EIO;
4693 	}
4694 
4695 	if (btrfsic_submit_bio_wait(bio))
4696 		goto leave_with_eio;
4697 
4698 	bio_put(bio);
4699 	return 0;
4700 }
4701