1 /* 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/ratelimit.h> 21 #include "ctree.h" 22 #include "volumes.h" 23 #include "disk-io.h" 24 #include "ordered-data.h" 25 #include "transaction.h" 26 #include "backref.h" 27 #include "extent_io.h" 28 #include "dev-replace.h" 29 #include "check-integrity.h" 30 #include "rcu-string.h" 31 #include "raid56.h" 32 33 /* 34 * This is only the first step towards a full-features scrub. It reads all 35 * extent and super block and verifies the checksums. In case a bad checksum 36 * is found or the extent cannot be read, good data will be written back if 37 * any can be found. 38 * 39 * Future enhancements: 40 * - In case an unrepairable extent is encountered, track which files are 41 * affected and report them 42 * - track and record media errors, throw out bad devices 43 * - add a mode to also read unallocated space 44 */ 45 46 struct scrub_block; 47 struct scrub_ctx; 48 49 /* 50 * the following three values only influence the performance. 51 * The last one configures the number of parallel and outstanding I/O 52 * operations. The first two values configure an upper limit for the number 53 * of (dynamically allocated) pages that are added to a bio. 54 */ 55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 58 59 /* 60 * the following value times PAGE_SIZE needs to be large enough to match the 61 * largest node/leaf/sector size that shall be supported. 62 * Values larger than BTRFS_STRIPE_LEN are not supported. 63 */ 64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 65 66 struct scrub_recover { 67 atomic_t refs; 68 struct btrfs_bio *bbio; 69 u64 map_length; 70 }; 71 72 struct scrub_page { 73 struct scrub_block *sblock; 74 struct page *page; 75 struct btrfs_device *dev; 76 struct list_head list; 77 u64 flags; /* extent flags */ 78 u64 generation; 79 u64 logical; 80 u64 physical; 81 u64 physical_for_dev_replace; 82 atomic_t refs; 83 struct { 84 unsigned int mirror_num:8; 85 unsigned int have_csum:1; 86 unsigned int io_error:1; 87 }; 88 u8 csum[BTRFS_CSUM_SIZE]; 89 90 struct scrub_recover *recover; 91 }; 92 93 struct scrub_bio { 94 int index; 95 struct scrub_ctx *sctx; 96 struct btrfs_device *dev; 97 struct bio *bio; 98 int err; 99 u64 logical; 100 u64 physical; 101 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 102 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 103 #else 104 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 105 #endif 106 int page_count; 107 int next_free; 108 struct btrfs_work work; 109 }; 110 111 struct scrub_block { 112 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 113 int page_count; 114 atomic_t outstanding_pages; 115 atomic_t refs; /* free mem on transition to zero */ 116 struct scrub_ctx *sctx; 117 struct scrub_parity *sparity; 118 struct { 119 unsigned int header_error:1; 120 unsigned int checksum_error:1; 121 unsigned int no_io_error_seen:1; 122 unsigned int generation_error:1; /* also sets header_error */ 123 124 /* The following is for the data used to check parity */ 125 /* It is for the data with checksum */ 126 unsigned int data_corrected:1; 127 }; 128 }; 129 130 /* Used for the chunks with parity stripe such RAID5/6 */ 131 struct scrub_parity { 132 struct scrub_ctx *sctx; 133 134 struct btrfs_device *scrub_dev; 135 136 u64 logic_start; 137 138 u64 logic_end; 139 140 int nsectors; 141 142 int stripe_len; 143 144 atomic_t refs; 145 146 struct list_head spages; 147 148 /* Work of parity check and repair */ 149 struct btrfs_work work; 150 151 /* Mark the parity blocks which have data */ 152 unsigned long *dbitmap; 153 154 /* 155 * Mark the parity blocks which have data, but errors happen when 156 * read data or check data 157 */ 158 unsigned long *ebitmap; 159 160 unsigned long bitmap[0]; 161 }; 162 163 struct scrub_wr_ctx { 164 struct scrub_bio *wr_curr_bio; 165 struct btrfs_device *tgtdev; 166 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 167 atomic_t flush_all_writes; 168 struct mutex wr_lock; 169 }; 170 171 struct scrub_ctx { 172 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 173 struct btrfs_root *dev_root; 174 int first_free; 175 int curr; 176 atomic_t bios_in_flight; 177 atomic_t workers_pending; 178 spinlock_t list_lock; 179 wait_queue_head_t list_wait; 180 u16 csum_size; 181 struct list_head csum_list; 182 atomic_t cancel_req; 183 int readonly; 184 int pages_per_rd_bio; 185 u32 sectorsize; 186 u32 nodesize; 187 188 int is_dev_replace; 189 struct scrub_wr_ctx wr_ctx; 190 191 /* 192 * statistics 193 */ 194 struct btrfs_scrub_progress stat; 195 spinlock_t stat_lock; 196 197 /* 198 * Use a ref counter to avoid use-after-free issues. Scrub workers 199 * decrement bios_in_flight and workers_pending and then do a wakeup 200 * on the list_wait wait queue. We must ensure the main scrub task 201 * doesn't free the scrub context before or while the workers are 202 * doing the wakeup() call. 203 */ 204 atomic_t refs; 205 }; 206 207 struct scrub_fixup_nodatasum { 208 struct scrub_ctx *sctx; 209 struct btrfs_device *dev; 210 u64 logical; 211 struct btrfs_root *root; 212 struct btrfs_work work; 213 int mirror_num; 214 }; 215 216 struct scrub_nocow_inode { 217 u64 inum; 218 u64 offset; 219 u64 root; 220 struct list_head list; 221 }; 222 223 struct scrub_copy_nocow_ctx { 224 struct scrub_ctx *sctx; 225 u64 logical; 226 u64 len; 227 int mirror_num; 228 u64 physical_for_dev_replace; 229 struct list_head inodes; 230 struct btrfs_work work; 231 }; 232 233 struct scrub_warning { 234 struct btrfs_path *path; 235 u64 extent_item_size; 236 const char *errstr; 237 sector_t sector; 238 u64 logical; 239 struct btrfs_device *dev; 240 }; 241 242 static void scrub_pending_bio_inc(struct scrub_ctx *sctx); 243 static void scrub_pending_bio_dec(struct scrub_ctx *sctx); 244 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx); 245 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx); 246 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); 247 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 248 struct scrub_block *sblocks_for_recheck); 249 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 250 struct scrub_block *sblock, int is_metadata, 251 int have_csum, u8 *csum, u64 generation, 252 u16 csum_size, int retry_failed_mirror); 253 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, 254 struct scrub_block *sblock, 255 int is_metadata, int have_csum, 256 const u8 *csum, u64 generation, 257 u16 csum_size); 258 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 259 struct scrub_block *sblock_good); 260 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 261 struct scrub_block *sblock_good, 262 int page_num, int force_write); 263 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 264 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 265 int page_num); 266 static int scrub_checksum_data(struct scrub_block *sblock); 267 static int scrub_checksum_tree_block(struct scrub_block *sblock); 268 static int scrub_checksum_super(struct scrub_block *sblock); 269 static void scrub_block_get(struct scrub_block *sblock); 270 static void scrub_block_put(struct scrub_block *sblock); 271 static void scrub_page_get(struct scrub_page *spage); 272 static void scrub_page_put(struct scrub_page *spage); 273 static void scrub_parity_get(struct scrub_parity *sparity); 274 static void scrub_parity_put(struct scrub_parity *sparity); 275 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 276 struct scrub_page *spage); 277 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 278 u64 physical, struct btrfs_device *dev, u64 flags, 279 u64 gen, int mirror_num, u8 *csum, int force, 280 u64 physical_for_dev_replace); 281 static void scrub_bio_end_io(struct bio *bio); 282 static void scrub_bio_end_io_worker(struct btrfs_work *work); 283 static void scrub_block_complete(struct scrub_block *sblock); 284 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 285 u64 extent_logical, u64 extent_len, 286 u64 *extent_physical, 287 struct btrfs_device **extent_dev, 288 int *extent_mirror_num); 289 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx, 290 struct scrub_wr_ctx *wr_ctx, 291 struct btrfs_fs_info *fs_info, 292 struct btrfs_device *dev, 293 int is_dev_replace); 294 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx); 295 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 296 struct scrub_page *spage); 297 static void scrub_wr_submit(struct scrub_ctx *sctx); 298 static void scrub_wr_bio_end_io(struct bio *bio); 299 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 300 static int write_page_nocow(struct scrub_ctx *sctx, 301 u64 physical_for_dev_replace, struct page *page); 302 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 303 struct scrub_copy_nocow_ctx *ctx); 304 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 305 int mirror_num, u64 physical_for_dev_replace); 306 static void copy_nocow_pages_worker(struct btrfs_work *work); 307 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 308 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 309 static void scrub_put_ctx(struct scrub_ctx *sctx); 310 311 312 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 313 { 314 atomic_inc(&sctx->refs); 315 atomic_inc(&sctx->bios_in_flight); 316 } 317 318 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 319 { 320 atomic_dec(&sctx->bios_in_flight); 321 wake_up(&sctx->list_wait); 322 scrub_put_ctx(sctx); 323 } 324 325 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 326 { 327 while (atomic_read(&fs_info->scrub_pause_req)) { 328 mutex_unlock(&fs_info->scrub_lock); 329 wait_event(fs_info->scrub_pause_wait, 330 atomic_read(&fs_info->scrub_pause_req) == 0); 331 mutex_lock(&fs_info->scrub_lock); 332 } 333 } 334 335 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 336 { 337 atomic_inc(&fs_info->scrubs_paused); 338 wake_up(&fs_info->scrub_pause_wait); 339 340 mutex_lock(&fs_info->scrub_lock); 341 __scrub_blocked_if_needed(fs_info); 342 atomic_dec(&fs_info->scrubs_paused); 343 mutex_unlock(&fs_info->scrub_lock); 344 345 wake_up(&fs_info->scrub_pause_wait); 346 } 347 348 /* 349 * used for workers that require transaction commits (i.e., for the 350 * NOCOW case) 351 */ 352 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx) 353 { 354 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 355 356 atomic_inc(&sctx->refs); 357 /* 358 * increment scrubs_running to prevent cancel requests from 359 * completing as long as a worker is running. we must also 360 * increment scrubs_paused to prevent deadlocking on pause 361 * requests used for transactions commits (as the worker uses a 362 * transaction context). it is safe to regard the worker 363 * as paused for all matters practical. effectively, we only 364 * avoid cancellation requests from completing. 365 */ 366 mutex_lock(&fs_info->scrub_lock); 367 atomic_inc(&fs_info->scrubs_running); 368 atomic_inc(&fs_info->scrubs_paused); 369 mutex_unlock(&fs_info->scrub_lock); 370 371 /* 372 * check if @scrubs_running=@scrubs_paused condition 373 * inside wait_event() is not an atomic operation. 374 * which means we may inc/dec @scrub_running/paused 375 * at any time. Let's wake up @scrub_pause_wait as 376 * much as we can to let commit transaction blocked less. 377 */ 378 wake_up(&fs_info->scrub_pause_wait); 379 380 atomic_inc(&sctx->workers_pending); 381 } 382 383 /* used for workers that require transaction commits */ 384 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx) 385 { 386 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 387 388 /* 389 * see scrub_pending_trans_workers_inc() why we're pretending 390 * to be paused in the scrub counters 391 */ 392 mutex_lock(&fs_info->scrub_lock); 393 atomic_dec(&fs_info->scrubs_running); 394 atomic_dec(&fs_info->scrubs_paused); 395 mutex_unlock(&fs_info->scrub_lock); 396 atomic_dec(&sctx->workers_pending); 397 wake_up(&fs_info->scrub_pause_wait); 398 wake_up(&sctx->list_wait); 399 scrub_put_ctx(sctx); 400 } 401 402 static void scrub_free_csums(struct scrub_ctx *sctx) 403 { 404 while (!list_empty(&sctx->csum_list)) { 405 struct btrfs_ordered_sum *sum; 406 sum = list_first_entry(&sctx->csum_list, 407 struct btrfs_ordered_sum, list); 408 list_del(&sum->list); 409 kfree(sum); 410 } 411 } 412 413 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 414 { 415 int i; 416 417 if (!sctx) 418 return; 419 420 scrub_free_wr_ctx(&sctx->wr_ctx); 421 422 /* this can happen when scrub is cancelled */ 423 if (sctx->curr != -1) { 424 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 425 426 for (i = 0; i < sbio->page_count; i++) { 427 WARN_ON(!sbio->pagev[i]->page); 428 scrub_block_put(sbio->pagev[i]->sblock); 429 } 430 bio_put(sbio->bio); 431 } 432 433 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 434 struct scrub_bio *sbio = sctx->bios[i]; 435 436 if (!sbio) 437 break; 438 kfree(sbio); 439 } 440 441 scrub_free_csums(sctx); 442 kfree(sctx); 443 } 444 445 static void scrub_put_ctx(struct scrub_ctx *sctx) 446 { 447 if (atomic_dec_and_test(&sctx->refs)) 448 scrub_free_ctx(sctx); 449 } 450 451 static noinline_for_stack 452 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace) 453 { 454 struct scrub_ctx *sctx; 455 int i; 456 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info; 457 int ret; 458 459 sctx = kzalloc(sizeof(*sctx), GFP_NOFS); 460 if (!sctx) 461 goto nomem; 462 atomic_set(&sctx->refs, 1); 463 sctx->is_dev_replace = is_dev_replace; 464 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 465 sctx->curr = -1; 466 sctx->dev_root = dev->dev_root; 467 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 468 struct scrub_bio *sbio; 469 470 sbio = kzalloc(sizeof(*sbio), GFP_NOFS); 471 if (!sbio) 472 goto nomem; 473 sctx->bios[i] = sbio; 474 475 sbio->index = i; 476 sbio->sctx = sctx; 477 sbio->page_count = 0; 478 btrfs_init_work(&sbio->work, btrfs_scrub_helper, 479 scrub_bio_end_io_worker, NULL, NULL); 480 481 if (i != SCRUB_BIOS_PER_SCTX - 1) 482 sctx->bios[i]->next_free = i + 1; 483 else 484 sctx->bios[i]->next_free = -1; 485 } 486 sctx->first_free = 0; 487 sctx->nodesize = dev->dev_root->nodesize; 488 sctx->sectorsize = dev->dev_root->sectorsize; 489 atomic_set(&sctx->bios_in_flight, 0); 490 atomic_set(&sctx->workers_pending, 0); 491 atomic_set(&sctx->cancel_req, 0); 492 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); 493 INIT_LIST_HEAD(&sctx->csum_list); 494 495 spin_lock_init(&sctx->list_lock); 496 spin_lock_init(&sctx->stat_lock); 497 init_waitqueue_head(&sctx->list_wait); 498 499 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info, 500 fs_info->dev_replace.tgtdev, is_dev_replace); 501 if (ret) { 502 scrub_free_ctx(sctx); 503 return ERR_PTR(ret); 504 } 505 return sctx; 506 507 nomem: 508 scrub_free_ctx(sctx); 509 return ERR_PTR(-ENOMEM); 510 } 511 512 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 513 void *warn_ctx) 514 { 515 u64 isize; 516 u32 nlink; 517 int ret; 518 int i; 519 struct extent_buffer *eb; 520 struct btrfs_inode_item *inode_item; 521 struct scrub_warning *swarn = warn_ctx; 522 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info; 523 struct inode_fs_paths *ipath = NULL; 524 struct btrfs_root *local_root; 525 struct btrfs_key root_key; 526 struct btrfs_key key; 527 528 root_key.objectid = root; 529 root_key.type = BTRFS_ROOT_ITEM_KEY; 530 root_key.offset = (u64)-1; 531 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); 532 if (IS_ERR(local_root)) { 533 ret = PTR_ERR(local_root); 534 goto err; 535 } 536 537 /* 538 * this makes the path point to (inum INODE_ITEM ioff) 539 */ 540 key.objectid = inum; 541 key.type = BTRFS_INODE_ITEM_KEY; 542 key.offset = 0; 543 544 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 545 if (ret) { 546 btrfs_release_path(swarn->path); 547 goto err; 548 } 549 550 eb = swarn->path->nodes[0]; 551 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 552 struct btrfs_inode_item); 553 isize = btrfs_inode_size(eb, inode_item); 554 nlink = btrfs_inode_nlink(eb, inode_item); 555 btrfs_release_path(swarn->path); 556 557 ipath = init_ipath(4096, local_root, swarn->path); 558 if (IS_ERR(ipath)) { 559 ret = PTR_ERR(ipath); 560 ipath = NULL; 561 goto err; 562 } 563 ret = paths_from_inode(inum, ipath); 564 565 if (ret < 0) 566 goto err; 567 568 /* 569 * we deliberately ignore the bit ipath might have been too small to 570 * hold all of the paths here 571 */ 572 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 573 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev " 574 "%s, sector %llu, root %llu, inode %llu, offset %llu, " 575 "length %llu, links %u (path: %s)\n", swarn->errstr, 576 swarn->logical, rcu_str_deref(swarn->dev->name), 577 (unsigned long long)swarn->sector, root, inum, offset, 578 min(isize - offset, (u64)PAGE_SIZE), nlink, 579 (char *)(unsigned long)ipath->fspath->val[i]); 580 581 free_ipath(ipath); 582 return 0; 583 584 err: 585 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev " 586 "%s, sector %llu, root %llu, inode %llu, offset %llu: path " 587 "resolving failed with ret=%d\n", swarn->errstr, 588 swarn->logical, rcu_str_deref(swarn->dev->name), 589 (unsigned long long)swarn->sector, root, inum, offset, ret); 590 591 free_ipath(ipath); 592 return 0; 593 } 594 595 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 596 { 597 struct btrfs_device *dev; 598 struct btrfs_fs_info *fs_info; 599 struct btrfs_path *path; 600 struct btrfs_key found_key; 601 struct extent_buffer *eb; 602 struct btrfs_extent_item *ei; 603 struct scrub_warning swarn; 604 unsigned long ptr = 0; 605 u64 extent_item_pos; 606 u64 flags = 0; 607 u64 ref_root; 608 u32 item_size; 609 u8 ref_level; 610 int ret; 611 612 WARN_ON(sblock->page_count < 1); 613 dev = sblock->pagev[0]->dev; 614 fs_info = sblock->sctx->dev_root->fs_info; 615 616 path = btrfs_alloc_path(); 617 if (!path) 618 return; 619 620 swarn.sector = (sblock->pagev[0]->physical) >> 9; 621 swarn.logical = sblock->pagev[0]->logical; 622 swarn.errstr = errstr; 623 swarn.dev = NULL; 624 625 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 626 &flags); 627 if (ret < 0) 628 goto out; 629 630 extent_item_pos = swarn.logical - found_key.objectid; 631 swarn.extent_item_size = found_key.offset; 632 633 eb = path->nodes[0]; 634 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 635 item_size = btrfs_item_size_nr(eb, path->slots[0]); 636 637 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 638 do { 639 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 640 item_size, &ref_root, 641 &ref_level); 642 printk_in_rcu(KERN_WARNING 643 "BTRFS: %s at logical %llu on dev %s, " 644 "sector %llu: metadata %s (level %d) in tree " 645 "%llu\n", errstr, swarn.logical, 646 rcu_str_deref(dev->name), 647 (unsigned long long)swarn.sector, 648 ref_level ? "node" : "leaf", 649 ret < 0 ? -1 : ref_level, 650 ret < 0 ? -1 : ref_root); 651 } while (ret != 1); 652 btrfs_release_path(path); 653 } else { 654 btrfs_release_path(path); 655 swarn.path = path; 656 swarn.dev = dev; 657 iterate_extent_inodes(fs_info, found_key.objectid, 658 extent_item_pos, 1, 659 scrub_print_warning_inode, &swarn); 660 } 661 662 out: 663 btrfs_free_path(path); 664 } 665 666 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx) 667 { 668 struct page *page = NULL; 669 unsigned long index; 670 struct scrub_fixup_nodatasum *fixup = fixup_ctx; 671 int ret; 672 int corrected = 0; 673 struct btrfs_key key; 674 struct inode *inode = NULL; 675 struct btrfs_fs_info *fs_info; 676 u64 end = offset + PAGE_SIZE - 1; 677 struct btrfs_root *local_root; 678 int srcu_index; 679 680 key.objectid = root; 681 key.type = BTRFS_ROOT_ITEM_KEY; 682 key.offset = (u64)-1; 683 684 fs_info = fixup->root->fs_info; 685 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 686 687 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 688 if (IS_ERR(local_root)) { 689 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 690 return PTR_ERR(local_root); 691 } 692 693 key.type = BTRFS_INODE_ITEM_KEY; 694 key.objectid = inum; 695 key.offset = 0; 696 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 697 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 698 if (IS_ERR(inode)) 699 return PTR_ERR(inode); 700 701 index = offset >> PAGE_CACHE_SHIFT; 702 703 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 704 if (!page) { 705 ret = -ENOMEM; 706 goto out; 707 } 708 709 if (PageUptodate(page)) { 710 if (PageDirty(page)) { 711 /* 712 * we need to write the data to the defect sector. the 713 * data that was in that sector is not in memory, 714 * because the page was modified. we must not write the 715 * modified page to that sector. 716 * 717 * TODO: what could be done here: wait for the delalloc 718 * runner to write out that page (might involve 719 * COW) and see whether the sector is still 720 * referenced afterwards. 721 * 722 * For the meantime, we'll treat this error 723 * incorrectable, although there is a chance that a 724 * later scrub will find the bad sector again and that 725 * there's no dirty page in memory, then. 726 */ 727 ret = -EIO; 728 goto out; 729 } 730 ret = repair_io_failure(inode, offset, PAGE_SIZE, 731 fixup->logical, page, 732 offset - page_offset(page), 733 fixup->mirror_num); 734 unlock_page(page); 735 corrected = !ret; 736 } else { 737 /* 738 * we need to get good data first. the general readpage path 739 * will call repair_io_failure for us, we just have to make 740 * sure we read the bad mirror. 741 */ 742 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 743 EXTENT_DAMAGED, GFP_NOFS); 744 if (ret) { 745 /* set_extent_bits should give proper error */ 746 WARN_ON(ret > 0); 747 if (ret > 0) 748 ret = -EFAULT; 749 goto out; 750 } 751 752 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, 753 btrfs_get_extent, 754 fixup->mirror_num); 755 wait_on_page_locked(page); 756 757 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, 758 end, EXTENT_DAMAGED, 0, NULL); 759 if (!corrected) 760 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 761 EXTENT_DAMAGED, GFP_NOFS); 762 } 763 764 out: 765 if (page) 766 put_page(page); 767 768 iput(inode); 769 770 if (ret < 0) 771 return ret; 772 773 if (ret == 0 && corrected) { 774 /* 775 * we only need to call readpage for one of the inodes belonging 776 * to this extent. so make iterate_extent_inodes stop 777 */ 778 return 1; 779 } 780 781 return -EIO; 782 } 783 784 static void scrub_fixup_nodatasum(struct btrfs_work *work) 785 { 786 int ret; 787 struct scrub_fixup_nodatasum *fixup; 788 struct scrub_ctx *sctx; 789 struct btrfs_trans_handle *trans = NULL; 790 struct btrfs_path *path; 791 int uncorrectable = 0; 792 793 fixup = container_of(work, struct scrub_fixup_nodatasum, work); 794 sctx = fixup->sctx; 795 796 path = btrfs_alloc_path(); 797 if (!path) { 798 spin_lock(&sctx->stat_lock); 799 ++sctx->stat.malloc_errors; 800 spin_unlock(&sctx->stat_lock); 801 uncorrectable = 1; 802 goto out; 803 } 804 805 trans = btrfs_join_transaction(fixup->root); 806 if (IS_ERR(trans)) { 807 uncorrectable = 1; 808 goto out; 809 } 810 811 /* 812 * the idea is to trigger a regular read through the standard path. we 813 * read a page from the (failed) logical address by specifying the 814 * corresponding copynum of the failed sector. thus, that readpage is 815 * expected to fail. 816 * that is the point where on-the-fly error correction will kick in 817 * (once it's finished) and rewrite the failed sector if a good copy 818 * can be found. 819 */ 820 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info, 821 path, scrub_fixup_readpage, 822 fixup); 823 if (ret < 0) { 824 uncorrectable = 1; 825 goto out; 826 } 827 WARN_ON(ret != 1); 828 829 spin_lock(&sctx->stat_lock); 830 ++sctx->stat.corrected_errors; 831 spin_unlock(&sctx->stat_lock); 832 833 out: 834 if (trans && !IS_ERR(trans)) 835 btrfs_end_transaction(trans, fixup->root); 836 if (uncorrectable) { 837 spin_lock(&sctx->stat_lock); 838 ++sctx->stat.uncorrectable_errors; 839 spin_unlock(&sctx->stat_lock); 840 btrfs_dev_replace_stats_inc( 841 &sctx->dev_root->fs_info->dev_replace. 842 num_uncorrectable_read_errors); 843 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: " 844 "unable to fixup (nodatasum) error at logical %llu on dev %s\n", 845 fixup->logical, rcu_str_deref(fixup->dev->name)); 846 } 847 848 btrfs_free_path(path); 849 kfree(fixup); 850 851 scrub_pending_trans_workers_dec(sctx); 852 } 853 854 static inline void scrub_get_recover(struct scrub_recover *recover) 855 { 856 atomic_inc(&recover->refs); 857 } 858 859 static inline void scrub_put_recover(struct scrub_recover *recover) 860 { 861 if (atomic_dec_and_test(&recover->refs)) { 862 btrfs_put_bbio(recover->bbio); 863 kfree(recover); 864 } 865 } 866 867 /* 868 * scrub_handle_errored_block gets called when either verification of the 869 * pages failed or the bio failed to read, e.g. with EIO. In the latter 870 * case, this function handles all pages in the bio, even though only one 871 * may be bad. 872 * The goal of this function is to repair the errored block by using the 873 * contents of one of the mirrors. 874 */ 875 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 876 { 877 struct scrub_ctx *sctx = sblock_to_check->sctx; 878 struct btrfs_device *dev; 879 struct btrfs_fs_info *fs_info; 880 u64 length; 881 u64 logical; 882 u64 generation; 883 unsigned int failed_mirror_index; 884 unsigned int is_metadata; 885 unsigned int have_csum; 886 u8 *csum; 887 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 888 struct scrub_block *sblock_bad; 889 int ret; 890 int mirror_index; 891 int page_num; 892 int success; 893 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 894 DEFAULT_RATELIMIT_BURST); 895 896 BUG_ON(sblock_to_check->page_count < 1); 897 fs_info = sctx->dev_root->fs_info; 898 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 899 /* 900 * if we find an error in a super block, we just report it. 901 * They will get written with the next transaction commit 902 * anyway 903 */ 904 spin_lock(&sctx->stat_lock); 905 ++sctx->stat.super_errors; 906 spin_unlock(&sctx->stat_lock); 907 return 0; 908 } 909 length = sblock_to_check->page_count * PAGE_SIZE; 910 logical = sblock_to_check->pagev[0]->logical; 911 generation = sblock_to_check->pagev[0]->generation; 912 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 913 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 914 is_metadata = !(sblock_to_check->pagev[0]->flags & 915 BTRFS_EXTENT_FLAG_DATA); 916 have_csum = sblock_to_check->pagev[0]->have_csum; 917 csum = sblock_to_check->pagev[0]->csum; 918 dev = sblock_to_check->pagev[0]->dev; 919 920 if (sctx->is_dev_replace && !is_metadata && !have_csum) { 921 sblocks_for_recheck = NULL; 922 goto nodatasum_case; 923 } 924 925 /* 926 * read all mirrors one after the other. This includes to 927 * re-read the extent or metadata block that failed (that was 928 * the cause that this fixup code is called) another time, 929 * page by page this time in order to know which pages 930 * caused I/O errors and which ones are good (for all mirrors). 931 * It is the goal to handle the situation when more than one 932 * mirror contains I/O errors, but the errors do not 933 * overlap, i.e. the data can be repaired by selecting the 934 * pages from those mirrors without I/O error on the 935 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) 936 * would be that mirror #1 has an I/O error on the first page, 937 * the second page is good, and mirror #2 has an I/O error on 938 * the second page, but the first page is good. 939 * Then the first page of the first mirror can be repaired by 940 * taking the first page of the second mirror, and the 941 * second page of the second mirror can be repaired by 942 * copying the contents of the 2nd page of the 1st mirror. 943 * One more note: if the pages of one mirror contain I/O 944 * errors, the checksum cannot be verified. In order to get 945 * the best data for repairing, the first attempt is to find 946 * a mirror without I/O errors and with a validated checksum. 947 * Only if this is not possible, the pages are picked from 948 * mirrors with I/O errors without considering the checksum. 949 * If the latter is the case, at the end, the checksum of the 950 * repaired area is verified in order to correctly maintain 951 * the statistics. 952 */ 953 954 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, 955 sizeof(*sblocks_for_recheck), GFP_NOFS); 956 if (!sblocks_for_recheck) { 957 spin_lock(&sctx->stat_lock); 958 sctx->stat.malloc_errors++; 959 sctx->stat.read_errors++; 960 sctx->stat.uncorrectable_errors++; 961 spin_unlock(&sctx->stat_lock); 962 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 963 goto out; 964 } 965 966 /* setup the context, map the logical blocks and alloc the pages */ 967 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); 968 if (ret) { 969 spin_lock(&sctx->stat_lock); 970 sctx->stat.read_errors++; 971 sctx->stat.uncorrectable_errors++; 972 spin_unlock(&sctx->stat_lock); 973 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 974 goto out; 975 } 976 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 977 sblock_bad = sblocks_for_recheck + failed_mirror_index; 978 979 /* build and submit the bios for the failed mirror, check checksums */ 980 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum, 981 csum, generation, sctx->csum_size, 1); 982 983 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 984 sblock_bad->no_io_error_seen) { 985 /* 986 * the error disappeared after reading page by page, or 987 * the area was part of a huge bio and other parts of the 988 * bio caused I/O errors, or the block layer merged several 989 * read requests into one and the error is caused by a 990 * different bio (usually one of the two latter cases is 991 * the cause) 992 */ 993 spin_lock(&sctx->stat_lock); 994 sctx->stat.unverified_errors++; 995 sblock_to_check->data_corrected = 1; 996 spin_unlock(&sctx->stat_lock); 997 998 if (sctx->is_dev_replace) 999 scrub_write_block_to_dev_replace(sblock_bad); 1000 goto out; 1001 } 1002 1003 if (!sblock_bad->no_io_error_seen) { 1004 spin_lock(&sctx->stat_lock); 1005 sctx->stat.read_errors++; 1006 spin_unlock(&sctx->stat_lock); 1007 if (__ratelimit(&_rs)) 1008 scrub_print_warning("i/o error", sblock_to_check); 1009 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1010 } else if (sblock_bad->checksum_error) { 1011 spin_lock(&sctx->stat_lock); 1012 sctx->stat.csum_errors++; 1013 spin_unlock(&sctx->stat_lock); 1014 if (__ratelimit(&_rs)) 1015 scrub_print_warning("checksum error", sblock_to_check); 1016 btrfs_dev_stat_inc_and_print(dev, 1017 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1018 } else if (sblock_bad->header_error) { 1019 spin_lock(&sctx->stat_lock); 1020 sctx->stat.verify_errors++; 1021 spin_unlock(&sctx->stat_lock); 1022 if (__ratelimit(&_rs)) 1023 scrub_print_warning("checksum/header error", 1024 sblock_to_check); 1025 if (sblock_bad->generation_error) 1026 btrfs_dev_stat_inc_and_print(dev, 1027 BTRFS_DEV_STAT_GENERATION_ERRS); 1028 else 1029 btrfs_dev_stat_inc_and_print(dev, 1030 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1031 } 1032 1033 if (sctx->readonly) { 1034 ASSERT(!sctx->is_dev_replace); 1035 goto out; 1036 } 1037 1038 if (!is_metadata && !have_csum) { 1039 struct scrub_fixup_nodatasum *fixup_nodatasum; 1040 1041 WARN_ON(sctx->is_dev_replace); 1042 1043 nodatasum_case: 1044 1045 /* 1046 * !is_metadata and !have_csum, this means that the data 1047 * might not be COW'ed, that it might be modified 1048 * concurrently. The general strategy to work on the 1049 * commit root does not help in the case when COW is not 1050 * used. 1051 */ 1052 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS); 1053 if (!fixup_nodatasum) 1054 goto did_not_correct_error; 1055 fixup_nodatasum->sctx = sctx; 1056 fixup_nodatasum->dev = dev; 1057 fixup_nodatasum->logical = logical; 1058 fixup_nodatasum->root = fs_info->extent_root; 1059 fixup_nodatasum->mirror_num = failed_mirror_index + 1; 1060 scrub_pending_trans_workers_inc(sctx); 1061 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper, 1062 scrub_fixup_nodatasum, NULL, NULL); 1063 btrfs_queue_work(fs_info->scrub_workers, 1064 &fixup_nodatasum->work); 1065 goto out; 1066 } 1067 1068 /* 1069 * now build and submit the bios for the other mirrors, check 1070 * checksums. 1071 * First try to pick the mirror which is completely without I/O 1072 * errors and also does not have a checksum error. 1073 * If one is found, and if a checksum is present, the full block 1074 * that is known to contain an error is rewritten. Afterwards 1075 * the block is known to be corrected. 1076 * If a mirror is found which is completely correct, and no 1077 * checksum is present, only those pages are rewritten that had 1078 * an I/O error in the block to be repaired, since it cannot be 1079 * determined, which copy of the other pages is better (and it 1080 * could happen otherwise that a correct page would be 1081 * overwritten by a bad one). 1082 */ 1083 for (mirror_index = 0; 1084 mirror_index < BTRFS_MAX_MIRRORS && 1085 sblocks_for_recheck[mirror_index].page_count > 0; 1086 mirror_index++) { 1087 struct scrub_block *sblock_other; 1088 1089 if (mirror_index == failed_mirror_index) 1090 continue; 1091 sblock_other = sblocks_for_recheck + mirror_index; 1092 1093 /* build and submit the bios, check checksums */ 1094 scrub_recheck_block(fs_info, sblock_other, is_metadata, 1095 have_csum, csum, generation, 1096 sctx->csum_size, 0); 1097 1098 if (!sblock_other->header_error && 1099 !sblock_other->checksum_error && 1100 sblock_other->no_io_error_seen) { 1101 if (sctx->is_dev_replace) { 1102 scrub_write_block_to_dev_replace(sblock_other); 1103 goto corrected_error; 1104 } else { 1105 ret = scrub_repair_block_from_good_copy( 1106 sblock_bad, sblock_other); 1107 if (!ret) 1108 goto corrected_error; 1109 } 1110 } 1111 } 1112 1113 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) 1114 goto did_not_correct_error; 1115 1116 /* 1117 * In case of I/O errors in the area that is supposed to be 1118 * repaired, continue by picking good copies of those pages. 1119 * Select the good pages from mirrors to rewrite bad pages from 1120 * the area to fix. Afterwards verify the checksum of the block 1121 * that is supposed to be repaired. This verification step is 1122 * only done for the purpose of statistic counting and for the 1123 * final scrub report, whether errors remain. 1124 * A perfect algorithm could make use of the checksum and try 1125 * all possible combinations of pages from the different mirrors 1126 * until the checksum verification succeeds. For example, when 1127 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page 1128 * of mirror #2 is readable but the final checksum test fails, 1129 * then the 2nd page of mirror #3 could be tried, whether now 1130 * the final checksum succeedes. But this would be a rare 1131 * exception and is therefore not implemented. At least it is 1132 * avoided that the good copy is overwritten. 1133 * A more useful improvement would be to pick the sectors 1134 * without I/O error based on sector sizes (512 bytes on legacy 1135 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one 1136 * mirror could be repaired by taking 512 byte of a different 1137 * mirror, even if other 512 byte sectors in the same PAGE_SIZE 1138 * area are unreadable. 1139 */ 1140 success = 1; 1141 for (page_num = 0; page_num < sblock_bad->page_count; 1142 page_num++) { 1143 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1144 struct scrub_block *sblock_other = NULL; 1145 1146 /* skip no-io-error page in scrub */ 1147 if (!page_bad->io_error && !sctx->is_dev_replace) 1148 continue; 1149 1150 /* try to find no-io-error page in mirrors */ 1151 if (page_bad->io_error) { 1152 for (mirror_index = 0; 1153 mirror_index < BTRFS_MAX_MIRRORS && 1154 sblocks_for_recheck[mirror_index].page_count > 0; 1155 mirror_index++) { 1156 if (!sblocks_for_recheck[mirror_index]. 1157 pagev[page_num]->io_error) { 1158 sblock_other = sblocks_for_recheck + 1159 mirror_index; 1160 break; 1161 } 1162 } 1163 if (!sblock_other) 1164 success = 0; 1165 } 1166 1167 if (sctx->is_dev_replace) { 1168 /* 1169 * did not find a mirror to fetch the page 1170 * from. scrub_write_page_to_dev_replace() 1171 * handles this case (page->io_error), by 1172 * filling the block with zeros before 1173 * submitting the write request 1174 */ 1175 if (!sblock_other) 1176 sblock_other = sblock_bad; 1177 1178 if (scrub_write_page_to_dev_replace(sblock_other, 1179 page_num) != 0) { 1180 btrfs_dev_replace_stats_inc( 1181 &sctx->dev_root-> 1182 fs_info->dev_replace. 1183 num_write_errors); 1184 success = 0; 1185 } 1186 } else if (sblock_other) { 1187 ret = scrub_repair_page_from_good_copy(sblock_bad, 1188 sblock_other, 1189 page_num, 0); 1190 if (0 == ret) 1191 page_bad->io_error = 0; 1192 else 1193 success = 0; 1194 } 1195 } 1196 1197 if (success && !sctx->is_dev_replace) { 1198 if (is_metadata || have_csum) { 1199 /* 1200 * need to verify the checksum now that all 1201 * sectors on disk are repaired (the write 1202 * request for data to be repaired is on its way). 1203 * Just be lazy and use scrub_recheck_block() 1204 * which re-reads the data before the checksum 1205 * is verified, but most likely the data comes out 1206 * of the page cache. 1207 */ 1208 scrub_recheck_block(fs_info, sblock_bad, 1209 is_metadata, have_csum, csum, 1210 generation, sctx->csum_size, 1); 1211 if (!sblock_bad->header_error && 1212 !sblock_bad->checksum_error && 1213 sblock_bad->no_io_error_seen) 1214 goto corrected_error; 1215 else 1216 goto did_not_correct_error; 1217 } else { 1218 corrected_error: 1219 spin_lock(&sctx->stat_lock); 1220 sctx->stat.corrected_errors++; 1221 sblock_to_check->data_corrected = 1; 1222 spin_unlock(&sctx->stat_lock); 1223 printk_ratelimited_in_rcu(KERN_ERR 1224 "BTRFS: fixed up error at logical %llu on dev %s\n", 1225 logical, rcu_str_deref(dev->name)); 1226 } 1227 } else { 1228 did_not_correct_error: 1229 spin_lock(&sctx->stat_lock); 1230 sctx->stat.uncorrectable_errors++; 1231 spin_unlock(&sctx->stat_lock); 1232 printk_ratelimited_in_rcu(KERN_ERR 1233 "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n", 1234 logical, rcu_str_deref(dev->name)); 1235 } 1236 1237 out: 1238 if (sblocks_for_recheck) { 1239 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1240 mirror_index++) { 1241 struct scrub_block *sblock = sblocks_for_recheck + 1242 mirror_index; 1243 struct scrub_recover *recover; 1244 int page_index; 1245 1246 for (page_index = 0; page_index < sblock->page_count; 1247 page_index++) { 1248 sblock->pagev[page_index]->sblock = NULL; 1249 recover = sblock->pagev[page_index]->recover; 1250 if (recover) { 1251 scrub_put_recover(recover); 1252 sblock->pagev[page_index]->recover = 1253 NULL; 1254 } 1255 scrub_page_put(sblock->pagev[page_index]); 1256 } 1257 } 1258 kfree(sblocks_for_recheck); 1259 } 1260 1261 return 0; 1262 } 1263 1264 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio) 1265 { 1266 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1267 return 2; 1268 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1269 return 3; 1270 else 1271 return (int)bbio->num_stripes; 1272 } 1273 1274 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 1275 u64 *raid_map, 1276 u64 mapped_length, 1277 int nstripes, int mirror, 1278 int *stripe_index, 1279 u64 *stripe_offset) 1280 { 1281 int i; 1282 1283 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1284 /* RAID5/6 */ 1285 for (i = 0; i < nstripes; i++) { 1286 if (raid_map[i] == RAID6_Q_STRIPE || 1287 raid_map[i] == RAID5_P_STRIPE) 1288 continue; 1289 1290 if (logical >= raid_map[i] && 1291 logical < raid_map[i] + mapped_length) 1292 break; 1293 } 1294 1295 *stripe_index = i; 1296 *stripe_offset = logical - raid_map[i]; 1297 } else { 1298 /* The other RAID type */ 1299 *stripe_index = mirror; 1300 *stripe_offset = 0; 1301 } 1302 } 1303 1304 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 1305 struct scrub_block *sblocks_for_recheck) 1306 { 1307 struct scrub_ctx *sctx = original_sblock->sctx; 1308 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 1309 u64 length = original_sblock->page_count * PAGE_SIZE; 1310 u64 logical = original_sblock->pagev[0]->logical; 1311 struct scrub_recover *recover; 1312 struct btrfs_bio *bbio; 1313 u64 sublen; 1314 u64 mapped_length; 1315 u64 stripe_offset; 1316 int stripe_index; 1317 int page_index = 0; 1318 int mirror_index; 1319 int nmirrors; 1320 int ret; 1321 1322 /* 1323 * note: the two members refs and outstanding_pages 1324 * are not used (and not set) in the blocks that are used for 1325 * the recheck procedure 1326 */ 1327 1328 while (length > 0) { 1329 sublen = min_t(u64, length, PAGE_SIZE); 1330 mapped_length = sublen; 1331 bbio = NULL; 1332 1333 /* 1334 * with a length of PAGE_SIZE, each returned stripe 1335 * represents one mirror 1336 */ 1337 ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical, 1338 &mapped_length, &bbio, 0, 1); 1339 if (ret || !bbio || mapped_length < sublen) { 1340 btrfs_put_bbio(bbio); 1341 return -EIO; 1342 } 1343 1344 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); 1345 if (!recover) { 1346 btrfs_put_bbio(bbio); 1347 return -ENOMEM; 1348 } 1349 1350 atomic_set(&recover->refs, 1); 1351 recover->bbio = bbio; 1352 recover->map_length = mapped_length; 1353 1354 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO); 1355 1356 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS); 1357 1358 for (mirror_index = 0; mirror_index < nmirrors; 1359 mirror_index++) { 1360 struct scrub_block *sblock; 1361 struct scrub_page *page; 1362 1363 sblock = sblocks_for_recheck + mirror_index; 1364 sblock->sctx = sctx; 1365 page = kzalloc(sizeof(*page), GFP_NOFS); 1366 if (!page) { 1367 leave_nomem: 1368 spin_lock(&sctx->stat_lock); 1369 sctx->stat.malloc_errors++; 1370 spin_unlock(&sctx->stat_lock); 1371 scrub_put_recover(recover); 1372 return -ENOMEM; 1373 } 1374 scrub_page_get(page); 1375 sblock->pagev[page_index] = page; 1376 page->logical = logical; 1377 1378 scrub_stripe_index_and_offset(logical, 1379 bbio->map_type, 1380 bbio->raid_map, 1381 mapped_length, 1382 bbio->num_stripes - 1383 bbio->num_tgtdevs, 1384 mirror_index, 1385 &stripe_index, 1386 &stripe_offset); 1387 page->physical = bbio->stripes[stripe_index].physical + 1388 stripe_offset; 1389 page->dev = bbio->stripes[stripe_index].dev; 1390 1391 BUG_ON(page_index >= original_sblock->page_count); 1392 page->physical_for_dev_replace = 1393 original_sblock->pagev[page_index]-> 1394 physical_for_dev_replace; 1395 /* for missing devices, dev->bdev is NULL */ 1396 page->mirror_num = mirror_index + 1; 1397 sblock->page_count++; 1398 page->page = alloc_page(GFP_NOFS); 1399 if (!page->page) 1400 goto leave_nomem; 1401 1402 scrub_get_recover(recover); 1403 page->recover = recover; 1404 } 1405 scrub_put_recover(recover); 1406 length -= sublen; 1407 logical += sublen; 1408 page_index++; 1409 } 1410 1411 return 0; 1412 } 1413 1414 struct scrub_bio_ret { 1415 struct completion event; 1416 int error; 1417 }; 1418 1419 static void scrub_bio_wait_endio(struct bio *bio) 1420 { 1421 struct scrub_bio_ret *ret = bio->bi_private; 1422 1423 ret->error = bio->bi_error; 1424 complete(&ret->event); 1425 } 1426 1427 static inline int scrub_is_page_on_raid56(struct scrub_page *page) 1428 { 1429 return page->recover && 1430 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); 1431 } 1432 1433 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, 1434 struct bio *bio, 1435 struct scrub_page *page) 1436 { 1437 struct scrub_bio_ret done; 1438 int ret; 1439 1440 init_completion(&done.event); 1441 done.error = 0; 1442 bio->bi_iter.bi_sector = page->logical >> 9; 1443 bio->bi_private = &done; 1444 bio->bi_end_io = scrub_bio_wait_endio; 1445 1446 ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio, 1447 page->recover->map_length, 1448 page->mirror_num, 0); 1449 if (ret) 1450 return ret; 1451 1452 wait_for_completion(&done.event); 1453 if (done.error) 1454 return -EIO; 1455 1456 return 0; 1457 } 1458 1459 /* 1460 * this function will check the on disk data for checksum errors, header 1461 * errors and read I/O errors. If any I/O errors happen, the exact pages 1462 * which are errored are marked as being bad. The goal is to enable scrub 1463 * to take those pages that are not errored from all the mirrors so that 1464 * the pages that are errored in the just handled mirror can be repaired. 1465 */ 1466 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1467 struct scrub_block *sblock, int is_metadata, 1468 int have_csum, u8 *csum, u64 generation, 1469 u16 csum_size, int retry_failed_mirror) 1470 { 1471 int page_num; 1472 1473 sblock->no_io_error_seen = 1; 1474 sblock->header_error = 0; 1475 sblock->checksum_error = 0; 1476 1477 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1478 struct bio *bio; 1479 struct scrub_page *page = sblock->pagev[page_num]; 1480 1481 if (page->dev->bdev == NULL) { 1482 page->io_error = 1; 1483 sblock->no_io_error_seen = 0; 1484 continue; 1485 } 1486 1487 WARN_ON(!page->page); 1488 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1489 if (!bio) { 1490 page->io_error = 1; 1491 sblock->no_io_error_seen = 0; 1492 continue; 1493 } 1494 bio->bi_bdev = page->dev->bdev; 1495 1496 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1497 if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) { 1498 if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) 1499 sblock->no_io_error_seen = 0; 1500 } else { 1501 bio->bi_iter.bi_sector = page->physical >> 9; 1502 1503 if (btrfsic_submit_bio_wait(READ, bio)) 1504 sblock->no_io_error_seen = 0; 1505 } 1506 1507 bio_put(bio); 1508 } 1509 1510 if (sblock->no_io_error_seen) 1511 scrub_recheck_block_checksum(fs_info, sblock, is_metadata, 1512 have_csum, csum, generation, 1513 csum_size); 1514 1515 return; 1516 } 1517 1518 static inline int scrub_check_fsid(u8 fsid[], 1519 struct scrub_page *spage) 1520 { 1521 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; 1522 int ret; 1523 1524 ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE); 1525 return !ret; 1526 } 1527 1528 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, 1529 struct scrub_block *sblock, 1530 int is_metadata, int have_csum, 1531 const u8 *csum, u64 generation, 1532 u16 csum_size) 1533 { 1534 int page_num; 1535 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1536 u32 crc = ~(u32)0; 1537 void *mapped_buffer; 1538 1539 WARN_ON(!sblock->pagev[0]->page); 1540 if (is_metadata) { 1541 struct btrfs_header *h; 1542 1543 mapped_buffer = kmap_atomic(sblock->pagev[0]->page); 1544 h = (struct btrfs_header *)mapped_buffer; 1545 1546 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) || 1547 !scrub_check_fsid(h->fsid, sblock->pagev[0]) || 1548 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1549 BTRFS_UUID_SIZE)) { 1550 sblock->header_error = 1; 1551 } else if (generation != btrfs_stack_header_generation(h)) { 1552 sblock->header_error = 1; 1553 sblock->generation_error = 1; 1554 } 1555 csum = h->csum; 1556 } else { 1557 if (!have_csum) 1558 return; 1559 1560 mapped_buffer = kmap_atomic(sblock->pagev[0]->page); 1561 } 1562 1563 for (page_num = 0;;) { 1564 if (page_num == 0 && is_metadata) 1565 crc = btrfs_csum_data( 1566 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE, 1567 crc, PAGE_SIZE - BTRFS_CSUM_SIZE); 1568 else 1569 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE); 1570 1571 kunmap_atomic(mapped_buffer); 1572 page_num++; 1573 if (page_num >= sblock->page_count) 1574 break; 1575 WARN_ON(!sblock->pagev[page_num]->page); 1576 1577 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page); 1578 } 1579 1580 btrfs_csum_final(crc, calculated_csum); 1581 if (memcmp(calculated_csum, csum, csum_size)) 1582 sblock->checksum_error = 1; 1583 } 1584 1585 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1586 struct scrub_block *sblock_good) 1587 { 1588 int page_num; 1589 int ret = 0; 1590 1591 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1592 int ret_sub; 1593 1594 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1595 sblock_good, 1596 page_num, 1); 1597 if (ret_sub) 1598 ret = ret_sub; 1599 } 1600 1601 return ret; 1602 } 1603 1604 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1605 struct scrub_block *sblock_good, 1606 int page_num, int force_write) 1607 { 1608 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1609 struct scrub_page *page_good = sblock_good->pagev[page_num]; 1610 1611 BUG_ON(page_bad->page == NULL); 1612 BUG_ON(page_good->page == NULL); 1613 if (force_write || sblock_bad->header_error || 1614 sblock_bad->checksum_error || page_bad->io_error) { 1615 struct bio *bio; 1616 int ret; 1617 1618 if (!page_bad->dev->bdev) { 1619 printk_ratelimited(KERN_WARNING "BTRFS: " 1620 "scrub_repair_page_from_good_copy(bdev == NULL) " 1621 "is unexpected!\n"); 1622 return -EIO; 1623 } 1624 1625 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1626 if (!bio) 1627 return -EIO; 1628 bio->bi_bdev = page_bad->dev->bdev; 1629 bio->bi_iter.bi_sector = page_bad->physical >> 9; 1630 1631 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); 1632 if (PAGE_SIZE != ret) { 1633 bio_put(bio); 1634 return -EIO; 1635 } 1636 1637 if (btrfsic_submit_bio_wait(WRITE, bio)) { 1638 btrfs_dev_stat_inc_and_print(page_bad->dev, 1639 BTRFS_DEV_STAT_WRITE_ERRS); 1640 btrfs_dev_replace_stats_inc( 1641 &sblock_bad->sctx->dev_root->fs_info-> 1642 dev_replace.num_write_errors); 1643 bio_put(bio); 1644 return -EIO; 1645 } 1646 bio_put(bio); 1647 } 1648 1649 return 0; 1650 } 1651 1652 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1653 { 1654 int page_num; 1655 1656 /* 1657 * This block is used for the check of the parity on the source device, 1658 * so the data needn't be written into the destination device. 1659 */ 1660 if (sblock->sparity) 1661 return; 1662 1663 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1664 int ret; 1665 1666 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1667 if (ret) 1668 btrfs_dev_replace_stats_inc( 1669 &sblock->sctx->dev_root->fs_info->dev_replace. 1670 num_write_errors); 1671 } 1672 } 1673 1674 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1675 int page_num) 1676 { 1677 struct scrub_page *spage = sblock->pagev[page_num]; 1678 1679 BUG_ON(spage->page == NULL); 1680 if (spage->io_error) { 1681 void *mapped_buffer = kmap_atomic(spage->page); 1682 1683 memset(mapped_buffer, 0, PAGE_CACHE_SIZE); 1684 flush_dcache_page(spage->page); 1685 kunmap_atomic(mapped_buffer); 1686 } 1687 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1688 } 1689 1690 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1691 struct scrub_page *spage) 1692 { 1693 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; 1694 struct scrub_bio *sbio; 1695 int ret; 1696 1697 mutex_lock(&wr_ctx->wr_lock); 1698 again: 1699 if (!wr_ctx->wr_curr_bio) { 1700 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio), 1701 GFP_NOFS); 1702 if (!wr_ctx->wr_curr_bio) { 1703 mutex_unlock(&wr_ctx->wr_lock); 1704 return -ENOMEM; 1705 } 1706 wr_ctx->wr_curr_bio->sctx = sctx; 1707 wr_ctx->wr_curr_bio->page_count = 0; 1708 } 1709 sbio = wr_ctx->wr_curr_bio; 1710 if (sbio->page_count == 0) { 1711 struct bio *bio; 1712 1713 sbio->physical = spage->physical_for_dev_replace; 1714 sbio->logical = spage->logical; 1715 sbio->dev = wr_ctx->tgtdev; 1716 bio = sbio->bio; 1717 if (!bio) { 1718 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio); 1719 if (!bio) { 1720 mutex_unlock(&wr_ctx->wr_lock); 1721 return -ENOMEM; 1722 } 1723 sbio->bio = bio; 1724 } 1725 1726 bio->bi_private = sbio; 1727 bio->bi_end_io = scrub_wr_bio_end_io; 1728 bio->bi_bdev = sbio->dev->bdev; 1729 bio->bi_iter.bi_sector = sbio->physical >> 9; 1730 sbio->err = 0; 1731 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1732 spage->physical_for_dev_replace || 1733 sbio->logical + sbio->page_count * PAGE_SIZE != 1734 spage->logical) { 1735 scrub_wr_submit(sctx); 1736 goto again; 1737 } 1738 1739 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1740 if (ret != PAGE_SIZE) { 1741 if (sbio->page_count < 1) { 1742 bio_put(sbio->bio); 1743 sbio->bio = NULL; 1744 mutex_unlock(&wr_ctx->wr_lock); 1745 return -EIO; 1746 } 1747 scrub_wr_submit(sctx); 1748 goto again; 1749 } 1750 1751 sbio->pagev[sbio->page_count] = spage; 1752 scrub_page_get(spage); 1753 sbio->page_count++; 1754 if (sbio->page_count == wr_ctx->pages_per_wr_bio) 1755 scrub_wr_submit(sctx); 1756 mutex_unlock(&wr_ctx->wr_lock); 1757 1758 return 0; 1759 } 1760 1761 static void scrub_wr_submit(struct scrub_ctx *sctx) 1762 { 1763 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; 1764 struct scrub_bio *sbio; 1765 1766 if (!wr_ctx->wr_curr_bio) 1767 return; 1768 1769 sbio = wr_ctx->wr_curr_bio; 1770 wr_ctx->wr_curr_bio = NULL; 1771 WARN_ON(!sbio->bio->bi_bdev); 1772 scrub_pending_bio_inc(sctx); 1773 /* process all writes in a single worker thread. Then the block layer 1774 * orders the requests before sending them to the driver which 1775 * doubled the write performance on spinning disks when measured 1776 * with Linux 3.5 */ 1777 btrfsic_submit_bio(WRITE, sbio->bio); 1778 } 1779 1780 static void scrub_wr_bio_end_io(struct bio *bio) 1781 { 1782 struct scrub_bio *sbio = bio->bi_private; 1783 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info; 1784 1785 sbio->err = bio->bi_error; 1786 sbio->bio = bio; 1787 1788 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper, 1789 scrub_wr_bio_end_io_worker, NULL, NULL); 1790 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 1791 } 1792 1793 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 1794 { 1795 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1796 struct scrub_ctx *sctx = sbio->sctx; 1797 int i; 1798 1799 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 1800 if (sbio->err) { 1801 struct btrfs_dev_replace *dev_replace = 1802 &sbio->sctx->dev_root->fs_info->dev_replace; 1803 1804 for (i = 0; i < sbio->page_count; i++) { 1805 struct scrub_page *spage = sbio->pagev[i]; 1806 1807 spage->io_error = 1; 1808 btrfs_dev_replace_stats_inc(&dev_replace-> 1809 num_write_errors); 1810 } 1811 } 1812 1813 for (i = 0; i < sbio->page_count; i++) 1814 scrub_page_put(sbio->pagev[i]); 1815 1816 bio_put(sbio->bio); 1817 kfree(sbio); 1818 scrub_pending_bio_dec(sctx); 1819 } 1820 1821 static int scrub_checksum(struct scrub_block *sblock) 1822 { 1823 u64 flags; 1824 int ret; 1825 1826 WARN_ON(sblock->page_count < 1); 1827 flags = sblock->pagev[0]->flags; 1828 ret = 0; 1829 if (flags & BTRFS_EXTENT_FLAG_DATA) 1830 ret = scrub_checksum_data(sblock); 1831 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1832 ret = scrub_checksum_tree_block(sblock); 1833 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1834 (void)scrub_checksum_super(sblock); 1835 else 1836 WARN_ON(1); 1837 if (ret) 1838 scrub_handle_errored_block(sblock); 1839 1840 return ret; 1841 } 1842 1843 static int scrub_checksum_data(struct scrub_block *sblock) 1844 { 1845 struct scrub_ctx *sctx = sblock->sctx; 1846 u8 csum[BTRFS_CSUM_SIZE]; 1847 u8 *on_disk_csum; 1848 struct page *page; 1849 void *buffer; 1850 u32 crc = ~(u32)0; 1851 int fail = 0; 1852 u64 len; 1853 int index; 1854 1855 BUG_ON(sblock->page_count < 1); 1856 if (!sblock->pagev[0]->have_csum) 1857 return 0; 1858 1859 on_disk_csum = sblock->pagev[0]->csum; 1860 page = sblock->pagev[0]->page; 1861 buffer = kmap_atomic(page); 1862 1863 len = sctx->sectorsize; 1864 index = 0; 1865 for (;;) { 1866 u64 l = min_t(u64, len, PAGE_SIZE); 1867 1868 crc = btrfs_csum_data(buffer, crc, l); 1869 kunmap_atomic(buffer); 1870 len -= l; 1871 if (len == 0) 1872 break; 1873 index++; 1874 BUG_ON(index >= sblock->page_count); 1875 BUG_ON(!sblock->pagev[index]->page); 1876 page = sblock->pagev[index]->page; 1877 buffer = kmap_atomic(page); 1878 } 1879 1880 btrfs_csum_final(crc, csum); 1881 if (memcmp(csum, on_disk_csum, sctx->csum_size)) 1882 fail = 1; 1883 1884 return fail; 1885 } 1886 1887 static int scrub_checksum_tree_block(struct scrub_block *sblock) 1888 { 1889 struct scrub_ctx *sctx = sblock->sctx; 1890 struct btrfs_header *h; 1891 struct btrfs_root *root = sctx->dev_root; 1892 struct btrfs_fs_info *fs_info = root->fs_info; 1893 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1894 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1895 struct page *page; 1896 void *mapped_buffer; 1897 u64 mapped_size; 1898 void *p; 1899 u32 crc = ~(u32)0; 1900 int fail = 0; 1901 int crc_fail = 0; 1902 u64 len; 1903 int index; 1904 1905 BUG_ON(sblock->page_count < 1); 1906 page = sblock->pagev[0]->page; 1907 mapped_buffer = kmap_atomic(page); 1908 h = (struct btrfs_header *)mapped_buffer; 1909 memcpy(on_disk_csum, h->csum, sctx->csum_size); 1910 1911 /* 1912 * we don't use the getter functions here, as we 1913 * a) don't have an extent buffer and 1914 * b) the page is already kmapped 1915 */ 1916 1917 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h)) 1918 ++fail; 1919 1920 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) 1921 ++fail; 1922 1923 if (!scrub_check_fsid(h->fsid, sblock->pagev[0])) 1924 ++fail; 1925 1926 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1927 BTRFS_UUID_SIZE)) 1928 ++fail; 1929 1930 len = sctx->nodesize - BTRFS_CSUM_SIZE; 1931 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1932 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1933 index = 0; 1934 for (;;) { 1935 u64 l = min_t(u64, len, mapped_size); 1936 1937 crc = btrfs_csum_data(p, crc, l); 1938 kunmap_atomic(mapped_buffer); 1939 len -= l; 1940 if (len == 0) 1941 break; 1942 index++; 1943 BUG_ON(index >= sblock->page_count); 1944 BUG_ON(!sblock->pagev[index]->page); 1945 page = sblock->pagev[index]->page; 1946 mapped_buffer = kmap_atomic(page); 1947 mapped_size = PAGE_SIZE; 1948 p = mapped_buffer; 1949 } 1950 1951 btrfs_csum_final(crc, calculated_csum); 1952 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1953 ++crc_fail; 1954 1955 return fail || crc_fail; 1956 } 1957 1958 static int scrub_checksum_super(struct scrub_block *sblock) 1959 { 1960 struct btrfs_super_block *s; 1961 struct scrub_ctx *sctx = sblock->sctx; 1962 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1963 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1964 struct page *page; 1965 void *mapped_buffer; 1966 u64 mapped_size; 1967 void *p; 1968 u32 crc = ~(u32)0; 1969 int fail_gen = 0; 1970 int fail_cor = 0; 1971 u64 len; 1972 int index; 1973 1974 BUG_ON(sblock->page_count < 1); 1975 page = sblock->pagev[0]->page; 1976 mapped_buffer = kmap_atomic(page); 1977 s = (struct btrfs_super_block *)mapped_buffer; 1978 memcpy(on_disk_csum, s->csum, sctx->csum_size); 1979 1980 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s)) 1981 ++fail_cor; 1982 1983 if (sblock->pagev[0]->generation != btrfs_super_generation(s)) 1984 ++fail_gen; 1985 1986 if (!scrub_check_fsid(s->fsid, sblock->pagev[0])) 1987 ++fail_cor; 1988 1989 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; 1990 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1991 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1992 index = 0; 1993 for (;;) { 1994 u64 l = min_t(u64, len, mapped_size); 1995 1996 crc = btrfs_csum_data(p, crc, l); 1997 kunmap_atomic(mapped_buffer); 1998 len -= l; 1999 if (len == 0) 2000 break; 2001 index++; 2002 BUG_ON(index >= sblock->page_count); 2003 BUG_ON(!sblock->pagev[index]->page); 2004 page = sblock->pagev[index]->page; 2005 mapped_buffer = kmap_atomic(page); 2006 mapped_size = PAGE_SIZE; 2007 p = mapped_buffer; 2008 } 2009 2010 btrfs_csum_final(crc, calculated_csum); 2011 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 2012 ++fail_cor; 2013 2014 if (fail_cor + fail_gen) { 2015 /* 2016 * if we find an error in a super block, we just report it. 2017 * They will get written with the next transaction commit 2018 * anyway 2019 */ 2020 spin_lock(&sctx->stat_lock); 2021 ++sctx->stat.super_errors; 2022 spin_unlock(&sctx->stat_lock); 2023 if (fail_cor) 2024 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 2025 BTRFS_DEV_STAT_CORRUPTION_ERRS); 2026 else 2027 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 2028 BTRFS_DEV_STAT_GENERATION_ERRS); 2029 } 2030 2031 return fail_cor + fail_gen; 2032 } 2033 2034 static void scrub_block_get(struct scrub_block *sblock) 2035 { 2036 atomic_inc(&sblock->refs); 2037 } 2038 2039 static void scrub_block_put(struct scrub_block *sblock) 2040 { 2041 if (atomic_dec_and_test(&sblock->refs)) { 2042 int i; 2043 2044 if (sblock->sparity) 2045 scrub_parity_put(sblock->sparity); 2046 2047 for (i = 0; i < sblock->page_count; i++) 2048 scrub_page_put(sblock->pagev[i]); 2049 kfree(sblock); 2050 } 2051 } 2052 2053 static void scrub_page_get(struct scrub_page *spage) 2054 { 2055 atomic_inc(&spage->refs); 2056 } 2057 2058 static void scrub_page_put(struct scrub_page *spage) 2059 { 2060 if (atomic_dec_and_test(&spage->refs)) { 2061 if (spage->page) 2062 __free_page(spage->page); 2063 kfree(spage); 2064 } 2065 } 2066 2067 static void scrub_submit(struct scrub_ctx *sctx) 2068 { 2069 struct scrub_bio *sbio; 2070 2071 if (sctx->curr == -1) 2072 return; 2073 2074 sbio = sctx->bios[sctx->curr]; 2075 sctx->curr = -1; 2076 scrub_pending_bio_inc(sctx); 2077 2078 if (!sbio->bio->bi_bdev) { 2079 /* 2080 * this case should not happen. If btrfs_map_block() is 2081 * wrong, it could happen for dev-replace operations on 2082 * missing devices when no mirrors are available, but in 2083 * this case it should already fail the mount. 2084 * This case is handled correctly (but _very_ slowly). 2085 */ 2086 printk_ratelimited(KERN_WARNING 2087 "BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n"); 2088 bio_io_error(sbio->bio); 2089 } else { 2090 btrfsic_submit_bio(READ, sbio->bio); 2091 } 2092 } 2093 2094 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 2095 struct scrub_page *spage) 2096 { 2097 struct scrub_block *sblock = spage->sblock; 2098 struct scrub_bio *sbio; 2099 int ret; 2100 2101 again: 2102 /* 2103 * grab a fresh bio or wait for one to become available 2104 */ 2105 while (sctx->curr == -1) { 2106 spin_lock(&sctx->list_lock); 2107 sctx->curr = sctx->first_free; 2108 if (sctx->curr != -1) { 2109 sctx->first_free = sctx->bios[sctx->curr]->next_free; 2110 sctx->bios[sctx->curr]->next_free = -1; 2111 sctx->bios[sctx->curr]->page_count = 0; 2112 spin_unlock(&sctx->list_lock); 2113 } else { 2114 spin_unlock(&sctx->list_lock); 2115 wait_event(sctx->list_wait, sctx->first_free != -1); 2116 } 2117 } 2118 sbio = sctx->bios[sctx->curr]; 2119 if (sbio->page_count == 0) { 2120 struct bio *bio; 2121 2122 sbio->physical = spage->physical; 2123 sbio->logical = spage->logical; 2124 sbio->dev = spage->dev; 2125 bio = sbio->bio; 2126 if (!bio) { 2127 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio); 2128 if (!bio) 2129 return -ENOMEM; 2130 sbio->bio = bio; 2131 } 2132 2133 bio->bi_private = sbio; 2134 bio->bi_end_io = scrub_bio_end_io; 2135 bio->bi_bdev = sbio->dev->bdev; 2136 bio->bi_iter.bi_sector = sbio->physical >> 9; 2137 sbio->err = 0; 2138 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 2139 spage->physical || 2140 sbio->logical + sbio->page_count * PAGE_SIZE != 2141 spage->logical || 2142 sbio->dev != spage->dev) { 2143 scrub_submit(sctx); 2144 goto again; 2145 } 2146 2147 sbio->pagev[sbio->page_count] = spage; 2148 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 2149 if (ret != PAGE_SIZE) { 2150 if (sbio->page_count < 1) { 2151 bio_put(sbio->bio); 2152 sbio->bio = NULL; 2153 return -EIO; 2154 } 2155 scrub_submit(sctx); 2156 goto again; 2157 } 2158 2159 scrub_block_get(sblock); /* one for the page added to the bio */ 2160 atomic_inc(&sblock->outstanding_pages); 2161 sbio->page_count++; 2162 if (sbio->page_count == sctx->pages_per_rd_bio) 2163 scrub_submit(sctx); 2164 2165 return 0; 2166 } 2167 2168 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 2169 u64 physical, struct btrfs_device *dev, u64 flags, 2170 u64 gen, int mirror_num, u8 *csum, int force, 2171 u64 physical_for_dev_replace) 2172 { 2173 struct scrub_block *sblock; 2174 int index; 2175 2176 sblock = kzalloc(sizeof(*sblock), GFP_NOFS); 2177 if (!sblock) { 2178 spin_lock(&sctx->stat_lock); 2179 sctx->stat.malloc_errors++; 2180 spin_unlock(&sctx->stat_lock); 2181 return -ENOMEM; 2182 } 2183 2184 /* one ref inside this function, plus one for each page added to 2185 * a bio later on */ 2186 atomic_set(&sblock->refs, 1); 2187 sblock->sctx = sctx; 2188 sblock->no_io_error_seen = 1; 2189 2190 for (index = 0; len > 0; index++) { 2191 struct scrub_page *spage; 2192 u64 l = min_t(u64, len, PAGE_SIZE); 2193 2194 spage = kzalloc(sizeof(*spage), GFP_NOFS); 2195 if (!spage) { 2196 leave_nomem: 2197 spin_lock(&sctx->stat_lock); 2198 sctx->stat.malloc_errors++; 2199 spin_unlock(&sctx->stat_lock); 2200 scrub_block_put(sblock); 2201 return -ENOMEM; 2202 } 2203 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2204 scrub_page_get(spage); 2205 sblock->pagev[index] = spage; 2206 spage->sblock = sblock; 2207 spage->dev = dev; 2208 spage->flags = flags; 2209 spage->generation = gen; 2210 spage->logical = logical; 2211 spage->physical = physical; 2212 spage->physical_for_dev_replace = physical_for_dev_replace; 2213 spage->mirror_num = mirror_num; 2214 if (csum) { 2215 spage->have_csum = 1; 2216 memcpy(spage->csum, csum, sctx->csum_size); 2217 } else { 2218 spage->have_csum = 0; 2219 } 2220 sblock->page_count++; 2221 spage->page = alloc_page(GFP_NOFS); 2222 if (!spage->page) 2223 goto leave_nomem; 2224 len -= l; 2225 logical += l; 2226 physical += l; 2227 physical_for_dev_replace += l; 2228 } 2229 2230 WARN_ON(sblock->page_count == 0); 2231 for (index = 0; index < sblock->page_count; index++) { 2232 struct scrub_page *spage = sblock->pagev[index]; 2233 int ret; 2234 2235 ret = scrub_add_page_to_rd_bio(sctx, spage); 2236 if (ret) { 2237 scrub_block_put(sblock); 2238 return ret; 2239 } 2240 } 2241 2242 if (force) 2243 scrub_submit(sctx); 2244 2245 /* last one frees, either here or in bio completion for last page */ 2246 scrub_block_put(sblock); 2247 return 0; 2248 } 2249 2250 static void scrub_bio_end_io(struct bio *bio) 2251 { 2252 struct scrub_bio *sbio = bio->bi_private; 2253 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info; 2254 2255 sbio->err = bio->bi_error; 2256 sbio->bio = bio; 2257 2258 btrfs_queue_work(fs_info->scrub_workers, &sbio->work); 2259 } 2260 2261 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2262 { 2263 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2264 struct scrub_ctx *sctx = sbio->sctx; 2265 int i; 2266 2267 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2268 if (sbio->err) { 2269 for (i = 0; i < sbio->page_count; i++) { 2270 struct scrub_page *spage = sbio->pagev[i]; 2271 2272 spage->io_error = 1; 2273 spage->sblock->no_io_error_seen = 0; 2274 } 2275 } 2276 2277 /* now complete the scrub_block items that have all pages completed */ 2278 for (i = 0; i < sbio->page_count; i++) { 2279 struct scrub_page *spage = sbio->pagev[i]; 2280 struct scrub_block *sblock = spage->sblock; 2281 2282 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2283 scrub_block_complete(sblock); 2284 scrub_block_put(sblock); 2285 } 2286 2287 bio_put(sbio->bio); 2288 sbio->bio = NULL; 2289 spin_lock(&sctx->list_lock); 2290 sbio->next_free = sctx->first_free; 2291 sctx->first_free = sbio->index; 2292 spin_unlock(&sctx->list_lock); 2293 2294 if (sctx->is_dev_replace && 2295 atomic_read(&sctx->wr_ctx.flush_all_writes)) { 2296 mutex_lock(&sctx->wr_ctx.wr_lock); 2297 scrub_wr_submit(sctx); 2298 mutex_unlock(&sctx->wr_ctx.wr_lock); 2299 } 2300 2301 scrub_pending_bio_dec(sctx); 2302 } 2303 2304 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, 2305 unsigned long *bitmap, 2306 u64 start, u64 len) 2307 { 2308 u32 offset; 2309 int nsectors; 2310 int sectorsize = sparity->sctx->dev_root->sectorsize; 2311 2312 if (len >= sparity->stripe_len) { 2313 bitmap_set(bitmap, 0, sparity->nsectors); 2314 return; 2315 } 2316 2317 start -= sparity->logic_start; 2318 start = div_u64_rem(start, sparity->stripe_len, &offset); 2319 offset /= sectorsize; 2320 nsectors = (int)len / sectorsize; 2321 2322 if (offset + nsectors <= sparity->nsectors) { 2323 bitmap_set(bitmap, offset, nsectors); 2324 return; 2325 } 2326 2327 bitmap_set(bitmap, offset, sparity->nsectors - offset); 2328 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); 2329 } 2330 2331 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, 2332 u64 start, u64 len) 2333 { 2334 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); 2335 } 2336 2337 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, 2338 u64 start, u64 len) 2339 { 2340 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); 2341 } 2342 2343 static void scrub_block_complete(struct scrub_block *sblock) 2344 { 2345 int corrupted = 0; 2346 2347 if (!sblock->no_io_error_seen) { 2348 corrupted = 1; 2349 scrub_handle_errored_block(sblock); 2350 } else { 2351 /* 2352 * if has checksum error, write via repair mechanism in 2353 * dev replace case, otherwise write here in dev replace 2354 * case. 2355 */ 2356 corrupted = scrub_checksum(sblock); 2357 if (!corrupted && sblock->sctx->is_dev_replace) 2358 scrub_write_block_to_dev_replace(sblock); 2359 } 2360 2361 if (sblock->sparity && corrupted && !sblock->data_corrected) { 2362 u64 start = sblock->pagev[0]->logical; 2363 u64 end = sblock->pagev[sblock->page_count - 1]->logical + 2364 PAGE_SIZE; 2365 2366 scrub_parity_mark_sectors_error(sblock->sparity, 2367 start, end - start); 2368 } 2369 } 2370 2371 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len, 2372 u8 *csum) 2373 { 2374 struct btrfs_ordered_sum *sum = NULL; 2375 unsigned long index; 2376 unsigned long num_sectors; 2377 2378 while (!list_empty(&sctx->csum_list)) { 2379 sum = list_first_entry(&sctx->csum_list, 2380 struct btrfs_ordered_sum, list); 2381 if (sum->bytenr > logical) 2382 return 0; 2383 if (sum->bytenr + sum->len > logical) 2384 break; 2385 2386 ++sctx->stat.csum_discards; 2387 list_del(&sum->list); 2388 kfree(sum); 2389 sum = NULL; 2390 } 2391 if (!sum) 2392 return 0; 2393 2394 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize; 2395 num_sectors = sum->len / sctx->sectorsize; 2396 memcpy(csum, sum->sums + index, sctx->csum_size); 2397 if (index == num_sectors - 1) { 2398 list_del(&sum->list); 2399 kfree(sum); 2400 } 2401 return 1; 2402 } 2403 2404 /* scrub extent tries to collect up to 64 kB for each bio */ 2405 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len, 2406 u64 physical, struct btrfs_device *dev, u64 flags, 2407 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2408 { 2409 int ret; 2410 u8 csum[BTRFS_CSUM_SIZE]; 2411 u32 blocksize; 2412 2413 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2414 blocksize = sctx->sectorsize; 2415 spin_lock(&sctx->stat_lock); 2416 sctx->stat.data_extents_scrubbed++; 2417 sctx->stat.data_bytes_scrubbed += len; 2418 spin_unlock(&sctx->stat_lock); 2419 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2420 blocksize = sctx->nodesize; 2421 spin_lock(&sctx->stat_lock); 2422 sctx->stat.tree_extents_scrubbed++; 2423 sctx->stat.tree_bytes_scrubbed += len; 2424 spin_unlock(&sctx->stat_lock); 2425 } else { 2426 blocksize = sctx->sectorsize; 2427 WARN_ON(1); 2428 } 2429 2430 while (len) { 2431 u64 l = min_t(u64, len, blocksize); 2432 int have_csum = 0; 2433 2434 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2435 /* push csums to sbio */ 2436 have_csum = scrub_find_csum(sctx, logical, l, csum); 2437 if (have_csum == 0) 2438 ++sctx->stat.no_csum; 2439 if (sctx->is_dev_replace && !have_csum) { 2440 ret = copy_nocow_pages(sctx, logical, l, 2441 mirror_num, 2442 physical_for_dev_replace); 2443 goto behind_scrub_pages; 2444 } 2445 } 2446 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2447 mirror_num, have_csum ? csum : NULL, 0, 2448 physical_for_dev_replace); 2449 behind_scrub_pages: 2450 if (ret) 2451 return ret; 2452 len -= l; 2453 logical += l; 2454 physical += l; 2455 physical_for_dev_replace += l; 2456 } 2457 return 0; 2458 } 2459 2460 static int scrub_pages_for_parity(struct scrub_parity *sparity, 2461 u64 logical, u64 len, 2462 u64 physical, struct btrfs_device *dev, 2463 u64 flags, u64 gen, int mirror_num, u8 *csum) 2464 { 2465 struct scrub_ctx *sctx = sparity->sctx; 2466 struct scrub_block *sblock; 2467 int index; 2468 2469 sblock = kzalloc(sizeof(*sblock), GFP_NOFS); 2470 if (!sblock) { 2471 spin_lock(&sctx->stat_lock); 2472 sctx->stat.malloc_errors++; 2473 spin_unlock(&sctx->stat_lock); 2474 return -ENOMEM; 2475 } 2476 2477 /* one ref inside this function, plus one for each page added to 2478 * a bio later on */ 2479 atomic_set(&sblock->refs, 1); 2480 sblock->sctx = sctx; 2481 sblock->no_io_error_seen = 1; 2482 sblock->sparity = sparity; 2483 scrub_parity_get(sparity); 2484 2485 for (index = 0; len > 0; index++) { 2486 struct scrub_page *spage; 2487 u64 l = min_t(u64, len, PAGE_SIZE); 2488 2489 spage = kzalloc(sizeof(*spage), GFP_NOFS); 2490 if (!spage) { 2491 leave_nomem: 2492 spin_lock(&sctx->stat_lock); 2493 sctx->stat.malloc_errors++; 2494 spin_unlock(&sctx->stat_lock); 2495 scrub_block_put(sblock); 2496 return -ENOMEM; 2497 } 2498 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2499 /* For scrub block */ 2500 scrub_page_get(spage); 2501 sblock->pagev[index] = spage; 2502 /* For scrub parity */ 2503 scrub_page_get(spage); 2504 list_add_tail(&spage->list, &sparity->spages); 2505 spage->sblock = sblock; 2506 spage->dev = dev; 2507 spage->flags = flags; 2508 spage->generation = gen; 2509 spage->logical = logical; 2510 spage->physical = physical; 2511 spage->mirror_num = mirror_num; 2512 if (csum) { 2513 spage->have_csum = 1; 2514 memcpy(spage->csum, csum, sctx->csum_size); 2515 } else { 2516 spage->have_csum = 0; 2517 } 2518 sblock->page_count++; 2519 spage->page = alloc_page(GFP_NOFS); 2520 if (!spage->page) 2521 goto leave_nomem; 2522 len -= l; 2523 logical += l; 2524 physical += l; 2525 } 2526 2527 WARN_ON(sblock->page_count == 0); 2528 for (index = 0; index < sblock->page_count; index++) { 2529 struct scrub_page *spage = sblock->pagev[index]; 2530 int ret; 2531 2532 ret = scrub_add_page_to_rd_bio(sctx, spage); 2533 if (ret) { 2534 scrub_block_put(sblock); 2535 return ret; 2536 } 2537 } 2538 2539 /* last one frees, either here or in bio completion for last page */ 2540 scrub_block_put(sblock); 2541 return 0; 2542 } 2543 2544 static int scrub_extent_for_parity(struct scrub_parity *sparity, 2545 u64 logical, u64 len, 2546 u64 physical, struct btrfs_device *dev, 2547 u64 flags, u64 gen, int mirror_num) 2548 { 2549 struct scrub_ctx *sctx = sparity->sctx; 2550 int ret; 2551 u8 csum[BTRFS_CSUM_SIZE]; 2552 u32 blocksize; 2553 2554 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2555 blocksize = sctx->sectorsize; 2556 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2557 blocksize = sctx->nodesize; 2558 } else { 2559 blocksize = sctx->sectorsize; 2560 WARN_ON(1); 2561 } 2562 2563 while (len) { 2564 u64 l = min_t(u64, len, blocksize); 2565 int have_csum = 0; 2566 2567 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2568 /* push csums to sbio */ 2569 have_csum = scrub_find_csum(sctx, logical, l, csum); 2570 if (have_csum == 0) 2571 goto skip; 2572 } 2573 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, 2574 flags, gen, mirror_num, 2575 have_csum ? csum : NULL); 2576 if (ret) 2577 return ret; 2578 skip: 2579 len -= l; 2580 logical += l; 2581 physical += l; 2582 } 2583 return 0; 2584 } 2585 2586 /* 2587 * Given a physical address, this will calculate it's 2588 * logical offset. if this is a parity stripe, it will return 2589 * the most left data stripe's logical offset. 2590 * 2591 * return 0 if it is a data stripe, 1 means parity stripe. 2592 */ 2593 static int get_raid56_logic_offset(u64 physical, int num, 2594 struct map_lookup *map, u64 *offset, 2595 u64 *stripe_start) 2596 { 2597 int i; 2598 int j = 0; 2599 u64 stripe_nr; 2600 u64 last_offset; 2601 u32 stripe_index; 2602 u32 rot; 2603 2604 last_offset = (physical - map->stripes[num].physical) * 2605 nr_data_stripes(map); 2606 if (stripe_start) 2607 *stripe_start = last_offset; 2608 2609 *offset = last_offset; 2610 for (i = 0; i < nr_data_stripes(map); i++) { 2611 *offset = last_offset + i * map->stripe_len; 2612 2613 stripe_nr = div_u64(*offset, map->stripe_len); 2614 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map)); 2615 2616 /* Work out the disk rotation on this stripe-set */ 2617 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); 2618 /* calculate which stripe this data locates */ 2619 rot += i; 2620 stripe_index = rot % map->num_stripes; 2621 if (stripe_index == num) 2622 return 0; 2623 if (stripe_index < num) 2624 j++; 2625 } 2626 *offset = last_offset + j * map->stripe_len; 2627 return 1; 2628 } 2629 2630 static void scrub_free_parity(struct scrub_parity *sparity) 2631 { 2632 struct scrub_ctx *sctx = sparity->sctx; 2633 struct scrub_page *curr, *next; 2634 int nbits; 2635 2636 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); 2637 if (nbits) { 2638 spin_lock(&sctx->stat_lock); 2639 sctx->stat.read_errors += nbits; 2640 sctx->stat.uncorrectable_errors += nbits; 2641 spin_unlock(&sctx->stat_lock); 2642 } 2643 2644 list_for_each_entry_safe(curr, next, &sparity->spages, list) { 2645 list_del_init(&curr->list); 2646 scrub_page_put(curr); 2647 } 2648 2649 kfree(sparity); 2650 } 2651 2652 static void scrub_parity_bio_endio_worker(struct btrfs_work *work) 2653 { 2654 struct scrub_parity *sparity = container_of(work, struct scrub_parity, 2655 work); 2656 struct scrub_ctx *sctx = sparity->sctx; 2657 2658 scrub_free_parity(sparity); 2659 scrub_pending_bio_dec(sctx); 2660 } 2661 2662 static void scrub_parity_bio_endio(struct bio *bio) 2663 { 2664 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; 2665 2666 if (bio->bi_error) 2667 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2668 sparity->nsectors); 2669 2670 bio_put(bio); 2671 2672 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper, 2673 scrub_parity_bio_endio_worker, NULL, NULL); 2674 btrfs_queue_work(sparity->sctx->dev_root->fs_info->scrub_parity_workers, 2675 &sparity->work); 2676 } 2677 2678 static void scrub_parity_check_and_repair(struct scrub_parity *sparity) 2679 { 2680 struct scrub_ctx *sctx = sparity->sctx; 2681 struct bio *bio; 2682 struct btrfs_raid_bio *rbio; 2683 struct scrub_page *spage; 2684 struct btrfs_bio *bbio = NULL; 2685 u64 length; 2686 int ret; 2687 2688 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, 2689 sparity->nsectors)) 2690 goto out; 2691 2692 length = sparity->logic_end - sparity->logic_start + 1; 2693 ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE, 2694 sparity->logic_start, 2695 &length, &bbio, 0, 1); 2696 if (ret || !bbio || !bbio->raid_map) 2697 goto bbio_out; 2698 2699 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 2700 if (!bio) 2701 goto bbio_out; 2702 2703 bio->bi_iter.bi_sector = sparity->logic_start >> 9; 2704 bio->bi_private = sparity; 2705 bio->bi_end_io = scrub_parity_bio_endio; 2706 2707 rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio, 2708 length, sparity->scrub_dev, 2709 sparity->dbitmap, 2710 sparity->nsectors); 2711 if (!rbio) 2712 goto rbio_out; 2713 2714 list_for_each_entry(spage, &sparity->spages, list) 2715 raid56_parity_add_scrub_pages(rbio, spage->page, 2716 spage->logical); 2717 2718 scrub_pending_bio_inc(sctx); 2719 raid56_parity_submit_scrub_rbio(rbio); 2720 return; 2721 2722 rbio_out: 2723 bio_put(bio); 2724 bbio_out: 2725 btrfs_put_bbio(bbio); 2726 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2727 sparity->nsectors); 2728 spin_lock(&sctx->stat_lock); 2729 sctx->stat.malloc_errors++; 2730 spin_unlock(&sctx->stat_lock); 2731 out: 2732 scrub_free_parity(sparity); 2733 } 2734 2735 static inline int scrub_calc_parity_bitmap_len(int nsectors) 2736 { 2737 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8); 2738 } 2739 2740 static void scrub_parity_get(struct scrub_parity *sparity) 2741 { 2742 atomic_inc(&sparity->refs); 2743 } 2744 2745 static void scrub_parity_put(struct scrub_parity *sparity) 2746 { 2747 if (!atomic_dec_and_test(&sparity->refs)) 2748 return; 2749 2750 scrub_parity_check_and_repair(sparity); 2751 } 2752 2753 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, 2754 struct map_lookup *map, 2755 struct btrfs_device *sdev, 2756 struct btrfs_path *path, 2757 u64 logic_start, 2758 u64 logic_end) 2759 { 2760 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 2761 struct btrfs_root *root = fs_info->extent_root; 2762 struct btrfs_root *csum_root = fs_info->csum_root; 2763 struct btrfs_extent_item *extent; 2764 u64 flags; 2765 int ret; 2766 int slot; 2767 struct extent_buffer *l; 2768 struct btrfs_key key; 2769 u64 generation; 2770 u64 extent_logical; 2771 u64 extent_physical; 2772 u64 extent_len; 2773 struct btrfs_device *extent_dev; 2774 struct scrub_parity *sparity; 2775 int nsectors; 2776 int bitmap_len; 2777 int extent_mirror_num; 2778 int stop_loop = 0; 2779 2780 nsectors = map->stripe_len / root->sectorsize; 2781 bitmap_len = scrub_calc_parity_bitmap_len(nsectors); 2782 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, 2783 GFP_NOFS); 2784 if (!sparity) { 2785 spin_lock(&sctx->stat_lock); 2786 sctx->stat.malloc_errors++; 2787 spin_unlock(&sctx->stat_lock); 2788 return -ENOMEM; 2789 } 2790 2791 sparity->stripe_len = map->stripe_len; 2792 sparity->nsectors = nsectors; 2793 sparity->sctx = sctx; 2794 sparity->scrub_dev = sdev; 2795 sparity->logic_start = logic_start; 2796 sparity->logic_end = logic_end; 2797 atomic_set(&sparity->refs, 1); 2798 INIT_LIST_HEAD(&sparity->spages); 2799 sparity->dbitmap = sparity->bitmap; 2800 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; 2801 2802 ret = 0; 2803 while (logic_start < logic_end) { 2804 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2805 key.type = BTRFS_METADATA_ITEM_KEY; 2806 else 2807 key.type = BTRFS_EXTENT_ITEM_KEY; 2808 key.objectid = logic_start; 2809 key.offset = (u64)-1; 2810 2811 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2812 if (ret < 0) 2813 goto out; 2814 2815 if (ret > 0) { 2816 ret = btrfs_previous_extent_item(root, path, 0); 2817 if (ret < 0) 2818 goto out; 2819 if (ret > 0) { 2820 btrfs_release_path(path); 2821 ret = btrfs_search_slot(NULL, root, &key, 2822 path, 0, 0); 2823 if (ret < 0) 2824 goto out; 2825 } 2826 } 2827 2828 stop_loop = 0; 2829 while (1) { 2830 u64 bytes; 2831 2832 l = path->nodes[0]; 2833 slot = path->slots[0]; 2834 if (slot >= btrfs_header_nritems(l)) { 2835 ret = btrfs_next_leaf(root, path); 2836 if (ret == 0) 2837 continue; 2838 if (ret < 0) 2839 goto out; 2840 2841 stop_loop = 1; 2842 break; 2843 } 2844 btrfs_item_key_to_cpu(l, &key, slot); 2845 2846 if (key.type == BTRFS_METADATA_ITEM_KEY) 2847 bytes = root->nodesize; 2848 else 2849 bytes = key.offset; 2850 2851 if (key.objectid + bytes <= logic_start) 2852 goto next; 2853 2854 if (key.type != BTRFS_EXTENT_ITEM_KEY && 2855 key.type != BTRFS_METADATA_ITEM_KEY) 2856 goto next; 2857 2858 if (key.objectid > logic_end) { 2859 stop_loop = 1; 2860 break; 2861 } 2862 2863 while (key.objectid >= logic_start + map->stripe_len) 2864 logic_start += map->stripe_len; 2865 2866 extent = btrfs_item_ptr(l, slot, 2867 struct btrfs_extent_item); 2868 flags = btrfs_extent_flags(l, extent); 2869 generation = btrfs_extent_generation(l, extent); 2870 2871 if (key.objectid < logic_start && 2872 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) { 2873 btrfs_err(fs_info, 2874 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 2875 key.objectid, logic_start); 2876 goto next; 2877 } 2878 again: 2879 extent_logical = key.objectid; 2880 extent_len = bytes; 2881 2882 if (extent_logical < logic_start) { 2883 extent_len -= logic_start - extent_logical; 2884 extent_logical = logic_start; 2885 } 2886 2887 if (extent_logical + extent_len > 2888 logic_start + map->stripe_len) 2889 extent_len = logic_start + map->stripe_len - 2890 extent_logical; 2891 2892 scrub_parity_mark_sectors_data(sparity, extent_logical, 2893 extent_len); 2894 2895 scrub_remap_extent(fs_info, extent_logical, 2896 extent_len, &extent_physical, 2897 &extent_dev, 2898 &extent_mirror_num); 2899 2900 ret = btrfs_lookup_csums_range(csum_root, 2901 extent_logical, 2902 extent_logical + extent_len - 1, 2903 &sctx->csum_list, 1); 2904 if (ret) 2905 goto out; 2906 2907 ret = scrub_extent_for_parity(sparity, extent_logical, 2908 extent_len, 2909 extent_physical, 2910 extent_dev, flags, 2911 generation, 2912 extent_mirror_num); 2913 if (ret) 2914 goto out; 2915 2916 scrub_free_csums(sctx); 2917 if (extent_logical + extent_len < 2918 key.objectid + bytes) { 2919 logic_start += map->stripe_len; 2920 2921 if (logic_start >= logic_end) { 2922 stop_loop = 1; 2923 break; 2924 } 2925 2926 if (logic_start < key.objectid + bytes) { 2927 cond_resched(); 2928 goto again; 2929 } 2930 } 2931 next: 2932 path->slots[0]++; 2933 } 2934 2935 btrfs_release_path(path); 2936 2937 if (stop_loop) 2938 break; 2939 2940 logic_start += map->stripe_len; 2941 } 2942 out: 2943 if (ret < 0) 2944 scrub_parity_mark_sectors_error(sparity, logic_start, 2945 logic_end - logic_start + 1); 2946 scrub_parity_put(sparity); 2947 scrub_submit(sctx); 2948 mutex_lock(&sctx->wr_ctx.wr_lock); 2949 scrub_wr_submit(sctx); 2950 mutex_unlock(&sctx->wr_ctx.wr_lock); 2951 2952 btrfs_release_path(path); 2953 return ret < 0 ? ret : 0; 2954 } 2955 2956 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 2957 struct map_lookup *map, 2958 struct btrfs_device *scrub_dev, 2959 int num, u64 base, u64 length, 2960 int is_dev_replace) 2961 { 2962 struct btrfs_path *path, *ppath; 2963 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 2964 struct btrfs_root *root = fs_info->extent_root; 2965 struct btrfs_root *csum_root = fs_info->csum_root; 2966 struct btrfs_extent_item *extent; 2967 struct blk_plug plug; 2968 u64 flags; 2969 int ret; 2970 int slot; 2971 u64 nstripes; 2972 struct extent_buffer *l; 2973 struct btrfs_key key; 2974 u64 physical; 2975 u64 logical; 2976 u64 logic_end; 2977 u64 physical_end; 2978 u64 generation; 2979 int mirror_num; 2980 struct reada_control *reada1; 2981 struct reada_control *reada2; 2982 struct btrfs_key key_start; 2983 struct btrfs_key key_end; 2984 u64 increment = map->stripe_len; 2985 u64 offset; 2986 u64 extent_logical; 2987 u64 extent_physical; 2988 u64 extent_len; 2989 u64 stripe_logical; 2990 u64 stripe_end; 2991 struct btrfs_device *extent_dev; 2992 int extent_mirror_num; 2993 int stop_loop = 0; 2994 2995 physical = map->stripes[num].physical; 2996 offset = 0; 2997 nstripes = div_u64(length, map->stripe_len); 2998 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 2999 offset = map->stripe_len * num; 3000 increment = map->stripe_len * map->num_stripes; 3001 mirror_num = 1; 3002 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3003 int factor = map->num_stripes / map->sub_stripes; 3004 offset = map->stripe_len * (num / map->sub_stripes); 3005 increment = map->stripe_len * factor; 3006 mirror_num = num % map->sub_stripes + 1; 3007 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 3008 increment = map->stripe_len; 3009 mirror_num = num % map->num_stripes + 1; 3010 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3011 increment = map->stripe_len; 3012 mirror_num = num % map->num_stripes + 1; 3013 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3014 get_raid56_logic_offset(physical, num, map, &offset, NULL); 3015 increment = map->stripe_len * nr_data_stripes(map); 3016 mirror_num = 1; 3017 } else { 3018 increment = map->stripe_len; 3019 mirror_num = 1; 3020 } 3021 3022 path = btrfs_alloc_path(); 3023 if (!path) 3024 return -ENOMEM; 3025 3026 ppath = btrfs_alloc_path(); 3027 if (!ppath) { 3028 btrfs_free_path(path); 3029 return -ENOMEM; 3030 } 3031 3032 /* 3033 * work on commit root. The related disk blocks are static as 3034 * long as COW is applied. This means, it is save to rewrite 3035 * them to repair disk errors without any race conditions 3036 */ 3037 path->search_commit_root = 1; 3038 path->skip_locking = 1; 3039 3040 ppath->search_commit_root = 1; 3041 ppath->skip_locking = 1; 3042 /* 3043 * trigger the readahead for extent tree csum tree and wait for 3044 * completion. During readahead, the scrub is officially paused 3045 * to not hold off transaction commits 3046 */ 3047 logical = base + offset; 3048 physical_end = physical + nstripes * map->stripe_len; 3049 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3050 get_raid56_logic_offset(physical_end, num, 3051 map, &logic_end, NULL); 3052 logic_end += base; 3053 } else { 3054 logic_end = logical + increment * nstripes; 3055 } 3056 wait_event(sctx->list_wait, 3057 atomic_read(&sctx->bios_in_flight) == 0); 3058 scrub_blocked_if_needed(fs_info); 3059 3060 /* FIXME it might be better to start readahead at commit root */ 3061 key_start.objectid = logical; 3062 key_start.type = BTRFS_EXTENT_ITEM_KEY; 3063 key_start.offset = (u64)0; 3064 key_end.objectid = logic_end; 3065 key_end.type = BTRFS_METADATA_ITEM_KEY; 3066 key_end.offset = (u64)-1; 3067 reada1 = btrfs_reada_add(root, &key_start, &key_end); 3068 3069 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3070 key_start.type = BTRFS_EXTENT_CSUM_KEY; 3071 key_start.offset = logical; 3072 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3073 key_end.type = BTRFS_EXTENT_CSUM_KEY; 3074 key_end.offset = logic_end; 3075 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end); 3076 3077 if (!IS_ERR(reada1)) 3078 btrfs_reada_wait(reada1); 3079 if (!IS_ERR(reada2)) 3080 btrfs_reada_wait(reada2); 3081 3082 3083 /* 3084 * collect all data csums for the stripe to avoid seeking during 3085 * the scrub. This might currently (crc32) end up to be about 1MB 3086 */ 3087 blk_start_plug(&plug); 3088 3089 /* 3090 * now find all extents for each stripe and scrub them 3091 */ 3092 ret = 0; 3093 while (physical < physical_end) { 3094 /* for raid56, we skip parity stripe */ 3095 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3096 ret = get_raid56_logic_offset(physical, num, 3097 map, &logical, &stripe_logical); 3098 logical += base; 3099 if (ret) { 3100 stripe_logical += base; 3101 stripe_end = stripe_logical + increment - 1; 3102 ret = scrub_raid56_parity(sctx, map, scrub_dev, 3103 ppath, stripe_logical, 3104 stripe_end); 3105 if (ret) 3106 goto out; 3107 goto skip; 3108 } 3109 } 3110 /* 3111 * canceled? 3112 */ 3113 if (atomic_read(&fs_info->scrub_cancel_req) || 3114 atomic_read(&sctx->cancel_req)) { 3115 ret = -ECANCELED; 3116 goto out; 3117 } 3118 /* 3119 * check to see if we have to pause 3120 */ 3121 if (atomic_read(&fs_info->scrub_pause_req)) { 3122 /* push queued extents */ 3123 atomic_set(&sctx->wr_ctx.flush_all_writes, 1); 3124 scrub_submit(sctx); 3125 mutex_lock(&sctx->wr_ctx.wr_lock); 3126 scrub_wr_submit(sctx); 3127 mutex_unlock(&sctx->wr_ctx.wr_lock); 3128 wait_event(sctx->list_wait, 3129 atomic_read(&sctx->bios_in_flight) == 0); 3130 atomic_set(&sctx->wr_ctx.flush_all_writes, 0); 3131 scrub_blocked_if_needed(fs_info); 3132 } 3133 3134 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3135 key.type = BTRFS_METADATA_ITEM_KEY; 3136 else 3137 key.type = BTRFS_EXTENT_ITEM_KEY; 3138 key.objectid = logical; 3139 key.offset = (u64)-1; 3140 3141 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3142 if (ret < 0) 3143 goto out; 3144 3145 if (ret > 0) { 3146 ret = btrfs_previous_extent_item(root, path, 0); 3147 if (ret < 0) 3148 goto out; 3149 if (ret > 0) { 3150 /* there's no smaller item, so stick with the 3151 * larger one */ 3152 btrfs_release_path(path); 3153 ret = btrfs_search_slot(NULL, root, &key, 3154 path, 0, 0); 3155 if (ret < 0) 3156 goto out; 3157 } 3158 } 3159 3160 stop_loop = 0; 3161 while (1) { 3162 u64 bytes; 3163 3164 l = path->nodes[0]; 3165 slot = path->slots[0]; 3166 if (slot >= btrfs_header_nritems(l)) { 3167 ret = btrfs_next_leaf(root, path); 3168 if (ret == 0) 3169 continue; 3170 if (ret < 0) 3171 goto out; 3172 3173 stop_loop = 1; 3174 break; 3175 } 3176 btrfs_item_key_to_cpu(l, &key, slot); 3177 3178 if (key.type == BTRFS_METADATA_ITEM_KEY) 3179 bytes = root->nodesize; 3180 else 3181 bytes = key.offset; 3182 3183 if (key.objectid + bytes <= logical) 3184 goto next; 3185 3186 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3187 key.type != BTRFS_METADATA_ITEM_KEY) 3188 goto next; 3189 3190 if (key.objectid >= logical + map->stripe_len) { 3191 /* out of this device extent */ 3192 if (key.objectid >= logic_end) 3193 stop_loop = 1; 3194 break; 3195 } 3196 3197 extent = btrfs_item_ptr(l, slot, 3198 struct btrfs_extent_item); 3199 flags = btrfs_extent_flags(l, extent); 3200 generation = btrfs_extent_generation(l, extent); 3201 3202 if (key.objectid < logical && 3203 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) { 3204 btrfs_err(fs_info, 3205 "scrub: tree block %llu spanning " 3206 "stripes, ignored. logical=%llu", 3207 key.objectid, logical); 3208 goto next; 3209 } 3210 3211 again: 3212 extent_logical = key.objectid; 3213 extent_len = bytes; 3214 3215 /* 3216 * trim extent to this stripe 3217 */ 3218 if (extent_logical < logical) { 3219 extent_len -= logical - extent_logical; 3220 extent_logical = logical; 3221 } 3222 if (extent_logical + extent_len > 3223 logical + map->stripe_len) { 3224 extent_len = logical + map->stripe_len - 3225 extent_logical; 3226 } 3227 3228 extent_physical = extent_logical - logical + physical; 3229 extent_dev = scrub_dev; 3230 extent_mirror_num = mirror_num; 3231 if (is_dev_replace) 3232 scrub_remap_extent(fs_info, extent_logical, 3233 extent_len, &extent_physical, 3234 &extent_dev, 3235 &extent_mirror_num); 3236 3237 ret = btrfs_lookup_csums_range(csum_root, logical, 3238 logical + map->stripe_len - 1, 3239 &sctx->csum_list, 1); 3240 if (ret) 3241 goto out; 3242 3243 ret = scrub_extent(sctx, extent_logical, extent_len, 3244 extent_physical, extent_dev, flags, 3245 generation, extent_mirror_num, 3246 extent_logical - logical + physical); 3247 if (ret) 3248 goto out; 3249 3250 scrub_free_csums(sctx); 3251 if (extent_logical + extent_len < 3252 key.objectid + bytes) { 3253 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3254 /* 3255 * loop until we find next data stripe 3256 * or we have finished all stripes. 3257 */ 3258 loop: 3259 physical += map->stripe_len; 3260 ret = get_raid56_logic_offset(physical, 3261 num, map, &logical, 3262 &stripe_logical); 3263 logical += base; 3264 3265 if (ret && physical < physical_end) { 3266 stripe_logical += base; 3267 stripe_end = stripe_logical + 3268 increment - 1; 3269 ret = scrub_raid56_parity(sctx, 3270 map, scrub_dev, ppath, 3271 stripe_logical, 3272 stripe_end); 3273 if (ret) 3274 goto out; 3275 goto loop; 3276 } 3277 } else { 3278 physical += map->stripe_len; 3279 logical += increment; 3280 } 3281 if (logical < key.objectid + bytes) { 3282 cond_resched(); 3283 goto again; 3284 } 3285 3286 if (physical >= physical_end) { 3287 stop_loop = 1; 3288 break; 3289 } 3290 } 3291 next: 3292 path->slots[0]++; 3293 } 3294 btrfs_release_path(path); 3295 skip: 3296 logical += increment; 3297 physical += map->stripe_len; 3298 spin_lock(&sctx->stat_lock); 3299 if (stop_loop) 3300 sctx->stat.last_physical = map->stripes[num].physical + 3301 length; 3302 else 3303 sctx->stat.last_physical = physical; 3304 spin_unlock(&sctx->stat_lock); 3305 if (stop_loop) 3306 break; 3307 } 3308 out: 3309 /* push queued extents */ 3310 scrub_submit(sctx); 3311 mutex_lock(&sctx->wr_ctx.wr_lock); 3312 scrub_wr_submit(sctx); 3313 mutex_unlock(&sctx->wr_ctx.wr_lock); 3314 3315 blk_finish_plug(&plug); 3316 btrfs_free_path(path); 3317 btrfs_free_path(ppath); 3318 return ret < 0 ? ret : 0; 3319 } 3320 3321 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 3322 struct btrfs_device *scrub_dev, 3323 u64 chunk_tree, u64 chunk_objectid, 3324 u64 chunk_offset, u64 length, 3325 u64 dev_offset, int is_dev_replace) 3326 { 3327 struct btrfs_mapping_tree *map_tree = 3328 &sctx->dev_root->fs_info->mapping_tree; 3329 struct map_lookup *map; 3330 struct extent_map *em; 3331 int i; 3332 int ret = 0; 3333 3334 read_lock(&map_tree->map_tree.lock); 3335 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 3336 read_unlock(&map_tree->map_tree.lock); 3337 3338 if (!em) 3339 return -EINVAL; 3340 3341 map = (struct map_lookup *)em->bdev; 3342 if (em->start != chunk_offset) 3343 goto out; 3344 3345 if (em->len < length) 3346 goto out; 3347 3348 for (i = 0; i < map->num_stripes; ++i) { 3349 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 3350 map->stripes[i].physical == dev_offset) { 3351 ret = scrub_stripe(sctx, map, scrub_dev, i, 3352 chunk_offset, length, 3353 is_dev_replace); 3354 if (ret) 3355 goto out; 3356 } 3357 } 3358 out: 3359 free_extent_map(em); 3360 3361 return ret; 3362 } 3363 3364 static noinline_for_stack 3365 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 3366 struct btrfs_device *scrub_dev, u64 start, u64 end, 3367 int is_dev_replace) 3368 { 3369 struct btrfs_dev_extent *dev_extent = NULL; 3370 struct btrfs_path *path; 3371 struct btrfs_root *root = sctx->dev_root; 3372 struct btrfs_fs_info *fs_info = root->fs_info; 3373 u64 length; 3374 u64 chunk_tree; 3375 u64 chunk_objectid; 3376 u64 chunk_offset; 3377 int ret; 3378 int slot; 3379 struct extent_buffer *l; 3380 struct btrfs_key key; 3381 struct btrfs_key found_key; 3382 struct btrfs_block_group_cache *cache; 3383 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 3384 3385 path = btrfs_alloc_path(); 3386 if (!path) 3387 return -ENOMEM; 3388 3389 path->reada = 2; 3390 path->search_commit_root = 1; 3391 path->skip_locking = 1; 3392 3393 key.objectid = scrub_dev->devid; 3394 key.offset = 0ull; 3395 key.type = BTRFS_DEV_EXTENT_KEY; 3396 3397 while (1) { 3398 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3399 if (ret < 0) 3400 break; 3401 if (ret > 0) { 3402 if (path->slots[0] >= 3403 btrfs_header_nritems(path->nodes[0])) { 3404 ret = btrfs_next_leaf(root, path); 3405 if (ret) 3406 break; 3407 } 3408 } 3409 3410 l = path->nodes[0]; 3411 slot = path->slots[0]; 3412 3413 btrfs_item_key_to_cpu(l, &found_key, slot); 3414 3415 if (found_key.objectid != scrub_dev->devid) 3416 break; 3417 3418 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 3419 break; 3420 3421 if (found_key.offset >= end) 3422 break; 3423 3424 if (found_key.offset < key.offset) 3425 break; 3426 3427 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3428 length = btrfs_dev_extent_length(l, dev_extent); 3429 3430 if (found_key.offset + length <= start) 3431 goto skip; 3432 3433 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); 3434 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); 3435 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3436 3437 /* 3438 * get a reference on the corresponding block group to prevent 3439 * the chunk from going away while we scrub it 3440 */ 3441 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3442 3443 /* some chunks are removed but not committed to disk yet, 3444 * continue scrubbing */ 3445 if (!cache) 3446 goto skip; 3447 3448 dev_replace->cursor_right = found_key.offset + length; 3449 dev_replace->cursor_left = found_key.offset; 3450 dev_replace->item_needs_writeback = 1; 3451 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid, 3452 chunk_offset, length, found_key.offset, 3453 is_dev_replace); 3454 3455 /* 3456 * flush, submit all pending read and write bios, afterwards 3457 * wait for them. 3458 * Note that in the dev replace case, a read request causes 3459 * write requests that are submitted in the read completion 3460 * worker. Therefore in the current situation, it is required 3461 * that all write requests are flushed, so that all read and 3462 * write requests are really completed when bios_in_flight 3463 * changes to 0. 3464 */ 3465 atomic_set(&sctx->wr_ctx.flush_all_writes, 1); 3466 scrub_submit(sctx); 3467 mutex_lock(&sctx->wr_ctx.wr_lock); 3468 scrub_wr_submit(sctx); 3469 mutex_unlock(&sctx->wr_ctx.wr_lock); 3470 3471 wait_event(sctx->list_wait, 3472 atomic_read(&sctx->bios_in_flight) == 0); 3473 atomic_inc(&fs_info->scrubs_paused); 3474 wake_up(&fs_info->scrub_pause_wait); 3475 3476 /* 3477 * must be called before we decrease @scrub_paused. 3478 * make sure we don't block transaction commit while 3479 * we are waiting pending workers finished. 3480 */ 3481 wait_event(sctx->list_wait, 3482 atomic_read(&sctx->workers_pending) == 0); 3483 atomic_set(&sctx->wr_ctx.flush_all_writes, 0); 3484 3485 mutex_lock(&fs_info->scrub_lock); 3486 __scrub_blocked_if_needed(fs_info); 3487 atomic_dec(&fs_info->scrubs_paused); 3488 mutex_unlock(&fs_info->scrub_lock); 3489 wake_up(&fs_info->scrub_pause_wait); 3490 3491 btrfs_put_block_group(cache); 3492 if (ret) 3493 break; 3494 if (is_dev_replace && 3495 atomic64_read(&dev_replace->num_write_errors) > 0) { 3496 ret = -EIO; 3497 break; 3498 } 3499 if (sctx->stat.malloc_errors > 0) { 3500 ret = -ENOMEM; 3501 break; 3502 } 3503 3504 dev_replace->cursor_left = dev_replace->cursor_right; 3505 dev_replace->item_needs_writeback = 1; 3506 skip: 3507 key.offset = found_key.offset + length; 3508 btrfs_release_path(path); 3509 } 3510 3511 btrfs_free_path(path); 3512 3513 /* 3514 * ret can still be 1 from search_slot or next_leaf, 3515 * that's not an error 3516 */ 3517 return ret < 0 ? ret : 0; 3518 } 3519 3520 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 3521 struct btrfs_device *scrub_dev) 3522 { 3523 int i; 3524 u64 bytenr; 3525 u64 gen; 3526 int ret; 3527 struct btrfs_root *root = sctx->dev_root; 3528 3529 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 3530 return -EIO; 3531 3532 /* Seed devices of a new filesystem has their own generation. */ 3533 if (scrub_dev->fs_devices != root->fs_info->fs_devices) 3534 gen = scrub_dev->generation; 3535 else 3536 gen = root->fs_info->last_trans_committed; 3537 3538 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 3539 bytenr = btrfs_sb_offset(i); 3540 if (bytenr + BTRFS_SUPER_INFO_SIZE > 3541 scrub_dev->commit_total_bytes) 3542 break; 3543 3544 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 3545 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 3546 NULL, 1, bytenr); 3547 if (ret) 3548 return ret; 3549 } 3550 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3551 3552 return 0; 3553 } 3554 3555 /* 3556 * get a reference count on fs_info->scrub_workers. start worker if necessary 3557 */ 3558 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 3559 int is_dev_replace) 3560 { 3561 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 3562 int max_active = fs_info->thread_pool_size; 3563 3564 if (fs_info->scrub_workers_refcnt == 0) { 3565 if (is_dev_replace) 3566 fs_info->scrub_workers = 3567 btrfs_alloc_workqueue("btrfs-scrub", flags, 3568 1, 4); 3569 else 3570 fs_info->scrub_workers = 3571 btrfs_alloc_workqueue("btrfs-scrub", flags, 3572 max_active, 4); 3573 if (!fs_info->scrub_workers) 3574 goto fail_scrub_workers; 3575 3576 fs_info->scrub_wr_completion_workers = 3577 btrfs_alloc_workqueue("btrfs-scrubwrc", flags, 3578 max_active, 2); 3579 if (!fs_info->scrub_wr_completion_workers) 3580 goto fail_scrub_wr_completion_workers; 3581 3582 fs_info->scrub_nocow_workers = 3583 btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0); 3584 if (!fs_info->scrub_nocow_workers) 3585 goto fail_scrub_nocow_workers; 3586 fs_info->scrub_parity_workers = 3587 btrfs_alloc_workqueue("btrfs-scrubparity", flags, 3588 max_active, 2); 3589 if (!fs_info->scrub_parity_workers) 3590 goto fail_scrub_parity_workers; 3591 } 3592 ++fs_info->scrub_workers_refcnt; 3593 return 0; 3594 3595 fail_scrub_parity_workers: 3596 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); 3597 fail_scrub_nocow_workers: 3598 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 3599 fail_scrub_wr_completion_workers: 3600 btrfs_destroy_workqueue(fs_info->scrub_workers); 3601 fail_scrub_workers: 3602 return -ENOMEM; 3603 } 3604 3605 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info) 3606 { 3607 if (--fs_info->scrub_workers_refcnt == 0) { 3608 btrfs_destroy_workqueue(fs_info->scrub_workers); 3609 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 3610 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); 3611 btrfs_destroy_workqueue(fs_info->scrub_parity_workers); 3612 } 3613 WARN_ON(fs_info->scrub_workers_refcnt < 0); 3614 } 3615 3616 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3617 u64 end, struct btrfs_scrub_progress *progress, 3618 int readonly, int is_dev_replace) 3619 { 3620 struct scrub_ctx *sctx; 3621 int ret; 3622 struct btrfs_device *dev; 3623 struct rcu_string *name; 3624 3625 if (btrfs_fs_closing(fs_info)) 3626 return -EINVAL; 3627 3628 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) { 3629 /* 3630 * in this case scrub is unable to calculate the checksum 3631 * the way scrub is implemented. Do not handle this 3632 * situation at all because it won't ever happen. 3633 */ 3634 btrfs_err(fs_info, 3635 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", 3636 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN); 3637 return -EINVAL; 3638 } 3639 3640 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) { 3641 /* not supported for data w/o checksums */ 3642 btrfs_err(fs_info, 3643 "scrub: size assumption sectorsize != PAGE_SIZE " 3644 "(%d != %lu) fails", 3645 fs_info->chunk_root->sectorsize, PAGE_SIZE); 3646 return -EINVAL; 3647 } 3648 3649 if (fs_info->chunk_root->nodesize > 3650 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 3651 fs_info->chunk_root->sectorsize > 3652 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 3653 /* 3654 * would exhaust the array bounds of pagev member in 3655 * struct scrub_block 3656 */ 3657 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize " 3658 "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", 3659 fs_info->chunk_root->nodesize, 3660 SCRUB_MAX_PAGES_PER_BLOCK, 3661 fs_info->chunk_root->sectorsize, 3662 SCRUB_MAX_PAGES_PER_BLOCK); 3663 return -EINVAL; 3664 } 3665 3666 3667 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3668 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 3669 if (!dev || (dev->missing && !is_dev_replace)) { 3670 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3671 return -ENODEV; 3672 } 3673 3674 if (!is_dev_replace && !readonly && !dev->writeable) { 3675 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3676 rcu_read_lock(); 3677 name = rcu_dereference(dev->name); 3678 btrfs_err(fs_info, "scrub: device %s is not writable", 3679 name->str); 3680 rcu_read_unlock(); 3681 return -EROFS; 3682 } 3683 3684 mutex_lock(&fs_info->scrub_lock); 3685 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) { 3686 mutex_unlock(&fs_info->scrub_lock); 3687 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3688 return -EIO; 3689 } 3690 3691 btrfs_dev_replace_lock(&fs_info->dev_replace); 3692 if (dev->scrub_device || 3693 (!is_dev_replace && 3694 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 3695 btrfs_dev_replace_unlock(&fs_info->dev_replace); 3696 mutex_unlock(&fs_info->scrub_lock); 3697 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3698 return -EINPROGRESS; 3699 } 3700 btrfs_dev_replace_unlock(&fs_info->dev_replace); 3701 3702 ret = scrub_workers_get(fs_info, is_dev_replace); 3703 if (ret) { 3704 mutex_unlock(&fs_info->scrub_lock); 3705 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3706 return ret; 3707 } 3708 3709 sctx = scrub_setup_ctx(dev, is_dev_replace); 3710 if (IS_ERR(sctx)) { 3711 mutex_unlock(&fs_info->scrub_lock); 3712 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3713 scrub_workers_put(fs_info); 3714 return PTR_ERR(sctx); 3715 } 3716 sctx->readonly = readonly; 3717 dev->scrub_device = sctx; 3718 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3719 3720 /* 3721 * checking @scrub_pause_req here, we can avoid 3722 * race between committing transaction and scrubbing. 3723 */ 3724 __scrub_blocked_if_needed(fs_info); 3725 atomic_inc(&fs_info->scrubs_running); 3726 mutex_unlock(&fs_info->scrub_lock); 3727 3728 if (!is_dev_replace) { 3729 /* 3730 * by holding device list mutex, we can 3731 * kick off writing super in log tree sync. 3732 */ 3733 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3734 ret = scrub_supers(sctx, dev); 3735 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3736 } 3737 3738 if (!ret) 3739 ret = scrub_enumerate_chunks(sctx, dev, start, end, 3740 is_dev_replace); 3741 3742 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3743 atomic_dec(&fs_info->scrubs_running); 3744 wake_up(&fs_info->scrub_pause_wait); 3745 3746 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 3747 3748 if (progress) 3749 memcpy(progress, &sctx->stat, sizeof(*progress)); 3750 3751 mutex_lock(&fs_info->scrub_lock); 3752 dev->scrub_device = NULL; 3753 scrub_workers_put(fs_info); 3754 mutex_unlock(&fs_info->scrub_lock); 3755 3756 scrub_put_ctx(sctx); 3757 3758 return ret; 3759 } 3760 3761 void btrfs_scrub_pause(struct btrfs_root *root) 3762 { 3763 struct btrfs_fs_info *fs_info = root->fs_info; 3764 3765 mutex_lock(&fs_info->scrub_lock); 3766 atomic_inc(&fs_info->scrub_pause_req); 3767 while (atomic_read(&fs_info->scrubs_paused) != 3768 atomic_read(&fs_info->scrubs_running)) { 3769 mutex_unlock(&fs_info->scrub_lock); 3770 wait_event(fs_info->scrub_pause_wait, 3771 atomic_read(&fs_info->scrubs_paused) == 3772 atomic_read(&fs_info->scrubs_running)); 3773 mutex_lock(&fs_info->scrub_lock); 3774 } 3775 mutex_unlock(&fs_info->scrub_lock); 3776 } 3777 3778 void btrfs_scrub_continue(struct btrfs_root *root) 3779 { 3780 struct btrfs_fs_info *fs_info = root->fs_info; 3781 3782 atomic_dec(&fs_info->scrub_pause_req); 3783 wake_up(&fs_info->scrub_pause_wait); 3784 } 3785 3786 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 3787 { 3788 mutex_lock(&fs_info->scrub_lock); 3789 if (!atomic_read(&fs_info->scrubs_running)) { 3790 mutex_unlock(&fs_info->scrub_lock); 3791 return -ENOTCONN; 3792 } 3793 3794 atomic_inc(&fs_info->scrub_cancel_req); 3795 while (atomic_read(&fs_info->scrubs_running)) { 3796 mutex_unlock(&fs_info->scrub_lock); 3797 wait_event(fs_info->scrub_pause_wait, 3798 atomic_read(&fs_info->scrubs_running) == 0); 3799 mutex_lock(&fs_info->scrub_lock); 3800 } 3801 atomic_dec(&fs_info->scrub_cancel_req); 3802 mutex_unlock(&fs_info->scrub_lock); 3803 3804 return 0; 3805 } 3806 3807 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info, 3808 struct btrfs_device *dev) 3809 { 3810 struct scrub_ctx *sctx; 3811 3812 mutex_lock(&fs_info->scrub_lock); 3813 sctx = dev->scrub_device; 3814 if (!sctx) { 3815 mutex_unlock(&fs_info->scrub_lock); 3816 return -ENOTCONN; 3817 } 3818 atomic_inc(&sctx->cancel_req); 3819 while (dev->scrub_device) { 3820 mutex_unlock(&fs_info->scrub_lock); 3821 wait_event(fs_info->scrub_pause_wait, 3822 dev->scrub_device == NULL); 3823 mutex_lock(&fs_info->scrub_lock); 3824 } 3825 mutex_unlock(&fs_info->scrub_lock); 3826 3827 return 0; 3828 } 3829 3830 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid, 3831 struct btrfs_scrub_progress *progress) 3832 { 3833 struct btrfs_device *dev; 3834 struct scrub_ctx *sctx = NULL; 3835 3836 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3837 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL); 3838 if (dev) 3839 sctx = dev->scrub_device; 3840 if (sctx) 3841 memcpy(progress, &sctx->stat, sizeof(*progress)); 3842 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3843 3844 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 3845 } 3846 3847 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 3848 u64 extent_logical, u64 extent_len, 3849 u64 *extent_physical, 3850 struct btrfs_device **extent_dev, 3851 int *extent_mirror_num) 3852 { 3853 u64 mapped_length; 3854 struct btrfs_bio *bbio = NULL; 3855 int ret; 3856 3857 mapped_length = extent_len; 3858 ret = btrfs_map_block(fs_info, READ, extent_logical, 3859 &mapped_length, &bbio, 0); 3860 if (ret || !bbio || mapped_length < extent_len || 3861 !bbio->stripes[0].dev->bdev) { 3862 btrfs_put_bbio(bbio); 3863 return; 3864 } 3865 3866 *extent_physical = bbio->stripes[0].physical; 3867 *extent_mirror_num = bbio->mirror_num; 3868 *extent_dev = bbio->stripes[0].dev; 3869 btrfs_put_bbio(bbio); 3870 } 3871 3872 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx, 3873 struct scrub_wr_ctx *wr_ctx, 3874 struct btrfs_fs_info *fs_info, 3875 struct btrfs_device *dev, 3876 int is_dev_replace) 3877 { 3878 WARN_ON(wr_ctx->wr_curr_bio != NULL); 3879 3880 mutex_init(&wr_ctx->wr_lock); 3881 wr_ctx->wr_curr_bio = NULL; 3882 if (!is_dev_replace) 3883 return 0; 3884 3885 WARN_ON(!dev->bdev); 3886 wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO; 3887 wr_ctx->tgtdev = dev; 3888 atomic_set(&wr_ctx->flush_all_writes, 0); 3889 return 0; 3890 } 3891 3892 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx) 3893 { 3894 mutex_lock(&wr_ctx->wr_lock); 3895 kfree(wr_ctx->wr_curr_bio); 3896 wr_ctx->wr_curr_bio = NULL; 3897 mutex_unlock(&wr_ctx->wr_lock); 3898 } 3899 3900 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 3901 int mirror_num, u64 physical_for_dev_replace) 3902 { 3903 struct scrub_copy_nocow_ctx *nocow_ctx; 3904 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 3905 3906 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS); 3907 if (!nocow_ctx) { 3908 spin_lock(&sctx->stat_lock); 3909 sctx->stat.malloc_errors++; 3910 spin_unlock(&sctx->stat_lock); 3911 return -ENOMEM; 3912 } 3913 3914 scrub_pending_trans_workers_inc(sctx); 3915 3916 nocow_ctx->sctx = sctx; 3917 nocow_ctx->logical = logical; 3918 nocow_ctx->len = len; 3919 nocow_ctx->mirror_num = mirror_num; 3920 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace; 3921 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper, 3922 copy_nocow_pages_worker, NULL, NULL); 3923 INIT_LIST_HEAD(&nocow_ctx->inodes); 3924 btrfs_queue_work(fs_info->scrub_nocow_workers, 3925 &nocow_ctx->work); 3926 3927 return 0; 3928 } 3929 3930 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx) 3931 { 3932 struct scrub_copy_nocow_ctx *nocow_ctx = ctx; 3933 struct scrub_nocow_inode *nocow_inode; 3934 3935 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS); 3936 if (!nocow_inode) 3937 return -ENOMEM; 3938 nocow_inode->inum = inum; 3939 nocow_inode->offset = offset; 3940 nocow_inode->root = root; 3941 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes); 3942 return 0; 3943 } 3944 3945 #define COPY_COMPLETE 1 3946 3947 static void copy_nocow_pages_worker(struct btrfs_work *work) 3948 { 3949 struct scrub_copy_nocow_ctx *nocow_ctx = 3950 container_of(work, struct scrub_copy_nocow_ctx, work); 3951 struct scrub_ctx *sctx = nocow_ctx->sctx; 3952 u64 logical = nocow_ctx->logical; 3953 u64 len = nocow_ctx->len; 3954 int mirror_num = nocow_ctx->mirror_num; 3955 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 3956 int ret; 3957 struct btrfs_trans_handle *trans = NULL; 3958 struct btrfs_fs_info *fs_info; 3959 struct btrfs_path *path; 3960 struct btrfs_root *root; 3961 int not_written = 0; 3962 3963 fs_info = sctx->dev_root->fs_info; 3964 root = fs_info->extent_root; 3965 3966 path = btrfs_alloc_path(); 3967 if (!path) { 3968 spin_lock(&sctx->stat_lock); 3969 sctx->stat.malloc_errors++; 3970 spin_unlock(&sctx->stat_lock); 3971 not_written = 1; 3972 goto out; 3973 } 3974 3975 trans = btrfs_join_transaction(root); 3976 if (IS_ERR(trans)) { 3977 not_written = 1; 3978 goto out; 3979 } 3980 3981 ret = iterate_inodes_from_logical(logical, fs_info, path, 3982 record_inode_for_nocow, nocow_ctx); 3983 if (ret != 0 && ret != -ENOENT) { 3984 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, " 3985 "phys %llu, len %llu, mir %u, ret %d", 3986 logical, physical_for_dev_replace, len, mirror_num, 3987 ret); 3988 not_written = 1; 3989 goto out; 3990 } 3991 3992 btrfs_end_transaction(trans, root); 3993 trans = NULL; 3994 while (!list_empty(&nocow_ctx->inodes)) { 3995 struct scrub_nocow_inode *entry; 3996 entry = list_first_entry(&nocow_ctx->inodes, 3997 struct scrub_nocow_inode, 3998 list); 3999 list_del_init(&entry->list); 4000 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset, 4001 entry->root, nocow_ctx); 4002 kfree(entry); 4003 if (ret == COPY_COMPLETE) { 4004 ret = 0; 4005 break; 4006 } else if (ret) { 4007 break; 4008 } 4009 } 4010 out: 4011 while (!list_empty(&nocow_ctx->inodes)) { 4012 struct scrub_nocow_inode *entry; 4013 entry = list_first_entry(&nocow_ctx->inodes, 4014 struct scrub_nocow_inode, 4015 list); 4016 list_del_init(&entry->list); 4017 kfree(entry); 4018 } 4019 if (trans && !IS_ERR(trans)) 4020 btrfs_end_transaction(trans, root); 4021 if (not_written) 4022 btrfs_dev_replace_stats_inc(&fs_info->dev_replace. 4023 num_uncorrectable_read_errors); 4024 4025 btrfs_free_path(path); 4026 kfree(nocow_ctx); 4027 4028 scrub_pending_trans_workers_dec(sctx); 4029 } 4030 4031 static int check_extent_to_block(struct inode *inode, u64 start, u64 len, 4032 u64 logical) 4033 { 4034 struct extent_state *cached_state = NULL; 4035 struct btrfs_ordered_extent *ordered; 4036 struct extent_io_tree *io_tree; 4037 struct extent_map *em; 4038 u64 lockstart = start, lockend = start + len - 1; 4039 int ret = 0; 4040 4041 io_tree = &BTRFS_I(inode)->io_tree; 4042 4043 lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state); 4044 ordered = btrfs_lookup_ordered_range(inode, lockstart, len); 4045 if (ordered) { 4046 btrfs_put_ordered_extent(ordered); 4047 ret = 1; 4048 goto out_unlock; 4049 } 4050 4051 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 4052 if (IS_ERR(em)) { 4053 ret = PTR_ERR(em); 4054 goto out_unlock; 4055 } 4056 4057 /* 4058 * This extent does not actually cover the logical extent anymore, 4059 * move on to the next inode. 4060 */ 4061 if (em->block_start > logical || 4062 em->block_start + em->block_len < logical + len) { 4063 free_extent_map(em); 4064 ret = 1; 4065 goto out_unlock; 4066 } 4067 free_extent_map(em); 4068 4069 out_unlock: 4070 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state, 4071 GFP_NOFS); 4072 return ret; 4073 } 4074 4075 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 4076 struct scrub_copy_nocow_ctx *nocow_ctx) 4077 { 4078 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info; 4079 struct btrfs_key key; 4080 struct inode *inode; 4081 struct page *page; 4082 struct btrfs_root *local_root; 4083 struct extent_io_tree *io_tree; 4084 u64 physical_for_dev_replace; 4085 u64 nocow_ctx_logical; 4086 u64 len = nocow_ctx->len; 4087 unsigned long index; 4088 int srcu_index; 4089 int ret = 0; 4090 int err = 0; 4091 4092 key.objectid = root; 4093 key.type = BTRFS_ROOT_ITEM_KEY; 4094 key.offset = (u64)-1; 4095 4096 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 4097 4098 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 4099 if (IS_ERR(local_root)) { 4100 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 4101 return PTR_ERR(local_root); 4102 } 4103 4104 key.type = BTRFS_INODE_ITEM_KEY; 4105 key.objectid = inum; 4106 key.offset = 0; 4107 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 4108 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 4109 if (IS_ERR(inode)) 4110 return PTR_ERR(inode); 4111 4112 /* Avoid truncate/dio/punch hole.. */ 4113 mutex_lock(&inode->i_mutex); 4114 inode_dio_wait(inode); 4115 4116 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 4117 io_tree = &BTRFS_I(inode)->io_tree; 4118 nocow_ctx_logical = nocow_ctx->logical; 4119 4120 ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical); 4121 if (ret) { 4122 ret = ret > 0 ? 0 : ret; 4123 goto out; 4124 } 4125 4126 while (len >= PAGE_CACHE_SIZE) { 4127 index = offset >> PAGE_CACHE_SHIFT; 4128 again: 4129 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 4130 if (!page) { 4131 btrfs_err(fs_info, "find_or_create_page() failed"); 4132 ret = -ENOMEM; 4133 goto out; 4134 } 4135 4136 if (PageUptodate(page)) { 4137 if (PageDirty(page)) 4138 goto next_page; 4139 } else { 4140 ClearPageError(page); 4141 err = extent_read_full_page(io_tree, page, 4142 btrfs_get_extent, 4143 nocow_ctx->mirror_num); 4144 if (err) { 4145 ret = err; 4146 goto next_page; 4147 } 4148 4149 lock_page(page); 4150 /* 4151 * If the page has been remove from the page cache, 4152 * the data on it is meaningless, because it may be 4153 * old one, the new data may be written into the new 4154 * page in the page cache. 4155 */ 4156 if (page->mapping != inode->i_mapping) { 4157 unlock_page(page); 4158 page_cache_release(page); 4159 goto again; 4160 } 4161 if (!PageUptodate(page)) { 4162 ret = -EIO; 4163 goto next_page; 4164 } 4165 } 4166 4167 ret = check_extent_to_block(inode, offset, len, 4168 nocow_ctx_logical); 4169 if (ret) { 4170 ret = ret > 0 ? 0 : ret; 4171 goto next_page; 4172 } 4173 4174 err = write_page_nocow(nocow_ctx->sctx, 4175 physical_for_dev_replace, page); 4176 if (err) 4177 ret = err; 4178 next_page: 4179 unlock_page(page); 4180 page_cache_release(page); 4181 4182 if (ret) 4183 break; 4184 4185 offset += PAGE_CACHE_SIZE; 4186 physical_for_dev_replace += PAGE_CACHE_SIZE; 4187 nocow_ctx_logical += PAGE_CACHE_SIZE; 4188 len -= PAGE_CACHE_SIZE; 4189 } 4190 ret = COPY_COMPLETE; 4191 out: 4192 mutex_unlock(&inode->i_mutex); 4193 iput(inode); 4194 return ret; 4195 } 4196 4197 static int write_page_nocow(struct scrub_ctx *sctx, 4198 u64 physical_for_dev_replace, struct page *page) 4199 { 4200 struct bio *bio; 4201 struct btrfs_device *dev; 4202 int ret; 4203 4204 dev = sctx->wr_ctx.tgtdev; 4205 if (!dev) 4206 return -EIO; 4207 if (!dev->bdev) { 4208 printk_ratelimited(KERN_WARNING 4209 "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n"); 4210 return -EIO; 4211 } 4212 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 4213 if (!bio) { 4214 spin_lock(&sctx->stat_lock); 4215 sctx->stat.malloc_errors++; 4216 spin_unlock(&sctx->stat_lock); 4217 return -ENOMEM; 4218 } 4219 bio->bi_iter.bi_size = 0; 4220 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9; 4221 bio->bi_bdev = dev->bdev; 4222 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); 4223 if (ret != PAGE_CACHE_SIZE) { 4224 leave_with_eio: 4225 bio_put(bio); 4226 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 4227 return -EIO; 4228 } 4229 4230 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) 4231 goto leave_with_eio; 4232 4233 bio_put(bio); 4234 return 0; 4235 } 4236