1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/ratelimit.h> 8 #include <linux/sched/mm.h> 9 #include <crypto/hash.h> 10 #include "ctree.h" 11 #include "discard.h" 12 #include "volumes.h" 13 #include "disk-io.h" 14 #include "ordered-data.h" 15 #include "transaction.h" 16 #include "backref.h" 17 #include "extent_io.h" 18 #include "dev-replace.h" 19 #include "raid56.h" 20 #include "block-group.h" 21 #include "zoned.h" 22 #include "fs.h" 23 #include "accessors.h" 24 #include "file-item.h" 25 #include "scrub.h" 26 #include "raid-stripe-tree.h" 27 28 /* 29 * This is only the first step towards a full-features scrub. It reads all 30 * extent and super block and verifies the checksums. In case a bad checksum 31 * is found or the extent cannot be read, good data will be written back if 32 * any can be found. 33 * 34 * Future enhancements: 35 * - In case an unrepairable extent is encountered, track which files are 36 * affected and report them 37 * - track and record media errors, throw out bad devices 38 * - add a mode to also read unallocated space 39 */ 40 41 struct scrub_ctx; 42 43 /* 44 * The following value only influences the performance. 45 * 46 * This determines how many stripes would be submitted in one go, 47 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP). 48 */ 49 #define SCRUB_STRIPES_PER_GROUP 8 50 51 /* 52 * How many groups we have for each sctx. 53 * 54 * This would be 8M per device, the same value as the old scrub in-flight bios 55 * size limit. 56 */ 57 #define SCRUB_GROUPS_PER_SCTX 16 58 59 #define SCRUB_TOTAL_STRIPES (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP) 60 61 /* 62 * The following value times PAGE_SIZE needs to be large enough to match the 63 * largest node/leaf/sector size that shall be supported. 64 */ 65 #define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K) 66 67 /* Represent one sector and its needed info to verify the content. */ 68 struct scrub_sector_verification { 69 bool is_metadata; 70 71 union { 72 /* 73 * Csum pointer for data csum verification. Should point to a 74 * sector csum inside scrub_stripe::csums. 75 * 76 * NULL if this data sector has no csum. 77 */ 78 u8 *csum; 79 80 /* 81 * Extra info for metadata verification. All sectors inside a 82 * tree block share the same generation. 83 */ 84 u64 generation; 85 }; 86 }; 87 88 enum scrub_stripe_flags { 89 /* Set when @mirror_num, @dev, @physical and @logical are set. */ 90 SCRUB_STRIPE_FLAG_INITIALIZED, 91 92 /* Set when the read-repair is finished. */ 93 SCRUB_STRIPE_FLAG_REPAIR_DONE, 94 95 /* 96 * Set for data stripes if it's triggered from P/Q stripe. 97 * During such scrub, we should not report errors in data stripes, nor 98 * update the accounting. 99 */ 100 SCRUB_STRIPE_FLAG_NO_REPORT, 101 }; 102 103 #define SCRUB_STRIPE_PAGES (BTRFS_STRIPE_LEN / PAGE_SIZE) 104 105 /* 106 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN. 107 */ 108 struct scrub_stripe { 109 struct scrub_ctx *sctx; 110 struct btrfs_block_group *bg; 111 112 struct page *pages[SCRUB_STRIPE_PAGES]; 113 struct scrub_sector_verification *sectors; 114 115 struct btrfs_device *dev; 116 u64 logical; 117 u64 physical; 118 119 u16 mirror_num; 120 121 /* Should be BTRFS_STRIPE_LEN / sectorsize. */ 122 u16 nr_sectors; 123 124 /* 125 * How many data/meta extents are in this stripe. Only for scrub status 126 * reporting purposes. 127 */ 128 u16 nr_data_extents; 129 u16 nr_meta_extents; 130 131 atomic_t pending_io; 132 wait_queue_head_t io_wait; 133 wait_queue_head_t repair_wait; 134 135 /* 136 * Indicate the states of the stripe. Bits are defined in 137 * scrub_stripe_flags enum. 138 */ 139 unsigned long state; 140 141 /* Indicate which sectors are covered by extent items. */ 142 unsigned long extent_sector_bitmap; 143 144 /* 145 * The errors hit during the initial read of the stripe. 146 * 147 * Would be utilized for error reporting and repair. 148 * 149 * The remaining init_nr_* records the number of errors hit, only used 150 * by error reporting. 151 */ 152 unsigned long init_error_bitmap; 153 unsigned int init_nr_io_errors; 154 unsigned int init_nr_csum_errors; 155 unsigned int init_nr_meta_errors; 156 157 /* 158 * The following error bitmaps are all for the current status. 159 * Every time we submit a new read, these bitmaps may be updated. 160 * 161 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap; 162 * 163 * IO and csum errors can happen for both metadata and data. 164 */ 165 unsigned long error_bitmap; 166 unsigned long io_error_bitmap; 167 unsigned long csum_error_bitmap; 168 unsigned long meta_error_bitmap; 169 170 /* For writeback (repair or replace) error reporting. */ 171 unsigned long write_error_bitmap; 172 173 /* Writeback can be concurrent, thus we need to protect the bitmap. */ 174 spinlock_t write_error_lock; 175 176 /* 177 * Checksum for the whole stripe if this stripe is inside a data block 178 * group. 179 */ 180 u8 *csums; 181 182 struct work_struct work; 183 }; 184 185 struct scrub_ctx { 186 struct scrub_stripe stripes[SCRUB_TOTAL_STRIPES]; 187 struct scrub_stripe *raid56_data_stripes; 188 struct btrfs_fs_info *fs_info; 189 struct btrfs_path extent_path; 190 struct btrfs_path csum_path; 191 int first_free; 192 int cur_stripe; 193 atomic_t cancel_req; 194 int readonly; 195 196 /* State of IO submission throttling affecting the associated device */ 197 ktime_t throttle_deadline; 198 u64 throttle_sent; 199 200 int is_dev_replace; 201 u64 write_pointer; 202 203 struct mutex wr_lock; 204 struct btrfs_device *wr_tgtdev; 205 206 /* 207 * statistics 208 */ 209 struct btrfs_scrub_progress stat; 210 spinlock_t stat_lock; 211 212 /* 213 * Use a ref counter to avoid use-after-free issues. Scrub workers 214 * decrement bios_in_flight and workers_pending and then do a wakeup 215 * on the list_wait wait queue. We must ensure the main scrub task 216 * doesn't free the scrub context before or while the workers are 217 * doing the wakeup() call. 218 */ 219 refcount_t refs; 220 }; 221 222 struct scrub_warning { 223 struct btrfs_path *path; 224 u64 extent_item_size; 225 const char *errstr; 226 u64 physical; 227 u64 logical; 228 struct btrfs_device *dev; 229 }; 230 231 static void release_scrub_stripe(struct scrub_stripe *stripe) 232 { 233 if (!stripe) 234 return; 235 236 for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) { 237 if (stripe->pages[i]) 238 __free_page(stripe->pages[i]); 239 stripe->pages[i] = NULL; 240 } 241 kfree(stripe->sectors); 242 kfree(stripe->csums); 243 stripe->sectors = NULL; 244 stripe->csums = NULL; 245 stripe->sctx = NULL; 246 stripe->state = 0; 247 } 248 249 static int init_scrub_stripe(struct btrfs_fs_info *fs_info, 250 struct scrub_stripe *stripe) 251 { 252 int ret; 253 254 memset(stripe, 0, sizeof(*stripe)); 255 256 stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; 257 stripe->state = 0; 258 259 init_waitqueue_head(&stripe->io_wait); 260 init_waitqueue_head(&stripe->repair_wait); 261 atomic_set(&stripe->pending_io, 0); 262 spin_lock_init(&stripe->write_error_lock); 263 264 ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, 0); 265 if (ret < 0) 266 goto error; 267 268 stripe->sectors = kcalloc(stripe->nr_sectors, 269 sizeof(struct scrub_sector_verification), 270 GFP_KERNEL); 271 if (!stripe->sectors) 272 goto error; 273 274 stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits, 275 fs_info->csum_size, GFP_KERNEL); 276 if (!stripe->csums) 277 goto error; 278 return 0; 279 error: 280 release_scrub_stripe(stripe); 281 return -ENOMEM; 282 } 283 284 static void wait_scrub_stripe_io(struct scrub_stripe *stripe) 285 { 286 wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0); 287 } 288 289 static void scrub_put_ctx(struct scrub_ctx *sctx); 290 291 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 292 { 293 while (atomic_read(&fs_info->scrub_pause_req)) { 294 mutex_unlock(&fs_info->scrub_lock); 295 wait_event(fs_info->scrub_pause_wait, 296 atomic_read(&fs_info->scrub_pause_req) == 0); 297 mutex_lock(&fs_info->scrub_lock); 298 } 299 } 300 301 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 302 { 303 atomic_inc(&fs_info->scrubs_paused); 304 wake_up(&fs_info->scrub_pause_wait); 305 } 306 307 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 308 { 309 mutex_lock(&fs_info->scrub_lock); 310 __scrub_blocked_if_needed(fs_info); 311 atomic_dec(&fs_info->scrubs_paused); 312 mutex_unlock(&fs_info->scrub_lock); 313 314 wake_up(&fs_info->scrub_pause_wait); 315 } 316 317 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 318 { 319 scrub_pause_on(fs_info); 320 scrub_pause_off(fs_info); 321 } 322 323 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 324 { 325 int i; 326 327 if (!sctx) 328 return; 329 330 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) 331 release_scrub_stripe(&sctx->stripes[i]); 332 333 kvfree(sctx); 334 } 335 336 static void scrub_put_ctx(struct scrub_ctx *sctx) 337 { 338 if (refcount_dec_and_test(&sctx->refs)) 339 scrub_free_ctx(sctx); 340 } 341 342 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( 343 struct btrfs_fs_info *fs_info, int is_dev_replace) 344 { 345 struct scrub_ctx *sctx; 346 int i; 347 348 /* Since sctx has inline 128 stripes, it can go beyond 64K easily. Use 349 * kvzalloc(). 350 */ 351 sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL); 352 if (!sctx) 353 goto nomem; 354 refcount_set(&sctx->refs, 1); 355 sctx->is_dev_replace = is_dev_replace; 356 sctx->fs_info = fs_info; 357 sctx->extent_path.search_commit_root = 1; 358 sctx->extent_path.skip_locking = 1; 359 sctx->csum_path.search_commit_root = 1; 360 sctx->csum_path.skip_locking = 1; 361 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) { 362 int ret; 363 364 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]); 365 if (ret < 0) 366 goto nomem; 367 sctx->stripes[i].sctx = sctx; 368 } 369 sctx->first_free = 0; 370 atomic_set(&sctx->cancel_req, 0); 371 372 spin_lock_init(&sctx->stat_lock); 373 sctx->throttle_deadline = 0; 374 375 mutex_init(&sctx->wr_lock); 376 if (is_dev_replace) { 377 WARN_ON(!fs_info->dev_replace.tgtdev); 378 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 379 } 380 381 return sctx; 382 383 nomem: 384 scrub_free_ctx(sctx); 385 return ERR_PTR(-ENOMEM); 386 } 387 388 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 389 u64 root, void *warn_ctx) 390 { 391 u32 nlink; 392 int ret; 393 int i; 394 unsigned nofs_flag; 395 struct extent_buffer *eb; 396 struct btrfs_inode_item *inode_item; 397 struct scrub_warning *swarn = warn_ctx; 398 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 399 struct inode_fs_paths *ipath = NULL; 400 struct btrfs_root *local_root; 401 struct btrfs_key key; 402 403 local_root = btrfs_get_fs_root(fs_info, root, true); 404 if (IS_ERR(local_root)) { 405 ret = PTR_ERR(local_root); 406 goto err; 407 } 408 409 /* 410 * this makes the path point to (inum INODE_ITEM ioff) 411 */ 412 key.objectid = inum; 413 key.type = BTRFS_INODE_ITEM_KEY; 414 key.offset = 0; 415 416 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 417 if (ret) { 418 btrfs_put_root(local_root); 419 btrfs_release_path(swarn->path); 420 goto err; 421 } 422 423 eb = swarn->path->nodes[0]; 424 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 425 struct btrfs_inode_item); 426 nlink = btrfs_inode_nlink(eb, inode_item); 427 btrfs_release_path(swarn->path); 428 429 /* 430 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 431 * uses GFP_NOFS in this context, so we keep it consistent but it does 432 * not seem to be strictly necessary. 433 */ 434 nofs_flag = memalloc_nofs_save(); 435 ipath = init_ipath(4096, local_root, swarn->path); 436 memalloc_nofs_restore(nofs_flag); 437 if (IS_ERR(ipath)) { 438 btrfs_put_root(local_root); 439 ret = PTR_ERR(ipath); 440 ipath = NULL; 441 goto err; 442 } 443 ret = paths_from_inode(inum, ipath); 444 445 if (ret < 0) 446 goto err; 447 448 /* 449 * we deliberately ignore the bit ipath might have been too small to 450 * hold all of the paths here 451 */ 452 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 453 btrfs_warn_in_rcu(fs_info, 454 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)", 455 swarn->errstr, swarn->logical, 456 btrfs_dev_name(swarn->dev), 457 swarn->physical, 458 root, inum, offset, 459 fs_info->sectorsize, nlink, 460 (char *)(unsigned long)ipath->fspath->val[i]); 461 462 btrfs_put_root(local_root); 463 free_ipath(ipath); 464 return 0; 465 466 err: 467 btrfs_warn_in_rcu(fs_info, 468 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 469 swarn->errstr, swarn->logical, 470 btrfs_dev_name(swarn->dev), 471 swarn->physical, 472 root, inum, offset, ret); 473 474 free_ipath(ipath); 475 return 0; 476 } 477 478 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev, 479 bool is_super, u64 logical, u64 physical) 480 { 481 struct btrfs_fs_info *fs_info = dev->fs_info; 482 struct btrfs_path *path; 483 struct btrfs_key found_key; 484 struct extent_buffer *eb; 485 struct btrfs_extent_item *ei; 486 struct scrub_warning swarn; 487 u64 flags = 0; 488 u32 item_size; 489 int ret; 490 491 /* Super block error, no need to search extent tree. */ 492 if (is_super) { 493 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu", 494 errstr, btrfs_dev_name(dev), physical); 495 return; 496 } 497 path = btrfs_alloc_path(); 498 if (!path) 499 return; 500 501 swarn.physical = physical; 502 swarn.logical = logical; 503 swarn.errstr = errstr; 504 swarn.dev = NULL; 505 506 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 507 &flags); 508 if (ret < 0) 509 goto out; 510 511 swarn.extent_item_size = found_key.offset; 512 513 eb = path->nodes[0]; 514 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 515 item_size = btrfs_item_size(eb, path->slots[0]); 516 517 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 518 unsigned long ptr = 0; 519 u8 ref_level; 520 u64 ref_root; 521 522 while (true) { 523 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 524 item_size, &ref_root, 525 &ref_level); 526 if (ret < 0) { 527 btrfs_warn(fs_info, 528 "failed to resolve tree backref for logical %llu: %d", 529 swarn.logical, ret); 530 break; 531 } 532 if (ret > 0) 533 break; 534 btrfs_warn_in_rcu(fs_info, 535 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 536 errstr, swarn.logical, btrfs_dev_name(dev), 537 swarn.physical, (ref_level ? "node" : "leaf"), 538 ref_level, ref_root); 539 } 540 btrfs_release_path(path); 541 } else { 542 struct btrfs_backref_walk_ctx ctx = { 0 }; 543 544 btrfs_release_path(path); 545 546 ctx.bytenr = found_key.objectid; 547 ctx.extent_item_pos = swarn.logical - found_key.objectid; 548 ctx.fs_info = fs_info; 549 550 swarn.path = path; 551 swarn.dev = dev; 552 553 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn); 554 } 555 556 out: 557 btrfs_free_path(path); 558 } 559 560 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) 561 { 562 int ret = 0; 563 u64 length; 564 565 if (!btrfs_is_zoned(sctx->fs_info)) 566 return 0; 567 568 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) 569 return 0; 570 571 if (sctx->write_pointer < physical) { 572 length = physical - sctx->write_pointer; 573 574 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev, 575 sctx->write_pointer, length); 576 if (!ret) 577 sctx->write_pointer = physical; 578 } 579 return ret; 580 } 581 582 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr) 583 { 584 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 585 int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT; 586 587 return stripe->pages[page_index]; 588 } 589 590 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe, 591 int sector_nr) 592 { 593 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 594 595 return offset_in_page(sector_nr << fs_info->sectorsize_bits); 596 } 597 598 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr) 599 { 600 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 601 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 602 const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits); 603 const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr); 604 const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr); 605 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 606 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 607 u8 calculated_csum[BTRFS_CSUM_SIZE]; 608 struct btrfs_header *header; 609 610 /* 611 * Here we don't have a good way to attach the pages (and subpages) 612 * to a dummy extent buffer, thus we have to directly grab the members 613 * from pages. 614 */ 615 header = (struct btrfs_header *)(page_address(first_page) + first_off); 616 memcpy(on_disk_csum, header->csum, fs_info->csum_size); 617 618 if (logical != btrfs_stack_header_bytenr(header)) { 619 bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree); 620 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 621 btrfs_warn_rl(fs_info, 622 "tree block %llu mirror %u has bad bytenr, has %llu want %llu", 623 logical, stripe->mirror_num, 624 btrfs_stack_header_bytenr(header), logical); 625 return; 626 } 627 if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid, 628 BTRFS_FSID_SIZE) != 0) { 629 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 630 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 631 btrfs_warn_rl(fs_info, 632 "tree block %llu mirror %u has bad fsid, has %pU want %pU", 633 logical, stripe->mirror_num, 634 header->fsid, fs_info->fs_devices->fsid); 635 return; 636 } 637 if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid, 638 BTRFS_UUID_SIZE) != 0) { 639 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 640 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 641 btrfs_warn_rl(fs_info, 642 "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU", 643 logical, stripe->mirror_num, 644 header->chunk_tree_uuid, fs_info->chunk_tree_uuid); 645 return; 646 } 647 648 /* Now check tree block csum. */ 649 shash->tfm = fs_info->csum_shash; 650 crypto_shash_init(shash); 651 crypto_shash_update(shash, page_address(first_page) + first_off + 652 BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE); 653 654 for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) { 655 struct page *page = scrub_stripe_get_page(stripe, i); 656 unsigned int page_off = scrub_stripe_get_page_offset(stripe, i); 657 658 crypto_shash_update(shash, page_address(page) + page_off, 659 fs_info->sectorsize); 660 } 661 662 crypto_shash_final(shash, calculated_csum); 663 if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) { 664 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 665 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 666 btrfs_warn_rl(fs_info, 667 "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT, 668 logical, stripe->mirror_num, 669 CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum), 670 CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum)); 671 return; 672 } 673 if (stripe->sectors[sector_nr].generation != 674 btrfs_stack_header_generation(header)) { 675 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 676 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 677 btrfs_warn_rl(fs_info, 678 "tree block %llu mirror %u has bad generation, has %llu want %llu", 679 logical, stripe->mirror_num, 680 btrfs_stack_header_generation(header), 681 stripe->sectors[sector_nr].generation); 682 return; 683 } 684 bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree); 685 bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree); 686 bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 687 } 688 689 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr) 690 { 691 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 692 struct scrub_sector_verification *sector = &stripe->sectors[sector_nr]; 693 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 694 struct page *page = scrub_stripe_get_page(stripe, sector_nr); 695 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr); 696 u8 csum_buf[BTRFS_CSUM_SIZE]; 697 int ret; 698 699 ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors); 700 701 /* Sector not utilized, skip it. */ 702 if (!test_bit(sector_nr, &stripe->extent_sector_bitmap)) 703 return; 704 705 /* IO error, no need to check. */ 706 if (test_bit(sector_nr, &stripe->io_error_bitmap)) 707 return; 708 709 /* Metadata, verify the full tree block. */ 710 if (sector->is_metadata) { 711 /* 712 * Check if the tree block crosses the stripe boundary. If 713 * crossed the boundary, we cannot verify it but only give a 714 * warning. 715 * 716 * This can only happen on a very old filesystem where chunks 717 * are not ensured to be stripe aligned. 718 */ 719 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) { 720 btrfs_warn_rl(fs_info, 721 "tree block at %llu crosses stripe boundary %llu", 722 stripe->logical + 723 (sector_nr << fs_info->sectorsize_bits), 724 stripe->logical); 725 return; 726 } 727 scrub_verify_one_metadata(stripe, sector_nr); 728 return; 729 } 730 731 /* 732 * Data is easier, we just verify the data csum (if we have it). For 733 * cases without csum, we have no other choice but to trust it. 734 */ 735 if (!sector->csum) { 736 clear_bit(sector_nr, &stripe->error_bitmap); 737 return; 738 } 739 740 ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum); 741 if (ret < 0) { 742 set_bit(sector_nr, &stripe->csum_error_bitmap); 743 set_bit(sector_nr, &stripe->error_bitmap); 744 } else { 745 clear_bit(sector_nr, &stripe->csum_error_bitmap); 746 clear_bit(sector_nr, &stripe->error_bitmap); 747 } 748 } 749 750 /* Verify specified sectors of a stripe. */ 751 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap) 752 { 753 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 754 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 755 int sector_nr; 756 757 for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) { 758 scrub_verify_one_sector(stripe, sector_nr); 759 if (stripe->sectors[sector_nr].is_metadata) 760 sector_nr += sectors_per_tree - 1; 761 } 762 } 763 764 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec) 765 { 766 int i; 767 768 for (i = 0; i < stripe->nr_sectors; i++) { 769 if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page && 770 scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset) 771 break; 772 } 773 ASSERT(i < stripe->nr_sectors); 774 return i; 775 } 776 777 /* 778 * Repair read is different to the regular read: 779 * 780 * - Only reads the failed sectors 781 * - May have extra blocksize limits 782 */ 783 static void scrub_repair_read_endio(struct btrfs_bio *bbio) 784 { 785 struct scrub_stripe *stripe = bbio->private; 786 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 787 struct bio_vec *bvec; 788 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); 789 u32 bio_size = 0; 790 int i; 791 792 ASSERT(sector_nr < stripe->nr_sectors); 793 794 bio_for_each_bvec_all(bvec, &bbio->bio, i) 795 bio_size += bvec->bv_len; 796 797 if (bbio->bio.bi_status) { 798 bitmap_set(&stripe->io_error_bitmap, sector_nr, 799 bio_size >> fs_info->sectorsize_bits); 800 bitmap_set(&stripe->error_bitmap, sector_nr, 801 bio_size >> fs_info->sectorsize_bits); 802 } else { 803 bitmap_clear(&stripe->io_error_bitmap, sector_nr, 804 bio_size >> fs_info->sectorsize_bits); 805 } 806 bio_put(&bbio->bio); 807 if (atomic_dec_and_test(&stripe->pending_io)) 808 wake_up(&stripe->io_wait); 809 } 810 811 static int calc_next_mirror(int mirror, int num_copies) 812 { 813 ASSERT(mirror <= num_copies); 814 return (mirror + 1 > num_copies) ? 1 : mirror + 1; 815 } 816 817 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe, 818 int mirror, int blocksize, bool wait) 819 { 820 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 821 struct btrfs_bio *bbio = NULL; 822 const unsigned long old_error_bitmap = stripe->error_bitmap; 823 int i; 824 825 ASSERT(stripe->mirror_num >= 1); 826 ASSERT(atomic_read(&stripe->pending_io) == 0); 827 828 for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) { 829 struct page *page; 830 int pgoff; 831 int ret; 832 833 page = scrub_stripe_get_page(stripe, i); 834 pgoff = scrub_stripe_get_page_offset(stripe, i); 835 836 /* The current sector cannot be merged, submit the bio. */ 837 if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) || 838 bbio->bio.bi_iter.bi_size >= blocksize)) { 839 ASSERT(bbio->bio.bi_iter.bi_size); 840 atomic_inc(&stripe->pending_io); 841 btrfs_submit_bio(bbio, mirror); 842 if (wait) 843 wait_scrub_stripe_io(stripe); 844 bbio = NULL; 845 } 846 847 if (!bbio) { 848 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ, 849 fs_info, scrub_repair_read_endio, stripe); 850 bbio->bio.bi_iter.bi_sector = (stripe->logical + 851 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT; 852 } 853 854 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); 855 ASSERT(ret == fs_info->sectorsize); 856 } 857 if (bbio) { 858 ASSERT(bbio->bio.bi_iter.bi_size); 859 atomic_inc(&stripe->pending_io); 860 btrfs_submit_bio(bbio, mirror); 861 if (wait) 862 wait_scrub_stripe_io(stripe); 863 } 864 } 865 866 static void scrub_stripe_report_errors(struct scrub_ctx *sctx, 867 struct scrub_stripe *stripe) 868 { 869 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 870 DEFAULT_RATELIMIT_BURST); 871 struct btrfs_fs_info *fs_info = sctx->fs_info; 872 struct btrfs_device *dev = NULL; 873 u64 physical = 0; 874 int nr_data_sectors = 0; 875 int nr_meta_sectors = 0; 876 int nr_nodatacsum_sectors = 0; 877 int nr_repaired_sectors = 0; 878 int sector_nr; 879 880 if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state)) 881 return; 882 883 /* 884 * Init needed infos for error reporting. 885 * 886 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio() 887 * thus no need for dev/physical, error reporting still needs dev and physical. 888 */ 889 if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) { 890 u64 mapped_len = fs_info->sectorsize; 891 struct btrfs_io_context *bioc = NULL; 892 int stripe_index = stripe->mirror_num - 1; 893 int ret; 894 895 /* For scrub, our mirror_num should always start at 1. */ 896 ASSERT(stripe->mirror_num >= 1); 897 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 898 stripe->logical, &mapped_len, &bioc, 899 NULL, NULL); 900 /* 901 * If we failed, dev will be NULL, and later detailed reports 902 * will just be skipped. 903 */ 904 if (ret < 0) 905 goto skip; 906 physical = bioc->stripes[stripe_index].physical; 907 dev = bioc->stripes[stripe_index].dev; 908 btrfs_put_bioc(bioc); 909 } 910 911 skip: 912 for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) { 913 bool repaired = false; 914 915 if (stripe->sectors[sector_nr].is_metadata) { 916 nr_meta_sectors++; 917 } else { 918 nr_data_sectors++; 919 if (!stripe->sectors[sector_nr].csum) 920 nr_nodatacsum_sectors++; 921 } 922 923 if (test_bit(sector_nr, &stripe->init_error_bitmap) && 924 !test_bit(sector_nr, &stripe->error_bitmap)) { 925 nr_repaired_sectors++; 926 repaired = true; 927 } 928 929 /* Good sector from the beginning, nothing need to be done. */ 930 if (!test_bit(sector_nr, &stripe->init_error_bitmap)) 931 continue; 932 933 /* 934 * Report error for the corrupted sectors. If repaired, just 935 * output the message of repaired message. 936 */ 937 if (repaired) { 938 if (dev) { 939 btrfs_err_rl_in_rcu(fs_info, 940 "fixed up error at logical %llu on dev %s physical %llu", 941 stripe->logical, btrfs_dev_name(dev), 942 physical); 943 } else { 944 btrfs_err_rl_in_rcu(fs_info, 945 "fixed up error at logical %llu on mirror %u", 946 stripe->logical, stripe->mirror_num); 947 } 948 continue; 949 } 950 951 /* The remaining are all for unrepaired. */ 952 if (dev) { 953 btrfs_err_rl_in_rcu(fs_info, 954 "unable to fixup (regular) error at logical %llu on dev %s physical %llu", 955 stripe->logical, btrfs_dev_name(dev), 956 physical); 957 } else { 958 btrfs_err_rl_in_rcu(fs_info, 959 "unable to fixup (regular) error at logical %llu on mirror %u", 960 stripe->logical, stripe->mirror_num); 961 } 962 963 if (test_bit(sector_nr, &stripe->io_error_bitmap)) 964 if (__ratelimit(&rs) && dev) 965 scrub_print_common_warning("i/o error", dev, false, 966 stripe->logical, physical); 967 if (test_bit(sector_nr, &stripe->csum_error_bitmap)) 968 if (__ratelimit(&rs) && dev) 969 scrub_print_common_warning("checksum error", dev, false, 970 stripe->logical, physical); 971 if (test_bit(sector_nr, &stripe->meta_error_bitmap)) 972 if (__ratelimit(&rs) && dev) 973 scrub_print_common_warning("header error", dev, false, 974 stripe->logical, physical); 975 } 976 977 spin_lock(&sctx->stat_lock); 978 sctx->stat.data_extents_scrubbed += stripe->nr_data_extents; 979 sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents; 980 sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits; 981 sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits; 982 sctx->stat.no_csum += nr_nodatacsum_sectors; 983 sctx->stat.read_errors += stripe->init_nr_io_errors; 984 sctx->stat.csum_errors += stripe->init_nr_csum_errors; 985 sctx->stat.verify_errors += stripe->init_nr_meta_errors; 986 sctx->stat.uncorrectable_errors += 987 bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors); 988 sctx->stat.corrected_errors += nr_repaired_sectors; 989 spin_unlock(&sctx->stat_lock); 990 } 991 992 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe, 993 unsigned long write_bitmap, bool dev_replace); 994 995 /* 996 * The main entrance for all read related scrub work, including: 997 * 998 * - Wait for the initial read to finish 999 * - Verify and locate any bad sectors 1000 * - Go through the remaining mirrors and try to read as large blocksize as 1001 * possible 1002 * - Go through all mirrors (including the failed mirror) sector-by-sector 1003 * - Submit writeback for repaired sectors 1004 * 1005 * Writeback for dev-replace does not happen here, it needs extra 1006 * synchronization for zoned devices. 1007 */ 1008 static void scrub_stripe_read_repair_worker(struct work_struct *work) 1009 { 1010 struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work); 1011 struct scrub_ctx *sctx = stripe->sctx; 1012 struct btrfs_fs_info *fs_info = sctx->fs_info; 1013 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, 1014 stripe->bg->length); 1015 int mirror; 1016 int i; 1017 1018 ASSERT(stripe->mirror_num > 0); 1019 1020 wait_scrub_stripe_io(stripe); 1021 scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap); 1022 /* Save the initial failed bitmap for later repair and report usage. */ 1023 stripe->init_error_bitmap = stripe->error_bitmap; 1024 stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap, 1025 stripe->nr_sectors); 1026 stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap, 1027 stripe->nr_sectors); 1028 stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap, 1029 stripe->nr_sectors); 1030 1031 if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) 1032 goto out; 1033 1034 /* 1035 * Try all remaining mirrors. 1036 * 1037 * Here we still try to read as large block as possible, as this is 1038 * faster and we have extra safety nets to rely on. 1039 */ 1040 for (mirror = calc_next_mirror(stripe->mirror_num, num_copies); 1041 mirror != stripe->mirror_num; 1042 mirror = calc_next_mirror(mirror, num_copies)) { 1043 const unsigned long old_error_bitmap = stripe->error_bitmap; 1044 1045 scrub_stripe_submit_repair_read(stripe, mirror, 1046 BTRFS_STRIPE_LEN, false); 1047 wait_scrub_stripe_io(stripe); 1048 scrub_verify_one_stripe(stripe, old_error_bitmap); 1049 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) 1050 goto out; 1051 } 1052 1053 /* 1054 * Last safety net, try re-checking all mirrors, including the failed 1055 * one, sector-by-sector. 1056 * 1057 * As if one sector failed the drive's internal csum, the whole read 1058 * containing the offending sector would be marked as error. 1059 * Thus here we do sector-by-sector read. 1060 * 1061 * This can be slow, thus we only try it as the last resort. 1062 */ 1063 1064 for (i = 0, mirror = stripe->mirror_num; 1065 i < num_copies; 1066 i++, mirror = calc_next_mirror(mirror, num_copies)) { 1067 const unsigned long old_error_bitmap = stripe->error_bitmap; 1068 1069 scrub_stripe_submit_repair_read(stripe, mirror, 1070 fs_info->sectorsize, true); 1071 wait_scrub_stripe_io(stripe); 1072 scrub_verify_one_stripe(stripe, old_error_bitmap); 1073 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) 1074 goto out; 1075 } 1076 out: 1077 /* 1078 * Submit the repaired sectors. For zoned case, we cannot do repair 1079 * in-place, but queue the bg to be relocated. 1080 */ 1081 if (btrfs_is_zoned(fs_info)) { 1082 if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) 1083 btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start); 1084 } else if (!sctx->readonly) { 1085 unsigned long repaired; 1086 1087 bitmap_andnot(&repaired, &stripe->init_error_bitmap, 1088 &stripe->error_bitmap, stripe->nr_sectors); 1089 scrub_write_sectors(sctx, stripe, repaired, false); 1090 wait_scrub_stripe_io(stripe); 1091 } 1092 1093 scrub_stripe_report_errors(sctx, stripe); 1094 set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state); 1095 wake_up(&stripe->repair_wait); 1096 } 1097 1098 static void scrub_read_endio(struct btrfs_bio *bbio) 1099 { 1100 struct scrub_stripe *stripe = bbio->private; 1101 1102 if (bbio->bio.bi_status) { 1103 bitmap_set(&stripe->io_error_bitmap, 0, stripe->nr_sectors); 1104 bitmap_set(&stripe->error_bitmap, 0, stripe->nr_sectors); 1105 } else { 1106 bitmap_clear(&stripe->io_error_bitmap, 0, stripe->nr_sectors); 1107 } 1108 bio_put(&bbio->bio); 1109 if (atomic_dec_and_test(&stripe->pending_io)) { 1110 wake_up(&stripe->io_wait); 1111 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker); 1112 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work); 1113 } 1114 } 1115 1116 static void scrub_write_endio(struct btrfs_bio *bbio) 1117 { 1118 struct scrub_stripe *stripe = bbio->private; 1119 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1120 struct bio_vec *bvec; 1121 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); 1122 u32 bio_size = 0; 1123 int i; 1124 1125 bio_for_each_bvec_all(bvec, &bbio->bio, i) 1126 bio_size += bvec->bv_len; 1127 1128 if (bbio->bio.bi_status) { 1129 unsigned long flags; 1130 1131 spin_lock_irqsave(&stripe->write_error_lock, flags); 1132 bitmap_set(&stripe->write_error_bitmap, sector_nr, 1133 bio_size >> fs_info->sectorsize_bits); 1134 spin_unlock_irqrestore(&stripe->write_error_lock, flags); 1135 } 1136 bio_put(&bbio->bio); 1137 1138 if (atomic_dec_and_test(&stripe->pending_io)) 1139 wake_up(&stripe->io_wait); 1140 } 1141 1142 static void scrub_submit_write_bio(struct scrub_ctx *sctx, 1143 struct scrub_stripe *stripe, 1144 struct btrfs_bio *bbio, bool dev_replace) 1145 { 1146 struct btrfs_fs_info *fs_info = sctx->fs_info; 1147 u32 bio_len = bbio->bio.bi_iter.bi_size; 1148 u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) - 1149 stripe->logical; 1150 1151 fill_writer_pointer_gap(sctx, stripe->physical + bio_off); 1152 atomic_inc(&stripe->pending_io); 1153 btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace); 1154 if (!btrfs_is_zoned(fs_info)) 1155 return; 1156 /* 1157 * For zoned writeback, queue depth must be 1, thus we must wait for 1158 * the write to finish before the next write. 1159 */ 1160 wait_scrub_stripe_io(stripe); 1161 1162 /* 1163 * And also need to update the write pointer if write finished 1164 * successfully. 1165 */ 1166 if (!test_bit(bio_off >> fs_info->sectorsize_bits, 1167 &stripe->write_error_bitmap)) 1168 sctx->write_pointer += bio_len; 1169 } 1170 1171 /* 1172 * Submit the write bio(s) for the sectors specified by @write_bitmap. 1173 * 1174 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits: 1175 * 1176 * - Only needs logical bytenr and mirror_num 1177 * Just like the scrub read path 1178 * 1179 * - Would only result in writes to the specified mirror 1180 * Unlike the regular writeback path, which would write back to all stripes 1181 * 1182 * - Handle dev-replace and read-repair writeback differently 1183 */ 1184 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe, 1185 unsigned long write_bitmap, bool dev_replace) 1186 { 1187 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1188 struct btrfs_bio *bbio = NULL; 1189 int sector_nr; 1190 1191 for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) { 1192 struct page *page = scrub_stripe_get_page(stripe, sector_nr); 1193 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr); 1194 int ret; 1195 1196 /* We should only writeback sectors covered by an extent. */ 1197 ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap)); 1198 1199 /* Cannot merge with previous sector, submit the current one. */ 1200 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) { 1201 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace); 1202 bbio = NULL; 1203 } 1204 if (!bbio) { 1205 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE, 1206 fs_info, scrub_write_endio, stripe); 1207 bbio->bio.bi_iter.bi_sector = (stripe->logical + 1208 (sector_nr << fs_info->sectorsize_bits)) >> 1209 SECTOR_SHIFT; 1210 } 1211 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); 1212 ASSERT(ret == fs_info->sectorsize); 1213 } 1214 if (bbio) 1215 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace); 1216 } 1217 1218 /* 1219 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1 1220 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max. 1221 */ 1222 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device, 1223 unsigned int bio_size) 1224 { 1225 const int time_slice = 1000; 1226 s64 delta; 1227 ktime_t now; 1228 u32 div; 1229 u64 bwlimit; 1230 1231 bwlimit = READ_ONCE(device->scrub_speed_max); 1232 if (bwlimit == 0) 1233 return; 1234 1235 /* 1236 * Slice is divided into intervals when the IO is submitted, adjust by 1237 * bwlimit and maximum of 64 intervals. 1238 */ 1239 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024))); 1240 div = min_t(u32, 64, div); 1241 1242 /* Start new epoch, set deadline */ 1243 now = ktime_get(); 1244 if (sctx->throttle_deadline == 0) { 1245 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div); 1246 sctx->throttle_sent = 0; 1247 } 1248 1249 /* Still in the time to send? */ 1250 if (ktime_before(now, sctx->throttle_deadline)) { 1251 /* If current bio is within the limit, send it */ 1252 sctx->throttle_sent += bio_size; 1253 if (sctx->throttle_sent <= div_u64(bwlimit, div)) 1254 return; 1255 1256 /* We're over the limit, sleep until the rest of the slice */ 1257 delta = ktime_ms_delta(sctx->throttle_deadline, now); 1258 } else { 1259 /* New request after deadline, start new epoch */ 1260 delta = 0; 1261 } 1262 1263 if (delta) { 1264 long timeout; 1265 1266 timeout = div_u64(delta * HZ, 1000); 1267 schedule_timeout_interruptible(timeout); 1268 } 1269 1270 /* Next call will start the deadline period */ 1271 sctx->throttle_deadline = 0; 1272 } 1273 1274 /* 1275 * Given a physical address, this will calculate it's 1276 * logical offset. if this is a parity stripe, it will return 1277 * the most left data stripe's logical offset. 1278 * 1279 * return 0 if it is a data stripe, 1 means parity stripe. 1280 */ 1281 static int get_raid56_logic_offset(u64 physical, int num, 1282 struct btrfs_chunk_map *map, u64 *offset, 1283 u64 *stripe_start) 1284 { 1285 int i; 1286 int j = 0; 1287 u64 last_offset; 1288 const int data_stripes = nr_data_stripes(map); 1289 1290 last_offset = (physical - map->stripes[num].physical) * data_stripes; 1291 if (stripe_start) 1292 *stripe_start = last_offset; 1293 1294 *offset = last_offset; 1295 for (i = 0; i < data_stripes; i++) { 1296 u32 stripe_nr; 1297 u32 stripe_index; 1298 u32 rot; 1299 1300 *offset = last_offset + btrfs_stripe_nr_to_offset(i); 1301 1302 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes; 1303 1304 /* Work out the disk rotation on this stripe-set */ 1305 rot = stripe_nr % map->num_stripes; 1306 /* calculate which stripe this data locates */ 1307 rot += i; 1308 stripe_index = rot % map->num_stripes; 1309 if (stripe_index == num) 1310 return 0; 1311 if (stripe_index < num) 1312 j++; 1313 } 1314 *offset = last_offset + btrfs_stripe_nr_to_offset(j); 1315 return 1; 1316 } 1317 1318 /* 1319 * Return 0 if the extent item range covers any byte of the range. 1320 * Return <0 if the extent item is before @search_start. 1321 * Return >0 if the extent item is after @start_start + @search_len. 1322 */ 1323 static int compare_extent_item_range(struct btrfs_path *path, 1324 u64 search_start, u64 search_len) 1325 { 1326 struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info; 1327 u64 len; 1328 struct btrfs_key key; 1329 1330 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1331 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY || 1332 key.type == BTRFS_METADATA_ITEM_KEY); 1333 if (key.type == BTRFS_METADATA_ITEM_KEY) 1334 len = fs_info->nodesize; 1335 else 1336 len = key.offset; 1337 1338 if (key.objectid + len <= search_start) 1339 return -1; 1340 if (key.objectid >= search_start + search_len) 1341 return 1; 1342 return 0; 1343 } 1344 1345 /* 1346 * Locate one extent item which covers any byte in range 1347 * [@search_start, @search_start + @search_length) 1348 * 1349 * If the path is not initialized, we will initialize the search by doing 1350 * a btrfs_search_slot(). 1351 * If the path is already initialized, we will use the path as the initial 1352 * slot, to avoid duplicated btrfs_search_slot() calls. 1353 * 1354 * NOTE: If an extent item starts before @search_start, we will still 1355 * return the extent item. This is for data extent crossing stripe boundary. 1356 * 1357 * Return 0 if we found such extent item, and @path will point to the extent item. 1358 * Return >0 if no such extent item can be found, and @path will be released. 1359 * Return <0 if hit fatal error, and @path will be released. 1360 */ 1361 static int find_first_extent_item(struct btrfs_root *extent_root, 1362 struct btrfs_path *path, 1363 u64 search_start, u64 search_len) 1364 { 1365 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1366 struct btrfs_key key; 1367 int ret; 1368 1369 /* Continue using the existing path */ 1370 if (path->nodes[0]) 1371 goto search_forward; 1372 1373 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1374 key.type = BTRFS_METADATA_ITEM_KEY; 1375 else 1376 key.type = BTRFS_EXTENT_ITEM_KEY; 1377 key.objectid = search_start; 1378 key.offset = (u64)-1; 1379 1380 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 1381 if (ret < 0) 1382 return ret; 1383 1384 ASSERT(ret > 0); 1385 /* 1386 * Here we intentionally pass 0 as @min_objectid, as there could be 1387 * an extent item starting before @search_start. 1388 */ 1389 ret = btrfs_previous_extent_item(extent_root, path, 0); 1390 if (ret < 0) 1391 return ret; 1392 /* 1393 * No matter whether we have found an extent item, the next loop will 1394 * properly do every check on the key. 1395 */ 1396 search_forward: 1397 while (true) { 1398 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1399 if (key.objectid >= search_start + search_len) 1400 break; 1401 if (key.type != BTRFS_METADATA_ITEM_KEY && 1402 key.type != BTRFS_EXTENT_ITEM_KEY) 1403 goto next; 1404 1405 ret = compare_extent_item_range(path, search_start, search_len); 1406 if (ret == 0) 1407 return ret; 1408 if (ret > 0) 1409 break; 1410 next: 1411 ret = btrfs_next_item(extent_root, path); 1412 if (ret) { 1413 /* Either no more items or a fatal error. */ 1414 btrfs_release_path(path); 1415 return ret; 1416 } 1417 } 1418 btrfs_release_path(path); 1419 return 1; 1420 } 1421 1422 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret, 1423 u64 *size_ret, u64 *flags_ret, u64 *generation_ret) 1424 { 1425 struct btrfs_key key; 1426 struct btrfs_extent_item *ei; 1427 1428 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1429 ASSERT(key.type == BTRFS_METADATA_ITEM_KEY || 1430 key.type == BTRFS_EXTENT_ITEM_KEY); 1431 *extent_start_ret = key.objectid; 1432 if (key.type == BTRFS_METADATA_ITEM_KEY) 1433 *size_ret = path->nodes[0]->fs_info->nodesize; 1434 else 1435 *size_ret = key.offset; 1436 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item); 1437 *flags_ret = btrfs_extent_flags(path->nodes[0], ei); 1438 *generation_ret = btrfs_extent_generation(path->nodes[0], ei); 1439 } 1440 1441 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical, 1442 u64 physical, u64 physical_end) 1443 { 1444 struct btrfs_fs_info *fs_info = sctx->fs_info; 1445 int ret = 0; 1446 1447 if (!btrfs_is_zoned(fs_info)) 1448 return 0; 1449 1450 mutex_lock(&sctx->wr_lock); 1451 if (sctx->write_pointer < physical_end) { 1452 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical, 1453 physical, 1454 sctx->write_pointer); 1455 if (ret) 1456 btrfs_err(fs_info, 1457 "zoned: failed to recover write pointer"); 1458 } 1459 mutex_unlock(&sctx->wr_lock); 1460 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical); 1461 1462 return ret; 1463 } 1464 1465 static void fill_one_extent_info(struct btrfs_fs_info *fs_info, 1466 struct scrub_stripe *stripe, 1467 u64 extent_start, u64 extent_len, 1468 u64 extent_flags, u64 extent_gen) 1469 { 1470 for (u64 cur_logical = max(stripe->logical, extent_start); 1471 cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN, 1472 extent_start + extent_len); 1473 cur_logical += fs_info->sectorsize) { 1474 const int nr_sector = (cur_logical - stripe->logical) >> 1475 fs_info->sectorsize_bits; 1476 struct scrub_sector_verification *sector = 1477 &stripe->sectors[nr_sector]; 1478 1479 set_bit(nr_sector, &stripe->extent_sector_bitmap); 1480 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1481 sector->is_metadata = true; 1482 sector->generation = extent_gen; 1483 } 1484 } 1485 } 1486 1487 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe) 1488 { 1489 stripe->extent_sector_bitmap = 0; 1490 stripe->init_error_bitmap = 0; 1491 stripe->init_nr_io_errors = 0; 1492 stripe->init_nr_csum_errors = 0; 1493 stripe->init_nr_meta_errors = 0; 1494 stripe->error_bitmap = 0; 1495 stripe->io_error_bitmap = 0; 1496 stripe->csum_error_bitmap = 0; 1497 stripe->meta_error_bitmap = 0; 1498 } 1499 1500 /* 1501 * Locate one stripe which has at least one extent in its range. 1502 * 1503 * Return 0 if found such stripe, and store its info into @stripe. 1504 * Return >0 if there is no such stripe in the specified range. 1505 * Return <0 for error. 1506 */ 1507 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg, 1508 struct btrfs_path *extent_path, 1509 struct btrfs_path *csum_path, 1510 struct btrfs_device *dev, u64 physical, 1511 int mirror_num, u64 logical_start, 1512 u32 logical_len, 1513 struct scrub_stripe *stripe) 1514 { 1515 struct btrfs_fs_info *fs_info = bg->fs_info; 1516 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start); 1517 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start); 1518 const u64 logical_end = logical_start + logical_len; 1519 u64 cur_logical = logical_start; 1520 u64 stripe_end; 1521 u64 extent_start; 1522 u64 extent_len; 1523 u64 extent_flags; 1524 u64 extent_gen; 1525 int ret; 1526 1527 memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) * 1528 stripe->nr_sectors); 1529 scrub_stripe_reset_bitmaps(stripe); 1530 1531 /* The range must be inside the bg. */ 1532 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); 1533 1534 ret = find_first_extent_item(extent_root, extent_path, logical_start, 1535 logical_len); 1536 /* Either error or not found. */ 1537 if (ret) 1538 goto out; 1539 get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags, 1540 &extent_gen); 1541 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1542 stripe->nr_meta_extents++; 1543 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) 1544 stripe->nr_data_extents++; 1545 cur_logical = max(extent_start, cur_logical); 1546 1547 /* 1548 * Round down to stripe boundary. 1549 * 1550 * The extra calculation against bg->start is to handle block groups 1551 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned. 1552 */ 1553 stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) + 1554 bg->start; 1555 stripe->physical = physical + stripe->logical - logical_start; 1556 stripe->dev = dev; 1557 stripe->bg = bg; 1558 stripe->mirror_num = mirror_num; 1559 stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1; 1560 1561 /* Fill the first extent info into stripe->sectors[] array. */ 1562 fill_one_extent_info(fs_info, stripe, extent_start, extent_len, 1563 extent_flags, extent_gen); 1564 cur_logical = extent_start + extent_len; 1565 1566 /* Fill the extent info for the remaining sectors. */ 1567 while (cur_logical <= stripe_end) { 1568 ret = find_first_extent_item(extent_root, extent_path, cur_logical, 1569 stripe_end - cur_logical + 1); 1570 if (ret < 0) 1571 goto out; 1572 if (ret > 0) { 1573 ret = 0; 1574 break; 1575 } 1576 get_extent_info(extent_path, &extent_start, &extent_len, 1577 &extent_flags, &extent_gen); 1578 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1579 stripe->nr_meta_extents++; 1580 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) 1581 stripe->nr_data_extents++; 1582 fill_one_extent_info(fs_info, stripe, extent_start, extent_len, 1583 extent_flags, extent_gen); 1584 cur_logical = extent_start + extent_len; 1585 } 1586 1587 /* Now fill the data csum. */ 1588 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) { 1589 int sector_nr; 1590 unsigned long csum_bitmap = 0; 1591 1592 /* Csum space should have already been allocated. */ 1593 ASSERT(stripe->csums); 1594 1595 /* 1596 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN 1597 * should contain at most 16 sectors. 1598 */ 1599 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); 1600 1601 ret = btrfs_lookup_csums_bitmap(csum_root, csum_path, 1602 stripe->logical, stripe_end, 1603 stripe->csums, &csum_bitmap); 1604 if (ret < 0) 1605 goto out; 1606 if (ret > 0) 1607 ret = 0; 1608 1609 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) { 1610 stripe->sectors[sector_nr].csum = stripe->csums + 1611 sector_nr * fs_info->csum_size; 1612 } 1613 } 1614 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); 1615 out: 1616 return ret; 1617 } 1618 1619 static void scrub_reset_stripe(struct scrub_stripe *stripe) 1620 { 1621 scrub_stripe_reset_bitmaps(stripe); 1622 1623 stripe->nr_meta_extents = 0; 1624 stripe->nr_data_extents = 0; 1625 stripe->state = 0; 1626 1627 for (int i = 0; i < stripe->nr_sectors; i++) { 1628 stripe->sectors[i].is_metadata = false; 1629 stripe->sectors[i].csum = NULL; 1630 stripe->sectors[i].generation = 0; 1631 } 1632 } 1633 1634 static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx, 1635 struct scrub_stripe *stripe) 1636 { 1637 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1638 struct btrfs_bio *bbio = NULL; 1639 u64 stripe_len = BTRFS_STRIPE_LEN; 1640 int mirror = stripe->mirror_num; 1641 int i; 1642 1643 atomic_inc(&stripe->pending_io); 1644 1645 for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) { 1646 struct page *page = scrub_stripe_get_page(stripe, i); 1647 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i); 1648 1649 /* The current sector cannot be merged, submit the bio. */ 1650 if (bbio && 1651 ((i > 0 && 1652 !test_bit(i - 1, &stripe->extent_sector_bitmap)) || 1653 bbio->bio.bi_iter.bi_size >= stripe_len)) { 1654 ASSERT(bbio->bio.bi_iter.bi_size); 1655 atomic_inc(&stripe->pending_io); 1656 btrfs_submit_bio(bbio, mirror); 1657 bbio = NULL; 1658 } 1659 1660 if (!bbio) { 1661 struct btrfs_io_stripe io_stripe = {}; 1662 struct btrfs_io_context *bioc = NULL; 1663 const u64 logical = stripe->logical + 1664 (i << fs_info->sectorsize_bits); 1665 int err; 1666 1667 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ, 1668 fs_info, scrub_read_endio, stripe); 1669 bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT; 1670 1671 io_stripe.is_scrub = true; 1672 err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 1673 &stripe_len, &bioc, &io_stripe, 1674 &mirror); 1675 btrfs_put_bioc(bioc); 1676 if (err) { 1677 btrfs_bio_end_io(bbio, 1678 errno_to_blk_status(err)); 1679 return; 1680 } 1681 } 1682 1683 __bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); 1684 } 1685 1686 if (bbio) { 1687 ASSERT(bbio->bio.bi_iter.bi_size); 1688 atomic_inc(&stripe->pending_io); 1689 btrfs_submit_bio(bbio, mirror); 1690 } 1691 1692 if (atomic_dec_and_test(&stripe->pending_io)) { 1693 wake_up(&stripe->io_wait); 1694 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker); 1695 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work); 1696 } 1697 } 1698 1699 static void scrub_submit_initial_read(struct scrub_ctx *sctx, 1700 struct scrub_stripe *stripe) 1701 { 1702 struct btrfs_fs_info *fs_info = sctx->fs_info; 1703 struct btrfs_bio *bbio; 1704 int mirror = stripe->mirror_num; 1705 1706 ASSERT(stripe->bg); 1707 ASSERT(stripe->mirror_num > 0); 1708 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state)); 1709 1710 if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) { 1711 scrub_submit_extent_sector_read(sctx, stripe); 1712 return; 1713 } 1714 1715 bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info, 1716 scrub_read_endio, stripe); 1717 1718 /* Read the whole stripe. */ 1719 bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT; 1720 for (int i = 0; i < BTRFS_STRIPE_LEN >> PAGE_SHIFT; i++) { 1721 int ret; 1722 1723 ret = bio_add_page(&bbio->bio, stripe->pages[i], PAGE_SIZE, 0); 1724 /* We should have allocated enough bio vectors. */ 1725 ASSERT(ret == PAGE_SIZE); 1726 } 1727 atomic_inc(&stripe->pending_io); 1728 1729 /* 1730 * For dev-replace, either user asks to avoid the source dev, or 1731 * the device is missing, we try the next mirror instead. 1732 */ 1733 if (sctx->is_dev_replace && 1734 (fs_info->dev_replace.cont_reading_from_srcdev_mode == 1735 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID || 1736 !stripe->dev->bdev)) { 1737 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, 1738 stripe->bg->length); 1739 1740 mirror = calc_next_mirror(mirror, num_copies); 1741 } 1742 btrfs_submit_bio(bbio, mirror); 1743 } 1744 1745 static bool stripe_has_metadata_error(struct scrub_stripe *stripe) 1746 { 1747 int i; 1748 1749 for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) { 1750 if (stripe->sectors[i].is_metadata) { 1751 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1752 1753 btrfs_err(fs_info, 1754 "stripe %llu has unrepaired metadata sector at %llu", 1755 stripe->logical, 1756 stripe->logical + (i << fs_info->sectorsize_bits)); 1757 return true; 1758 } 1759 } 1760 return false; 1761 } 1762 1763 static void submit_initial_group_read(struct scrub_ctx *sctx, 1764 unsigned int first_slot, 1765 unsigned int nr_stripes) 1766 { 1767 struct blk_plug plug; 1768 1769 ASSERT(first_slot < SCRUB_TOTAL_STRIPES); 1770 ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES); 1771 1772 scrub_throttle_dev_io(sctx, sctx->stripes[0].dev, 1773 btrfs_stripe_nr_to_offset(nr_stripes)); 1774 blk_start_plug(&plug); 1775 for (int i = 0; i < nr_stripes; i++) { 1776 struct scrub_stripe *stripe = &sctx->stripes[first_slot + i]; 1777 1778 /* Those stripes should be initialized. */ 1779 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state)); 1780 scrub_submit_initial_read(sctx, stripe); 1781 } 1782 blk_finish_plug(&plug); 1783 } 1784 1785 static int flush_scrub_stripes(struct scrub_ctx *sctx) 1786 { 1787 struct btrfs_fs_info *fs_info = sctx->fs_info; 1788 struct scrub_stripe *stripe; 1789 const int nr_stripes = sctx->cur_stripe; 1790 int ret = 0; 1791 1792 if (!nr_stripes) 1793 return 0; 1794 1795 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state)); 1796 1797 /* Submit the stripes which are populated but not submitted. */ 1798 if (nr_stripes % SCRUB_STRIPES_PER_GROUP) { 1799 const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP); 1800 1801 submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot); 1802 } 1803 1804 for (int i = 0; i < nr_stripes; i++) { 1805 stripe = &sctx->stripes[i]; 1806 1807 wait_event(stripe->repair_wait, 1808 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); 1809 } 1810 1811 /* Submit for dev-replace. */ 1812 if (sctx->is_dev_replace) { 1813 /* 1814 * For dev-replace, if we know there is something wrong with 1815 * metadata, we should immediately abort. 1816 */ 1817 for (int i = 0; i < nr_stripes; i++) { 1818 if (stripe_has_metadata_error(&sctx->stripes[i])) { 1819 ret = -EIO; 1820 goto out; 1821 } 1822 } 1823 for (int i = 0; i < nr_stripes; i++) { 1824 unsigned long good; 1825 1826 stripe = &sctx->stripes[i]; 1827 1828 ASSERT(stripe->dev == fs_info->dev_replace.srcdev); 1829 1830 bitmap_andnot(&good, &stripe->extent_sector_bitmap, 1831 &stripe->error_bitmap, stripe->nr_sectors); 1832 scrub_write_sectors(sctx, stripe, good, true); 1833 } 1834 } 1835 1836 /* Wait for the above writebacks to finish. */ 1837 for (int i = 0; i < nr_stripes; i++) { 1838 stripe = &sctx->stripes[i]; 1839 1840 wait_scrub_stripe_io(stripe); 1841 scrub_reset_stripe(stripe); 1842 } 1843 out: 1844 sctx->cur_stripe = 0; 1845 return ret; 1846 } 1847 1848 static void raid56_scrub_wait_endio(struct bio *bio) 1849 { 1850 complete(bio->bi_private); 1851 } 1852 1853 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg, 1854 struct btrfs_device *dev, int mirror_num, 1855 u64 logical, u32 length, u64 physical, 1856 u64 *found_logical_ret) 1857 { 1858 struct scrub_stripe *stripe; 1859 int ret; 1860 1861 /* 1862 * There should always be one slot left, as caller filling the last 1863 * slot should flush them all. 1864 */ 1865 ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES); 1866 1867 /* @found_logical_ret must be specified. */ 1868 ASSERT(found_logical_ret); 1869 1870 stripe = &sctx->stripes[sctx->cur_stripe]; 1871 scrub_reset_stripe(stripe); 1872 ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path, 1873 &sctx->csum_path, dev, physical, 1874 mirror_num, logical, length, stripe); 1875 /* Either >0 as no more extents or <0 for error. */ 1876 if (ret) 1877 return ret; 1878 *found_logical_ret = stripe->logical; 1879 sctx->cur_stripe++; 1880 1881 /* We filled one group, submit it. */ 1882 if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) { 1883 const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP; 1884 1885 submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP); 1886 } 1887 1888 /* Last slot used, flush them all. */ 1889 if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES) 1890 return flush_scrub_stripes(sctx); 1891 return 0; 1892 } 1893 1894 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx, 1895 struct btrfs_device *scrub_dev, 1896 struct btrfs_block_group *bg, 1897 struct btrfs_chunk_map *map, 1898 u64 full_stripe_start) 1899 { 1900 DECLARE_COMPLETION_ONSTACK(io_done); 1901 struct btrfs_fs_info *fs_info = sctx->fs_info; 1902 struct btrfs_raid_bio *rbio; 1903 struct btrfs_io_context *bioc = NULL; 1904 struct btrfs_path extent_path = { 0 }; 1905 struct btrfs_path csum_path = { 0 }; 1906 struct bio *bio; 1907 struct scrub_stripe *stripe; 1908 bool all_empty = true; 1909 const int data_stripes = nr_data_stripes(map); 1910 unsigned long extent_bitmap = 0; 1911 u64 length = btrfs_stripe_nr_to_offset(data_stripes); 1912 int ret; 1913 1914 ASSERT(sctx->raid56_data_stripes); 1915 1916 /* 1917 * For data stripe search, we cannot re-use the same extent/csum paths, 1918 * as the data stripe bytenr may be smaller than previous extent. Thus 1919 * we have to use our own extent/csum paths. 1920 */ 1921 extent_path.search_commit_root = 1; 1922 extent_path.skip_locking = 1; 1923 csum_path.search_commit_root = 1; 1924 csum_path.skip_locking = 1; 1925 1926 for (int i = 0; i < data_stripes; i++) { 1927 int stripe_index; 1928 int rot; 1929 u64 physical; 1930 1931 stripe = &sctx->raid56_data_stripes[i]; 1932 rot = div_u64(full_stripe_start - bg->start, 1933 data_stripes) >> BTRFS_STRIPE_LEN_SHIFT; 1934 stripe_index = (i + rot) % map->num_stripes; 1935 physical = map->stripes[stripe_index].physical + 1936 btrfs_stripe_nr_to_offset(rot); 1937 1938 scrub_reset_stripe(stripe); 1939 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state); 1940 ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path, 1941 map->stripes[stripe_index].dev, physical, 1, 1942 full_stripe_start + btrfs_stripe_nr_to_offset(i), 1943 BTRFS_STRIPE_LEN, stripe); 1944 if (ret < 0) 1945 goto out; 1946 /* 1947 * No extent in this data stripe, need to manually mark them 1948 * initialized to make later read submission happy. 1949 */ 1950 if (ret > 0) { 1951 stripe->logical = full_stripe_start + 1952 btrfs_stripe_nr_to_offset(i); 1953 stripe->dev = map->stripes[stripe_index].dev; 1954 stripe->mirror_num = 1; 1955 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); 1956 } 1957 } 1958 1959 /* Check if all data stripes are empty. */ 1960 for (int i = 0; i < data_stripes; i++) { 1961 stripe = &sctx->raid56_data_stripes[i]; 1962 if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) { 1963 all_empty = false; 1964 break; 1965 } 1966 } 1967 if (all_empty) { 1968 ret = 0; 1969 goto out; 1970 } 1971 1972 for (int i = 0; i < data_stripes; i++) { 1973 stripe = &sctx->raid56_data_stripes[i]; 1974 scrub_submit_initial_read(sctx, stripe); 1975 } 1976 for (int i = 0; i < data_stripes; i++) { 1977 stripe = &sctx->raid56_data_stripes[i]; 1978 1979 wait_event(stripe->repair_wait, 1980 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); 1981 } 1982 /* For now, no zoned support for RAID56. */ 1983 ASSERT(!btrfs_is_zoned(sctx->fs_info)); 1984 1985 /* 1986 * Now all data stripes are properly verified. Check if we have any 1987 * unrepaired, if so abort immediately or we could further corrupt the 1988 * P/Q stripes. 1989 * 1990 * During the loop, also populate extent_bitmap. 1991 */ 1992 for (int i = 0; i < data_stripes; i++) { 1993 unsigned long error; 1994 1995 stripe = &sctx->raid56_data_stripes[i]; 1996 1997 /* 1998 * We should only check the errors where there is an extent. 1999 * As we may hit an empty data stripe while it's missing. 2000 */ 2001 bitmap_and(&error, &stripe->error_bitmap, 2002 &stripe->extent_sector_bitmap, stripe->nr_sectors); 2003 if (!bitmap_empty(&error, stripe->nr_sectors)) { 2004 btrfs_err(fs_info, 2005 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl", 2006 full_stripe_start, i, stripe->nr_sectors, 2007 &error); 2008 ret = -EIO; 2009 goto out; 2010 } 2011 bitmap_or(&extent_bitmap, &extent_bitmap, 2012 &stripe->extent_sector_bitmap, stripe->nr_sectors); 2013 } 2014 2015 /* Now we can check and regenerate the P/Q stripe. */ 2016 bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS); 2017 bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT; 2018 bio->bi_private = &io_done; 2019 bio->bi_end_io = raid56_scrub_wait_endio; 2020 2021 btrfs_bio_counter_inc_blocked(fs_info); 2022 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start, 2023 &length, &bioc, NULL, NULL); 2024 if (ret < 0) { 2025 btrfs_put_bioc(bioc); 2026 btrfs_bio_counter_dec(fs_info); 2027 goto out; 2028 } 2029 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap, 2030 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); 2031 btrfs_put_bioc(bioc); 2032 if (!rbio) { 2033 ret = -ENOMEM; 2034 btrfs_bio_counter_dec(fs_info); 2035 goto out; 2036 } 2037 /* Use the recovered stripes as cache to avoid read them from disk again. */ 2038 for (int i = 0; i < data_stripes; i++) { 2039 stripe = &sctx->raid56_data_stripes[i]; 2040 2041 raid56_parity_cache_data_pages(rbio, stripe->pages, 2042 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT)); 2043 } 2044 raid56_parity_submit_scrub_rbio(rbio); 2045 wait_for_completion_io(&io_done); 2046 ret = blk_status_to_errno(bio->bi_status); 2047 bio_put(bio); 2048 btrfs_bio_counter_dec(fs_info); 2049 2050 btrfs_release_path(&extent_path); 2051 btrfs_release_path(&csum_path); 2052 out: 2053 return ret; 2054 } 2055 2056 /* 2057 * Scrub one range which can only has simple mirror based profile. 2058 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in 2059 * RAID0/RAID10). 2060 * 2061 * Since we may need to handle a subset of block group, we need @logical_start 2062 * and @logical_length parameter. 2063 */ 2064 static int scrub_simple_mirror(struct scrub_ctx *sctx, 2065 struct btrfs_block_group *bg, 2066 struct btrfs_chunk_map *map, 2067 u64 logical_start, u64 logical_length, 2068 struct btrfs_device *device, 2069 u64 physical, int mirror_num) 2070 { 2071 struct btrfs_fs_info *fs_info = sctx->fs_info; 2072 const u64 logical_end = logical_start + logical_length; 2073 u64 cur_logical = logical_start; 2074 int ret; 2075 2076 /* The range must be inside the bg */ 2077 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); 2078 2079 /* Go through each extent items inside the logical range */ 2080 while (cur_logical < logical_end) { 2081 u64 found_logical = U64_MAX; 2082 u64 cur_physical = physical + cur_logical - logical_start; 2083 2084 /* Canceled? */ 2085 if (atomic_read(&fs_info->scrub_cancel_req) || 2086 atomic_read(&sctx->cancel_req)) { 2087 ret = -ECANCELED; 2088 break; 2089 } 2090 /* Paused? */ 2091 if (atomic_read(&fs_info->scrub_pause_req)) { 2092 /* Push queued extents */ 2093 scrub_blocked_if_needed(fs_info); 2094 } 2095 /* Block group removed? */ 2096 spin_lock(&bg->lock); 2097 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) { 2098 spin_unlock(&bg->lock); 2099 ret = 0; 2100 break; 2101 } 2102 spin_unlock(&bg->lock); 2103 2104 ret = queue_scrub_stripe(sctx, bg, device, mirror_num, 2105 cur_logical, logical_end - cur_logical, 2106 cur_physical, &found_logical); 2107 if (ret > 0) { 2108 /* No more extent, just update the accounting */ 2109 sctx->stat.last_physical = physical + logical_length; 2110 ret = 0; 2111 break; 2112 } 2113 if (ret < 0) 2114 break; 2115 2116 /* queue_scrub_stripe() returned 0, @found_logical must be updated. */ 2117 ASSERT(found_logical != U64_MAX); 2118 cur_logical = found_logical + BTRFS_STRIPE_LEN; 2119 2120 /* Don't hold CPU for too long time */ 2121 cond_resched(); 2122 } 2123 return ret; 2124 } 2125 2126 /* Calculate the full stripe length for simple stripe based profiles */ 2127 static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map) 2128 { 2129 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2130 BTRFS_BLOCK_GROUP_RAID10)); 2131 2132 return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes); 2133 } 2134 2135 /* Get the logical bytenr for the stripe */ 2136 static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map, 2137 struct btrfs_block_group *bg, 2138 int stripe_index) 2139 { 2140 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2141 BTRFS_BLOCK_GROUP_RAID10)); 2142 ASSERT(stripe_index < map->num_stripes); 2143 2144 /* 2145 * (stripe_index / sub_stripes) gives how many data stripes we need to 2146 * skip. 2147 */ 2148 return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) + 2149 bg->start; 2150 } 2151 2152 /* Get the mirror number for the stripe */ 2153 static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index) 2154 { 2155 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2156 BTRFS_BLOCK_GROUP_RAID10)); 2157 ASSERT(stripe_index < map->num_stripes); 2158 2159 /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */ 2160 return stripe_index % map->sub_stripes + 1; 2161 } 2162 2163 static int scrub_simple_stripe(struct scrub_ctx *sctx, 2164 struct btrfs_block_group *bg, 2165 struct btrfs_chunk_map *map, 2166 struct btrfs_device *device, 2167 int stripe_index) 2168 { 2169 const u64 logical_increment = simple_stripe_full_stripe_len(map); 2170 const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index); 2171 const u64 orig_physical = map->stripes[stripe_index].physical; 2172 const int mirror_num = simple_stripe_mirror_num(map, stripe_index); 2173 u64 cur_logical = orig_logical; 2174 u64 cur_physical = orig_physical; 2175 int ret = 0; 2176 2177 while (cur_logical < bg->start + bg->length) { 2178 /* 2179 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is 2180 * just RAID1, so we can reuse scrub_simple_mirror() to scrub 2181 * this stripe. 2182 */ 2183 ret = scrub_simple_mirror(sctx, bg, map, cur_logical, 2184 BTRFS_STRIPE_LEN, device, cur_physical, 2185 mirror_num); 2186 if (ret) 2187 return ret; 2188 /* Skip to next stripe which belongs to the target device */ 2189 cur_logical += logical_increment; 2190 /* For physical offset, we just go to next stripe */ 2191 cur_physical += BTRFS_STRIPE_LEN; 2192 } 2193 return ret; 2194 } 2195 2196 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 2197 struct btrfs_block_group *bg, 2198 struct btrfs_chunk_map *map, 2199 struct btrfs_device *scrub_dev, 2200 int stripe_index) 2201 { 2202 struct btrfs_fs_info *fs_info = sctx->fs_info; 2203 const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; 2204 const u64 chunk_logical = bg->start; 2205 int ret; 2206 int ret2; 2207 u64 physical = map->stripes[stripe_index].physical; 2208 const u64 dev_stripe_len = btrfs_calc_stripe_length(map); 2209 const u64 physical_end = physical + dev_stripe_len; 2210 u64 logical; 2211 u64 logic_end; 2212 /* The logical increment after finishing one stripe */ 2213 u64 increment; 2214 /* Offset inside the chunk */ 2215 u64 offset; 2216 u64 stripe_logical; 2217 int stop_loop = 0; 2218 2219 /* Extent_path should be released by now. */ 2220 ASSERT(sctx->extent_path.nodes[0] == NULL); 2221 2222 scrub_blocked_if_needed(fs_info); 2223 2224 if (sctx->is_dev_replace && 2225 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) { 2226 mutex_lock(&sctx->wr_lock); 2227 sctx->write_pointer = physical; 2228 mutex_unlock(&sctx->wr_lock); 2229 } 2230 2231 /* Prepare the extra data stripes used by RAID56. */ 2232 if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) { 2233 ASSERT(sctx->raid56_data_stripes == NULL); 2234 2235 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map), 2236 sizeof(struct scrub_stripe), 2237 GFP_KERNEL); 2238 if (!sctx->raid56_data_stripes) { 2239 ret = -ENOMEM; 2240 goto out; 2241 } 2242 for (int i = 0; i < nr_data_stripes(map); i++) { 2243 ret = init_scrub_stripe(fs_info, 2244 &sctx->raid56_data_stripes[i]); 2245 if (ret < 0) 2246 goto out; 2247 sctx->raid56_data_stripes[i].bg = bg; 2248 sctx->raid56_data_stripes[i].sctx = sctx; 2249 } 2250 } 2251 /* 2252 * There used to be a big double loop to handle all profiles using the 2253 * same routine, which grows larger and more gross over time. 2254 * 2255 * So here we handle each profile differently, so simpler profiles 2256 * have simpler scrubbing function. 2257 */ 2258 if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 | 2259 BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2260 /* 2261 * Above check rules out all complex profile, the remaining 2262 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple 2263 * mirrored duplication without stripe. 2264 * 2265 * Only @physical and @mirror_num needs to calculated using 2266 * @stripe_index. 2267 */ 2268 ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length, 2269 scrub_dev, map->stripes[stripe_index].physical, 2270 stripe_index + 1); 2271 offset = 0; 2272 goto out; 2273 } 2274 if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 2275 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index); 2276 offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes); 2277 goto out; 2278 } 2279 2280 /* Only RAID56 goes through the old code */ 2281 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK); 2282 ret = 0; 2283 2284 /* Calculate the logical end of the stripe */ 2285 get_raid56_logic_offset(physical_end, stripe_index, 2286 map, &logic_end, NULL); 2287 logic_end += chunk_logical; 2288 2289 /* Initialize @offset in case we need to go to out: label */ 2290 get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL); 2291 increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 2292 2293 /* 2294 * Due to the rotation, for RAID56 it's better to iterate each stripe 2295 * using their physical offset. 2296 */ 2297 while (physical < physical_end) { 2298 ret = get_raid56_logic_offset(physical, stripe_index, map, 2299 &logical, &stripe_logical); 2300 logical += chunk_logical; 2301 if (ret) { 2302 /* it is parity strip */ 2303 stripe_logical += chunk_logical; 2304 ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg, 2305 map, stripe_logical); 2306 if (ret) 2307 goto out; 2308 goto next; 2309 } 2310 2311 /* 2312 * Now we're at a data stripe, scrub each extents in the range. 2313 * 2314 * At this stage, if we ignore the repair part, inside each data 2315 * stripe it is no different than SINGLE profile. 2316 * We can reuse scrub_simple_mirror() here, as the repair part 2317 * is still based on @mirror_num. 2318 */ 2319 ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN, 2320 scrub_dev, physical, 1); 2321 if (ret < 0) 2322 goto out; 2323 next: 2324 logical += increment; 2325 physical += BTRFS_STRIPE_LEN; 2326 spin_lock(&sctx->stat_lock); 2327 if (stop_loop) 2328 sctx->stat.last_physical = 2329 map->stripes[stripe_index].physical + dev_stripe_len; 2330 else 2331 sctx->stat.last_physical = physical; 2332 spin_unlock(&sctx->stat_lock); 2333 if (stop_loop) 2334 break; 2335 } 2336 out: 2337 ret2 = flush_scrub_stripes(sctx); 2338 if (!ret) 2339 ret = ret2; 2340 btrfs_release_path(&sctx->extent_path); 2341 btrfs_release_path(&sctx->csum_path); 2342 2343 if (sctx->raid56_data_stripes) { 2344 for (int i = 0; i < nr_data_stripes(map); i++) 2345 release_scrub_stripe(&sctx->raid56_data_stripes[i]); 2346 kfree(sctx->raid56_data_stripes); 2347 sctx->raid56_data_stripes = NULL; 2348 } 2349 2350 if (sctx->is_dev_replace && ret >= 0) { 2351 int ret2; 2352 2353 ret2 = sync_write_pointer_for_zoned(sctx, 2354 chunk_logical + offset, 2355 map->stripes[stripe_index].physical, 2356 physical_end); 2357 if (ret2) 2358 ret = ret2; 2359 } 2360 2361 return ret < 0 ? ret : 0; 2362 } 2363 2364 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 2365 struct btrfs_block_group *bg, 2366 struct btrfs_device *scrub_dev, 2367 u64 dev_offset, 2368 u64 dev_extent_len) 2369 { 2370 struct btrfs_fs_info *fs_info = sctx->fs_info; 2371 struct btrfs_chunk_map *map; 2372 int i; 2373 int ret = 0; 2374 2375 map = btrfs_find_chunk_map(fs_info, bg->start, bg->length); 2376 if (!map) { 2377 /* 2378 * Might have been an unused block group deleted by the cleaner 2379 * kthread or relocation. 2380 */ 2381 spin_lock(&bg->lock); 2382 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) 2383 ret = -EINVAL; 2384 spin_unlock(&bg->lock); 2385 2386 return ret; 2387 } 2388 if (map->start != bg->start) 2389 goto out; 2390 if (map->chunk_len < dev_extent_len) 2391 goto out; 2392 2393 for (i = 0; i < map->num_stripes; ++i) { 2394 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 2395 map->stripes[i].physical == dev_offset) { 2396 ret = scrub_stripe(sctx, bg, map, scrub_dev, i); 2397 if (ret) 2398 goto out; 2399 } 2400 } 2401 out: 2402 btrfs_free_chunk_map(map); 2403 2404 return ret; 2405 } 2406 2407 static int finish_extent_writes_for_zoned(struct btrfs_root *root, 2408 struct btrfs_block_group *cache) 2409 { 2410 struct btrfs_fs_info *fs_info = cache->fs_info; 2411 struct btrfs_trans_handle *trans; 2412 2413 if (!btrfs_is_zoned(fs_info)) 2414 return 0; 2415 2416 btrfs_wait_block_group_reservations(cache); 2417 btrfs_wait_nocow_writers(cache); 2418 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length); 2419 2420 trans = btrfs_join_transaction(root); 2421 if (IS_ERR(trans)) 2422 return PTR_ERR(trans); 2423 return btrfs_commit_transaction(trans); 2424 } 2425 2426 static noinline_for_stack 2427 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 2428 struct btrfs_device *scrub_dev, u64 start, u64 end) 2429 { 2430 struct btrfs_dev_extent *dev_extent = NULL; 2431 struct btrfs_path *path; 2432 struct btrfs_fs_info *fs_info = sctx->fs_info; 2433 struct btrfs_root *root = fs_info->dev_root; 2434 u64 chunk_offset; 2435 int ret = 0; 2436 int ro_set; 2437 int slot; 2438 struct extent_buffer *l; 2439 struct btrfs_key key; 2440 struct btrfs_key found_key; 2441 struct btrfs_block_group *cache; 2442 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 2443 2444 path = btrfs_alloc_path(); 2445 if (!path) 2446 return -ENOMEM; 2447 2448 path->reada = READA_FORWARD; 2449 path->search_commit_root = 1; 2450 path->skip_locking = 1; 2451 2452 key.objectid = scrub_dev->devid; 2453 key.offset = 0ull; 2454 key.type = BTRFS_DEV_EXTENT_KEY; 2455 2456 while (1) { 2457 u64 dev_extent_len; 2458 2459 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2460 if (ret < 0) 2461 break; 2462 if (ret > 0) { 2463 if (path->slots[0] >= 2464 btrfs_header_nritems(path->nodes[0])) { 2465 ret = btrfs_next_leaf(root, path); 2466 if (ret < 0) 2467 break; 2468 if (ret > 0) { 2469 ret = 0; 2470 break; 2471 } 2472 } else { 2473 ret = 0; 2474 } 2475 } 2476 2477 l = path->nodes[0]; 2478 slot = path->slots[0]; 2479 2480 btrfs_item_key_to_cpu(l, &found_key, slot); 2481 2482 if (found_key.objectid != scrub_dev->devid) 2483 break; 2484 2485 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 2486 break; 2487 2488 if (found_key.offset >= end) 2489 break; 2490 2491 if (found_key.offset < key.offset) 2492 break; 2493 2494 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 2495 dev_extent_len = btrfs_dev_extent_length(l, dev_extent); 2496 2497 if (found_key.offset + dev_extent_len <= start) 2498 goto skip; 2499 2500 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 2501 2502 /* 2503 * get a reference on the corresponding block group to prevent 2504 * the chunk from going away while we scrub it 2505 */ 2506 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2507 2508 /* some chunks are removed but not committed to disk yet, 2509 * continue scrubbing */ 2510 if (!cache) 2511 goto skip; 2512 2513 ASSERT(cache->start <= chunk_offset); 2514 /* 2515 * We are using the commit root to search for device extents, so 2516 * that means we could have found a device extent item from a 2517 * block group that was deleted in the current transaction. The 2518 * logical start offset of the deleted block group, stored at 2519 * @chunk_offset, might be part of the logical address range of 2520 * a new block group (which uses different physical extents). 2521 * In this case btrfs_lookup_block_group() has returned the new 2522 * block group, and its start address is less than @chunk_offset. 2523 * 2524 * We skip such new block groups, because it's pointless to 2525 * process them, as we won't find their extents because we search 2526 * for them using the commit root of the extent tree. For a device 2527 * replace it's also fine to skip it, we won't miss copying them 2528 * to the target device because we have the write duplication 2529 * setup through the regular write path (by btrfs_map_block()), 2530 * and we have committed a transaction when we started the device 2531 * replace, right after setting up the device replace state. 2532 */ 2533 if (cache->start < chunk_offset) { 2534 btrfs_put_block_group(cache); 2535 goto skip; 2536 } 2537 2538 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) { 2539 if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) { 2540 btrfs_put_block_group(cache); 2541 goto skip; 2542 } 2543 } 2544 2545 /* 2546 * Make sure that while we are scrubbing the corresponding block 2547 * group doesn't get its logical address and its device extents 2548 * reused for another block group, which can possibly be of a 2549 * different type and different profile. We do this to prevent 2550 * false error detections and crashes due to bogus attempts to 2551 * repair extents. 2552 */ 2553 spin_lock(&cache->lock); 2554 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) { 2555 spin_unlock(&cache->lock); 2556 btrfs_put_block_group(cache); 2557 goto skip; 2558 } 2559 btrfs_freeze_block_group(cache); 2560 spin_unlock(&cache->lock); 2561 2562 /* 2563 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 2564 * to avoid deadlock caused by: 2565 * btrfs_inc_block_group_ro() 2566 * -> btrfs_wait_for_commit() 2567 * -> btrfs_commit_transaction() 2568 * -> btrfs_scrub_pause() 2569 */ 2570 scrub_pause_on(fs_info); 2571 2572 /* 2573 * Don't do chunk preallocation for scrub. 2574 * 2575 * This is especially important for SYSTEM bgs, or we can hit 2576 * -EFBIG from btrfs_finish_chunk_alloc() like: 2577 * 1. The only SYSTEM bg is marked RO. 2578 * Since SYSTEM bg is small, that's pretty common. 2579 * 2. New SYSTEM bg will be allocated 2580 * Due to regular version will allocate new chunk. 2581 * 3. New SYSTEM bg is empty and will get cleaned up 2582 * Before cleanup really happens, it's marked RO again. 2583 * 4. Empty SYSTEM bg get scrubbed 2584 * We go back to 2. 2585 * 2586 * This can easily boost the amount of SYSTEM chunks if cleaner 2587 * thread can't be triggered fast enough, and use up all space 2588 * of btrfs_super_block::sys_chunk_array 2589 * 2590 * While for dev replace, we need to try our best to mark block 2591 * group RO, to prevent race between: 2592 * - Write duplication 2593 * Contains latest data 2594 * - Scrub copy 2595 * Contains data from commit tree 2596 * 2597 * If target block group is not marked RO, nocow writes can 2598 * be overwritten by scrub copy, causing data corruption. 2599 * So for dev-replace, it's not allowed to continue if a block 2600 * group is not RO. 2601 */ 2602 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); 2603 if (!ret && sctx->is_dev_replace) { 2604 ret = finish_extent_writes_for_zoned(root, cache); 2605 if (ret) { 2606 btrfs_dec_block_group_ro(cache); 2607 scrub_pause_off(fs_info); 2608 btrfs_put_block_group(cache); 2609 break; 2610 } 2611 } 2612 2613 if (ret == 0) { 2614 ro_set = 1; 2615 } else if (ret == -ENOSPC && !sctx->is_dev_replace && 2616 !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) { 2617 /* 2618 * btrfs_inc_block_group_ro return -ENOSPC when it 2619 * failed in creating new chunk for metadata. 2620 * It is not a problem for scrub, because 2621 * metadata are always cowed, and our scrub paused 2622 * commit_transactions. 2623 * 2624 * For RAID56 chunks, we have to mark them read-only 2625 * for scrub, as later we would use our own cache 2626 * out of RAID56 realm. 2627 * Thus we want the RAID56 bg to be marked RO to 2628 * prevent RMW from screwing up out cache. 2629 */ 2630 ro_set = 0; 2631 } else if (ret == -ETXTBSY) { 2632 btrfs_warn(fs_info, 2633 "skipping scrub of block group %llu due to active swapfile", 2634 cache->start); 2635 scrub_pause_off(fs_info); 2636 ret = 0; 2637 goto skip_unfreeze; 2638 } else { 2639 btrfs_warn(fs_info, 2640 "failed setting block group ro: %d", ret); 2641 btrfs_unfreeze_block_group(cache); 2642 btrfs_put_block_group(cache); 2643 scrub_pause_off(fs_info); 2644 break; 2645 } 2646 2647 /* 2648 * Now the target block is marked RO, wait for nocow writes to 2649 * finish before dev-replace. 2650 * COW is fine, as COW never overwrites extents in commit tree. 2651 */ 2652 if (sctx->is_dev_replace) { 2653 btrfs_wait_nocow_writers(cache); 2654 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, 2655 cache->length); 2656 } 2657 2658 scrub_pause_off(fs_info); 2659 down_write(&dev_replace->rwsem); 2660 dev_replace->cursor_right = found_key.offset + dev_extent_len; 2661 dev_replace->cursor_left = found_key.offset; 2662 dev_replace->item_needs_writeback = 1; 2663 up_write(&dev_replace->rwsem); 2664 2665 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset, 2666 dev_extent_len); 2667 if (sctx->is_dev_replace && 2668 !btrfs_finish_block_group_to_copy(dev_replace->srcdev, 2669 cache, found_key.offset)) 2670 ro_set = 0; 2671 2672 down_write(&dev_replace->rwsem); 2673 dev_replace->cursor_left = dev_replace->cursor_right; 2674 dev_replace->item_needs_writeback = 1; 2675 up_write(&dev_replace->rwsem); 2676 2677 if (ro_set) 2678 btrfs_dec_block_group_ro(cache); 2679 2680 /* 2681 * We might have prevented the cleaner kthread from deleting 2682 * this block group if it was already unused because we raced 2683 * and set it to RO mode first. So add it back to the unused 2684 * list, otherwise it might not ever be deleted unless a manual 2685 * balance is triggered or it becomes used and unused again. 2686 */ 2687 spin_lock(&cache->lock); 2688 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) && 2689 !cache->ro && cache->reserved == 0 && cache->used == 0) { 2690 spin_unlock(&cache->lock); 2691 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) 2692 btrfs_discard_queue_work(&fs_info->discard_ctl, 2693 cache); 2694 else 2695 btrfs_mark_bg_unused(cache); 2696 } else { 2697 spin_unlock(&cache->lock); 2698 } 2699 skip_unfreeze: 2700 btrfs_unfreeze_block_group(cache); 2701 btrfs_put_block_group(cache); 2702 if (ret) 2703 break; 2704 if (sctx->is_dev_replace && 2705 atomic64_read(&dev_replace->num_write_errors) > 0) { 2706 ret = -EIO; 2707 break; 2708 } 2709 if (sctx->stat.malloc_errors > 0) { 2710 ret = -ENOMEM; 2711 break; 2712 } 2713 skip: 2714 key.offset = found_key.offset + dev_extent_len; 2715 btrfs_release_path(path); 2716 } 2717 2718 btrfs_free_path(path); 2719 2720 return ret; 2721 } 2722 2723 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev, 2724 struct page *page, u64 physical, u64 generation) 2725 { 2726 struct btrfs_fs_info *fs_info = sctx->fs_info; 2727 struct bio_vec bvec; 2728 struct bio bio; 2729 struct btrfs_super_block *sb = page_address(page); 2730 int ret; 2731 2732 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ); 2733 bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT; 2734 __bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0); 2735 ret = submit_bio_wait(&bio); 2736 bio_uninit(&bio); 2737 2738 if (ret < 0) 2739 return ret; 2740 ret = btrfs_check_super_csum(fs_info, sb); 2741 if (ret != 0) { 2742 btrfs_err_rl(fs_info, 2743 "super block at physical %llu devid %llu has bad csum", 2744 physical, dev->devid); 2745 return -EIO; 2746 } 2747 if (btrfs_super_generation(sb) != generation) { 2748 btrfs_err_rl(fs_info, 2749 "super block at physical %llu devid %llu has bad generation %llu expect %llu", 2750 physical, dev->devid, 2751 btrfs_super_generation(sb), generation); 2752 return -EUCLEAN; 2753 } 2754 2755 return btrfs_validate_super(fs_info, sb, -1); 2756 } 2757 2758 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 2759 struct btrfs_device *scrub_dev) 2760 { 2761 int i; 2762 u64 bytenr; 2763 u64 gen; 2764 int ret = 0; 2765 struct page *page; 2766 struct btrfs_fs_info *fs_info = sctx->fs_info; 2767 2768 if (BTRFS_FS_ERROR(fs_info)) 2769 return -EROFS; 2770 2771 page = alloc_page(GFP_KERNEL); 2772 if (!page) { 2773 spin_lock(&sctx->stat_lock); 2774 sctx->stat.malloc_errors++; 2775 spin_unlock(&sctx->stat_lock); 2776 return -ENOMEM; 2777 } 2778 2779 /* Seed devices of a new filesystem has their own generation. */ 2780 if (scrub_dev->fs_devices != fs_info->fs_devices) 2781 gen = scrub_dev->generation; 2782 else 2783 gen = btrfs_get_last_trans_committed(fs_info); 2784 2785 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2786 bytenr = btrfs_sb_offset(i); 2787 if (bytenr + BTRFS_SUPER_INFO_SIZE > 2788 scrub_dev->commit_total_bytes) 2789 break; 2790 if (!btrfs_check_super_location(scrub_dev, bytenr)) 2791 continue; 2792 2793 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen); 2794 if (ret) { 2795 spin_lock(&sctx->stat_lock); 2796 sctx->stat.super_errors++; 2797 spin_unlock(&sctx->stat_lock); 2798 } 2799 } 2800 __free_page(page); 2801 return 0; 2802 } 2803 2804 static void scrub_workers_put(struct btrfs_fs_info *fs_info) 2805 { 2806 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, 2807 &fs_info->scrub_lock)) { 2808 struct workqueue_struct *scrub_workers = fs_info->scrub_workers; 2809 2810 fs_info->scrub_workers = NULL; 2811 mutex_unlock(&fs_info->scrub_lock); 2812 2813 if (scrub_workers) 2814 destroy_workqueue(scrub_workers); 2815 } 2816 } 2817 2818 /* 2819 * get a reference count on fs_info->scrub_workers. start worker if necessary 2820 */ 2821 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info) 2822 { 2823 struct workqueue_struct *scrub_workers = NULL; 2824 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 2825 int max_active = fs_info->thread_pool_size; 2826 int ret = -ENOMEM; 2827 2828 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) 2829 return 0; 2830 2831 scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active); 2832 if (!scrub_workers) 2833 return -ENOMEM; 2834 2835 mutex_lock(&fs_info->scrub_lock); 2836 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { 2837 ASSERT(fs_info->scrub_workers == NULL); 2838 fs_info->scrub_workers = scrub_workers; 2839 refcount_set(&fs_info->scrub_workers_refcnt, 1); 2840 mutex_unlock(&fs_info->scrub_lock); 2841 return 0; 2842 } 2843 /* Other thread raced in and created the workers for us */ 2844 refcount_inc(&fs_info->scrub_workers_refcnt); 2845 mutex_unlock(&fs_info->scrub_lock); 2846 2847 ret = 0; 2848 2849 destroy_workqueue(scrub_workers); 2850 return ret; 2851 } 2852 2853 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 2854 u64 end, struct btrfs_scrub_progress *progress, 2855 int readonly, int is_dev_replace) 2856 { 2857 struct btrfs_dev_lookup_args args = { .devid = devid }; 2858 struct scrub_ctx *sctx; 2859 int ret; 2860 struct btrfs_device *dev; 2861 unsigned int nofs_flag; 2862 bool need_commit = false; 2863 2864 if (btrfs_fs_closing(fs_info)) 2865 return -EAGAIN; 2866 2867 /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */ 2868 ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN); 2869 2870 /* 2871 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible 2872 * value (max nodesize / min sectorsize), thus nodesize should always 2873 * be fine. 2874 */ 2875 ASSERT(fs_info->nodesize <= 2876 SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits); 2877 2878 /* Allocate outside of device_list_mutex */ 2879 sctx = scrub_setup_ctx(fs_info, is_dev_replace); 2880 if (IS_ERR(sctx)) 2881 return PTR_ERR(sctx); 2882 2883 ret = scrub_workers_get(fs_info); 2884 if (ret) 2885 goto out_free_ctx; 2886 2887 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2888 dev = btrfs_find_device(fs_info->fs_devices, &args); 2889 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 2890 !is_dev_replace)) { 2891 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2892 ret = -ENODEV; 2893 goto out; 2894 } 2895 2896 if (!is_dev_replace && !readonly && 2897 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2898 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2899 btrfs_err_in_rcu(fs_info, 2900 "scrub on devid %llu: filesystem on %s is not writable", 2901 devid, btrfs_dev_name(dev)); 2902 ret = -EROFS; 2903 goto out; 2904 } 2905 2906 mutex_lock(&fs_info->scrub_lock); 2907 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 2908 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { 2909 mutex_unlock(&fs_info->scrub_lock); 2910 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2911 ret = -EIO; 2912 goto out; 2913 } 2914 2915 down_read(&fs_info->dev_replace.rwsem); 2916 if (dev->scrub_ctx || 2917 (!is_dev_replace && 2918 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 2919 up_read(&fs_info->dev_replace.rwsem); 2920 mutex_unlock(&fs_info->scrub_lock); 2921 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2922 ret = -EINPROGRESS; 2923 goto out; 2924 } 2925 up_read(&fs_info->dev_replace.rwsem); 2926 2927 sctx->readonly = readonly; 2928 dev->scrub_ctx = sctx; 2929 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2930 2931 /* 2932 * checking @scrub_pause_req here, we can avoid 2933 * race between committing transaction and scrubbing. 2934 */ 2935 __scrub_blocked_if_needed(fs_info); 2936 atomic_inc(&fs_info->scrubs_running); 2937 mutex_unlock(&fs_info->scrub_lock); 2938 2939 /* 2940 * In order to avoid deadlock with reclaim when there is a transaction 2941 * trying to pause scrub, make sure we use GFP_NOFS for all the 2942 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity() 2943 * invoked by our callees. The pausing request is done when the 2944 * transaction commit starts, and it blocks the transaction until scrub 2945 * is paused (done at specific points at scrub_stripe() or right above 2946 * before incrementing fs_info->scrubs_running). 2947 */ 2948 nofs_flag = memalloc_nofs_save(); 2949 if (!is_dev_replace) { 2950 u64 old_super_errors; 2951 2952 spin_lock(&sctx->stat_lock); 2953 old_super_errors = sctx->stat.super_errors; 2954 spin_unlock(&sctx->stat_lock); 2955 2956 btrfs_info(fs_info, "scrub: started on devid %llu", devid); 2957 /* 2958 * by holding device list mutex, we can 2959 * kick off writing super in log tree sync. 2960 */ 2961 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2962 ret = scrub_supers(sctx, dev); 2963 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2964 2965 spin_lock(&sctx->stat_lock); 2966 /* 2967 * Super block errors found, but we can not commit transaction 2968 * at current context, since btrfs_commit_transaction() needs 2969 * to pause the current running scrub (hold by ourselves). 2970 */ 2971 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly) 2972 need_commit = true; 2973 spin_unlock(&sctx->stat_lock); 2974 } 2975 2976 if (!ret) 2977 ret = scrub_enumerate_chunks(sctx, dev, start, end); 2978 memalloc_nofs_restore(nofs_flag); 2979 2980 atomic_dec(&fs_info->scrubs_running); 2981 wake_up(&fs_info->scrub_pause_wait); 2982 2983 if (progress) 2984 memcpy(progress, &sctx->stat, sizeof(*progress)); 2985 2986 if (!is_dev_replace) 2987 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", 2988 ret ? "not finished" : "finished", devid, ret); 2989 2990 mutex_lock(&fs_info->scrub_lock); 2991 dev->scrub_ctx = NULL; 2992 mutex_unlock(&fs_info->scrub_lock); 2993 2994 scrub_workers_put(fs_info); 2995 scrub_put_ctx(sctx); 2996 2997 /* 2998 * We found some super block errors before, now try to force a 2999 * transaction commit, as scrub has finished. 3000 */ 3001 if (need_commit) { 3002 struct btrfs_trans_handle *trans; 3003 3004 trans = btrfs_start_transaction(fs_info->tree_root, 0); 3005 if (IS_ERR(trans)) { 3006 ret = PTR_ERR(trans); 3007 btrfs_err(fs_info, 3008 "scrub: failed to start transaction to fix super block errors: %d", ret); 3009 return ret; 3010 } 3011 ret = btrfs_commit_transaction(trans); 3012 if (ret < 0) 3013 btrfs_err(fs_info, 3014 "scrub: failed to commit transaction to fix super block errors: %d", ret); 3015 } 3016 return ret; 3017 out: 3018 scrub_workers_put(fs_info); 3019 out_free_ctx: 3020 scrub_free_ctx(sctx); 3021 3022 return ret; 3023 } 3024 3025 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 3026 { 3027 mutex_lock(&fs_info->scrub_lock); 3028 atomic_inc(&fs_info->scrub_pause_req); 3029 while (atomic_read(&fs_info->scrubs_paused) != 3030 atomic_read(&fs_info->scrubs_running)) { 3031 mutex_unlock(&fs_info->scrub_lock); 3032 wait_event(fs_info->scrub_pause_wait, 3033 atomic_read(&fs_info->scrubs_paused) == 3034 atomic_read(&fs_info->scrubs_running)); 3035 mutex_lock(&fs_info->scrub_lock); 3036 } 3037 mutex_unlock(&fs_info->scrub_lock); 3038 } 3039 3040 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 3041 { 3042 atomic_dec(&fs_info->scrub_pause_req); 3043 wake_up(&fs_info->scrub_pause_wait); 3044 } 3045 3046 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 3047 { 3048 mutex_lock(&fs_info->scrub_lock); 3049 if (!atomic_read(&fs_info->scrubs_running)) { 3050 mutex_unlock(&fs_info->scrub_lock); 3051 return -ENOTCONN; 3052 } 3053 3054 atomic_inc(&fs_info->scrub_cancel_req); 3055 while (atomic_read(&fs_info->scrubs_running)) { 3056 mutex_unlock(&fs_info->scrub_lock); 3057 wait_event(fs_info->scrub_pause_wait, 3058 atomic_read(&fs_info->scrubs_running) == 0); 3059 mutex_lock(&fs_info->scrub_lock); 3060 } 3061 atomic_dec(&fs_info->scrub_cancel_req); 3062 mutex_unlock(&fs_info->scrub_lock); 3063 3064 return 0; 3065 } 3066 3067 int btrfs_scrub_cancel_dev(struct btrfs_device *dev) 3068 { 3069 struct btrfs_fs_info *fs_info = dev->fs_info; 3070 struct scrub_ctx *sctx; 3071 3072 mutex_lock(&fs_info->scrub_lock); 3073 sctx = dev->scrub_ctx; 3074 if (!sctx) { 3075 mutex_unlock(&fs_info->scrub_lock); 3076 return -ENOTCONN; 3077 } 3078 atomic_inc(&sctx->cancel_req); 3079 while (dev->scrub_ctx) { 3080 mutex_unlock(&fs_info->scrub_lock); 3081 wait_event(fs_info->scrub_pause_wait, 3082 dev->scrub_ctx == NULL); 3083 mutex_lock(&fs_info->scrub_lock); 3084 } 3085 mutex_unlock(&fs_info->scrub_lock); 3086 3087 return 0; 3088 } 3089 3090 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3091 struct btrfs_scrub_progress *progress) 3092 { 3093 struct btrfs_dev_lookup_args args = { .devid = devid }; 3094 struct btrfs_device *dev; 3095 struct scrub_ctx *sctx = NULL; 3096 3097 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3098 dev = btrfs_find_device(fs_info->fs_devices, &args); 3099 if (dev) 3100 sctx = dev->scrub_ctx; 3101 if (sctx) 3102 memcpy(progress, &sctx->stat, sizeof(*progress)); 3103 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3104 3105 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 3106 } 3107