xref: /linux/fs/btrfs/scrub.c (revision c4101e55974cc7d835fbd2d8e01553a3f61e9e75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "raid56.h"
20 #include "block-group.h"
21 #include "zoned.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "file-item.h"
25 #include "scrub.h"
26 #include "raid-stripe-tree.h"
27 
28 /*
29  * This is only the first step towards a full-features scrub. It reads all
30  * extent and super block and verifies the checksums. In case a bad checksum
31  * is found or the extent cannot be read, good data will be written back if
32  * any can be found.
33  *
34  * Future enhancements:
35  *  - In case an unrepairable extent is encountered, track which files are
36  *    affected and report them
37  *  - track and record media errors, throw out bad devices
38  *  - add a mode to also read unallocated space
39  */
40 
41 struct scrub_ctx;
42 
43 /*
44  * The following value only influences the performance.
45  *
46  * This determines how many stripes would be submitted in one go,
47  * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
48  */
49 #define SCRUB_STRIPES_PER_GROUP		8
50 
51 /*
52  * How many groups we have for each sctx.
53  *
54  * This would be 8M per device, the same value as the old scrub in-flight bios
55  * size limit.
56  */
57 #define SCRUB_GROUPS_PER_SCTX		16
58 
59 #define SCRUB_TOTAL_STRIPES		(SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
60 
61 /*
62  * The following value times PAGE_SIZE needs to be large enough to match the
63  * largest node/leaf/sector size that shall be supported.
64  */
65 #define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
66 
67 /* Represent one sector and its needed info to verify the content. */
68 struct scrub_sector_verification {
69 	bool is_metadata;
70 
71 	union {
72 		/*
73 		 * Csum pointer for data csum verification.  Should point to a
74 		 * sector csum inside scrub_stripe::csums.
75 		 *
76 		 * NULL if this data sector has no csum.
77 		 */
78 		u8 *csum;
79 
80 		/*
81 		 * Extra info for metadata verification.  All sectors inside a
82 		 * tree block share the same generation.
83 		 */
84 		u64 generation;
85 	};
86 };
87 
88 enum scrub_stripe_flags {
89 	/* Set when @mirror_num, @dev, @physical and @logical are set. */
90 	SCRUB_STRIPE_FLAG_INITIALIZED,
91 
92 	/* Set when the read-repair is finished. */
93 	SCRUB_STRIPE_FLAG_REPAIR_DONE,
94 
95 	/*
96 	 * Set for data stripes if it's triggered from P/Q stripe.
97 	 * During such scrub, we should not report errors in data stripes, nor
98 	 * update the accounting.
99 	 */
100 	SCRUB_STRIPE_FLAG_NO_REPORT,
101 };
102 
103 #define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)
104 
105 /*
106  * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
107  */
108 struct scrub_stripe {
109 	struct scrub_ctx *sctx;
110 	struct btrfs_block_group *bg;
111 
112 	struct page *pages[SCRUB_STRIPE_PAGES];
113 	struct scrub_sector_verification *sectors;
114 
115 	struct btrfs_device *dev;
116 	u64 logical;
117 	u64 physical;
118 
119 	u16 mirror_num;
120 
121 	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
122 	u16 nr_sectors;
123 
124 	/*
125 	 * How many data/meta extents are in this stripe.  Only for scrub status
126 	 * reporting purposes.
127 	 */
128 	u16 nr_data_extents;
129 	u16 nr_meta_extents;
130 
131 	atomic_t pending_io;
132 	wait_queue_head_t io_wait;
133 	wait_queue_head_t repair_wait;
134 
135 	/*
136 	 * Indicate the states of the stripe.  Bits are defined in
137 	 * scrub_stripe_flags enum.
138 	 */
139 	unsigned long state;
140 
141 	/* Indicate which sectors are covered by extent items. */
142 	unsigned long extent_sector_bitmap;
143 
144 	/*
145 	 * The errors hit during the initial read of the stripe.
146 	 *
147 	 * Would be utilized for error reporting and repair.
148 	 *
149 	 * The remaining init_nr_* records the number of errors hit, only used
150 	 * by error reporting.
151 	 */
152 	unsigned long init_error_bitmap;
153 	unsigned int init_nr_io_errors;
154 	unsigned int init_nr_csum_errors;
155 	unsigned int init_nr_meta_errors;
156 
157 	/*
158 	 * The following error bitmaps are all for the current status.
159 	 * Every time we submit a new read, these bitmaps may be updated.
160 	 *
161 	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
162 	 *
163 	 * IO and csum errors can happen for both metadata and data.
164 	 */
165 	unsigned long error_bitmap;
166 	unsigned long io_error_bitmap;
167 	unsigned long csum_error_bitmap;
168 	unsigned long meta_error_bitmap;
169 
170 	/* For writeback (repair or replace) error reporting. */
171 	unsigned long write_error_bitmap;
172 
173 	/* Writeback can be concurrent, thus we need to protect the bitmap. */
174 	spinlock_t write_error_lock;
175 
176 	/*
177 	 * Checksum for the whole stripe if this stripe is inside a data block
178 	 * group.
179 	 */
180 	u8 *csums;
181 
182 	struct work_struct work;
183 };
184 
185 struct scrub_ctx {
186 	struct scrub_stripe	stripes[SCRUB_TOTAL_STRIPES];
187 	struct scrub_stripe	*raid56_data_stripes;
188 	struct btrfs_fs_info	*fs_info;
189 	struct btrfs_path	extent_path;
190 	struct btrfs_path	csum_path;
191 	int			first_free;
192 	int			cur_stripe;
193 	atomic_t		cancel_req;
194 	int			readonly;
195 
196 	/* State of IO submission throttling affecting the associated device */
197 	ktime_t			throttle_deadline;
198 	u64			throttle_sent;
199 
200 	int			is_dev_replace;
201 	u64			write_pointer;
202 
203 	struct mutex            wr_lock;
204 	struct btrfs_device     *wr_tgtdev;
205 
206 	/*
207 	 * statistics
208 	 */
209 	struct btrfs_scrub_progress stat;
210 	spinlock_t		stat_lock;
211 
212 	/*
213 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
214 	 * decrement bios_in_flight and workers_pending and then do a wakeup
215 	 * on the list_wait wait queue. We must ensure the main scrub task
216 	 * doesn't free the scrub context before or while the workers are
217 	 * doing the wakeup() call.
218 	 */
219 	refcount_t              refs;
220 };
221 
222 struct scrub_warning {
223 	struct btrfs_path	*path;
224 	u64			extent_item_size;
225 	const char		*errstr;
226 	u64			physical;
227 	u64			logical;
228 	struct btrfs_device	*dev;
229 };
230 
231 static void release_scrub_stripe(struct scrub_stripe *stripe)
232 {
233 	if (!stripe)
234 		return;
235 
236 	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
237 		if (stripe->pages[i])
238 			__free_page(stripe->pages[i]);
239 		stripe->pages[i] = NULL;
240 	}
241 	kfree(stripe->sectors);
242 	kfree(stripe->csums);
243 	stripe->sectors = NULL;
244 	stripe->csums = NULL;
245 	stripe->sctx = NULL;
246 	stripe->state = 0;
247 }
248 
249 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
250 			     struct scrub_stripe *stripe)
251 {
252 	int ret;
253 
254 	memset(stripe, 0, sizeof(*stripe));
255 
256 	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
257 	stripe->state = 0;
258 
259 	init_waitqueue_head(&stripe->io_wait);
260 	init_waitqueue_head(&stripe->repair_wait);
261 	atomic_set(&stripe->pending_io, 0);
262 	spin_lock_init(&stripe->write_error_lock);
263 
264 	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, 0);
265 	if (ret < 0)
266 		goto error;
267 
268 	stripe->sectors = kcalloc(stripe->nr_sectors,
269 				  sizeof(struct scrub_sector_verification),
270 				  GFP_KERNEL);
271 	if (!stripe->sectors)
272 		goto error;
273 
274 	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
275 				fs_info->csum_size, GFP_KERNEL);
276 	if (!stripe->csums)
277 		goto error;
278 	return 0;
279 error:
280 	release_scrub_stripe(stripe);
281 	return -ENOMEM;
282 }
283 
284 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
285 {
286 	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
287 }
288 
289 static void scrub_put_ctx(struct scrub_ctx *sctx);
290 
291 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
292 {
293 	while (atomic_read(&fs_info->scrub_pause_req)) {
294 		mutex_unlock(&fs_info->scrub_lock);
295 		wait_event(fs_info->scrub_pause_wait,
296 		   atomic_read(&fs_info->scrub_pause_req) == 0);
297 		mutex_lock(&fs_info->scrub_lock);
298 	}
299 }
300 
301 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
302 {
303 	atomic_inc(&fs_info->scrubs_paused);
304 	wake_up(&fs_info->scrub_pause_wait);
305 }
306 
307 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
308 {
309 	mutex_lock(&fs_info->scrub_lock);
310 	__scrub_blocked_if_needed(fs_info);
311 	atomic_dec(&fs_info->scrubs_paused);
312 	mutex_unlock(&fs_info->scrub_lock);
313 
314 	wake_up(&fs_info->scrub_pause_wait);
315 }
316 
317 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
318 {
319 	scrub_pause_on(fs_info);
320 	scrub_pause_off(fs_info);
321 }
322 
323 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
324 {
325 	int i;
326 
327 	if (!sctx)
328 		return;
329 
330 	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
331 		release_scrub_stripe(&sctx->stripes[i]);
332 
333 	kvfree(sctx);
334 }
335 
336 static void scrub_put_ctx(struct scrub_ctx *sctx)
337 {
338 	if (refcount_dec_and_test(&sctx->refs))
339 		scrub_free_ctx(sctx);
340 }
341 
342 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
343 		struct btrfs_fs_info *fs_info, int is_dev_replace)
344 {
345 	struct scrub_ctx *sctx;
346 	int		i;
347 
348 	/* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
349 	 * kvzalloc().
350 	 */
351 	sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
352 	if (!sctx)
353 		goto nomem;
354 	refcount_set(&sctx->refs, 1);
355 	sctx->is_dev_replace = is_dev_replace;
356 	sctx->fs_info = fs_info;
357 	sctx->extent_path.search_commit_root = 1;
358 	sctx->extent_path.skip_locking = 1;
359 	sctx->csum_path.search_commit_root = 1;
360 	sctx->csum_path.skip_locking = 1;
361 	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
362 		int ret;
363 
364 		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
365 		if (ret < 0)
366 			goto nomem;
367 		sctx->stripes[i].sctx = sctx;
368 	}
369 	sctx->first_free = 0;
370 	atomic_set(&sctx->cancel_req, 0);
371 
372 	spin_lock_init(&sctx->stat_lock);
373 	sctx->throttle_deadline = 0;
374 
375 	mutex_init(&sctx->wr_lock);
376 	if (is_dev_replace) {
377 		WARN_ON(!fs_info->dev_replace.tgtdev);
378 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
379 	}
380 
381 	return sctx;
382 
383 nomem:
384 	scrub_free_ctx(sctx);
385 	return ERR_PTR(-ENOMEM);
386 }
387 
388 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
389 				     u64 root, void *warn_ctx)
390 {
391 	u32 nlink;
392 	int ret;
393 	int i;
394 	unsigned nofs_flag;
395 	struct extent_buffer *eb;
396 	struct btrfs_inode_item *inode_item;
397 	struct scrub_warning *swarn = warn_ctx;
398 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
399 	struct inode_fs_paths *ipath = NULL;
400 	struct btrfs_root *local_root;
401 	struct btrfs_key key;
402 
403 	local_root = btrfs_get_fs_root(fs_info, root, true);
404 	if (IS_ERR(local_root)) {
405 		ret = PTR_ERR(local_root);
406 		goto err;
407 	}
408 
409 	/*
410 	 * this makes the path point to (inum INODE_ITEM ioff)
411 	 */
412 	key.objectid = inum;
413 	key.type = BTRFS_INODE_ITEM_KEY;
414 	key.offset = 0;
415 
416 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
417 	if (ret) {
418 		btrfs_put_root(local_root);
419 		btrfs_release_path(swarn->path);
420 		goto err;
421 	}
422 
423 	eb = swarn->path->nodes[0];
424 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
425 					struct btrfs_inode_item);
426 	nlink = btrfs_inode_nlink(eb, inode_item);
427 	btrfs_release_path(swarn->path);
428 
429 	/*
430 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
431 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
432 	 * not seem to be strictly necessary.
433 	 */
434 	nofs_flag = memalloc_nofs_save();
435 	ipath = init_ipath(4096, local_root, swarn->path);
436 	memalloc_nofs_restore(nofs_flag);
437 	if (IS_ERR(ipath)) {
438 		btrfs_put_root(local_root);
439 		ret = PTR_ERR(ipath);
440 		ipath = NULL;
441 		goto err;
442 	}
443 	ret = paths_from_inode(inum, ipath);
444 
445 	if (ret < 0)
446 		goto err;
447 
448 	/*
449 	 * we deliberately ignore the bit ipath might have been too small to
450 	 * hold all of the paths here
451 	 */
452 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
453 		btrfs_warn_in_rcu(fs_info,
454 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
455 				  swarn->errstr, swarn->logical,
456 				  btrfs_dev_name(swarn->dev),
457 				  swarn->physical,
458 				  root, inum, offset,
459 				  fs_info->sectorsize, nlink,
460 				  (char *)(unsigned long)ipath->fspath->val[i]);
461 
462 	btrfs_put_root(local_root);
463 	free_ipath(ipath);
464 	return 0;
465 
466 err:
467 	btrfs_warn_in_rcu(fs_info,
468 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
469 			  swarn->errstr, swarn->logical,
470 			  btrfs_dev_name(swarn->dev),
471 			  swarn->physical,
472 			  root, inum, offset, ret);
473 
474 	free_ipath(ipath);
475 	return 0;
476 }
477 
478 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
479 				       bool is_super, u64 logical, u64 physical)
480 {
481 	struct btrfs_fs_info *fs_info = dev->fs_info;
482 	struct btrfs_path *path;
483 	struct btrfs_key found_key;
484 	struct extent_buffer *eb;
485 	struct btrfs_extent_item *ei;
486 	struct scrub_warning swarn;
487 	u64 flags = 0;
488 	u32 item_size;
489 	int ret;
490 
491 	/* Super block error, no need to search extent tree. */
492 	if (is_super) {
493 		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
494 				  errstr, btrfs_dev_name(dev), physical);
495 		return;
496 	}
497 	path = btrfs_alloc_path();
498 	if (!path)
499 		return;
500 
501 	swarn.physical = physical;
502 	swarn.logical = logical;
503 	swarn.errstr = errstr;
504 	swarn.dev = NULL;
505 
506 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
507 				  &flags);
508 	if (ret < 0)
509 		goto out;
510 
511 	swarn.extent_item_size = found_key.offset;
512 
513 	eb = path->nodes[0];
514 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
515 	item_size = btrfs_item_size(eb, path->slots[0]);
516 
517 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
518 		unsigned long ptr = 0;
519 		u8 ref_level;
520 		u64 ref_root;
521 
522 		while (true) {
523 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
524 						      item_size, &ref_root,
525 						      &ref_level);
526 			if (ret < 0) {
527 				btrfs_warn(fs_info,
528 				"failed to resolve tree backref for logical %llu: %d",
529 						  swarn.logical, ret);
530 				break;
531 			}
532 			if (ret > 0)
533 				break;
534 			btrfs_warn_in_rcu(fs_info,
535 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
536 				errstr, swarn.logical, btrfs_dev_name(dev),
537 				swarn.physical, (ref_level ? "node" : "leaf"),
538 				ref_level, ref_root);
539 		}
540 		btrfs_release_path(path);
541 	} else {
542 		struct btrfs_backref_walk_ctx ctx = { 0 };
543 
544 		btrfs_release_path(path);
545 
546 		ctx.bytenr = found_key.objectid;
547 		ctx.extent_item_pos = swarn.logical - found_key.objectid;
548 		ctx.fs_info = fs_info;
549 
550 		swarn.path = path;
551 		swarn.dev = dev;
552 
553 		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
554 	}
555 
556 out:
557 	btrfs_free_path(path);
558 }
559 
560 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
561 {
562 	int ret = 0;
563 	u64 length;
564 
565 	if (!btrfs_is_zoned(sctx->fs_info))
566 		return 0;
567 
568 	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
569 		return 0;
570 
571 	if (sctx->write_pointer < physical) {
572 		length = physical - sctx->write_pointer;
573 
574 		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
575 						sctx->write_pointer, length);
576 		if (!ret)
577 			sctx->write_pointer = physical;
578 	}
579 	return ret;
580 }
581 
582 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
583 {
584 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
585 	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
586 
587 	return stripe->pages[page_index];
588 }
589 
590 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
591 						 int sector_nr)
592 {
593 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
594 
595 	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
596 }
597 
598 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
599 {
600 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
601 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
602 	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
603 	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
604 	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
605 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
606 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
607 	u8 calculated_csum[BTRFS_CSUM_SIZE];
608 	struct btrfs_header *header;
609 
610 	/*
611 	 * Here we don't have a good way to attach the pages (and subpages)
612 	 * to a dummy extent buffer, thus we have to directly grab the members
613 	 * from pages.
614 	 */
615 	header = (struct btrfs_header *)(page_address(first_page) + first_off);
616 	memcpy(on_disk_csum, header->csum, fs_info->csum_size);
617 
618 	if (logical != btrfs_stack_header_bytenr(header)) {
619 		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
620 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
621 		btrfs_warn_rl(fs_info,
622 		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
623 			      logical, stripe->mirror_num,
624 			      btrfs_stack_header_bytenr(header), logical);
625 		return;
626 	}
627 	if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
628 		   BTRFS_FSID_SIZE) != 0) {
629 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
630 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
631 		btrfs_warn_rl(fs_info,
632 		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
633 			      logical, stripe->mirror_num,
634 			      header->fsid, fs_info->fs_devices->fsid);
635 		return;
636 	}
637 	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
638 		   BTRFS_UUID_SIZE) != 0) {
639 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
640 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
641 		btrfs_warn_rl(fs_info,
642 		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
643 			      logical, stripe->mirror_num,
644 			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
645 		return;
646 	}
647 
648 	/* Now check tree block csum. */
649 	shash->tfm = fs_info->csum_shash;
650 	crypto_shash_init(shash);
651 	crypto_shash_update(shash, page_address(first_page) + first_off +
652 			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
653 
654 	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
655 		struct page *page = scrub_stripe_get_page(stripe, i);
656 		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
657 
658 		crypto_shash_update(shash, page_address(page) + page_off,
659 				    fs_info->sectorsize);
660 	}
661 
662 	crypto_shash_final(shash, calculated_csum);
663 	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
664 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
665 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
666 		btrfs_warn_rl(fs_info,
667 		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
668 			      logical, stripe->mirror_num,
669 			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
670 			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
671 		return;
672 	}
673 	if (stripe->sectors[sector_nr].generation !=
674 	    btrfs_stack_header_generation(header)) {
675 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
676 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
677 		btrfs_warn_rl(fs_info,
678 		"tree block %llu mirror %u has bad generation, has %llu want %llu",
679 			      logical, stripe->mirror_num,
680 			      btrfs_stack_header_generation(header),
681 			      stripe->sectors[sector_nr].generation);
682 		return;
683 	}
684 	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
685 	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
686 	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
687 }
688 
689 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
690 {
691 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
692 	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
693 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
694 	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
695 	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
696 	u8 csum_buf[BTRFS_CSUM_SIZE];
697 	int ret;
698 
699 	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
700 
701 	/* Sector not utilized, skip it. */
702 	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
703 		return;
704 
705 	/* IO error, no need to check. */
706 	if (test_bit(sector_nr, &stripe->io_error_bitmap))
707 		return;
708 
709 	/* Metadata, verify the full tree block. */
710 	if (sector->is_metadata) {
711 		/*
712 		 * Check if the tree block crosses the stripe boundary.  If
713 		 * crossed the boundary, we cannot verify it but only give a
714 		 * warning.
715 		 *
716 		 * This can only happen on a very old filesystem where chunks
717 		 * are not ensured to be stripe aligned.
718 		 */
719 		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
720 			btrfs_warn_rl(fs_info,
721 			"tree block at %llu crosses stripe boundary %llu",
722 				      stripe->logical +
723 				      (sector_nr << fs_info->sectorsize_bits),
724 				      stripe->logical);
725 			return;
726 		}
727 		scrub_verify_one_metadata(stripe, sector_nr);
728 		return;
729 	}
730 
731 	/*
732 	 * Data is easier, we just verify the data csum (if we have it).  For
733 	 * cases without csum, we have no other choice but to trust it.
734 	 */
735 	if (!sector->csum) {
736 		clear_bit(sector_nr, &stripe->error_bitmap);
737 		return;
738 	}
739 
740 	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
741 	if (ret < 0) {
742 		set_bit(sector_nr, &stripe->csum_error_bitmap);
743 		set_bit(sector_nr, &stripe->error_bitmap);
744 	} else {
745 		clear_bit(sector_nr, &stripe->csum_error_bitmap);
746 		clear_bit(sector_nr, &stripe->error_bitmap);
747 	}
748 }
749 
750 /* Verify specified sectors of a stripe. */
751 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
752 {
753 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
754 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
755 	int sector_nr;
756 
757 	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
758 		scrub_verify_one_sector(stripe, sector_nr);
759 		if (stripe->sectors[sector_nr].is_metadata)
760 			sector_nr += sectors_per_tree - 1;
761 	}
762 }
763 
764 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
765 {
766 	int i;
767 
768 	for (i = 0; i < stripe->nr_sectors; i++) {
769 		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
770 		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
771 			break;
772 	}
773 	ASSERT(i < stripe->nr_sectors);
774 	return i;
775 }
776 
777 /*
778  * Repair read is different to the regular read:
779  *
780  * - Only reads the failed sectors
781  * - May have extra blocksize limits
782  */
783 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
784 {
785 	struct scrub_stripe *stripe = bbio->private;
786 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
787 	struct bio_vec *bvec;
788 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
789 	u32 bio_size = 0;
790 	int i;
791 
792 	ASSERT(sector_nr < stripe->nr_sectors);
793 
794 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
795 		bio_size += bvec->bv_len;
796 
797 	if (bbio->bio.bi_status) {
798 		bitmap_set(&stripe->io_error_bitmap, sector_nr,
799 			   bio_size >> fs_info->sectorsize_bits);
800 		bitmap_set(&stripe->error_bitmap, sector_nr,
801 			   bio_size >> fs_info->sectorsize_bits);
802 	} else {
803 		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
804 			     bio_size >> fs_info->sectorsize_bits);
805 	}
806 	bio_put(&bbio->bio);
807 	if (atomic_dec_and_test(&stripe->pending_io))
808 		wake_up(&stripe->io_wait);
809 }
810 
811 static int calc_next_mirror(int mirror, int num_copies)
812 {
813 	ASSERT(mirror <= num_copies);
814 	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
815 }
816 
817 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
818 					    int mirror, int blocksize, bool wait)
819 {
820 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
821 	struct btrfs_bio *bbio = NULL;
822 	const unsigned long old_error_bitmap = stripe->error_bitmap;
823 	int i;
824 
825 	ASSERT(stripe->mirror_num >= 1);
826 	ASSERT(atomic_read(&stripe->pending_io) == 0);
827 
828 	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
829 		struct page *page;
830 		int pgoff;
831 		int ret;
832 
833 		page = scrub_stripe_get_page(stripe, i);
834 		pgoff = scrub_stripe_get_page_offset(stripe, i);
835 
836 		/* The current sector cannot be merged, submit the bio. */
837 		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
838 			     bbio->bio.bi_iter.bi_size >= blocksize)) {
839 			ASSERT(bbio->bio.bi_iter.bi_size);
840 			atomic_inc(&stripe->pending_io);
841 			btrfs_submit_bio(bbio, mirror);
842 			if (wait)
843 				wait_scrub_stripe_io(stripe);
844 			bbio = NULL;
845 		}
846 
847 		if (!bbio) {
848 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
849 				fs_info, scrub_repair_read_endio, stripe);
850 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
851 				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
852 		}
853 
854 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
855 		ASSERT(ret == fs_info->sectorsize);
856 	}
857 	if (bbio) {
858 		ASSERT(bbio->bio.bi_iter.bi_size);
859 		atomic_inc(&stripe->pending_io);
860 		btrfs_submit_bio(bbio, mirror);
861 		if (wait)
862 			wait_scrub_stripe_io(stripe);
863 	}
864 }
865 
866 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
867 				       struct scrub_stripe *stripe)
868 {
869 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
870 				      DEFAULT_RATELIMIT_BURST);
871 	struct btrfs_fs_info *fs_info = sctx->fs_info;
872 	struct btrfs_device *dev = NULL;
873 	u64 physical = 0;
874 	int nr_data_sectors = 0;
875 	int nr_meta_sectors = 0;
876 	int nr_nodatacsum_sectors = 0;
877 	int nr_repaired_sectors = 0;
878 	int sector_nr;
879 
880 	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
881 		return;
882 
883 	/*
884 	 * Init needed infos for error reporting.
885 	 *
886 	 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
887 	 * thus no need for dev/physical, error reporting still needs dev and physical.
888 	 */
889 	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
890 		u64 mapped_len = fs_info->sectorsize;
891 		struct btrfs_io_context *bioc = NULL;
892 		int stripe_index = stripe->mirror_num - 1;
893 		int ret;
894 
895 		/* For scrub, our mirror_num should always start at 1. */
896 		ASSERT(stripe->mirror_num >= 1);
897 		ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
898 				      stripe->logical, &mapped_len, &bioc,
899 				      NULL, NULL);
900 		/*
901 		 * If we failed, dev will be NULL, and later detailed reports
902 		 * will just be skipped.
903 		 */
904 		if (ret < 0)
905 			goto skip;
906 		physical = bioc->stripes[stripe_index].physical;
907 		dev = bioc->stripes[stripe_index].dev;
908 		btrfs_put_bioc(bioc);
909 	}
910 
911 skip:
912 	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
913 		bool repaired = false;
914 
915 		if (stripe->sectors[sector_nr].is_metadata) {
916 			nr_meta_sectors++;
917 		} else {
918 			nr_data_sectors++;
919 			if (!stripe->sectors[sector_nr].csum)
920 				nr_nodatacsum_sectors++;
921 		}
922 
923 		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
924 		    !test_bit(sector_nr, &stripe->error_bitmap)) {
925 			nr_repaired_sectors++;
926 			repaired = true;
927 		}
928 
929 		/* Good sector from the beginning, nothing need to be done. */
930 		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
931 			continue;
932 
933 		/*
934 		 * Report error for the corrupted sectors.  If repaired, just
935 		 * output the message of repaired message.
936 		 */
937 		if (repaired) {
938 			if (dev) {
939 				btrfs_err_rl_in_rcu(fs_info,
940 			"fixed up error at logical %llu on dev %s physical %llu",
941 					    stripe->logical, btrfs_dev_name(dev),
942 					    physical);
943 			} else {
944 				btrfs_err_rl_in_rcu(fs_info,
945 			"fixed up error at logical %llu on mirror %u",
946 					    stripe->logical, stripe->mirror_num);
947 			}
948 			continue;
949 		}
950 
951 		/* The remaining are all for unrepaired. */
952 		if (dev) {
953 			btrfs_err_rl_in_rcu(fs_info,
954 	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
955 					    stripe->logical, btrfs_dev_name(dev),
956 					    physical);
957 		} else {
958 			btrfs_err_rl_in_rcu(fs_info,
959 	"unable to fixup (regular) error at logical %llu on mirror %u",
960 					    stripe->logical, stripe->mirror_num);
961 		}
962 
963 		if (test_bit(sector_nr, &stripe->io_error_bitmap))
964 			if (__ratelimit(&rs) && dev)
965 				scrub_print_common_warning("i/o error", dev, false,
966 						     stripe->logical, physical);
967 		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
968 			if (__ratelimit(&rs) && dev)
969 				scrub_print_common_warning("checksum error", dev, false,
970 						     stripe->logical, physical);
971 		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
972 			if (__ratelimit(&rs) && dev)
973 				scrub_print_common_warning("header error", dev, false,
974 						     stripe->logical, physical);
975 	}
976 
977 	spin_lock(&sctx->stat_lock);
978 	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
979 	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
980 	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
981 	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
982 	sctx->stat.no_csum += nr_nodatacsum_sectors;
983 	sctx->stat.read_errors += stripe->init_nr_io_errors;
984 	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
985 	sctx->stat.verify_errors += stripe->init_nr_meta_errors;
986 	sctx->stat.uncorrectable_errors +=
987 		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
988 	sctx->stat.corrected_errors += nr_repaired_sectors;
989 	spin_unlock(&sctx->stat_lock);
990 }
991 
992 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
993 				unsigned long write_bitmap, bool dev_replace);
994 
995 /*
996  * The main entrance for all read related scrub work, including:
997  *
998  * - Wait for the initial read to finish
999  * - Verify and locate any bad sectors
1000  * - Go through the remaining mirrors and try to read as large blocksize as
1001  *   possible
1002  * - Go through all mirrors (including the failed mirror) sector-by-sector
1003  * - Submit writeback for repaired sectors
1004  *
1005  * Writeback for dev-replace does not happen here, it needs extra
1006  * synchronization for zoned devices.
1007  */
1008 static void scrub_stripe_read_repair_worker(struct work_struct *work)
1009 {
1010 	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1011 	struct scrub_ctx *sctx = stripe->sctx;
1012 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1013 	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1014 					  stripe->bg->length);
1015 	int mirror;
1016 	int i;
1017 
1018 	ASSERT(stripe->mirror_num > 0);
1019 
1020 	wait_scrub_stripe_io(stripe);
1021 	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1022 	/* Save the initial failed bitmap for later repair and report usage. */
1023 	stripe->init_error_bitmap = stripe->error_bitmap;
1024 	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1025 						  stripe->nr_sectors);
1026 	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1027 						    stripe->nr_sectors);
1028 	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1029 						    stripe->nr_sectors);
1030 
1031 	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1032 		goto out;
1033 
1034 	/*
1035 	 * Try all remaining mirrors.
1036 	 *
1037 	 * Here we still try to read as large block as possible, as this is
1038 	 * faster and we have extra safety nets to rely on.
1039 	 */
1040 	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1041 	     mirror != stripe->mirror_num;
1042 	     mirror = calc_next_mirror(mirror, num_copies)) {
1043 		const unsigned long old_error_bitmap = stripe->error_bitmap;
1044 
1045 		scrub_stripe_submit_repair_read(stripe, mirror,
1046 						BTRFS_STRIPE_LEN, false);
1047 		wait_scrub_stripe_io(stripe);
1048 		scrub_verify_one_stripe(stripe, old_error_bitmap);
1049 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1050 			goto out;
1051 	}
1052 
1053 	/*
1054 	 * Last safety net, try re-checking all mirrors, including the failed
1055 	 * one, sector-by-sector.
1056 	 *
1057 	 * As if one sector failed the drive's internal csum, the whole read
1058 	 * containing the offending sector would be marked as error.
1059 	 * Thus here we do sector-by-sector read.
1060 	 *
1061 	 * This can be slow, thus we only try it as the last resort.
1062 	 */
1063 
1064 	for (i = 0, mirror = stripe->mirror_num;
1065 	     i < num_copies;
1066 	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
1067 		const unsigned long old_error_bitmap = stripe->error_bitmap;
1068 
1069 		scrub_stripe_submit_repair_read(stripe, mirror,
1070 						fs_info->sectorsize, true);
1071 		wait_scrub_stripe_io(stripe);
1072 		scrub_verify_one_stripe(stripe, old_error_bitmap);
1073 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1074 			goto out;
1075 	}
1076 out:
1077 	/*
1078 	 * Submit the repaired sectors.  For zoned case, we cannot do repair
1079 	 * in-place, but queue the bg to be relocated.
1080 	 */
1081 	if (btrfs_is_zoned(fs_info)) {
1082 		if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1083 			btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1084 	} else if (!sctx->readonly) {
1085 		unsigned long repaired;
1086 
1087 		bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1088 			      &stripe->error_bitmap, stripe->nr_sectors);
1089 		scrub_write_sectors(sctx, stripe, repaired, false);
1090 		wait_scrub_stripe_io(stripe);
1091 	}
1092 
1093 	scrub_stripe_report_errors(sctx, stripe);
1094 	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1095 	wake_up(&stripe->repair_wait);
1096 }
1097 
1098 static void scrub_read_endio(struct btrfs_bio *bbio)
1099 {
1100 	struct scrub_stripe *stripe = bbio->private;
1101 
1102 	if (bbio->bio.bi_status) {
1103 		bitmap_set(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
1104 		bitmap_set(&stripe->error_bitmap, 0, stripe->nr_sectors);
1105 	} else {
1106 		bitmap_clear(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
1107 	}
1108 	bio_put(&bbio->bio);
1109 	if (atomic_dec_and_test(&stripe->pending_io)) {
1110 		wake_up(&stripe->io_wait);
1111 		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1112 		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1113 	}
1114 }
1115 
1116 static void scrub_write_endio(struct btrfs_bio *bbio)
1117 {
1118 	struct scrub_stripe *stripe = bbio->private;
1119 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1120 	struct bio_vec *bvec;
1121 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1122 	u32 bio_size = 0;
1123 	int i;
1124 
1125 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1126 		bio_size += bvec->bv_len;
1127 
1128 	if (bbio->bio.bi_status) {
1129 		unsigned long flags;
1130 
1131 		spin_lock_irqsave(&stripe->write_error_lock, flags);
1132 		bitmap_set(&stripe->write_error_bitmap, sector_nr,
1133 			   bio_size >> fs_info->sectorsize_bits);
1134 		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1135 	}
1136 	bio_put(&bbio->bio);
1137 
1138 	if (atomic_dec_and_test(&stripe->pending_io))
1139 		wake_up(&stripe->io_wait);
1140 }
1141 
1142 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1143 				   struct scrub_stripe *stripe,
1144 				   struct btrfs_bio *bbio, bool dev_replace)
1145 {
1146 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1147 	u32 bio_len = bbio->bio.bi_iter.bi_size;
1148 	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1149 		      stripe->logical;
1150 
1151 	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1152 	atomic_inc(&stripe->pending_io);
1153 	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1154 	if (!btrfs_is_zoned(fs_info))
1155 		return;
1156 	/*
1157 	 * For zoned writeback, queue depth must be 1, thus we must wait for
1158 	 * the write to finish before the next write.
1159 	 */
1160 	wait_scrub_stripe_io(stripe);
1161 
1162 	/*
1163 	 * And also need to update the write pointer if write finished
1164 	 * successfully.
1165 	 */
1166 	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1167 		      &stripe->write_error_bitmap))
1168 		sctx->write_pointer += bio_len;
1169 }
1170 
1171 /*
1172  * Submit the write bio(s) for the sectors specified by @write_bitmap.
1173  *
1174  * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1175  *
1176  * - Only needs logical bytenr and mirror_num
1177  *   Just like the scrub read path
1178  *
1179  * - Would only result in writes to the specified mirror
1180  *   Unlike the regular writeback path, which would write back to all stripes
1181  *
1182  * - Handle dev-replace and read-repair writeback differently
1183  */
1184 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1185 				unsigned long write_bitmap, bool dev_replace)
1186 {
1187 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1188 	struct btrfs_bio *bbio = NULL;
1189 	int sector_nr;
1190 
1191 	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1192 		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1193 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1194 		int ret;
1195 
1196 		/* We should only writeback sectors covered by an extent. */
1197 		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1198 
1199 		/* Cannot merge with previous sector, submit the current one. */
1200 		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1201 			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1202 			bbio = NULL;
1203 		}
1204 		if (!bbio) {
1205 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1206 					       fs_info, scrub_write_endio, stripe);
1207 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
1208 				(sector_nr << fs_info->sectorsize_bits)) >>
1209 				SECTOR_SHIFT;
1210 		}
1211 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1212 		ASSERT(ret == fs_info->sectorsize);
1213 	}
1214 	if (bbio)
1215 		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1216 }
1217 
1218 /*
1219  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1220  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1221  */
1222 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1223 				  unsigned int bio_size)
1224 {
1225 	const int time_slice = 1000;
1226 	s64 delta;
1227 	ktime_t now;
1228 	u32 div;
1229 	u64 bwlimit;
1230 
1231 	bwlimit = READ_ONCE(device->scrub_speed_max);
1232 	if (bwlimit == 0)
1233 		return;
1234 
1235 	/*
1236 	 * Slice is divided into intervals when the IO is submitted, adjust by
1237 	 * bwlimit and maximum of 64 intervals.
1238 	 */
1239 	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1240 	div = min_t(u32, 64, div);
1241 
1242 	/* Start new epoch, set deadline */
1243 	now = ktime_get();
1244 	if (sctx->throttle_deadline == 0) {
1245 		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1246 		sctx->throttle_sent = 0;
1247 	}
1248 
1249 	/* Still in the time to send? */
1250 	if (ktime_before(now, sctx->throttle_deadline)) {
1251 		/* If current bio is within the limit, send it */
1252 		sctx->throttle_sent += bio_size;
1253 		if (sctx->throttle_sent <= div_u64(bwlimit, div))
1254 			return;
1255 
1256 		/* We're over the limit, sleep until the rest of the slice */
1257 		delta = ktime_ms_delta(sctx->throttle_deadline, now);
1258 	} else {
1259 		/* New request after deadline, start new epoch */
1260 		delta = 0;
1261 	}
1262 
1263 	if (delta) {
1264 		long timeout;
1265 
1266 		timeout = div_u64(delta * HZ, 1000);
1267 		schedule_timeout_interruptible(timeout);
1268 	}
1269 
1270 	/* Next call will start the deadline period */
1271 	sctx->throttle_deadline = 0;
1272 }
1273 
1274 /*
1275  * Given a physical address, this will calculate it's
1276  * logical offset. if this is a parity stripe, it will return
1277  * the most left data stripe's logical offset.
1278  *
1279  * return 0 if it is a data stripe, 1 means parity stripe.
1280  */
1281 static int get_raid56_logic_offset(u64 physical, int num,
1282 				   struct btrfs_chunk_map *map, u64 *offset,
1283 				   u64 *stripe_start)
1284 {
1285 	int i;
1286 	int j = 0;
1287 	u64 last_offset;
1288 	const int data_stripes = nr_data_stripes(map);
1289 
1290 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
1291 	if (stripe_start)
1292 		*stripe_start = last_offset;
1293 
1294 	*offset = last_offset;
1295 	for (i = 0; i < data_stripes; i++) {
1296 		u32 stripe_nr;
1297 		u32 stripe_index;
1298 		u32 rot;
1299 
1300 		*offset = last_offset + btrfs_stripe_nr_to_offset(i);
1301 
1302 		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1303 
1304 		/* Work out the disk rotation on this stripe-set */
1305 		rot = stripe_nr % map->num_stripes;
1306 		/* calculate which stripe this data locates */
1307 		rot += i;
1308 		stripe_index = rot % map->num_stripes;
1309 		if (stripe_index == num)
1310 			return 0;
1311 		if (stripe_index < num)
1312 			j++;
1313 	}
1314 	*offset = last_offset + btrfs_stripe_nr_to_offset(j);
1315 	return 1;
1316 }
1317 
1318 /*
1319  * Return 0 if the extent item range covers any byte of the range.
1320  * Return <0 if the extent item is before @search_start.
1321  * Return >0 if the extent item is after @start_start + @search_len.
1322  */
1323 static int compare_extent_item_range(struct btrfs_path *path,
1324 				     u64 search_start, u64 search_len)
1325 {
1326 	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1327 	u64 len;
1328 	struct btrfs_key key;
1329 
1330 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1331 	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1332 	       key.type == BTRFS_METADATA_ITEM_KEY);
1333 	if (key.type == BTRFS_METADATA_ITEM_KEY)
1334 		len = fs_info->nodesize;
1335 	else
1336 		len = key.offset;
1337 
1338 	if (key.objectid + len <= search_start)
1339 		return -1;
1340 	if (key.objectid >= search_start + search_len)
1341 		return 1;
1342 	return 0;
1343 }
1344 
1345 /*
1346  * Locate one extent item which covers any byte in range
1347  * [@search_start, @search_start + @search_length)
1348  *
1349  * If the path is not initialized, we will initialize the search by doing
1350  * a btrfs_search_slot().
1351  * If the path is already initialized, we will use the path as the initial
1352  * slot, to avoid duplicated btrfs_search_slot() calls.
1353  *
1354  * NOTE: If an extent item starts before @search_start, we will still
1355  * return the extent item. This is for data extent crossing stripe boundary.
1356  *
1357  * Return 0 if we found such extent item, and @path will point to the extent item.
1358  * Return >0 if no such extent item can be found, and @path will be released.
1359  * Return <0 if hit fatal error, and @path will be released.
1360  */
1361 static int find_first_extent_item(struct btrfs_root *extent_root,
1362 				  struct btrfs_path *path,
1363 				  u64 search_start, u64 search_len)
1364 {
1365 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1366 	struct btrfs_key key;
1367 	int ret;
1368 
1369 	/* Continue using the existing path */
1370 	if (path->nodes[0])
1371 		goto search_forward;
1372 
1373 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1374 		key.type = BTRFS_METADATA_ITEM_KEY;
1375 	else
1376 		key.type = BTRFS_EXTENT_ITEM_KEY;
1377 	key.objectid = search_start;
1378 	key.offset = (u64)-1;
1379 
1380 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1381 	if (ret < 0)
1382 		return ret;
1383 
1384 	ASSERT(ret > 0);
1385 	/*
1386 	 * Here we intentionally pass 0 as @min_objectid, as there could be
1387 	 * an extent item starting before @search_start.
1388 	 */
1389 	ret = btrfs_previous_extent_item(extent_root, path, 0);
1390 	if (ret < 0)
1391 		return ret;
1392 	/*
1393 	 * No matter whether we have found an extent item, the next loop will
1394 	 * properly do every check on the key.
1395 	 */
1396 search_forward:
1397 	while (true) {
1398 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1399 		if (key.objectid >= search_start + search_len)
1400 			break;
1401 		if (key.type != BTRFS_METADATA_ITEM_KEY &&
1402 		    key.type != BTRFS_EXTENT_ITEM_KEY)
1403 			goto next;
1404 
1405 		ret = compare_extent_item_range(path, search_start, search_len);
1406 		if (ret == 0)
1407 			return ret;
1408 		if (ret > 0)
1409 			break;
1410 next:
1411 		ret = btrfs_next_item(extent_root, path);
1412 		if (ret) {
1413 			/* Either no more items or a fatal error. */
1414 			btrfs_release_path(path);
1415 			return ret;
1416 		}
1417 	}
1418 	btrfs_release_path(path);
1419 	return 1;
1420 }
1421 
1422 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1423 			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1424 {
1425 	struct btrfs_key key;
1426 	struct btrfs_extent_item *ei;
1427 
1428 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1429 	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1430 	       key.type == BTRFS_EXTENT_ITEM_KEY);
1431 	*extent_start_ret = key.objectid;
1432 	if (key.type == BTRFS_METADATA_ITEM_KEY)
1433 		*size_ret = path->nodes[0]->fs_info->nodesize;
1434 	else
1435 		*size_ret = key.offset;
1436 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1437 	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1438 	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1439 }
1440 
1441 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1442 					u64 physical, u64 physical_end)
1443 {
1444 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1445 	int ret = 0;
1446 
1447 	if (!btrfs_is_zoned(fs_info))
1448 		return 0;
1449 
1450 	mutex_lock(&sctx->wr_lock);
1451 	if (sctx->write_pointer < physical_end) {
1452 		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1453 						    physical,
1454 						    sctx->write_pointer);
1455 		if (ret)
1456 			btrfs_err(fs_info,
1457 				  "zoned: failed to recover write pointer");
1458 	}
1459 	mutex_unlock(&sctx->wr_lock);
1460 	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1461 
1462 	return ret;
1463 }
1464 
1465 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1466 				 struct scrub_stripe *stripe,
1467 				 u64 extent_start, u64 extent_len,
1468 				 u64 extent_flags, u64 extent_gen)
1469 {
1470 	for (u64 cur_logical = max(stripe->logical, extent_start);
1471 	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1472 			       extent_start + extent_len);
1473 	     cur_logical += fs_info->sectorsize) {
1474 		const int nr_sector = (cur_logical - stripe->logical) >>
1475 				      fs_info->sectorsize_bits;
1476 		struct scrub_sector_verification *sector =
1477 						&stripe->sectors[nr_sector];
1478 
1479 		set_bit(nr_sector, &stripe->extent_sector_bitmap);
1480 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1481 			sector->is_metadata = true;
1482 			sector->generation = extent_gen;
1483 		}
1484 	}
1485 }
1486 
1487 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1488 {
1489 	stripe->extent_sector_bitmap = 0;
1490 	stripe->init_error_bitmap = 0;
1491 	stripe->init_nr_io_errors = 0;
1492 	stripe->init_nr_csum_errors = 0;
1493 	stripe->init_nr_meta_errors = 0;
1494 	stripe->error_bitmap = 0;
1495 	stripe->io_error_bitmap = 0;
1496 	stripe->csum_error_bitmap = 0;
1497 	stripe->meta_error_bitmap = 0;
1498 }
1499 
1500 /*
1501  * Locate one stripe which has at least one extent in its range.
1502  *
1503  * Return 0 if found such stripe, and store its info into @stripe.
1504  * Return >0 if there is no such stripe in the specified range.
1505  * Return <0 for error.
1506  */
1507 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1508 					struct btrfs_path *extent_path,
1509 					struct btrfs_path *csum_path,
1510 					struct btrfs_device *dev, u64 physical,
1511 					int mirror_num, u64 logical_start,
1512 					u32 logical_len,
1513 					struct scrub_stripe *stripe)
1514 {
1515 	struct btrfs_fs_info *fs_info = bg->fs_info;
1516 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1517 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1518 	const u64 logical_end = logical_start + logical_len;
1519 	u64 cur_logical = logical_start;
1520 	u64 stripe_end;
1521 	u64 extent_start;
1522 	u64 extent_len;
1523 	u64 extent_flags;
1524 	u64 extent_gen;
1525 	int ret;
1526 
1527 	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1528 				   stripe->nr_sectors);
1529 	scrub_stripe_reset_bitmaps(stripe);
1530 
1531 	/* The range must be inside the bg. */
1532 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1533 
1534 	ret = find_first_extent_item(extent_root, extent_path, logical_start,
1535 				     logical_len);
1536 	/* Either error or not found. */
1537 	if (ret)
1538 		goto out;
1539 	get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1540 			&extent_gen);
1541 	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1542 		stripe->nr_meta_extents++;
1543 	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1544 		stripe->nr_data_extents++;
1545 	cur_logical = max(extent_start, cur_logical);
1546 
1547 	/*
1548 	 * Round down to stripe boundary.
1549 	 *
1550 	 * The extra calculation against bg->start is to handle block groups
1551 	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1552 	 */
1553 	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1554 			  bg->start;
1555 	stripe->physical = physical + stripe->logical - logical_start;
1556 	stripe->dev = dev;
1557 	stripe->bg = bg;
1558 	stripe->mirror_num = mirror_num;
1559 	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1560 
1561 	/* Fill the first extent info into stripe->sectors[] array. */
1562 	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1563 			     extent_flags, extent_gen);
1564 	cur_logical = extent_start + extent_len;
1565 
1566 	/* Fill the extent info for the remaining sectors. */
1567 	while (cur_logical <= stripe_end) {
1568 		ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1569 					     stripe_end - cur_logical + 1);
1570 		if (ret < 0)
1571 			goto out;
1572 		if (ret > 0) {
1573 			ret = 0;
1574 			break;
1575 		}
1576 		get_extent_info(extent_path, &extent_start, &extent_len,
1577 				&extent_flags, &extent_gen);
1578 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1579 			stripe->nr_meta_extents++;
1580 		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1581 			stripe->nr_data_extents++;
1582 		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1583 				     extent_flags, extent_gen);
1584 		cur_logical = extent_start + extent_len;
1585 	}
1586 
1587 	/* Now fill the data csum. */
1588 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1589 		int sector_nr;
1590 		unsigned long csum_bitmap = 0;
1591 
1592 		/* Csum space should have already been allocated. */
1593 		ASSERT(stripe->csums);
1594 
1595 		/*
1596 		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1597 		 * should contain at most 16 sectors.
1598 		 */
1599 		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1600 
1601 		ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1602 						stripe->logical, stripe_end,
1603 						stripe->csums, &csum_bitmap);
1604 		if (ret < 0)
1605 			goto out;
1606 		if (ret > 0)
1607 			ret = 0;
1608 
1609 		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1610 			stripe->sectors[sector_nr].csum = stripe->csums +
1611 				sector_nr * fs_info->csum_size;
1612 		}
1613 	}
1614 	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1615 out:
1616 	return ret;
1617 }
1618 
1619 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1620 {
1621 	scrub_stripe_reset_bitmaps(stripe);
1622 
1623 	stripe->nr_meta_extents = 0;
1624 	stripe->nr_data_extents = 0;
1625 	stripe->state = 0;
1626 
1627 	for (int i = 0; i < stripe->nr_sectors; i++) {
1628 		stripe->sectors[i].is_metadata = false;
1629 		stripe->sectors[i].csum = NULL;
1630 		stripe->sectors[i].generation = 0;
1631 	}
1632 }
1633 
1634 static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx,
1635 					    struct scrub_stripe *stripe)
1636 {
1637 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1638 	struct btrfs_bio *bbio = NULL;
1639 	u64 stripe_len = BTRFS_STRIPE_LEN;
1640 	int mirror = stripe->mirror_num;
1641 	int i;
1642 
1643 	atomic_inc(&stripe->pending_io);
1644 
1645 	for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
1646 		struct page *page = scrub_stripe_get_page(stripe, i);
1647 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);
1648 
1649 		/* The current sector cannot be merged, submit the bio. */
1650 		if (bbio &&
1651 		    ((i > 0 &&
1652 		      !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
1653 		     bbio->bio.bi_iter.bi_size >= stripe_len)) {
1654 			ASSERT(bbio->bio.bi_iter.bi_size);
1655 			atomic_inc(&stripe->pending_io);
1656 			btrfs_submit_bio(bbio, mirror);
1657 			bbio = NULL;
1658 		}
1659 
1660 		if (!bbio) {
1661 			struct btrfs_io_stripe io_stripe = {};
1662 			struct btrfs_io_context *bioc = NULL;
1663 			const u64 logical = stripe->logical +
1664 					    (i << fs_info->sectorsize_bits);
1665 			int err;
1666 
1667 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1668 					       fs_info, scrub_read_endio, stripe);
1669 			bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1670 
1671 			io_stripe.is_scrub = true;
1672 			err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1673 					      &stripe_len, &bioc, &io_stripe,
1674 					      &mirror);
1675 			btrfs_put_bioc(bioc);
1676 			if (err) {
1677 				btrfs_bio_end_io(bbio,
1678 						 errno_to_blk_status(err));
1679 				return;
1680 			}
1681 		}
1682 
1683 		__bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1684 	}
1685 
1686 	if (bbio) {
1687 		ASSERT(bbio->bio.bi_iter.bi_size);
1688 		atomic_inc(&stripe->pending_io);
1689 		btrfs_submit_bio(bbio, mirror);
1690 	}
1691 
1692 	if (atomic_dec_and_test(&stripe->pending_io)) {
1693 		wake_up(&stripe->io_wait);
1694 		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1695 		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1696 	}
1697 }
1698 
1699 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1700 				      struct scrub_stripe *stripe)
1701 {
1702 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1703 	struct btrfs_bio *bbio;
1704 	int mirror = stripe->mirror_num;
1705 
1706 	ASSERT(stripe->bg);
1707 	ASSERT(stripe->mirror_num > 0);
1708 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1709 
1710 	if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1711 		scrub_submit_extent_sector_read(sctx, stripe);
1712 		return;
1713 	}
1714 
1715 	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1716 			       scrub_read_endio, stripe);
1717 
1718 	/* Read the whole stripe. */
1719 	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1720 	for (int i = 0; i < BTRFS_STRIPE_LEN >> PAGE_SHIFT; i++) {
1721 		int ret;
1722 
1723 		ret = bio_add_page(&bbio->bio, stripe->pages[i], PAGE_SIZE, 0);
1724 		/* We should have allocated enough bio vectors. */
1725 		ASSERT(ret == PAGE_SIZE);
1726 	}
1727 	atomic_inc(&stripe->pending_io);
1728 
1729 	/*
1730 	 * For dev-replace, either user asks to avoid the source dev, or
1731 	 * the device is missing, we try the next mirror instead.
1732 	 */
1733 	if (sctx->is_dev_replace &&
1734 	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1735 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1736 	     !stripe->dev->bdev)) {
1737 		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1738 						  stripe->bg->length);
1739 
1740 		mirror = calc_next_mirror(mirror, num_copies);
1741 	}
1742 	btrfs_submit_bio(bbio, mirror);
1743 }
1744 
1745 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1746 {
1747 	int i;
1748 
1749 	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1750 		if (stripe->sectors[i].is_metadata) {
1751 			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1752 
1753 			btrfs_err(fs_info,
1754 			"stripe %llu has unrepaired metadata sector at %llu",
1755 				  stripe->logical,
1756 				  stripe->logical + (i << fs_info->sectorsize_bits));
1757 			return true;
1758 		}
1759 	}
1760 	return false;
1761 }
1762 
1763 static void submit_initial_group_read(struct scrub_ctx *sctx,
1764 				      unsigned int first_slot,
1765 				      unsigned int nr_stripes)
1766 {
1767 	struct blk_plug plug;
1768 
1769 	ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1770 	ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1771 
1772 	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1773 			      btrfs_stripe_nr_to_offset(nr_stripes));
1774 	blk_start_plug(&plug);
1775 	for (int i = 0; i < nr_stripes; i++) {
1776 		struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1777 
1778 		/* Those stripes should be initialized. */
1779 		ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1780 		scrub_submit_initial_read(sctx, stripe);
1781 	}
1782 	blk_finish_plug(&plug);
1783 }
1784 
1785 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1786 {
1787 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1788 	struct scrub_stripe *stripe;
1789 	const int nr_stripes = sctx->cur_stripe;
1790 	int ret = 0;
1791 
1792 	if (!nr_stripes)
1793 		return 0;
1794 
1795 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1796 
1797 	/* Submit the stripes which are populated but not submitted. */
1798 	if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1799 		const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1800 
1801 		submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
1802 	}
1803 
1804 	for (int i = 0; i < nr_stripes; i++) {
1805 		stripe = &sctx->stripes[i];
1806 
1807 		wait_event(stripe->repair_wait,
1808 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1809 	}
1810 
1811 	/* Submit for dev-replace. */
1812 	if (sctx->is_dev_replace) {
1813 		/*
1814 		 * For dev-replace, if we know there is something wrong with
1815 		 * metadata, we should immediately abort.
1816 		 */
1817 		for (int i = 0; i < nr_stripes; i++) {
1818 			if (stripe_has_metadata_error(&sctx->stripes[i])) {
1819 				ret = -EIO;
1820 				goto out;
1821 			}
1822 		}
1823 		for (int i = 0; i < nr_stripes; i++) {
1824 			unsigned long good;
1825 
1826 			stripe = &sctx->stripes[i];
1827 
1828 			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1829 
1830 			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1831 				      &stripe->error_bitmap, stripe->nr_sectors);
1832 			scrub_write_sectors(sctx, stripe, good, true);
1833 		}
1834 	}
1835 
1836 	/* Wait for the above writebacks to finish. */
1837 	for (int i = 0; i < nr_stripes; i++) {
1838 		stripe = &sctx->stripes[i];
1839 
1840 		wait_scrub_stripe_io(stripe);
1841 		scrub_reset_stripe(stripe);
1842 	}
1843 out:
1844 	sctx->cur_stripe = 0;
1845 	return ret;
1846 }
1847 
1848 static void raid56_scrub_wait_endio(struct bio *bio)
1849 {
1850 	complete(bio->bi_private);
1851 }
1852 
1853 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1854 			      struct btrfs_device *dev, int mirror_num,
1855 			      u64 logical, u32 length, u64 physical,
1856 			      u64 *found_logical_ret)
1857 {
1858 	struct scrub_stripe *stripe;
1859 	int ret;
1860 
1861 	/*
1862 	 * There should always be one slot left, as caller filling the last
1863 	 * slot should flush them all.
1864 	 */
1865 	ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1866 
1867 	/* @found_logical_ret must be specified. */
1868 	ASSERT(found_logical_ret);
1869 
1870 	stripe = &sctx->stripes[sctx->cur_stripe];
1871 	scrub_reset_stripe(stripe);
1872 	ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1873 					   &sctx->csum_path, dev, physical,
1874 					   mirror_num, logical, length, stripe);
1875 	/* Either >0 as no more extents or <0 for error. */
1876 	if (ret)
1877 		return ret;
1878 	*found_logical_ret = stripe->logical;
1879 	sctx->cur_stripe++;
1880 
1881 	/* We filled one group, submit it. */
1882 	if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1883 		const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1884 
1885 		submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
1886 	}
1887 
1888 	/* Last slot used, flush them all. */
1889 	if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1890 		return flush_scrub_stripes(sctx);
1891 	return 0;
1892 }
1893 
1894 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1895 				      struct btrfs_device *scrub_dev,
1896 				      struct btrfs_block_group *bg,
1897 				      struct btrfs_chunk_map *map,
1898 				      u64 full_stripe_start)
1899 {
1900 	DECLARE_COMPLETION_ONSTACK(io_done);
1901 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1902 	struct btrfs_raid_bio *rbio;
1903 	struct btrfs_io_context *bioc = NULL;
1904 	struct btrfs_path extent_path = { 0 };
1905 	struct btrfs_path csum_path = { 0 };
1906 	struct bio *bio;
1907 	struct scrub_stripe *stripe;
1908 	bool all_empty = true;
1909 	const int data_stripes = nr_data_stripes(map);
1910 	unsigned long extent_bitmap = 0;
1911 	u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1912 	int ret;
1913 
1914 	ASSERT(sctx->raid56_data_stripes);
1915 
1916 	/*
1917 	 * For data stripe search, we cannot re-use the same extent/csum paths,
1918 	 * as the data stripe bytenr may be smaller than previous extent.  Thus
1919 	 * we have to use our own extent/csum paths.
1920 	 */
1921 	extent_path.search_commit_root = 1;
1922 	extent_path.skip_locking = 1;
1923 	csum_path.search_commit_root = 1;
1924 	csum_path.skip_locking = 1;
1925 
1926 	for (int i = 0; i < data_stripes; i++) {
1927 		int stripe_index;
1928 		int rot;
1929 		u64 physical;
1930 
1931 		stripe = &sctx->raid56_data_stripes[i];
1932 		rot = div_u64(full_stripe_start - bg->start,
1933 			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1934 		stripe_index = (i + rot) % map->num_stripes;
1935 		physical = map->stripes[stripe_index].physical +
1936 			   btrfs_stripe_nr_to_offset(rot);
1937 
1938 		scrub_reset_stripe(stripe);
1939 		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1940 		ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1941 				map->stripes[stripe_index].dev, physical, 1,
1942 				full_stripe_start + btrfs_stripe_nr_to_offset(i),
1943 				BTRFS_STRIPE_LEN, stripe);
1944 		if (ret < 0)
1945 			goto out;
1946 		/*
1947 		 * No extent in this data stripe, need to manually mark them
1948 		 * initialized to make later read submission happy.
1949 		 */
1950 		if (ret > 0) {
1951 			stripe->logical = full_stripe_start +
1952 					  btrfs_stripe_nr_to_offset(i);
1953 			stripe->dev = map->stripes[stripe_index].dev;
1954 			stripe->mirror_num = 1;
1955 			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1956 		}
1957 	}
1958 
1959 	/* Check if all data stripes are empty. */
1960 	for (int i = 0; i < data_stripes; i++) {
1961 		stripe = &sctx->raid56_data_stripes[i];
1962 		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1963 			all_empty = false;
1964 			break;
1965 		}
1966 	}
1967 	if (all_empty) {
1968 		ret = 0;
1969 		goto out;
1970 	}
1971 
1972 	for (int i = 0; i < data_stripes; i++) {
1973 		stripe = &sctx->raid56_data_stripes[i];
1974 		scrub_submit_initial_read(sctx, stripe);
1975 	}
1976 	for (int i = 0; i < data_stripes; i++) {
1977 		stripe = &sctx->raid56_data_stripes[i];
1978 
1979 		wait_event(stripe->repair_wait,
1980 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1981 	}
1982 	/* For now, no zoned support for RAID56. */
1983 	ASSERT(!btrfs_is_zoned(sctx->fs_info));
1984 
1985 	/*
1986 	 * Now all data stripes are properly verified. Check if we have any
1987 	 * unrepaired, if so abort immediately or we could further corrupt the
1988 	 * P/Q stripes.
1989 	 *
1990 	 * During the loop, also populate extent_bitmap.
1991 	 */
1992 	for (int i = 0; i < data_stripes; i++) {
1993 		unsigned long error;
1994 
1995 		stripe = &sctx->raid56_data_stripes[i];
1996 
1997 		/*
1998 		 * We should only check the errors where there is an extent.
1999 		 * As we may hit an empty data stripe while it's missing.
2000 		 */
2001 		bitmap_and(&error, &stripe->error_bitmap,
2002 			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
2003 		if (!bitmap_empty(&error, stripe->nr_sectors)) {
2004 			btrfs_err(fs_info,
2005 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2006 				  full_stripe_start, i, stripe->nr_sectors,
2007 				  &error);
2008 			ret = -EIO;
2009 			goto out;
2010 		}
2011 		bitmap_or(&extent_bitmap, &extent_bitmap,
2012 			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
2013 	}
2014 
2015 	/* Now we can check and regenerate the P/Q stripe. */
2016 	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2017 	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2018 	bio->bi_private = &io_done;
2019 	bio->bi_end_io = raid56_scrub_wait_endio;
2020 
2021 	btrfs_bio_counter_inc_blocked(fs_info);
2022 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2023 			      &length, &bioc, NULL, NULL);
2024 	if (ret < 0) {
2025 		btrfs_put_bioc(bioc);
2026 		btrfs_bio_counter_dec(fs_info);
2027 		goto out;
2028 	}
2029 	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2030 				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2031 	btrfs_put_bioc(bioc);
2032 	if (!rbio) {
2033 		ret = -ENOMEM;
2034 		btrfs_bio_counter_dec(fs_info);
2035 		goto out;
2036 	}
2037 	/* Use the recovered stripes as cache to avoid read them from disk again. */
2038 	for (int i = 0; i < data_stripes; i++) {
2039 		stripe = &sctx->raid56_data_stripes[i];
2040 
2041 		raid56_parity_cache_data_pages(rbio, stripe->pages,
2042 				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
2043 	}
2044 	raid56_parity_submit_scrub_rbio(rbio);
2045 	wait_for_completion_io(&io_done);
2046 	ret = blk_status_to_errno(bio->bi_status);
2047 	bio_put(bio);
2048 	btrfs_bio_counter_dec(fs_info);
2049 
2050 	btrfs_release_path(&extent_path);
2051 	btrfs_release_path(&csum_path);
2052 out:
2053 	return ret;
2054 }
2055 
2056 /*
2057  * Scrub one range which can only has simple mirror based profile.
2058  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2059  *  RAID0/RAID10).
2060  *
2061  * Since we may need to handle a subset of block group, we need @logical_start
2062  * and @logical_length parameter.
2063  */
2064 static int scrub_simple_mirror(struct scrub_ctx *sctx,
2065 			       struct btrfs_block_group *bg,
2066 			       struct btrfs_chunk_map *map,
2067 			       u64 logical_start, u64 logical_length,
2068 			       struct btrfs_device *device,
2069 			       u64 physical, int mirror_num)
2070 {
2071 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2072 	const u64 logical_end = logical_start + logical_length;
2073 	u64 cur_logical = logical_start;
2074 	int ret;
2075 
2076 	/* The range must be inside the bg */
2077 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2078 
2079 	/* Go through each extent items inside the logical range */
2080 	while (cur_logical < logical_end) {
2081 		u64 found_logical = U64_MAX;
2082 		u64 cur_physical = physical + cur_logical - logical_start;
2083 
2084 		/* Canceled? */
2085 		if (atomic_read(&fs_info->scrub_cancel_req) ||
2086 		    atomic_read(&sctx->cancel_req)) {
2087 			ret = -ECANCELED;
2088 			break;
2089 		}
2090 		/* Paused? */
2091 		if (atomic_read(&fs_info->scrub_pause_req)) {
2092 			/* Push queued extents */
2093 			scrub_blocked_if_needed(fs_info);
2094 		}
2095 		/* Block group removed? */
2096 		spin_lock(&bg->lock);
2097 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2098 			spin_unlock(&bg->lock);
2099 			ret = 0;
2100 			break;
2101 		}
2102 		spin_unlock(&bg->lock);
2103 
2104 		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2105 					 cur_logical, logical_end - cur_logical,
2106 					 cur_physical, &found_logical);
2107 		if (ret > 0) {
2108 			/* No more extent, just update the accounting */
2109 			sctx->stat.last_physical = physical + logical_length;
2110 			ret = 0;
2111 			break;
2112 		}
2113 		if (ret < 0)
2114 			break;
2115 
2116 		/* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2117 		ASSERT(found_logical != U64_MAX);
2118 		cur_logical = found_logical + BTRFS_STRIPE_LEN;
2119 
2120 		/* Don't hold CPU for too long time */
2121 		cond_resched();
2122 	}
2123 	return ret;
2124 }
2125 
2126 /* Calculate the full stripe length for simple stripe based profiles */
2127 static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
2128 {
2129 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2130 			    BTRFS_BLOCK_GROUP_RAID10));
2131 
2132 	return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2133 }
2134 
2135 /* Get the logical bytenr for the stripe */
2136 static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
2137 				     struct btrfs_block_group *bg,
2138 				     int stripe_index)
2139 {
2140 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2141 			    BTRFS_BLOCK_GROUP_RAID10));
2142 	ASSERT(stripe_index < map->num_stripes);
2143 
2144 	/*
2145 	 * (stripe_index / sub_stripes) gives how many data stripes we need to
2146 	 * skip.
2147 	 */
2148 	return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2149 	       bg->start;
2150 }
2151 
2152 /* Get the mirror number for the stripe */
2153 static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
2154 {
2155 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2156 			    BTRFS_BLOCK_GROUP_RAID10));
2157 	ASSERT(stripe_index < map->num_stripes);
2158 
2159 	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2160 	return stripe_index % map->sub_stripes + 1;
2161 }
2162 
2163 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2164 			       struct btrfs_block_group *bg,
2165 			       struct btrfs_chunk_map *map,
2166 			       struct btrfs_device *device,
2167 			       int stripe_index)
2168 {
2169 	const u64 logical_increment = simple_stripe_full_stripe_len(map);
2170 	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2171 	const u64 orig_physical = map->stripes[stripe_index].physical;
2172 	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2173 	u64 cur_logical = orig_logical;
2174 	u64 cur_physical = orig_physical;
2175 	int ret = 0;
2176 
2177 	while (cur_logical < bg->start + bg->length) {
2178 		/*
2179 		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2180 		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2181 		 * this stripe.
2182 		 */
2183 		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2184 					  BTRFS_STRIPE_LEN, device, cur_physical,
2185 					  mirror_num);
2186 		if (ret)
2187 			return ret;
2188 		/* Skip to next stripe which belongs to the target device */
2189 		cur_logical += logical_increment;
2190 		/* For physical offset, we just go to next stripe */
2191 		cur_physical += BTRFS_STRIPE_LEN;
2192 	}
2193 	return ret;
2194 }
2195 
2196 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2197 					   struct btrfs_block_group *bg,
2198 					   struct btrfs_chunk_map *map,
2199 					   struct btrfs_device *scrub_dev,
2200 					   int stripe_index)
2201 {
2202 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2203 	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2204 	const u64 chunk_logical = bg->start;
2205 	int ret;
2206 	int ret2;
2207 	u64 physical = map->stripes[stripe_index].physical;
2208 	const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
2209 	const u64 physical_end = physical + dev_stripe_len;
2210 	u64 logical;
2211 	u64 logic_end;
2212 	/* The logical increment after finishing one stripe */
2213 	u64 increment;
2214 	/* Offset inside the chunk */
2215 	u64 offset;
2216 	u64 stripe_logical;
2217 	int stop_loop = 0;
2218 
2219 	/* Extent_path should be released by now. */
2220 	ASSERT(sctx->extent_path.nodes[0] == NULL);
2221 
2222 	scrub_blocked_if_needed(fs_info);
2223 
2224 	if (sctx->is_dev_replace &&
2225 	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2226 		mutex_lock(&sctx->wr_lock);
2227 		sctx->write_pointer = physical;
2228 		mutex_unlock(&sctx->wr_lock);
2229 	}
2230 
2231 	/* Prepare the extra data stripes used by RAID56. */
2232 	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2233 		ASSERT(sctx->raid56_data_stripes == NULL);
2234 
2235 		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2236 						    sizeof(struct scrub_stripe),
2237 						    GFP_KERNEL);
2238 		if (!sctx->raid56_data_stripes) {
2239 			ret = -ENOMEM;
2240 			goto out;
2241 		}
2242 		for (int i = 0; i < nr_data_stripes(map); i++) {
2243 			ret = init_scrub_stripe(fs_info,
2244 						&sctx->raid56_data_stripes[i]);
2245 			if (ret < 0)
2246 				goto out;
2247 			sctx->raid56_data_stripes[i].bg = bg;
2248 			sctx->raid56_data_stripes[i].sctx = sctx;
2249 		}
2250 	}
2251 	/*
2252 	 * There used to be a big double loop to handle all profiles using the
2253 	 * same routine, which grows larger and more gross over time.
2254 	 *
2255 	 * So here we handle each profile differently, so simpler profiles
2256 	 * have simpler scrubbing function.
2257 	 */
2258 	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2259 			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2260 		/*
2261 		 * Above check rules out all complex profile, the remaining
2262 		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2263 		 * mirrored duplication without stripe.
2264 		 *
2265 		 * Only @physical and @mirror_num needs to calculated using
2266 		 * @stripe_index.
2267 		 */
2268 		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2269 				scrub_dev, map->stripes[stripe_index].physical,
2270 				stripe_index + 1);
2271 		offset = 0;
2272 		goto out;
2273 	}
2274 	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2275 		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2276 		offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2277 		goto out;
2278 	}
2279 
2280 	/* Only RAID56 goes through the old code */
2281 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2282 	ret = 0;
2283 
2284 	/* Calculate the logical end of the stripe */
2285 	get_raid56_logic_offset(physical_end, stripe_index,
2286 				map, &logic_end, NULL);
2287 	logic_end += chunk_logical;
2288 
2289 	/* Initialize @offset in case we need to go to out: label */
2290 	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2291 	increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2292 
2293 	/*
2294 	 * Due to the rotation, for RAID56 it's better to iterate each stripe
2295 	 * using their physical offset.
2296 	 */
2297 	while (physical < physical_end) {
2298 		ret = get_raid56_logic_offset(physical, stripe_index, map,
2299 					      &logical, &stripe_logical);
2300 		logical += chunk_logical;
2301 		if (ret) {
2302 			/* it is parity strip */
2303 			stripe_logical += chunk_logical;
2304 			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2305 							 map, stripe_logical);
2306 			if (ret)
2307 				goto out;
2308 			goto next;
2309 		}
2310 
2311 		/*
2312 		 * Now we're at a data stripe, scrub each extents in the range.
2313 		 *
2314 		 * At this stage, if we ignore the repair part, inside each data
2315 		 * stripe it is no different than SINGLE profile.
2316 		 * We can reuse scrub_simple_mirror() here, as the repair part
2317 		 * is still based on @mirror_num.
2318 		 */
2319 		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2320 					  scrub_dev, physical, 1);
2321 		if (ret < 0)
2322 			goto out;
2323 next:
2324 		logical += increment;
2325 		physical += BTRFS_STRIPE_LEN;
2326 		spin_lock(&sctx->stat_lock);
2327 		if (stop_loop)
2328 			sctx->stat.last_physical =
2329 				map->stripes[stripe_index].physical + dev_stripe_len;
2330 		else
2331 			sctx->stat.last_physical = physical;
2332 		spin_unlock(&sctx->stat_lock);
2333 		if (stop_loop)
2334 			break;
2335 	}
2336 out:
2337 	ret2 = flush_scrub_stripes(sctx);
2338 	if (!ret)
2339 		ret = ret2;
2340 	btrfs_release_path(&sctx->extent_path);
2341 	btrfs_release_path(&sctx->csum_path);
2342 
2343 	if (sctx->raid56_data_stripes) {
2344 		for (int i = 0; i < nr_data_stripes(map); i++)
2345 			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2346 		kfree(sctx->raid56_data_stripes);
2347 		sctx->raid56_data_stripes = NULL;
2348 	}
2349 
2350 	if (sctx->is_dev_replace && ret >= 0) {
2351 		int ret2;
2352 
2353 		ret2 = sync_write_pointer_for_zoned(sctx,
2354 				chunk_logical + offset,
2355 				map->stripes[stripe_index].physical,
2356 				physical_end);
2357 		if (ret2)
2358 			ret = ret2;
2359 	}
2360 
2361 	return ret < 0 ? ret : 0;
2362 }
2363 
2364 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2365 					  struct btrfs_block_group *bg,
2366 					  struct btrfs_device *scrub_dev,
2367 					  u64 dev_offset,
2368 					  u64 dev_extent_len)
2369 {
2370 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2371 	struct btrfs_chunk_map *map;
2372 	int i;
2373 	int ret = 0;
2374 
2375 	map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
2376 	if (!map) {
2377 		/*
2378 		 * Might have been an unused block group deleted by the cleaner
2379 		 * kthread or relocation.
2380 		 */
2381 		spin_lock(&bg->lock);
2382 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2383 			ret = -EINVAL;
2384 		spin_unlock(&bg->lock);
2385 
2386 		return ret;
2387 	}
2388 	if (map->start != bg->start)
2389 		goto out;
2390 	if (map->chunk_len < dev_extent_len)
2391 		goto out;
2392 
2393 	for (i = 0; i < map->num_stripes; ++i) {
2394 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2395 		    map->stripes[i].physical == dev_offset) {
2396 			ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
2397 			if (ret)
2398 				goto out;
2399 		}
2400 	}
2401 out:
2402 	btrfs_free_chunk_map(map);
2403 
2404 	return ret;
2405 }
2406 
2407 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2408 					  struct btrfs_block_group *cache)
2409 {
2410 	struct btrfs_fs_info *fs_info = cache->fs_info;
2411 	struct btrfs_trans_handle *trans;
2412 
2413 	if (!btrfs_is_zoned(fs_info))
2414 		return 0;
2415 
2416 	btrfs_wait_block_group_reservations(cache);
2417 	btrfs_wait_nocow_writers(cache);
2418 	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2419 
2420 	trans = btrfs_join_transaction(root);
2421 	if (IS_ERR(trans))
2422 		return PTR_ERR(trans);
2423 	return btrfs_commit_transaction(trans);
2424 }
2425 
2426 static noinline_for_stack
2427 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2428 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
2429 {
2430 	struct btrfs_dev_extent *dev_extent = NULL;
2431 	struct btrfs_path *path;
2432 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2433 	struct btrfs_root *root = fs_info->dev_root;
2434 	u64 chunk_offset;
2435 	int ret = 0;
2436 	int ro_set;
2437 	int slot;
2438 	struct extent_buffer *l;
2439 	struct btrfs_key key;
2440 	struct btrfs_key found_key;
2441 	struct btrfs_block_group *cache;
2442 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2443 
2444 	path = btrfs_alloc_path();
2445 	if (!path)
2446 		return -ENOMEM;
2447 
2448 	path->reada = READA_FORWARD;
2449 	path->search_commit_root = 1;
2450 	path->skip_locking = 1;
2451 
2452 	key.objectid = scrub_dev->devid;
2453 	key.offset = 0ull;
2454 	key.type = BTRFS_DEV_EXTENT_KEY;
2455 
2456 	while (1) {
2457 		u64 dev_extent_len;
2458 
2459 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2460 		if (ret < 0)
2461 			break;
2462 		if (ret > 0) {
2463 			if (path->slots[0] >=
2464 			    btrfs_header_nritems(path->nodes[0])) {
2465 				ret = btrfs_next_leaf(root, path);
2466 				if (ret < 0)
2467 					break;
2468 				if (ret > 0) {
2469 					ret = 0;
2470 					break;
2471 				}
2472 			} else {
2473 				ret = 0;
2474 			}
2475 		}
2476 
2477 		l = path->nodes[0];
2478 		slot = path->slots[0];
2479 
2480 		btrfs_item_key_to_cpu(l, &found_key, slot);
2481 
2482 		if (found_key.objectid != scrub_dev->devid)
2483 			break;
2484 
2485 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2486 			break;
2487 
2488 		if (found_key.offset >= end)
2489 			break;
2490 
2491 		if (found_key.offset < key.offset)
2492 			break;
2493 
2494 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2495 		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2496 
2497 		if (found_key.offset + dev_extent_len <= start)
2498 			goto skip;
2499 
2500 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2501 
2502 		/*
2503 		 * get a reference on the corresponding block group to prevent
2504 		 * the chunk from going away while we scrub it
2505 		 */
2506 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2507 
2508 		/* some chunks are removed but not committed to disk yet,
2509 		 * continue scrubbing */
2510 		if (!cache)
2511 			goto skip;
2512 
2513 		ASSERT(cache->start <= chunk_offset);
2514 		/*
2515 		 * We are using the commit root to search for device extents, so
2516 		 * that means we could have found a device extent item from a
2517 		 * block group that was deleted in the current transaction. The
2518 		 * logical start offset of the deleted block group, stored at
2519 		 * @chunk_offset, might be part of the logical address range of
2520 		 * a new block group (which uses different physical extents).
2521 		 * In this case btrfs_lookup_block_group() has returned the new
2522 		 * block group, and its start address is less than @chunk_offset.
2523 		 *
2524 		 * We skip such new block groups, because it's pointless to
2525 		 * process them, as we won't find their extents because we search
2526 		 * for them using the commit root of the extent tree. For a device
2527 		 * replace it's also fine to skip it, we won't miss copying them
2528 		 * to the target device because we have the write duplication
2529 		 * setup through the regular write path (by btrfs_map_block()),
2530 		 * and we have committed a transaction when we started the device
2531 		 * replace, right after setting up the device replace state.
2532 		 */
2533 		if (cache->start < chunk_offset) {
2534 			btrfs_put_block_group(cache);
2535 			goto skip;
2536 		}
2537 
2538 		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2539 			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2540 				btrfs_put_block_group(cache);
2541 				goto skip;
2542 			}
2543 		}
2544 
2545 		/*
2546 		 * Make sure that while we are scrubbing the corresponding block
2547 		 * group doesn't get its logical address and its device extents
2548 		 * reused for another block group, which can possibly be of a
2549 		 * different type and different profile. We do this to prevent
2550 		 * false error detections and crashes due to bogus attempts to
2551 		 * repair extents.
2552 		 */
2553 		spin_lock(&cache->lock);
2554 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2555 			spin_unlock(&cache->lock);
2556 			btrfs_put_block_group(cache);
2557 			goto skip;
2558 		}
2559 		btrfs_freeze_block_group(cache);
2560 		spin_unlock(&cache->lock);
2561 
2562 		/*
2563 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2564 		 * to avoid deadlock caused by:
2565 		 * btrfs_inc_block_group_ro()
2566 		 * -> btrfs_wait_for_commit()
2567 		 * -> btrfs_commit_transaction()
2568 		 * -> btrfs_scrub_pause()
2569 		 */
2570 		scrub_pause_on(fs_info);
2571 
2572 		/*
2573 		 * Don't do chunk preallocation for scrub.
2574 		 *
2575 		 * This is especially important for SYSTEM bgs, or we can hit
2576 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
2577 		 * 1. The only SYSTEM bg is marked RO.
2578 		 *    Since SYSTEM bg is small, that's pretty common.
2579 		 * 2. New SYSTEM bg will be allocated
2580 		 *    Due to regular version will allocate new chunk.
2581 		 * 3. New SYSTEM bg is empty and will get cleaned up
2582 		 *    Before cleanup really happens, it's marked RO again.
2583 		 * 4. Empty SYSTEM bg get scrubbed
2584 		 *    We go back to 2.
2585 		 *
2586 		 * This can easily boost the amount of SYSTEM chunks if cleaner
2587 		 * thread can't be triggered fast enough, and use up all space
2588 		 * of btrfs_super_block::sys_chunk_array
2589 		 *
2590 		 * While for dev replace, we need to try our best to mark block
2591 		 * group RO, to prevent race between:
2592 		 * - Write duplication
2593 		 *   Contains latest data
2594 		 * - Scrub copy
2595 		 *   Contains data from commit tree
2596 		 *
2597 		 * If target block group is not marked RO, nocow writes can
2598 		 * be overwritten by scrub copy, causing data corruption.
2599 		 * So for dev-replace, it's not allowed to continue if a block
2600 		 * group is not RO.
2601 		 */
2602 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2603 		if (!ret && sctx->is_dev_replace) {
2604 			ret = finish_extent_writes_for_zoned(root, cache);
2605 			if (ret) {
2606 				btrfs_dec_block_group_ro(cache);
2607 				scrub_pause_off(fs_info);
2608 				btrfs_put_block_group(cache);
2609 				break;
2610 			}
2611 		}
2612 
2613 		if (ret == 0) {
2614 			ro_set = 1;
2615 		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2616 			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2617 			/*
2618 			 * btrfs_inc_block_group_ro return -ENOSPC when it
2619 			 * failed in creating new chunk for metadata.
2620 			 * It is not a problem for scrub, because
2621 			 * metadata are always cowed, and our scrub paused
2622 			 * commit_transactions.
2623 			 *
2624 			 * For RAID56 chunks, we have to mark them read-only
2625 			 * for scrub, as later we would use our own cache
2626 			 * out of RAID56 realm.
2627 			 * Thus we want the RAID56 bg to be marked RO to
2628 			 * prevent RMW from screwing up out cache.
2629 			 */
2630 			ro_set = 0;
2631 		} else if (ret == -ETXTBSY) {
2632 			btrfs_warn(fs_info,
2633 		   "skipping scrub of block group %llu due to active swapfile",
2634 				   cache->start);
2635 			scrub_pause_off(fs_info);
2636 			ret = 0;
2637 			goto skip_unfreeze;
2638 		} else {
2639 			btrfs_warn(fs_info,
2640 				   "failed setting block group ro: %d", ret);
2641 			btrfs_unfreeze_block_group(cache);
2642 			btrfs_put_block_group(cache);
2643 			scrub_pause_off(fs_info);
2644 			break;
2645 		}
2646 
2647 		/*
2648 		 * Now the target block is marked RO, wait for nocow writes to
2649 		 * finish before dev-replace.
2650 		 * COW is fine, as COW never overwrites extents in commit tree.
2651 		 */
2652 		if (sctx->is_dev_replace) {
2653 			btrfs_wait_nocow_writers(cache);
2654 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2655 					cache->length);
2656 		}
2657 
2658 		scrub_pause_off(fs_info);
2659 		down_write(&dev_replace->rwsem);
2660 		dev_replace->cursor_right = found_key.offset + dev_extent_len;
2661 		dev_replace->cursor_left = found_key.offset;
2662 		dev_replace->item_needs_writeback = 1;
2663 		up_write(&dev_replace->rwsem);
2664 
2665 		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2666 				  dev_extent_len);
2667 		if (sctx->is_dev_replace &&
2668 		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2669 						      cache, found_key.offset))
2670 			ro_set = 0;
2671 
2672 		down_write(&dev_replace->rwsem);
2673 		dev_replace->cursor_left = dev_replace->cursor_right;
2674 		dev_replace->item_needs_writeback = 1;
2675 		up_write(&dev_replace->rwsem);
2676 
2677 		if (ro_set)
2678 			btrfs_dec_block_group_ro(cache);
2679 
2680 		/*
2681 		 * We might have prevented the cleaner kthread from deleting
2682 		 * this block group if it was already unused because we raced
2683 		 * and set it to RO mode first. So add it back to the unused
2684 		 * list, otherwise it might not ever be deleted unless a manual
2685 		 * balance is triggered or it becomes used and unused again.
2686 		 */
2687 		spin_lock(&cache->lock);
2688 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2689 		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
2690 			spin_unlock(&cache->lock);
2691 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2692 				btrfs_discard_queue_work(&fs_info->discard_ctl,
2693 							 cache);
2694 			else
2695 				btrfs_mark_bg_unused(cache);
2696 		} else {
2697 			spin_unlock(&cache->lock);
2698 		}
2699 skip_unfreeze:
2700 		btrfs_unfreeze_block_group(cache);
2701 		btrfs_put_block_group(cache);
2702 		if (ret)
2703 			break;
2704 		if (sctx->is_dev_replace &&
2705 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2706 			ret = -EIO;
2707 			break;
2708 		}
2709 		if (sctx->stat.malloc_errors > 0) {
2710 			ret = -ENOMEM;
2711 			break;
2712 		}
2713 skip:
2714 		key.offset = found_key.offset + dev_extent_len;
2715 		btrfs_release_path(path);
2716 	}
2717 
2718 	btrfs_free_path(path);
2719 
2720 	return ret;
2721 }
2722 
2723 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2724 			   struct page *page, u64 physical, u64 generation)
2725 {
2726 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2727 	struct bio_vec bvec;
2728 	struct bio bio;
2729 	struct btrfs_super_block *sb = page_address(page);
2730 	int ret;
2731 
2732 	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2733 	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2734 	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2735 	ret = submit_bio_wait(&bio);
2736 	bio_uninit(&bio);
2737 
2738 	if (ret < 0)
2739 		return ret;
2740 	ret = btrfs_check_super_csum(fs_info, sb);
2741 	if (ret != 0) {
2742 		btrfs_err_rl(fs_info,
2743 			"super block at physical %llu devid %llu has bad csum",
2744 			physical, dev->devid);
2745 		return -EIO;
2746 	}
2747 	if (btrfs_super_generation(sb) != generation) {
2748 		btrfs_err_rl(fs_info,
2749 "super block at physical %llu devid %llu has bad generation %llu expect %llu",
2750 			     physical, dev->devid,
2751 			     btrfs_super_generation(sb), generation);
2752 		return -EUCLEAN;
2753 	}
2754 
2755 	return btrfs_validate_super(fs_info, sb, -1);
2756 }
2757 
2758 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2759 					   struct btrfs_device *scrub_dev)
2760 {
2761 	int	i;
2762 	u64	bytenr;
2763 	u64	gen;
2764 	int ret = 0;
2765 	struct page *page;
2766 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2767 
2768 	if (BTRFS_FS_ERROR(fs_info))
2769 		return -EROFS;
2770 
2771 	page = alloc_page(GFP_KERNEL);
2772 	if (!page) {
2773 		spin_lock(&sctx->stat_lock);
2774 		sctx->stat.malloc_errors++;
2775 		spin_unlock(&sctx->stat_lock);
2776 		return -ENOMEM;
2777 	}
2778 
2779 	/* Seed devices of a new filesystem has their own generation. */
2780 	if (scrub_dev->fs_devices != fs_info->fs_devices)
2781 		gen = scrub_dev->generation;
2782 	else
2783 		gen = btrfs_get_last_trans_committed(fs_info);
2784 
2785 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2786 		bytenr = btrfs_sb_offset(i);
2787 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
2788 		    scrub_dev->commit_total_bytes)
2789 			break;
2790 		if (!btrfs_check_super_location(scrub_dev, bytenr))
2791 			continue;
2792 
2793 		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2794 		if (ret) {
2795 			spin_lock(&sctx->stat_lock);
2796 			sctx->stat.super_errors++;
2797 			spin_unlock(&sctx->stat_lock);
2798 		}
2799 	}
2800 	__free_page(page);
2801 	return 0;
2802 }
2803 
2804 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2805 {
2806 	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2807 					&fs_info->scrub_lock)) {
2808 		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2809 
2810 		fs_info->scrub_workers = NULL;
2811 		mutex_unlock(&fs_info->scrub_lock);
2812 
2813 		if (scrub_workers)
2814 			destroy_workqueue(scrub_workers);
2815 	}
2816 }
2817 
2818 /*
2819  * get a reference count on fs_info->scrub_workers. start worker if necessary
2820  */
2821 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
2822 {
2823 	struct workqueue_struct *scrub_workers = NULL;
2824 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2825 	int max_active = fs_info->thread_pool_size;
2826 	int ret = -ENOMEM;
2827 
2828 	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2829 		return 0;
2830 
2831 	scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2832 	if (!scrub_workers)
2833 		return -ENOMEM;
2834 
2835 	mutex_lock(&fs_info->scrub_lock);
2836 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2837 		ASSERT(fs_info->scrub_workers == NULL);
2838 		fs_info->scrub_workers = scrub_workers;
2839 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
2840 		mutex_unlock(&fs_info->scrub_lock);
2841 		return 0;
2842 	}
2843 	/* Other thread raced in and created the workers for us */
2844 	refcount_inc(&fs_info->scrub_workers_refcnt);
2845 	mutex_unlock(&fs_info->scrub_lock);
2846 
2847 	ret = 0;
2848 
2849 	destroy_workqueue(scrub_workers);
2850 	return ret;
2851 }
2852 
2853 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2854 		    u64 end, struct btrfs_scrub_progress *progress,
2855 		    int readonly, int is_dev_replace)
2856 {
2857 	struct btrfs_dev_lookup_args args = { .devid = devid };
2858 	struct scrub_ctx *sctx;
2859 	int ret;
2860 	struct btrfs_device *dev;
2861 	unsigned int nofs_flag;
2862 	bool need_commit = false;
2863 
2864 	if (btrfs_fs_closing(fs_info))
2865 		return -EAGAIN;
2866 
2867 	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2868 	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2869 
2870 	/*
2871 	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2872 	 * value (max nodesize / min sectorsize), thus nodesize should always
2873 	 * be fine.
2874 	 */
2875 	ASSERT(fs_info->nodesize <=
2876 	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2877 
2878 	/* Allocate outside of device_list_mutex */
2879 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2880 	if (IS_ERR(sctx))
2881 		return PTR_ERR(sctx);
2882 
2883 	ret = scrub_workers_get(fs_info);
2884 	if (ret)
2885 		goto out_free_ctx;
2886 
2887 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2888 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2889 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2890 		     !is_dev_replace)) {
2891 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2892 		ret = -ENODEV;
2893 		goto out;
2894 	}
2895 
2896 	if (!is_dev_replace && !readonly &&
2897 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2898 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2899 		btrfs_err_in_rcu(fs_info,
2900 			"scrub on devid %llu: filesystem on %s is not writable",
2901 				 devid, btrfs_dev_name(dev));
2902 		ret = -EROFS;
2903 		goto out;
2904 	}
2905 
2906 	mutex_lock(&fs_info->scrub_lock);
2907 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2908 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2909 		mutex_unlock(&fs_info->scrub_lock);
2910 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2911 		ret = -EIO;
2912 		goto out;
2913 	}
2914 
2915 	down_read(&fs_info->dev_replace.rwsem);
2916 	if (dev->scrub_ctx ||
2917 	    (!is_dev_replace &&
2918 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2919 		up_read(&fs_info->dev_replace.rwsem);
2920 		mutex_unlock(&fs_info->scrub_lock);
2921 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2922 		ret = -EINPROGRESS;
2923 		goto out;
2924 	}
2925 	up_read(&fs_info->dev_replace.rwsem);
2926 
2927 	sctx->readonly = readonly;
2928 	dev->scrub_ctx = sctx;
2929 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2930 
2931 	/*
2932 	 * checking @scrub_pause_req here, we can avoid
2933 	 * race between committing transaction and scrubbing.
2934 	 */
2935 	__scrub_blocked_if_needed(fs_info);
2936 	atomic_inc(&fs_info->scrubs_running);
2937 	mutex_unlock(&fs_info->scrub_lock);
2938 
2939 	/*
2940 	 * In order to avoid deadlock with reclaim when there is a transaction
2941 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
2942 	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2943 	 * invoked by our callees. The pausing request is done when the
2944 	 * transaction commit starts, and it blocks the transaction until scrub
2945 	 * is paused (done at specific points at scrub_stripe() or right above
2946 	 * before incrementing fs_info->scrubs_running).
2947 	 */
2948 	nofs_flag = memalloc_nofs_save();
2949 	if (!is_dev_replace) {
2950 		u64 old_super_errors;
2951 
2952 		spin_lock(&sctx->stat_lock);
2953 		old_super_errors = sctx->stat.super_errors;
2954 		spin_unlock(&sctx->stat_lock);
2955 
2956 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2957 		/*
2958 		 * by holding device list mutex, we can
2959 		 * kick off writing super in log tree sync.
2960 		 */
2961 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
2962 		ret = scrub_supers(sctx, dev);
2963 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2964 
2965 		spin_lock(&sctx->stat_lock);
2966 		/*
2967 		 * Super block errors found, but we can not commit transaction
2968 		 * at current context, since btrfs_commit_transaction() needs
2969 		 * to pause the current running scrub (hold by ourselves).
2970 		 */
2971 		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
2972 			need_commit = true;
2973 		spin_unlock(&sctx->stat_lock);
2974 	}
2975 
2976 	if (!ret)
2977 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
2978 	memalloc_nofs_restore(nofs_flag);
2979 
2980 	atomic_dec(&fs_info->scrubs_running);
2981 	wake_up(&fs_info->scrub_pause_wait);
2982 
2983 	if (progress)
2984 		memcpy(progress, &sctx->stat, sizeof(*progress));
2985 
2986 	if (!is_dev_replace)
2987 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
2988 			ret ? "not finished" : "finished", devid, ret);
2989 
2990 	mutex_lock(&fs_info->scrub_lock);
2991 	dev->scrub_ctx = NULL;
2992 	mutex_unlock(&fs_info->scrub_lock);
2993 
2994 	scrub_workers_put(fs_info);
2995 	scrub_put_ctx(sctx);
2996 
2997 	/*
2998 	 * We found some super block errors before, now try to force a
2999 	 * transaction commit, as scrub has finished.
3000 	 */
3001 	if (need_commit) {
3002 		struct btrfs_trans_handle *trans;
3003 
3004 		trans = btrfs_start_transaction(fs_info->tree_root, 0);
3005 		if (IS_ERR(trans)) {
3006 			ret = PTR_ERR(trans);
3007 			btrfs_err(fs_info,
3008 	"scrub: failed to start transaction to fix super block errors: %d", ret);
3009 			return ret;
3010 		}
3011 		ret = btrfs_commit_transaction(trans);
3012 		if (ret < 0)
3013 			btrfs_err(fs_info,
3014 	"scrub: failed to commit transaction to fix super block errors: %d", ret);
3015 	}
3016 	return ret;
3017 out:
3018 	scrub_workers_put(fs_info);
3019 out_free_ctx:
3020 	scrub_free_ctx(sctx);
3021 
3022 	return ret;
3023 }
3024 
3025 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3026 {
3027 	mutex_lock(&fs_info->scrub_lock);
3028 	atomic_inc(&fs_info->scrub_pause_req);
3029 	while (atomic_read(&fs_info->scrubs_paused) !=
3030 	       atomic_read(&fs_info->scrubs_running)) {
3031 		mutex_unlock(&fs_info->scrub_lock);
3032 		wait_event(fs_info->scrub_pause_wait,
3033 			   atomic_read(&fs_info->scrubs_paused) ==
3034 			   atomic_read(&fs_info->scrubs_running));
3035 		mutex_lock(&fs_info->scrub_lock);
3036 	}
3037 	mutex_unlock(&fs_info->scrub_lock);
3038 }
3039 
3040 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3041 {
3042 	atomic_dec(&fs_info->scrub_pause_req);
3043 	wake_up(&fs_info->scrub_pause_wait);
3044 }
3045 
3046 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3047 {
3048 	mutex_lock(&fs_info->scrub_lock);
3049 	if (!atomic_read(&fs_info->scrubs_running)) {
3050 		mutex_unlock(&fs_info->scrub_lock);
3051 		return -ENOTCONN;
3052 	}
3053 
3054 	atomic_inc(&fs_info->scrub_cancel_req);
3055 	while (atomic_read(&fs_info->scrubs_running)) {
3056 		mutex_unlock(&fs_info->scrub_lock);
3057 		wait_event(fs_info->scrub_pause_wait,
3058 			   atomic_read(&fs_info->scrubs_running) == 0);
3059 		mutex_lock(&fs_info->scrub_lock);
3060 	}
3061 	atomic_dec(&fs_info->scrub_cancel_req);
3062 	mutex_unlock(&fs_info->scrub_lock);
3063 
3064 	return 0;
3065 }
3066 
3067 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3068 {
3069 	struct btrfs_fs_info *fs_info = dev->fs_info;
3070 	struct scrub_ctx *sctx;
3071 
3072 	mutex_lock(&fs_info->scrub_lock);
3073 	sctx = dev->scrub_ctx;
3074 	if (!sctx) {
3075 		mutex_unlock(&fs_info->scrub_lock);
3076 		return -ENOTCONN;
3077 	}
3078 	atomic_inc(&sctx->cancel_req);
3079 	while (dev->scrub_ctx) {
3080 		mutex_unlock(&fs_info->scrub_lock);
3081 		wait_event(fs_info->scrub_pause_wait,
3082 			   dev->scrub_ctx == NULL);
3083 		mutex_lock(&fs_info->scrub_lock);
3084 	}
3085 	mutex_unlock(&fs_info->scrub_lock);
3086 
3087 	return 0;
3088 }
3089 
3090 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3091 			 struct btrfs_scrub_progress *progress)
3092 {
3093 	struct btrfs_dev_lookup_args args = { .devid = devid };
3094 	struct btrfs_device *dev;
3095 	struct scrub_ctx *sctx = NULL;
3096 
3097 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3098 	dev = btrfs_find_device(fs_info->fs_devices, &args);
3099 	if (dev)
3100 		sctx = dev->scrub_ctx;
3101 	if (sctx)
3102 		memcpy(progress, &sctx->stat, sizeof(*progress));
3103 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3104 
3105 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3106 }
3107