1 /* 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/ratelimit.h> 21 #include "ctree.h" 22 #include "volumes.h" 23 #include "disk-io.h" 24 #include "ordered-data.h" 25 #include "transaction.h" 26 #include "backref.h" 27 #include "extent_io.h" 28 #include "dev-replace.h" 29 #include "check-integrity.h" 30 #include "rcu-string.h" 31 #include "raid56.h" 32 33 /* 34 * This is only the first step towards a full-features scrub. It reads all 35 * extent and super block and verifies the checksums. In case a bad checksum 36 * is found or the extent cannot be read, good data will be written back if 37 * any can be found. 38 * 39 * Future enhancements: 40 * - In case an unrepairable extent is encountered, track which files are 41 * affected and report them 42 * - track and record media errors, throw out bad devices 43 * - add a mode to also read unallocated space 44 */ 45 46 struct scrub_block; 47 struct scrub_ctx; 48 49 /* 50 * the following three values only influence the performance. 51 * The last one configures the number of parallel and outstanding I/O 52 * operations. The first two values configure an upper limit for the number 53 * of (dynamically allocated) pages that are added to a bio. 54 */ 55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 58 59 /* 60 * the following value times PAGE_SIZE needs to be large enough to match the 61 * largest node/leaf/sector size that shall be supported. 62 * Values larger than BTRFS_STRIPE_LEN are not supported. 63 */ 64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 65 66 struct scrub_recover { 67 atomic_t refs; 68 struct btrfs_bio *bbio; 69 u64 map_length; 70 }; 71 72 struct scrub_page { 73 struct scrub_block *sblock; 74 struct page *page; 75 struct btrfs_device *dev; 76 struct list_head list; 77 u64 flags; /* extent flags */ 78 u64 generation; 79 u64 logical; 80 u64 physical; 81 u64 physical_for_dev_replace; 82 atomic_t refs; 83 struct { 84 unsigned int mirror_num:8; 85 unsigned int have_csum:1; 86 unsigned int io_error:1; 87 }; 88 u8 csum[BTRFS_CSUM_SIZE]; 89 90 struct scrub_recover *recover; 91 }; 92 93 struct scrub_bio { 94 int index; 95 struct scrub_ctx *sctx; 96 struct btrfs_device *dev; 97 struct bio *bio; 98 int err; 99 u64 logical; 100 u64 physical; 101 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 102 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 103 #else 104 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 105 #endif 106 int page_count; 107 int next_free; 108 struct btrfs_work work; 109 }; 110 111 struct scrub_block { 112 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 113 int page_count; 114 atomic_t outstanding_pages; 115 atomic_t refs; /* free mem on transition to zero */ 116 struct scrub_ctx *sctx; 117 struct scrub_parity *sparity; 118 struct { 119 unsigned int header_error:1; 120 unsigned int checksum_error:1; 121 unsigned int no_io_error_seen:1; 122 unsigned int generation_error:1; /* also sets header_error */ 123 124 /* The following is for the data used to check parity */ 125 /* It is for the data with checksum */ 126 unsigned int data_corrected:1; 127 }; 128 struct btrfs_work work; 129 }; 130 131 /* Used for the chunks with parity stripe such RAID5/6 */ 132 struct scrub_parity { 133 struct scrub_ctx *sctx; 134 135 struct btrfs_device *scrub_dev; 136 137 u64 logic_start; 138 139 u64 logic_end; 140 141 int nsectors; 142 143 int stripe_len; 144 145 atomic_t refs; 146 147 struct list_head spages; 148 149 /* Work of parity check and repair */ 150 struct btrfs_work work; 151 152 /* Mark the parity blocks which have data */ 153 unsigned long *dbitmap; 154 155 /* 156 * Mark the parity blocks which have data, but errors happen when 157 * read data or check data 158 */ 159 unsigned long *ebitmap; 160 161 unsigned long bitmap[0]; 162 }; 163 164 struct scrub_wr_ctx { 165 struct scrub_bio *wr_curr_bio; 166 struct btrfs_device *tgtdev; 167 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 168 atomic_t flush_all_writes; 169 struct mutex wr_lock; 170 }; 171 172 struct scrub_ctx { 173 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 174 struct btrfs_root *dev_root; 175 int first_free; 176 int curr; 177 atomic_t bios_in_flight; 178 atomic_t workers_pending; 179 spinlock_t list_lock; 180 wait_queue_head_t list_wait; 181 u16 csum_size; 182 struct list_head csum_list; 183 atomic_t cancel_req; 184 int readonly; 185 int pages_per_rd_bio; 186 u32 sectorsize; 187 u32 nodesize; 188 189 int is_dev_replace; 190 struct scrub_wr_ctx wr_ctx; 191 192 /* 193 * statistics 194 */ 195 struct btrfs_scrub_progress stat; 196 spinlock_t stat_lock; 197 198 /* 199 * Use a ref counter to avoid use-after-free issues. Scrub workers 200 * decrement bios_in_flight and workers_pending and then do a wakeup 201 * on the list_wait wait queue. We must ensure the main scrub task 202 * doesn't free the scrub context before or while the workers are 203 * doing the wakeup() call. 204 */ 205 atomic_t refs; 206 }; 207 208 struct scrub_fixup_nodatasum { 209 struct scrub_ctx *sctx; 210 struct btrfs_device *dev; 211 u64 logical; 212 struct btrfs_root *root; 213 struct btrfs_work work; 214 int mirror_num; 215 }; 216 217 struct scrub_nocow_inode { 218 u64 inum; 219 u64 offset; 220 u64 root; 221 struct list_head list; 222 }; 223 224 struct scrub_copy_nocow_ctx { 225 struct scrub_ctx *sctx; 226 u64 logical; 227 u64 len; 228 int mirror_num; 229 u64 physical_for_dev_replace; 230 struct list_head inodes; 231 struct btrfs_work work; 232 }; 233 234 struct scrub_warning { 235 struct btrfs_path *path; 236 u64 extent_item_size; 237 const char *errstr; 238 sector_t sector; 239 u64 logical; 240 struct btrfs_device *dev; 241 }; 242 243 static void scrub_pending_bio_inc(struct scrub_ctx *sctx); 244 static void scrub_pending_bio_dec(struct scrub_ctx *sctx); 245 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx); 246 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx); 247 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); 248 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 249 struct scrub_block *sblocks_for_recheck); 250 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 251 struct scrub_block *sblock, 252 int retry_failed_mirror); 253 static void scrub_recheck_block_checksum(struct scrub_block *sblock); 254 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 255 struct scrub_block *sblock_good); 256 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 257 struct scrub_block *sblock_good, 258 int page_num, int force_write); 259 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 260 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 261 int page_num); 262 static int scrub_checksum_data(struct scrub_block *sblock); 263 static int scrub_checksum_tree_block(struct scrub_block *sblock); 264 static int scrub_checksum_super(struct scrub_block *sblock); 265 static void scrub_block_get(struct scrub_block *sblock); 266 static void scrub_block_put(struct scrub_block *sblock); 267 static void scrub_page_get(struct scrub_page *spage); 268 static void scrub_page_put(struct scrub_page *spage); 269 static void scrub_parity_get(struct scrub_parity *sparity); 270 static void scrub_parity_put(struct scrub_parity *sparity); 271 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 272 struct scrub_page *spage); 273 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 274 u64 physical, struct btrfs_device *dev, u64 flags, 275 u64 gen, int mirror_num, u8 *csum, int force, 276 u64 physical_for_dev_replace); 277 static void scrub_bio_end_io(struct bio *bio); 278 static void scrub_bio_end_io_worker(struct btrfs_work *work); 279 static void scrub_block_complete(struct scrub_block *sblock); 280 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 281 u64 extent_logical, u64 extent_len, 282 u64 *extent_physical, 283 struct btrfs_device **extent_dev, 284 int *extent_mirror_num); 285 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx, 286 struct scrub_wr_ctx *wr_ctx, 287 struct btrfs_fs_info *fs_info, 288 struct btrfs_device *dev, 289 int is_dev_replace); 290 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx); 291 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 292 struct scrub_page *spage); 293 static void scrub_wr_submit(struct scrub_ctx *sctx); 294 static void scrub_wr_bio_end_io(struct bio *bio); 295 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 296 static int write_page_nocow(struct scrub_ctx *sctx, 297 u64 physical_for_dev_replace, struct page *page); 298 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 299 struct scrub_copy_nocow_ctx *ctx); 300 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 301 int mirror_num, u64 physical_for_dev_replace); 302 static void copy_nocow_pages_worker(struct btrfs_work *work); 303 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 304 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 305 static void scrub_put_ctx(struct scrub_ctx *sctx); 306 307 308 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 309 { 310 atomic_inc(&sctx->refs); 311 atomic_inc(&sctx->bios_in_flight); 312 } 313 314 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 315 { 316 atomic_dec(&sctx->bios_in_flight); 317 wake_up(&sctx->list_wait); 318 scrub_put_ctx(sctx); 319 } 320 321 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 322 { 323 while (atomic_read(&fs_info->scrub_pause_req)) { 324 mutex_unlock(&fs_info->scrub_lock); 325 wait_event(fs_info->scrub_pause_wait, 326 atomic_read(&fs_info->scrub_pause_req) == 0); 327 mutex_lock(&fs_info->scrub_lock); 328 } 329 } 330 331 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 332 { 333 atomic_inc(&fs_info->scrubs_paused); 334 wake_up(&fs_info->scrub_pause_wait); 335 } 336 337 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 338 { 339 mutex_lock(&fs_info->scrub_lock); 340 __scrub_blocked_if_needed(fs_info); 341 atomic_dec(&fs_info->scrubs_paused); 342 mutex_unlock(&fs_info->scrub_lock); 343 344 wake_up(&fs_info->scrub_pause_wait); 345 } 346 347 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 348 { 349 scrub_pause_on(fs_info); 350 scrub_pause_off(fs_info); 351 } 352 353 /* 354 * used for workers that require transaction commits (i.e., for the 355 * NOCOW case) 356 */ 357 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx) 358 { 359 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 360 361 atomic_inc(&sctx->refs); 362 /* 363 * increment scrubs_running to prevent cancel requests from 364 * completing as long as a worker is running. we must also 365 * increment scrubs_paused to prevent deadlocking on pause 366 * requests used for transactions commits (as the worker uses a 367 * transaction context). it is safe to regard the worker 368 * as paused for all matters practical. effectively, we only 369 * avoid cancellation requests from completing. 370 */ 371 mutex_lock(&fs_info->scrub_lock); 372 atomic_inc(&fs_info->scrubs_running); 373 atomic_inc(&fs_info->scrubs_paused); 374 mutex_unlock(&fs_info->scrub_lock); 375 376 /* 377 * check if @scrubs_running=@scrubs_paused condition 378 * inside wait_event() is not an atomic operation. 379 * which means we may inc/dec @scrub_running/paused 380 * at any time. Let's wake up @scrub_pause_wait as 381 * much as we can to let commit transaction blocked less. 382 */ 383 wake_up(&fs_info->scrub_pause_wait); 384 385 atomic_inc(&sctx->workers_pending); 386 } 387 388 /* used for workers that require transaction commits */ 389 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx) 390 { 391 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 392 393 /* 394 * see scrub_pending_trans_workers_inc() why we're pretending 395 * to be paused in the scrub counters 396 */ 397 mutex_lock(&fs_info->scrub_lock); 398 atomic_dec(&fs_info->scrubs_running); 399 atomic_dec(&fs_info->scrubs_paused); 400 mutex_unlock(&fs_info->scrub_lock); 401 atomic_dec(&sctx->workers_pending); 402 wake_up(&fs_info->scrub_pause_wait); 403 wake_up(&sctx->list_wait); 404 scrub_put_ctx(sctx); 405 } 406 407 static void scrub_free_csums(struct scrub_ctx *sctx) 408 { 409 while (!list_empty(&sctx->csum_list)) { 410 struct btrfs_ordered_sum *sum; 411 sum = list_first_entry(&sctx->csum_list, 412 struct btrfs_ordered_sum, list); 413 list_del(&sum->list); 414 kfree(sum); 415 } 416 } 417 418 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 419 { 420 int i; 421 422 if (!sctx) 423 return; 424 425 scrub_free_wr_ctx(&sctx->wr_ctx); 426 427 /* this can happen when scrub is cancelled */ 428 if (sctx->curr != -1) { 429 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 430 431 for (i = 0; i < sbio->page_count; i++) { 432 WARN_ON(!sbio->pagev[i]->page); 433 scrub_block_put(sbio->pagev[i]->sblock); 434 } 435 bio_put(sbio->bio); 436 } 437 438 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 439 struct scrub_bio *sbio = sctx->bios[i]; 440 441 if (!sbio) 442 break; 443 kfree(sbio); 444 } 445 446 scrub_free_csums(sctx); 447 kfree(sctx); 448 } 449 450 static void scrub_put_ctx(struct scrub_ctx *sctx) 451 { 452 if (atomic_dec_and_test(&sctx->refs)) 453 scrub_free_ctx(sctx); 454 } 455 456 static noinline_for_stack 457 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace) 458 { 459 struct scrub_ctx *sctx; 460 int i; 461 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info; 462 int ret; 463 464 sctx = kzalloc(sizeof(*sctx), GFP_NOFS); 465 if (!sctx) 466 goto nomem; 467 atomic_set(&sctx->refs, 1); 468 sctx->is_dev_replace = is_dev_replace; 469 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 470 sctx->curr = -1; 471 sctx->dev_root = dev->dev_root; 472 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 473 struct scrub_bio *sbio; 474 475 sbio = kzalloc(sizeof(*sbio), GFP_NOFS); 476 if (!sbio) 477 goto nomem; 478 sctx->bios[i] = sbio; 479 480 sbio->index = i; 481 sbio->sctx = sctx; 482 sbio->page_count = 0; 483 btrfs_init_work(&sbio->work, btrfs_scrub_helper, 484 scrub_bio_end_io_worker, NULL, NULL); 485 486 if (i != SCRUB_BIOS_PER_SCTX - 1) 487 sctx->bios[i]->next_free = i + 1; 488 else 489 sctx->bios[i]->next_free = -1; 490 } 491 sctx->first_free = 0; 492 sctx->nodesize = dev->dev_root->nodesize; 493 sctx->sectorsize = dev->dev_root->sectorsize; 494 atomic_set(&sctx->bios_in_flight, 0); 495 atomic_set(&sctx->workers_pending, 0); 496 atomic_set(&sctx->cancel_req, 0); 497 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); 498 INIT_LIST_HEAD(&sctx->csum_list); 499 500 spin_lock_init(&sctx->list_lock); 501 spin_lock_init(&sctx->stat_lock); 502 init_waitqueue_head(&sctx->list_wait); 503 504 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info, 505 fs_info->dev_replace.tgtdev, is_dev_replace); 506 if (ret) { 507 scrub_free_ctx(sctx); 508 return ERR_PTR(ret); 509 } 510 return sctx; 511 512 nomem: 513 scrub_free_ctx(sctx); 514 return ERR_PTR(-ENOMEM); 515 } 516 517 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 518 void *warn_ctx) 519 { 520 u64 isize; 521 u32 nlink; 522 int ret; 523 int i; 524 struct extent_buffer *eb; 525 struct btrfs_inode_item *inode_item; 526 struct scrub_warning *swarn = warn_ctx; 527 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info; 528 struct inode_fs_paths *ipath = NULL; 529 struct btrfs_root *local_root; 530 struct btrfs_key root_key; 531 struct btrfs_key key; 532 533 root_key.objectid = root; 534 root_key.type = BTRFS_ROOT_ITEM_KEY; 535 root_key.offset = (u64)-1; 536 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); 537 if (IS_ERR(local_root)) { 538 ret = PTR_ERR(local_root); 539 goto err; 540 } 541 542 /* 543 * this makes the path point to (inum INODE_ITEM ioff) 544 */ 545 key.objectid = inum; 546 key.type = BTRFS_INODE_ITEM_KEY; 547 key.offset = 0; 548 549 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 550 if (ret) { 551 btrfs_release_path(swarn->path); 552 goto err; 553 } 554 555 eb = swarn->path->nodes[0]; 556 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 557 struct btrfs_inode_item); 558 isize = btrfs_inode_size(eb, inode_item); 559 nlink = btrfs_inode_nlink(eb, inode_item); 560 btrfs_release_path(swarn->path); 561 562 ipath = init_ipath(4096, local_root, swarn->path); 563 if (IS_ERR(ipath)) { 564 ret = PTR_ERR(ipath); 565 ipath = NULL; 566 goto err; 567 } 568 ret = paths_from_inode(inum, ipath); 569 570 if (ret < 0) 571 goto err; 572 573 /* 574 * we deliberately ignore the bit ipath might have been too small to 575 * hold all of the paths here 576 */ 577 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 578 btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev " 579 "%s, sector %llu, root %llu, inode %llu, offset %llu, " 580 "length %llu, links %u (path: %s)", swarn->errstr, 581 swarn->logical, rcu_str_deref(swarn->dev->name), 582 (unsigned long long)swarn->sector, root, inum, offset, 583 min(isize - offset, (u64)PAGE_SIZE), nlink, 584 (char *)(unsigned long)ipath->fspath->val[i]); 585 586 free_ipath(ipath); 587 return 0; 588 589 err: 590 btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev " 591 "%s, sector %llu, root %llu, inode %llu, offset %llu: path " 592 "resolving failed with ret=%d", swarn->errstr, 593 swarn->logical, rcu_str_deref(swarn->dev->name), 594 (unsigned long long)swarn->sector, root, inum, offset, ret); 595 596 free_ipath(ipath); 597 return 0; 598 } 599 600 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 601 { 602 struct btrfs_device *dev; 603 struct btrfs_fs_info *fs_info; 604 struct btrfs_path *path; 605 struct btrfs_key found_key; 606 struct extent_buffer *eb; 607 struct btrfs_extent_item *ei; 608 struct scrub_warning swarn; 609 unsigned long ptr = 0; 610 u64 extent_item_pos; 611 u64 flags = 0; 612 u64 ref_root; 613 u32 item_size; 614 u8 ref_level; 615 int ret; 616 617 WARN_ON(sblock->page_count < 1); 618 dev = sblock->pagev[0]->dev; 619 fs_info = sblock->sctx->dev_root->fs_info; 620 621 path = btrfs_alloc_path(); 622 if (!path) 623 return; 624 625 swarn.sector = (sblock->pagev[0]->physical) >> 9; 626 swarn.logical = sblock->pagev[0]->logical; 627 swarn.errstr = errstr; 628 swarn.dev = NULL; 629 630 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 631 &flags); 632 if (ret < 0) 633 goto out; 634 635 extent_item_pos = swarn.logical - found_key.objectid; 636 swarn.extent_item_size = found_key.offset; 637 638 eb = path->nodes[0]; 639 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 640 item_size = btrfs_item_size_nr(eb, path->slots[0]); 641 642 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 643 do { 644 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 645 item_size, &ref_root, 646 &ref_level); 647 btrfs_warn_in_rcu(fs_info, 648 "%s at logical %llu on dev %s, " 649 "sector %llu: metadata %s (level %d) in tree " 650 "%llu", errstr, swarn.logical, 651 rcu_str_deref(dev->name), 652 (unsigned long long)swarn.sector, 653 ref_level ? "node" : "leaf", 654 ret < 0 ? -1 : ref_level, 655 ret < 0 ? -1 : ref_root); 656 } while (ret != 1); 657 btrfs_release_path(path); 658 } else { 659 btrfs_release_path(path); 660 swarn.path = path; 661 swarn.dev = dev; 662 iterate_extent_inodes(fs_info, found_key.objectid, 663 extent_item_pos, 1, 664 scrub_print_warning_inode, &swarn); 665 } 666 667 out: 668 btrfs_free_path(path); 669 } 670 671 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx) 672 { 673 struct page *page = NULL; 674 unsigned long index; 675 struct scrub_fixup_nodatasum *fixup = fixup_ctx; 676 int ret; 677 int corrected = 0; 678 struct btrfs_key key; 679 struct inode *inode = NULL; 680 struct btrfs_fs_info *fs_info; 681 u64 end = offset + PAGE_SIZE - 1; 682 struct btrfs_root *local_root; 683 int srcu_index; 684 685 key.objectid = root; 686 key.type = BTRFS_ROOT_ITEM_KEY; 687 key.offset = (u64)-1; 688 689 fs_info = fixup->root->fs_info; 690 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 691 692 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 693 if (IS_ERR(local_root)) { 694 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 695 return PTR_ERR(local_root); 696 } 697 698 key.type = BTRFS_INODE_ITEM_KEY; 699 key.objectid = inum; 700 key.offset = 0; 701 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 702 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 703 if (IS_ERR(inode)) 704 return PTR_ERR(inode); 705 706 index = offset >> PAGE_CACHE_SHIFT; 707 708 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 709 if (!page) { 710 ret = -ENOMEM; 711 goto out; 712 } 713 714 if (PageUptodate(page)) { 715 if (PageDirty(page)) { 716 /* 717 * we need to write the data to the defect sector. the 718 * data that was in that sector is not in memory, 719 * because the page was modified. we must not write the 720 * modified page to that sector. 721 * 722 * TODO: what could be done here: wait for the delalloc 723 * runner to write out that page (might involve 724 * COW) and see whether the sector is still 725 * referenced afterwards. 726 * 727 * For the meantime, we'll treat this error 728 * incorrectable, although there is a chance that a 729 * later scrub will find the bad sector again and that 730 * there's no dirty page in memory, then. 731 */ 732 ret = -EIO; 733 goto out; 734 } 735 ret = repair_io_failure(inode, offset, PAGE_SIZE, 736 fixup->logical, page, 737 offset - page_offset(page), 738 fixup->mirror_num); 739 unlock_page(page); 740 corrected = !ret; 741 } else { 742 /* 743 * we need to get good data first. the general readpage path 744 * will call repair_io_failure for us, we just have to make 745 * sure we read the bad mirror. 746 */ 747 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 748 EXTENT_DAMAGED, GFP_NOFS); 749 if (ret) { 750 /* set_extent_bits should give proper error */ 751 WARN_ON(ret > 0); 752 if (ret > 0) 753 ret = -EFAULT; 754 goto out; 755 } 756 757 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, 758 btrfs_get_extent, 759 fixup->mirror_num); 760 wait_on_page_locked(page); 761 762 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, 763 end, EXTENT_DAMAGED, 0, NULL); 764 if (!corrected) 765 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 766 EXTENT_DAMAGED, GFP_NOFS); 767 } 768 769 out: 770 if (page) 771 put_page(page); 772 773 iput(inode); 774 775 if (ret < 0) 776 return ret; 777 778 if (ret == 0 && corrected) { 779 /* 780 * we only need to call readpage for one of the inodes belonging 781 * to this extent. so make iterate_extent_inodes stop 782 */ 783 return 1; 784 } 785 786 return -EIO; 787 } 788 789 static void scrub_fixup_nodatasum(struct btrfs_work *work) 790 { 791 int ret; 792 struct scrub_fixup_nodatasum *fixup; 793 struct scrub_ctx *sctx; 794 struct btrfs_trans_handle *trans = NULL; 795 struct btrfs_path *path; 796 int uncorrectable = 0; 797 798 fixup = container_of(work, struct scrub_fixup_nodatasum, work); 799 sctx = fixup->sctx; 800 801 path = btrfs_alloc_path(); 802 if (!path) { 803 spin_lock(&sctx->stat_lock); 804 ++sctx->stat.malloc_errors; 805 spin_unlock(&sctx->stat_lock); 806 uncorrectable = 1; 807 goto out; 808 } 809 810 trans = btrfs_join_transaction(fixup->root); 811 if (IS_ERR(trans)) { 812 uncorrectable = 1; 813 goto out; 814 } 815 816 /* 817 * the idea is to trigger a regular read through the standard path. we 818 * read a page from the (failed) logical address by specifying the 819 * corresponding copynum of the failed sector. thus, that readpage is 820 * expected to fail. 821 * that is the point where on-the-fly error correction will kick in 822 * (once it's finished) and rewrite the failed sector if a good copy 823 * can be found. 824 */ 825 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info, 826 path, scrub_fixup_readpage, 827 fixup); 828 if (ret < 0) { 829 uncorrectable = 1; 830 goto out; 831 } 832 WARN_ON(ret != 1); 833 834 spin_lock(&sctx->stat_lock); 835 ++sctx->stat.corrected_errors; 836 spin_unlock(&sctx->stat_lock); 837 838 out: 839 if (trans && !IS_ERR(trans)) 840 btrfs_end_transaction(trans, fixup->root); 841 if (uncorrectable) { 842 spin_lock(&sctx->stat_lock); 843 ++sctx->stat.uncorrectable_errors; 844 spin_unlock(&sctx->stat_lock); 845 btrfs_dev_replace_stats_inc( 846 &sctx->dev_root->fs_info->dev_replace. 847 num_uncorrectable_read_errors); 848 btrfs_err_rl_in_rcu(sctx->dev_root->fs_info, 849 "unable to fixup (nodatasum) error at logical %llu on dev %s", 850 fixup->logical, rcu_str_deref(fixup->dev->name)); 851 } 852 853 btrfs_free_path(path); 854 kfree(fixup); 855 856 scrub_pending_trans_workers_dec(sctx); 857 } 858 859 static inline void scrub_get_recover(struct scrub_recover *recover) 860 { 861 atomic_inc(&recover->refs); 862 } 863 864 static inline void scrub_put_recover(struct scrub_recover *recover) 865 { 866 if (atomic_dec_and_test(&recover->refs)) { 867 btrfs_put_bbio(recover->bbio); 868 kfree(recover); 869 } 870 } 871 872 /* 873 * scrub_handle_errored_block gets called when either verification of the 874 * pages failed or the bio failed to read, e.g. with EIO. In the latter 875 * case, this function handles all pages in the bio, even though only one 876 * may be bad. 877 * The goal of this function is to repair the errored block by using the 878 * contents of one of the mirrors. 879 */ 880 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 881 { 882 struct scrub_ctx *sctx = sblock_to_check->sctx; 883 struct btrfs_device *dev; 884 struct btrfs_fs_info *fs_info; 885 u64 length; 886 u64 logical; 887 unsigned int failed_mirror_index; 888 unsigned int is_metadata; 889 unsigned int have_csum; 890 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 891 struct scrub_block *sblock_bad; 892 int ret; 893 int mirror_index; 894 int page_num; 895 int success; 896 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 897 DEFAULT_RATELIMIT_BURST); 898 899 BUG_ON(sblock_to_check->page_count < 1); 900 fs_info = sctx->dev_root->fs_info; 901 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 902 /* 903 * if we find an error in a super block, we just report it. 904 * They will get written with the next transaction commit 905 * anyway 906 */ 907 spin_lock(&sctx->stat_lock); 908 ++sctx->stat.super_errors; 909 spin_unlock(&sctx->stat_lock); 910 return 0; 911 } 912 length = sblock_to_check->page_count * PAGE_SIZE; 913 logical = sblock_to_check->pagev[0]->logical; 914 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 915 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 916 is_metadata = !(sblock_to_check->pagev[0]->flags & 917 BTRFS_EXTENT_FLAG_DATA); 918 have_csum = sblock_to_check->pagev[0]->have_csum; 919 dev = sblock_to_check->pagev[0]->dev; 920 921 if (sctx->is_dev_replace && !is_metadata && !have_csum) { 922 sblocks_for_recheck = NULL; 923 goto nodatasum_case; 924 } 925 926 /* 927 * read all mirrors one after the other. This includes to 928 * re-read the extent or metadata block that failed (that was 929 * the cause that this fixup code is called) another time, 930 * page by page this time in order to know which pages 931 * caused I/O errors and which ones are good (for all mirrors). 932 * It is the goal to handle the situation when more than one 933 * mirror contains I/O errors, but the errors do not 934 * overlap, i.e. the data can be repaired by selecting the 935 * pages from those mirrors without I/O error on the 936 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) 937 * would be that mirror #1 has an I/O error on the first page, 938 * the second page is good, and mirror #2 has an I/O error on 939 * the second page, but the first page is good. 940 * Then the first page of the first mirror can be repaired by 941 * taking the first page of the second mirror, and the 942 * second page of the second mirror can be repaired by 943 * copying the contents of the 2nd page of the 1st mirror. 944 * One more note: if the pages of one mirror contain I/O 945 * errors, the checksum cannot be verified. In order to get 946 * the best data for repairing, the first attempt is to find 947 * a mirror without I/O errors and with a validated checksum. 948 * Only if this is not possible, the pages are picked from 949 * mirrors with I/O errors without considering the checksum. 950 * If the latter is the case, at the end, the checksum of the 951 * repaired area is verified in order to correctly maintain 952 * the statistics. 953 */ 954 955 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, 956 sizeof(*sblocks_for_recheck), GFP_NOFS); 957 if (!sblocks_for_recheck) { 958 spin_lock(&sctx->stat_lock); 959 sctx->stat.malloc_errors++; 960 sctx->stat.read_errors++; 961 sctx->stat.uncorrectable_errors++; 962 spin_unlock(&sctx->stat_lock); 963 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 964 goto out; 965 } 966 967 /* setup the context, map the logical blocks and alloc the pages */ 968 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); 969 if (ret) { 970 spin_lock(&sctx->stat_lock); 971 sctx->stat.read_errors++; 972 sctx->stat.uncorrectable_errors++; 973 spin_unlock(&sctx->stat_lock); 974 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 975 goto out; 976 } 977 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 978 sblock_bad = sblocks_for_recheck + failed_mirror_index; 979 980 /* build and submit the bios for the failed mirror, check checksums */ 981 scrub_recheck_block(fs_info, sblock_bad, 1); 982 983 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 984 sblock_bad->no_io_error_seen) { 985 /* 986 * the error disappeared after reading page by page, or 987 * the area was part of a huge bio and other parts of the 988 * bio caused I/O errors, or the block layer merged several 989 * read requests into one and the error is caused by a 990 * different bio (usually one of the two latter cases is 991 * the cause) 992 */ 993 spin_lock(&sctx->stat_lock); 994 sctx->stat.unverified_errors++; 995 sblock_to_check->data_corrected = 1; 996 spin_unlock(&sctx->stat_lock); 997 998 if (sctx->is_dev_replace) 999 scrub_write_block_to_dev_replace(sblock_bad); 1000 goto out; 1001 } 1002 1003 if (!sblock_bad->no_io_error_seen) { 1004 spin_lock(&sctx->stat_lock); 1005 sctx->stat.read_errors++; 1006 spin_unlock(&sctx->stat_lock); 1007 if (__ratelimit(&_rs)) 1008 scrub_print_warning("i/o error", sblock_to_check); 1009 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1010 } else if (sblock_bad->checksum_error) { 1011 spin_lock(&sctx->stat_lock); 1012 sctx->stat.csum_errors++; 1013 spin_unlock(&sctx->stat_lock); 1014 if (__ratelimit(&_rs)) 1015 scrub_print_warning("checksum error", sblock_to_check); 1016 btrfs_dev_stat_inc_and_print(dev, 1017 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1018 } else if (sblock_bad->header_error) { 1019 spin_lock(&sctx->stat_lock); 1020 sctx->stat.verify_errors++; 1021 spin_unlock(&sctx->stat_lock); 1022 if (__ratelimit(&_rs)) 1023 scrub_print_warning("checksum/header error", 1024 sblock_to_check); 1025 if (sblock_bad->generation_error) 1026 btrfs_dev_stat_inc_and_print(dev, 1027 BTRFS_DEV_STAT_GENERATION_ERRS); 1028 else 1029 btrfs_dev_stat_inc_and_print(dev, 1030 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1031 } 1032 1033 if (sctx->readonly) { 1034 ASSERT(!sctx->is_dev_replace); 1035 goto out; 1036 } 1037 1038 if (!is_metadata && !have_csum) { 1039 struct scrub_fixup_nodatasum *fixup_nodatasum; 1040 1041 WARN_ON(sctx->is_dev_replace); 1042 1043 nodatasum_case: 1044 1045 /* 1046 * !is_metadata and !have_csum, this means that the data 1047 * might not be COW'ed, that it might be modified 1048 * concurrently. The general strategy to work on the 1049 * commit root does not help in the case when COW is not 1050 * used. 1051 */ 1052 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS); 1053 if (!fixup_nodatasum) 1054 goto did_not_correct_error; 1055 fixup_nodatasum->sctx = sctx; 1056 fixup_nodatasum->dev = dev; 1057 fixup_nodatasum->logical = logical; 1058 fixup_nodatasum->root = fs_info->extent_root; 1059 fixup_nodatasum->mirror_num = failed_mirror_index + 1; 1060 scrub_pending_trans_workers_inc(sctx); 1061 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper, 1062 scrub_fixup_nodatasum, NULL, NULL); 1063 btrfs_queue_work(fs_info->scrub_workers, 1064 &fixup_nodatasum->work); 1065 goto out; 1066 } 1067 1068 /* 1069 * now build and submit the bios for the other mirrors, check 1070 * checksums. 1071 * First try to pick the mirror which is completely without I/O 1072 * errors and also does not have a checksum error. 1073 * If one is found, and if a checksum is present, the full block 1074 * that is known to contain an error is rewritten. Afterwards 1075 * the block is known to be corrected. 1076 * If a mirror is found which is completely correct, and no 1077 * checksum is present, only those pages are rewritten that had 1078 * an I/O error in the block to be repaired, since it cannot be 1079 * determined, which copy of the other pages is better (and it 1080 * could happen otherwise that a correct page would be 1081 * overwritten by a bad one). 1082 */ 1083 for (mirror_index = 0; 1084 mirror_index < BTRFS_MAX_MIRRORS && 1085 sblocks_for_recheck[mirror_index].page_count > 0; 1086 mirror_index++) { 1087 struct scrub_block *sblock_other; 1088 1089 if (mirror_index == failed_mirror_index) 1090 continue; 1091 sblock_other = sblocks_for_recheck + mirror_index; 1092 1093 /* build and submit the bios, check checksums */ 1094 scrub_recheck_block(fs_info, sblock_other, 0); 1095 1096 if (!sblock_other->header_error && 1097 !sblock_other->checksum_error && 1098 sblock_other->no_io_error_seen) { 1099 if (sctx->is_dev_replace) { 1100 scrub_write_block_to_dev_replace(sblock_other); 1101 goto corrected_error; 1102 } else { 1103 ret = scrub_repair_block_from_good_copy( 1104 sblock_bad, sblock_other); 1105 if (!ret) 1106 goto corrected_error; 1107 } 1108 } 1109 } 1110 1111 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) 1112 goto did_not_correct_error; 1113 1114 /* 1115 * In case of I/O errors in the area that is supposed to be 1116 * repaired, continue by picking good copies of those pages. 1117 * Select the good pages from mirrors to rewrite bad pages from 1118 * the area to fix. Afterwards verify the checksum of the block 1119 * that is supposed to be repaired. This verification step is 1120 * only done for the purpose of statistic counting and for the 1121 * final scrub report, whether errors remain. 1122 * A perfect algorithm could make use of the checksum and try 1123 * all possible combinations of pages from the different mirrors 1124 * until the checksum verification succeeds. For example, when 1125 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page 1126 * of mirror #2 is readable but the final checksum test fails, 1127 * then the 2nd page of mirror #3 could be tried, whether now 1128 * the final checksum succeedes. But this would be a rare 1129 * exception and is therefore not implemented. At least it is 1130 * avoided that the good copy is overwritten. 1131 * A more useful improvement would be to pick the sectors 1132 * without I/O error based on sector sizes (512 bytes on legacy 1133 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one 1134 * mirror could be repaired by taking 512 byte of a different 1135 * mirror, even if other 512 byte sectors in the same PAGE_SIZE 1136 * area are unreadable. 1137 */ 1138 success = 1; 1139 for (page_num = 0; page_num < sblock_bad->page_count; 1140 page_num++) { 1141 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1142 struct scrub_block *sblock_other = NULL; 1143 1144 /* skip no-io-error page in scrub */ 1145 if (!page_bad->io_error && !sctx->is_dev_replace) 1146 continue; 1147 1148 /* try to find no-io-error page in mirrors */ 1149 if (page_bad->io_error) { 1150 for (mirror_index = 0; 1151 mirror_index < BTRFS_MAX_MIRRORS && 1152 sblocks_for_recheck[mirror_index].page_count > 0; 1153 mirror_index++) { 1154 if (!sblocks_for_recheck[mirror_index]. 1155 pagev[page_num]->io_error) { 1156 sblock_other = sblocks_for_recheck + 1157 mirror_index; 1158 break; 1159 } 1160 } 1161 if (!sblock_other) 1162 success = 0; 1163 } 1164 1165 if (sctx->is_dev_replace) { 1166 /* 1167 * did not find a mirror to fetch the page 1168 * from. scrub_write_page_to_dev_replace() 1169 * handles this case (page->io_error), by 1170 * filling the block with zeros before 1171 * submitting the write request 1172 */ 1173 if (!sblock_other) 1174 sblock_other = sblock_bad; 1175 1176 if (scrub_write_page_to_dev_replace(sblock_other, 1177 page_num) != 0) { 1178 btrfs_dev_replace_stats_inc( 1179 &sctx->dev_root-> 1180 fs_info->dev_replace. 1181 num_write_errors); 1182 success = 0; 1183 } 1184 } else if (sblock_other) { 1185 ret = scrub_repair_page_from_good_copy(sblock_bad, 1186 sblock_other, 1187 page_num, 0); 1188 if (0 == ret) 1189 page_bad->io_error = 0; 1190 else 1191 success = 0; 1192 } 1193 } 1194 1195 if (success && !sctx->is_dev_replace) { 1196 if (is_metadata || have_csum) { 1197 /* 1198 * need to verify the checksum now that all 1199 * sectors on disk are repaired (the write 1200 * request for data to be repaired is on its way). 1201 * Just be lazy and use scrub_recheck_block() 1202 * which re-reads the data before the checksum 1203 * is verified, but most likely the data comes out 1204 * of the page cache. 1205 */ 1206 scrub_recheck_block(fs_info, sblock_bad, 1); 1207 if (!sblock_bad->header_error && 1208 !sblock_bad->checksum_error && 1209 sblock_bad->no_io_error_seen) 1210 goto corrected_error; 1211 else 1212 goto did_not_correct_error; 1213 } else { 1214 corrected_error: 1215 spin_lock(&sctx->stat_lock); 1216 sctx->stat.corrected_errors++; 1217 sblock_to_check->data_corrected = 1; 1218 spin_unlock(&sctx->stat_lock); 1219 btrfs_err_rl_in_rcu(fs_info, 1220 "fixed up error at logical %llu on dev %s", 1221 logical, rcu_str_deref(dev->name)); 1222 } 1223 } else { 1224 did_not_correct_error: 1225 spin_lock(&sctx->stat_lock); 1226 sctx->stat.uncorrectable_errors++; 1227 spin_unlock(&sctx->stat_lock); 1228 btrfs_err_rl_in_rcu(fs_info, 1229 "unable to fixup (regular) error at logical %llu on dev %s", 1230 logical, rcu_str_deref(dev->name)); 1231 } 1232 1233 out: 1234 if (sblocks_for_recheck) { 1235 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1236 mirror_index++) { 1237 struct scrub_block *sblock = sblocks_for_recheck + 1238 mirror_index; 1239 struct scrub_recover *recover; 1240 int page_index; 1241 1242 for (page_index = 0; page_index < sblock->page_count; 1243 page_index++) { 1244 sblock->pagev[page_index]->sblock = NULL; 1245 recover = sblock->pagev[page_index]->recover; 1246 if (recover) { 1247 scrub_put_recover(recover); 1248 sblock->pagev[page_index]->recover = 1249 NULL; 1250 } 1251 scrub_page_put(sblock->pagev[page_index]); 1252 } 1253 } 1254 kfree(sblocks_for_recheck); 1255 } 1256 1257 return 0; 1258 } 1259 1260 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio) 1261 { 1262 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1263 return 2; 1264 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1265 return 3; 1266 else 1267 return (int)bbio->num_stripes; 1268 } 1269 1270 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 1271 u64 *raid_map, 1272 u64 mapped_length, 1273 int nstripes, int mirror, 1274 int *stripe_index, 1275 u64 *stripe_offset) 1276 { 1277 int i; 1278 1279 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1280 /* RAID5/6 */ 1281 for (i = 0; i < nstripes; i++) { 1282 if (raid_map[i] == RAID6_Q_STRIPE || 1283 raid_map[i] == RAID5_P_STRIPE) 1284 continue; 1285 1286 if (logical >= raid_map[i] && 1287 logical < raid_map[i] + mapped_length) 1288 break; 1289 } 1290 1291 *stripe_index = i; 1292 *stripe_offset = logical - raid_map[i]; 1293 } else { 1294 /* The other RAID type */ 1295 *stripe_index = mirror; 1296 *stripe_offset = 0; 1297 } 1298 } 1299 1300 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 1301 struct scrub_block *sblocks_for_recheck) 1302 { 1303 struct scrub_ctx *sctx = original_sblock->sctx; 1304 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 1305 u64 length = original_sblock->page_count * PAGE_SIZE; 1306 u64 logical = original_sblock->pagev[0]->logical; 1307 u64 generation = original_sblock->pagev[0]->generation; 1308 u64 flags = original_sblock->pagev[0]->flags; 1309 u64 have_csum = original_sblock->pagev[0]->have_csum; 1310 struct scrub_recover *recover; 1311 struct btrfs_bio *bbio; 1312 u64 sublen; 1313 u64 mapped_length; 1314 u64 stripe_offset; 1315 int stripe_index; 1316 int page_index = 0; 1317 int mirror_index; 1318 int nmirrors; 1319 int ret; 1320 1321 /* 1322 * note: the two members refs and outstanding_pages 1323 * are not used (and not set) in the blocks that are used for 1324 * the recheck procedure 1325 */ 1326 1327 while (length > 0) { 1328 sublen = min_t(u64, length, PAGE_SIZE); 1329 mapped_length = sublen; 1330 bbio = NULL; 1331 1332 /* 1333 * with a length of PAGE_SIZE, each returned stripe 1334 * represents one mirror 1335 */ 1336 ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical, 1337 &mapped_length, &bbio, 0, 1); 1338 if (ret || !bbio || mapped_length < sublen) { 1339 btrfs_put_bbio(bbio); 1340 return -EIO; 1341 } 1342 1343 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); 1344 if (!recover) { 1345 btrfs_put_bbio(bbio); 1346 return -ENOMEM; 1347 } 1348 1349 atomic_set(&recover->refs, 1); 1350 recover->bbio = bbio; 1351 recover->map_length = mapped_length; 1352 1353 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO); 1354 1355 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS); 1356 1357 for (mirror_index = 0; mirror_index < nmirrors; 1358 mirror_index++) { 1359 struct scrub_block *sblock; 1360 struct scrub_page *page; 1361 1362 sblock = sblocks_for_recheck + mirror_index; 1363 sblock->sctx = sctx; 1364 1365 page = kzalloc(sizeof(*page), GFP_NOFS); 1366 if (!page) { 1367 leave_nomem: 1368 spin_lock(&sctx->stat_lock); 1369 sctx->stat.malloc_errors++; 1370 spin_unlock(&sctx->stat_lock); 1371 scrub_put_recover(recover); 1372 return -ENOMEM; 1373 } 1374 scrub_page_get(page); 1375 sblock->pagev[page_index] = page; 1376 page->sblock = sblock; 1377 page->flags = flags; 1378 page->generation = generation; 1379 page->logical = logical; 1380 page->have_csum = have_csum; 1381 if (have_csum) 1382 memcpy(page->csum, 1383 original_sblock->pagev[0]->csum, 1384 sctx->csum_size); 1385 1386 scrub_stripe_index_and_offset(logical, 1387 bbio->map_type, 1388 bbio->raid_map, 1389 mapped_length, 1390 bbio->num_stripes - 1391 bbio->num_tgtdevs, 1392 mirror_index, 1393 &stripe_index, 1394 &stripe_offset); 1395 page->physical = bbio->stripes[stripe_index].physical + 1396 stripe_offset; 1397 page->dev = bbio->stripes[stripe_index].dev; 1398 1399 BUG_ON(page_index >= original_sblock->page_count); 1400 page->physical_for_dev_replace = 1401 original_sblock->pagev[page_index]-> 1402 physical_for_dev_replace; 1403 /* for missing devices, dev->bdev is NULL */ 1404 page->mirror_num = mirror_index + 1; 1405 sblock->page_count++; 1406 page->page = alloc_page(GFP_NOFS); 1407 if (!page->page) 1408 goto leave_nomem; 1409 1410 scrub_get_recover(recover); 1411 page->recover = recover; 1412 } 1413 scrub_put_recover(recover); 1414 length -= sublen; 1415 logical += sublen; 1416 page_index++; 1417 } 1418 1419 return 0; 1420 } 1421 1422 struct scrub_bio_ret { 1423 struct completion event; 1424 int error; 1425 }; 1426 1427 static void scrub_bio_wait_endio(struct bio *bio) 1428 { 1429 struct scrub_bio_ret *ret = bio->bi_private; 1430 1431 ret->error = bio->bi_error; 1432 complete(&ret->event); 1433 } 1434 1435 static inline int scrub_is_page_on_raid56(struct scrub_page *page) 1436 { 1437 return page->recover && 1438 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); 1439 } 1440 1441 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, 1442 struct bio *bio, 1443 struct scrub_page *page) 1444 { 1445 struct scrub_bio_ret done; 1446 int ret; 1447 1448 init_completion(&done.event); 1449 done.error = 0; 1450 bio->bi_iter.bi_sector = page->logical >> 9; 1451 bio->bi_private = &done; 1452 bio->bi_end_io = scrub_bio_wait_endio; 1453 1454 ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio, 1455 page->recover->map_length, 1456 page->mirror_num, 0); 1457 if (ret) 1458 return ret; 1459 1460 wait_for_completion(&done.event); 1461 if (done.error) 1462 return -EIO; 1463 1464 return 0; 1465 } 1466 1467 /* 1468 * this function will check the on disk data for checksum errors, header 1469 * errors and read I/O errors. If any I/O errors happen, the exact pages 1470 * which are errored are marked as being bad. The goal is to enable scrub 1471 * to take those pages that are not errored from all the mirrors so that 1472 * the pages that are errored in the just handled mirror can be repaired. 1473 */ 1474 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1475 struct scrub_block *sblock, 1476 int retry_failed_mirror) 1477 { 1478 int page_num; 1479 1480 sblock->no_io_error_seen = 1; 1481 1482 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1483 struct bio *bio; 1484 struct scrub_page *page = sblock->pagev[page_num]; 1485 1486 if (page->dev->bdev == NULL) { 1487 page->io_error = 1; 1488 sblock->no_io_error_seen = 0; 1489 continue; 1490 } 1491 1492 WARN_ON(!page->page); 1493 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1494 if (!bio) { 1495 page->io_error = 1; 1496 sblock->no_io_error_seen = 0; 1497 continue; 1498 } 1499 bio->bi_bdev = page->dev->bdev; 1500 1501 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1502 if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) { 1503 if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) 1504 sblock->no_io_error_seen = 0; 1505 } else { 1506 bio->bi_iter.bi_sector = page->physical >> 9; 1507 1508 if (btrfsic_submit_bio_wait(READ, bio)) 1509 sblock->no_io_error_seen = 0; 1510 } 1511 1512 bio_put(bio); 1513 } 1514 1515 if (sblock->no_io_error_seen) 1516 scrub_recheck_block_checksum(sblock); 1517 } 1518 1519 static inline int scrub_check_fsid(u8 fsid[], 1520 struct scrub_page *spage) 1521 { 1522 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; 1523 int ret; 1524 1525 ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE); 1526 return !ret; 1527 } 1528 1529 static void scrub_recheck_block_checksum(struct scrub_block *sblock) 1530 { 1531 sblock->header_error = 0; 1532 sblock->checksum_error = 0; 1533 sblock->generation_error = 0; 1534 1535 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA) 1536 scrub_checksum_data(sblock); 1537 else 1538 scrub_checksum_tree_block(sblock); 1539 } 1540 1541 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1542 struct scrub_block *sblock_good) 1543 { 1544 int page_num; 1545 int ret = 0; 1546 1547 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1548 int ret_sub; 1549 1550 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1551 sblock_good, 1552 page_num, 1); 1553 if (ret_sub) 1554 ret = ret_sub; 1555 } 1556 1557 return ret; 1558 } 1559 1560 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1561 struct scrub_block *sblock_good, 1562 int page_num, int force_write) 1563 { 1564 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1565 struct scrub_page *page_good = sblock_good->pagev[page_num]; 1566 1567 BUG_ON(page_bad->page == NULL); 1568 BUG_ON(page_good->page == NULL); 1569 if (force_write || sblock_bad->header_error || 1570 sblock_bad->checksum_error || page_bad->io_error) { 1571 struct bio *bio; 1572 int ret; 1573 1574 if (!page_bad->dev->bdev) { 1575 btrfs_warn_rl(sblock_bad->sctx->dev_root->fs_info, 1576 "scrub_repair_page_from_good_copy(bdev == NULL) " 1577 "is unexpected"); 1578 return -EIO; 1579 } 1580 1581 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1582 if (!bio) 1583 return -EIO; 1584 bio->bi_bdev = page_bad->dev->bdev; 1585 bio->bi_iter.bi_sector = page_bad->physical >> 9; 1586 1587 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); 1588 if (PAGE_SIZE != ret) { 1589 bio_put(bio); 1590 return -EIO; 1591 } 1592 1593 if (btrfsic_submit_bio_wait(WRITE, bio)) { 1594 btrfs_dev_stat_inc_and_print(page_bad->dev, 1595 BTRFS_DEV_STAT_WRITE_ERRS); 1596 btrfs_dev_replace_stats_inc( 1597 &sblock_bad->sctx->dev_root->fs_info-> 1598 dev_replace.num_write_errors); 1599 bio_put(bio); 1600 return -EIO; 1601 } 1602 bio_put(bio); 1603 } 1604 1605 return 0; 1606 } 1607 1608 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1609 { 1610 int page_num; 1611 1612 /* 1613 * This block is used for the check of the parity on the source device, 1614 * so the data needn't be written into the destination device. 1615 */ 1616 if (sblock->sparity) 1617 return; 1618 1619 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1620 int ret; 1621 1622 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1623 if (ret) 1624 btrfs_dev_replace_stats_inc( 1625 &sblock->sctx->dev_root->fs_info->dev_replace. 1626 num_write_errors); 1627 } 1628 } 1629 1630 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1631 int page_num) 1632 { 1633 struct scrub_page *spage = sblock->pagev[page_num]; 1634 1635 BUG_ON(spage->page == NULL); 1636 if (spage->io_error) { 1637 void *mapped_buffer = kmap_atomic(spage->page); 1638 1639 memset(mapped_buffer, 0, PAGE_CACHE_SIZE); 1640 flush_dcache_page(spage->page); 1641 kunmap_atomic(mapped_buffer); 1642 } 1643 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1644 } 1645 1646 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1647 struct scrub_page *spage) 1648 { 1649 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; 1650 struct scrub_bio *sbio; 1651 int ret; 1652 1653 mutex_lock(&wr_ctx->wr_lock); 1654 again: 1655 if (!wr_ctx->wr_curr_bio) { 1656 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio), 1657 GFP_NOFS); 1658 if (!wr_ctx->wr_curr_bio) { 1659 mutex_unlock(&wr_ctx->wr_lock); 1660 return -ENOMEM; 1661 } 1662 wr_ctx->wr_curr_bio->sctx = sctx; 1663 wr_ctx->wr_curr_bio->page_count = 0; 1664 } 1665 sbio = wr_ctx->wr_curr_bio; 1666 if (sbio->page_count == 0) { 1667 struct bio *bio; 1668 1669 sbio->physical = spage->physical_for_dev_replace; 1670 sbio->logical = spage->logical; 1671 sbio->dev = wr_ctx->tgtdev; 1672 bio = sbio->bio; 1673 if (!bio) { 1674 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio); 1675 if (!bio) { 1676 mutex_unlock(&wr_ctx->wr_lock); 1677 return -ENOMEM; 1678 } 1679 sbio->bio = bio; 1680 } 1681 1682 bio->bi_private = sbio; 1683 bio->bi_end_io = scrub_wr_bio_end_io; 1684 bio->bi_bdev = sbio->dev->bdev; 1685 bio->bi_iter.bi_sector = sbio->physical >> 9; 1686 sbio->err = 0; 1687 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1688 spage->physical_for_dev_replace || 1689 sbio->logical + sbio->page_count * PAGE_SIZE != 1690 spage->logical) { 1691 scrub_wr_submit(sctx); 1692 goto again; 1693 } 1694 1695 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1696 if (ret != PAGE_SIZE) { 1697 if (sbio->page_count < 1) { 1698 bio_put(sbio->bio); 1699 sbio->bio = NULL; 1700 mutex_unlock(&wr_ctx->wr_lock); 1701 return -EIO; 1702 } 1703 scrub_wr_submit(sctx); 1704 goto again; 1705 } 1706 1707 sbio->pagev[sbio->page_count] = spage; 1708 scrub_page_get(spage); 1709 sbio->page_count++; 1710 if (sbio->page_count == wr_ctx->pages_per_wr_bio) 1711 scrub_wr_submit(sctx); 1712 mutex_unlock(&wr_ctx->wr_lock); 1713 1714 return 0; 1715 } 1716 1717 static void scrub_wr_submit(struct scrub_ctx *sctx) 1718 { 1719 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; 1720 struct scrub_bio *sbio; 1721 1722 if (!wr_ctx->wr_curr_bio) 1723 return; 1724 1725 sbio = wr_ctx->wr_curr_bio; 1726 wr_ctx->wr_curr_bio = NULL; 1727 WARN_ON(!sbio->bio->bi_bdev); 1728 scrub_pending_bio_inc(sctx); 1729 /* process all writes in a single worker thread. Then the block layer 1730 * orders the requests before sending them to the driver which 1731 * doubled the write performance on spinning disks when measured 1732 * with Linux 3.5 */ 1733 btrfsic_submit_bio(WRITE, sbio->bio); 1734 } 1735 1736 static void scrub_wr_bio_end_io(struct bio *bio) 1737 { 1738 struct scrub_bio *sbio = bio->bi_private; 1739 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info; 1740 1741 sbio->err = bio->bi_error; 1742 sbio->bio = bio; 1743 1744 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper, 1745 scrub_wr_bio_end_io_worker, NULL, NULL); 1746 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 1747 } 1748 1749 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 1750 { 1751 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1752 struct scrub_ctx *sctx = sbio->sctx; 1753 int i; 1754 1755 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 1756 if (sbio->err) { 1757 struct btrfs_dev_replace *dev_replace = 1758 &sbio->sctx->dev_root->fs_info->dev_replace; 1759 1760 for (i = 0; i < sbio->page_count; i++) { 1761 struct scrub_page *spage = sbio->pagev[i]; 1762 1763 spage->io_error = 1; 1764 btrfs_dev_replace_stats_inc(&dev_replace-> 1765 num_write_errors); 1766 } 1767 } 1768 1769 for (i = 0; i < sbio->page_count; i++) 1770 scrub_page_put(sbio->pagev[i]); 1771 1772 bio_put(sbio->bio); 1773 kfree(sbio); 1774 scrub_pending_bio_dec(sctx); 1775 } 1776 1777 static int scrub_checksum(struct scrub_block *sblock) 1778 { 1779 u64 flags; 1780 int ret; 1781 1782 /* 1783 * No need to initialize these stats currently, 1784 * because this function only use return value 1785 * instead of these stats value. 1786 * 1787 * Todo: 1788 * always use stats 1789 */ 1790 sblock->header_error = 0; 1791 sblock->generation_error = 0; 1792 sblock->checksum_error = 0; 1793 1794 WARN_ON(sblock->page_count < 1); 1795 flags = sblock->pagev[0]->flags; 1796 ret = 0; 1797 if (flags & BTRFS_EXTENT_FLAG_DATA) 1798 ret = scrub_checksum_data(sblock); 1799 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1800 ret = scrub_checksum_tree_block(sblock); 1801 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1802 (void)scrub_checksum_super(sblock); 1803 else 1804 WARN_ON(1); 1805 if (ret) 1806 scrub_handle_errored_block(sblock); 1807 1808 return ret; 1809 } 1810 1811 static int scrub_checksum_data(struct scrub_block *sblock) 1812 { 1813 struct scrub_ctx *sctx = sblock->sctx; 1814 u8 csum[BTRFS_CSUM_SIZE]; 1815 u8 *on_disk_csum; 1816 struct page *page; 1817 void *buffer; 1818 u32 crc = ~(u32)0; 1819 u64 len; 1820 int index; 1821 1822 BUG_ON(sblock->page_count < 1); 1823 if (!sblock->pagev[0]->have_csum) 1824 return 0; 1825 1826 on_disk_csum = sblock->pagev[0]->csum; 1827 page = sblock->pagev[0]->page; 1828 buffer = kmap_atomic(page); 1829 1830 len = sctx->sectorsize; 1831 index = 0; 1832 for (;;) { 1833 u64 l = min_t(u64, len, PAGE_SIZE); 1834 1835 crc = btrfs_csum_data(buffer, crc, l); 1836 kunmap_atomic(buffer); 1837 len -= l; 1838 if (len == 0) 1839 break; 1840 index++; 1841 BUG_ON(index >= sblock->page_count); 1842 BUG_ON(!sblock->pagev[index]->page); 1843 page = sblock->pagev[index]->page; 1844 buffer = kmap_atomic(page); 1845 } 1846 1847 btrfs_csum_final(crc, csum); 1848 if (memcmp(csum, on_disk_csum, sctx->csum_size)) 1849 sblock->checksum_error = 1; 1850 1851 return sblock->checksum_error; 1852 } 1853 1854 static int scrub_checksum_tree_block(struct scrub_block *sblock) 1855 { 1856 struct scrub_ctx *sctx = sblock->sctx; 1857 struct btrfs_header *h; 1858 struct btrfs_root *root = sctx->dev_root; 1859 struct btrfs_fs_info *fs_info = root->fs_info; 1860 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1861 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1862 struct page *page; 1863 void *mapped_buffer; 1864 u64 mapped_size; 1865 void *p; 1866 u32 crc = ~(u32)0; 1867 u64 len; 1868 int index; 1869 1870 BUG_ON(sblock->page_count < 1); 1871 page = sblock->pagev[0]->page; 1872 mapped_buffer = kmap_atomic(page); 1873 h = (struct btrfs_header *)mapped_buffer; 1874 memcpy(on_disk_csum, h->csum, sctx->csum_size); 1875 1876 /* 1877 * we don't use the getter functions here, as we 1878 * a) don't have an extent buffer and 1879 * b) the page is already kmapped 1880 */ 1881 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h)) 1882 sblock->header_error = 1; 1883 1884 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) { 1885 sblock->header_error = 1; 1886 sblock->generation_error = 1; 1887 } 1888 1889 if (!scrub_check_fsid(h->fsid, sblock->pagev[0])) 1890 sblock->header_error = 1; 1891 1892 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1893 BTRFS_UUID_SIZE)) 1894 sblock->header_error = 1; 1895 1896 len = sctx->nodesize - BTRFS_CSUM_SIZE; 1897 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1898 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1899 index = 0; 1900 for (;;) { 1901 u64 l = min_t(u64, len, mapped_size); 1902 1903 crc = btrfs_csum_data(p, crc, l); 1904 kunmap_atomic(mapped_buffer); 1905 len -= l; 1906 if (len == 0) 1907 break; 1908 index++; 1909 BUG_ON(index >= sblock->page_count); 1910 BUG_ON(!sblock->pagev[index]->page); 1911 page = sblock->pagev[index]->page; 1912 mapped_buffer = kmap_atomic(page); 1913 mapped_size = PAGE_SIZE; 1914 p = mapped_buffer; 1915 } 1916 1917 btrfs_csum_final(crc, calculated_csum); 1918 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1919 sblock->checksum_error = 1; 1920 1921 return sblock->header_error || sblock->checksum_error; 1922 } 1923 1924 static int scrub_checksum_super(struct scrub_block *sblock) 1925 { 1926 struct btrfs_super_block *s; 1927 struct scrub_ctx *sctx = sblock->sctx; 1928 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1929 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1930 struct page *page; 1931 void *mapped_buffer; 1932 u64 mapped_size; 1933 void *p; 1934 u32 crc = ~(u32)0; 1935 int fail_gen = 0; 1936 int fail_cor = 0; 1937 u64 len; 1938 int index; 1939 1940 BUG_ON(sblock->page_count < 1); 1941 page = sblock->pagev[0]->page; 1942 mapped_buffer = kmap_atomic(page); 1943 s = (struct btrfs_super_block *)mapped_buffer; 1944 memcpy(on_disk_csum, s->csum, sctx->csum_size); 1945 1946 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s)) 1947 ++fail_cor; 1948 1949 if (sblock->pagev[0]->generation != btrfs_super_generation(s)) 1950 ++fail_gen; 1951 1952 if (!scrub_check_fsid(s->fsid, sblock->pagev[0])) 1953 ++fail_cor; 1954 1955 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; 1956 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1957 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1958 index = 0; 1959 for (;;) { 1960 u64 l = min_t(u64, len, mapped_size); 1961 1962 crc = btrfs_csum_data(p, crc, l); 1963 kunmap_atomic(mapped_buffer); 1964 len -= l; 1965 if (len == 0) 1966 break; 1967 index++; 1968 BUG_ON(index >= sblock->page_count); 1969 BUG_ON(!sblock->pagev[index]->page); 1970 page = sblock->pagev[index]->page; 1971 mapped_buffer = kmap_atomic(page); 1972 mapped_size = PAGE_SIZE; 1973 p = mapped_buffer; 1974 } 1975 1976 btrfs_csum_final(crc, calculated_csum); 1977 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1978 ++fail_cor; 1979 1980 if (fail_cor + fail_gen) { 1981 /* 1982 * if we find an error in a super block, we just report it. 1983 * They will get written with the next transaction commit 1984 * anyway 1985 */ 1986 spin_lock(&sctx->stat_lock); 1987 ++sctx->stat.super_errors; 1988 spin_unlock(&sctx->stat_lock); 1989 if (fail_cor) 1990 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 1991 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1992 else 1993 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 1994 BTRFS_DEV_STAT_GENERATION_ERRS); 1995 } 1996 1997 return fail_cor + fail_gen; 1998 } 1999 2000 static void scrub_block_get(struct scrub_block *sblock) 2001 { 2002 atomic_inc(&sblock->refs); 2003 } 2004 2005 static void scrub_block_put(struct scrub_block *sblock) 2006 { 2007 if (atomic_dec_and_test(&sblock->refs)) { 2008 int i; 2009 2010 if (sblock->sparity) 2011 scrub_parity_put(sblock->sparity); 2012 2013 for (i = 0; i < sblock->page_count; i++) 2014 scrub_page_put(sblock->pagev[i]); 2015 kfree(sblock); 2016 } 2017 } 2018 2019 static void scrub_page_get(struct scrub_page *spage) 2020 { 2021 atomic_inc(&spage->refs); 2022 } 2023 2024 static void scrub_page_put(struct scrub_page *spage) 2025 { 2026 if (atomic_dec_and_test(&spage->refs)) { 2027 if (spage->page) 2028 __free_page(spage->page); 2029 kfree(spage); 2030 } 2031 } 2032 2033 static void scrub_submit(struct scrub_ctx *sctx) 2034 { 2035 struct scrub_bio *sbio; 2036 2037 if (sctx->curr == -1) 2038 return; 2039 2040 sbio = sctx->bios[sctx->curr]; 2041 sctx->curr = -1; 2042 scrub_pending_bio_inc(sctx); 2043 btrfsic_submit_bio(READ, sbio->bio); 2044 } 2045 2046 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 2047 struct scrub_page *spage) 2048 { 2049 struct scrub_block *sblock = spage->sblock; 2050 struct scrub_bio *sbio; 2051 int ret; 2052 2053 again: 2054 /* 2055 * grab a fresh bio or wait for one to become available 2056 */ 2057 while (sctx->curr == -1) { 2058 spin_lock(&sctx->list_lock); 2059 sctx->curr = sctx->first_free; 2060 if (sctx->curr != -1) { 2061 sctx->first_free = sctx->bios[sctx->curr]->next_free; 2062 sctx->bios[sctx->curr]->next_free = -1; 2063 sctx->bios[sctx->curr]->page_count = 0; 2064 spin_unlock(&sctx->list_lock); 2065 } else { 2066 spin_unlock(&sctx->list_lock); 2067 wait_event(sctx->list_wait, sctx->first_free != -1); 2068 } 2069 } 2070 sbio = sctx->bios[sctx->curr]; 2071 if (sbio->page_count == 0) { 2072 struct bio *bio; 2073 2074 sbio->physical = spage->physical; 2075 sbio->logical = spage->logical; 2076 sbio->dev = spage->dev; 2077 bio = sbio->bio; 2078 if (!bio) { 2079 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio); 2080 if (!bio) 2081 return -ENOMEM; 2082 sbio->bio = bio; 2083 } 2084 2085 bio->bi_private = sbio; 2086 bio->bi_end_io = scrub_bio_end_io; 2087 bio->bi_bdev = sbio->dev->bdev; 2088 bio->bi_iter.bi_sector = sbio->physical >> 9; 2089 sbio->err = 0; 2090 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 2091 spage->physical || 2092 sbio->logical + sbio->page_count * PAGE_SIZE != 2093 spage->logical || 2094 sbio->dev != spage->dev) { 2095 scrub_submit(sctx); 2096 goto again; 2097 } 2098 2099 sbio->pagev[sbio->page_count] = spage; 2100 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 2101 if (ret != PAGE_SIZE) { 2102 if (sbio->page_count < 1) { 2103 bio_put(sbio->bio); 2104 sbio->bio = NULL; 2105 return -EIO; 2106 } 2107 scrub_submit(sctx); 2108 goto again; 2109 } 2110 2111 scrub_block_get(sblock); /* one for the page added to the bio */ 2112 atomic_inc(&sblock->outstanding_pages); 2113 sbio->page_count++; 2114 if (sbio->page_count == sctx->pages_per_rd_bio) 2115 scrub_submit(sctx); 2116 2117 return 0; 2118 } 2119 2120 static void scrub_missing_raid56_end_io(struct bio *bio) 2121 { 2122 struct scrub_block *sblock = bio->bi_private; 2123 struct btrfs_fs_info *fs_info = sblock->sctx->dev_root->fs_info; 2124 2125 if (bio->bi_error) 2126 sblock->no_io_error_seen = 0; 2127 2128 btrfs_queue_work(fs_info->scrub_workers, &sblock->work); 2129 } 2130 2131 static void scrub_missing_raid56_worker(struct btrfs_work *work) 2132 { 2133 struct scrub_block *sblock = container_of(work, struct scrub_block, work); 2134 struct scrub_ctx *sctx = sblock->sctx; 2135 u64 logical; 2136 struct btrfs_device *dev; 2137 2138 logical = sblock->pagev[0]->logical; 2139 dev = sblock->pagev[0]->dev; 2140 2141 if (sblock->no_io_error_seen) 2142 scrub_recheck_block_checksum(sblock); 2143 2144 if (!sblock->no_io_error_seen) { 2145 spin_lock(&sctx->stat_lock); 2146 sctx->stat.read_errors++; 2147 spin_unlock(&sctx->stat_lock); 2148 btrfs_err_rl_in_rcu(sctx->dev_root->fs_info, 2149 "IO error rebuilding logical %llu for dev %s", 2150 logical, rcu_str_deref(dev->name)); 2151 } else if (sblock->header_error || sblock->checksum_error) { 2152 spin_lock(&sctx->stat_lock); 2153 sctx->stat.uncorrectable_errors++; 2154 spin_unlock(&sctx->stat_lock); 2155 btrfs_err_rl_in_rcu(sctx->dev_root->fs_info, 2156 "failed to rebuild valid logical %llu for dev %s", 2157 logical, rcu_str_deref(dev->name)); 2158 } else { 2159 scrub_write_block_to_dev_replace(sblock); 2160 } 2161 2162 scrub_block_put(sblock); 2163 2164 if (sctx->is_dev_replace && 2165 atomic_read(&sctx->wr_ctx.flush_all_writes)) { 2166 mutex_lock(&sctx->wr_ctx.wr_lock); 2167 scrub_wr_submit(sctx); 2168 mutex_unlock(&sctx->wr_ctx.wr_lock); 2169 } 2170 2171 scrub_pending_bio_dec(sctx); 2172 } 2173 2174 static void scrub_missing_raid56_pages(struct scrub_block *sblock) 2175 { 2176 struct scrub_ctx *sctx = sblock->sctx; 2177 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 2178 u64 length = sblock->page_count * PAGE_SIZE; 2179 u64 logical = sblock->pagev[0]->logical; 2180 struct btrfs_bio *bbio; 2181 struct bio *bio; 2182 struct btrfs_raid_bio *rbio; 2183 int ret; 2184 int i; 2185 2186 ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical, &length, 2187 &bbio, 0, 1); 2188 if (ret || !bbio || !bbio->raid_map) 2189 goto bbio_out; 2190 2191 if (WARN_ON(!sctx->is_dev_replace || 2192 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2193 /* 2194 * We shouldn't be scrubbing a missing device. Even for dev 2195 * replace, we should only get here for RAID 5/6. We either 2196 * managed to mount something with no mirrors remaining or 2197 * there's a bug in scrub_remap_extent()/btrfs_map_block(). 2198 */ 2199 goto bbio_out; 2200 } 2201 2202 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 2203 if (!bio) 2204 goto bbio_out; 2205 2206 bio->bi_iter.bi_sector = logical >> 9; 2207 bio->bi_private = sblock; 2208 bio->bi_end_io = scrub_missing_raid56_end_io; 2209 2210 rbio = raid56_alloc_missing_rbio(sctx->dev_root, bio, bbio, length); 2211 if (!rbio) 2212 goto rbio_out; 2213 2214 for (i = 0; i < sblock->page_count; i++) { 2215 struct scrub_page *spage = sblock->pagev[i]; 2216 2217 raid56_add_scrub_pages(rbio, spage->page, spage->logical); 2218 } 2219 2220 btrfs_init_work(&sblock->work, btrfs_scrub_helper, 2221 scrub_missing_raid56_worker, NULL, NULL); 2222 scrub_block_get(sblock); 2223 scrub_pending_bio_inc(sctx); 2224 raid56_submit_missing_rbio(rbio); 2225 return; 2226 2227 rbio_out: 2228 bio_put(bio); 2229 bbio_out: 2230 btrfs_put_bbio(bbio); 2231 spin_lock(&sctx->stat_lock); 2232 sctx->stat.malloc_errors++; 2233 spin_unlock(&sctx->stat_lock); 2234 } 2235 2236 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 2237 u64 physical, struct btrfs_device *dev, u64 flags, 2238 u64 gen, int mirror_num, u8 *csum, int force, 2239 u64 physical_for_dev_replace) 2240 { 2241 struct scrub_block *sblock; 2242 int index; 2243 2244 sblock = kzalloc(sizeof(*sblock), GFP_NOFS); 2245 if (!sblock) { 2246 spin_lock(&sctx->stat_lock); 2247 sctx->stat.malloc_errors++; 2248 spin_unlock(&sctx->stat_lock); 2249 return -ENOMEM; 2250 } 2251 2252 /* one ref inside this function, plus one for each page added to 2253 * a bio later on */ 2254 atomic_set(&sblock->refs, 1); 2255 sblock->sctx = sctx; 2256 sblock->no_io_error_seen = 1; 2257 2258 for (index = 0; len > 0; index++) { 2259 struct scrub_page *spage; 2260 u64 l = min_t(u64, len, PAGE_SIZE); 2261 2262 spage = kzalloc(sizeof(*spage), GFP_NOFS); 2263 if (!spage) { 2264 leave_nomem: 2265 spin_lock(&sctx->stat_lock); 2266 sctx->stat.malloc_errors++; 2267 spin_unlock(&sctx->stat_lock); 2268 scrub_block_put(sblock); 2269 return -ENOMEM; 2270 } 2271 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2272 scrub_page_get(spage); 2273 sblock->pagev[index] = spage; 2274 spage->sblock = sblock; 2275 spage->dev = dev; 2276 spage->flags = flags; 2277 spage->generation = gen; 2278 spage->logical = logical; 2279 spage->physical = physical; 2280 spage->physical_for_dev_replace = physical_for_dev_replace; 2281 spage->mirror_num = mirror_num; 2282 if (csum) { 2283 spage->have_csum = 1; 2284 memcpy(spage->csum, csum, sctx->csum_size); 2285 } else { 2286 spage->have_csum = 0; 2287 } 2288 sblock->page_count++; 2289 spage->page = alloc_page(GFP_NOFS); 2290 if (!spage->page) 2291 goto leave_nomem; 2292 len -= l; 2293 logical += l; 2294 physical += l; 2295 physical_for_dev_replace += l; 2296 } 2297 2298 WARN_ON(sblock->page_count == 0); 2299 if (dev->missing) { 2300 /* 2301 * This case should only be hit for RAID 5/6 device replace. See 2302 * the comment in scrub_missing_raid56_pages() for details. 2303 */ 2304 scrub_missing_raid56_pages(sblock); 2305 } else { 2306 for (index = 0; index < sblock->page_count; index++) { 2307 struct scrub_page *spage = sblock->pagev[index]; 2308 int ret; 2309 2310 ret = scrub_add_page_to_rd_bio(sctx, spage); 2311 if (ret) { 2312 scrub_block_put(sblock); 2313 return ret; 2314 } 2315 } 2316 2317 if (force) 2318 scrub_submit(sctx); 2319 } 2320 2321 /* last one frees, either here or in bio completion for last page */ 2322 scrub_block_put(sblock); 2323 return 0; 2324 } 2325 2326 static void scrub_bio_end_io(struct bio *bio) 2327 { 2328 struct scrub_bio *sbio = bio->bi_private; 2329 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info; 2330 2331 sbio->err = bio->bi_error; 2332 sbio->bio = bio; 2333 2334 btrfs_queue_work(fs_info->scrub_workers, &sbio->work); 2335 } 2336 2337 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2338 { 2339 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2340 struct scrub_ctx *sctx = sbio->sctx; 2341 int i; 2342 2343 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2344 if (sbio->err) { 2345 for (i = 0; i < sbio->page_count; i++) { 2346 struct scrub_page *spage = sbio->pagev[i]; 2347 2348 spage->io_error = 1; 2349 spage->sblock->no_io_error_seen = 0; 2350 } 2351 } 2352 2353 /* now complete the scrub_block items that have all pages completed */ 2354 for (i = 0; i < sbio->page_count; i++) { 2355 struct scrub_page *spage = sbio->pagev[i]; 2356 struct scrub_block *sblock = spage->sblock; 2357 2358 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2359 scrub_block_complete(sblock); 2360 scrub_block_put(sblock); 2361 } 2362 2363 bio_put(sbio->bio); 2364 sbio->bio = NULL; 2365 spin_lock(&sctx->list_lock); 2366 sbio->next_free = sctx->first_free; 2367 sctx->first_free = sbio->index; 2368 spin_unlock(&sctx->list_lock); 2369 2370 if (sctx->is_dev_replace && 2371 atomic_read(&sctx->wr_ctx.flush_all_writes)) { 2372 mutex_lock(&sctx->wr_ctx.wr_lock); 2373 scrub_wr_submit(sctx); 2374 mutex_unlock(&sctx->wr_ctx.wr_lock); 2375 } 2376 2377 scrub_pending_bio_dec(sctx); 2378 } 2379 2380 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, 2381 unsigned long *bitmap, 2382 u64 start, u64 len) 2383 { 2384 u32 offset; 2385 int nsectors; 2386 int sectorsize = sparity->sctx->dev_root->sectorsize; 2387 2388 if (len >= sparity->stripe_len) { 2389 bitmap_set(bitmap, 0, sparity->nsectors); 2390 return; 2391 } 2392 2393 start -= sparity->logic_start; 2394 start = div_u64_rem(start, sparity->stripe_len, &offset); 2395 offset /= sectorsize; 2396 nsectors = (int)len / sectorsize; 2397 2398 if (offset + nsectors <= sparity->nsectors) { 2399 bitmap_set(bitmap, offset, nsectors); 2400 return; 2401 } 2402 2403 bitmap_set(bitmap, offset, sparity->nsectors - offset); 2404 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); 2405 } 2406 2407 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, 2408 u64 start, u64 len) 2409 { 2410 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); 2411 } 2412 2413 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, 2414 u64 start, u64 len) 2415 { 2416 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); 2417 } 2418 2419 static void scrub_block_complete(struct scrub_block *sblock) 2420 { 2421 int corrupted = 0; 2422 2423 if (!sblock->no_io_error_seen) { 2424 corrupted = 1; 2425 scrub_handle_errored_block(sblock); 2426 } else { 2427 /* 2428 * if has checksum error, write via repair mechanism in 2429 * dev replace case, otherwise write here in dev replace 2430 * case. 2431 */ 2432 corrupted = scrub_checksum(sblock); 2433 if (!corrupted && sblock->sctx->is_dev_replace) 2434 scrub_write_block_to_dev_replace(sblock); 2435 } 2436 2437 if (sblock->sparity && corrupted && !sblock->data_corrected) { 2438 u64 start = sblock->pagev[0]->logical; 2439 u64 end = sblock->pagev[sblock->page_count - 1]->logical + 2440 PAGE_SIZE; 2441 2442 scrub_parity_mark_sectors_error(sblock->sparity, 2443 start, end - start); 2444 } 2445 } 2446 2447 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) 2448 { 2449 struct btrfs_ordered_sum *sum = NULL; 2450 unsigned long index; 2451 unsigned long num_sectors; 2452 2453 while (!list_empty(&sctx->csum_list)) { 2454 sum = list_first_entry(&sctx->csum_list, 2455 struct btrfs_ordered_sum, list); 2456 if (sum->bytenr > logical) 2457 return 0; 2458 if (sum->bytenr + sum->len > logical) 2459 break; 2460 2461 ++sctx->stat.csum_discards; 2462 list_del(&sum->list); 2463 kfree(sum); 2464 sum = NULL; 2465 } 2466 if (!sum) 2467 return 0; 2468 2469 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize; 2470 num_sectors = sum->len / sctx->sectorsize; 2471 memcpy(csum, sum->sums + index, sctx->csum_size); 2472 if (index == num_sectors - 1) { 2473 list_del(&sum->list); 2474 kfree(sum); 2475 } 2476 return 1; 2477 } 2478 2479 /* scrub extent tries to collect up to 64 kB for each bio */ 2480 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len, 2481 u64 physical, struct btrfs_device *dev, u64 flags, 2482 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2483 { 2484 int ret; 2485 u8 csum[BTRFS_CSUM_SIZE]; 2486 u32 blocksize; 2487 2488 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2489 blocksize = sctx->sectorsize; 2490 spin_lock(&sctx->stat_lock); 2491 sctx->stat.data_extents_scrubbed++; 2492 sctx->stat.data_bytes_scrubbed += len; 2493 spin_unlock(&sctx->stat_lock); 2494 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2495 blocksize = sctx->nodesize; 2496 spin_lock(&sctx->stat_lock); 2497 sctx->stat.tree_extents_scrubbed++; 2498 sctx->stat.tree_bytes_scrubbed += len; 2499 spin_unlock(&sctx->stat_lock); 2500 } else { 2501 blocksize = sctx->sectorsize; 2502 WARN_ON(1); 2503 } 2504 2505 while (len) { 2506 u64 l = min_t(u64, len, blocksize); 2507 int have_csum = 0; 2508 2509 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2510 /* push csums to sbio */ 2511 have_csum = scrub_find_csum(sctx, logical, csum); 2512 if (have_csum == 0) 2513 ++sctx->stat.no_csum; 2514 if (sctx->is_dev_replace && !have_csum) { 2515 ret = copy_nocow_pages(sctx, logical, l, 2516 mirror_num, 2517 physical_for_dev_replace); 2518 goto behind_scrub_pages; 2519 } 2520 } 2521 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2522 mirror_num, have_csum ? csum : NULL, 0, 2523 physical_for_dev_replace); 2524 behind_scrub_pages: 2525 if (ret) 2526 return ret; 2527 len -= l; 2528 logical += l; 2529 physical += l; 2530 physical_for_dev_replace += l; 2531 } 2532 return 0; 2533 } 2534 2535 static int scrub_pages_for_parity(struct scrub_parity *sparity, 2536 u64 logical, u64 len, 2537 u64 physical, struct btrfs_device *dev, 2538 u64 flags, u64 gen, int mirror_num, u8 *csum) 2539 { 2540 struct scrub_ctx *sctx = sparity->sctx; 2541 struct scrub_block *sblock; 2542 int index; 2543 2544 sblock = kzalloc(sizeof(*sblock), GFP_NOFS); 2545 if (!sblock) { 2546 spin_lock(&sctx->stat_lock); 2547 sctx->stat.malloc_errors++; 2548 spin_unlock(&sctx->stat_lock); 2549 return -ENOMEM; 2550 } 2551 2552 /* one ref inside this function, plus one for each page added to 2553 * a bio later on */ 2554 atomic_set(&sblock->refs, 1); 2555 sblock->sctx = sctx; 2556 sblock->no_io_error_seen = 1; 2557 sblock->sparity = sparity; 2558 scrub_parity_get(sparity); 2559 2560 for (index = 0; len > 0; index++) { 2561 struct scrub_page *spage; 2562 u64 l = min_t(u64, len, PAGE_SIZE); 2563 2564 spage = kzalloc(sizeof(*spage), GFP_NOFS); 2565 if (!spage) { 2566 leave_nomem: 2567 spin_lock(&sctx->stat_lock); 2568 sctx->stat.malloc_errors++; 2569 spin_unlock(&sctx->stat_lock); 2570 scrub_block_put(sblock); 2571 return -ENOMEM; 2572 } 2573 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2574 /* For scrub block */ 2575 scrub_page_get(spage); 2576 sblock->pagev[index] = spage; 2577 /* For scrub parity */ 2578 scrub_page_get(spage); 2579 list_add_tail(&spage->list, &sparity->spages); 2580 spage->sblock = sblock; 2581 spage->dev = dev; 2582 spage->flags = flags; 2583 spage->generation = gen; 2584 spage->logical = logical; 2585 spage->physical = physical; 2586 spage->mirror_num = mirror_num; 2587 if (csum) { 2588 spage->have_csum = 1; 2589 memcpy(spage->csum, csum, sctx->csum_size); 2590 } else { 2591 spage->have_csum = 0; 2592 } 2593 sblock->page_count++; 2594 spage->page = alloc_page(GFP_NOFS); 2595 if (!spage->page) 2596 goto leave_nomem; 2597 len -= l; 2598 logical += l; 2599 physical += l; 2600 } 2601 2602 WARN_ON(sblock->page_count == 0); 2603 for (index = 0; index < sblock->page_count; index++) { 2604 struct scrub_page *spage = sblock->pagev[index]; 2605 int ret; 2606 2607 ret = scrub_add_page_to_rd_bio(sctx, spage); 2608 if (ret) { 2609 scrub_block_put(sblock); 2610 return ret; 2611 } 2612 } 2613 2614 /* last one frees, either here or in bio completion for last page */ 2615 scrub_block_put(sblock); 2616 return 0; 2617 } 2618 2619 static int scrub_extent_for_parity(struct scrub_parity *sparity, 2620 u64 logical, u64 len, 2621 u64 physical, struct btrfs_device *dev, 2622 u64 flags, u64 gen, int mirror_num) 2623 { 2624 struct scrub_ctx *sctx = sparity->sctx; 2625 int ret; 2626 u8 csum[BTRFS_CSUM_SIZE]; 2627 u32 blocksize; 2628 2629 if (dev->missing) { 2630 scrub_parity_mark_sectors_error(sparity, logical, len); 2631 return 0; 2632 } 2633 2634 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2635 blocksize = sctx->sectorsize; 2636 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2637 blocksize = sctx->nodesize; 2638 } else { 2639 blocksize = sctx->sectorsize; 2640 WARN_ON(1); 2641 } 2642 2643 while (len) { 2644 u64 l = min_t(u64, len, blocksize); 2645 int have_csum = 0; 2646 2647 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2648 /* push csums to sbio */ 2649 have_csum = scrub_find_csum(sctx, logical, csum); 2650 if (have_csum == 0) 2651 goto skip; 2652 } 2653 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, 2654 flags, gen, mirror_num, 2655 have_csum ? csum : NULL); 2656 if (ret) 2657 return ret; 2658 skip: 2659 len -= l; 2660 logical += l; 2661 physical += l; 2662 } 2663 return 0; 2664 } 2665 2666 /* 2667 * Given a physical address, this will calculate it's 2668 * logical offset. if this is a parity stripe, it will return 2669 * the most left data stripe's logical offset. 2670 * 2671 * return 0 if it is a data stripe, 1 means parity stripe. 2672 */ 2673 static int get_raid56_logic_offset(u64 physical, int num, 2674 struct map_lookup *map, u64 *offset, 2675 u64 *stripe_start) 2676 { 2677 int i; 2678 int j = 0; 2679 u64 stripe_nr; 2680 u64 last_offset; 2681 u32 stripe_index; 2682 u32 rot; 2683 2684 last_offset = (physical - map->stripes[num].physical) * 2685 nr_data_stripes(map); 2686 if (stripe_start) 2687 *stripe_start = last_offset; 2688 2689 *offset = last_offset; 2690 for (i = 0; i < nr_data_stripes(map); i++) { 2691 *offset = last_offset + i * map->stripe_len; 2692 2693 stripe_nr = div_u64(*offset, map->stripe_len); 2694 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map)); 2695 2696 /* Work out the disk rotation on this stripe-set */ 2697 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); 2698 /* calculate which stripe this data locates */ 2699 rot += i; 2700 stripe_index = rot % map->num_stripes; 2701 if (stripe_index == num) 2702 return 0; 2703 if (stripe_index < num) 2704 j++; 2705 } 2706 *offset = last_offset + j * map->stripe_len; 2707 return 1; 2708 } 2709 2710 static void scrub_free_parity(struct scrub_parity *sparity) 2711 { 2712 struct scrub_ctx *sctx = sparity->sctx; 2713 struct scrub_page *curr, *next; 2714 int nbits; 2715 2716 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); 2717 if (nbits) { 2718 spin_lock(&sctx->stat_lock); 2719 sctx->stat.read_errors += nbits; 2720 sctx->stat.uncorrectable_errors += nbits; 2721 spin_unlock(&sctx->stat_lock); 2722 } 2723 2724 list_for_each_entry_safe(curr, next, &sparity->spages, list) { 2725 list_del_init(&curr->list); 2726 scrub_page_put(curr); 2727 } 2728 2729 kfree(sparity); 2730 } 2731 2732 static void scrub_parity_bio_endio_worker(struct btrfs_work *work) 2733 { 2734 struct scrub_parity *sparity = container_of(work, struct scrub_parity, 2735 work); 2736 struct scrub_ctx *sctx = sparity->sctx; 2737 2738 scrub_free_parity(sparity); 2739 scrub_pending_bio_dec(sctx); 2740 } 2741 2742 static void scrub_parity_bio_endio(struct bio *bio) 2743 { 2744 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; 2745 2746 if (bio->bi_error) 2747 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2748 sparity->nsectors); 2749 2750 bio_put(bio); 2751 2752 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper, 2753 scrub_parity_bio_endio_worker, NULL, NULL); 2754 btrfs_queue_work(sparity->sctx->dev_root->fs_info->scrub_parity_workers, 2755 &sparity->work); 2756 } 2757 2758 static void scrub_parity_check_and_repair(struct scrub_parity *sparity) 2759 { 2760 struct scrub_ctx *sctx = sparity->sctx; 2761 struct bio *bio; 2762 struct btrfs_raid_bio *rbio; 2763 struct scrub_page *spage; 2764 struct btrfs_bio *bbio = NULL; 2765 u64 length; 2766 int ret; 2767 2768 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, 2769 sparity->nsectors)) 2770 goto out; 2771 2772 length = sparity->logic_end - sparity->logic_start; 2773 ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE, 2774 sparity->logic_start, 2775 &length, &bbio, 0, 1); 2776 if (ret || !bbio || !bbio->raid_map) 2777 goto bbio_out; 2778 2779 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 2780 if (!bio) 2781 goto bbio_out; 2782 2783 bio->bi_iter.bi_sector = sparity->logic_start >> 9; 2784 bio->bi_private = sparity; 2785 bio->bi_end_io = scrub_parity_bio_endio; 2786 2787 rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio, 2788 length, sparity->scrub_dev, 2789 sparity->dbitmap, 2790 sparity->nsectors); 2791 if (!rbio) 2792 goto rbio_out; 2793 2794 list_for_each_entry(spage, &sparity->spages, list) 2795 raid56_add_scrub_pages(rbio, spage->page, spage->logical); 2796 2797 scrub_pending_bio_inc(sctx); 2798 raid56_parity_submit_scrub_rbio(rbio); 2799 return; 2800 2801 rbio_out: 2802 bio_put(bio); 2803 bbio_out: 2804 btrfs_put_bbio(bbio); 2805 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2806 sparity->nsectors); 2807 spin_lock(&sctx->stat_lock); 2808 sctx->stat.malloc_errors++; 2809 spin_unlock(&sctx->stat_lock); 2810 out: 2811 scrub_free_parity(sparity); 2812 } 2813 2814 static inline int scrub_calc_parity_bitmap_len(int nsectors) 2815 { 2816 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long); 2817 } 2818 2819 static void scrub_parity_get(struct scrub_parity *sparity) 2820 { 2821 atomic_inc(&sparity->refs); 2822 } 2823 2824 static void scrub_parity_put(struct scrub_parity *sparity) 2825 { 2826 if (!atomic_dec_and_test(&sparity->refs)) 2827 return; 2828 2829 scrub_parity_check_and_repair(sparity); 2830 } 2831 2832 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, 2833 struct map_lookup *map, 2834 struct btrfs_device *sdev, 2835 struct btrfs_path *path, 2836 u64 logic_start, 2837 u64 logic_end) 2838 { 2839 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 2840 struct btrfs_root *root = fs_info->extent_root; 2841 struct btrfs_root *csum_root = fs_info->csum_root; 2842 struct btrfs_extent_item *extent; 2843 struct btrfs_bio *bbio = NULL; 2844 u64 flags; 2845 int ret; 2846 int slot; 2847 struct extent_buffer *l; 2848 struct btrfs_key key; 2849 u64 generation; 2850 u64 extent_logical; 2851 u64 extent_physical; 2852 u64 extent_len; 2853 u64 mapped_length; 2854 struct btrfs_device *extent_dev; 2855 struct scrub_parity *sparity; 2856 int nsectors; 2857 int bitmap_len; 2858 int extent_mirror_num; 2859 int stop_loop = 0; 2860 2861 nsectors = map->stripe_len / root->sectorsize; 2862 bitmap_len = scrub_calc_parity_bitmap_len(nsectors); 2863 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, 2864 GFP_NOFS); 2865 if (!sparity) { 2866 spin_lock(&sctx->stat_lock); 2867 sctx->stat.malloc_errors++; 2868 spin_unlock(&sctx->stat_lock); 2869 return -ENOMEM; 2870 } 2871 2872 sparity->stripe_len = map->stripe_len; 2873 sparity->nsectors = nsectors; 2874 sparity->sctx = sctx; 2875 sparity->scrub_dev = sdev; 2876 sparity->logic_start = logic_start; 2877 sparity->logic_end = logic_end; 2878 atomic_set(&sparity->refs, 1); 2879 INIT_LIST_HEAD(&sparity->spages); 2880 sparity->dbitmap = sparity->bitmap; 2881 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; 2882 2883 ret = 0; 2884 while (logic_start < logic_end) { 2885 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2886 key.type = BTRFS_METADATA_ITEM_KEY; 2887 else 2888 key.type = BTRFS_EXTENT_ITEM_KEY; 2889 key.objectid = logic_start; 2890 key.offset = (u64)-1; 2891 2892 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2893 if (ret < 0) 2894 goto out; 2895 2896 if (ret > 0) { 2897 ret = btrfs_previous_extent_item(root, path, 0); 2898 if (ret < 0) 2899 goto out; 2900 if (ret > 0) { 2901 btrfs_release_path(path); 2902 ret = btrfs_search_slot(NULL, root, &key, 2903 path, 0, 0); 2904 if (ret < 0) 2905 goto out; 2906 } 2907 } 2908 2909 stop_loop = 0; 2910 while (1) { 2911 u64 bytes; 2912 2913 l = path->nodes[0]; 2914 slot = path->slots[0]; 2915 if (slot >= btrfs_header_nritems(l)) { 2916 ret = btrfs_next_leaf(root, path); 2917 if (ret == 0) 2918 continue; 2919 if (ret < 0) 2920 goto out; 2921 2922 stop_loop = 1; 2923 break; 2924 } 2925 btrfs_item_key_to_cpu(l, &key, slot); 2926 2927 if (key.type != BTRFS_EXTENT_ITEM_KEY && 2928 key.type != BTRFS_METADATA_ITEM_KEY) 2929 goto next; 2930 2931 if (key.type == BTRFS_METADATA_ITEM_KEY) 2932 bytes = root->nodesize; 2933 else 2934 bytes = key.offset; 2935 2936 if (key.objectid + bytes <= logic_start) 2937 goto next; 2938 2939 if (key.objectid >= logic_end) { 2940 stop_loop = 1; 2941 break; 2942 } 2943 2944 while (key.objectid >= logic_start + map->stripe_len) 2945 logic_start += map->stripe_len; 2946 2947 extent = btrfs_item_ptr(l, slot, 2948 struct btrfs_extent_item); 2949 flags = btrfs_extent_flags(l, extent); 2950 generation = btrfs_extent_generation(l, extent); 2951 2952 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 2953 (key.objectid < logic_start || 2954 key.objectid + bytes > 2955 logic_start + map->stripe_len)) { 2956 btrfs_err(fs_info, "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 2957 key.objectid, logic_start); 2958 spin_lock(&sctx->stat_lock); 2959 sctx->stat.uncorrectable_errors++; 2960 spin_unlock(&sctx->stat_lock); 2961 goto next; 2962 } 2963 again: 2964 extent_logical = key.objectid; 2965 extent_len = bytes; 2966 2967 if (extent_logical < logic_start) { 2968 extent_len -= logic_start - extent_logical; 2969 extent_logical = logic_start; 2970 } 2971 2972 if (extent_logical + extent_len > 2973 logic_start + map->stripe_len) 2974 extent_len = logic_start + map->stripe_len - 2975 extent_logical; 2976 2977 scrub_parity_mark_sectors_data(sparity, extent_logical, 2978 extent_len); 2979 2980 mapped_length = extent_len; 2981 ret = btrfs_map_block(fs_info, READ, extent_logical, 2982 &mapped_length, &bbio, 0); 2983 if (!ret) { 2984 if (!bbio || mapped_length < extent_len) 2985 ret = -EIO; 2986 } 2987 if (ret) { 2988 btrfs_put_bbio(bbio); 2989 goto out; 2990 } 2991 extent_physical = bbio->stripes[0].physical; 2992 extent_mirror_num = bbio->mirror_num; 2993 extent_dev = bbio->stripes[0].dev; 2994 btrfs_put_bbio(bbio); 2995 2996 ret = btrfs_lookup_csums_range(csum_root, 2997 extent_logical, 2998 extent_logical + extent_len - 1, 2999 &sctx->csum_list, 1); 3000 if (ret) 3001 goto out; 3002 3003 ret = scrub_extent_for_parity(sparity, extent_logical, 3004 extent_len, 3005 extent_physical, 3006 extent_dev, flags, 3007 generation, 3008 extent_mirror_num); 3009 3010 scrub_free_csums(sctx); 3011 3012 if (ret) 3013 goto out; 3014 3015 if (extent_logical + extent_len < 3016 key.objectid + bytes) { 3017 logic_start += map->stripe_len; 3018 3019 if (logic_start >= logic_end) { 3020 stop_loop = 1; 3021 break; 3022 } 3023 3024 if (logic_start < key.objectid + bytes) { 3025 cond_resched(); 3026 goto again; 3027 } 3028 } 3029 next: 3030 path->slots[0]++; 3031 } 3032 3033 btrfs_release_path(path); 3034 3035 if (stop_loop) 3036 break; 3037 3038 logic_start += map->stripe_len; 3039 } 3040 out: 3041 if (ret < 0) 3042 scrub_parity_mark_sectors_error(sparity, logic_start, 3043 logic_end - logic_start); 3044 scrub_parity_put(sparity); 3045 scrub_submit(sctx); 3046 mutex_lock(&sctx->wr_ctx.wr_lock); 3047 scrub_wr_submit(sctx); 3048 mutex_unlock(&sctx->wr_ctx.wr_lock); 3049 3050 btrfs_release_path(path); 3051 return ret < 0 ? ret : 0; 3052 } 3053 3054 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 3055 struct map_lookup *map, 3056 struct btrfs_device *scrub_dev, 3057 int num, u64 base, u64 length, 3058 int is_dev_replace) 3059 { 3060 struct btrfs_path *path, *ppath; 3061 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 3062 struct btrfs_root *root = fs_info->extent_root; 3063 struct btrfs_root *csum_root = fs_info->csum_root; 3064 struct btrfs_extent_item *extent; 3065 struct blk_plug plug; 3066 u64 flags; 3067 int ret; 3068 int slot; 3069 u64 nstripes; 3070 struct extent_buffer *l; 3071 struct btrfs_key key; 3072 u64 physical; 3073 u64 logical; 3074 u64 logic_end; 3075 u64 physical_end; 3076 u64 generation; 3077 int mirror_num; 3078 struct reada_control *reada1; 3079 struct reada_control *reada2; 3080 struct btrfs_key key_start; 3081 struct btrfs_key key_end; 3082 u64 increment = map->stripe_len; 3083 u64 offset; 3084 u64 extent_logical; 3085 u64 extent_physical; 3086 u64 extent_len; 3087 u64 stripe_logical; 3088 u64 stripe_end; 3089 struct btrfs_device *extent_dev; 3090 int extent_mirror_num; 3091 int stop_loop = 0; 3092 3093 physical = map->stripes[num].physical; 3094 offset = 0; 3095 nstripes = div_u64(length, map->stripe_len); 3096 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3097 offset = map->stripe_len * num; 3098 increment = map->stripe_len * map->num_stripes; 3099 mirror_num = 1; 3100 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3101 int factor = map->num_stripes / map->sub_stripes; 3102 offset = map->stripe_len * (num / map->sub_stripes); 3103 increment = map->stripe_len * factor; 3104 mirror_num = num % map->sub_stripes + 1; 3105 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 3106 increment = map->stripe_len; 3107 mirror_num = num % map->num_stripes + 1; 3108 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3109 increment = map->stripe_len; 3110 mirror_num = num % map->num_stripes + 1; 3111 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3112 get_raid56_logic_offset(physical, num, map, &offset, NULL); 3113 increment = map->stripe_len * nr_data_stripes(map); 3114 mirror_num = 1; 3115 } else { 3116 increment = map->stripe_len; 3117 mirror_num = 1; 3118 } 3119 3120 path = btrfs_alloc_path(); 3121 if (!path) 3122 return -ENOMEM; 3123 3124 ppath = btrfs_alloc_path(); 3125 if (!ppath) { 3126 btrfs_free_path(path); 3127 return -ENOMEM; 3128 } 3129 3130 /* 3131 * work on commit root. The related disk blocks are static as 3132 * long as COW is applied. This means, it is save to rewrite 3133 * them to repair disk errors without any race conditions 3134 */ 3135 path->search_commit_root = 1; 3136 path->skip_locking = 1; 3137 3138 ppath->search_commit_root = 1; 3139 ppath->skip_locking = 1; 3140 /* 3141 * trigger the readahead for extent tree csum tree and wait for 3142 * completion. During readahead, the scrub is officially paused 3143 * to not hold off transaction commits 3144 */ 3145 logical = base + offset; 3146 physical_end = physical + nstripes * map->stripe_len; 3147 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3148 get_raid56_logic_offset(physical_end, num, 3149 map, &logic_end, NULL); 3150 logic_end += base; 3151 } else { 3152 logic_end = logical + increment * nstripes; 3153 } 3154 wait_event(sctx->list_wait, 3155 atomic_read(&sctx->bios_in_flight) == 0); 3156 scrub_blocked_if_needed(fs_info); 3157 3158 /* FIXME it might be better to start readahead at commit root */ 3159 key_start.objectid = logical; 3160 key_start.type = BTRFS_EXTENT_ITEM_KEY; 3161 key_start.offset = (u64)0; 3162 key_end.objectid = logic_end; 3163 key_end.type = BTRFS_METADATA_ITEM_KEY; 3164 key_end.offset = (u64)-1; 3165 reada1 = btrfs_reada_add(root, &key_start, &key_end); 3166 3167 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3168 key_start.type = BTRFS_EXTENT_CSUM_KEY; 3169 key_start.offset = logical; 3170 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3171 key_end.type = BTRFS_EXTENT_CSUM_KEY; 3172 key_end.offset = logic_end; 3173 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end); 3174 3175 if (!IS_ERR(reada1)) 3176 btrfs_reada_wait(reada1); 3177 if (!IS_ERR(reada2)) 3178 btrfs_reada_wait(reada2); 3179 3180 3181 /* 3182 * collect all data csums for the stripe to avoid seeking during 3183 * the scrub. This might currently (crc32) end up to be about 1MB 3184 */ 3185 blk_start_plug(&plug); 3186 3187 /* 3188 * now find all extents for each stripe and scrub them 3189 */ 3190 ret = 0; 3191 while (physical < physical_end) { 3192 /* 3193 * canceled? 3194 */ 3195 if (atomic_read(&fs_info->scrub_cancel_req) || 3196 atomic_read(&sctx->cancel_req)) { 3197 ret = -ECANCELED; 3198 goto out; 3199 } 3200 /* 3201 * check to see if we have to pause 3202 */ 3203 if (atomic_read(&fs_info->scrub_pause_req)) { 3204 /* push queued extents */ 3205 atomic_set(&sctx->wr_ctx.flush_all_writes, 1); 3206 scrub_submit(sctx); 3207 mutex_lock(&sctx->wr_ctx.wr_lock); 3208 scrub_wr_submit(sctx); 3209 mutex_unlock(&sctx->wr_ctx.wr_lock); 3210 wait_event(sctx->list_wait, 3211 atomic_read(&sctx->bios_in_flight) == 0); 3212 atomic_set(&sctx->wr_ctx.flush_all_writes, 0); 3213 scrub_blocked_if_needed(fs_info); 3214 } 3215 3216 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3217 ret = get_raid56_logic_offset(physical, num, map, 3218 &logical, 3219 &stripe_logical); 3220 logical += base; 3221 if (ret) { 3222 /* it is parity strip */ 3223 stripe_logical += base; 3224 stripe_end = stripe_logical + increment; 3225 ret = scrub_raid56_parity(sctx, map, scrub_dev, 3226 ppath, stripe_logical, 3227 stripe_end); 3228 if (ret) 3229 goto out; 3230 goto skip; 3231 } 3232 } 3233 3234 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3235 key.type = BTRFS_METADATA_ITEM_KEY; 3236 else 3237 key.type = BTRFS_EXTENT_ITEM_KEY; 3238 key.objectid = logical; 3239 key.offset = (u64)-1; 3240 3241 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3242 if (ret < 0) 3243 goto out; 3244 3245 if (ret > 0) { 3246 ret = btrfs_previous_extent_item(root, path, 0); 3247 if (ret < 0) 3248 goto out; 3249 if (ret > 0) { 3250 /* there's no smaller item, so stick with the 3251 * larger one */ 3252 btrfs_release_path(path); 3253 ret = btrfs_search_slot(NULL, root, &key, 3254 path, 0, 0); 3255 if (ret < 0) 3256 goto out; 3257 } 3258 } 3259 3260 stop_loop = 0; 3261 while (1) { 3262 u64 bytes; 3263 3264 l = path->nodes[0]; 3265 slot = path->slots[0]; 3266 if (slot >= btrfs_header_nritems(l)) { 3267 ret = btrfs_next_leaf(root, path); 3268 if (ret == 0) 3269 continue; 3270 if (ret < 0) 3271 goto out; 3272 3273 stop_loop = 1; 3274 break; 3275 } 3276 btrfs_item_key_to_cpu(l, &key, slot); 3277 3278 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3279 key.type != BTRFS_METADATA_ITEM_KEY) 3280 goto next; 3281 3282 if (key.type == BTRFS_METADATA_ITEM_KEY) 3283 bytes = root->nodesize; 3284 else 3285 bytes = key.offset; 3286 3287 if (key.objectid + bytes <= logical) 3288 goto next; 3289 3290 if (key.objectid >= logical + map->stripe_len) { 3291 /* out of this device extent */ 3292 if (key.objectid >= logic_end) 3293 stop_loop = 1; 3294 break; 3295 } 3296 3297 extent = btrfs_item_ptr(l, slot, 3298 struct btrfs_extent_item); 3299 flags = btrfs_extent_flags(l, extent); 3300 generation = btrfs_extent_generation(l, extent); 3301 3302 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3303 (key.objectid < logical || 3304 key.objectid + bytes > 3305 logical + map->stripe_len)) { 3306 btrfs_err(fs_info, 3307 "scrub: tree block %llu spanning " 3308 "stripes, ignored. logical=%llu", 3309 key.objectid, logical); 3310 spin_lock(&sctx->stat_lock); 3311 sctx->stat.uncorrectable_errors++; 3312 spin_unlock(&sctx->stat_lock); 3313 goto next; 3314 } 3315 3316 again: 3317 extent_logical = key.objectid; 3318 extent_len = bytes; 3319 3320 /* 3321 * trim extent to this stripe 3322 */ 3323 if (extent_logical < logical) { 3324 extent_len -= logical - extent_logical; 3325 extent_logical = logical; 3326 } 3327 if (extent_logical + extent_len > 3328 logical + map->stripe_len) { 3329 extent_len = logical + map->stripe_len - 3330 extent_logical; 3331 } 3332 3333 extent_physical = extent_logical - logical + physical; 3334 extent_dev = scrub_dev; 3335 extent_mirror_num = mirror_num; 3336 if (is_dev_replace) 3337 scrub_remap_extent(fs_info, extent_logical, 3338 extent_len, &extent_physical, 3339 &extent_dev, 3340 &extent_mirror_num); 3341 3342 ret = btrfs_lookup_csums_range(csum_root, 3343 extent_logical, 3344 extent_logical + 3345 extent_len - 1, 3346 &sctx->csum_list, 1); 3347 if (ret) 3348 goto out; 3349 3350 ret = scrub_extent(sctx, extent_logical, extent_len, 3351 extent_physical, extent_dev, flags, 3352 generation, extent_mirror_num, 3353 extent_logical - logical + physical); 3354 3355 scrub_free_csums(sctx); 3356 3357 if (ret) 3358 goto out; 3359 3360 if (extent_logical + extent_len < 3361 key.objectid + bytes) { 3362 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3363 /* 3364 * loop until we find next data stripe 3365 * or we have finished all stripes. 3366 */ 3367 loop: 3368 physical += map->stripe_len; 3369 ret = get_raid56_logic_offset(physical, 3370 num, map, &logical, 3371 &stripe_logical); 3372 logical += base; 3373 3374 if (ret && physical < physical_end) { 3375 stripe_logical += base; 3376 stripe_end = stripe_logical + 3377 increment; 3378 ret = scrub_raid56_parity(sctx, 3379 map, scrub_dev, ppath, 3380 stripe_logical, 3381 stripe_end); 3382 if (ret) 3383 goto out; 3384 goto loop; 3385 } 3386 } else { 3387 physical += map->stripe_len; 3388 logical += increment; 3389 } 3390 if (logical < key.objectid + bytes) { 3391 cond_resched(); 3392 goto again; 3393 } 3394 3395 if (physical >= physical_end) { 3396 stop_loop = 1; 3397 break; 3398 } 3399 } 3400 next: 3401 path->slots[0]++; 3402 } 3403 btrfs_release_path(path); 3404 skip: 3405 logical += increment; 3406 physical += map->stripe_len; 3407 spin_lock(&sctx->stat_lock); 3408 if (stop_loop) 3409 sctx->stat.last_physical = map->stripes[num].physical + 3410 length; 3411 else 3412 sctx->stat.last_physical = physical; 3413 spin_unlock(&sctx->stat_lock); 3414 if (stop_loop) 3415 break; 3416 } 3417 out: 3418 /* push queued extents */ 3419 scrub_submit(sctx); 3420 mutex_lock(&sctx->wr_ctx.wr_lock); 3421 scrub_wr_submit(sctx); 3422 mutex_unlock(&sctx->wr_ctx.wr_lock); 3423 3424 blk_finish_plug(&plug); 3425 btrfs_free_path(path); 3426 btrfs_free_path(ppath); 3427 return ret < 0 ? ret : 0; 3428 } 3429 3430 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 3431 struct btrfs_device *scrub_dev, 3432 u64 chunk_offset, u64 length, 3433 u64 dev_offset, 3434 struct btrfs_block_group_cache *cache, 3435 int is_dev_replace) 3436 { 3437 struct btrfs_mapping_tree *map_tree = 3438 &sctx->dev_root->fs_info->mapping_tree; 3439 struct map_lookup *map; 3440 struct extent_map *em; 3441 int i; 3442 int ret = 0; 3443 3444 read_lock(&map_tree->map_tree.lock); 3445 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 3446 read_unlock(&map_tree->map_tree.lock); 3447 3448 if (!em) { 3449 /* 3450 * Might have been an unused block group deleted by the cleaner 3451 * kthread or relocation. 3452 */ 3453 spin_lock(&cache->lock); 3454 if (!cache->removed) 3455 ret = -EINVAL; 3456 spin_unlock(&cache->lock); 3457 3458 return ret; 3459 } 3460 3461 map = em->map_lookup; 3462 if (em->start != chunk_offset) 3463 goto out; 3464 3465 if (em->len < length) 3466 goto out; 3467 3468 for (i = 0; i < map->num_stripes; ++i) { 3469 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 3470 map->stripes[i].physical == dev_offset) { 3471 ret = scrub_stripe(sctx, map, scrub_dev, i, 3472 chunk_offset, length, 3473 is_dev_replace); 3474 if (ret) 3475 goto out; 3476 } 3477 } 3478 out: 3479 free_extent_map(em); 3480 3481 return ret; 3482 } 3483 3484 static noinline_for_stack 3485 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 3486 struct btrfs_device *scrub_dev, u64 start, u64 end, 3487 int is_dev_replace) 3488 { 3489 struct btrfs_dev_extent *dev_extent = NULL; 3490 struct btrfs_path *path; 3491 struct btrfs_root *root = sctx->dev_root; 3492 struct btrfs_fs_info *fs_info = root->fs_info; 3493 u64 length; 3494 u64 chunk_offset; 3495 int ret = 0; 3496 int ro_set; 3497 int slot; 3498 struct extent_buffer *l; 3499 struct btrfs_key key; 3500 struct btrfs_key found_key; 3501 struct btrfs_block_group_cache *cache; 3502 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 3503 3504 path = btrfs_alloc_path(); 3505 if (!path) 3506 return -ENOMEM; 3507 3508 path->reada = READA_FORWARD; 3509 path->search_commit_root = 1; 3510 path->skip_locking = 1; 3511 3512 key.objectid = scrub_dev->devid; 3513 key.offset = 0ull; 3514 key.type = BTRFS_DEV_EXTENT_KEY; 3515 3516 while (1) { 3517 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3518 if (ret < 0) 3519 break; 3520 if (ret > 0) { 3521 if (path->slots[0] >= 3522 btrfs_header_nritems(path->nodes[0])) { 3523 ret = btrfs_next_leaf(root, path); 3524 if (ret < 0) 3525 break; 3526 if (ret > 0) { 3527 ret = 0; 3528 break; 3529 } 3530 } else { 3531 ret = 0; 3532 } 3533 } 3534 3535 l = path->nodes[0]; 3536 slot = path->slots[0]; 3537 3538 btrfs_item_key_to_cpu(l, &found_key, slot); 3539 3540 if (found_key.objectid != scrub_dev->devid) 3541 break; 3542 3543 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 3544 break; 3545 3546 if (found_key.offset >= end) 3547 break; 3548 3549 if (found_key.offset < key.offset) 3550 break; 3551 3552 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3553 length = btrfs_dev_extent_length(l, dev_extent); 3554 3555 if (found_key.offset + length <= start) 3556 goto skip; 3557 3558 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3559 3560 /* 3561 * get a reference on the corresponding block group to prevent 3562 * the chunk from going away while we scrub it 3563 */ 3564 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3565 3566 /* some chunks are removed but not committed to disk yet, 3567 * continue scrubbing */ 3568 if (!cache) 3569 goto skip; 3570 3571 /* 3572 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 3573 * to avoid deadlock caused by: 3574 * btrfs_inc_block_group_ro() 3575 * -> btrfs_wait_for_commit() 3576 * -> btrfs_commit_transaction() 3577 * -> btrfs_scrub_pause() 3578 */ 3579 scrub_pause_on(fs_info); 3580 ret = btrfs_inc_block_group_ro(root, cache); 3581 scrub_pause_off(fs_info); 3582 3583 if (ret == 0) { 3584 ro_set = 1; 3585 } else if (ret == -ENOSPC) { 3586 /* 3587 * btrfs_inc_block_group_ro return -ENOSPC when it 3588 * failed in creating new chunk for metadata. 3589 * It is not a problem for scrub/replace, because 3590 * metadata are always cowed, and our scrub paused 3591 * commit_transactions. 3592 */ 3593 ro_set = 0; 3594 } else { 3595 btrfs_warn(fs_info, "failed setting block group ro, ret=%d\n", 3596 ret); 3597 btrfs_put_block_group(cache); 3598 break; 3599 } 3600 3601 dev_replace->cursor_right = found_key.offset + length; 3602 dev_replace->cursor_left = found_key.offset; 3603 dev_replace->item_needs_writeback = 1; 3604 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length, 3605 found_key.offset, cache, is_dev_replace); 3606 3607 /* 3608 * flush, submit all pending read and write bios, afterwards 3609 * wait for them. 3610 * Note that in the dev replace case, a read request causes 3611 * write requests that are submitted in the read completion 3612 * worker. Therefore in the current situation, it is required 3613 * that all write requests are flushed, so that all read and 3614 * write requests are really completed when bios_in_flight 3615 * changes to 0. 3616 */ 3617 atomic_set(&sctx->wr_ctx.flush_all_writes, 1); 3618 scrub_submit(sctx); 3619 mutex_lock(&sctx->wr_ctx.wr_lock); 3620 scrub_wr_submit(sctx); 3621 mutex_unlock(&sctx->wr_ctx.wr_lock); 3622 3623 wait_event(sctx->list_wait, 3624 atomic_read(&sctx->bios_in_flight) == 0); 3625 3626 scrub_pause_on(fs_info); 3627 3628 /* 3629 * must be called before we decrease @scrub_paused. 3630 * make sure we don't block transaction commit while 3631 * we are waiting pending workers finished. 3632 */ 3633 wait_event(sctx->list_wait, 3634 atomic_read(&sctx->workers_pending) == 0); 3635 atomic_set(&sctx->wr_ctx.flush_all_writes, 0); 3636 3637 scrub_pause_off(fs_info); 3638 3639 if (ro_set) 3640 btrfs_dec_block_group_ro(root, cache); 3641 3642 /* 3643 * We might have prevented the cleaner kthread from deleting 3644 * this block group if it was already unused because we raced 3645 * and set it to RO mode first. So add it back to the unused 3646 * list, otherwise it might not ever be deleted unless a manual 3647 * balance is triggered or it becomes used and unused again. 3648 */ 3649 spin_lock(&cache->lock); 3650 if (!cache->removed && !cache->ro && cache->reserved == 0 && 3651 btrfs_block_group_used(&cache->item) == 0) { 3652 spin_unlock(&cache->lock); 3653 spin_lock(&fs_info->unused_bgs_lock); 3654 if (list_empty(&cache->bg_list)) { 3655 btrfs_get_block_group(cache); 3656 list_add_tail(&cache->bg_list, 3657 &fs_info->unused_bgs); 3658 } 3659 spin_unlock(&fs_info->unused_bgs_lock); 3660 } else { 3661 spin_unlock(&cache->lock); 3662 } 3663 3664 btrfs_put_block_group(cache); 3665 if (ret) 3666 break; 3667 if (is_dev_replace && 3668 atomic64_read(&dev_replace->num_write_errors) > 0) { 3669 ret = -EIO; 3670 break; 3671 } 3672 if (sctx->stat.malloc_errors > 0) { 3673 ret = -ENOMEM; 3674 break; 3675 } 3676 3677 dev_replace->cursor_left = dev_replace->cursor_right; 3678 dev_replace->item_needs_writeback = 1; 3679 skip: 3680 key.offset = found_key.offset + length; 3681 btrfs_release_path(path); 3682 } 3683 3684 btrfs_free_path(path); 3685 3686 return ret; 3687 } 3688 3689 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 3690 struct btrfs_device *scrub_dev) 3691 { 3692 int i; 3693 u64 bytenr; 3694 u64 gen; 3695 int ret; 3696 struct btrfs_root *root = sctx->dev_root; 3697 3698 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 3699 return -EIO; 3700 3701 /* Seed devices of a new filesystem has their own generation. */ 3702 if (scrub_dev->fs_devices != root->fs_info->fs_devices) 3703 gen = scrub_dev->generation; 3704 else 3705 gen = root->fs_info->last_trans_committed; 3706 3707 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 3708 bytenr = btrfs_sb_offset(i); 3709 if (bytenr + BTRFS_SUPER_INFO_SIZE > 3710 scrub_dev->commit_total_bytes) 3711 break; 3712 3713 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 3714 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 3715 NULL, 1, bytenr); 3716 if (ret) 3717 return ret; 3718 } 3719 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3720 3721 return 0; 3722 } 3723 3724 /* 3725 * get a reference count on fs_info->scrub_workers. start worker if necessary 3726 */ 3727 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 3728 int is_dev_replace) 3729 { 3730 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 3731 int max_active = fs_info->thread_pool_size; 3732 3733 if (fs_info->scrub_workers_refcnt == 0) { 3734 if (is_dev_replace) 3735 fs_info->scrub_workers = 3736 btrfs_alloc_workqueue("scrub", flags, 3737 1, 4); 3738 else 3739 fs_info->scrub_workers = 3740 btrfs_alloc_workqueue("scrub", flags, 3741 max_active, 4); 3742 if (!fs_info->scrub_workers) 3743 goto fail_scrub_workers; 3744 3745 fs_info->scrub_wr_completion_workers = 3746 btrfs_alloc_workqueue("scrubwrc", flags, 3747 max_active, 2); 3748 if (!fs_info->scrub_wr_completion_workers) 3749 goto fail_scrub_wr_completion_workers; 3750 3751 fs_info->scrub_nocow_workers = 3752 btrfs_alloc_workqueue("scrubnc", flags, 1, 0); 3753 if (!fs_info->scrub_nocow_workers) 3754 goto fail_scrub_nocow_workers; 3755 fs_info->scrub_parity_workers = 3756 btrfs_alloc_workqueue("scrubparity", flags, 3757 max_active, 2); 3758 if (!fs_info->scrub_parity_workers) 3759 goto fail_scrub_parity_workers; 3760 } 3761 ++fs_info->scrub_workers_refcnt; 3762 return 0; 3763 3764 fail_scrub_parity_workers: 3765 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); 3766 fail_scrub_nocow_workers: 3767 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 3768 fail_scrub_wr_completion_workers: 3769 btrfs_destroy_workqueue(fs_info->scrub_workers); 3770 fail_scrub_workers: 3771 return -ENOMEM; 3772 } 3773 3774 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info) 3775 { 3776 if (--fs_info->scrub_workers_refcnt == 0) { 3777 btrfs_destroy_workqueue(fs_info->scrub_workers); 3778 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 3779 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); 3780 btrfs_destroy_workqueue(fs_info->scrub_parity_workers); 3781 } 3782 WARN_ON(fs_info->scrub_workers_refcnt < 0); 3783 } 3784 3785 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3786 u64 end, struct btrfs_scrub_progress *progress, 3787 int readonly, int is_dev_replace) 3788 { 3789 struct scrub_ctx *sctx; 3790 int ret; 3791 struct btrfs_device *dev; 3792 struct rcu_string *name; 3793 3794 if (btrfs_fs_closing(fs_info)) 3795 return -EINVAL; 3796 3797 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) { 3798 /* 3799 * in this case scrub is unable to calculate the checksum 3800 * the way scrub is implemented. Do not handle this 3801 * situation at all because it won't ever happen. 3802 */ 3803 btrfs_err(fs_info, 3804 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", 3805 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN); 3806 return -EINVAL; 3807 } 3808 3809 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) { 3810 /* not supported for data w/o checksums */ 3811 btrfs_err(fs_info, 3812 "scrub: size assumption sectorsize != PAGE_SIZE " 3813 "(%d != %lu) fails", 3814 fs_info->chunk_root->sectorsize, PAGE_SIZE); 3815 return -EINVAL; 3816 } 3817 3818 if (fs_info->chunk_root->nodesize > 3819 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 3820 fs_info->chunk_root->sectorsize > 3821 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 3822 /* 3823 * would exhaust the array bounds of pagev member in 3824 * struct scrub_block 3825 */ 3826 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize " 3827 "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", 3828 fs_info->chunk_root->nodesize, 3829 SCRUB_MAX_PAGES_PER_BLOCK, 3830 fs_info->chunk_root->sectorsize, 3831 SCRUB_MAX_PAGES_PER_BLOCK); 3832 return -EINVAL; 3833 } 3834 3835 3836 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3837 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 3838 if (!dev || (dev->missing && !is_dev_replace)) { 3839 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3840 return -ENODEV; 3841 } 3842 3843 if (!is_dev_replace && !readonly && !dev->writeable) { 3844 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3845 rcu_read_lock(); 3846 name = rcu_dereference(dev->name); 3847 btrfs_err(fs_info, "scrub: device %s is not writable", 3848 name->str); 3849 rcu_read_unlock(); 3850 return -EROFS; 3851 } 3852 3853 mutex_lock(&fs_info->scrub_lock); 3854 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) { 3855 mutex_unlock(&fs_info->scrub_lock); 3856 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3857 return -EIO; 3858 } 3859 3860 btrfs_dev_replace_lock(&fs_info->dev_replace); 3861 if (dev->scrub_device || 3862 (!is_dev_replace && 3863 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 3864 btrfs_dev_replace_unlock(&fs_info->dev_replace); 3865 mutex_unlock(&fs_info->scrub_lock); 3866 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3867 return -EINPROGRESS; 3868 } 3869 btrfs_dev_replace_unlock(&fs_info->dev_replace); 3870 3871 ret = scrub_workers_get(fs_info, is_dev_replace); 3872 if (ret) { 3873 mutex_unlock(&fs_info->scrub_lock); 3874 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3875 return ret; 3876 } 3877 3878 sctx = scrub_setup_ctx(dev, is_dev_replace); 3879 if (IS_ERR(sctx)) { 3880 mutex_unlock(&fs_info->scrub_lock); 3881 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3882 scrub_workers_put(fs_info); 3883 return PTR_ERR(sctx); 3884 } 3885 sctx->readonly = readonly; 3886 dev->scrub_device = sctx; 3887 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3888 3889 /* 3890 * checking @scrub_pause_req here, we can avoid 3891 * race between committing transaction and scrubbing. 3892 */ 3893 __scrub_blocked_if_needed(fs_info); 3894 atomic_inc(&fs_info->scrubs_running); 3895 mutex_unlock(&fs_info->scrub_lock); 3896 3897 if (!is_dev_replace) { 3898 /* 3899 * by holding device list mutex, we can 3900 * kick off writing super in log tree sync. 3901 */ 3902 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3903 ret = scrub_supers(sctx, dev); 3904 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3905 } 3906 3907 if (!ret) 3908 ret = scrub_enumerate_chunks(sctx, dev, start, end, 3909 is_dev_replace); 3910 3911 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3912 atomic_dec(&fs_info->scrubs_running); 3913 wake_up(&fs_info->scrub_pause_wait); 3914 3915 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 3916 3917 if (progress) 3918 memcpy(progress, &sctx->stat, sizeof(*progress)); 3919 3920 mutex_lock(&fs_info->scrub_lock); 3921 dev->scrub_device = NULL; 3922 scrub_workers_put(fs_info); 3923 mutex_unlock(&fs_info->scrub_lock); 3924 3925 scrub_put_ctx(sctx); 3926 3927 return ret; 3928 } 3929 3930 void btrfs_scrub_pause(struct btrfs_root *root) 3931 { 3932 struct btrfs_fs_info *fs_info = root->fs_info; 3933 3934 mutex_lock(&fs_info->scrub_lock); 3935 atomic_inc(&fs_info->scrub_pause_req); 3936 while (atomic_read(&fs_info->scrubs_paused) != 3937 atomic_read(&fs_info->scrubs_running)) { 3938 mutex_unlock(&fs_info->scrub_lock); 3939 wait_event(fs_info->scrub_pause_wait, 3940 atomic_read(&fs_info->scrubs_paused) == 3941 atomic_read(&fs_info->scrubs_running)); 3942 mutex_lock(&fs_info->scrub_lock); 3943 } 3944 mutex_unlock(&fs_info->scrub_lock); 3945 } 3946 3947 void btrfs_scrub_continue(struct btrfs_root *root) 3948 { 3949 struct btrfs_fs_info *fs_info = root->fs_info; 3950 3951 atomic_dec(&fs_info->scrub_pause_req); 3952 wake_up(&fs_info->scrub_pause_wait); 3953 } 3954 3955 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 3956 { 3957 mutex_lock(&fs_info->scrub_lock); 3958 if (!atomic_read(&fs_info->scrubs_running)) { 3959 mutex_unlock(&fs_info->scrub_lock); 3960 return -ENOTCONN; 3961 } 3962 3963 atomic_inc(&fs_info->scrub_cancel_req); 3964 while (atomic_read(&fs_info->scrubs_running)) { 3965 mutex_unlock(&fs_info->scrub_lock); 3966 wait_event(fs_info->scrub_pause_wait, 3967 atomic_read(&fs_info->scrubs_running) == 0); 3968 mutex_lock(&fs_info->scrub_lock); 3969 } 3970 atomic_dec(&fs_info->scrub_cancel_req); 3971 mutex_unlock(&fs_info->scrub_lock); 3972 3973 return 0; 3974 } 3975 3976 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info, 3977 struct btrfs_device *dev) 3978 { 3979 struct scrub_ctx *sctx; 3980 3981 mutex_lock(&fs_info->scrub_lock); 3982 sctx = dev->scrub_device; 3983 if (!sctx) { 3984 mutex_unlock(&fs_info->scrub_lock); 3985 return -ENOTCONN; 3986 } 3987 atomic_inc(&sctx->cancel_req); 3988 while (dev->scrub_device) { 3989 mutex_unlock(&fs_info->scrub_lock); 3990 wait_event(fs_info->scrub_pause_wait, 3991 dev->scrub_device == NULL); 3992 mutex_lock(&fs_info->scrub_lock); 3993 } 3994 mutex_unlock(&fs_info->scrub_lock); 3995 3996 return 0; 3997 } 3998 3999 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid, 4000 struct btrfs_scrub_progress *progress) 4001 { 4002 struct btrfs_device *dev; 4003 struct scrub_ctx *sctx = NULL; 4004 4005 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 4006 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL); 4007 if (dev) 4008 sctx = dev->scrub_device; 4009 if (sctx) 4010 memcpy(progress, &sctx->stat, sizeof(*progress)); 4011 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 4012 4013 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 4014 } 4015 4016 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 4017 u64 extent_logical, u64 extent_len, 4018 u64 *extent_physical, 4019 struct btrfs_device **extent_dev, 4020 int *extent_mirror_num) 4021 { 4022 u64 mapped_length; 4023 struct btrfs_bio *bbio = NULL; 4024 int ret; 4025 4026 mapped_length = extent_len; 4027 ret = btrfs_map_block(fs_info, READ, extent_logical, 4028 &mapped_length, &bbio, 0); 4029 if (ret || !bbio || mapped_length < extent_len || 4030 !bbio->stripes[0].dev->bdev) { 4031 btrfs_put_bbio(bbio); 4032 return; 4033 } 4034 4035 *extent_physical = bbio->stripes[0].physical; 4036 *extent_mirror_num = bbio->mirror_num; 4037 *extent_dev = bbio->stripes[0].dev; 4038 btrfs_put_bbio(bbio); 4039 } 4040 4041 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx, 4042 struct scrub_wr_ctx *wr_ctx, 4043 struct btrfs_fs_info *fs_info, 4044 struct btrfs_device *dev, 4045 int is_dev_replace) 4046 { 4047 WARN_ON(wr_ctx->wr_curr_bio != NULL); 4048 4049 mutex_init(&wr_ctx->wr_lock); 4050 wr_ctx->wr_curr_bio = NULL; 4051 if (!is_dev_replace) 4052 return 0; 4053 4054 WARN_ON(!dev->bdev); 4055 wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO; 4056 wr_ctx->tgtdev = dev; 4057 atomic_set(&wr_ctx->flush_all_writes, 0); 4058 return 0; 4059 } 4060 4061 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx) 4062 { 4063 mutex_lock(&wr_ctx->wr_lock); 4064 kfree(wr_ctx->wr_curr_bio); 4065 wr_ctx->wr_curr_bio = NULL; 4066 mutex_unlock(&wr_ctx->wr_lock); 4067 } 4068 4069 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 4070 int mirror_num, u64 physical_for_dev_replace) 4071 { 4072 struct scrub_copy_nocow_ctx *nocow_ctx; 4073 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 4074 4075 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS); 4076 if (!nocow_ctx) { 4077 spin_lock(&sctx->stat_lock); 4078 sctx->stat.malloc_errors++; 4079 spin_unlock(&sctx->stat_lock); 4080 return -ENOMEM; 4081 } 4082 4083 scrub_pending_trans_workers_inc(sctx); 4084 4085 nocow_ctx->sctx = sctx; 4086 nocow_ctx->logical = logical; 4087 nocow_ctx->len = len; 4088 nocow_ctx->mirror_num = mirror_num; 4089 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace; 4090 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper, 4091 copy_nocow_pages_worker, NULL, NULL); 4092 INIT_LIST_HEAD(&nocow_ctx->inodes); 4093 btrfs_queue_work(fs_info->scrub_nocow_workers, 4094 &nocow_ctx->work); 4095 4096 return 0; 4097 } 4098 4099 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx) 4100 { 4101 struct scrub_copy_nocow_ctx *nocow_ctx = ctx; 4102 struct scrub_nocow_inode *nocow_inode; 4103 4104 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS); 4105 if (!nocow_inode) 4106 return -ENOMEM; 4107 nocow_inode->inum = inum; 4108 nocow_inode->offset = offset; 4109 nocow_inode->root = root; 4110 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes); 4111 return 0; 4112 } 4113 4114 #define COPY_COMPLETE 1 4115 4116 static void copy_nocow_pages_worker(struct btrfs_work *work) 4117 { 4118 struct scrub_copy_nocow_ctx *nocow_ctx = 4119 container_of(work, struct scrub_copy_nocow_ctx, work); 4120 struct scrub_ctx *sctx = nocow_ctx->sctx; 4121 u64 logical = nocow_ctx->logical; 4122 u64 len = nocow_ctx->len; 4123 int mirror_num = nocow_ctx->mirror_num; 4124 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 4125 int ret; 4126 struct btrfs_trans_handle *trans = NULL; 4127 struct btrfs_fs_info *fs_info; 4128 struct btrfs_path *path; 4129 struct btrfs_root *root; 4130 int not_written = 0; 4131 4132 fs_info = sctx->dev_root->fs_info; 4133 root = fs_info->extent_root; 4134 4135 path = btrfs_alloc_path(); 4136 if (!path) { 4137 spin_lock(&sctx->stat_lock); 4138 sctx->stat.malloc_errors++; 4139 spin_unlock(&sctx->stat_lock); 4140 not_written = 1; 4141 goto out; 4142 } 4143 4144 trans = btrfs_join_transaction(root); 4145 if (IS_ERR(trans)) { 4146 not_written = 1; 4147 goto out; 4148 } 4149 4150 ret = iterate_inodes_from_logical(logical, fs_info, path, 4151 record_inode_for_nocow, nocow_ctx); 4152 if (ret != 0 && ret != -ENOENT) { 4153 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, " 4154 "phys %llu, len %llu, mir %u, ret %d", 4155 logical, physical_for_dev_replace, len, mirror_num, 4156 ret); 4157 not_written = 1; 4158 goto out; 4159 } 4160 4161 btrfs_end_transaction(trans, root); 4162 trans = NULL; 4163 while (!list_empty(&nocow_ctx->inodes)) { 4164 struct scrub_nocow_inode *entry; 4165 entry = list_first_entry(&nocow_ctx->inodes, 4166 struct scrub_nocow_inode, 4167 list); 4168 list_del_init(&entry->list); 4169 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset, 4170 entry->root, nocow_ctx); 4171 kfree(entry); 4172 if (ret == COPY_COMPLETE) { 4173 ret = 0; 4174 break; 4175 } else if (ret) { 4176 break; 4177 } 4178 } 4179 out: 4180 while (!list_empty(&nocow_ctx->inodes)) { 4181 struct scrub_nocow_inode *entry; 4182 entry = list_first_entry(&nocow_ctx->inodes, 4183 struct scrub_nocow_inode, 4184 list); 4185 list_del_init(&entry->list); 4186 kfree(entry); 4187 } 4188 if (trans && !IS_ERR(trans)) 4189 btrfs_end_transaction(trans, root); 4190 if (not_written) 4191 btrfs_dev_replace_stats_inc(&fs_info->dev_replace. 4192 num_uncorrectable_read_errors); 4193 4194 btrfs_free_path(path); 4195 kfree(nocow_ctx); 4196 4197 scrub_pending_trans_workers_dec(sctx); 4198 } 4199 4200 static int check_extent_to_block(struct inode *inode, u64 start, u64 len, 4201 u64 logical) 4202 { 4203 struct extent_state *cached_state = NULL; 4204 struct btrfs_ordered_extent *ordered; 4205 struct extent_io_tree *io_tree; 4206 struct extent_map *em; 4207 u64 lockstart = start, lockend = start + len - 1; 4208 int ret = 0; 4209 4210 io_tree = &BTRFS_I(inode)->io_tree; 4211 4212 lock_extent_bits(io_tree, lockstart, lockend, &cached_state); 4213 ordered = btrfs_lookup_ordered_range(inode, lockstart, len); 4214 if (ordered) { 4215 btrfs_put_ordered_extent(ordered); 4216 ret = 1; 4217 goto out_unlock; 4218 } 4219 4220 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 4221 if (IS_ERR(em)) { 4222 ret = PTR_ERR(em); 4223 goto out_unlock; 4224 } 4225 4226 /* 4227 * This extent does not actually cover the logical extent anymore, 4228 * move on to the next inode. 4229 */ 4230 if (em->block_start > logical || 4231 em->block_start + em->block_len < logical + len) { 4232 free_extent_map(em); 4233 ret = 1; 4234 goto out_unlock; 4235 } 4236 free_extent_map(em); 4237 4238 out_unlock: 4239 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state, 4240 GFP_NOFS); 4241 return ret; 4242 } 4243 4244 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 4245 struct scrub_copy_nocow_ctx *nocow_ctx) 4246 { 4247 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info; 4248 struct btrfs_key key; 4249 struct inode *inode; 4250 struct page *page; 4251 struct btrfs_root *local_root; 4252 struct extent_io_tree *io_tree; 4253 u64 physical_for_dev_replace; 4254 u64 nocow_ctx_logical; 4255 u64 len = nocow_ctx->len; 4256 unsigned long index; 4257 int srcu_index; 4258 int ret = 0; 4259 int err = 0; 4260 4261 key.objectid = root; 4262 key.type = BTRFS_ROOT_ITEM_KEY; 4263 key.offset = (u64)-1; 4264 4265 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 4266 4267 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 4268 if (IS_ERR(local_root)) { 4269 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 4270 return PTR_ERR(local_root); 4271 } 4272 4273 key.type = BTRFS_INODE_ITEM_KEY; 4274 key.objectid = inum; 4275 key.offset = 0; 4276 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 4277 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 4278 if (IS_ERR(inode)) 4279 return PTR_ERR(inode); 4280 4281 /* Avoid truncate/dio/punch hole.. */ 4282 inode_lock(inode); 4283 inode_dio_wait(inode); 4284 4285 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 4286 io_tree = &BTRFS_I(inode)->io_tree; 4287 nocow_ctx_logical = nocow_ctx->logical; 4288 4289 ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical); 4290 if (ret) { 4291 ret = ret > 0 ? 0 : ret; 4292 goto out; 4293 } 4294 4295 while (len >= PAGE_CACHE_SIZE) { 4296 index = offset >> PAGE_CACHE_SHIFT; 4297 again: 4298 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 4299 if (!page) { 4300 btrfs_err(fs_info, "find_or_create_page() failed"); 4301 ret = -ENOMEM; 4302 goto out; 4303 } 4304 4305 if (PageUptodate(page)) { 4306 if (PageDirty(page)) 4307 goto next_page; 4308 } else { 4309 ClearPageError(page); 4310 err = extent_read_full_page(io_tree, page, 4311 btrfs_get_extent, 4312 nocow_ctx->mirror_num); 4313 if (err) { 4314 ret = err; 4315 goto next_page; 4316 } 4317 4318 lock_page(page); 4319 /* 4320 * If the page has been remove from the page cache, 4321 * the data on it is meaningless, because it may be 4322 * old one, the new data may be written into the new 4323 * page in the page cache. 4324 */ 4325 if (page->mapping != inode->i_mapping) { 4326 unlock_page(page); 4327 page_cache_release(page); 4328 goto again; 4329 } 4330 if (!PageUptodate(page)) { 4331 ret = -EIO; 4332 goto next_page; 4333 } 4334 } 4335 4336 ret = check_extent_to_block(inode, offset, len, 4337 nocow_ctx_logical); 4338 if (ret) { 4339 ret = ret > 0 ? 0 : ret; 4340 goto next_page; 4341 } 4342 4343 err = write_page_nocow(nocow_ctx->sctx, 4344 physical_for_dev_replace, page); 4345 if (err) 4346 ret = err; 4347 next_page: 4348 unlock_page(page); 4349 page_cache_release(page); 4350 4351 if (ret) 4352 break; 4353 4354 offset += PAGE_CACHE_SIZE; 4355 physical_for_dev_replace += PAGE_CACHE_SIZE; 4356 nocow_ctx_logical += PAGE_CACHE_SIZE; 4357 len -= PAGE_CACHE_SIZE; 4358 } 4359 ret = COPY_COMPLETE; 4360 out: 4361 inode_unlock(inode); 4362 iput(inode); 4363 return ret; 4364 } 4365 4366 static int write_page_nocow(struct scrub_ctx *sctx, 4367 u64 physical_for_dev_replace, struct page *page) 4368 { 4369 struct bio *bio; 4370 struct btrfs_device *dev; 4371 int ret; 4372 4373 dev = sctx->wr_ctx.tgtdev; 4374 if (!dev) 4375 return -EIO; 4376 if (!dev->bdev) { 4377 btrfs_warn_rl(dev->dev_root->fs_info, 4378 "scrub write_page_nocow(bdev == NULL) is unexpected"); 4379 return -EIO; 4380 } 4381 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 4382 if (!bio) { 4383 spin_lock(&sctx->stat_lock); 4384 sctx->stat.malloc_errors++; 4385 spin_unlock(&sctx->stat_lock); 4386 return -ENOMEM; 4387 } 4388 bio->bi_iter.bi_size = 0; 4389 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9; 4390 bio->bi_bdev = dev->bdev; 4391 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); 4392 if (ret != PAGE_CACHE_SIZE) { 4393 leave_with_eio: 4394 bio_put(bio); 4395 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 4396 return -EIO; 4397 } 4398 4399 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) 4400 goto leave_with_eio; 4401 4402 bio_put(bio); 4403 return 0; 4404 } 4405