xref: /linux/fs/btrfs/scrub.c (revision c0c914eca7f251c70facc37dfebeaf176601918d)
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32 
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45 
46 struct scrub_block;
47 struct scrub_ctx;
48 
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
65 
66 struct scrub_recover {
67 	atomic_t		refs;
68 	struct btrfs_bio	*bbio;
69 	u64			map_length;
70 };
71 
72 struct scrub_page {
73 	struct scrub_block	*sblock;
74 	struct page		*page;
75 	struct btrfs_device	*dev;
76 	struct list_head	list;
77 	u64			flags;  /* extent flags */
78 	u64			generation;
79 	u64			logical;
80 	u64			physical;
81 	u64			physical_for_dev_replace;
82 	atomic_t		refs;
83 	struct {
84 		unsigned int	mirror_num:8;
85 		unsigned int	have_csum:1;
86 		unsigned int	io_error:1;
87 	};
88 	u8			csum[BTRFS_CSUM_SIZE];
89 
90 	struct scrub_recover	*recover;
91 };
92 
93 struct scrub_bio {
94 	int			index;
95 	struct scrub_ctx	*sctx;
96 	struct btrfs_device	*dev;
97 	struct bio		*bio;
98 	int			err;
99 	u64			logical;
100 	u64			physical;
101 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
103 #else
104 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
105 #endif
106 	int			page_count;
107 	int			next_free;
108 	struct btrfs_work	work;
109 };
110 
111 struct scrub_block {
112 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 	int			page_count;
114 	atomic_t		outstanding_pages;
115 	atomic_t		refs; /* free mem on transition to zero */
116 	struct scrub_ctx	*sctx;
117 	struct scrub_parity	*sparity;
118 	struct {
119 		unsigned int	header_error:1;
120 		unsigned int	checksum_error:1;
121 		unsigned int	no_io_error_seen:1;
122 		unsigned int	generation_error:1; /* also sets header_error */
123 
124 		/* The following is for the data used to check parity */
125 		/* It is for the data with checksum */
126 		unsigned int	data_corrected:1;
127 	};
128 	struct btrfs_work	work;
129 };
130 
131 /* Used for the chunks with parity stripe such RAID5/6 */
132 struct scrub_parity {
133 	struct scrub_ctx	*sctx;
134 
135 	struct btrfs_device	*scrub_dev;
136 
137 	u64			logic_start;
138 
139 	u64			logic_end;
140 
141 	int			nsectors;
142 
143 	int			stripe_len;
144 
145 	atomic_t		refs;
146 
147 	struct list_head	spages;
148 
149 	/* Work of parity check and repair */
150 	struct btrfs_work	work;
151 
152 	/* Mark the parity blocks which have data */
153 	unsigned long		*dbitmap;
154 
155 	/*
156 	 * Mark the parity blocks which have data, but errors happen when
157 	 * read data or check data
158 	 */
159 	unsigned long		*ebitmap;
160 
161 	unsigned long		bitmap[0];
162 };
163 
164 struct scrub_wr_ctx {
165 	struct scrub_bio *wr_curr_bio;
166 	struct btrfs_device *tgtdev;
167 	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
168 	atomic_t flush_all_writes;
169 	struct mutex wr_lock;
170 };
171 
172 struct scrub_ctx {
173 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
174 	struct btrfs_root	*dev_root;
175 	int			first_free;
176 	int			curr;
177 	atomic_t		bios_in_flight;
178 	atomic_t		workers_pending;
179 	spinlock_t		list_lock;
180 	wait_queue_head_t	list_wait;
181 	u16			csum_size;
182 	struct list_head	csum_list;
183 	atomic_t		cancel_req;
184 	int			readonly;
185 	int			pages_per_rd_bio;
186 	u32			sectorsize;
187 	u32			nodesize;
188 
189 	int			is_dev_replace;
190 	struct scrub_wr_ctx	wr_ctx;
191 
192 	/*
193 	 * statistics
194 	 */
195 	struct btrfs_scrub_progress stat;
196 	spinlock_t		stat_lock;
197 
198 	/*
199 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
200 	 * decrement bios_in_flight and workers_pending and then do a wakeup
201 	 * on the list_wait wait queue. We must ensure the main scrub task
202 	 * doesn't free the scrub context before or while the workers are
203 	 * doing the wakeup() call.
204 	 */
205 	atomic_t                refs;
206 };
207 
208 struct scrub_fixup_nodatasum {
209 	struct scrub_ctx	*sctx;
210 	struct btrfs_device	*dev;
211 	u64			logical;
212 	struct btrfs_root	*root;
213 	struct btrfs_work	work;
214 	int			mirror_num;
215 };
216 
217 struct scrub_nocow_inode {
218 	u64			inum;
219 	u64			offset;
220 	u64			root;
221 	struct list_head	list;
222 };
223 
224 struct scrub_copy_nocow_ctx {
225 	struct scrub_ctx	*sctx;
226 	u64			logical;
227 	u64			len;
228 	int			mirror_num;
229 	u64			physical_for_dev_replace;
230 	struct list_head	inodes;
231 	struct btrfs_work	work;
232 };
233 
234 struct scrub_warning {
235 	struct btrfs_path	*path;
236 	u64			extent_item_size;
237 	const char		*errstr;
238 	sector_t		sector;
239 	u64			logical;
240 	struct btrfs_device	*dev;
241 };
242 
243 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
244 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
245 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
246 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
247 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
248 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
249 				     struct scrub_block *sblocks_for_recheck);
250 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
251 				struct scrub_block *sblock,
252 				int retry_failed_mirror);
253 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
254 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
255 					     struct scrub_block *sblock_good);
256 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
257 					    struct scrub_block *sblock_good,
258 					    int page_num, int force_write);
259 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
260 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
261 					   int page_num);
262 static int scrub_checksum_data(struct scrub_block *sblock);
263 static int scrub_checksum_tree_block(struct scrub_block *sblock);
264 static int scrub_checksum_super(struct scrub_block *sblock);
265 static void scrub_block_get(struct scrub_block *sblock);
266 static void scrub_block_put(struct scrub_block *sblock);
267 static void scrub_page_get(struct scrub_page *spage);
268 static void scrub_page_put(struct scrub_page *spage);
269 static void scrub_parity_get(struct scrub_parity *sparity);
270 static void scrub_parity_put(struct scrub_parity *sparity);
271 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
272 				    struct scrub_page *spage);
273 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
274 		       u64 physical, struct btrfs_device *dev, u64 flags,
275 		       u64 gen, int mirror_num, u8 *csum, int force,
276 		       u64 physical_for_dev_replace);
277 static void scrub_bio_end_io(struct bio *bio);
278 static void scrub_bio_end_io_worker(struct btrfs_work *work);
279 static void scrub_block_complete(struct scrub_block *sblock);
280 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
281 			       u64 extent_logical, u64 extent_len,
282 			       u64 *extent_physical,
283 			       struct btrfs_device **extent_dev,
284 			       int *extent_mirror_num);
285 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
286 			      struct scrub_wr_ctx *wr_ctx,
287 			      struct btrfs_fs_info *fs_info,
288 			      struct btrfs_device *dev,
289 			      int is_dev_replace);
290 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
291 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
292 				    struct scrub_page *spage);
293 static void scrub_wr_submit(struct scrub_ctx *sctx);
294 static void scrub_wr_bio_end_io(struct bio *bio);
295 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
296 static int write_page_nocow(struct scrub_ctx *sctx,
297 			    u64 physical_for_dev_replace, struct page *page);
298 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
299 				      struct scrub_copy_nocow_ctx *ctx);
300 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
301 			    int mirror_num, u64 physical_for_dev_replace);
302 static void copy_nocow_pages_worker(struct btrfs_work *work);
303 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
304 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
305 static void scrub_put_ctx(struct scrub_ctx *sctx);
306 
307 
308 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
309 {
310 	atomic_inc(&sctx->refs);
311 	atomic_inc(&sctx->bios_in_flight);
312 }
313 
314 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
315 {
316 	atomic_dec(&sctx->bios_in_flight);
317 	wake_up(&sctx->list_wait);
318 	scrub_put_ctx(sctx);
319 }
320 
321 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
322 {
323 	while (atomic_read(&fs_info->scrub_pause_req)) {
324 		mutex_unlock(&fs_info->scrub_lock);
325 		wait_event(fs_info->scrub_pause_wait,
326 		   atomic_read(&fs_info->scrub_pause_req) == 0);
327 		mutex_lock(&fs_info->scrub_lock);
328 	}
329 }
330 
331 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
332 {
333 	atomic_inc(&fs_info->scrubs_paused);
334 	wake_up(&fs_info->scrub_pause_wait);
335 }
336 
337 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
338 {
339 	mutex_lock(&fs_info->scrub_lock);
340 	__scrub_blocked_if_needed(fs_info);
341 	atomic_dec(&fs_info->scrubs_paused);
342 	mutex_unlock(&fs_info->scrub_lock);
343 
344 	wake_up(&fs_info->scrub_pause_wait);
345 }
346 
347 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
348 {
349 	scrub_pause_on(fs_info);
350 	scrub_pause_off(fs_info);
351 }
352 
353 /*
354  * used for workers that require transaction commits (i.e., for the
355  * NOCOW case)
356  */
357 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
358 {
359 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
360 
361 	atomic_inc(&sctx->refs);
362 	/*
363 	 * increment scrubs_running to prevent cancel requests from
364 	 * completing as long as a worker is running. we must also
365 	 * increment scrubs_paused to prevent deadlocking on pause
366 	 * requests used for transactions commits (as the worker uses a
367 	 * transaction context). it is safe to regard the worker
368 	 * as paused for all matters practical. effectively, we only
369 	 * avoid cancellation requests from completing.
370 	 */
371 	mutex_lock(&fs_info->scrub_lock);
372 	atomic_inc(&fs_info->scrubs_running);
373 	atomic_inc(&fs_info->scrubs_paused);
374 	mutex_unlock(&fs_info->scrub_lock);
375 
376 	/*
377 	 * check if @scrubs_running=@scrubs_paused condition
378 	 * inside wait_event() is not an atomic operation.
379 	 * which means we may inc/dec @scrub_running/paused
380 	 * at any time. Let's wake up @scrub_pause_wait as
381 	 * much as we can to let commit transaction blocked less.
382 	 */
383 	wake_up(&fs_info->scrub_pause_wait);
384 
385 	atomic_inc(&sctx->workers_pending);
386 }
387 
388 /* used for workers that require transaction commits */
389 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
390 {
391 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
392 
393 	/*
394 	 * see scrub_pending_trans_workers_inc() why we're pretending
395 	 * to be paused in the scrub counters
396 	 */
397 	mutex_lock(&fs_info->scrub_lock);
398 	atomic_dec(&fs_info->scrubs_running);
399 	atomic_dec(&fs_info->scrubs_paused);
400 	mutex_unlock(&fs_info->scrub_lock);
401 	atomic_dec(&sctx->workers_pending);
402 	wake_up(&fs_info->scrub_pause_wait);
403 	wake_up(&sctx->list_wait);
404 	scrub_put_ctx(sctx);
405 }
406 
407 static void scrub_free_csums(struct scrub_ctx *sctx)
408 {
409 	while (!list_empty(&sctx->csum_list)) {
410 		struct btrfs_ordered_sum *sum;
411 		sum = list_first_entry(&sctx->csum_list,
412 				       struct btrfs_ordered_sum, list);
413 		list_del(&sum->list);
414 		kfree(sum);
415 	}
416 }
417 
418 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
419 {
420 	int i;
421 
422 	if (!sctx)
423 		return;
424 
425 	scrub_free_wr_ctx(&sctx->wr_ctx);
426 
427 	/* this can happen when scrub is cancelled */
428 	if (sctx->curr != -1) {
429 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
430 
431 		for (i = 0; i < sbio->page_count; i++) {
432 			WARN_ON(!sbio->pagev[i]->page);
433 			scrub_block_put(sbio->pagev[i]->sblock);
434 		}
435 		bio_put(sbio->bio);
436 	}
437 
438 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
439 		struct scrub_bio *sbio = sctx->bios[i];
440 
441 		if (!sbio)
442 			break;
443 		kfree(sbio);
444 	}
445 
446 	scrub_free_csums(sctx);
447 	kfree(sctx);
448 }
449 
450 static void scrub_put_ctx(struct scrub_ctx *sctx)
451 {
452 	if (atomic_dec_and_test(&sctx->refs))
453 		scrub_free_ctx(sctx);
454 }
455 
456 static noinline_for_stack
457 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
458 {
459 	struct scrub_ctx *sctx;
460 	int		i;
461 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
462 	int ret;
463 
464 	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
465 	if (!sctx)
466 		goto nomem;
467 	atomic_set(&sctx->refs, 1);
468 	sctx->is_dev_replace = is_dev_replace;
469 	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
470 	sctx->curr = -1;
471 	sctx->dev_root = dev->dev_root;
472 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
473 		struct scrub_bio *sbio;
474 
475 		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
476 		if (!sbio)
477 			goto nomem;
478 		sctx->bios[i] = sbio;
479 
480 		sbio->index = i;
481 		sbio->sctx = sctx;
482 		sbio->page_count = 0;
483 		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
484 				scrub_bio_end_io_worker, NULL, NULL);
485 
486 		if (i != SCRUB_BIOS_PER_SCTX - 1)
487 			sctx->bios[i]->next_free = i + 1;
488 		else
489 			sctx->bios[i]->next_free = -1;
490 	}
491 	sctx->first_free = 0;
492 	sctx->nodesize = dev->dev_root->nodesize;
493 	sctx->sectorsize = dev->dev_root->sectorsize;
494 	atomic_set(&sctx->bios_in_flight, 0);
495 	atomic_set(&sctx->workers_pending, 0);
496 	atomic_set(&sctx->cancel_req, 0);
497 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
498 	INIT_LIST_HEAD(&sctx->csum_list);
499 
500 	spin_lock_init(&sctx->list_lock);
501 	spin_lock_init(&sctx->stat_lock);
502 	init_waitqueue_head(&sctx->list_wait);
503 
504 	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
505 				 fs_info->dev_replace.tgtdev, is_dev_replace);
506 	if (ret) {
507 		scrub_free_ctx(sctx);
508 		return ERR_PTR(ret);
509 	}
510 	return sctx;
511 
512 nomem:
513 	scrub_free_ctx(sctx);
514 	return ERR_PTR(-ENOMEM);
515 }
516 
517 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
518 				     void *warn_ctx)
519 {
520 	u64 isize;
521 	u32 nlink;
522 	int ret;
523 	int i;
524 	struct extent_buffer *eb;
525 	struct btrfs_inode_item *inode_item;
526 	struct scrub_warning *swarn = warn_ctx;
527 	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
528 	struct inode_fs_paths *ipath = NULL;
529 	struct btrfs_root *local_root;
530 	struct btrfs_key root_key;
531 	struct btrfs_key key;
532 
533 	root_key.objectid = root;
534 	root_key.type = BTRFS_ROOT_ITEM_KEY;
535 	root_key.offset = (u64)-1;
536 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
537 	if (IS_ERR(local_root)) {
538 		ret = PTR_ERR(local_root);
539 		goto err;
540 	}
541 
542 	/*
543 	 * this makes the path point to (inum INODE_ITEM ioff)
544 	 */
545 	key.objectid = inum;
546 	key.type = BTRFS_INODE_ITEM_KEY;
547 	key.offset = 0;
548 
549 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
550 	if (ret) {
551 		btrfs_release_path(swarn->path);
552 		goto err;
553 	}
554 
555 	eb = swarn->path->nodes[0];
556 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
557 					struct btrfs_inode_item);
558 	isize = btrfs_inode_size(eb, inode_item);
559 	nlink = btrfs_inode_nlink(eb, inode_item);
560 	btrfs_release_path(swarn->path);
561 
562 	ipath = init_ipath(4096, local_root, swarn->path);
563 	if (IS_ERR(ipath)) {
564 		ret = PTR_ERR(ipath);
565 		ipath = NULL;
566 		goto err;
567 	}
568 	ret = paths_from_inode(inum, ipath);
569 
570 	if (ret < 0)
571 		goto err;
572 
573 	/*
574 	 * we deliberately ignore the bit ipath might have been too small to
575 	 * hold all of the paths here
576 	 */
577 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
578 		btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev "
579 			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
580 			"length %llu, links %u (path: %s)", swarn->errstr,
581 			swarn->logical, rcu_str_deref(swarn->dev->name),
582 			(unsigned long long)swarn->sector, root, inum, offset,
583 			min(isize - offset, (u64)PAGE_SIZE), nlink,
584 			(char *)(unsigned long)ipath->fspath->val[i]);
585 
586 	free_ipath(ipath);
587 	return 0;
588 
589 err:
590 	btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev "
591 		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
592 		"resolving failed with ret=%d", swarn->errstr,
593 		swarn->logical, rcu_str_deref(swarn->dev->name),
594 		(unsigned long long)swarn->sector, root, inum, offset, ret);
595 
596 	free_ipath(ipath);
597 	return 0;
598 }
599 
600 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
601 {
602 	struct btrfs_device *dev;
603 	struct btrfs_fs_info *fs_info;
604 	struct btrfs_path *path;
605 	struct btrfs_key found_key;
606 	struct extent_buffer *eb;
607 	struct btrfs_extent_item *ei;
608 	struct scrub_warning swarn;
609 	unsigned long ptr = 0;
610 	u64 extent_item_pos;
611 	u64 flags = 0;
612 	u64 ref_root;
613 	u32 item_size;
614 	u8 ref_level;
615 	int ret;
616 
617 	WARN_ON(sblock->page_count < 1);
618 	dev = sblock->pagev[0]->dev;
619 	fs_info = sblock->sctx->dev_root->fs_info;
620 
621 	path = btrfs_alloc_path();
622 	if (!path)
623 		return;
624 
625 	swarn.sector = (sblock->pagev[0]->physical) >> 9;
626 	swarn.logical = sblock->pagev[0]->logical;
627 	swarn.errstr = errstr;
628 	swarn.dev = NULL;
629 
630 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
631 				  &flags);
632 	if (ret < 0)
633 		goto out;
634 
635 	extent_item_pos = swarn.logical - found_key.objectid;
636 	swarn.extent_item_size = found_key.offset;
637 
638 	eb = path->nodes[0];
639 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
640 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
641 
642 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
643 		do {
644 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
645 						      item_size, &ref_root,
646 						      &ref_level);
647 			btrfs_warn_in_rcu(fs_info,
648 				"%s at logical %llu on dev %s, "
649 				"sector %llu: metadata %s (level %d) in tree "
650 				"%llu", errstr, swarn.logical,
651 				rcu_str_deref(dev->name),
652 				(unsigned long long)swarn.sector,
653 				ref_level ? "node" : "leaf",
654 				ret < 0 ? -1 : ref_level,
655 				ret < 0 ? -1 : ref_root);
656 		} while (ret != 1);
657 		btrfs_release_path(path);
658 	} else {
659 		btrfs_release_path(path);
660 		swarn.path = path;
661 		swarn.dev = dev;
662 		iterate_extent_inodes(fs_info, found_key.objectid,
663 					extent_item_pos, 1,
664 					scrub_print_warning_inode, &swarn);
665 	}
666 
667 out:
668 	btrfs_free_path(path);
669 }
670 
671 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
672 {
673 	struct page *page = NULL;
674 	unsigned long index;
675 	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
676 	int ret;
677 	int corrected = 0;
678 	struct btrfs_key key;
679 	struct inode *inode = NULL;
680 	struct btrfs_fs_info *fs_info;
681 	u64 end = offset + PAGE_SIZE - 1;
682 	struct btrfs_root *local_root;
683 	int srcu_index;
684 
685 	key.objectid = root;
686 	key.type = BTRFS_ROOT_ITEM_KEY;
687 	key.offset = (u64)-1;
688 
689 	fs_info = fixup->root->fs_info;
690 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
691 
692 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
693 	if (IS_ERR(local_root)) {
694 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
695 		return PTR_ERR(local_root);
696 	}
697 
698 	key.type = BTRFS_INODE_ITEM_KEY;
699 	key.objectid = inum;
700 	key.offset = 0;
701 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
702 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
703 	if (IS_ERR(inode))
704 		return PTR_ERR(inode);
705 
706 	index = offset >> PAGE_CACHE_SHIFT;
707 
708 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
709 	if (!page) {
710 		ret = -ENOMEM;
711 		goto out;
712 	}
713 
714 	if (PageUptodate(page)) {
715 		if (PageDirty(page)) {
716 			/*
717 			 * we need to write the data to the defect sector. the
718 			 * data that was in that sector is not in memory,
719 			 * because the page was modified. we must not write the
720 			 * modified page to that sector.
721 			 *
722 			 * TODO: what could be done here: wait for the delalloc
723 			 *       runner to write out that page (might involve
724 			 *       COW) and see whether the sector is still
725 			 *       referenced afterwards.
726 			 *
727 			 * For the meantime, we'll treat this error
728 			 * incorrectable, although there is a chance that a
729 			 * later scrub will find the bad sector again and that
730 			 * there's no dirty page in memory, then.
731 			 */
732 			ret = -EIO;
733 			goto out;
734 		}
735 		ret = repair_io_failure(inode, offset, PAGE_SIZE,
736 					fixup->logical, page,
737 					offset - page_offset(page),
738 					fixup->mirror_num);
739 		unlock_page(page);
740 		corrected = !ret;
741 	} else {
742 		/*
743 		 * we need to get good data first. the general readpage path
744 		 * will call repair_io_failure for us, we just have to make
745 		 * sure we read the bad mirror.
746 		 */
747 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
748 					EXTENT_DAMAGED, GFP_NOFS);
749 		if (ret) {
750 			/* set_extent_bits should give proper error */
751 			WARN_ON(ret > 0);
752 			if (ret > 0)
753 				ret = -EFAULT;
754 			goto out;
755 		}
756 
757 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
758 						btrfs_get_extent,
759 						fixup->mirror_num);
760 		wait_on_page_locked(page);
761 
762 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
763 						end, EXTENT_DAMAGED, 0, NULL);
764 		if (!corrected)
765 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
766 						EXTENT_DAMAGED, GFP_NOFS);
767 	}
768 
769 out:
770 	if (page)
771 		put_page(page);
772 
773 	iput(inode);
774 
775 	if (ret < 0)
776 		return ret;
777 
778 	if (ret == 0 && corrected) {
779 		/*
780 		 * we only need to call readpage for one of the inodes belonging
781 		 * to this extent. so make iterate_extent_inodes stop
782 		 */
783 		return 1;
784 	}
785 
786 	return -EIO;
787 }
788 
789 static void scrub_fixup_nodatasum(struct btrfs_work *work)
790 {
791 	int ret;
792 	struct scrub_fixup_nodatasum *fixup;
793 	struct scrub_ctx *sctx;
794 	struct btrfs_trans_handle *trans = NULL;
795 	struct btrfs_path *path;
796 	int uncorrectable = 0;
797 
798 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
799 	sctx = fixup->sctx;
800 
801 	path = btrfs_alloc_path();
802 	if (!path) {
803 		spin_lock(&sctx->stat_lock);
804 		++sctx->stat.malloc_errors;
805 		spin_unlock(&sctx->stat_lock);
806 		uncorrectable = 1;
807 		goto out;
808 	}
809 
810 	trans = btrfs_join_transaction(fixup->root);
811 	if (IS_ERR(trans)) {
812 		uncorrectable = 1;
813 		goto out;
814 	}
815 
816 	/*
817 	 * the idea is to trigger a regular read through the standard path. we
818 	 * read a page from the (failed) logical address by specifying the
819 	 * corresponding copynum of the failed sector. thus, that readpage is
820 	 * expected to fail.
821 	 * that is the point where on-the-fly error correction will kick in
822 	 * (once it's finished) and rewrite the failed sector if a good copy
823 	 * can be found.
824 	 */
825 	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
826 						path, scrub_fixup_readpage,
827 						fixup);
828 	if (ret < 0) {
829 		uncorrectable = 1;
830 		goto out;
831 	}
832 	WARN_ON(ret != 1);
833 
834 	spin_lock(&sctx->stat_lock);
835 	++sctx->stat.corrected_errors;
836 	spin_unlock(&sctx->stat_lock);
837 
838 out:
839 	if (trans && !IS_ERR(trans))
840 		btrfs_end_transaction(trans, fixup->root);
841 	if (uncorrectable) {
842 		spin_lock(&sctx->stat_lock);
843 		++sctx->stat.uncorrectable_errors;
844 		spin_unlock(&sctx->stat_lock);
845 		btrfs_dev_replace_stats_inc(
846 			&sctx->dev_root->fs_info->dev_replace.
847 			num_uncorrectable_read_errors);
848 		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
849 		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
850 			fixup->logical, rcu_str_deref(fixup->dev->name));
851 	}
852 
853 	btrfs_free_path(path);
854 	kfree(fixup);
855 
856 	scrub_pending_trans_workers_dec(sctx);
857 }
858 
859 static inline void scrub_get_recover(struct scrub_recover *recover)
860 {
861 	atomic_inc(&recover->refs);
862 }
863 
864 static inline void scrub_put_recover(struct scrub_recover *recover)
865 {
866 	if (atomic_dec_and_test(&recover->refs)) {
867 		btrfs_put_bbio(recover->bbio);
868 		kfree(recover);
869 	}
870 }
871 
872 /*
873  * scrub_handle_errored_block gets called when either verification of the
874  * pages failed or the bio failed to read, e.g. with EIO. In the latter
875  * case, this function handles all pages in the bio, even though only one
876  * may be bad.
877  * The goal of this function is to repair the errored block by using the
878  * contents of one of the mirrors.
879  */
880 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
881 {
882 	struct scrub_ctx *sctx = sblock_to_check->sctx;
883 	struct btrfs_device *dev;
884 	struct btrfs_fs_info *fs_info;
885 	u64 length;
886 	u64 logical;
887 	unsigned int failed_mirror_index;
888 	unsigned int is_metadata;
889 	unsigned int have_csum;
890 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
891 	struct scrub_block *sblock_bad;
892 	int ret;
893 	int mirror_index;
894 	int page_num;
895 	int success;
896 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
897 				      DEFAULT_RATELIMIT_BURST);
898 
899 	BUG_ON(sblock_to_check->page_count < 1);
900 	fs_info = sctx->dev_root->fs_info;
901 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
902 		/*
903 		 * if we find an error in a super block, we just report it.
904 		 * They will get written with the next transaction commit
905 		 * anyway
906 		 */
907 		spin_lock(&sctx->stat_lock);
908 		++sctx->stat.super_errors;
909 		spin_unlock(&sctx->stat_lock);
910 		return 0;
911 	}
912 	length = sblock_to_check->page_count * PAGE_SIZE;
913 	logical = sblock_to_check->pagev[0]->logical;
914 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
915 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
916 	is_metadata = !(sblock_to_check->pagev[0]->flags &
917 			BTRFS_EXTENT_FLAG_DATA);
918 	have_csum = sblock_to_check->pagev[0]->have_csum;
919 	dev = sblock_to_check->pagev[0]->dev;
920 
921 	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
922 		sblocks_for_recheck = NULL;
923 		goto nodatasum_case;
924 	}
925 
926 	/*
927 	 * read all mirrors one after the other. This includes to
928 	 * re-read the extent or metadata block that failed (that was
929 	 * the cause that this fixup code is called) another time,
930 	 * page by page this time in order to know which pages
931 	 * caused I/O errors and which ones are good (for all mirrors).
932 	 * It is the goal to handle the situation when more than one
933 	 * mirror contains I/O errors, but the errors do not
934 	 * overlap, i.e. the data can be repaired by selecting the
935 	 * pages from those mirrors without I/O error on the
936 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
937 	 * would be that mirror #1 has an I/O error on the first page,
938 	 * the second page is good, and mirror #2 has an I/O error on
939 	 * the second page, but the first page is good.
940 	 * Then the first page of the first mirror can be repaired by
941 	 * taking the first page of the second mirror, and the
942 	 * second page of the second mirror can be repaired by
943 	 * copying the contents of the 2nd page of the 1st mirror.
944 	 * One more note: if the pages of one mirror contain I/O
945 	 * errors, the checksum cannot be verified. In order to get
946 	 * the best data for repairing, the first attempt is to find
947 	 * a mirror without I/O errors and with a validated checksum.
948 	 * Only if this is not possible, the pages are picked from
949 	 * mirrors with I/O errors without considering the checksum.
950 	 * If the latter is the case, at the end, the checksum of the
951 	 * repaired area is verified in order to correctly maintain
952 	 * the statistics.
953 	 */
954 
955 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
956 				      sizeof(*sblocks_for_recheck), GFP_NOFS);
957 	if (!sblocks_for_recheck) {
958 		spin_lock(&sctx->stat_lock);
959 		sctx->stat.malloc_errors++;
960 		sctx->stat.read_errors++;
961 		sctx->stat.uncorrectable_errors++;
962 		spin_unlock(&sctx->stat_lock);
963 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
964 		goto out;
965 	}
966 
967 	/* setup the context, map the logical blocks and alloc the pages */
968 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
969 	if (ret) {
970 		spin_lock(&sctx->stat_lock);
971 		sctx->stat.read_errors++;
972 		sctx->stat.uncorrectable_errors++;
973 		spin_unlock(&sctx->stat_lock);
974 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
975 		goto out;
976 	}
977 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
978 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
979 
980 	/* build and submit the bios for the failed mirror, check checksums */
981 	scrub_recheck_block(fs_info, sblock_bad, 1);
982 
983 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
984 	    sblock_bad->no_io_error_seen) {
985 		/*
986 		 * the error disappeared after reading page by page, or
987 		 * the area was part of a huge bio and other parts of the
988 		 * bio caused I/O errors, or the block layer merged several
989 		 * read requests into one and the error is caused by a
990 		 * different bio (usually one of the two latter cases is
991 		 * the cause)
992 		 */
993 		spin_lock(&sctx->stat_lock);
994 		sctx->stat.unverified_errors++;
995 		sblock_to_check->data_corrected = 1;
996 		spin_unlock(&sctx->stat_lock);
997 
998 		if (sctx->is_dev_replace)
999 			scrub_write_block_to_dev_replace(sblock_bad);
1000 		goto out;
1001 	}
1002 
1003 	if (!sblock_bad->no_io_error_seen) {
1004 		spin_lock(&sctx->stat_lock);
1005 		sctx->stat.read_errors++;
1006 		spin_unlock(&sctx->stat_lock);
1007 		if (__ratelimit(&_rs))
1008 			scrub_print_warning("i/o error", sblock_to_check);
1009 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1010 	} else if (sblock_bad->checksum_error) {
1011 		spin_lock(&sctx->stat_lock);
1012 		sctx->stat.csum_errors++;
1013 		spin_unlock(&sctx->stat_lock);
1014 		if (__ratelimit(&_rs))
1015 			scrub_print_warning("checksum error", sblock_to_check);
1016 		btrfs_dev_stat_inc_and_print(dev,
1017 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1018 	} else if (sblock_bad->header_error) {
1019 		spin_lock(&sctx->stat_lock);
1020 		sctx->stat.verify_errors++;
1021 		spin_unlock(&sctx->stat_lock);
1022 		if (__ratelimit(&_rs))
1023 			scrub_print_warning("checksum/header error",
1024 					    sblock_to_check);
1025 		if (sblock_bad->generation_error)
1026 			btrfs_dev_stat_inc_and_print(dev,
1027 				BTRFS_DEV_STAT_GENERATION_ERRS);
1028 		else
1029 			btrfs_dev_stat_inc_and_print(dev,
1030 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1031 	}
1032 
1033 	if (sctx->readonly) {
1034 		ASSERT(!sctx->is_dev_replace);
1035 		goto out;
1036 	}
1037 
1038 	if (!is_metadata && !have_csum) {
1039 		struct scrub_fixup_nodatasum *fixup_nodatasum;
1040 
1041 		WARN_ON(sctx->is_dev_replace);
1042 
1043 nodatasum_case:
1044 
1045 		/*
1046 		 * !is_metadata and !have_csum, this means that the data
1047 		 * might not be COW'ed, that it might be modified
1048 		 * concurrently. The general strategy to work on the
1049 		 * commit root does not help in the case when COW is not
1050 		 * used.
1051 		 */
1052 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1053 		if (!fixup_nodatasum)
1054 			goto did_not_correct_error;
1055 		fixup_nodatasum->sctx = sctx;
1056 		fixup_nodatasum->dev = dev;
1057 		fixup_nodatasum->logical = logical;
1058 		fixup_nodatasum->root = fs_info->extent_root;
1059 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1060 		scrub_pending_trans_workers_inc(sctx);
1061 		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1062 				scrub_fixup_nodatasum, NULL, NULL);
1063 		btrfs_queue_work(fs_info->scrub_workers,
1064 				 &fixup_nodatasum->work);
1065 		goto out;
1066 	}
1067 
1068 	/*
1069 	 * now build and submit the bios for the other mirrors, check
1070 	 * checksums.
1071 	 * First try to pick the mirror which is completely without I/O
1072 	 * errors and also does not have a checksum error.
1073 	 * If one is found, and if a checksum is present, the full block
1074 	 * that is known to contain an error is rewritten. Afterwards
1075 	 * the block is known to be corrected.
1076 	 * If a mirror is found which is completely correct, and no
1077 	 * checksum is present, only those pages are rewritten that had
1078 	 * an I/O error in the block to be repaired, since it cannot be
1079 	 * determined, which copy of the other pages is better (and it
1080 	 * could happen otherwise that a correct page would be
1081 	 * overwritten by a bad one).
1082 	 */
1083 	for (mirror_index = 0;
1084 	     mirror_index < BTRFS_MAX_MIRRORS &&
1085 	     sblocks_for_recheck[mirror_index].page_count > 0;
1086 	     mirror_index++) {
1087 		struct scrub_block *sblock_other;
1088 
1089 		if (mirror_index == failed_mirror_index)
1090 			continue;
1091 		sblock_other = sblocks_for_recheck + mirror_index;
1092 
1093 		/* build and submit the bios, check checksums */
1094 		scrub_recheck_block(fs_info, sblock_other, 0);
1095 
1096 		if (!sblock_other->header_error &&
1097 		    !sblock_other->checksum_error &&
1098 		    sblock_other->no_io_error_seen) {
1099 			if (sctx->is_dev_replace) {
1100 				scrub_write_block_to_dev_replace(sblock_other);
1101 				goto corrected_error;
1102 			} else {
1103 				ret = scrub_repair_block_from_good_copy(
1104 						sblock_bad, sblock_other);
1105 				if (!ret)
1106 					goto corrected_error;
1107 			}
1108 		}
1109 	}
1110 
1111 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1112 		goto did_not_correct_error;
1113 
1114 	/*
1115 	 * In case of I/O errors in the area that is supposed to be
1116 	 * repaired, continue by picking good copies of those pages.
1117 	 * Select the good pages from mirrors to rewrite bad pages from
1118 	 * the area to fix. Afterwards verify the checksum of the block
1119 	 * that is supposed to be repaired. This verification step is
1120 	 * only done for the purpose of statistic counting and for the
1121 	 * final scrub report, whether errors remain.
1122 	 * A perfect algorithm could make use of the checksum and try
1123 	 * all possible combinations of pages from the different mirrors
1124 	 * until the checksum verification succeeds. For example, when
1125 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1126 	 * of mirror #2 is readable but the final checksum test fails,
1127 	 * then the 2nd page of mirror #3 could be tried, whether now
1128 	 * the final checksum succeedes. But this would be a rare
1129 	 * exception and is therefore not implemented. At least it is
1130 	 * avoided that the good copy is overwritten.
1131 	 * A more useful improvement would be to pick the sectors
1132 	 * without I/O error based on sector sizes (512 bytes on legacy
1133 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1134 	 * mirror could be repaired by taking 512 byte of a different
1135 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1136 	 * area are unreadable.
1137 	 */
1138 	success = 1;
1139 	for (page_num = 0; page_num < sblock_bad->page_count;
1140 	     page_num++) {
1141 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1142 		struct scrub_block *sblock_other = NULL;
1143 
1144 		/* skip no-io-error page in scrub */
1145 		if (!page_bad->io_error && !sctx->is_dev_replace)
1146 			continue;
1147 
1148 		/* try to find no-io-error page in mirrors */
1149 		if (page_bad->io_error) {
1150 			for (mirror_index = 0;
1151 			     mirror_index < BTRFS_MAX_MIRRORS &&
1152 			     sblocks_for_recheck[mirror_index].page_count > 0;
1153 			     mirror_index++) {
1154 				if (!sblocks_for_recheck[mirror_index].
1155 				    pagev[page_num]->io_error) {
1156 					sblock_other = sblocks_for_recheck +
1157 						       mirror_index;
1158 					break;
1159 				}
1160 			}
1161 			if (!sblock_other)
1162 				success = 0;
1163 		}
1164 
1165 		if (sctx->is_dev_replace) {
1166 			/*
1167 			 * did not find a mirror to fetch the page
1168 			 * from. scrub_write_page_to_dev_replace()
1169 			 * handles this case (page->io_error), by
1170 			 * filling the block with zeros before
1171 			 * submitting the write request
1172 			 */
1173 			if (!sblock_other)
1174 				sblock_other = sblock_bad;
1175 
1176 			if (scrub_write_page_to_dev_replace(sblock_other,
1177 							    page_num) != 0) {
1178 				btrfs_dev_replace_stats_inc(
1179 					&sctx->dev_root->
1180 					fs_info->dev_replace.
1181 					num_write_errors);
1182 				success = 0;
1183 			}
1184 		} else if (sblock_other) {
1185 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1186 							       sblock_other,
1187 							       page_num, 0);
1188 			if (0 == ret)
1189 				page_bad->io_error = 0;
1190 			else
1191 				success = 0;
1192 		}
1193 	}
1194 
1195 	if (success && !sctx->is_dev_replace) {
1196 		if (is_metadata || have_csum) {
1197 			/*
1198 			 * need to verify the checksum now that all
1199 			 * sectors on disk are repaired (the write
1200 			 * request for data to be repaired is on its way).
1201 			 * Just be lazy and use scrub_recheck_block()
1202 			 * which re-reads the data before the checksum
1203 			 * is verified, but most likely the data comes out
1204 			 * of the page cache.
1205 			 */
1206 			scrub_recheck_block(fs_info, sblock_bad, 1);
1207 			if (!sblock_bad->header_error &&
1208 			    !sblock_bad->checksum_error &&
1209 			    sblock_bad->no_io_error_seen)
1210 				goto corrected_error;
1211 			else
1212 				goto did_not_correct_error;
1213 		} else {
1214 corrected_error:
1215 			spin_lock(&sctx->stat_lock);
1216 			sctx->stat.corrected_errors++;
1217 			sblock_to_check->data_corrected = 1;
1218 			spin_unlock(&sctx->stat_lock);
1219 			btrfs_err_rl_in_rcu(fs_info,
1220 				"fixed up error at logical %llu on dev %s",
1221 				logical, rcu_str_deref(dev->name));
1222 		}
1223 	} else {
1224 did_not_correct_error:
1225 		spin_lock(&sctx->stat_lock);
1226 		sctx->stat.uncorrectable_errors++;
1227 		spin_unlock(&sctx->stat_lock);
1228 		btrfs_err_rl_in_rcu(fs_info,
1229 			"unable to fixup (regular) error at logical %llu on dev %s",
1230 			logical, rcu_str_deref(dev->name));
1231 	}
1232 
1233 out:
1234 	if (sblocks_for_recheck) {
1235 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1236 		     mirror_index++) {
1237 			struct scrub_block *sblock = sblocks_for_recheck +
1238 						     mirror_index;
1239 			struct scrub_recover *recover;
1240 			int page_index;
1241 
1242 			for (page_index = 0; page_index < sblock->page_count;
1243 			     page_index++) {
1244 				sblock->pagev[page_index]->sblock = NULL;
1245 				recover = sblock->pagev[page_index]->recover;
1246 				if (recover) {
1247 					scrub_put_recover(recover);
1248 					sblock->pagev[page_index]->recover =
1249 									NULL;
1250 				}
1251 				scrub_page_put(sblock->pagev[page_index]);
1252 			}
1253 		}
1254 		kfree(sblocks_for_recheck);
1255 	}
1256 
1257 	return 0;
1258 }
1259 
1260 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1261 {
1262 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1263 		return 2;
1264 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1265 		return 3;
1266 	else
1267 		return (int)bbio->num_stripes;
1268 }
1269 
1270 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1271 						 u64 *raid_map,
1272 						 u64 mapped_length,
1273 						 int nstripes, int mirror,
1274 						 int *stripe_index,
1275 						 u64 *stripe_offset)
1276 {
1277 	int i;
1278 
1279 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1280 		/* RAID5/6 */
1281 		for (i = 0; i < nstripes; i++) {
1282 			if (raid_map[i] == RAID6_Q_STRIPE ||
1283 			    raid_map[i] == RAID5_P_STRIPE)
1284 				continue;
1285 
1286 			if (logical >= raid_map[i] &&
1287 			    logical < raid_map[i] + mapped_length)
1288 				break;
1289 		}
1290 
1291 		*stripe_index = i;
1292 		*stripe_offset = logical - raid_map[i];
1293 	} else {
1294 		/* The other RAID type */
1295 		*stripe_index = mirror;
1296 		*stripe_offset = 0;
1297 	}
1298 }
1299 
1300 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1301 				     struct scrub_block *sblocks_for_recheck)
1302 {
1303 	struct scrub_ctx *sctx = original_sblock->sctx;
1304 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
1305 	u64 length = original_sblock->page_count * PAGE_SIZE;
1306 	u64 logical = original_sblock->pagev[0]->logical;
1307 	u64 generation = original_sblock->pagev[0]->generation;
1308 	u64 flags = original_sblock->pagev[0]->flags;
1309 	u64 have_csum = original_sblock->pagev[0]->have_csum;
1310 	struct scrub_recover *recover;
1311 	struct btrfs_bio *bbio;
1312 	u64 sublen;
1313 	u64 mapped_length;
1314 	u64 stripe_offset;
1315 	int stripe_index;
1316 	int page_index = 0;
1317 	int mirror_index;
1318 	int nmirrors;
1319 	int ret;
1320 
1321 	/*
1322 	 * note: the two members refs and outstanding_pages
1323 	 * are not used (and not set) in the blocks that are used for
1324 	 * the recheck procedure
1325 	 */
1326 
1327 	while (length > 0) {
1328 		sublen = min_t(u64, length, PAGE_SIZE);
1329 		mapped_length = sublen;
1330 		bbio = NULL;
1331 
1332 		/*
1333 		 * with a length of PAGE_SIZE, each returned stripe
1334 		 * represents one mirror
1335 		 */
1336 		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1337 				       &mapped_length, &bbio, 0, 1);
1338 		if (ret || !bbio || mapped_length < sublen) {
1339 			btrfs_put_bbio(bbio);
1340 			return -EIO;
1341 		}
1342 
1343 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1344 		if (!recover) {
1345 			btrfs_put_bbio(bbio);
1346 			return -ENOMEM;
1347 		}
1348 
1349 		atomic_set(&recover->refs, 1);
1350 		recover->bbio = bbio;
1351 		recover->map_length = mapped_length;
1352 
1353 		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1354 
1355 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1356 
1357 		for (mirror_index = 0; mirror_index < nmirrors;
1358 		     mirror_index++) {
1359 			struct scrub_block *sblock;
1360 			struct scrub_page *page;
1361 
1362 			sblock = sblocks_for_recheck + mirror_index;
1363 			sblock->sctx = sctx;
1364 
1365 			page = kzalloc(sizeof(*page), GFP_NOFS);
1366 			if (!page) {
1367 leave_nomem:
1368 				spin_lock(&sctx->stat_lock);
1369 				sctx->stat.malloc_errors++;
1370 				spin_unlock(&sctx->stat_lock);
1371 				scrub_put_recover(recover);
1372 				return -ENOMEM;
1373 			}
1374 			scrub_page_get(page);
1375 			sblock->pagev[page_index] = page;
1376 			page->sblock = sblock;
1377 			page->flags = flags;
1378 			page->generation = generation;
1379 			page->logical = logical;
1380 			page->have_csum = have_csum;
1381 			if (have_csum)
1382 				memcpy(page->csum,
1383 				       original_sblock->pagev[0]->csum,
1384 				       sctx->csum_size);
1385 
1386 			scrub_stripe_index_and_offset(logical,
1387 						      bbio->map_type,
1388 						      bbio->raid_map,
1389 						      mapped_length,
1390 						      bbio->num_stripes -
1391 						      bbio->num_tgtdevs,
1392 						      mirror_index,
1393 						      &stripe_index,
1394 						      &stripe_offset);
1395 			page->physical = bbio->stripes[stripe_index].physical +
1396 					 stripe_offset;
1397 			page->dev = bbio->stripes[stripe_index].dev;
1398 
1399 			BUG_ON(page_index >= original_sblock->page_count);
1400 			page->physical_for_dev_replace =
1401 				original_sblock->pagev[page_index]->
1402 				physical_for_dev_replace;
1403 			/* for missing devices, dev->bdev is NULL */
1404 			page->mirror_num = mirror_index + 1;
1405 			sblock->page_count++;
1406 			page->page = alloc_page(GFP_NOFS);
1407 			if (!page->page)
1408 				goto leave_nomem;
1409 
1410 			scrub_get_recover(recover);
1411 			page->recover = recover;
1412 		}
1413 		scrub_put_recover(recover);
1414 		length -= sublen;
1415 		logical += sublen;
1416 		page_index++;
1417 	}
1418 
1419 	return 0;
1420 }
1421 
1422 struct scrub_bio_ret {
1423 	struct completion event;
1424 	int error;
1425 };
1426 
1427 static void scrub_bio_wait_endio(struct bio *bio)
1428 {
1429 	struct scrub_bio_ret *ret = bio->bi_private;
1430 
1431 	ret->error = bio->bi_error;
1432 	complete(&ret->event);
1433 }
1434 
1435 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1436 {
1437 	return page->recover &&
1438 	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1439 }
1440 
1441 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1442 					struct bio *bio,
1443 					struct scrub_page *page)
1444 {
1445 	struct scrub_bio_ret done;
1446 	int ret;
1447 
1448 	init_completion(&done.event);
1449 	done.error = 0;
1450 	bio->bi_iter.bi_sector = page->logical >> 9;
1451 	bio->bi_private = &done;
1452 	bio->bi_end_io = scrub_bio_wait_endio;
1453 
1454 	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
1455 				    page->recover->map_length,
1456 				    page->mirror_num, 0);
1457 	if (ret)
1458 		return ret;
1459 
1460 	wait_for_completion(&done.event);
1461 	if (done.error)
1462 		return -EIO;
1463 
1464 	return 0;
1465 }
1466 
1467 /*
1468  * this function will check the on disk data for checksum errors, header
1469  * errors and read I/O errors. If any I/O errors happen, the exact pages
1470  * which are errored are marked as being bad. The goal is to enable scrub
1471  * to take those pages that are not errored from all the mirrors so that
1472  * the pages that are errored in the just handled mirror can be repaired.
1473  */
1474 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1475 				struct scrub_block *sblock,
1476 				int retry_failed_mirror)
1477 {
1478 	int page_num;
1479 
1480 	sblock->no_io_error_seen = 1;
1481 
1482 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1483 		struct bio *bio;
1484 		struct scrub_page *page = sblock->pagev[page_num];
1485 
1486 		if (page->dev->bdev == NULL) {
1487 			page->io_error = 1;
1488 			sblock->no_io_error_seen = 0;
1489 			continue;
1490 		}
1491 
1492 		WARN_ON(!page->page);
1493 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1494 		if (!bio) {
1495 			page->io_error = 1;
1496 			sblock->no_io_error_seen = 0;
1497 			continue;
1498 		}
1499 		bio->bi_bdev = page->dev->bdev;
1500 
1501 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1502 		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1503 			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
1504 				sblock->no_io_error_seen = 0;
1505 		} else {
1506 			bio->bi_iter.bi_sector = page->physical >> 9;
1507 
1508 			if (btrfsic_submit_bio_wait(READ, bio))
1509 				sblock->no_io_error_seen = 0;
1510 		}
1511 
1512 		bio_put(bio);
1513 	}
1514 
1515 	if (sblock->no_io_error_seen)
1516 		scrub_recheck_block_checksum(sblock);
1517 }
1518 
1519 static inline int scrub_check_fsid(u8 fsid[],
1520 				   struct scrub_page *spage)
1521 {
1522 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1523 	int ret;
1524 
1525 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1526 	return !ret;
1527 }
1528 
1529 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1530 {
1531 	sblock->header_error = 0;
1532 	sblock->checksum_error = 0;
1533 	sblock->generation_error = 0;
1534 
1535 	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1536 		scrub_checksum_data(sblock);
1537 	else
1538 		scrub_checksum_tree_block(sblock);
1539 }
1540 
1541 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1542 					     struct scrub_block *sblock_good)
1543 {
1544 	int page_num;
1545 	int ret = 0;
1546 
1547 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1548 		int ret_sub;
1549 
1550 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1551 							   sblock_good,
1552 							   page_num, 1);
1553 		if (ret_sub)
1554 			ret = ret_sub;
1555 	}
1556 
1557 	return ret;
1558 }
1559 
1560 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1561 					    struct scrub_block *sblock_good,
1562 					    int page_num, int force_write)
1563 {
1564 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1565 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1566 
1567 	BUG_ON(page_bad->page == NULL);
1568 	BUG_ON(page_good->page == NULL);
1569 	if (force_write || sblock_bad->header_error ||
1570 	    sblock_bad->checksum_error || page_bad->io_error) {
1571 		struct bio *bio;
1572 		int ret;
1573 
1574 		if (!page_bad->dev->bdev) {
1575 			btrfs_warn_rl(sblock_bad->sctx->dev_root->fs_info,
1576 				"scrub_repair_page_from_good_copy(bdev == NULL) "
1577 				"is unexpected");
1578 			return -EIO;
1579 		}
1580 
1581 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1582 		if (!bio)
1583 			return -EIO;
1584 		bio->bi_bdev = page_bad->dev->bdev;
1585 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1586 
1587 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1588 		if (PAGE_SIZE != ret) {
1589 			bio_put(bio);
1590 			return -EIO;
1591 		}
1592 
1593 		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1594 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1595 				BTRFS_DEV_STAT_WRITE_ERRS);
1596 			btrfs_dev_replace_stats_inc(
1597 				&sblock_bad->sctx->dev_root->fs_info->
1598 				dev_replace.num_write_errors);
1599 			bio_put(bio);
1600 			return -EIO;
1601 		}
1602 		bio_put(bio);
1603 	}
1604 
1605 	return 0;
1606 }
1607 
1608 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1609 {
1610 	int page_num;
1611 
1612 	/*
1613 	 * This block is used for the check of the parity on the source device,
1614 	 * so the data needn't be written into the destination device.
1615 	 */
1616 	if (sblock->sparity)
1617 		return;
1618 
1619 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1620 		int ret;
1621 
1622 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1623 		if (ret)
1624 			btrfs_dev_replace_stats_inc(
1625 				&sblock->sctx->dev_root->fs_info->dev_replace.
1626 				num_write_errors);
1627 	}
1628 }
1629 
1630 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1631 					   int page_num)
1632 {
1633 	struct scrub_page *spage = sblock->pagev[page_num];
1634 
1635 	BUG_ON(spage->page == NULL);
1636 	if (spage->io_error) {
1637 		void *mapped_buffer = kmap_atomic(spage->page);
1638 
1639 		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1640 		flush_dcache_page(spage->page);
1641 		kunmap_atomic(mapped_buffer);
1642 	}
1643 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1644 }
1645 
1646 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1647 				    struct scrub_page *spage)
1648 {
1649 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1650 	struct scrub_bio *sbio;
1651 	int ret;
1652 
1653 	mutex_lock(&wr_ctx->wr_lock);
1654 again:
1655 	if (!wr_ctx->wr_curr_bio) {
1656 		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1657 					      GFP_NOFS);
1658 		if (!wr_ctx->wr_curr_bio) {
1659 			mutex_unlock(&wr_ctx->wr_lock);
1660 			return -ENOMEM;
1661 		}
1662 		wr_ctx->wr_curr_bio->sctx = sctx;
1663 		wr_ctx->wr_curr_bio->page_count = 0;
1664 	}
1665 	sbio = wr_ctx->wr_curr_bio;
1666 	if (sbio->page_count == 0) {
1667 		struct bio *bio;
1668 
1669 		sbio->physical = spage->physical_for_dev_replace;
1670 		sbio->logical = spage->logical;
1671 		sbio->dev = wr_ctx->tgtdev;
1672 		bio = sbio->bio;
1673 		if (!bio) {
1674 			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1675 			if (!bio) {
1676 				mutex_unlock(&wr_ctx->wr_lock);
1677 				return -ENOMEM;
1678 			}
1679 			sbio->bio = bio;
1680 		}
1681 
1682 		bio->bi_private = sbio;
1683 		bio->bi_end_io = scrub_wr_bio_end_io;
1684 		bio->bi_bdev = sbio->dev->bdev;
1685 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1686 		sbio->err = 0;
1687 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1688 		   spage->physical_for_dev_replace ||
1689 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1690 		   spage->logical) {
1691 		scrub_wr_submit(sctx);
1692 		goto again;
1693 	}
1694 
1695 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1696 	if (ret != PAGE_SIZE) {
1697 		if (sbio->page_count < 1) {
1698 			bio_put(sbio->bio);
1699 			sbio->bio = NULL;
1700 			mutex_unlock(&wr_ctx->wr_lock);
1701 			return -EIO;
1702 		}
1703 		scrub_wr_submit(sctx);
1704 		goto again;
1705 	}
1706 
1707 	sbio->pagev[sbio->page_count] = spage;
1708 	scrub_page_get(spage);
1709 	sbio->page_count++;
1710 	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1711 		scrub_wr_submit(sctx);
1712 	mutex_unlock(&wr_ctx->wr_lock);
1713 
1714 	return 0;
1715 }
1716 
1717 static void scrub_wr_submit(struct scrub_ctx *sctx)
1718 {
1719 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1720 	struct scrub_bio *sbio;
1721 
1722 	if (!wr_ctx->wr_curr_bio)
1723 		return;
1724 
1725 	sbio = wr_ctx->wr_curr_bio;
1726 	wr_ctx->wr_curr_bio = NULL;
1727 	WARN_ON(!sbio->bio->bi_bdev);
1728 	scrub_pending_bio_inc(sctx);
1729 	/* process all writes in a single worker thread. Then the block layer
1730 	 * orders the requests before sending them to the driver which
1731 	 * doubled the write performance on spinning disks when measured
1732 	 * with Linux 3.5 */
1733 	btrfsic_submit_bio(WRITE, sbio->bio);
1734 }
1735 
1736 static void scrub_wr_bio_end_io(struct bio *bio)
1737 {
1738 	struct scrub_bio *sbio = bio->bi_private;
1739 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1740 
1741 	sbio->err = bio->bi_error;
1742 	sbio->bio = bio;
1743 
1744 	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1745 			 scrub_wr_bio_end_io_worker, NULL, NULL);
1746 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1747 }
1748 
1749 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1750 {
1751 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1752 	struct scrub_ctx *sctx = sbio->sctx;
1753 	int i;
1754 
1755 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1756 	if (sbio->err) {
1757 		struct btrfs_dev_replace *dev_replace =
1758 			&sbio->sctx->dev_root->fs_info->dev_replace;
1759 
1760 		for (i = 0; i < sbio->page_count; i++) {
1761 			struct scrub_page *spage = sbio->pagev[i];
1762 
1763 			spage->io_error = 1;
1764 			btrfs_dev_replace_stats_inc(&dev_replace->
1765 						    num_write_errors);
1766 		}
1767 	}
1768 
1769 	for (i = 0; i < sbio->page_count; i++)
1770 		scrub_page_put(sbio->pagev[i]);
1771 
1772 	bio_put(sbio->bio);
1773 	kfree(sbio);
1774 	scrub_pending_bio_dec(sctx);
1775 }
1776 
1777 static int scrub_checksum(struct scrub_block *sblock)
1778 {
1779 	u64 flags;
1780 	int ret;
1781 
1782 	/*
1783 	 * No need to initialize these stats currently,
1784 	 * because this function only use return value
1785 	 * instead of these stats value.
1786 	 *
1787 	 * Todo:
1788 	 * always use stats
1789 	 */
1790 	sblock->header_error = 0;
1791 	sblock->generation_error = 0;
1792 	sblock->checksum_error = 0;
1793 
1794 	WARN_ON(sblock->page_count < 1);
1795 	flags = sblock->pagev[0]->flags;
1796 	ret = 0;
1797 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1798 		ret = scrub_checksum_data(sblock);
1799 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1800 		ret = scrub_checksum_tree_block(sblock);
1801 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1802 		(void)scrub_checksum_super(sblock);
1803 	else
1804 		WARN_ON(1);
1805 	if (ret)
1806 		scrub_handle_errored_block(sblock);
1807 
1808 	return ret;
1809 }
1810 
1811 static int scrub_checksum_data(struct scrub_block *sblock)
1812 {
1813 	struct scrub_ctx *sctx = sblock->sctx;
1814 	u8 csum[BTRFS_CSUM_SIZE];
1815 	u8 *on_disk_csum;
1816 	struct page *page;
1817 	void *buffer;
1818 	u32 crc = ~(u32)0;
1819 	u64 len;
1820 	int index;
1821 
1822 	BUG_ON(sblock->page_count < 1);
1823 	if (!sblock->pagev[0]->have_csum)
1824 		return 0;
1825 
1826 	on_disk_csum = sblock->pagev[0]->csum;
1827 	page = sblock->pagev[0]->page;
1828 	buffer = kmap_atomic(page);
1829 
1830 	len = sctx->sectorsize;
1831 	index = 0;
1832 	for (;;) {
1833 		u64 l = min_t(u64, len, PAGE_SIZE);
1834 
1835 		crc = btrfs_csum_data(buffer, crc, l);
1836 		kunmap_atomic(buffer);
1837 		len -= l;
1838 		if (len == 0)
1839 			break;
1840 		index++;
1841 		BUG_ON(index >= sblock->page_count);
1842 		BUG_ON(!sblock->pagev[index]->page);
1843 		page = sblock->pagev[index]->page;
1844 		buffer = kmap_atomic(page);
1845 	}
1846 
1847 	btrfs_csum_final(crc, csum);
1848 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1849 		sblock->checksum_error = 1;
1850 
1851 	return sblock->checksum_error;
1852 }
1853 
1854 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1855 {
1856 	struct scrub_ctx *sctx = sblock->sctx;
1857 	struct btrfs_header *h;
1858 	struct btrfs_root *root = sctx->dev_root;
1859 	struct btrfs_fs_info *fs_info = root->fs_info;
1860 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1861 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1862 	struct page *page;
1863 	void *mapped_buffer;
1864 	u64 mapped_size;
1865 	void *p;
1866 	u32 crc = ~(u32)0;
1867 	u64 len;
1868 	int index;
1869 
1870 	BUG_ON(sblock->page_count < 1);
1871 	page = sblock->pagev[0]->page;
1872 	mapped_buffer = kmap_atomic(page);
1873 	h = (struct btrfs_header *)mapped_buffer;
1874 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1875 
1876 	/*
1877 	 * we don't use the getter functions here, as we
1878 	 * a) don't have an extent buffer and
1879 	 * b) the page is already kmapped
1880 	 */
1881 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1882 		sblock->header_error = 1;
1883 
1884 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1885 		sblock->header_error = 1;
1886 		sblock->generation_error = 1;
1887 	}
1888 
1889 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1890 		sblock->header_error = 1;
1891 
1892 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1893 		   BTRFS_UUID_SIZE))
1894 		sblock->header_error = 1;
1895 
1896 	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1897 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1898 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1899 	index = 0;
1900 	for (;;) {
1901 		u64 l = min_t(u64, len, mapped_size);
1902 
1903 		crc = btrfs_csum_data(p, crc, l);
1904 		kunmap_atomic(mapped_buffer);
1905 		len -= l;
1906 		if (len == 0)
1907 			break;
1908 		index++;
1909 		BUG_ON(index >= sblock->page_count);
1910 		BUG_ON(!sblock->pagev[index]->page);
1911 		page = sblock->pagev[index]->page;
1912 		mapped_buffer = kmap_atomic(page);
1913 		mapped_size = PAGE_SIZE;
1914 		p = mapped_buffer;
1915 	}
1916 
1917 	btrfs_csum_final(crc, calculated_csum);
1918 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1919 		sblock->checksum_error = 1;
1920 
1921 	return sblock->header_error || sblock->checksum_error;
1922 }
1923 
1924 static int scrub_checksum_super(struct scrub_block *sblock)
1925 {
1926 	struct btrfs_super_block *s;
1927 	struct scrub_ctx *sctx = sblock->sctx;
1928 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1929 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1930 	struct page *page;
1931 	void *mapped_buffer;
1932 	u64 mapped_size;
1933 	void *p;
1934 	u32 crc = ~(u32)0;
1935 	int fail_gen = 0;
1936 	int fail_cor = 0;
1937 	u64 len;
1938 	int index;
1939 
1940 	BUG_ON(sblock->page_count < 1);
1941 	page = sblock->pagev[0]->page;
1942 	mapped_buffer = kmap_atomic(page);
1943 	s = (struct btrfs_super_block *)mapped_buffer;
1944 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1945 
1946 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1947 		++fail_cor;
1948 
1949 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1950 		++fail_gen;
1951 
1952 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1953 		++fail_cor;
1954 
1955 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1956 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1957 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1958 	index = 0;
1959 	for (;;) {
1960 		u64 l = min_t(u64, len, mapped_size);
1961 
1962 		crc = btrfs_csum_data(p, crc, l);
1963 		kunmap_atomic(mapped_buffer);
1964 		len -= l;
1965 		if (len == 0)
1966 			break;
1967 		index++;
1968 		BUG_ON(index >= sblock->page_count);
1969 		BUG_ON(!sblock->pagev[index]->page);
1970 		page = sblock->pagev[index]->page;
1971 		mapped_buffer = kmap_atomic(page);
1972 		mapped_size = PAGE_SIZE;
1973 		p = mapped_buffer;
1974 	}
1975 
1976 	btrfs_csum_final(crc, calculated_csum);
1977 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1978 		++fail_cor;
1979 
1980 	if (fail_cor + fail_gen) {
1981 		/*
1982 		 * if we find an error in a super block, we just report it.
1983 		 * They will get written with the next transaction commit
1984 		 * anyway
1985 		 */
1986 		spin_lock(&sctx->stat_lock);
1987 		++sctx->stat.super_errors;
1988 		spin_unlock(&sctx->stat_lock);
1989 		if (fail_cor)
1990 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1991 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1992 		else
1993 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1994 				BTRFS_DEV_STAT_GENERATION_ERRS);
1995 	}
1996 
1997 	return fail_cor + fail_gen;
1998 }
1999 
2000 static void scrub_block_get(struct scrub_block *sblock)
2001 {
2002 	atomic_inc(&sblock->refs);
2003 }
2004 
2005 static void scrub_block_put(struct scrub_block *sblock)
2006 {
2007 	if (atomic_dec_and_test(&sblock->refs)) {
2008 		int i;
2009 
2010 		if (sblock->sparity)
2011 			scrub_parity_put(sblock->sparity);
2012 
2013 		for (i = 0; i < sblock->page_count; i++)
2014 			scrub_page_put(sblock->pagev[i]);
2015 		kfree(sblock);
2016 	}
2017 }
2018 
2019 static void scrub_page_get(struct scrub_page *spage)
2020 {
2021 	atomic_inc(&spage->refs);
2022 }
2023 
2024 static void scrub_page_put(struct scrub_page *spage)
2025 {
2026 	if (atomic_dec_and_test(&spage->refs)) {
2027 		if (spage->page)
2028 			__free_page(spage->page);
2029 		kfree(spage);
2030 	}
2031 }
2032 
2033 static void scrub_submit(struct scrub_ctx *sctx)
2034 {
2035 	struct scrub_bio *sbio;
2036 
2037 	if (sctx->curr == -1)
2038 		return;
2039 
2040 	sbio = sctx->bios[sctx->curr];
2041 	sctx->curr = -1;
2042 	scrub_pending_bio_inc(sctx);
2043 	btrfsic_submit_bio(READ, sbio->bio);
2044 }
2045 
2046 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2047 				    struct scrub_page *spage)
2048 {
2049 	struct scrub_block *sblock = spage->sblock;
2050 	struct scrub_bio *sbio;
2051 	int ret;
2052 
2053 again:
2054 	/*
2055 	 * grab a fresh bio or wait for one to become available
2056 	 */
2057 	while (sctx->curr == -1) {
2058 		spin_lock(&sctx->list_lock);
2059 		sctx->curr = sctx->first_free;
2060 		if (sctx->curr != -1) {
2061 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2062 			sctx->bios[sctx->curr]->next_free = -1;
2063 			sctx->bios[sctx->curr]->page_count = 0;
2064 			spin_unlock(&sctx->list_lock);
2065 		} else {
2066 			spin_unlock(&sctx->list_lock);
2067 			wait_event(sctx->list_wait, sctx->first_free != -1);
2068 		}
2069 	}
2070 	sbio = sctx->bios[sctx->curr];
2071 	if (sbio->page_count == 0) {
2072 		struct bio *bio;
2073 
2074 		sbio->physical = spage->physical;
2075 		sbio->logical = spage->logical;
2076 		sbio->dev = spage->dev;
2077 		bio = sbio->bio;
2078 		if (!bio) {
2079 			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
2080 			if (!bio)
2081 				return -ENOMEM;
2082 			sbio->bio = bio;
2083 		}
2084 
2085 		bio->bi_private = sbio;
2086 		bio->bi_end_io = scrub_bio_end_io;
2087 		bio->bi_bdev = sbio->dev->bdev;
2088 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2089 		sbio->err = 0;
2090 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2091 		   spage->physical ||
2092 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2093 		   spage->logical ||
2094 		   sbio->dev != spage->dev) {
2095 		scrub_submit(sctx);
2096 		goto again;
2097 	}
2098 
2099 	sbio->pagev[sbio->page_count] = spage;
2100 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2101 	if (ret != PAGE_SIZE) {
2102 		if (sbio->page_count < 1) {
2103 			bio_put(sbio->bio);
2104 			sbio->bio = NULL;
2105 			return -EIO;
2106 		}
2107 		scrub_submit(sctx);
2108 		goto again;
2109 	}
2110 
2111 	scrub_block_get(sblock); /* one for the page added to the bio */
2112 	atomic_inc(&sblock->outstanding_pages);
2113 	sbio->page_count++;
2114 	if (sbio->page_count == sctx->pages_per_rd_bio)
2115 		scrub_submit(sctx);
2116 
2117 	return 0;
2118 }
2119 
2120 static void scrub_missing_raid56_end_io(struct bio *bio)
2121 {
2122 	struct scrub_block *sblock = bio->bi_private;
2123 	struct btrfs_fs_info *fs_info = sblock->sctx->dev_root->fs_info;
2124 
2125 	if (bio->bi_error)
2126 		sblock->no_io_error_seen = 0;
2127 
2128 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2129 }
2130 
2131 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2132 {
2133 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2134 	struct scrub_ctx *sctx = sblock->sctx;
2135 	u64 logical;
2136 	struct btrfs_device *dev;
2137 
2138 	logical = sblock->pagev[0]->logical;
2139 	dev = sblock->pagev[0]->dev;
2140 
2141 	if (sblock->no_io_error_seen)
2142 		scrub_recheck_block_checksum(sblock);
2143 
2144 	if (!sblock->no_io_error_seen) {
2145 		spin_lock(&sctx->stat_lock);
2146 		sctx->stat.read_errors++;
2147 		spin_unlock(&sctx->stat_lock);
2148 		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
2149 			"IO error rebuilding logical %llu for dev %s",
2150 			logical, rcu_str_deref(dev->name));
2151 	} else if (sblock->header_error || sblock->checksum_error) {
2152 		spin_lock(&sctx->stat_lock);
2153 		sctx->stat.uncorrectable_errors++;
2154 		spin_unlock(&sctx->stat_lock);
2155 		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
2156 			"failed to rebuild valid logical %llu for dev %s",
2157 			logical, rcu_str_deref(dev->name));
2158 	} else {
2159 		scrub_write_block_to_dev_replace(sblock);
2160 	}
2161 
2162 	scrub_block_put(sblock);
2163 
2164 	if (sctx->is_dev_replace &&
2165 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2166 		mutex_lock(&sctx->wr_ctx.wr_lock);
2167 		scrub_wr_submit(sctx);
2168 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2169 	}
2170 
2171 	scrub_pending_bio_dec(sctx);
2172 }
2173 
2174 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2175 {
2176 	struct scrub_ctx *sctx = sblock->sctx;
2177 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2178 	u64 length = sblock->page_count * PAGE_SIZE;
2179 	u64 logical = sblock->pagev[0]->logical;
2180 	struct btrfs_bio *bbio;
2181 	struct bio *bio;
2182 	struct btrfs_raid_bio *rbio;
2183 	int ret;
2184 	int i;
2185 
2186 	ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
2187 			       &bbio, 0, 1);
2188 	if (ret || !bbio || !bbio->raid_map)
2189 		goto bbio_out;
2190 
2191 	if (WARN_ON(!sctx->is_dev_replace ||
2192 		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2193 		/*
2194 		 * We shouldn't be scrubbing a missing device. Even for dev
2195 		 * replace, we should only get here for RAID 5/6. We either
2196 		 * managed to mount something with no mirrors remaining or
2197 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2198 		 */
2199 		goto bbio_out;
2200 	}
2201 
2202 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2203 	if (!bio)
2204 		goto bbio_out;
2205 
2206 	bio->bi_iter.bi_sector = logical >> 9;
2207 	bio->bi_private = sblock;
2208 	bio->bi_end_io = scrub_missing_raid56_end_io;
2209 
2210 	rbio = raid56_alloc_missing_rbio(sctx->dev_root, bio, bbio, length);
2211 	if (!rbio)
2212 		goto rbio_out;
2213 
2214 	for (i = 0; i < sblock->page_count; i++) {
2215 		struct scrub_page *spage = sblock->pagev[i];
2216 
2217 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2218 	}
2219 
2220 	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2221 			scrub_missing_raid56_worker, NULL, NULL);
2222 	scrub_block_get(sblock);
2223 	scrub_pending_bio_inc(sctx);
2224 	raid56_submit_missing_rbio(rbio);
2225 	return;
2226 
2227 rbio_out:
2228 	bio_put(bio);
2229 bbio_out:
2230 	btrfs_put_bbio(bbio);
2231 	spin_lock(&sctx->stat_lock);
2232 	sctx->stat.malloc_errors++;
2233 	spin_unlock(&sctx->stat_lock);
2234 }
2235 
2236 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2237 		       u64 physical, struct btrfs_device *dev, u64 flags,
2238 		       u64 gen, int mirror_num, u8 *csum, int force,
2239 		       u64 physical_for_dev_replace)
2240 {
2241 	struct scrub_block *sblock;
2242 	int index;
2243 
2244 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2245 	if (!sblock) {
2246 		spin_lock(&sctx->stat_lock);
2247 		sctx->stat.malloc_errors++;
2248 		spin_unlock(&sctx->stat_lock);
2249 		return -ENOMEM;
2250 	}
2251 
2252 	/* one ref inside this function, plus one for each page added to
2253 	 * a bio later on */
2254 	atomic_set(&sblock->refs, 1);
2255 	sblock->sctx = sctx;
2256 	sblock->no_io_error_seen = 1;
2257 
2258 	for (index = 0; len > 0; index++) {
2259 		struct scrub_page *spage;
2260 		u64 l = min_t(u64, len, PAGE_SIZE);
2261 
2262 		spage = kzalloc(sizeof(*spage), GFP_NOFS);
2263 		if (!spage) {
2264 leave_nomem:
2265 			spin_lock(&sctx->stat_lock);
2266 			sctx->stat.malloc_errors++;
2267 			spin_unlock(&sctx->stat_lock);
2268 			scrub_block_put(sblock);
2269 			return -ENOMEM;
2270 		}
2271 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2272 		scrub_page_get(spage);
2273 		sblock->pagev[index] = spage;
2274 		spage->sblock = sblock;
2275 		spage->dev = dev;
2276 		spage->flags = flags;
2277 		spage->generation = gen;
2278 		spage->logical = logical;
2279 		spage->physical = physical;
2280 		spage->physical_for_dev_replace = physical_for_dev_replace;
2281 		spage->mirror_num = mirror_num;
2282 		if (csum) {
2283 			spage->have_csum = 1;
2284 			memcpy(spage->csum, csum, sctx->csum_size);
2285 		} else {
2286 			spage->have_csum = 0;
2287 		}
2288 		sblock->page_count++;
2289 		spage->page = alloc_page(GFP_NOFS);
2290 		if (!spage->page)
2291 			goto leave_nomem;
2292 		len -= l;
2293 		logical += l;
2294 		physical += l;
2295 		physical_for_dev_replace += l;
2296 	}
2297 
2298 	WARN_ON(sblock->page_count == 0);
2299 	if (dev->missing) {
2300 		/*
2301 		 * This case should only be hit for RAID 5/6 device replace. See
2302 		 * the comment in scrub_missing_raid56_pages() for details.
2303 		 */
2304 		scrub_missing_raid56_pages(sblock);
2305 	} else {
2306 		for (index = 0; index < sblock->page_count; index++) {
2307 			struct scrub_page *spage = sblock->pagev[index];
2308 			int ret;
2309 
2310 			ret = scrub_add_page_to_rd_bio(sctx, spage);
2311 			if (ret) {
2312 				scrub_block_put(sblock);
2313 				return ret;
2314 			}
2315 		}
2316 
2317 		if (force)
2318 			scrub_submit(sctx);
2319 	}
2320 
2321 	/* last one frees, either here or in bio completion for last page */
2322 	scrub_block_put(sblock);
2323 	return 0;
2324 }
2325 
2326 static void scrub_bio_end_io(struct bio *bio)
2327 {
2328 	struct scrub_bio *sbio = bio->bi_private;
2329 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2330 
2331 	sbio->err = bio->bi_error;
2332 	sbio->bio = bio;
2333 
2334 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2335 }
2336 
2337 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2338 {
2339 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2340 	struct scrub_ctx *sctx = sbio->sctx;
2341 	int i;
2342 
2343 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2344 	if (sbio->err) {
2345 		for (i = 0; i < sbio->page_count; i++) {
2346 			struct scrub_page *spage = sbio->pagev[i];
2347 
2348 			spage->io_error = 1;
2349 			spage->sblock->no_io_error_seen = 0;
2350 		}
2351 	}
2352 
2353 	/* now complete the scrub_block items that have all pages completed */
2354 	for (i = 0; i < sbio->page_count; i++) {
2355 		struct scrub_page *spage = sbio->pagev[i];
2356 		struct scrub_block *sblock = spage->sblock;
2357 
2358 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2359 			scrub_block_complete(sblock);
2360 		scrub_block_put(sblock);
2361 	}
2362 
2363 	bio_put(sbio->bio);
2364 	sbio->bio = NULL;
2365 	spin_lock(&sctx->list_lock);
2366 	sbio->next_free = sctx->first_free;
2367 	sctx->first_free = sbio->index;
2368 	spin_unlock(&sctx->list_lock);
2369 
2370 	if (sctx->is_dev_replace &&
2371 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2372 		mutex_lock(&sctx->wr_ctx.wr_lock);
2373 		scrub_wr_submit(sctx);
2374 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2375 	}
2376 
2377 	scrub_pending_bio_dec(sctx);
2378 }
2379 
2380 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2381 				       unsigned long *bitmap,
2382 				       u64 start, u64 len)
2383 {
2384 	u32 offset;
2385 	int nsectors;
2386 	int sectorsize = sparity->sctx->dev_root->sectorsize;
2387 
2388 	if (len >= sparity->stripe_len) {
2389 		bitmap_set(bitmap, 0, sparity->nsectors);
2390 		return;
2391 	}
2392 
2393 	start -= sparity->logic_start;
2394 	start = div_u64_rem(start, sparity->stripe_len, &offset);
2395 	offset /= sectorsize;
2396 	nsectors = (int)len / sectorsize;
2397 
2398 	if (offset + nsectors <= sparity->nsectors) {
2399 		bitmap_set(bitmap, offset, nsectors);
2400 		return;
2401 	}
2402 
2403 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2404 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2405 }
2406 
2407 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2408 						   u64 start, u64 len)
2409 {
2410 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2411 }
2412 
2413 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2414 						  u64 start, u64 len)
2415 {
2416 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2417 }
2418 
2419 static void scrub_block_complete(struct scrub_block *sblock)
2420 {
2421 	int corrupted = 0;
2422 
2423 	if (!sblock->no_io_error_seen) {
2424 		corrupted = 1;
2425 		scrub_handle_errored_block(sblock);
2426 	} else {
2427 		/*
2428 		 * if has checksum error, write via repair mechanism in
2429 		 * dev replace case, otherwise write here in dev replace
2430 		 * case.
2431 		 */
2432 		corrupted = scrub_checksum(sblock);
2433 		if (!corrupted && sblock->sctx->is_dev_replace)
2434 			scrub_write_block_to_dev_replace(sblock);
2435 	}
2436 
2437 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2438 		u64 start = sblock->pagev[0]->logical;
2439 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2440 			  PAGE_SIZE;
2441 
2442 		scrub_parity_mark_sectors_error(sblock->sparity,
2443 						start, end - start);
2444 	}
2445 }
2446 
2447 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2448 {
2449 	struct btrfs_ordered_sum *sum = NULL;
2450 	unsigned long index;
2451 	unsigned long num_sectors;
2452 
2453 	while (!list_empty(&sctx->csum_list)) {
2454 		sum = list_first_entry(&sctx->csum_list,
2455 				       struct btrfs_ordered_sum, list);
2456 		if (sum->bytenr > logical)
2457 			return 0;
2458 		if (sum->bytenr + sum->len > logical)
2459 			break;
2460 
2461 		++sctx->stat.csum_discards;
2462 		list_del(&sum->list);
2463 		kfree(sum);
2464 		sum = NULL;
2465 	}
2466 	if (!sum)
2467 		return 0;
2468 
2469 	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2470 	num_sectors = sum->len / sctx->sectorsize;
2471 	memcpy(csum, sum->sums + index, sctx->csum_size);
2472 	if (index == num_sectors - 1) {
2473 		list_del(&sum->list);
2474 		kfree(sum);
2475 	}
2476 	return 1;
2477 }
2478 
2479 /* scrub extent tries to collect up to 64 kB for each bio */
2480 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2481 			u64 physical, struct btrfs_device *dev, u64 flags,
2482 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2483 {
2484 	int ret;
2485 	u8 csum[BTRFS_CSUM_SIZE];
2486 	u32 blocksize;
2487 
2488 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2489 		blocksize = sctx->sectorsize;
2490 		spin_lock(&sctx->stat_lock);
2491 		sctx->stat.data_extents_scrubbed++;
2492 		sctx->stat.data_bytes_scrubbed += len;
2493 		spin_unlock(&sctx->stat_lock);
2494 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2495 		blocksize = sctx->nodesize;
2496 		spin_lock(&sctx->stat_lock);
2497 		sctx->stat.tree_extents_scrubbed++;
2498 		sctx->stat.tree_bytes_scrubbed += len;
2499 		spin_unlock(&sctx->stat_lock);
2500 	} else {
2501 		blocksize = sctx->sectorsize;
2502 		WARN_ON(1);
2503 	}
2504 
2505 	while (len) {
2506 		u64 l = min_t(u64, len, blocksize);
2507 		int have_csum = 0;
2508 
2509 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2510 			/* push csums to sbio */
2511 			have_csum = scrub_find_csum(sctx, logical, csum);
2512 			if (have_csum == 0)
2513 				++sctx->stat.no_csum;
2514 			if (sctx->is_dev_replace && !have_csum) {
2515 				ret = copy_nocow_pages(sctx, logical, l,
2516 						       mirror_num,
2517 						      physical_for_dev_replace);
2518 				goto behind_scrub_pages;
2519 			}
2520 		}
2521 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2522 				  mirror_num, have_csum ? csum : NULL, 0,
2523 				  physical_for_dev_replace);
2524 behind_scrub_pages:
2525 		if (ret)
2526 			return ret;
2527 		len -= l;
2528 		logical += l;
2529 		physical += l;
2530 		physical_for_dev_replace += l;
2531 	}
2532 	return 0;
2533 }
2534 
2535 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2536 				  u64 logical, u64 len,
2537 				  u64 physical, struct btrfs_device *dev,
2538 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2539 {
2540 	struct scrub_ctx *sctx = sparity->sctx;
2541 	struct scrub_block *sblock;
2542 	int index;
2543 
2544 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2545 	if (!sblock) {
2546 		spin_lock(&sctx->stat_lock);
2547 		sctx->stat.malloc_errors++;
2548 		spin_unlock(&sctx->stat_lock);
2549 		return -ENOMEM;
2550 	}
2551 
2552 	/* one ref inside this function, plus one for each page added to
2553 	 * a bio later on */
2554 	atomic_set(&sblock->refs, 1);
2555 	sblock->sctx = sctx;
2556 	sblock->no_io_error_seen = 1;
2557 	sblock->sparity = sparity;
2558 	scrub_parity_get(sparity);
2559 
2560 	for (index = 0; len > 0; index++) {
2561 		struct scrub_page *spage;
2562 		u64 l = min_t(u64, len, PAGE_SIZE);
2563 
2564 		spage = kzalloc(sizeof(*spage), GFP_NOFS);
2565 		if (!spage) {
2566 leave_nomem:
2567 			spin_lock(&sctx->stat_lock);
2568 			sctx->stat.malloc_errors++;
2569 			spin_unlock(&sctx->stat_lock);
2570 			scrub_block_put(sblock);
2571 			return -ENOMEM;
2572 		}
2573 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2574 		/* For scrub block */
2575 		scrub_page_get(spage);
2576 		sblock->pagev[index] = spage;
2577 		/* For scrub parity */
2578 		scrub_page_get(spage);
2579 		list_add_tail(&spage->list, &sparity->spages);
2580 		spage->sblock = sblock;
2581 		spage->dev = dev;
2582 		spage->flags = flags;
2583 		spage->generation = gen;
2584 		spage->logical = logical;
2585 		spage->physical = physical;
2586 		spage->mirror_num = mirror_num;
2587 		if (csum) {
2588 			spage->have_csum = 1;
2589 			memcpy(spage->csum, csum, sctx->csum_size);
2590 		} else {
2591 			spage->have_csum = 0;
2592 		}
2593 		sblock->page_count++;
2594 		spage->page = alloc_page(GFP_NOFS);
2595 		if (!spage->page)
2596 			goto leave_nomem;
2597 		len -= l;
2598 		logical += l;
2599 		physical += l;
2600 	}
2601 
2602 	WARN_ON(sblock->page_count == 0);
2603 	for (index = 0; index < sblock->page_count; index++) {
2604 		struct scrub_page *spage = sblock->pagev[index];
2605 		int ret;
2606 
2607 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2608 		if (ret) {
2609 			scrub_block_put(sblock);
2610 			return ret;
2611 		}
2612 	}
2613 
2614 	/* last one frees, either here or in bio completion for last page */
2615 	scrub_block_put(sblock);
2616 	return 0;
2617 }
2618 
2619 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2620 				   u64 logical, u64 len,
2621 				   u64 physical, struct btrfs_device *dev,
2622 				   u64 flags, u64 gen, int mirror_num)
2623 {
2624 	struct scrub_ctx *sctx = sparity->sctx;
2625 	int ret;
2626 	u8 csum[BTRFS_CSUM_SIZE];
2627 	u32 blocksize;
2628 
2629 	if (dev->missing) {
2630 		scrub_parity_mark_sectors_error(sparity, logical, len);
2631 		return 0;
2632 	}
2633 
2634 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2635 		blocksize = sctx->sectorsize;
2636 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2637 		blocksize = sctx->nodesize;
2638 	} else {
2639 		blocksize = sctx->sectorsize;
2640 		WARN_ON(1);
2641 	}
2642 
2643 	while (len) {
2644 		u64 l = min_t(u64, len, blocksize);
2645 		int have_csum = 0;
2646 
2647 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2648 			/* push csums to sbio */
2649 			have_csum = scrub_find_csum(sctx, logical, csum);
2650 			if (have_csum == 0)
2651 				goto skip;
2652 		}
2653 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2654 					     flags, gen, mirror_num,
2655 					     have_csum ? csum : NULL);
2656 		if (ret)
2657 			return ret;
2658 skip:
2659 		len -= l;
2660 		logical += l;
2661 		physical += l;
2662 	}
2663 	return 0;
2664 }
2665 
2666 /*
2667  * Given a physical address, this will calculate it's
2668  * logical offset. if this is a parity stripe, it will return
2669  * the most left data stripe's logical offset.
2670  *
2671  * return 0 if it is a data stripe, 1 means parity stripe.
2672  */
2673 static int get_raid56_logic_offset(u64 physical, int num,
2674 				   struct map_lookup *map, u64 *offset,
2675 				   u64 *stripe_start)
2676 {
2677 	int i;
2678 	int j = 0;
2679 	u64 stripe_nr;
2680 	u64 last_offset;
2681 	u32 stripe_index;
2682 	u32 rot;
2683 
2684 	last_offset = (physical - map->stripes[num].physical) *
2685 		      nr_data_stripes(map);
2686 	if (stripe_start)
2687 		*stripe_start = last_offset;
2688 
2689 	*offset = last_offset;
2690 	for (i = 0; i < nr_data_stripes(map); i++) {
2691 		*offset = last_offset + i * map->stripe_len;
2692 
2693 		stripe_nr = div_u64(*offset, map->stripe_len);
2694 		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2695 
2696 		/* Work out the disk rotation on this stripe-set */
2697 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2698 		/* calculate which stripe this data locates */
2699 		rot += i;
2700 		stripe_index = rot % map->num_stripes;
2701 		if (stripe_index == num)
2702 			return 0;
2703 		if (stripe_index < num)
2704 			j++;
2705 	}
2706 	*offset = last_offset + j * map->stripe_len;
2707 	return 1;
2708 }
2709 
2710 static void scrub_free_parity(struct scrub_parity *sparity)
2711 {
2712 	struct scrub_ctx *sctx = sparity->sctx;
2713 	struct scrub_page *curr, *next;
2714 	int nbits;
2715 
2716 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2717 	if (nbits) {
2718 		spin_lock(&sctx->stat_lock);
2719 		sctx->stat.read_errors += nbits;
2720 		sctx->stat.uncorrectable_errors += nbits;
2721 		spin_unlock(&sctx->stat_lock);
2722 	}
2723 
2724 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2725 		list_del_init(&curr->list);
2726 		scrub_page_put(curr);
2727 	}
2728 
2729 	kfree(sparity);
2730 }
2731 
2732 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2733 {
2734 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2735 						    work);
2736 	struct scrub_ctx *sctx = sparity->sctx;
2737 
2738 	scrub_free_parity(sparity);
2739 	scrub_pending_bio_dec(sctx);
2740 }
2741 
2742 static void scrub_parity_bio_endio(struct bio *bio)
2743 {
2744 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2745 
2746 	if (bio->bi_error)
2747 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2748 			  sparity->nsectors);
2749 
2750 	bio_put(bio);
2751 
2752 	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2753 			scrub_parity_bio_endio_worker, NULL, NULL);
2754 	btrfs_queue_work(sparity->sctx->dev_root->fs_info->scrub_parity_workers,
2755 			 &sparity->work);
2756 }
2757 
2758 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2759 {
2760 	struct scrub_ctx *sctx = sparity->sctx;
2761 	struct bio *bio;
2762 	struct btrfs_raid_bio *rbio;
2763 	struct scrub_page *spage;
2764 	struct btrfs_bio *bbio = NULL;
2765 	u64 length;
2766 	int ret;
2767 
2768 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2769 			   sparity->nsectors))
2770 		goto out;
2771 
2772 	length = sparity->logic_end - sparity->logic_start;
2773 	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2774 			       sparity->logic_start,
2775 			       &length, &bbio, 0, 1);
2776 	if (ret || !bbio || !bbio->raid_map)
2777 		goto bbio_out;
2778 
2779 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2780 	if (!bio)
2781 		goto bbio_out;
2782 
2783 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2784 	bio->bi_private = sparity;
2785 	bio->bi_end_io = scrub_parity_bio_endio;
2786 
2787 	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2788 					      length, sparity->scrub_dev,
2789 					      sparity->dbitmap,
2790 					      sparity->nsectors);
2791 	if (!rbio)
2792 		goto rbio_out;
2793 
2794 	list_for_each_entry(spage, &sparity->spages, list)
2795 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2796 
2797 	scrub_pending_bio_inc(sctx);
2798 	raid56_parity_submit_scrub_rbio(rbio);
2799 	return;
2800 
2801 rbio_out:
2802 	bio_put(bio);
2803 bbio_out:
2804 	btrfs_put_bbio(bbio);
2805 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2806 		  sparity->nsectors);
2807 	spin_lock(&sctx->stat_lock);
2808 	sctx->stat.malloc_errors++;
2809 	spin_unlock(&sctx->stat_lock);
2810 out:
2811 	scrub_free_parity(sparity);
2812 }
2813 
2814 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2815 {
2816 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2817 }
2818 
2819 static void scrub_parity_get(struct scrub_parity *sparity)
2820 {
2821 	atomic_inc(&sparity->refs);
2822 }
2823 
2824 static void scrub_parity_put(struct scrub_parity *sparity)
2825 {
2826 	if (!atomic_dec_and_test(&sparity->refs))
2827 		return;
2828 
2829 	scrub_parity_check_and_repair(sparity);
2830 }
2831 
2832 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2833 						  struct map_lookup *map,
2834 						  struct btrfs_device *sdev,
2835 						  struct btrfs_path *path,
2836 						  u64 logic_start,
2837 						  u64 logic_end)
2838 {
2839 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2840 	struct btrfs_root *root = fs_info->extent_root;
2841 	struct btrfs_root *csum_root = fs_info->csum_root;
2842 	struct btrfs_extent_item *extent;
2843 	struct btrfs_bio *bbio = NULL;
2844 	u64 flags;
2845 	int ret;
2846 	int slot;
2847 	struct extent_buffer *l;
2848 	struct btrfs_key key;
2849 	u64 generation;
2850 	u64 extent_logical;
2851 	u64 extent_physical;
2852 	u64 extent_len;
2853 	u64 mapped_length;
2854 	struct btrfs_device *extent_dev;
2855 	struct scrub_parity *sparity;
2856 	int nsectors;
2857 	int bitmap_len;
2858 	int extent_mirror_num;
2859 	int stop_loop = 0;
2860 
2861 	nsectors = map->stripe_len / root->sectorsize;
2862 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2863 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2864 			  GFP_NOFS);
2865 	if (!sparity) {
2866 		spin_lock(&sctx->stat_lock);
2867 		sctx->stat.malloc_errors++;
2868 		spin_unlock(&sctx->stat_lock);
2869 		return -ENOMEM;
2870 	}
2871 
2872 	sparity->stripe_len = map->stripe_len;
2873 	sparity->nsectors = nsectors;
2874 	sparity->sctx = sctx;
2875 	sparity->scrub_dev = sdev;
2876 	sparity->logic_start = logic_start;
2877 	sparity->logic_end = logic_end;
2878 	atomic_set(&sparity->refs, 1);
2879 	INIT_LIST_HEAD(&sparity->spages);
2880 	sparity->dbitmap = sparity->bitmap;
2881 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2882 
2883 	ret = 0;
2884 	while (logic_start < logic_end) {
2885 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2886 			key.type = BTRFS_METADATA_ITEM_KEY;
2887 		else
2888 			key.type = BTRFS_EXTENT_ITEM_KEY;
2889 		key.objectid = logic_start;
2890 		key.offset = (u64)-1;
2891 
2892 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2893 		if (ret < 0)
2894 			goto out;
2895 
2896 		if (ret > 0) {
2897 			ret = btrfs_previous_extent_item(root, path, 0);
2898 			if (ret < 0)
2899 				goto out;
2900 			if (ret > 0) {
2901 				btrfs_release_path(path);
2902 				ret = btrfs_search_slot(NULL, root, &key,
2903 							path, 0, 0);
2904 				if (ret < 0)
2905 					goto out;
2906 			}
2907 		}
2908 
2909 		stop_loop = 0;
2910 		while (1) {
2911 			u64 bytes;
2912 
2913 			l = path->nodes[0];
2914 			slot = path->slots[0];
2915 			if (slot >= btrfs_header_nritems(l)) {
2916 				ret = btrfs_next_leaf(root, path);
2917 				if (ret == 0)
2918 					continue;
2919 				if (ret < 0)
2920 					goto out;
2921 
2922 				stop_loop = 1;
2923 				break;
2924 			}
2925 			btrfs_item_key_to_cpu(l, &key, slot);
2926 
2927 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2928 			    key.type != BTRFS_METADATA_ITEM_KEY)
2929 				goto next;
2930 
2931 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2932 				bytes = root->nodesize;
2933 			else
2934 				bytes = key.offset;
2935 
2936 			if (key.objectid + bytes <= logic_start)
2937 				goto next;
2938 
2939 			if (key.objectid >= logic_end) {
2940 				stop_loop = 1;
2941 				break;
2942 			}
2943 
2944 			while (key.objectid >= logic_start + map->stripe_len)
2945 				logic_start += map->stripe_len;
2946 
2947 			extent = btrfs_item_ptr(l, slot,
2948 						struct btrfs_extent_item);
2949 			flags = btrfs_extent_flags(l, extent);
2950 			generation = btrfs_extent_generation(l, extent);
2951 
2952 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2953 			    (key.objectid < logic_start ||
2954 			     key.objectid + bytes >
2955 			     logic_start + map->stripe_len)) {
2956 				btrfs_err(fs_info, "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2957 					  key.objectid, logic_start);
2958 				spin_lock(&sctx->stat_lock);
2959 				sctx->stat.uncorrectable_errors++;
2960 				spin_unlock(&sctx->stat_lock);
2961 				goto next;
2962 			}
2963 again:
2964 			extent_logical = key.objectid;
2965 			extent_len = bytes;
2966 
2967 			if (extent_logical < logic_start) {
2968 				extent_len -= logic_start - extent_logical;
2969 				extent_logical = logic_start;
2970 			}
2971 
2972 			if (extent_logical + extent_len >
2973 			    logic_start + map->stripe_len)
2974 				extent_len = logic_start + map->stripe_len -
2975 					     extent_logical;
2976 
2977 			scrub_parity_mark_sectors_data(sparity, extent_logical,
2978 						       extent_len);
2979 
2980 			mapped_length = extent_len;
2981 			ret = btrfs_map_block(fs_info, READ, extent_logical,
2982 					      &mapped_length, &bbio, 0);
2983 			if (!ret) {
2984 				if (!bbio || mapped_length < extent_len)
2985 					ret = -EIO;
2986 			}
2987 			if (ret) {
2988 				btrfs_put_bbio(bbio);
2989 				goto out;
2990 			}
2991 			extent_physical = bbio->stripes[0].physical;
2992 			extent_mirror_num = bbio->mirror_num;
2993 			extent_dev = bbio->stripes[0].dev;
2994 			btrfs_put_bbio(bbio);
2995 
2996 			ret = btrfs_lookup_csums_range(csum_root,
2997 						extent_logical,
2998 						extent_logical + extent_len - 1,
2999 						&sctx->csum_list, 1);
3000 			if (ret)
3001 				goto out;
3002 
3003 			ret = scrub_extent_for_parity(sparity, extent_logical,
3004 						      extent_len,
3005 						      extent_physical,
3006 						      extent_dev, flags,
3007 						      generation,
3008 						      extent_mirror_num);
3009 
3010 			scrub_free_csums(sctx);
3011 
3012 			if (ret)
3013 				goto out;
3014 
3015 			if (extent_logical + extent_len <
3016 			    key.objectid + bytes) {
3017 				logic_start += map->stripe_len;
3018 
3019 				if (logic_start >= logic_end) {
3020 					stop_loop = 1;
3021 					break;
3022 				}
3023 
3024 				if (logic_start < key.objectid + bytes) {
3025 					cond_resched();
3026 					goto again;
3027 				}
3028 			}
3029 next:
3030 			path->slots[0]++;
3031 		}
3032 
3033 		btrfs_release_path(path);
3034 
3035 		if (stop_loop)
3036 			break;
3037 
3038 		logic_start += map->stripe_len;
3039 	}
3040 out:
3041 	if (ret < 0)
3042 		scrub_parity_mark_sectors_error(sparity, logic_start,
3043 						logic_end - logic_start);
3044 	scrub_parity_put(sparity);
3045 	scrub_submit(sctx);
3046 	mutex_lock(&sctx->wr_ctx.wr_lock);
3047 	scrub_wr_submit(sctx);
3048 	mutex_unlock(&sctx->wr_ctx.wr_lock);
3049 
3050 	btrfs_release_path(path);
3051 	return ret < 0 ? ret : 0;
3052 }
3053 
3054 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3055 					   struct map_lookup *map,
3056 					   struct btrfs_device *scrub_dev,
3057 					   int num, u64 base, u64 length,
3058 					   int is_dev_replace)
3059 {
3060 	struct btrfs_path *path, *ppath;
3061 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3062 	struct btrfs_root *root = fs_info->extent_root;
3063 	struct btrfs_root *csum_root = fs_info->csum_root;
3064 	struct btrfs_extent_item *extent;
3065 	struct blk_plug plug;
3066 	u64 flags;
3067 	int ret;
3068 	int slot;
3069 	u64 nstripes;
3070 	struct extent_buffer *l;
3071 	struct btrfs_key key;
3072 	u64 physical;
3073 	u64 logical;
3074 	u64 logic_end;
3075 	u64 physical_end;
3076 	u64 generation;
3077 	int mirror_num;
3078 	struct reada_control *reada1;
3079 	struct reada_control *reada2;
3080 	struct btrfs_key key_start;
3081 	struct btrfs_key key_end;
3082 	u64 increment = map->stripe_len;
3083 	u64 offset;
3084 	u64 extent_logical;
3085 	u64 extent_physical;
3086 	u64 extent_len;
3087 	u64 stripe_logical;
3088 	u64 stripe_end;
3089 	struct btrfs_device *extent_dev;
3090 	int extent_mirror_num;
3091 	int stop_loop = 0;
3092 
3093 	physical = map->stripes[num].physical;
3094 	offset = 0;
3095 	nstripes = div_u64(length, map->stripe_len);
3096 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3097 		offset = map->stripe_len * num;
3098 		increment = map->stripe_len * map->num_stripes;
3099 		mirror_num = 1;
3100 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3101 		int factor = map->num_stripes / map->sub_stripes;
3102 		offset = map->stripe_len * (num / map->sub_stripes);
3103 		increment = map->stripe_len * factor;
3104 		mirror_num = num % map->sub_stripes + 1;
3105 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3106 		increment = map->stripe_len;
3107 		mirror_num = num % map->num_stripes + 1;
3108 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3109 		increment = map->stripe_len;
3110 		mirror_num = num % map->num_stripes + 1;
3111 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3112 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3113 		increment = map->stripe_len * nr_data_stripes(map);
3114 		mirror_num = 1;
3115 	} else {
3116 		increment = map->stripe_len;
3117 		mirror_num = 1;
3118 	}
3119 
3120 	path = btrfs_alloc_path();
3121 	if (!path)
3122 		return -ENOMEM;
3123 
3124 	ppath = btrfs_alloc_path();
3125 	if (!ppath) {
3126 		btrfs_free_path(path);
3127 		return -ENOMEM;
3128 	}
3129 
3130 	/*
3131 	 * work on commit root. The related disk blocks are static as
3132 	 * long as COW is applied. This means, it is save to rewrite
3133 	 * them to repair disk errors without any race conditions
3134 	 */
3135 	path->search_commit_root = 1;
3136 	path->skip_locking = 1;
3137 
3138 	ppath->search_commit_root = 1;
3139 	ppath->skip_locking = 1;
3140 	/*
3141 	 * trigger the readahead for extent tree csum tree and wait for
3142 	 * completion. During readahead, the scrub is officially paused
3143 	 * to not hold off transaction commits
3144 	 */
3145 	logical = base + offset;
3146 	physical_end = physical + nstripes * map->stripe_len;
3147 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3148 		get_raid56_logic_offset(physical_end, num,
3149 					map, &logic_end, NULL);
3150 		logic_end += base;
3151 	} else {
3152 		logic_end = logical + increment * nstripes;
3153 	}
3154 	wait_event(sctx->list_wait,
3155 		   atomic_read(&sctx->bios_in_flight) == 0);
3156 	scrub_blocked_if_needed(fs_info);
3157 
3158 	/* FIXME it might be better to start readahead at commit root */
3159 	key_start.objectid = logical;
3160 	key_start.type = BTRFS_EXTENT_ITEM_KEY;
3161 	key_start.offset = (u64)0;
3162 	key_end.objectid = logic_end;
3163 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3164 	key_end.offset = (u64)-1;
3165 	reada1 = btrfs_reada_add(root, &key_start, &key_end);
3166 
3167 	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3168 	key_start.type = BTRFS_EXTENT_CSUM_KEY;
3169 	key_start.offset = logical;
3170 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3171 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3172 	key_end.offset = logic_end;
3173 	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
3174 
3175 	if (!IS_ERR(reada1))
3176 		btrfs_reada_wait(reada1);
3177 	if (!IS_ERR(reada2))
3178 		btrfs_reada_wait(reada2);
3179 
3180 
3181 	/*
3182 	 * collect all data csums for the stripe to avoid seeking during
3183 	 * the scrub. This might currently (crc32) end up to be about 1MB
3184 	 */
3185 	blk_start_plug(&plug);
3186 
3187 	/*
3188 	 * now find all extents for each stripe and scrub them
3189 	 */
3190 	ret = 0;
3191 	while (physical < physical_end) {
3192 		/*
3193 		 * canceled?
3194 		 */
3195 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3196 		    atomic_read(&sctx->cancel_req)) {
3197 			ret = -ECANCELED;
3198 			goto out;
3199 		}
3200 		/*
3201 		 * check to see if we have to pause
3202 		 */
3203 		if (atomic_read(&fs_info->scrub_pause_req)) {
3204 			/* push queued extents */
3205 			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3206 			scrub_submit(sctx);
3207 			mutex_lock(&sctx->wr_ctx.wr_lock);
3208 			scrub_wr_submit(sctx);
3209 			mutex_unlock(&sctx->wr_ctx.wr_lock);
3210 			wait_event(sctx->list_wait,
3211 				   atomic_read(&sctx->bios_in_flight) == 0);
3212 			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3213 			scrub_blocked_if_needed(fs_info);
3214 		}
3215 
3216 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3217 			ret = get_raid56_logic_offset(physical, num, map,
3218 						      &logical,
3219 						      &stripe_logical);
3220 			logical += base;
3221 			if (ret) {
3222 				/* it is parity strip */
3223 				stripe_logical += base;
3224 				stripe_end = stripe_logical + increment;
3225 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3226 							  ppath, stripe_logical,
3227 							  stripe_end);
3228 				if (ret)
3229 					goto out;
3230 				goto skip;
3231 			}
3232 		}
3233 
3234 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3235 			key.type = BTRFS_METADATA_ITEM_KEY;
3236 		else
3237 			key.type = BTRFS_EXTENT_ITEM_KEY;
3238 		key.objectid = logical;
3239 		key.offset = (u64)-1;
3240 
3241 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3242 		if (ret < 0)
3243 			goto out;
3244 
3245 		if (ret > 0) {
3246 			ret = btrfs_previous_extent_item(root, path, 0);
3247 			if (ret < 0)
3248 				goto out;
3249 			if (ret > 0) {
3250 				/* there's no smaller item, so stick with the
3251 				 * larger one */
3252 				btrfs_release_path(path);
3253 				ret = btrfs_search_slot(NULL, root, &key,
3254 							path, 0, 0);
3255 				if (ret < 0)
3256 					goto out;
3257 			}
3258 		}
3259 
3260 		stop_loop = 0;
3261 		while (1) {
3262 			u64 bytes;
3263 
3264 			l = path->nodes[0];
3265 			slot = path->slots[0];
3266 			if (slot >= btrfs_header_nritems(l)) {
3267 				ret = btrfs_next_leaf(root, path);
3268 				if (ret == 0)
3269 					continue;
3270 				if (ret < 0)
3271 					goto out;
3272 
3273 				stop_loop = 1;
3274 				break;
3275 			}
3276 			btrfs_item_key_to_cpu(l, &key, slot);
3277 
3278 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3279 			    key.type != BTRFS_METADATA_ITEM_KEY)
3280 				goto next;
3281 
3282 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3283 				bytes = root->nodesize;
3284 			else
3285 				bytes = key.offset;
3286 
3287 			if (key.objectid + bytes <= logical)
3288 				goto next;
3289 
3290 			if (key.objectid >= logical + map->stripe_len) {
3291 				/* out of this device extent */
3292 				if (key.objectid >= logic_end)
3293 					stop_loop = 1;
3294 				break;
3295 			}
3296 
3297 			extent = btrfs_item_ptr(l, slot,
3298 						struct btrfs_extent_item);
3299 			flags = btrfs_extent_flags(l, extent);
3300 			generation = btrfs_extent_generation(l, extent);
3301 
3302 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3303 			    (key.objectid < logical ||
3304 			     key.objectid + bytes >
3305 			     logical + map->stripe_len)) {
3306 				btrfs_err(fs_info,
3307 					   "scrub: tree block %llu spanning "
3308 					   "stripes, ignored. logical=%llu",
3309 				       key.objectid, logical);
3310 				spin_lock(&sctx->stat_lock);
3311 				sctx->stat.uncorrectable_errors++;
3312 				spin_unlock(&sctx->stat_lock);
3313 				goto next;
3314 			}
3315 
3316 again:
3317 			extent_logical = key.objectid;
3318 			extent_len = bytes;
3319 
3320 			/*
3321 			 * trim extent to this stripe
3322 			 */
3323 			if (extent_logical < logical) {
3324 				extent_len -= logical - extent_logical;
3325 				extent_logical = logical;
3326 			}
3327 			if (extent_logical + extent_len >
3328 			    logical + map->stripe_len) {
3329 				extent_len = logical + map->stripe_len -
3330 					     extent_logical;
3331 			}
3332 
3333 			extent_physical = extent_logical - logical + physical;
3334 			extent_dev = scrub_dev;
3335 			extent_mirror_num = mirror_num;
3336 			if (is_dev_replace)
3337 				scrub_remap_extent(fs_info, extent_logical,
3338 						   extent_len, &extent_physical,
3339 						   &extent_dev,
3340 						   &extent_mirror_num);
3341 
3342 			ret = btrfs_lookup_csums_range(csum_root,
3343 						       extent_logical,
3344 						       extent_logical +
3345 						       extent_len - 1,
3346 						       &sctx->csum_list, 1);
3347 			if (ret)
3348 				goto out;
3349 
3350 			ret = scrub_extent(sctx, extent_logical, extent_len,
3351 					   extent_physical, extent_dev, flags,
3352 					   generation, extent_mirror_num,
3353 					   extent_logical - logical + physical);
3354 
3355 			scrub_free_csums(sctx);
3356 
3357 			if (ret)
3358 				goto out;
3359 
3360 			if (extent_logical + extent_len <
3361 			    key.objectid + bytes) {
3362 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3363 					/*
3364 					 * loop until we find next data stripe
3365 					 * or we have finished all stripes.
3366 					 */
3367 loop:
3368 					physical += map->stripe_len;
3369 					ret = get_raid56_logic_offset(physical,
3370 							num, map, &logical,
3371 							&stripe_logical);
3372 					logical += base;
3373 
3374 					if (ret && physical < physical_end) {
3375 						stripe_logical += base;
3376 						stripe_end = stripe_logical +
3377 								increment;
3378 						ret = scrub_raid56_parity(sctx,
3379 							map, scrub_dev, ppath,
3380 							stripe_logical,
3381 							stripe_end);
3382 						if (ret)
3383 							goto out;
3384 						goto loop;
3385 					}
3386 				} else {
3387 					physical += map->stripe_len;
3388 					logical += increment;
3389 				}
3390 				if (logical < key.objectid + bytes) {
3391 					cond_resched();
3392 					goto again;
3393 				}
3394 
3395 				if (physical >= physical_end) {
3396 					stop_loop = 1;
3397 					break;
3398 				}
3399 			}
3400 next:
3401 			path->slots[0]++;
3402 		}
3403 		btrfs_release_path(path);
3404 skip:
3405 		logical += increment;
3406 		physical += map->stripe_len;
3407 		spin_lock(&sctx->stat_lock);
3408 		if (stop_loop)
3409 			sctx->stat.last_physical = map->stripes[num].physical +
3410 						   length;
3411 		else
3412 			sctx->stat.last_physical = physical;
3413 		spin_unlock(&sctx->stat_lock);
3414 		if (stop_loop)
3415 			break;
3416 	}
3417 out:
3418 	/* push queued extents */
3419 	scrub_submit(sctx);
3420 	mutex_lock(&sctx->wr_ctx.wr_lock);
3421 	scrub_wr_submit(sctx);
3422 	mutex_unlock(&sctx->wr_ctx.wr_lock);
3423 
3424 	blk_finish_plug(&plug);
3425 	btrfs_free_path(path);
3426 	btrfs_free_path(ppath);
3427 	return ret < 0 ? ret : 0;
3428 }
3429 
3430 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3431 					  struct btrfs_device *scrub_dev,
3432 					  u64 chunk_offset, u64 length,
3433 					  u64 dev_offset,
3434 					  struct btrfs_block_group_cache *cache,
3435 					  int is_dev_replace)
3436 {
3437 	struct btrfs_mapping_tree *map_tree =
3438 		&sctx->dev_root->fs_info->mapping_tree;
3439 	struct map_lookup *map;
3440 	struct extent_map *em;
3441 	int i;
3442 	int ret = 0;
3443 
3444 	read_lock(&map_tree->map_tree.lock);
3445 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3446 	read_unlock(&map_tree->map_tree.lock);
3447 
3448 	if (!em) {
3449 		/*
3450 		 * Might have been an unused block group deleted by the cleaner
3451 		 * kthread or relocation.
3452 		 */
3453 		spin_lock(&cache->lock);
3454 		if (!cache->removed)
3455 			ret = -EINVAL;
3456 		spin_unlock(&cache->lock);
3457 
3458 		return ret;
3459 	}
3460 
3461 	map = em->map_lookup;
3462 	if (em->start != chunk_offset)
3463 		goto out;
3464 
3465 	if (em->len < length)
3466 		goto out;
3467 
3468 	for (i = 0; i < map->num_stripes; ++i) {
3469 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3470 		    map->stripes[i].physical == dev_offset) {
3471 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3472 					   chunk_offset, length,
3473 					   is_dev_replace);
3474 			if (ret)
3475 				goto out;
3476 		}
3477 	}
3478 out:
3479 	free_extent_map(em);
3480 
3481 	return ret;
3482 }
3483 
3484 static noinline_for_stack
3485 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3486 			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3487 			   int is_dev_replace)
3488 {
3489 	struct btrfs_dev_extent *dev_extent = NULL;
3490 	struct btrfs_path *path;
3491 	struct btrfs_root *root = sctx->dev_root;
3492 	struct btrfs_fs_info *fs_info = root->fs_info;
3493 	u64 length;
3494 	u64 chunk_offset;
3495 	int ret = 0;
3496 	int ro_set;
3497 	int slot;
3498 	struct extent_buffer *l;
3499 	struct btrfs_key key;
3500 	struct btrfs_key found_key;
3501 	struct btrfs_block_group_cache *cache;
3502 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3503 
3504 	path = btrfs_alloc_path();
3505 	if (!path)
3506 		return -ENOMEM;
3507 
3508 	path->reada = READA_FORWARD;
3509 	path->search_commit_root = 1;
3510 	path->skip_locking = 1;
3511 
3512 	key.objectid = scrub_dev->devid;
3513 	key.offset = 0ull;
3514 	key.type = BTRFS_DEV_EXTENT_KEY;
3515 
3516 	while (1) {
3517 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3518 		if (ret < 0)
3519 			break;
3520 		if (ret > 0) {
3521 			if (path->slots[0] >=
3522 			    btrfs_header_nritems(path->nodes[0])) {
3523 				ret = btrfs_next_leaf(root, path);
3524 				if (ret < 0)
3525 					break;
3526 				if (ret > 0) {
3527 					ret = 0;
3528 					break;
3529 				}
3530 			} else {
3531 				ret = 0;
3532 			}
3533 		}
3534 
3535 		l = path->nodes[0];
3536 		slot = path->slots[0];
3537 
3538 		btrfs_item_key_to_cpu(l, &found_key, slot);
3539 
3540 		if (found_key.objectid != scrub_dev->devid)
3541 			break;
3542 
3543 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3544 			break;
3545 
3546 		if (found_key.offset >= end)
3547 			break;
3548 
3549 		if (found_key.offset < key.offset)
3550 			break;
3551 
3552 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3553 		length = btrfs_dev_extent_length(l, dev_extent);
3554 
3555 		if (found_key.offset + length <= start)
3556 			goto skip;
3557 
3558 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3559 
3560 		/*
3561 		 * get a reference on the corresponding block group to prevent
3562 		 * the chunk from going away while we scrub it
3563 		 */
3564 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3565 
3566 		/* some chunks are removed but not committed to disk yet,
3567 		 * continue scrubbing */
3568 		if (!cache)
3569 			goto skip;
3570 
3571 		/*
3572 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3573 		 * to avoid deadlock caused by:
3574 		 * btrfs_inc_block_group_ro()
3575 		 * -> btrfs_wait_for_commit()
3576 		 * -> btrfs_commit_transaction()
3577 		 * -> btrfs_scrub_pause()
3578 		 */
3579 		scrub_pause_on(fs_info);
3580 		ret = btrfs_inc_block_group_ro(root, cache);
3581 		scrub_pause_off(fs_info);
3582 
3583 		if (ret == 0) {
3584 			ro_set = 1;
3585 		} else if (ret == -ENOSPC) {
3586 			/*
3587 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3588 			 * failed in creating new chunk for metadata.
3589 			 * It is not a problem for scrub/replace, because
3590 			 * metadata are always cowed, and our scrub paused
3591 			 * commit_transactions.
3592 			 */
3593 			ro_set = 0;
3594 		} else {
3595 			btrfs_warn(fs_info, "failed setting block group ro, ret=%d\n",
3596 				   ret);
3597 			btrfs_put_block_group(cache);
3598 			break;
3599 		}
3600 
3601 		dev_replace->cursor_right = found_key.offset + length;
3602 		dev_replace->cursor_left = found_key.offset;
3603 		dev_replace->item_needs_writeback = 1;
3604 		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3605 				  found_key.offset, cache, is_dev_replace);
3606 
3607 		/*
3608 		 * flush, submit all pending read and write bios, afterwards
3609 		 * wait for them.
3610 		 * Note that in the dev replace case, a read request causes
3611 		 * write requests that are submitted in the read completion
3612 		 * worker. Therefore in the current situation, it is required
3613 		 * that all write requests are flushed, so that all read and
3614 		 * write requests are really completed when bios_in_flight
3615 		 * changes to 0.
3616 		 */
3617 		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3618 		scrub_submit(sctx);
3619 		mutex_lock(&sctx->wr_ctx.wr_lock);
3620 		scrub_wr_submit(sctx);
3621 		mutex_unlock(&sctx->wr_ctx.wr_lock);
3622 
3623 		wait_event(sctx->list_wait,
3624 			   atomic_read(&sctx->bios_in_flight) == 0);
3625 
3626 		scrub_pause_on(fs_info);
3627 
3628 		/*
3629 		 * must be called before we decrease @scrub_paused.
3630 		 * make sure we don't block transaction commit while
3631 		 * we are waiting pending workers finished.
3632 		 */
3633 		wait_event(sctx->list_wait,
3634 			   atomic_read(&sctx->workers_pending) == 0);
3635 		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3636 
3637 		scrub_pause_off(fs_info);
3638 
3639 		if (ro_set)
3640 			btrfs_dec_block_group_ro(root, cache);
3641 
3642 		/*
3643 		 * We might have prevented the cleaner kthread from deleting
3644 		 * this block group if it was already unused because we raced
3645 		 * and set it to RO mode first. So add it back to the unused
3646 		 * list, otherwise it might not ever be deleted unless a manual
3647 		 * balance is triggered or it becomes used and unused again.
3648 		 */
3649 		spin_lock(&cache->lock);
3650 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3651 		    btrfs_block_group_used(&cache->item) == 0) {
3652 			spin_unlock(&cache->lock);
3653 			spin_lock(&fs_info->unused_bgs_lock);
3654 			if (list_empty(&cache->bg_list)) {
3655 				btrfs_get_block_group(cache);
3656 				list_add_tail(&cache->bg_list,
3657 					      &fs_info->unused_bgs);
3658 			}
3659 			spin_unlock(&fs_info->unused_bgs_lock);
3660 		} else {
3661 			spin_unlock(&cache->lock);
3662 		}
3663 
3664 		btrfs_put_block_group(cache);
3665 		if (ret)
3666 			break;
3667 		if (is_dev_replace &&
3668 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3669 			ret = -EIO;
3670 			break;
3671 		}
3672 		if (sctx->stat.malloc_errors > 0) {
3673 			ret = -ENOMEM;
3674 			break;
3675 		}
3676 
3677 		dev_replace->cursor_left = dev_replace->cursor_right;
3678 		dev_replace->item_needs_writeback = 1;
3679 skip:
3680 		key.offset = found_key.offset + length;
3681 		btrfs_release_path(path);
3682 	}
3683 
3684 	btrfs_free_path(path);
3685 
3686 	return ret;
3687 }
3688 
3689 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3690 					   struct btrfs_device *scrub_dev)
3691 {
3692 	int	i;
3693 	u64	bytenr;
3694 	u64	gen;
3695 	int	ret;
3696 	struct btrfs_root *root = sctx->dev_root;
3697 
3698 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3699 		return -EIO;
3700 
3701 	/* Seed devices of a new filesystem has their own generation. */
3702 	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
3703 		gen = scrub_dev->generation;
3704 	else
3705 		gen = root->fs_info->last_trans_committed;
3706 
3707 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3708 		bytenr = btrfs_sb_offset(i);
3709 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3710 		    scrub_dev->commit_total_bytes)
3711 			break;
3712 
3713 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3714 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3715 				  NULL, 1, bytenr);
3716 		if (ret)
3717 			return ret;
3718 	}
3719 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3720 
3721 	return 0;
3722 }
3723 
3724 /*
3725  * get a reference count on fs_info->scrub_workers. start worker if necessary
3726  */
3727 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3728 						int is_dev_replace)
3729 {
3730 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3731 	int max_active = fs_info->thread_pool_size;
3732 
3733 	if (fs_info->scrub_workers_refcnt == 0) {
3734 		if (is_dev_replace)
3735 			fs_info->scrub_workers =
3736 				btrfs_alloc_workqueue("scrub", flags,
3737 						      1, 4);
3738 		else
3739 			fs_info->scrub_workers =
3740 				btrfs_alloc_workqueue("scrub", flags,
3741 						      max_active, 4);
3742 		if (!fs_info->scrub_workers)
3743 			goto fail_scrub_workers;
3744 
3745 		fs_info->scrub_wr_completion_workers =
3746 			btrfs_alloc_workqueue("scrubwrc", flags,
3747 					      max_active, 2);
3748 		if (!fs_info->scrub_wr_completion_workers)
3749 			goto fail_scrub_wr_completion_workers;
3750 
3751 		fs_info->scrub_nocow_workers =
3752 			btrfs_alloc_workqueue("scrubnc", flags, 1, 0);
3753 		if (!fs_info->scrub_nocow_workers)
3754 			goto fail_scrub_nocow_workers;
3755 		fs_info->scrub_parity_workers =
3756 			btrfs_alloc_workqueue("scrubparity", flags,
3757 					      max_active, 2);
3758 		if (!fs_info->scrub_parity_workers)
3759 			goto fail_scrub_parity_workers;
3760 	}
3761 	++fs_info->scrub_workers_refcnt;
3762 	return 0;
3763 
3764 fail_scrub_parity_workers:
3765 	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3766 fail_scrub_nocow_workers:
3767 	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3768 fail_scrub_wr_completion_workers:
3769 	btrfs_destroy_workqueue(fs_info->scrub_workers);
3770 fail_scrub_workers:
3771 	return -ENOMEM;
3772 }
3773 
3774 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
3775 {
3776 	if (--fs_info->scrub_workers_refcnt == 0) {
3777 		btrfs_destroy_workqueue(fs_info->scrub_workers);
3778 		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3779 		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3780 		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3781 	}
3782 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
3783 }
3784 
3785 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3786 		    u64 end, struct btrfs_scrub_progress *progress,
3787 		    int readonly, int is_dev_replace)
3788 {
3789 	struct scrub_ctx *sctx;
3790 	int ret;
3791 	struct btrfs_device *dev;
3792 	struct rcu_string *name;
3793 
3794 	if (btrfs_fs_closing(fs_info))
3795 		return -EINVAL;
3796 
3797 	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3798 		/*
3799 		 * in this case scrub is unable to calculate the checksum
3800 		 * the way scrub is implemented. Do not handle this
3801 		 * situation at all because it won't ever happen.
3802 		 */
3803 		btrfs_err(fs_info,
3804 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3805 		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3806 		return -EINVAL;
3807 	}
3808 
3809 	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3810 		/* not supported for data w/o checksums */
3811 		btrfs_err(fs_info,
3812 			   "scrub: size assumption sectorsize != PAGE_SIZE "
3813 			   "(%d != %lu) fails",
3814 		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
3815 		return -EINVAL;
3816 	}
3817 
3818 	if (fs_info->chunk_root->nodesize >
3819 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3820 	    fs_info->chunk_root->sectorsize >
3821 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3822 		/*
3823 		 * would exhaust the array bounds of pagev member in
3824 		 * struct scrub_block
3825 		 */
3826 		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
3827 			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3828 		       fs_info->chunk_root->nodesize,
3829 		       SCRUB_MAX_PAGES_PER_BLOCK,
3830 		       fs_info->chunk_root->sectorsize,
3831 		       SCRUB_MAX_PAGES_PER_BLOCK);
3832 		return -EINVAL;
3833 	}
3834 
3835 
3836 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3837 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3838 	if (!dev || (dev->missing && !is_dev_replace)) {
3839 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3840 		return -ENODEV;
3841 	}
3842 
3843 	if (!is_dev_replace && !readonly && !dev->writeable) {
3844 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3845 		rcu_read_lock();
3846 		name = rcu_dereference(dev->name);
3847 		btrfs_err(fs_info, "scrub: device %s is not writable",
3848 			  name->str);
3849 		rcu_read_unlock();
3850 		return -EROFS;
3851 	}
3852 
3853 	mutex_lock(&fs_info->scrub_lock);
3854 	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
3855 		mutex_unlock(&fs_info->scrub_lock);
3856 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3857 		return -EIO;
3858 	}
3859 
3860 	btrfs_dev_replace_lock(&fs_info->dev_replace);
3861 	if (dev->scrub_device ||
3862 	    (!is_dev_replace &&
3863 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3864 		btrfs_dev_replace_unlock(&fs_info->dev_replace);
3865 		mutex_unlock(&fs_info->scrub_lock);
3866 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3867 		return -EINPROGRESS;
3868 	}
3869 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3870 
3871 	ret = scrub_workers_get(fs_info, is_dev_replace);
3872 	if (ret) {
3873 		mutex_unlock(&fs_info->scrub_lock);
3874 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3875 		return ret;
3876 	}
3877 
3878 	sctx = scrub_setup_ctx(dev, is_dev_replace);
3879 	if (IS_ERR(sctx)) {
3880 		mutex_unlock(&fs_info->scrub_lock);
3881 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3882 		scrub_workers_put(fs_info);
3883 		return PTR_ERR(sctx);
3884 	}
3885 	sctx->readonly = readonly;
3886 	dev->scrub_device = sctx;
3887 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3888 
3889 	/*
3890 	 * checking @scrub_pause_req here, we can avoid
3891 	 * race between committing transaction and scrubbing.
3892 	 */
3893 	__scrub_blocked_if_needed(fs_info);
3894 	atomic_inc(&fs_info->scrubs_running);
3895 	mutex_unlock(&fs_info->scrub_lock);
3896 
3897 	if (!is_dev_replace) {
3898 		/*
3899 		 * by holding device list mutex, we can
3900 		 * kick off writing super in log tree sync.
3901 		 */
3902 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3903 		ret = scrub_supers(sctx, dev);
3904 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3905 	}
3906 
3907 	if (!ret)
3908 		ret = scrub_enumerate_chunks(sctx, dev, start, end,
3909 					     is_dev_replace);
3910 
3911 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3912 	atomic_dec(&fs_info->scrubs_running);
3913 	wake_up(&fs_info->scrub_pause_wait);
3914 
3915 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3916 
3917 	if (progress)
3918 		memcpy(progress, &sctx->stat, sizeof(*progress));
3919 
3920 	mutex_lock(&fs_info->scrub_lock);
3921 	dev->scrub_device = NULL;
3922 	scrub_workers_put(fs_info);
3923 	mutex_unlock(&fs_info->scrub_lock);
3924 
3925 	scrub_put_ctx(sctx);
3926 
3927 	return ret;
3928 }
3929 
3930 void btrfs_scrub_pause(struct btrfs_root *root)
3931 {
3932 	struct btrfs_fs_info *fs_info = root->fs_info;
3933 
3934 	mutex_lock(&fs_info->scrub_lock);
3935 	atomic_inc(&fs_info->scrub_pause_req);
3936 	while (atomic_read(&fs_info->scrubs_paused) !=
3937 	       atomic_read(&fs_info->scrubs_running)) {
3938 		mutex_unlock(&fs_info->scrub_lock);
3939 		wait_event(fs_info->scrub_pause_wait,
3940 			   atomic_read(&fs_info->scrubs_paused) ==
3941 			   atomic_read(&fs_info->scrubs_running));
3942 		mutex_lock(&fs_info->scrub_lock);
3943 	}
3944 	mutex_unlock(&fs_info->scrub_lock);
3945 }
3946 
3947 void btrfs_scrub_continue(struct btrfs_root *root)
3948 {
3949 	struct btrfs_fs_info *fs_info = root->fs_info;
3950 
3951 	atomic_dec(&fs_info->scrub_pause_req);
3952 	wake_up(&fs_info->scrub_pause_wait);
3953 }
3954 
3955 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3956 {
3957 	mutex_lock(&fs_info->scrub_lock);
3958 	if (!atomic_read(&fs_info->scrubs_running)) {
3959 		mutex_unlock(&fs_info->scrub_lock);
3960 		return -ENOTCONN;
3961 	}
3962 
3963 	atomic_inc(&fs_info->scrub_cancel_req);
3964 	while (atomic_read(&fs_info->scrubs_running)) {
3965 		mutex_unlock(&fs_info->scrub_lock);
3966 		wait_event(fs_info->scrub_pause_wait,
3967 			   atomic_read(&fs_info->scrubs_running) == 0);
3968 		mutex_lock(&fs_info->scrub_lock);
3969 	}
3970 	atomic_dec(&fs_info->scrub_cancel_req);
3971 	mutex_unlock(&fs_info->scrub_lock);
3972 
3973 	return 0;
3974 }
3975 
3976 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3977 			   struct btrfs_device *dev)
3978 {
3979 	struct scrub_ctx *sctx;
3980 
3981 	mutex_lock(&fs_info->scrub_lock);
3982 	sctx = dev->scrub_device;
3983 	if (!sctx) {
3984 		mutex_unlock(&fs_info->scrub_lock);
3985 		return -ENOTCONN;
3986 	}
3987 	atomic_inc(&sctx->cancel_req);
3988 	while (dev->scrub_device) {
3989 		mutex_unlock(&fs_info->scrub_lock);
3990 		wait_event(fs_info->scrub_pause_wait,
3991 			   dev->scrub_device == NULL);
3992 		mutex_lock(&fs_info->scrub_lock);
3993 	}
3994 	mutex_unlock(&fs_info->scrub_lock);
3995 
3996 	return 0;
3997 }
3998 
3999 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
4000 			 struct btrfs_scrub_progress *progress)
4001 {
4002 	struct btrfs_device *dev;
4003 	struct scrub_ctx *sctx = NULL;
4004 
4005 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
4006 	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
4007 	if (dev)
4008 		sctx = dev->scrub_device;
4009 	if (sctx)
4010 		memcpy(progress, &sctx->stat, sizeof(*progress));
4011 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
4012 
4013 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4014 }
4015 
4016 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4017 			       u64 extent_logical, u64 extent_len,
4018 			       u64 *extent_physical,
4019 			       struct btrfs_device **extent_dev,
4020 			       int *extent_mirror_num)
4021 {
4022 	u64 mapped_length;
4023 	struct btrfs_bio *bbio = NULL;
4024 	int ret;
4025 
4026 	mapped_length = extent_len;
4027 	ret = btrfs_map_block(fs_info, READ, extent_logical,
4028 			      &mapped_length, &bbio, 0);
4029 	if (ret || !bbio || mapped_length < extent_len ||
4030 	    !bbio->stripes[0].dev->bdev) {
4031 		btrfs_put_bbio(bbio);
4032 		return;
4033 	}
4034 
4035 	*extent_physical = bbio->stripes[0].physical;
4036 	*extent_mirror_num = bbio->mirror_num;
4037 	*extent_dev = bbio->stripes[0].dev;
4038 	btrfs_put_bbio(bbio);
4039 }
4040 
4041 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
4042 			      struct scrub_wr_ctx *wr_ctx,
4043 			      struct btrfs_fs_info *fs_info,
4044 			      struct btrfs_device *dev,
4045 			      int is_dev_replace)
4046 {
4047 	WARN_ON(wr_ctx->wr_curr_bio != NULL);
4048 
4049 	mutex_init(&wr_ctx->wr_lock);
4050 	wr_ctx->wr_curr_bio = NULL;
4051 	if (!is_dev_replace)
4052 		return 0;
4053 
4054 	WARN_ON(!dev->bdev);
4055 	wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
4056 	wr_ctx->tgtdev = dev;
4057 	atomic_set(&wr_ctx->flush_all_writes, 0);
4058 	return 0;
4059 }
4060 
4061 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
4062 {
4063 	mutex_lock(&wr_ctx->wr_lock);
4064 	kfree(wr_ctx->wr_curr_bio);
4065 	wr_ctx->wr_curr_bio = NULL;
4066 	mutex_unlock(&wr_ctx->wr_lock);
4067 }
4068 
4069 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4070 			    int mirror_num, u64 physical_for_dev_replace)
4071 {
4072 	struct scrub_copy_nocow_ctx *nocow_ctx;
4073 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
4074 
4075 	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4076 	if (!nocow_ctx) {
4077 		spin_lock(&sctx->stat_lock);
4078 		sctx->stat.malloc_errors++;
4079 		spin_unlock(&sctx->stat_lock);
4080 		return -ENOMEM;
4081 	}
4082 
4083 	scrub_pending_trans_workers_inc(sctx);
4084 
4085 	nocow_ctx->sctx = sctx;
4086 	nocow_ctx->logical = logical;
4087 	nocow_ctx->len = len;
4088 	nocow_ctx->mirror_num = mirror_num;
4089 	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4090 	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4091 			copy_nocow_pages_worker, NULL, NULL);
4092 	INIT_LIST_HEAD(&nocow_ctx->inodes);
4093 	btrfs_queue_work(fs_info->scrub_nocow_workers,
4094 			 &nocow_ctx->work);
4095 
4096 	return 0;
4097 }
4098 
4099 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4100 {
4101 	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4102 	struct scrub_nocow_inode *nocow_inode;
4103 
4104 	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4105 	if (!nocow_inode)
4106 		return -ENOMEM;
4107 	nocow_inode->inum = inum;
4108 	nocow_inode->offset = offset;
4109 	nocow_inode->root = root;
4110 	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4111 	return 0;
4112 }
4113 
4114 #define COPY_COMPLETE 1
4115 
4116 static void copy_nocow_pages_worker(struct btrfs_work *work)
4117 {
4118 	struct scrub_copy_nocow_ctx *nocow_ctx =
4119 		container_of(work, struct scrub_copy_nocow_ctx, work);
4120 	struct scrub_ctx *sctx = nocow_ctx->sctx;
4121 	u64 logical = nocow_ctx->logical;
4122 	u64 len = nocow_ctx->len;
4123 	int mirror_num = nocow_ctx->mirror_num;
4124 	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4125 	int ret;
4126 	struct btrfs_trans_handle *trans = NULL;
4127 	struct btrfs_fs_info *fs_info;
4128 	struct btrfs_path *path;
4129 	struct btrfs_root *root;
4130 	int not_written = 0;
4131 
4132 	fs_info = sctx->dev_root->fs_info;
4133 	root = fs_info->extent_root;
4134 
4135 	path = btrfs_alloc_path();
4136 	if (!path) {
4137 		spin_lock(&sctx->stat_lock);
4138 		sctx->stat.malloc_errors++;
4139 		spin_unlock(&sctx->stat_lock);
4140 		not_written = 1;
4141 		goto out;
4142 	}
4143 
4144 	trans = btrfs_join_transaction(root);
4145 	if (IS_ERR(trans)) {
4146 		not_written = 1;
4147 		goto out;
4148 	}
4149 
4150 	ret = iterate_inodes_from_logical(logical, fs_info, path,
4151 					  record_inode_for_nocow, nocow_ctx);
4152 	if (ret != 0 && ret != -ENOENT) {
4153 		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
4154 			"phys %llu, len %llu, mir %u, ret %d",
4155 			logical, physical_for_dev_replace, len, mirror_num,
4156 			ret);
4157 		not_written = 1;
4158 		goto out;
4159 	}
4160 
4161 	btrfs_end_transaction(trans, root);
4162 	trans = NULL;
4163 	while (!list_empty(&nocow_ctx->inodes)) {
4164 		struct scrub_nocow_inode *entry;
4165 		entry = list_first_entry(&nocow_ctx->inodes,
4166 					 struct scrub_nocow_inode,
4167 					 list);
4168 		list_del_init(&entry->list);
4169 		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4170 						 entry->root, nocow_ctx);
4171 		kfree(entry);
4172 		if (ret == COPY_COMPLETE) {
4173 			ret = 0;
4174 			break;
4175 		} else if (ret) {
4176 			break;
4177 		}
4178 	}
4179 out:
4180 	while (!list_empty(&nocow_ctx->inodes)) {
4181 		struct scrub_nocow_inode *entry;
4182 		entry = list_first_entry(&nocow_ctx->inodes,
4183 					 struct scrub_nocow_inode,
4184 					 list);
4185 		list_del_init(&entry->list);
4186 		kfree(entry);
4187 	}
4188 	if (trans && !IS_ERR(trans))
4189 		btrfs_end_transaction(trans, root);
4190 	if (not_written)
4191 		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4192 					    num_uncorrectable_read_errors);
4193 
4194 	btrfs_free_path(path);
4195 	kfree(nocow_ctx);
4196 
4197 	scrub_pending_trans_workers_dec(sctx);
4198 }
4199 
4200 static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
4201 				 u64 logical)
4202 {
4203 	struct extent_state *cached_state = NULL;
4204 	struct btrfs_ordered_extent *ordered;
4205 	struct extent_io_tree *io_tree;
4206 	struct extent_map *em;
4207 	u64 lockstart = start, lockend = start + len - 1;
4208 	int ret = 0;
4209 
4210 	io_tree = &BTRFS_I(inode)->io_tree;
4211 
4212 	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4213 	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4214 	if (ordered) {
4215 		btrfs_put_ordered_extent(ordered);
4216 		ret = 1;
4217 		goto out_unlock;
4218 	}
4219 
4220 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4221 	if (IS_ERR(em)) {
4222 		ret = PTR_ERR(em);
4223 		goto out_unlock;
4224 	}
4225 
4226 	/*
4227 	 * This extent does not actually cover the logical extent anymore,
4228 	 * move on to the next inode.
4229 	 */
4230 	if (em->block_start > logical ||
4231 	    em->block_start + em->block_len < logical + len) {
4232 		free_extent_map(em);
4233 		ret = 1;
4234 		goto out_unlock;
4235 	}
4236 	free_extent_map(em);
4237 
4238 out_unlock:
4239 	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4240 			     GFP_NOFS);
4241 	return ret;
4242 }
4243 
4244 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4245 				      struct scrub_copy_nocow_ctx *nocow_ctx)
4246 {
4247 	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4248 	struct btrfs_key key;
4249 	struct inode *inode;
4250 	struct page *page;
4251 	struct btrfs_root *local_root;
4252 	struct extent_io_tree *io_tree;
4253 	u64 physical_for_dev_replace;
4254 	u64 nocow_ctx_logical;
4255 	u64 len = nocow_ctx->len;
4256 	unsigned long index;
4257 	int srcu_index;
4258 	int ret = 0;
4259 	int err = 0;
4260 
4261 	key.objectid = root;
4262 	key.type = BTRFS_ROOT_ITEM_KEY;
4263 	key.offset = (u64)-1;
4264 
4265 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4266 
4267 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4268 	if (IS_ERR(local_root)) {
4269 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4270 		return PTR_ERR(local_root);
4271 	}
4272 
4273 	key.type = BTRFS_INODE_ITEM_KEY;
4274 	key.objectid = inum;
4275 	key.offset = 0;
4276 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4277 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4278 	if (IS_ERR(inode))
4279 		return PTR_ERR(inode);
4280 
4281 	/* Avoid truncate/dio/punch hole.. */
4282 	inode_lock(inode);
4283 	inode_dio_wait(inode);
4284 
4285 	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4286 	io_tree = &BTRFS_I(inode)->io_tree;
4287 	nocow_ctx_logical = nocow_ctx->logical;
4288 
4289 	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
4290 	if (ret) {
4291 		ret = ret > 0 ? 0 : ret;
4292 		goto out;
4293 	}
4294 
4295 	while (len >= PAGE_CACHE_SIZE) {
4296 		index = offset >> PAGE_CACHE_SHIFT;
4297 again:
4298 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4299 		if (!page) {
4300 			btrfs_err(fs_info, "find_or_create_page() failed");
4301 			ret = -ENOMEM;
4302 			goto out;
4303 		}
4304 
4305 		if (PageUptodate(page)) {
4306 			if (PageDirty(page))
4307 				goto next_page;
4308 		} else {
4309 			ClearPageError(page);
4310 			err = extent_read_full_page(io_tree, page,
4311 							   btrfs_get_extent,
4312 							   nocow_ctx->mirror_num);
4313 			if (err) {
4314 				ret = err;
4315 				goto next_page;
4316 			}
4317 
4318 			lock_page(page);
4319 			/*
4320 			 * If the page has been remove from the page cache,
4321 			 * the data on it is meaningless, because it may be
4322 			 * old one, the new data may be written into the new
4323 			 * page in the page cache.
4324 			 */
4325 			if (page->mapping != inode->i_mapping) {
4326 				unlock_page(page);
4327 				page_cache_release(page);
4328 				goto again;
4329 			}
4330 			if (!PageUptodate(page)) {
4331 				ret = -EIO;
4332 				goto next_page;
4333 			}
4334 		}
4335 
4336 		ret = check_extent_to_block(inode, offset, len,
4337 					    nocow_ctx_logical);
4338 		if (ret) {
4339 			ret = ret > 0 ? 0 : ret;
4340 			goto next_page;
4341 		}
4342 
4343 		err = write_page_nocow(nocow_ctx->sctx,
4344 				       physical_for_dev_replace, page);
4345 		if (err)
4346 			ret = err;
4347 next_page:
4348 		unlock_page(page);
4349 		page_cache_release(page);
4350 
4351 		if (ret)
4352 			break;
4353 
4354 		offset += PAGE_CACHE_SIZE;
4355 		physical_for_dev_replace += PAGE_CACHE_SIZE;
4356 		nocow_ctx_logical += PAGE_CACHE_SIZE;
4357 		len -= PAGE_CACHE_SIZE;
4358 	}
4359 	ret = COPY_COMPLETE;
4360 out:
4361 	inode_unlock(inode);
4362 	iput(inode);
4363 	return ret;
4364 }
4365 
4366 static int write_page_nocow(struct scrub_ctx *sctx,
4367 			    u64 physical_for_dev_replace, struct page *page)
4368 {
4369 	struct bio *bio;
4370 	struct btrfs_device *dev;
4371 	int ret;
4372 
4373 	dev = sctx->wr_ctx.tgtdev;
4374 	if (!dev)
4375 		return -EIO;
4376 	if (!dev->bdev) {
4377 		btrfs_warn_rl(dev->dev_root->fs_info,
4378 			"scrub write_page_nocow(bdev == NULL) is unexpected");
4379 		return -EIO;
4380 	}
4381 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4382 	if (!bio) {
4383 		spin_lock(&sctx->stat_lock);
4384 		sctx->stat.malloc_errors++;
4385 		spin_unlock(&sctx->stat_lock);
4386 		return -ENOMEM;
4387 	}
4388 	bio->bi_iter.bi_size = 0;
4389 	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4390 	bio->bi_bdev = dev->bdev;
4391 	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
4392 	if (ret != PAGE_CACHE_SIZE) {
4393 leave_with_eio:
4394 		bio_put(bio);
4395 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4396 		return -EIO;
4397 	}
4398 
4399 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4400 		goto leave_with_eio;
4401 
4402 	bio_put(bio);
4403 	return 0;
4404 }
4405