1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/ratelimit.h> 8 #include <linux/sched/mm.h> 9 #include <crypto/hash.h> 10 #include "ctree.h" 11 #include "discard.h" 12 #include "volumes.h" 13 #include "disk-io.h" 14 #include "ordered-data.h" 15 #include "transaction.h" 16 #include "backref.h" 17 #include "extent_io.h" 18 #include "dev-replace.h" 19 #include "check-integrity.h" 20 #include "raid56.h" 21 #include "block-group.h" 22 #include "zoned.h" 23 #include "fs.h" 24 #include "accessors.h" 25 #include "file-item.h" 26 #include "scrub.h" 27 28 /* 29 * This is only the first step towards a full-features scrub. It reads all 30 * extent and super block and verifies the checksums. In case a bad checksum 31 * is found or the extent cannot be read, good data will be written back if 32 * any can be found. 33 * 34 * Future enhancements: 35 * - In case an unrepairable extent is encountered, track which files are 36 * affected and report them 37 * - track and record media errors, throw out bad devices 38 * - add a mode to also read unallocated space 39 */ 40 41 struct scrub_ctx; 42 43 /* 44 * The following value only influences the performance. 45 * 46 * This detemines how many stripes would be submitted in one go, 47 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP). 48 */ 49 #define SCRUB_STRIPES_PER_GROUP 8 50 51 /* 52 * How many groups we have for each sctx. 53 * 54 * This would be 8M per device, the same value as the old scrub in-flight bios 55 * size limit. 56 */ 57 #define SCRUB_GROUPS_PER_SCTX 16 58 59 #define SCRUB_TOTAL_STRIPES (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP) 60 61 /* 62 * The following value times PAGE_SIZE needs to be large enough to match the 63 * largest node/leaf/sector size that shall be supported. 64 */ 65 #define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K) 66 67 /* Represent one sector and its needed info to verify the content. */ 68 struct scrub_sector_verification { 69 bool is_metadata; 70 71 union { 72 /* 73 * Csum pointer for data csum verification. Should point to a 74 * sector csum inside scrub_stripe::csums. 75 * 76 * NULL if this data sector has no csum. 77 */ 78 u8 *csum; 79 80 /* 81 * Extra info for metadata verification. All sectors inside a 82 * tree block share the same generation. 83 */ 84 u64 generation; 85 }; 86 }; 87 88 enum scrub_stripe_flags { 89 /* Set when @mirror_num, @dev, @physical and @logical are set. */ 90 SCRUB_STRIPE_FLAG_INITIALIZED, 91 92 /* Set when the read-repair is finished. */ 93 SCRUB_STRIPE_FLAG_REPAIR_DONE, 94 95 /* 96 * Set for data stripes if it's triggered from P/Q stripe. 97 * During such scrub, we should not report errors in data stripes, nor 98 * update the accounting. 99 */ 100 SCRUB_STRIPE_FLAG_NO_REPORT, 101 }; 102 103 #define SCRUB_STRIPE_PAGES (BTRFS_STRIPE_LEN / PAGE_SIZE) 104 105 /* 106 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN. 107 */ 108 struct scrub_stripe { 109 struct scrub_ctx *sctx; 110 struct btrfs_block_group *bg; 111 112 struct page *pages[SCRUB_STRIPE_PAGES]; 113 struct scrub_sector_verification *sectors; 114 115 struct btrfs_device *dev; 116 u64 logical; 117 u64 physical; 118 119 u16 mirror_num; 120 121 /* Should be BTRFS_STRIPE_LEN / sectorsize. */ 122 u16 nr_sectors; 123 124 /* 125 * How many data/meta extents are in this stripe. Only for scrub status 126 * reporting purposes. 127 */ 128 u16 nr_data_extents; 129 u16 nr_meta_extents; 130 131 atomic_t pending_io; 132 wait_queue_head_t io_wait; 133 wait_queue_head_t repair_wait; 134 135 /* 136 * Indicate the states of the stripe. Bits are defined in 137 * scrub_stripe_flags enum. 138 */ 139 unsigned long state; 140 141 /* Indicate which sectors are covered by extent items. */ 142 unsigned long extent_sector_bitmap; 143 144 /* 145 * The errors hit during the initial read of the stripe. 146 * 147 * Would be utilized for error reporting and repair. 148 * 149 * The remaining init_nr_* records the number of errors hit, only used 150 * by error reporting. 151 */ 152 unsigned long init_error_bitmap; 153 unsigned int init_nr_io_errors; 154 unsigned int init_nr_csum_errors; 155 unsigned int init_nr_meta_errors; 156 157 /* 158 * The following error bitmaps are all for the current status. 159 * Every time we submit a new read, these bitmaps may be updated. 160 * 161 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap; 162 * 163 * IO and csum errors can happen for both metadata and data. 164 */ 165 unsigned long error_bitmap; 166 unsigned long io_error_bitmap; 167 unsigned long csum_error_bitmap; 168 unsigned long meta_error_bitmap; 169 170 /* For writeback (repair or replace) error reporting. */ 171 unsigned long write_error_bitmap; 172 173 /* Writeback can be concurrent, thus we need to protect the bitmap. */ 174 spinlock_t write_error_lock; 175 176 /* 177 * Checksum for the whole stripe if this stripe is inside a data block 178 * group. 179 */ 180 u8 *csums; 181 182 struct work_struct work; 183 }; 184 185 struct scrub_ctx { 186 struct scrub_stripe stripes[SCRUB_TOTAL_STRIPES]; 187 struct scrub_stripe *raid56_data_stripes; 188 struct btrfs_fs_info *fs_info; 189 struct btrfs_path extent_path; 190 struct btrfs_path csum_path; 191 int first_free; 192 int cur_stripe; 193 atomic_t cancel_req; 194 int readonly; 195 int sectors_per_bio; 196 197 /* State of IO submission throttling affecting the associated device */ 198 ktime_t throttle_deadline; 199 u64 throttle_sent; 200 201 int is_dev_replace; 202 u64 write_pointer; 203 204 struct mutex wr_lock; 205 struct btrfs_device *wr_tgtdev; 206 207 /* 208 * statistics 209 */ 210 struct btrfs_scrub_progress stat; 211 spinlock_t stat_lock; 212 213 /* 214 * Use a ref counter to avoid use-after-free issues. Scrub workers 215 * decrement bios_in_flight and workers_pending and then do a wakeup 216 * on the list_wait wait queue. We must ensure the main scrub task 217 * doesn't free the scrub context before or while the workers are 218 * doing the wakeup() call. 219 */ 220 refcount_t refs; 221 }; 222 223 struct scrub_warning { 224 struct btrfs_path *path; 225 u64 extent_item_size; 226 const char *errstr; 227 u64 physical; 228 u64 logical; 229 struct btrfs_device *dev; 230 }; 231 232 static void release_scrub_stripe(struct scrub_stripe *stripe) 233 { 234 if (!stripe) 235 return; 236 237 for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) { 238 if (stripe->pages[i]) 239 __free_page(stripe->pages[i]); 240 stripe->pages[i] = NULL; 241 } 242 kfree(stripe->sectors); 243 kfree(stripe->csums); 244 stripe->sectors = NULL; 245 stripe->csums = NULL; 246 stripe->sctx = NULL; 247 stripe->state = 0; 248 } 249 250 static int init_scrub_stripe(struct btrfs_fs_info *fs_info, 251 struct scrub_stripe *stripe) 252 { 253 int ret; 254 255 memset(stripe, 0, sizeof(*stripe)); 256 257 stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; 258 stripe->state = 0; 259 260 init_waitqueue_head(&stripe->io_wait); 261 init_waitqueue_head(&stripe->repair_wait); 262 atomic_set(&stripe->pending_io, 0); 263 spin_lock_init(&stripe->write_error_lock); 264 265 ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages); 266 if (ret < 0) 267 goto error; 268 269 stripe->sectors = kcalloc(stripe->nr_sectors, 270 sizeof(struct scrub_sector_verification), 271 GFP_KERNEL); 272 if (!stripe->sectors) 273 goto error; 274 275 stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits, 276 fs_info->csum_size, GFP_KERNEL); 277 if (!stripe->csums) 278 goto error; 279 return 0; 280 error: 281 release_scrub_stripe(stripe); 282 return -ENOMEM; 283 } 284 285 static void wait_scrub_stripe_io(struct scrub_stripe *stripe) 286 { 287 wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0); 288 } 289 290 static void scrub_put_ctx(struct scrub_ctx *sctx); 291 292 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 293 { 294 while (atomic_read(&fs_info->scrub_pause_req)) { 295 mutex_unlock(&fs_info->scrub_lock); 296 wait_event(fs_info->scrub_pause_wait, 297 atomic_read(&fs_info->scrub_pause_req) == 0); 298 mutex_lock(&fs_info->scrub_lock); 299 } 300 } 301 302 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 303 { 304 atomic_inc(&fs_info->scrubs_paused); 305 wake_up(&fs_info->scrub_pause_wait); 306 } 307 308 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 309 { 310 mutex_lock(&fs_info->scrub_lock); 311 __scrub_blocked_if_needed(fs_info); 312 atomic_dec(&fs_info->scrubs_paused); 313 mutex_unlock(&fs_info->scrub_lock); 314 315 wake_up(&fs_info->scrub_pause_wait); 316 } 317 318 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 319 { 320 scrub_pause_on(fs_info); 321 scrub_pause_off(fs_info); 322 } 323 324 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 325 { 326 int i; 327 328 if (!sctx) 329 return; 330 331 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) 332 release_scrub_stripe(&sctx->stripes[i]); 333 334 kvfree(sctx); 335 } 336 337 static void scrub_put_ctx(struct scrub_ctx *sctx) 338 { 339 if (refcount_dec_and_test(&sctx->refs)) 340 scrub_free_ctx(sctx); 341 } 342 343 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( 344 struct btrfs_fs_info *fs_info, int is_dev_replace) 345 { 346 struct scrub_ctx *sctx; 347 int i; 348 349 /* Since sctx has inline 128 stripes, it can go beyond 64K easily. Use 350 * kvzalloc(). 351 */ 352 sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL); 353 if (!sctx) 354 goto nomem; 355 refcount_set(&sctx->refs, 1); 356 sctx->is_dev_replace = is_dev_replace; 357 sctx->fs_info = fs_info; 358 sctx->extent_path.search_commit_root = 1; 359 sctx->extent_path.skip_locking = 1; 360 sctx->csum_path.search_commit_root = 1; 361 sctx->csum_path.skip_locking = 1; 362 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) { 363 int ret; 364 365 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]); 366 if (ret < 0) 367 goto nomem; 368 sctx->stripes[i].sctx = sctx; 369 } 370 sctx->first_free = 0; 371 atomic_set(&sctx->cancel_req, 0); 372 373 spin_lock_init(&sctx->stat_lock); 374 sctx->throttle_deadline = 0; 375 376 mutex_init(&sctx->wr_lock); 377 if (is_dev_replace) { 378 WARN_ON(!fs_info->dev_replace.tgtdev); 379 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 380 } 381 382 return sctx; 383 384 nomem: 385 scrub_free_ctx(sctx); 386 return ERR_PTR(-ENOMEM); 387 } 388 389 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 390 u64 root, void *warn_ctx) 391 { 392 u32 nlink; 393 int ret; 394 int i; 395 unsigned nofs_flag; 396 struct extent_buffer *eb; 397 struct btrfs_inode_item *inode_item; 398 struct scrub_warning *swarn = warn_ctx; 399 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 400 struct inode_fs_paths *ipath = NULL; 401 struct btrfs_root *local_root; 402 struct btrfs_key key; 403 404 local_root = btrfs_get_fs_root(fs_info, root, true); 405 if (IS_ERR(local_root)) { 406 ret = PTR_ERR(local_root); 407 goto err; 408 } 409 410 /* 411 * this makes the path point to (inum INODE_ITEM ioff) 412 */ 413 key.objectid = inum; 414 key.type = BTRFS_INODE_ITEM_KEY; 415 key.offset = 0; 416 417 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 418 if (ret) { 419 btrfs_put_root(local_root); 420 btrfs_release_path(swarn->path); 421 goto err; 422 } 423 424 eb = swarn->path->nodes[0]; 425 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 426 struct btrfs_inode_item); 427 nlink = btrfs_inode_nlink(eb, inode_item); 428 btrfs_release_path(swarn->path); 429 430 /* 431 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 432 * uses GFP_NOFS in this context, so we keep it consistent but it does 433 * not seem to be strictly necessary. 434 */ 435 nofs_flag = memalloc_nofs_save(); 436 ipath = init_ipath(4096, local_root, swarn->path); 437 memalloc_nofs_restore(nofs_flag); 438 if (IS_ERR(ipath)) { 439 btrfs_put_root(local_root); 440 ret = PTR_ERR(ipath); 441 ipath = NULL; 442 goto err; 443 } 444 ret = paths_from_inode(inum, ipath); 445 446 if (ret < 0) 447 goto err; 448 449 /* 450 * we deliberately ignore the bit ipath might have been too small to 451 * hold all of the paths here 452 */ 453 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 454 btrfs_warn_in_rcu(fs_info, 455 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)", 456 swarn->errstr, swarn->logical, 457 btrfs_dev_name(swarn->dev), 458 swarn->physical, 459 root, inum, offset, 460 fs_info->sectorsize, nlink, 461 (char *)(unsigned long)ipath->fspath->val[i]); 462 463 btrfs_put_root(local_root); 464 free_ipath(ipath); 465 return 0; 466 467 err: 468 btrfs_warn_in_rcu(fs_info, 469 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 470 swarn->errstr, swarn->logical, 471 btrfs_dev_name(swarn->dev), 472 swarn->physical, 473 root, inum, offset, ret); 474 475 free_ipath(ipath); 476 return 0; 477 } 478 479 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev, 480 bool is_super, u64 logical, u64 physical) 481 { 482 struct btrfs_fs_info *fs_info = dev->fs_info; 483 struct btrfs_path *path; 484 struct btrfs_key found_key; 485 struct extent_buffer *eb; 486 struct btrfs_extent_item *ei; 487 struct scrub_warning swarn; 488 u64 flags = 0; 489 u32 item_size; 490 int ret; 491 492 /* Super block error, no need to search extent tree. */ 493 if (is_super) { 494 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu", 495 errstr, btrfs_dev_name(dev), physical); 496 return; 497 } 498 path = btrfs_alloc_path(); 499 if (!path) 500 return; 501 502 swarn.physical = physical; 503 swarn.logical = logical; 504 swarn.errstr = errstr; 505 swarn.dev = NULL; 506 507 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 508 &flags); 509 if (ret < 0) 510 goto out; 511 512 swarn.extent_item_size = found_key.offset; 513 514 eb = path->nodes[0]; 515 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 516 item_size = btrfs_item_size(eb, path->slots[0]); 517 518 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 519 unsigned long ptr = 0; 520 u8 ref_level; 521 u64 ref_root; 522 523 while (true) { 524 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 525 item_size, &ref_root, 526 &ref_level); 527 if (ret < 0) { 528 btrfs_warn(fs_info, 529 "failed to resolve tree backref for logical %llu: %d", 530 swarn.logical, ret); 531 break; 532 } 533 if (ret > 0) 534 break; 535 btrfs_warn_in_rcu(fs_info, 536 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 537 errstr, swarn.logical, btrfs_dev_name(dev), 538 swarn.physical, (ref_level ? "node" : "leaf"), 539 ref_level, ref_root); 540 } 541 btrfs_release_path(path); 542 } else { 543 struct btrfs_backref_walk_ctx ctx = { 0 }; 544 545 btrfs_release_path(path); 546 547 ctx.bytenr = found_key.objectid; 548 ctx.extent_item_pos = swarn.logical - found_key.objectid; 549 ctx.fs_info = fs_info; 550 551 swarn.path = path; 552 swarn.dev = dev; 553 554 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn); 555 } 556 557 out: 558 btrfs_free_path(path); 559 } 560 561 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) 562 { 563 int ret = 0; 564 u64 length; 565 566 if (!btrfs_is_zoned(sctx->fs_info)) 567 return 0; 568 569 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) 570 return 0; 571 572 if (sctx->write_pointer < physical) { 573 length = physical - sctx->write_pointer; 574 575 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev, 576 sctx->write_pointer, length); 577 if (!ret) 578 sctx->write_pointer = physical; 579 } 580 return ret; 581 } 582 583 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr) 584 { 585 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 586 int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT; 587 588 return stripe->pages[page_index]; 589 } 590 591 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe, 592 int sector_nr) 593 { 594 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 595 596 return offset_in_page(sector_nr << fs_info->sectorsize_bits); 597 } 598 599 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr) 600 { 601 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 602 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 603 const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits); 604 const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr); 605 const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr); 606 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 607 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 608 u8 calculated_csum[BTRFS_CSUM_SIZE]; 609 struct btrfs_header *header; 610 611 /* 612 * Here we don't have a good way to attach the pages (and subpages) 613 * to a dummy extent buffer, thus we have to directly grab the members 614 * from pages. 615 */ 616 header = (struct btrfs_header *)(page_address(first_page) + first_off); 617 memcpy(on_disk_csum, header->csum, fs_info->csum_size); 618 619 if (logical != btrfs_stack_header_bytenr(header)) { 620 bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree); 621 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 622 btrfs_warn_rl(fs_info, 623 "tree block %llu mirror %u has bad bytenr, has %llu want %llu", 624 logical, stripe->mirror_num, 625 btrfs_stack_header_bytenr(header), logical); 626 return; 627 } 628 if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid, 629 BTRFS_FSID_SIZE) != 0) { 630 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 631 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 632 btrfs_warn_rl(fs_info, 633 "tree block %llu mirror %u has bad fsid, has %pU want %pU", 634 logical, stripe->mirror_num, 635 header->fsid, fs_info->fs_devices->fsid); 636 return; 637 } 638 if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid, 639 BTRFS_UUID_SIZE) != 0) { 640 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 641 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 642 btrfs_warn_rl(fs_info, 643 "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU", 644 logical, stripe->mirror_num, 645 header->chunk_tree_uuid, fs_info->chunk_tree_uuid); 646 return; 647 } 648 649 /* Now check tree block csum. */ 650 shash->tfm = fs_info->csum_shash; 651 crypto_shash_init(shash); 652 crypto_shash_update(shash, page_address(first_page) + first_off + 653 BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE); 654 655 for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) { 656 struct page *page = scrub_stripe_get_page(stripe, i); 657 unsigned int page_off = scrub_stripe_get_page_offset(stripe, i); 658 659 crypto_shash_update(shash, page_address(page) + page_off, 660 fs_info->sectorsize); 661 } 662 663 crypto_shash_final(shash, calculated_csum); 664 if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) { 665 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 666 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 667 btrfs_warn_rl(fs_info, 668 "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT, 669 logical, stripe->mirror_num, 670 CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum), 671 CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum)); 672 return; 673 } 674 if (stripe->sectors[sector_nr].generation != 675 btrfs_stack_header_generation(header)) { 676 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 677 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 678 btrfs_warn_rl(fs_info, 679 "tree block %llu mirror %u has bad generation, has %llu want %llu", 680 logical, stripe->mirror_num, 681 btrfs_stack_header_generation(header), 682 stripe->sectors[sector_nr].generation); 683 return; 684 } 685 bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree); 686 bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree); 687 bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 688 } 689 690 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr) 691 { 692 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 693 struct scrub_sector_verification *sector = &stripe->sectors[sector_nr]; 694 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 695 struct page *page = scrub_stripe_get_page(stripe, sector_nr); 696 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr); 697 u8 csum_buf[BTRFS_CSUM_SIZE]; 698 int ret; 699 700 ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors); 701 702 /* Sector not utilized, skip it. */ 703 if (!test_bit(sector_nr, &stripe->extent_sector_bitmap)) 704 return; 705 706 /* IO error, no need to check. */ 707 if (test_bit(sector_nr, &stripe->io_error_bitmap)) 708 return; 709 710 /* Metadata, verify the full tree block. */ 711 if (sector->is_metadata) { 712 /* 713 * Check if the tree block crosses the stripe boudary. If 714 * crossed the boundary, we cannot verify it but only give a 715 * warning. 716 * 717 * This can only happen on a very old filesystem where chunks 718 * are not ensured to be stripe aligned. 719 */ 720 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) { 721 btrfs_warn_rl(fs_info, 722 "tree block at %llu crosses stripe boundary %llu", 723 stripe->logical + 724 (sector_nr << fs_info->sectorsize_bits), 725 stripe->logical); 726 return; 727 } 728 scrub_verify_one_metadata(stripe, sector_nr); 729 return; 730 } 731 732 /* 733 * Data is easier, we just verify the data csum (if we have it). For 734 * cases without csum, we have no other choice but to trust it. 735 */ 736 if (!sector->csum) { 737 clear_bit(sector_nr, &stripe->error_bitmap); 738 return; 739 } 740 741 ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum); 742 if (ret < 0) { 743 set_bit(sector_nr, &stripe->csum_error_bitmap); 744 set_bit(sector_nr, &stripe->error_bitmap); 745 } else { 746 clear_bit(sector_nr, &stripe->csum_error_bitmap); 747 clear_bit(sector_nr, &stripe->error_bitmap); 748 } 749 } 750 751 /* Verify specified sectors of a stripe. */ 752 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap) 753 { 754 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 755 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 756 int sector_nr; 757 758 for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) { 759 scrub_verify_one_sector(stripe, sector_nr); 760 if (stripe->sectors[sector_nr].is_metadata) 761 sector_nr += sectors_per_tree - 1; 762 } 763 } 764 765 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec) 766 { 767 int i; 768 769 for (i = 0; i < stripe->nr_sectors; i++) { 770 if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page && 771 scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset) 772 break; 773 } 774 ASSERT(i < stripe->nr_sectors); 775 return i; 776 } 777 778 /* 779 * Repair read is different to the regular read: 780 * 781 * - Only reads the failed sectors 782 * - May have extra blocksize limits 783 */ 784 static void scrub_repair_read_endio(struct btrfs_bio *bbio) 785 { 786 struct scrub_stripe *stripe = bbio->private; 787 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 788 struct bio_vec *bvec; 789 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); 790 u32 bio_size = 0; 791 int i; 792 793 ASSERT(sector_nr < stripe->nr_sectors); 794 795 bio_for_each_bvec_all(bvec, &bbio->bio, i) 796 bio_size += bvec->bv_len; 797 798 if (bbio->bio.bi_status) { 799 bitmap_set(&stripe->io_error_bitmap, sector_nr, 800 bio_size >> fs_info->sectorsize_bits); 801 bitmap_set(&stripe->error_bitmap, sector_nr, 802 bio_size >> fs_info->sectorsize_bits); 803 } else { 804 bitmap_clear(&stripe->io_error_bitmap, sector_nr, 805 bio_size >> fs_info->sectorsize_bits); 806 } 807 bio_put(&bbio->bio); 808 if (atomic_dec_and_test(&stripe->pending_io)) 809 wake_up(&stripe->io_wait); 810 } 811 812 static int calc_next_mirror(int mirror, int num_copies) 813 { 814 ASSERT(mirror <= num_copies); 815 return (mirror + 1 > num_copies) ? 1 : mirror + 1; 816 } 817 818 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe, 819 int mirror, int blocksize, bool wait) 820 { 821 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 822 struct btrfs_bio *bbio = NULL; 823 const unsigned long old_error_bitmap = stripe->error_bitmap; 824 int i; 825 826 ASSERT(stripe->mirror_num >= 1); 827 ASSERT(atomic_read(&stripe->pending_io) == 0); 828 829 for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) { 830 struct page *page; 831 int pgoff; 832 int ret; 833 834 page = scrub_stripe_get_page(stripe, i); 835 pgoff = scrub_stripe_get_page_offset(stripe, i); 836 837 /* The current sector cannot be merged, submit the bio. */ 838 if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) || 839 bbio->bio.bi_iter.bi_size >= blocksize)) { 840 ASSERT(bbio->bio.bi_iter.bi_size); 841 atomic_inc(&stripe->pending_io); 842 btrfs_submit_bio(bbio, mirror); 843 if (wait) 844 wait_scrub_stripe_io(stripe); 845 bbio = NULL; 846 } 847 848 if (!bbio) { 849 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ, 850 fs_info, scrub_repair_read_endio, stripe); 851 bbio->bio.bi_iter.bi_sector = (stripe->logical + 852 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT; 853 } 854 855 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); 856 ASSERT(ret == fs_info->sectorsize); 857 } 858 if (bbio) { 859 ASSERT(bbio->bio.bi_iter.bi_size); 860 atomic_inc(&stripe->pending_io); 861 btrfs_submit_bio(bbio, mirror); 862 if (wait) 863 wait_scrub_stripe_io(stripe); 864 } 865 } 866 867 static void scrub_stripe_report_errors(struct scrub_ctx *sctx, 868 struct scrub_stripe *stripe) 869 { 870 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 871 DEFAULT_RATELIMIT_BURST); 872 struct btrfs_fs_info *fs_info = sctx->fs_info; 873 struct btrfs_device *dev = NULL; 874 u64 physical = 0; 875 int nr_data_sectors = 0; 876 int nr_meta_sectors = 0; 877 int nr_nodatacsum_sectors = 0; 878 int nr_repaired_sectors = 0; 879 int sector_nr; 880 881 if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state)) 882 return; 883 884 /* 885 * Init needed infos for error reporting. 886 * 887 * Although our scrub_stripe infrastucture is mostly based on btrfs_submit_bio() 888 * thus no need for dev/physical, error reporting still needs dev and physical. 889 */ 890 if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) { 891 u64 mapped_len = fs_info->sectorsize; 892 struct btrfs_io_context *bioc = NULL; 893 int stripe_index = stripe->mirror_num - 1; 894 int ret; 895 896 /* For scrub, our mirror_num should always start at 1. */ 897 ASSERT(stripe->mirror_num >= 1); 898 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 899 stripe->logical, &mapped_len, &bioc, 900 NULL, NULL, 1); 901 /* 902 * If we failed, dev will be NULL, and later detailed reports 903 * will just be skipped. 904 */ 905 if (ret < 0) 906 goto skip; 907 physical = bioc->stripes[stripe_index].physical; 908 dev = bioc->stripes[stripe_index].dev; 909 btrfs_put_bioc(bioc); 910 } 911 912 skip: 913 for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) { 914 bool repaired = false; 915 916 if (stripe->sectors[sector_nr].is_metadata) { 917 nr_meta_sectors++; 918 } else { 919 nr_data_sectors++; 920 if (!stripe->sectors[sector_nr].csum) 921 nr_nodatacsum_sectors++; 922 } 923 924 if (test_bit(sector_nr, &stripe->init_error_bitmap) && 925 !test_bit(sector_nr, &stripe->error_bitmap)) { 926 nr_repaired_sectors++; 927 repaired = true; 928 } 929 930 /* Good sector from the beginning, nothing need to be done. */ 931 if (!test_bit(sector_nr, &stripe->init_error_bitmap)) 932 continue; 933 934 /* 935 * Report error for the corrupted sectors. If repaired, just 936 * output the message of repaired message. 937 */ 938 if (repaired) { 939 if (dev) { 940 btrfs_err_rl_in_rcu(fs_info, 941 "fixed up error at logical %llu on dev %s physical %llu", 942 stripe->logical, btrfs_dev_name(dev), 943 physical); 944 } else { 945 btrfs_err_rl_in_rcu(fs_info, 946 "fixed up error at logical %llu on mirror %u", 947 stripe->logical, stripe->mirror_num); 948 } 949 continue; 950 } 951 952 /* The remaining are all for unrepaired. */ 953 if (dev) { 954 btrfs_err_rl_in_rcu(fs_info, 955 "unable to fixup (regular) error at logical %llu on dev %s physical %llu", 956 stripe->logical, btrfs_dev_name(dev), 957 physical); 958 } else { 959 btrfs_err_rl_in_rcu(fs_info, 960 "unable to fixup (regular) error at logical %llu on mirror %u", 961 stripe->logical, stripe->mirror_num); 962 } 963 964 if (test_bit(sector_nr, &stripe->io_error_bitmap)) 965 if (__ratelimit(&rs) && dev) 966 scrub_print_common_warning("i/o error", dev, false, 967 stripe->logical, physical); 968 if (test_bit(sector_nr, &stripe->csum_error_bitmap)) 969 if (__ratelimit(&rs) && dev) 970 scrub_print_common_warning("checksum error", dev, false, 971 stripe->logical, physical); 972 if (test_bit(sector_nr, &stripe->meta_error_bitmap)) 973 if (__ratelimit(&rs) && dev) 974 scrub_print_common_warning("header error", dev, false, 975 stripe->logical, physical); 976 } 977 978 spin_lock(&sctx->stat_lock); 979 sctx->stat.data_extents_scrubbed += stripe->nr_data_extents; 980 sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents; 981 sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits; 982 sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits; 983 sctx->stat.no_csum += nr_nodatacsum_sectors; 984 sctx->stat.read_errors += stripe->init_nr_io_errors; 985 sctx->stat.csum_errors += stripe->init_nr_csum_errors; 986 sctx->stat.verify_errors += stripe->init_nr_meta_errors; 987 sctx->stat.uncorrectable_errors += 988 bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors); 989 sctx->stat.corrected_errors += nr_repaired_sectors; 990 spin_unlock(&sctx->stat_lock); 991 } 992 993 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe, 994 unsigned long write_bitmap, bool dev_replace); 995 996 /* 997 * The main entrance for all read related scrub work, including: 998 * 999 * - Wait for the initial read to finish 1000 * - Verify and locate any bad sectors 1001 * - Go through the remaining mirrors and try to read as large blocksize as 1002 * possible 1003 * - Go through all mirrors (including the failed mirror) sector-by-sector 1004 * - Submit writeback for repaired sectors 1005 * 1006 * Writeback for dev-replace does not happen here, it needs extra 1007 * synchronization for zoned devices. 1008 */ 1009 static void scrub_stripe_read_repair_worker(struct work_struct *work) 1010 { 1011 struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work); 1012 struct scrub_ctx *sctx = stripe->sctx; 1013 struct btrfs_fs_info *fs_info = sctx->fs_info; 1014 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, 1015 stripe->bg->length); 1016 int mirror; 1017 int i; 1018 1019 ASSERT(stripe->mirror_num > 0); 1020 1021 wait_scrub_stripe_io(stripe); 1022 scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap); 1023 /* Save the initial failed bitmap for later repair and report usage. */ 1024 stripe->init_error_bitmap = stripe->error_bitmap; 1025 stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap, 1026 stripe->nr_sectors); 1027 stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap, 1028 stripe->nr_sectors); 1029 stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap, 1030 stripe->nr_sectors); 1031 1032 if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) 1033 goto out; 1034 1035 /* 1036 * Try all remaining mirrors. 1037 * 1038 * Here we still try to read as large block as possible, as this is 1039 * faster and we have extra safety nets to rely on. 1040 */ 1041 for (mirror = calc_next_mirror(stripe->mirror_num, num_copies); 1042 mirror != stripe->mirror_num; 1043 mirror = calc_next_mirror(mirror, num_copies)) { 1044 const unsigned long old_error_bitmap = stripe->error_bitmap; 1045 1046 scrub_stripe_submit_repair_read(stripe, mirror, 1047 BTRFS_STRIPE_LEN, false); 1048 wait_scrub_stripe_io(stripe); 1049 scrub_verify_one_stripe(stripe, old_error_bitmap); 1050 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) 1051 goto out; 1052 } 1053 1054 /* 1055 * Last safety net, try re-checking all mirrors, including the failed 1056 * one, sector-by-sector. 1057 * 1058 * As if one sector failed the drive's internal csum, the whole read 1059 * containing the offending sector would be marked as error. 1060 * Thus here we do sector-by-sector read. 1061 * 1062 * This can be slow, thus we only try it as the last resort. 1063 */ 1064 1065 for (i = 0, mirror = stripe->mirror_num; 1066 i < num_copies; 1067 i++, mirror = calc_next_mirror(mirror, num_copies)) { 1068 const unsigned long old_error_bitmap = stripe->error_bitmap; 1069 1070 scrub_stripe_submit_repair_read(stripe, mirror, 1071 fs_info->sectorsize, true); 1072 wait_scrub_stripe_io(stripe); 1073 scrub_verify_one_stripe(stripe, old_error_bitmap); 1074 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) 1075 goto out; 1076 } 1077 out: 1078 /* 1079 * Submit the repaired sectors. For zoned case, we cannot do repair 1080 * in-place, but queue the bg to be relocated. 1081 */ 1082 if (btrfs_is_zoned(fs_info)) { 1083 if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) 1084 btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start); 1085 } else if (!sctx->readonly) { 1086 unsigned long repaired; 1087 1088 bitmap_andnot(&repaired, &stripe->init_error_bitmap, 1089 &stripe->error_bitmap, stripe->nr_sectors); 1090 scrub_write_sectors(sctx, stripe, repaired, false); 1091 wait_scrub_stripe_io(stripe); 1092 } 1093 1094 scrub_stripe_report_errors(sctx, stripe); 1095 set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state); 1096 wake_up(&stripe->repair_wait); 1097 } 1098 1099 static void scrub_read_endio(struct btrfs_bio *bbio) 1100 { 1101 struct scrub_stripe *stripe = bbio->private; 1102 1103 if (bbio->bio.bi_status) { 1104 bitmap_set(&stripe->io_error_bitmap, 0, stripe->nr_sectors); 1105 bitmap_set(&stripe->error_bitmap, 0, stripe->nr_sectors); 1106 } else { 1107 bitmap_clear(&stripe->io_error_bitmap, 0, stripe->nr_sectors); 1108 } 1109 bio_put(&bbio->bio); 1110 if (atomic_dec_and_test(&stripe->pending_io)) { 1111 wake_up(&stripe->io_wait); 1112 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker); 1113 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work); 1114 } 1115 } 1116 1117 static void scrub_write_endio(struct btrfs_bio *bbio) 1118 { 1119 struct scrub_stripe *stripe = bbio->private; 1120 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1121 struct bio_vec *bvec; 1122 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); 1123 u32 bio_size = 0; 1124 int i; 1125 1126 bio_for_each_bvec_all(bvec, &bbio->bio, i) 1127 bio_size += bvec->bv_len; 1128 1129 if (bbio->bio.bi_status) { 1130 unsigned long flags; 1131 1132 spin_lock_irqsave(&stripe->write_error_lock, flags); 1133 bitmap_set(&stripe->write_error_bitmap, sector_nr, 1134 bio_size >> fs_info->sectorsize_bits); 1135 spin_unlock_irqrestore(&stripe->write_error_lock, flags); 1136 } 1137 bio_put(&bbio->bio); 1138 1139 if (atomic_dec_and_test(&stripe->pending_io)) 1140 wake_up(&stripe->io_wait); 1141 } 1142 1143 static void scrub_submit_write_bio(struct scrub_ctx *sctx, 1144 struct scrub_stripe *stripe, 1145 struct btrfs_bio *bbio, bool dev_replace) 1146 { 1147 struct btrfs_fs_info *fs_info = sctx->fs_info; 1148 u32 bio_len = bbio->bio.bi_iter.bi_size; 1149 u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) - 1150 stripe->logical; 1151 1152 fill_writer_pointer_gap(sctx, stripe->physical + bio_off); 1153 atomic_inc(&stripe->pending_io); 1154 btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace); 1155 if (!btrfs_is_zoned(fs_info)) 1156 return; 1157 /* 1158 * For zoned writeback, queue depth must be 1, thus we must wait for 1159 * the write to finish before the next write. 1160 */ 1161 wait_scrub_stripe_io(stripe); 1162 1163 /* 1164 * And also need to update the write pointer if write finished 1165 * successfully. 1166 */ 1167 if (!test_bit(bio_off >> fs_info->sectorsize_bits, 1168 &stripe->write_error_bitmap)) 1169 sctx->write_pointer += bio_len; 1170 } 1171 1172 /* 1173 * Submit the write bio(s) for the sectors specified by @write_bitmap. 1174 * 1175 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits: 1176 * 1177 * - Only needs logical bytenr and mirror_num 1178 * Just like the scrub read path 1179 * 1180 * - Would only result in writes to the specified mirror 1181 * Unlike the regular writeback path, which would write back to all stripes 1182 * 1183 * - Handle dev-replace and read-repair writeback differently 1184 */ 1185 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe, 1186 unsigned long write_bitmap, bool dev_replace) 1187 { 1188 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1189 struct btrfs_bio *bbio = NULL; 1190 int sector_nr; 1191 1192 for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) { 1193 struct page *page = scrub_stripe_get_page(stripe, sector_nr); 1194 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr); 1195 int ret; 1196 1197 /* We should only writeback sectors covered by an extent. */ 1198 ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap)); 1199 1200 /* Cannot merge with previous sector, submit the current one. */ 1201 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) { 1202 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace); 1203 bbio = NULL; 1204 } 1205 if (!bbio) { 1206 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE, 1207 fs_info, scrub_write_endio, stripe); 1208 bbio->bio.bi_iter.bi_sector = (stripe->logical + 1209 (sector_nr << fs_info->sectorsize_bits)) >> 1210 SECTOR_SHIFT; 1211 } 1212 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); 1213 ASSERT(ret == fs_info->sectorsize); 1214 } 1215 if (bbio) 1216 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace); 1217 } 1218 1219 /* 1220 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1 1221 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max. 1222 */ 1223 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device, 1224 unsigned int bio_size) 1225 { 1226 const int time_slice = 1000; 1227 s64 delta; 1228 ktime_t now; 1229 u32 div; 1230 u64 bwlimit; 1231 1232 bwlimit = READ_ONCE(device->scrub_speed_max); 1233 if (bwlimit == 0) 1234 return; 1235 1236 /* 1237 * Slice is divided into intervals when the IO is submitted, adjust by 1238 * bwlimit and maximum of 64 intervals. 1239 */ 1240 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024))); 1241 div = min_t(u32, 64, div); 1242 1243 /* Start new epoch, set deadline */ 1244 now = ktime_get(); 1245 if (sctx->throttle_deadline == 0) { 1246 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div); 1247 sctx->throttle_sent = 0; 1248 } 1249 1250 /* Still in the time to send? */ 1251 if (ktime_before(now, sctx->throttle_deadline)) { 1252 /* If current bio is within the limit, send it */ 1253 sctx->throttle_sent += bio_size; 1254 if (sctx->throttle_sent <= div_u64(bwlimit, div)) 1255 return; 1256 1257 /* We're over the limit, sleep until the rest of the slice */ 1258 delta = ktime_ms_delta(sctx->throttle_deadline, now); 1259 } else { 1260 /* New request after deadline, start new epoch */ 1261 delta = 0; 1262 } 1263 1264 if (delta) { 1265 long timeout; 1266 1267 timeout = div_u64(delta * HZ, 1000); 1268 schedule_timeout_interruptible(timeout); 1269 } 1270 1271 /* Next call will start the deadline period */ 1272 sctx->throttle_deadline = 0; 1273 } 1274 1275 /* 1276 * Given a physical address, this will calculate it's 1277 * logical offset. if this is a parity stripe, it will return 1278 * the most left data stripe's logical offset. 1279 * 1280 * return 0 if it is a data stripe, 1 means parity stripe. 1281 */ 1282 static int get_raid56_logic_offset(u64 physical, int num, 1283 struct map_lookup *map, u64 *offset, 1284 u64 *stripe_start) 1285 { 1286 int i; 1287 int j = 0; 1288 u64 last_offset; 1289 const int data_stripes = nr_data_stripes(map); 1290 1291 last_offset = (physical - map->stripes[num].physical) * data_stripes; 1292 if (stripe_start) 1293 *stripe_start = last_offset; 1294 1295 *offset = last_offset; 1296 for (i = 0; i < data_stripes; i++) { 1297 u32 stripe_nr; 1298 u32 stripe_index; 1299 u32 rot; 1300 1301 *offset = last_offset + btrfs_stripe_nr_to_offset(i); 1302 1303 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes; 1304 1305 /* Work out the disk rotation on this stripe-set */ 1306 rot = stripe_nr % map->num_stripes; 1307 /* calculate which stripe this data locates */ 1308 rot += i; 1309 stripe_index = rot % map->num_stripes; 1310 if (stripe_index == num) 1311 return 0; 1312 if (stripe_index < num) 1313 j++; 1314 } 1315 *offset = last_offset + btrfs_stripe_nr_to_offset(j); 1316 return 1; 1317 } 1318 1319 /* 1320 * Return 0 if the extent item range covers any byte of the range. 1321 * Return <0 if the extent item is before @search_start. 1322 * Return >0 if the extent item is after @start_start + @search_len. 1323 */ 1324 static int compare_extent_item_range(struct btrfs_path *path, 1325 u64 search_start, u64 search_len) 1326 { 1327 struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info; 1328 u64 len; 1329 struct btrfs_key key; 1330 1331 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1332 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY || 1333 key.type == BTRFS_METADATA_ITEM_KEY); 1334 if (key.type == BTRFS_METADATA_ITEM_KEY) 1335 len = fs_info->nodesize; 1336 else 1337 len = key.offset; 1338 1339 if (key.objectid + len <= search_start) 1340 return -1; 1341 if (key.objectid >= search_start + search_len) 1342 return 1; 1343 return 0; 1344 } 1345 1346 /* 1347 * Locate one extent item which covers any byte in range 1348 * [@search_start, @search_start + @search_length) 1349 * 1350 * If the path is not initialized, we will initialize the search by doing 1351 * a btrfs_search_slot(). 1352 * If the path is already initialized, we will use the path as the initial 1353 * slot, to avoid duplicated btrfs_search_slot() calls. 1354 * 1355 * NOTE: If an extent item starts before @search_start, we will still 1356 * return the extent item. This is for data extent crossing stripe boundary. 1357 * 1358 * Return 0 if we found such extent item, and @path will point to the extent item. 1359 * Return >0 if no such extent item can be found, and @path will be released. 1360 * Return <0 if hit fatal error, and @path will be released. 1361 */ 1362 static int find_first_extent_item(struct btrfs_root *extent_root, 1363 struct btrfs_path *path, 1364 u64 search_start, u64 search_len) 1365 { 1366 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1367 struct btrfs_key key; 1368 int ret; 1369 1370 /* Continue using the existing path */ 1371 if (path->nodes[0]) 1372 goto search_forward; 1373 1374 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1375 key.type = BTRFS_METADATA_ITEM_KEY; 1376 else 1377 key.type = BTRFS_EXTENT_ITEM_KEY; 1378 key.objectid = search_start; 1379 key.offset = (u64)-1; 1380 1381 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 1382 if (ret < 0) 1383 return ret; 1384 1385 ASSERT(ret > 0); 1386 /* 1387 * Here we intentionally pass 0 as @min_objectid, as there could be 1388 * an extent item starting before @search_start. 1389 */ 1390 ret = btrfs_previous_extent_item(extent_root, path, 0); 1391 if (ret < 0) 1392 return ret; 1393 /* 1394 * No matter whether we have found an extent item, the next loop will 1395 * properly do every check on the key. 1396 */ 1397 search_forward: 1398 while (true) { 1399 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1400 if (key.objectid >= search_start + search_len) 1401 break; 1402 if (key.type != BTRFS_METADATA_ITEM_KEY && 1403 key.type != BTRFS_EXTENT_ITEM_KEY) 1404 goto next; 1405 1406 ret = compare_extent_item_range(path, search_start, search_len); 1407 if (ret == 0) 1408 return ret; 1409 if (ret > 0) 1410 break; 1411 next: 1412 path->slots[0]++; 1413 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 1414 ret = btrfs_next_leaf(extent_root, path); 1415 if (ret) { 1416 /* Either no more item or fatal error */ 1417 btrfs_release_path(path); 1418 return ret; 1419 } 1420 } 1421 } 1422 btrfs_release_path(path); 1423 return 1; 1424 } 1425 1426 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret, 1427 u64 *size_ret, u64 *flags_ret, u64 *generation_ret) 1428 { 1429 struct btrfs_key key; 1430 struct btrfs_extent_item *ei; 1431 1432 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1433 ASSERT(key.type == BTRFS_METADATA_ITEM_KEY || 1434 key.type == BTRFS_EXTENT_ITEM_KEY); 1435 *extent_start_ret = key.objectid; 1436 if (key.type == BTRFS_METADATA_ITEM_KEY) 1437 *size_ret = path->nodes[0]->fs_info->nodesize; 1438 else 1439 *size_ret = key.offset; 1440 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item); 1441 *flags_ret = btrfs_extent_flags(path->nodes[0], ei); 1442 *generation_ret = btrfs_extent_generation(path->nodes[0], ei); 1443 } 1444 1445 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical, 1446 u64 physical, u64 physical_end) 1447 { 1448 struct btrfs_fs_info *fs_info = sctx->fs_info; 1449 int ret = 0; 1450 1451 if (!btrfs_is_zoned(fs_info)) 1452 return 0; 1453 1454 mutex_lock(&sctx->wr_lock); 1455 if (sctx->write_pointer < physical_end) { 1456 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical, 1457 physical, 1458 sctx->write_pointer); 1459 if (ret) 1460 btrfs_err(fs_info, 1461 "zoned: failed to recover write pointer"); 1462 } 1463 mutex_unlock(&sctx->wr_lock); 1464 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical); 1465 1466 return ret; 1467 } 1468 1469 static void fill_one_extent_info(struct btrfs_fs_info *fs_info, 1470 struct scrub_stripe *stripe, 1471 u64 extent_start, u64 extent_len, 1472 u64 extent_flags, u64 extent_gen) 1473 { 1474 for (u64 cur_logical = max(stripe->logical, extent_start); 1475 cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN, 1476 extent_start + extent_len); 1477 cur_logical += fs_info->sectorsize) { 1478 const int nr_sector = (cur_logical - stripe->logical) >> 1479 fs_info->sectorsize_bits; 1480 struct scrub_sector_verification *sector = 1481 &stripe->sectors[nr_sector]; 1482 1483 set_bit(nr_sector, &stripe->extent_sector_bitmap); 1484 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1485 sector->is_metadata = true; 1486 sector->generation = extent_gen; 1487 } 1488 } 1489 } 1490 1491 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe) 1492 { 1493 stripe->extent_sector_bitmap = 0; 1494 stripe->init_error_bitmap = 0; 1495 stripe->init_nr_io_errors = 0; 1496 stripe->init_nr_csum_errors = 0; 1497 stripe->init_nr_meta_errors = 0; 1498 stripe->error_bitmap = 0; 1499 stripe->io_error_bitmap = 0; 1500 stripe->csum_error_bitmap = 0; 1501 stripe->meta_error_bitmap = 0; 1502 } 1503 1504 /* 1505 * Locate one stripe which has at least one extent in its range. 1506 * 1507 * Return 0 if found such stripe, and store its info into @stripe. 1508 * Return >0 if there is no such stripe in the specified range. 1509 * Return <0 for error. 1510 */ 1511 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg, 1512 struct btrfs_path *extent_path, 1513 struct btrfs_path *csum_path, 1514 struct btrfs_device *dev, u64 physical, 1515 int mirror_num, u64 logical_start, 1516 u32 logical_len, 1517 struct scrub_stripe *stripe) 1518 { 1519 struct btrfs_fs_info *fs_info = bg->fs_info; 1520 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start); 1521 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start); 1522 const u64 logical_end = logical_start + logical_len; 1523 u64 cur_logical = logical_start; 1524 u64 stripe_end; 1525 u64 extent_start; 1526 u64 extent_len; 1527 u64 extent_flags; 1528 u64 extent_gen; 1529 int ret; 1530 1531 memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) * 1532 stripe->nr_sectors); 1533 scrub_stripe_reset_bitmaps(stripe); 1534 1535 /* The range must be inside the bg. */ 1536 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); 1537 1538 ret = find_first_extent_item(extent_root, extent_path, logical_start, 1539 logical_len); 1540 /* Either error or not found. */ 1541 if (ret) 1542 goto out; 1543 get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags, 1544 &extent_gen); 1545 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1546 stripe->nr_meta_extents++; 1547 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) 1548 stripe->nr_data_extents++; 1549 cur_logical = max(extent_start, cur_logical); 1550 1551 /* 1552 * Round down to stripe boundary. 1553 * 1554 * The extra calculation against bg->start is to handle block groups 1555 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned. 1556 */ 1557 stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) + 1558 bg->start; 1559 stripe->physical = physical + stripe->logical - logical_start; 1560 stripe->dev = dev; 1561 stripe->bg = bg; 1562 stripe->mirror_num = mirror_num; 1563 stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1; 1564 1565 /* Fill the first extent info into stripe->sectors[] array. */ 1566 fill_one_extent_info(fs_info, stripe, extent_start, extent_len, 1567 extent_flags, extent_gen); 1568 cur_logical = extent_start + extent_len; 1569 1570 /* Fill the extent info for the remaining sectors. */ 1571 while (cur_logical <= stripe_end) { 1572 ret = find_first_extent_item(extent_root, extent_path, cur_logical, 1573 stripe_end - cur_logical + 1); 1574 if (ret < 0) 1575 goto out; 1576 if (ret > 0) { 1577 ret = 0; 1578 break; 1579 } 1580 get_extent_info(extent_path, &extent_start, &extent_len, 1581 &extent_flags, &extent_gen); 1582 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1583 stripe->nr_meta_extents++; 1584 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) 1585 stripe->nr_data_extents++; 1586 fill_one_extent_info(fs_info, stripe, extent_start, extent_len, 1587 extent_flags, extent_gen); 1588 cur_logical = extent_start + extent_len; 1589 } 1590 1591 /* Now fill the data csum. */ 1592 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) { 1593 int sector_nr; 1594 unsigned long csum_bitmap = 0; 1595 1596 /* Csum space should have already been allocated. */ 1597 ASSERT(stripe->csums); 1598 1599 /* 1600 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN 1601 * should contain at most 16 sectors. 1602 */ 1603 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); 1604 1605 ret = btrfs_lookup_csums_bitmap(csum_root, csum_path, 1606 stripe->logical, stripe_end, 1607 stripe->csums, &csum_bitmap); 1608 if (ret < 0) 1609 goto out; 1610 if (ret > 0) 1611 ret = 0; 1612 1613 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) { 1614 stripe->sectors[sector_nr].csum = stripe->csums + 1615 sector_nr * fs_info->csum_size; 1616 } 1617 } 1618 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); 1619 out: 1620 return ret; 1621 } 1622 1623 static void scrub_reset_stripe(struct scrub_stripe *stripe) 1624 { 1625 scrub_stripe_reset_bitmaps(stripe); 1626 1627 stripe->nr_meta_extents = 0; 1628 stripe->nr_data_extents = 0; 1629 stripe->state = 0; 1630 1631 for (int i = 0; i < stripe->nr_sectors; i++) { 1632 stripe->sectors[i].is_metadata = false; 1633 stripe->sectors[i].csum = NULL; 1634 stripe->sectors[i].generation = 0; 1635 } 1636 } 1637 1638 static void scrub_submit_initial_read(struct scrub_ctx *sctx, 1639 struct scrub_stripe *stripe) 1640 { 1641 struct btrfs_fs_info *fs_info = sctx->fs_info; 1642 struct btrfs_bio *bbio; 1643 int mirror = stripe->mirror_num; 1644 1645 ASSERT(stripe->bg); 1646 ASSERT(stripe->mirror_num > 0); 1647 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state)); 1648 1649 bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info, 1650 scrub_read_endio, stripe); 1651 1652 /* Read the whole stripe. */ 1653 bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT; 1654 for (int i = 0; i < BTRFS_STRIPE_LEN >> PAGE_SHIFT; i++) { 1655 int ret; 1656 1657 ret = bio_add_page(&bbio->bio, stripe->pages[i], PAGE_SIZE, 0); 1658 /* We should have allocated enough bio vectors. */ 1659 ASSERT(ret == PAGE_SIZE); 1660 } 1661 atomic_inc(&stripe->pending_io); 1662 1663 /* 1664 * For dev-replace, either user asks to avoid the source dev, or 1665 * the device is missing, we try the next mirror instead. 1666 */ 1667 if (sctx->is_dev_replace && 1668 (fs_info->dev_replace.cont_reading_from_srcdev_mode == 1669 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID || 1670 !stripe->dev->bdev)) { 1671 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, 1672 stripe->bg->length); 1673 1674 mirror = calc_next_mirror(mirror, num_copies); 1675 } 1676 btrfs_submit_bio(bbio, mirror); 1677 } 1678 1679 static bool stripe_has_metadata_error(struct scrub_stripe *stripe) 1680 { 1681 int i; 1682 1683 for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) { 1684 if (stripe->sectors[i].is_metadata) { 1685 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1686 1687 btrfs_err(fs_info, 1688 "stripe %llu has unrepaired metadata sector at %llu", 1689 stripe->logical, 1690 stripe->logical + (i << fs_info->sectorsize_bits)); 1691 return true; 1692 } 1693 } 1694 return false; 1695 } 1696 1697 static void submit_initial_group_read(struct scrub_ctx *sctx, 1698 unsigned int first_slot, 1699 unsigned int nr_stripes) 1700 { 1701 struct blk_plug plug; 1702 1703 ASSERT(first_slot < SCRUB_TOTAL_STRIPES); 1704 ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES); 1705 1706 scrub_throttle_dev_io(sctx, sctx->stripes[0].dev, 1707 btrfs_stripe_nr_to_offset(nr_stripes)); 1708 blk_start_plug(&plug); 1709 for (int i = 0; i < nr_stripes; i++) { 1710 struct scrub_stripe *stripe = &sctx->stripes[first_slot + i]; 1711 1712 /* Those stripes should be initialized. */ 1713 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state)); 1714 scrub_submit_initial_read(sctx, stripe); 1715 } 1716 blk_finish_plug(&plug); 1717 } 1718 1719 static int flush_scrub_stripes(struct scrub_ctx *sctx) 1720 { 1721 struct btrfs_fs_info *fs_info = sctx->fs_info; 1722 struct scrub_stripe *stripe; 1723 const int nr_stripes = sctx->cur_stripe; 1724 int ret = 0; 1725 1726 if (!nr_stripes) 1727 return 0; 1728 1729 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state)); 1730 1731 /* Submit the stripes which are populated but not submitted. */ 1732 if (nr_stripes % SCRUB_STRIPES_PER_GROUP) { 1733 const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP); 1734 1735 submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot); 1736 } 1737 1738 for (int i = 0; i < nr_stripes; i++) { 1739 stripe = &sctx->stripes[i]; 1740 1741 wait_event(stripe->repair_wait, 1742 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); 1743 } 1744 1745 /* Submit for dev-replace. */ 1746 if (sctx->is_dev_replace) { 1747 /* 1748 * For dev-replace, if we know there is something wrong with 1749 * metadata, we should immedately abort. 1750 */ 1751 for (int i = 0; i < nr_stripes; i++) { 1752 if (stripe_has_metadata_error(&sctx->stripes[i])) { 1753 ret = -EIO; 1754 goto out; 1755 } 1756 } 1757 for (int i = 0; i < nr_stripes; i++) { 1758 unsigned long good; 1759 1760 stripe = &sctx->stripes[i]; 1761 1762 ASSERT(stripe->dev == fs_info->dev_replace.srcdev); 1763 1764 bitmap_andnot(&good, &stripe->extent_sector_bitmap, 1765 &stripe->error_bitmap, stripe->nr_sectors); 1766 scrub_write_sectors(sctx, stripe, good, true); 1767 } 1768 } 1769 1770 /* Wait for the above writebacks to finish. */ 1771 for (int i = 0; i < nr_stripes; i++) { 1772 stripe = &sctx->stripes[i]; 1773 1774 wait_scrub_stripe_io(stripe); 1775 scrub_reset_stripe(stripe); 1776 } 1777 out: 1778 sctx->cur_stripe = 0; 1779 return ret; 1780 } 1781 1782 static void raid56_scrub_wait_endio(struct bio *bio) 1783 { 1784 complete(bio->bi_private); 1785 } 1786 1787 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg, 1788 struct btrfs_device *dev, int mirror_num, 1789 u64 logical, u32 length, u64 physical, 1790 u64 *found_logical_ret) 1791 { 1792 struct scrub_stripe *stripe; 1793 int ret; 1794 1795 /* 1796 * There should always be one slot left, as caller filling the last 1797 * slot should flush them all. 1798 */ 1799 ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES); 1800 1801 stripe = &sctx->stripes[sctx->cur_stripe]; 1802 scrub_reset_stripe(stripe); 1803 ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path, 1804 &sctx->csum_path, dev, physical, 1805 mirror_num, logical, length, stripe); 1806 /* Either >0 as no more extents or <0 for error. */ 1807 if (ret) 1808 return ret; 1809 if (found_logical_ret) 1810 *found_logical_ret = stripe->logical; 1811 sctx->cur_stripe++; 1812 1813 /* We filled one group, submit it. */ 1814 if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) { 1815 const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP; 1816 1817 submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP); 1818 } 1819 1820 /* Last slot used, flush them all. */ 1821 if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES) 1822 return flush_scrub_stripes(sctx); 1823 return 0; 1824 } 1825 1826 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx, 1827 struct btrfs_device *scrub_dev, 1828 struct btrfs_block_group *bg, 1829 struct map_lookup *map, 1830 u64 full_stripe_start) 1831 { 1832 DECLARE_COMPLETION_ONSTACK(io_done); 1833 struct btrfs_fs_info *fs_info = sctx->fs_info; 1834 struct btrfs_raid_bio *rbio; 1835 struct btrfs_io_context *bioc = NULL; 1836 struct btrfs_path extent_path = { 0 }; 1837 struct btrfs_path csum_path = { 0 }; 1838 struct bio *bio; 1839 struct scrub_stripe *stripe; 1840 bool all_empty = true; 1841 const int data_stripes = nr_data_stripes(map); 1842 unsigned long extent_bitmap = 0; 1843 u64 length = btrfs_stripe_nr_to_offset(data_stripes); 1844 int ret; 1845 1846 ASSERT(sctx->raid56_data_stripes); 1847 1848 /* 1849 * For data stripe search, we cannot re-use the same extent/csum paths, 1850 * as the data stripe bytenr may be smaller than previous extent. Thus 1851 * we have to use our own extent/csum paths. 1852 */ 1853 extent_path.search_commit_root = 1; 1854 extent_path.skip_locking = 1; 1855 csum_path.search_commit_root = 1; 1856 csum_path.skip_locking = 1; 1857 1858 for (int i = 0; i < data_stripes; i++) { 1859 int stripe_index; 1860 int rot; 1861 u64 physical; 1862 1863 stripe = &sctx->raid56_data_stripes[i]; 1864 rot = div_u64(full_stripe_start - bg->start, 1865 data_stripes) >> BTRFS_STRIPE_LEN_SHIFT; 1866 stripe_index = (i + rot) % map->num_stripes; 1867 physical = map->stripes[stripe_index].physical + 1868 btrfs_stripe_nr_to_offset(rot); 1869 1870 scrub_reset_stripe(stripe); 1871 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state); 1872 ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path, 1873 map->stripes[stripe_index].dev, physical, 1, 1874 full_stripe_start + btrfs_stripe_nr_to_offset(i), 1875 BTRFS_STRIPE_LEN, stripe); 1876 if (ret < 0) 1877 goto out; 1878 /* 1879 * No extent in this data stripe, need to manually mark them 1880 * initialized to make later read submission happy. 1881 */ 1882 if (ret > 0) { 1883 stripe->logical = full_stripe_start + 1884 btrfs_stripe_nr_to_offset(i); 1885 stripe->dev = map->stripes[stripe_index].dev; 1886 stripe->mirror_num = 1; 1887 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); 1888 } 1889 } 1890 1891 /* Check if all data stripes are empty. */ 1892 for (int i = 0; i < data_stripes; i++) { 1893 stripe = &sctx->raid56_data_stripes[i]; 1894 if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) { 1895 all_empty = false; 1896 break; 1897 } 1898 } 1899 if (all_empty) { 1900 ret = 0; 1901 goto out; 1902 } 1903 1904 for (int i = 0; i < data_stripes; i++) { 1905 stripe = &sctx->raid56_data_stripes[i]; 1906 scrub_submit_initial_read(sctx, stripe); 1907 } 1908 for (int i = 0; i < data_stripes; i++) { 1909 stripe = &sctx->raid56_data_stripes[i]; 1910 1911 wait_event(stripe->repair_wait, 1912 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); 1913 } 1914 /* For now, no zoned support for RAID56. */ 1915 ASSERT(!btrfs_is_zoned(sctx->fs_info)); 1916 1917 /* 1918 * Now all data stripes are properly verified. Check if we have any 1919 * unrepaired, if so abort immediately or we could further corrupt the 1920 * P/Q stripes. 1921 * 1922 * During the loop, also populate extent_bitmap. 1923 */ 1924 for (int i = 0; i < data_stripes; i++) { 1925 unsigned long error; 1926 1927 stripe = &sctx->raid56_data_stripes[i]; 1928 1929 /* 1930 * We should only check the errors where there is an extent. 1931 * As we may hit an empty data stripe while it's missing. 1932 */ 1933 bitmap_and(&error, &stripe->error_bitmap, 1934 &stripe->extent_sector_bitmap, stripe->nr_sectors); 1935 if (!bitmap_empty(&error, stripe->nr_sectors)) { 1936 btrfs_err(fs_info, 1937 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl", 1938 full_stripe_start, i, stripe->nr_sectors, 1939 &error); 1940 ret = -EIO; 1941 goto out; 1942 } 1943 bitmap_or(&extent_bitmap, &extent_bitmap, 1944 &stripe->extent_sector_bitmap, stripe->nr_sectors); 1945 } 1946 1947 /* Now we can check and regenerate the P/Q stripe. */ 1948 bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS); 1949 bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT; 1950 bio->bi_private = &io_done; 1951 bio->bi_end_io = raid56_scrub_wait_endio; 1952 1953 btrfs_bio_counter_inc_blocked(fs_info); 1954 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start, 1955 &length, &bioc, NULL, NULL, 1); 1956 if (ret < 0) { 1957 btrfs_put_bioc(bioc); 1958 btrfs_bio_counter_dec(fs_info); 1959 goto out; 1960 } 1961 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap, 1962 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); 1963 btrfs_put_bioc(bioc); 1964 if (!rbio) { 1965 ret = -ENOMEM; 1966 btrfs_bio_counter_dec(fs_info); 1967 goto out; 1968 } 1969 /* Use the recovered stripes as cache to avoid read them from disk again. */ 1970 for (int i = 0; i < data_stripes; i++) { 1971 stripe = &sctx->raid56_data_stripes[i]; 1972 1973 raid56_parity_cache_data_pages(rbio, stripe->pages, 1974 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT)); 1975 } 1976 raid56_parity_submit_scrub_rbio(rbio); 1977 wait_for_completion_io(&io_done); 1978 ret = blk_status_to_errno(bio->bi_status); 1979 bio_put(bio); 1980 btrfs_bio_counter_dec(fs_info); 1981 1982 btrfs_release_path(&extent_path); 1983 btrfs_release_path(&csum_path); 1984 out: 1985 return ret; 1986 } 1987 1988 /* 1989 * Scrub one range which can only has simple mirror based profile. 1990 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in 1991 * RAID0/RAID10). 1992 * 1993 * Since we may need to handle a subset of block group, we need @logical_start 1994 * and @logical_length parameter. 1995 */ 1996 static int scrub_simple_mirror(struct scrub_ctx *sctx, 1997 struct btrfs_block_group *bg, 1998 struct map_lookup *map, 1999 u64 logical_start, u64 logical_length, 2000 struct btrfs_device *device, 2001 u64 physical, int mirror_num) 2002 { 2003 struct btrfs_fs_info *fs_info = sctx->fs_info; 2004 const u64 logical_end = logical_start + logical_length; 2005 u64 cur_logical = logical_start; 2006 int ret; 2007 2008 /* The range must be inside the bg */ 2009 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); 2010 2011 /* Go through each extent items inside the logical range */ 2012 while (cur_logical < logical_end) { 2013 u64 found_logical; 2014 u64 cur_physical = physical + cur_logical - logical_start; 2015 2016 /* Canceled? */ 2017 if (atomic_read(&fs_info->scrub_cancel_req) || 2018 atomic_read(&sctx->cancel_req)) { 2019 ret = -ECANCELED; 2020 break; 2021 } 2022 /* Paused? */ 2023 if (atomic_read(&fs_info->scrub_pause_req)) { 2024 /* Push queued extents */ 2025 scrub_blocked_if_needed(fs_info); 2026 } 2027 /* Block group removed? */ 2028 spin_lock(&bg->lock); 2029 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) { 2030 spin_unlock(&bg->lock); 2031 ret = 0; 2032 break; 2033 } 2034 spin_unlock(&bg->lock); 2035 2036 ret = queue_scrub_stripe(sctx, bg, device, mirror_num, 2037 cur_logical, logical_end - cur_logical, 2038 cur_physical, &found_logical); 2039 if (ret > 0) { 2040 /* No more extent, just update the accounting */ 2041 sctx->stat.last_physical = physical + logical_length; 2042 ret = 0; 2043 break; 2044 } 2045 if (ret < 0) 2046 break; 2047 2048 cur_logical = found_logical + BTRFS_STRIPE_LEN; 2049 2050 /* Don't hold CPU for too long time */ 2051 cond_resched(); 2052 } 2053 return ret; 2054 } 2055 2056 /* Calculate the full stripe length for simple stripe based profiles */ 2057 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map) 2058 { 2059 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2060 BTRFS_BLOCK_GROUP_RAID10)); 2061 2062 return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes); 2063 } 2064 2065 /* Get the logical bytenr for the stripe */ 2066 static u64 simple_stripe_get_logical(struct map_lookup *map, 2067 struct btrfs_block_group *bg, 2068 int stripe_index) 2069 { 2070 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2071 BTRFS_BLOCK_GROUP_RAID10)); 2072 ASSERT(stripe_index < map->num_stripes); 2073 2074 /* 2075 * (stripe_index / sub_stripes) gives how many data stripes we need to 2076 * skip. 2077 */ 2078 return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) + 2079 bg->start; 2080 } 2081 2082 /* Get the mirror number for the stripe */ 2083 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index) 2084 { 2085 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2086 BTRFS_BLOCK_GROUP_RAID10)); 2087 ASSERT(stripe_index < map->num_stripes); 2088 2089 /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */ 2090 return stripe_index % map->sub_stripes + 1; 2091 } 2092 2093 static int scrub_simple_stripe(struct scrub_ctx *sctx, 2094 struct btrfs_block_group *bg, 2095 struct map_lookup *map, 2096 struct btrfs_device *device, 2097 int stripe_index) 2098 { 2099 const u64 logical_increment = simple_stripe_full_stripe_len(map); 2100 const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index); 2101 const u64 orig_physical = map->stripes[stripe_index].physical; 2102 const int mirror_num = simple_stripe_mirror_num(map, stripe_index); 2103 u64 cur_logical = orig_logical; 2104 u64 cur_physical = orig_physical; 2105 int ret = 0; 2106 2107 while (cur_logical < bg->start + bg->length) { 2108 /* 2109 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is 2110 * just RAID1, so we can reuse scrub_simple_mirror() to scrub 2111 * this stripe. 2112 */ 2113 ret = scrub_simple_mirror(sctx, bg, map, cur_logical, 2114 BTRFS_STRIPE_LEN, device, cur_physical, 2115 mirror_num); 2116 if (ret) 2117 return ret; 2118 /* Skip to next stripe which belongs to the target device */ 2119 cur_logical += logical_increment; 2120 /* For physical offset, we just go to next stripe */ 2121 cur_physical += BTRFS_STRIPE_LEN; 2122 } 2123 return ret; 2124 } 2125 2126 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 2127 struct btrfs_block_group *bg, 2128 struct extent_map *em, 2129 struct btrfs_device *scrub_dev, 2130 int stripe_index) 2131 { 2132 struct btrfs_fs_info *fs_info = sctx->fs_info; 2133 struct map_lookup *map = em->map_lookup; 2134 const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; 2135 const u64 chunk_logical = bg->start; 2136 int ret; 2137 int ret2; 2138 u64 physical = map->stripes[stripe_index].physical; 2139 const u64 dev_stripe_len = btrfs_calc_stripe_length(em); 2140 const u64 physical_end = physical + dev_stripe_len; 2141 u64 logical; 2142 u64 logic_end; 2143 /* The logical increment after finishing one stripe */ 2144 u64 increment; 2145 /* Offset inside the chunk */ 2146 u64 offset; 2147 u64 stripe_logical; 2148 int stop_loop = 0; 2149 2150 /* Extent_path should be released by now. */ 2151 ASSERT(sctx->extent_path.nodes[0] == NULL); 2152 2153 scrub_blocked_if_needed(fs_info); 2154 2155 if (sctx->is_dev_replace && 2156 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) { 2157 mutex_lock(&sctx->wr_lock); 2158 sctx->write_pointer = physical; 2159 mutex_unlock(&sctx->wr_lock); 2160 } 2161 2162 /* Prepare the extra data stripes used by RAID56. */ 2163 if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) { 2164 ASSERT(sctx->raid56_data_stripes == NULL); 2165 2166 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map), 2167 sizeof(struct scrub_stripe), 2168 GFP_KERNEL); 2169 if (!sctx->raid56_data_stripes) { 2170 ret = -ENOMEM; 2171 goto out; 2172 } 2173 for (int i = 0; i < nr_data_stripes(map); i++) { 2174 ret = init_scrub_stripe(fs_info, 2175 &sctx->raid56_data_stripes[i]); 2176 if (ret < 0) 2177 goto out; 2178 sctx->raid56_data_stripes[i].bg = bg; 2179 sctx->raid56_data_stripes[i].sctx = sctx; 2180 } 2181 } 2182 /* 2183 * There used to be a big double loop to handle all profiles using the 2184 * same routine, which grows larger and more gross over time. 2185 * 2186 * So here we handle each profile differently, so simpler profiles 2187 * have simpler scrubbing function. 2188 */ 2189 if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 | 2190 BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2191 /* 2192 * Above check rules out all complex profile, the remaining 2193 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple 2194 * mirrored duplication without stripe. 2195 * 2196 * Only @physical and @mirror_num needs to calculated using 2197 * @stripe_index. 2198 */ 2199 ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length, 2200 scrub_dev, map->stripes[stripe_index].physical, 2201 stripe_index + 1); 2202 offset = 0; 2203 goto out; 2204 } 2205 if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 2206 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index); 2207 offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes); 2208 goto out; 2209 } 2210 2211 /* Only RAID56 goes through the old code */ 2212 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK); 2213 ret = 0; 2214 2215 /* Calculate the logical end of the stripe */ 2216 get_raid56_logic_offset(physical_end, stripe_index, 2217 map, &logic_end, NULL); 2218 logic_end += chunk_logical; 2219 2220 /* Initialize @offset in case we need to go to out: label */ 2221 get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL); 2222 increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 2223 2224 /* 2225 * Due to the rotation, for RAID56 it's better to iterate each stripe 2226 * using their physical offset. 2227 */ 2228 while (physical < physical_end) { 2229 ret = get_raid56_logic_offset(physical, stripe_index, map, 2230 &logical, &stripe_logical); 2231 logical += chunk_logical; 2232 if (ret) { 2233 /* it is parity strip */ 2234 stripe_logical += chunk_logical; 2235 ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg, 2236 map, stripe_logical); 2237 if (ret) 2238 goto out; 2239 goto next; 2240 } 2241 2242 /* 2243 * Now we're at a data stripe, scrub each extents in the range. 2244 * 2245 * At this stage, if we ignore the repair part, inside each data 2246 * stripe it is no different than SINGLE profile. 2247 * We can reuse scrub_simple_mirror() here, as the repair part 2248 * is still based on @mirror_num. 2249 */ 2250 ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN, 2251 scrub_dev, physical, 1); 2252 if (ret < 0) 2253 goto out; 2254 next: 2255 logical += increment; 2256 physical += BTRFS_STRIPE_LEN; 2257 spin_lock(&sctx->stat_lock); 2258 if (stop_loop) 2259 sctx->stat.last_physical = 2260 map->stripes[stripe_index].physical + dev_stripe_len; 2261 else 2262 sctx->stat.last_physical = physical; 2263 spin_unlock(&sctx->stat_lock); 2264 if (stop_loop) 2265 break; 2266 } 2267 out: 2268 ret2 = flush_scrub_stripes(sctx); 2269 if (!ret) 2270 ret = ret2; 2271 btrfs_release_path(&sctx->extent_path); 2272 btrfs_release_path(&sctx->csum_path); 2273 2274 if (sctx->raid56_data_stripes) { 2275 for (int i = 0; i < nr_data_stripes(map); i++) 2276 release_scrub_stripe(&sctx->raid56_data_stripes[i]); 2277 kfree(sctx->raid56_data_stripes); 2278 sctx->raid56_data_stripes = NULL; 2279 } 2280 2281 if (sctx->is_dev_replace && ret >= 0) { 2282 int ret2; 2283 2284 ret2 = sync_write_pointer_for_zoned(sctx, 2285 chunk_logical + offset, 2286 map->stripes[stripe_index].physical, 2287 physical_end); 2288 if (ret2) 2289 ret = ret2; 2290 } 2291 2292 return ret < 0 ? ret : 0; 2293 } 2294 2295 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 2296 struct btrfs_block_group *bg, 2297 struct btrfs_device *scrub_dev, 2298 u64 dev_offset, 2299 u64 dev_extent_len) 2300 { 2301 struct btrfs_fs_info *fs_info = sctx->fs_info; 2302 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 2303 struct map_lookup *map; 2304 struct extent_map *em; 2305 int i; 2306 int ret = 0; 2307 2308 read_lock(&map_tree->lock); 2309 em = lookup_extent_mapping(map_tree, bg->start, bg->length); 2310 read_unlock(&map_tree->lock); 2311 2312 if (!em) { 2313 /* 2314 * Might have been an unused block group deleted by the cleaner 2315 * kthread or relocation. 2316 */ 2317 spin_lock(&bg->lock); 2318 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) 2319 ret = -EINVAL; 2320 spin_unlock(&bg->lock); 2321 2322 return ret; 2323 } 2324 if (em->start != bg->start) 2325 goto out; 2326 if (em->len < dev_extent_len) 2327 goto out; 2328 2329 map = em->map_lookup; 2330 for (i = 0; i < map->num_stripes; ++i) { 2331 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 2332 map->stripes[i].physical == dev_offset) { 2333 ret = scrub_stripe(sctx, bg, em, scrub_dev, i); 2334 if (ret) 2335 goto out; 2336 } 2337 } 2338 out: 2339 free_extent_map(em); 2340 2341 return ret; 2342 } 2343 2344 static int finish_extent_writes_for_zoned(struct btrfs_root *root, 2345 struct btrfs_block_group *cache) 2346 { 2347 struct btrfs_fs_info *fs_info = cache->fs_info; 2348 struct btrfs_trans_handle *trans; 2349 2350 if (!btrfs_is_zoned(fs_info)) 2351 return 0; 2352 2353 btrfs_wait_block_group_reservations(cache); 2354 btrfs_wait_nocow_writers(cache); 2355 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length); 2356 2357 trans = btrfs_join_transaction(root); 2358 if (IS_ERR(trans)) 2359 return PTR_ERR(trans); 2360 return btrfs_commit_transaction(trans); 2361 } 2362 2363 static noinline_for_stack 2364 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 2365 struct btrfs_device *scrub_dev, u64 start, u64 end) 2366 { 2367 struct btrfs_dev_extent *dev_extent = NULL; 2368 struct btrfs_path *path; 2369 struct btrfs_fs_info *fs_info = sctx->fs_info; 2370 struct btrfs_root *root = fs_info->dev_root; 2371 u64 chunk_offset; 2372 int ret = 0; 2373 int ro_set; 2374 int slot; 2375 struct extent_buffer *l; 2376 struct btrfs_key key; 2377 struct btrfs_key found_key; 2378 struct btrfs_block_group *cache; 2379 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 2380 2381 path = btrfs_alloc_path(); 2382 if (!path) 2383 return -ENOMEM; 2384 2385 path->reada = READA_FORWARD; 2386 path->search_commit_root = 1; 2387 path->skip_locking = 1; 2388 2389 key.objectid = scrub_dev->devid; 2390 key.offset = 0ull; 2391 key.type = BTRFS_DEV_EXTENT_KEY; 2392 2393 while (1) { 2394 u64 dev_extent_len; 2395 2396 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2397 if (ret < 0) 2398 break; 2399 if (ret > 0) { 2400 if (path->slots[0] >= 2401 btrfs_header_nritems(path->nodes[0])) { 2402 ret = btrfs_next_leaf(root, path); 2403 if (ret < 0) 2404 break; 2405 if (ret > 0) { 2406 ret = 0; 2407 break; 2408 } 2409 } else { 2410 ret = 0; 2411 } 2412 } 2413 2414 l = path->nodes[0]; 2415 slot = path->slots[0]; 2416 2417 btrfs_item_key_to_cpu(l, &found_key, slot); 2418 2419 if (found_key.objectid != scrub_dev->devid) 2420 break; 2421 2422 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 2423 break; 2424 2425 if (found_key.offset >= end) 2426 break; 2427 2428 if (found_key.offset < key.offset) 2429 break; 2430 2431 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 2432 dev_extent_len = btrfs_dev_extent_length(l, dev_extent); 2433 2434 if (found_key.offset + dev_extent_len <= start) 2435 goto skip; 2436 2437 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 2438 2439 /* 2440 * get a reference on the corresponding block group to prevent 2441 * the chunk from going away while we scrub it 2442 */ 2443 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2444 2445 /* some chunks are removed but not committed to disk yet, 2446 * continue scrubbing */ 2447 if (!cache) 2448 goto skip; 2449 2450 ASSERT(cache->start <= chunk_offset); 2451 /* 2452 * We are using the commit root to search for device extents, so 2453 * that means we could have found a device extent item from a 2454 * block group that was deleted in the current transaction. The 2455 * logical start offset of the deleted block group, stored at 2456 * @chunk_offset, might be part of the logical address range of 2457 * a new block group (which uses different physical extents). 2458 * In this case btrfs_lookup_block_group() has returned the new 2459 * block group, and its start address is less than @chunk_offset. 2460 * 2461 * We skip such new block groups, because it's pointless to 2462 * process them, as we won't find their extents because we search 2463 * for them using the commit root of the extent tree. For a device 2464 * replace it's also fine to skip it, we won't miss copying them 2465 * to the target device because we have the write duplication 2466 * setup through the regular write path (by btrfs_map_block()), 2467 * and we have committed a transaction when we started the device 2468 * replace, right after setting up the device replace state. 2469 */ 2470 if (cache->start < chunk_offset) { 2471 btrfs_put_block_group(cache); 2472 goto skip; 2473 } 2474 2475 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) { 2476 if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) { 2477 btrfs_put_block_group(cache); 2478 goto skip; 2479 } 2480 } 2481 2482 /* 2483 * Make sure that while we are scrubbing the corresponding block 2484 * group doesn't get its logical address and its device extents 2485 * reused for another block group, which can possibly be of a 2486 * different type and different profile. We do this to prevent 2487 * false error detections and crashes due to bogus attempts to 2488 * repair extents. 2489 */ 2490 spin_lock(&cache->lock); 2491 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) { 2492 spin_unlock(&cache->lock); 2493 btrfs_put_block_group(cache); 2494 goto skip; 2495 } 2496 btrfs_freeze_block_group(cache); 2497 spin_unlock(&cache->lock); 2498 2499 /* 2500 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 2501 * to avoid deadlock caused by: 2502 * btrfs_inc_block_group_ro() 2503 * -> btrfs_wait_for_commit() 2504 * -> btrfs_commit_transaction() 2505 * -> btrfs_scrub_pause() 2506 */ 2507 scrub_pause_on(fs_info); 2508 2509 /* 2510 * Don't do chunk preallocation for scrub. 2511 * 2512 * This is especially important for SYSTEM bgs, or we can hit 2513 * -EFBIG from btrfs_finish_chunk_alloc() like: 2514 * 1. The only SYSTEM bg is marked RO. 2515 * Since SYSTEM bg is small, that's pretty common. 2516 * 2. New SYSTEM bg will be allocated 2517 * Due to regular version will allocate new chunk. 2518 * 3. New SYSTEM bg is empty and will get cleaned up 2519 * Before cleanup really happens, it's marked RO again. 2520 * 4. Empty SYSTEM bg get scrubbed 2521 * We go back to 2. 2522 * 2523 * This can easily boost the amount of SYSTEM chunks if cleaner 2524 * thread can't be triggered fast enough, and use up all space 2525 * of btrfs_super_block::sys_chunk_array 2526 * 2527 * While for dev replace, we need to try our best to mark block 2528 * group RO, to prevent race between: 2529 * - Write duplication 2530 * Contains latest data 2531 * - Scrub copy 2532 * Contains data from commit tree 2533 * 2534 * If target block group is not marked RO, nocow writes can 2535 * be overwritten by scrub copy, causing data corruption. 2536 * So for dev-replace, it's not allowed to continue if a block 2537 * group is not RO. 2538 */ 2539 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); 2540 if (!ret && sctx->is_dev_replace) { 2541 ret = finish_extent_writes_for_zoned(root, cache); 2542 if (ret) { 2543 btrfs_dec_block_group_ro(cache); 2544 scrub_pause_off(fs_info); 2545 btrfs_put_block_group(cache); 2546 break; 2547 } 2548 } 2549 2550 if (ret == 0) { 2551 ro_set = 1; 2552 } else if (ret == -ENOSPC && !sctx->is_dev_replace && 2553 !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) { 2554 /* 2555 * btrfs_inc_block_group_ro return -ENOSPC when it 2556 * failed in creating new chunk for metadata. 2557 * It is not a problem for scrub, because 2558 * metadata are always cowed, and our scrub paused 2559 * commit_transactions. 2560 * 2561 * For RAID56 chunks, we have to mark them read-only 2562 * for scrub, as later we would use our own cache 2563 * out of RAID56 realm. 2564 * Thus we want the RAID56 bg to be marked RO to 2565 * prevent RMW from screwing up out cache. 2566 */ 2567 ro_set = 0; 2568 } else if (ret == -ETXTBSY) { 2569 btrfs_warn(fs_info, 2570 "skipping scrub of block group %llu due to active swapfile", 2571 cache->start); 2572 scrub_pause_off(fs_info); 2573 ret = 0; 2574 goto skip_unfreeze; 2575 } else { 2576 btrfs_warn(fs_info, 2577 "failed setting block group ro: %d", ret); 2578 btrfs_unfreeze_block_group(cache); 2579 btrfs_put_block_group(cache); 2580 scrub_pause_off(fs_info); 2581 break; 2582 } 2583 2584 /* 2585 * Now the target block is marked RO, wait for nocow writes to 2586 * finish before dev-replace. 2587 * COW is fine, as COW never overwrites extents in commit tree. 2588 */ 2589 if (sctx->is_dev_replace) { 2590 btrfs_wait_nocow_writers(cache); 2591 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, 2592 cache->length); 2593 } 2594 2595 scrub_pause_off(fs_info); 2596 down_write(&dev_replace->rwsem); 2597 dev_replace->cursor_right = found_key.offset + dev_extent_len; 2598 dev_replace->cursor_left = found_key.offset; 2599 dev_replace->item_needs_writeback = 1; 2600 up_write(&dev_replace->rwsem); 2601 2602 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset, 2603 dev_extent_len); 2604 if (sctx->is_dev_replace && 2605 !btrfs_finish_block_group_to_copy(dev_replace->srcdev, 2606 cache, found_key.offset)) 2607 ro_set = 0; 2608 2609 down_write(&dev_replace->rwsem); 2610 dev_replace->cursor_left = dev_replace->cursor_right; 2611 dev_replace->item_needs_writeback = 1; 2612 up_write(&dev_replace->rwsem); 2613 2614 if (ro_set) 2615 btrfs_dec_block_group_ro(cache); 2616 2617 /* 2618 * We might have prevented the cleaner kthread from deleting 2619 * this block group if it was already unused because we raced 2620 * and set it to RO mode first. So add it back to the unused 2621 * list, otherwise it might not ever be deleted unless a manual 2622 * balance is triggered or it becomes used and unused again. 2623 */ 2624 spin_lock(&cache->lock); 2625 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) && 2626 !cache->ro && cache->reserved == 0 && cache->used == 0) { 2627 spin_unlock(&cache->lock); 2628 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) 2629 btrfs_discard_queue_work(&fs_info->discard_ctl, 2630 cache); 2631 else 2632 btrfs_mark_bg_unused(cache); 2633 } else { 2634 spin_unlock(&cache->lock); 2635 } 2636 skip_unfreeze: 2637 btrfs_unfreeze_block_group(cache); 2638 btrfs_put_block_group(cache); 2639 if (ret) 2640 break; 2641 if (sctx->is_dev_replace && 2642 atomic64_read(&dev_replace->num_write_errors) > 0) { 2643 ret = -EIO; 2644 break; 2645 } 2646 if (sctx->stat.malloc_errors > 0) { 2647 ret = -ENOMEM; 2648 break; 2649 } 2650 skip: 2651 key.offset = found_key.offset + dev_extent_len; 2652 btrfs_release_path(path); 2653 } 2654 2655 btrfs_free_path(path); 2656 2657 return ret; 2658 } 2659 2660 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev, 2661 struct page *page, u64 physical, u64 generation) 2662 { 2663 struct btrfs_fs_info *fs_info = sctx->fs_info; 2664 struct bio_vec bvec; 2665 struct bio bio; 2666 struct btrfs_super_block *sb = page_address(page); 2667 int ret; 2668 2669 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ); 2670 bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT; 2671 __bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0); 2672 ret = submit_bio_wait(&bio); 2673 bio_uninit(&bio); 2674 2675 if (ret < 0) 2676 return ret; 2677 ret = btrfs_check_super_csum(fs_info, sb); 2678 if (ret != 0) { 2679 btrfs_err_rl(fs_info, 2680 "super block at physical %llu devid %llu has bad csum", 2681 physical, dev->devid); 2682 return -EIO; 2683 } 2684 if (btrfs_super_generation(sb) != generation) { 2685 btrfs_err_rl(fs_info, 2686 "super block at physical %llu devid %llu has bad generation %llu expect %llu", 2687 physical, dev->devid, 2688 btrfs_super_generation(sb), generation); 2689 return -EUCLEAN; 2690 } 2691 2692 return btrfs_validate_super(fs_info, sb, -1); 2693 } 2694 2695 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 2696 struct btrfs_device *scrub_dev) 2697 { 2698 int i; 2699 u64 bytenr; 2700 u64 gen; 2701 int ret = 0; 2702 struct page *page; 2703 struct btrfs_fs_info *fs_info = sctx->fs_info; 2704 2705 if (BTRFS_FS_ERROR(fs_info)) 2706 return -EROFS; 2707 2708 page = alloc_page(GFP_KERNEL); 2709 if (!page) { 2710 spin_lock(&sctx->stat_lock); 2711 sctx->stat.malloc_errors++; 2712 spin_unlock(&sctx->stat_lock); 2713 return -ENOMEM; 2714 } 2715 2716 /* Seed devices of a new filesystem has their own generation. */ 2717 if (scrub_dev->fs_devices != fs_info->fs_devices) 2718 gen = scrub_dev->generation; 2719 else 2720 gen = fs_info->last_trans_committed; 2721 2722 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2723 bytenr = btrfs_sb_offset(i); 2724 if (bytenr + BTRFS_SUPER_INFO_SIZE > 2725 scrub_dev->commit_total_bytes) 2726 break; 2727 if (!btrfs_check_super_location(scrub_dev, bytenr)) 2728 continue; 2729 2730 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen); 2731 if (ret) { 2732 spin_lock(&sctx->stat_lock); 2733 sctx->stat.super_errors++; 2734 spin_unlock(&sctx->stat_lock); 2735 } 2736 } 2737 __free_page(page); 2738 return 0; 2739 } 2740 2741 static void scrub_workers_put(struct btrfs_fs_info *fs_info) 2742 { 2743 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, 2744 &fs_info->scrub_lock)) { 2745 struct workqueue_struct *scrub_workers = fs_info->scrub_workers; 2746 2747 fs_info->scrub_workers = NULL; 2748 mutex_unlock(&fs_info->scrub_lock); 2749 2750 if (scrub_workers) 2751 destroy_workqueue(scrub_workers); 2752 } 2753 } 2754 2755 /* 2756 * get a reference count on fs_info->scrub_workers. start worker if necessary 2757 */ 2758 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info) 2759 { 2760 struct workqueue_struct *scrub_workers = NULL; 2761 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 2762 int max_active = fs_info->thread_pool_size; 2763 int ret = -ENOMEM; 2764 2765 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) 2766 return 0; 2767 2768 scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active); 2769 if (!scrub_workers) 2770 return -ENOMEM; 2771 2772 mutex_lock(&fs_info->scrub_lock); 2773 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { 2774 ASSERT(fs_info->scrub_workers == NULL); 2775 fs_info->scrub_workers = scrub_workers; 2776 refcount_set(&fs_info->scrub_workers_refcnt, 1); 2777 mutex_unlock(&fs_info->scrub_lock); 2778 return 0; 2779 } 2780 /* Other thread raced in and created the workers for us */ 2781 refcount_inc(&fs_info->scrub_workers_refcnt); 2782 mutex_unlock(&fs_info->scrub_lock); 2783 2784 ret = 0; 2785 2786 destroy_workqueue(scrub_workers); 2787 return ret; 2788 } 2789 2790 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 2791 u64 end, struct btrfs_scrub_progress *progress, 2792 int readonly, int is_dev_replace) 2793 { 2794 struct btrfs_dev_lookup_args args = { .devid = devid }; 2795 struct scrub_ctx *sctx; 2796 int ret; 2797 struct btrfs_device *dev; 2798 unsigned int nofs_flag; 2799 bool need_commit = false; 2800 2801 if (btrfs_fs_closing(fs_info)) 2802 return -EAGAIN; 2803 2804 /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */ 2805 ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN); 2806 2807 /* 2808 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible 2809 * value (max nodesize / min sectorsize), thus nodesize should always 2810 * be fine. 2811 */ 2812 ASSERT(fs_info->nodesize <= 2813 SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits); 2814 2815 /* Allocate outside of device_list_mutex */ 2816 sctx = scrub_setup_ctx(fs_info, is_dev_replace); 2817 if (IS_ERR(sctx)) 2818 return PTR_ERR(sctx); 2819 2820 ret = scrub_workers_get(fs_info); 2821 if (ret) 2822 goto out_free_ctx; 2823 2824 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2825 dev = btrfs_find_device(fs_info->fs_devices, &args); 2826 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 2827 !is_dev_replace)) { 2828 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2829 ret = -ENODEV; 2830 goto out; 2831 } 2832 2833 if (!is_dev_replace && !readonly && 2834 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2835 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2836 btrfs_err_in_rcu(fs_info, 2837 "scrub on devid %llu: filesystem on %s is not writable", 2838 devid, btrfs_dev_name(dev)); 2839 ret = -EROFS; 2840 goto out; 2841 } 2842 2843 mutex_lock(&fs_info->scrub_lock); 2844 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 2845 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { 2846 mutex_unlock(&fs_info->scrub_lock); 2847 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2848 ret = -EIO; 2849 goto out; 2850 } 2851 2852 down_read(&fs_info->dev_replace.rwsem); 2853 if (dev->scrub_ctx || 2854 (!is_dev_replace && 2855 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 2856 up_read(&fs_info->dev_replace.rwsem); 2857 mutex_unlock(&fs_info->scrub_lock); 2858 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2859 ret = -EINPROGRESS; 2860 goto out; 2861 } 2862 up_read(&fs_info->dev_replace.rwsem); 2863 2864 sctx->readonly = readonly; 2865 dev->scrub_ctx = sctx; 2866 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2867 2868 /* 2869 * checking @scrub_pause_req here, we can avoid 2870 * race between committing transaction and scrubbing. 2871 */ 2872 __scrub_blocked_if_needed(fs_info); 2873 atomic_inc(&fs_info->scrubs_running); 2874 mutex_unlock(&fs_info->scrub_lock); 2875 2876 /* 2877 * In order to avoid deadlock with reclaim when there is a transaction 2878 * trying to pause scrub, make sure we use GFP_NOFS for all the 2879 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity() 2880 * invoked by our callees. The pausing request is done when the 2881 * transaction commit starts, and it blocks the transaction until scrub 2882 * is paused (done at specific points at scrub_stripe() or right above 2883 * before incrementing fs_info->scrubs_running). 2884 */ 2885 nofs_flag = memalloc_nofs_save(); 2886 if (!is_dev_replace) { 2887 u64 old_super_errors; 2888 2889 spin_lock(&sctx->stat_lock); 2890 old_super_errors = sctx->stat.super_errors; 2891 spin_unlock(&sctx->stat_lock); 2892 2893 btrfs_info(fs_info, "scrub: started on devid %llu", devid); 2894 /* 2895 * by holding device list mutex, we can 2896 * kick off writing super in log tree sync. 2897 */ 2898 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2899 ret = scrub_supers(sctx, dev); 2900 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2901 2902 spin_lock(&sctx->stat_lock); 2903 /* 2904 * Super block errors found, but we can not commit transaction 2905 * at current context, since btrfs_commit_transaction() needs 2906 * to pause the current running scrub (hold by ourselves). 2907 */ 2908 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly) 2909 need_commit = true; 2910 spin_unlock(&sctx->stat_lock); 2911 } 2912 2913 if (!ret) 2914 ret = scrub_enumerate_chunks(sctx, dev, start, end); 2915 memalloc_nofs_restore(nofs_flag); 2916 2917 atomic_dec(&fs_info->scrubs_running); 2918 wake_up(&fs_info->scrub_pause_wait); 2919 2920 if (progress) 2921 memcpy(progress, &sctx->stat, sizeof(*progress)); 2922 2923 if (!is_dev_replace) 2924 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", 2925 ret ? "not finished" : "finished", devid, ret); 2926 2927 mutex_lock(&fs_info->scrub_lock); 2928 dev->scrub_ctx = NULL; 2929 mutex_unlock(&fs_info->scrub_lock); 2930 2931 scrub_workers_put(fs_info); 2932 scrub_put_ctx(sctx); 2933 2934 /* 2935 * We found some super block errors before, now try to force a 2936 * transaction commit, as scrub has finished. 2937 */ 2938 if (need_commit) { 2939 struct btrfs_trans_handle *trans; 2940 2941 trans = btrfs_start_transaction(fs_info->tree_root, 0); 2942 if (IS_ERR(trans)) { 2943 ret = PTR_ERR(trans); 2944 btrfs_err(fs_info, 2945 "scrub: failed to start transaction to fix super block errors: %d", ret); 2946 return ret; 2947 } 2948 ret = btrfs_commit_transaction(trans); 2949 if (ret < 0) 2950 btrfs_err(fs_info, 2951 "scrub: failed to commit transaction to fix super block errors: %d", ret); 2952 } 2953 return ret; 2954 out: 2955 scrub_workers_put(fs_info); 2956 out_free_ctx: 2957 scrub_free_ctx(sctx); 2958 2959 return ret; 2960 } 2961 2962 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 2963 { 2964 mutex_lock(&fs_info->scrub_lock); 2965 atomic_inc(&fs_info->scrub_pause_req); 2966 while (atomic_read(&fs_info->scrubs_paused) != 2967 atomic_read(&fs_info->scrubs_running)) { 2968 mutex_unlock(&fs_info->scrub_lock); 2969 wait_event(fs_info->scrub_pause_wait, 2970 atomic_read(&fs_info->scrubs_paused) == 2971 atomic_read(&fs_info->scrubs_running)); 2972 mutex_lock(&fs_info->scrub_lock); 2973 } 2974 mutex_unlock(&fs_info->scrub_lock); 2975 } 2976 2977 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 2978 { 2979 atomic_dec(&fs_info->scrub_pause_req); 2980 wake_up(&fs_info->scrub_pause_wait); 2981 } 2982 2983 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 2984 { 2985 mutex_lock(&fs_info->scrub_lock); 2986 if (!atomic_read(&fs_info->scrubs_running)) { 2987 mutex_unlock(&fs_info->scrub_lock); 2988 return -ENOTCONN; 2989 } 2990 2991 atomic_inc(&fs_info->scrub_cancel_req); 2992 while (atomic_read(&fs_info->scrubs_running)) { 2993 mutex_unlock(&fs_info->scrub_lock); 2994 wait_event(fs_info->scrub_pause_wait, 2995 atomic_read(&fs_info->scrubs_running) == 0); 2996 mutex_lock(&fs_info->scrub_lock); 2997 } 2998 atomic_dec(&fs_info->scrub_cancel_req); 2999 mutex_unlock(&fs_info->scrub_lock); 3000 3001 return 0; 3002 } 3003 3004 int btrfs_scrub_cancel_dev(struct btrfs_device *dev) 3005 { 3006 struct btrfs_fs_info *fs_info = dev->fs_info; 3007 struct scrub_ctx *sctx; 3008 3009 mutex_lock(&fs_info->scrub_lock); 3010 sctx = dev->scrub_ctx; 3011 if (!sctx) { 3012 mutex_unlock(&fs_info->scrub_lock); 3013 return -ENOTCONN; 3014 } 3015 atomic_inc(&sctx->cancel_req); 3016 while (dev->scrub_ctx) { 3017 mutex_unlock(&fs_info->scrub_lock); 3018 wait_event(fs_info->scrub_pause_wait, 3019 dev->scrub_ctx == NULL); 3020 mutex_lock(&fs_info->scrub_lock); 3021 } 3022 mutex_unlock(&fs_info->scrub_lock); 3023 3024 return 0; 3025 } 3026 3027 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3028 struct btrfs_scrub_progress *progress) 3029 { 3030 struct btrfs_dev_lookup_args args = { .devid = devid }; 3031 struct btrfs_device *dev; 3032 struct scrub_ctx *sctx = NULL; 3033 3034 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3035 dev = btrfs_find_device(fs_info->fs_devices, &args); 3036 if (dev) 3037 sctx = dev->scrub_ctx; 3038 if (sctx) 3039 memcpy(progress, &sctx->stat, sizeof(*progress)); 3040 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3041 3042 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 3043 } 3044