1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/ratelimit.h> 8 #include <linux/sched/mm.h> 9 #include <crypto/hash.h> 10 #include "ctree.h" 11 #include "discard.h" 12 #include "volumes.h" 13 #include "disk-io.h" 14 #include "ordered-data.h" 15 #include "transaction.h" 16 #include "backref.h" 17 #include "extent_io.h" 18 #include "dev-replace.h" 19 #include "check-integrity.h" 20 #include "raid56.h" 21 #include "block-group.h" 22 #include "zoned.h" 23 #include "fs.h" 24 #include "accessors.h" 25 #include "file-item.h" 26 #include "scrub.h" 27 28 /* 29 * This is only the first step towards a full-features scrub. It reads all 30 * extent and super block and verifies the checksums. In case a bad checksum 31 * is found or the extent cannot be read, good data will be written back if 32 * any can be found. 33 * 34 * Future enhancements: 35 * - In case an unrepairable extent is encountered, track which files are 36 * affected and report them 37 * - track and record media errors, throw out bad devices 38 * - add a mode to also read unallocated space 39 */ 40 41 struct scrub_ctx; 42 43 /* 44 * The following value only influences the performance. 45 * 46 * This determines the batch size for stripe submitted in one go. 47 */ 48 #define SCRUB_STRIPES_PER_SCTX 8 /* That would be 8 64K stripe per-device. */ 49 50 /* 51 * The following value times PAGE_SIZE needs to be large enough to match the 52 * largest node/leaf/sector size that shall be supported. 53 */ 54 #define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K) 55 56 /* Represent one sector and its needed info to verify the content. */ 57 struct scrub_sector_verification { 58 bool is_metadata; 59 60 union { 61 /* 62 * Csum pointer for data csum verification. Should point to a 63 * sector csum inside scrub_stripe::csums. 64 * 65 * NULL if this data sector has no csum. 66 */ 67 u8 *csum; 68 69 /* 70 * Extra info for metadata verification. All sectors inside a 71 * tree block share the same generation. 72 */ 73 u64 generation; 74 }; 75 }; 76 77 enum scrub_stripe_flags { 78 /* Set when @mirror_num, @dev, @physical and @logical are set. */ 79 SCRUB_STRIPE_FLAG_INITIALIZED, 80 81 /* Set when the read-repair is finished. */ 82 SCRUB_STRIPE_FLAG_REPAIR_DONE, 83 84 /* 85 * Set for data stripes if it's triggered from P/Q stripe. 86 * During such scrub, we should not report errors in data stripes, nor 87 * update the accounting. 88 */ 89 SCRUB_STRIPE_FLAG_NO_REPORT, 90 }; 91 92 #define SCRUB_STRIPE_PAGES (BTRFS_STRIPE_LEN / PAGE_SIZE) 93 94 /* 95 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN. 96 */ 97 struct scrub_stripe { 98 struct scrub_ctx *sctx; 99 struct btrfs_block_group *bg; 100 101 struct page *pages[SCRUB_STRIPE_PAGES]; 102 struct scrub_sector_verification *sectors; 103 104 struct btrfs_device *dev; 105 u64 logical; 106 u64 physical; 107 108 u16 mirror_num; 109 110 /* Should be BTRFS_STRIPE_LEN / sectorsize. */ 111 u16 nr_sectors; 112 113 /* 114 * How many data/meta extents are in this stripe. Only for scrub status 115 * reporting purposes. 116 */ 117 u16 nr_data_extents; 118 u16 nr_meta_extents; 119 120 atomic_t pending_io; 121 wait_queue_head_t io_wait; 122 wait_queue_head_t repair_wait; 123 124 /* 125 * Indicate the states of the stripe. Bits are defined in 126 * scrub_stripe_flags enum. 127 */ 128 unsigned long state; 129 130 /* Indicate which sectors are covered by extent items. */ 131 unsigned long extent_sector_bitmap; 132 133 /* 134 * The errors hit during the initial read of the stripe. 135 * 136 * Would be utilized for error reporting and repair. 137 */ 138 unsigned long init_error_bitmap; 139 140 /* 141 * The following error bitmaps are all for the current status. 142 * Every time we submit a new read, these bitmaps may be updated. 143 * 144 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap; 145 * 146 * IO and csum errors can happen for both metadata and data. 147 */ 148 unsigned long error_bitmap; 149 unsigned long io_error_bitmap; 150 unsigned long csum_error_bitmap; 151 unsigned long meta_error_bitmap; 152 153 /* For writeback (repair or replace) error reporting. */ 154 unsigned long write_error_bitmap; 155 156 /* Writeback can be concurrent, thus we need to protect the bitmap. */ 157 spinlock_t write_error_lock; 158 159 /* 160 * Checksum for the whole stripe if this stripe is inside a data block 161 * group. 162 */ 163 u8 *csums; 164 165 struct work_struct work; 166 }; 167 168 struct scrub_ctx { 169 struct scrub_stripe stripes[SCRUB_STRIPES_PER_SCTX]; 170 struct scrub_stripe *raid56_data_stripes; 171 struct btrfs_fs_info *fs_info; 172 int first_free; 173 int cur_stripe; 174 struct list_head csum_list; 175 atomic_t cancel_req; 176 int readonly; 177 int sectors_per_bio; 178 179 /* State of IO submission throttling affecting the associated device */ 180 ktime_t throttle_deadline; 181 u64 throttle_sent; 182 183 int is_dev_replace; 184 u64 write_pointer; 185 186 struct mutex wr_lock; 187 struct btrfs_device *wr_tgtdev; 188 189 /* 190 * statistics 191 */ 192 struct btrfs_scrub_progress stat; 193 spinlock_t stat_lock; 194 195 /* 196 * Use a ref counter to avoid use-after-free issues. Scrub workers 197 * decrement bios_in_flight and workers_pending and then do a wakeup 198 * on the list_wait wait queue. We must ensure the main scrub task 199 * doesn't free the scrub context before or while the workers are 200 * doing the wakeup() call. 201 */ 202 refcount_t refs; 203 }; 204 205 struct scrub_warning { 206 struct btrfs_path *path; 207 u64 extent_item_size; 208 const char *errstr; 209 u64 physical; 210 u64 logical; 211 struct btrfs_device *dev; 212 }; 213 214 static void release_scrub_stripe(struct scrub_stripe *stripe) 215 { 216 if (!stripe) 217 return; 218 219 for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) { 220 if (stripe->pages[i]) 221 __free_page(stripe->pages[i]); 222 stripe->pages[i] = NULL; 223 } 224 kfree(stripe->sectors); 225 kfree(stripe->csums); 226 stripe->sectors = NULL; 227 stripe->csums = NULL; 228 stripe->sctx = NULL; 229 stripe->state = 0; 230 } 231 232 static int init_scrub_stripe(struct btrfs_fs_info *fs_info, 233 struct scrub_stripe *stripe) 234 { 235 int ret; 236 237 memset(stripe, 0, sizeof(*stripe)); 238 239 stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; 240 stripe->state = 0; 241 242 init_waitqueue_head(&stripe->io_wait); 243 init_waitqueue_head(&stripe->repair_wait); 244 atomic_set(&stripe->pending_io, 0); 245 spin_lock_init(&stripe->write_error_lock); 246 247 ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages); 248 if (ret < 0) 249 goto error; 250 251 stripe->sectors = kcalloc(stripe->nr_sectors, 252 sizeof(struct scrub_sector_verification), 253 GFP_KERNEL); 254 if (!stripe->sectors) 255 goto error; 256 257 stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits, 258 fs_info->csum_size, GFP_KERNEL); 259 if (!stripe->csums) 260 goto error; 261 return 0; 262 error: 263 release_scrub_stripe(stripe); 264 return -ENOMEM; 265 } 266 267 static void wait_scrub_stripe_io(struct scrub_stripe *stripe) 268 { 269 wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0); 270 } 271 272 static void scrub_put_ctx(struct scrub_ctx *sctx); 273 274 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 275 { 276 while (atomic_read(&fs_info->scrub_pause_req)) { 277 mutex_unlock(&fs_info->scrub_lock); 278 wait_event(fs_info->scrub_pause_wait, 279 atomic_read(&fs_info->scrub_pause_req) == 0); 280 mutex_lock(&fs_info->scrub_lock); 281 } 282 } 283 284 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 285 { 286 atomic_inc(&fs_info->scrubs_paused); 287 wake_up(&fs_info->scrub_pause_wait); 288 } 289 290 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 291 { 292 mutex_lock(&fs_info->scrub_lock); 293 __scrub_blocked_if_needed(fs_info); 294 atomic_dec(&fs_info->scrubs_paused); 295 mutex_unlock(&fs_info->scrub_lock); 296 297 wake_up(&fs_info->scrub_pause_wait); 298 } 299 300 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 301 { 302 scrub_pause_on(fs_info); 303 scrub_pause_off(fs_info); 304 } 305 306 static void scrub_free_csums(struct scrub_ctx *sctx) 307 { 308 while (!list_empty(&sctx->csum_list)) { 309 struct btrfs_ordered_sum *sum; 310 sum = list_first_entry(&sctx->csum_list, 311 struct btrfs_ordered_sum, list); 312 list_del(&sum->list); 313 kfree(sum); 314 } 315 } 316 317 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 318 { 319 int i; 320 321 if (!sctx) 322 return; 323 324 for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++) 325 release_scrub_stripe(&sctx->stripes[i]); 326 327 scrub_free_csums(sctx); 328 kfree(sctx); 329 } 330 331 static void scrub_put_ctx(struct scrub_ctx *sctx) 332 { 333 if (refcount_dec_and_test(&sctx->refs)) 334 scrub_free_ctx(sctx); 335 } 336 337 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( 338 struct btrfs_fs_info *fs_info, int is_dev_replace) 339 { 340 struct scrub_ctx *sctx; 341 int i; 342 343 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); 344 if (!sctx) 345 goto nomem; 346 refcount_set(&sctx->refs, 1); 347 sctx->is_dev_replace = is_dev_replace; 348 sctx->fs_info = fs_info; 349 INIT_LIST_HEAD(&sctx->csum_list); 350 for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++) { 351 int ret; 352 353 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]); 354 if (ret < 0) 355 goto nomem; 356 sctx->stripes[i].sctx = sctx; 357 } 358 sctx->first_free = 0; 359 atomic_set(&sctx->cancel_req, 0); 360 361 spin_lock_init(&sctx->stat_lock); 362 sctx->throttle_deadline = 0; 363 364 mutex_init(&sctx->wr_lock); 365 if (is_dev_replace) { 366 WARN_ON(!fs_info->dev_replace.tgtdev); 367 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 368 } 369 370 return sctx; 371 372 nomem: 373 scrub_free_ctx(sctx); 374 return ERR_PTR(-ENOMEM); 375 } 376 377 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 378 u64 root, void *warn_ctx) 379 { 380 u32 nlink; 381 int ret; 382 int i; 383 unsigned nofs_flag; 384 struct extent_buffer *eb; 385 struct btrfs_inode_item *inode_item; 386 struct scrub_warning *swarn = warn_ctx; 387 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 388 struct inode_fs_paths *ipath = NULL; 389 struct btrfs_root *local_root; 390 struct btrfs_key key; 391 392 local_root = btrfs_get_fs_root(fs_info, root, true); 393 if (IS_ERR(local_root)) { 394 ret = PTR_ERR(local_root); 395 goto err; 396 } 397 398 /* 399 * this makes the path point to (inum INODE_ITEM ioff) 400 */ 401 key.objectid = inum; 402 key.type = BTRFS_INODE_ITEM_KEY; 403 key.offset = 0; 404 405 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 406 if (ret) { 407 btrfs_put_root(local_root); 408 btrfs_release_path(swarn->path); 409 goto err; 410 } 411 412 eb = swarn->path->nodes[0]; 413 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 414 struct btrfs_inode_item); 415 nlink = btrfs_inode_nlink(eb, inode_item); 416 btrfs_release_path(swarn->path); 417 418 /* 419 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 420 * uses GFP_NOFS in this context, so we keep it consistent but it does 421 * not seem to be strictly necessary. 422 */ 423 nofs_flag = memalloc_nofs_save(); 424 ipath = init_ipath(4096, local_root, swarn->path); 425 memalloc_nofs_restore(nofs_flag); 426 if (IS_ERR(ipath)) { 427 btrfs_put_root(local_root); 428 ret = PTR_ERR(ipath); 429 ipath = NULL; 430 goto err; 431 } 432 ret = paths_from_inode(inum, ipath); 433 434 if (ret < 0) 435 goto err; 436 437 /* 438 * we deliberately ignore the bit ipath might have been too small to 439 * hold all of the paths here 440 */ 441 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 442 btrfs_warn_in_rcu(fs_info, 443 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)", 444 swarn->errstr, swarn->logical, 445 btrfs_dev_name(swarn->dev), 446 swarn->physical, 447 root, inum, offset, 448 fs_info->sectorsize, nlink, 449 (char *)(unsigned long)ipath->fspath->val[i]); 450 451 btrfs_put_root(local_root); 452 free_ipath(ipath); 453 return 0; 454 455 err: 456 btrfs_warn_in_rcu(fs_info, 457 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 458 swarn->errstr, swarn->logical, 459 btrfs_dev_name(swarn->dev), 460 swarn->physical, 461 root, inum, offset, ret); 462 463 free_ipath(ipath); 464 return 0; 465 } 466 467 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev, 468 bool is_super, u64 logical, u64 physical) 469 { 470 struct btrfs_fs_info *fs_info = dev->fs_info; 471 struct btrfs_path *path; 472 struct btrfs_key found_key; 473 struct extent_buffer *eb; 474 struct btrfs_extent_item *ei; 475 struct scrub_warning swarn; 476 unsigned long ptr = 0; 477 u64 flags = 0; 478 u64 ref_root; 479 u32 item_size; 480 u8 ref_level = 0; 481 int ret; 482 483 /* Super block error, no need to search extent tree. */ 484 if (is_super) { 485 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu", 486 errstr, btrfs_dev_name(dev), physical); 487 return; 488 } 489 path = btrfs_alloc_path(); 490 if (!path) 491 return; 492 493 swarn.physical = physical; 494 swarn.logical = logical; 495 swarn.errstr = errstr; 496 swarn.dev = NULL; 497 498 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 499 &flags); 500 if (ret < 0) 501 goto out; 502 503 swarn.extent_item_size = found_key.offset; 504 505 eb = path->nodes[0]; 506 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 507 item_size = btrfs_item_size(eb, path->slots[0]); 508 509 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 510 do { 511 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 512 item_size, &ref_root, 513 &ref_level); 514 btrfs_warn_in_rcu(fs_info, 515 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 516 errstr, swarn.logical, 517 btrfs_dev_name(dev), 518 swarn.physical, 519 ref_level ? "node" : "leaf", 520 ret < 0 ? -1 : ref_level, 521 ret < 0 ? -1 : ref_root); 522 } while (ret != 1); 523 btrfs_release_path(path); 524 } else { 525 struct btrfs_backref_walk_ctx ctx = { 0 }; 526 527 btrfs_release_path(path); 528 529 ctx.bytenr = found_key.objectid; 530 ctx.extent_item_pos = swarn.logical - found_key.objectid; 531 ctx.fs_info = fs_info; 532 533 swarn.path = path; 534 swarn.dev = dev; 535 536 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn); 537 } 538 539 out: 540 btrfs_free_path(path); 541 } 542 543 static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc) 544 { 545 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5) 546 return 2; 547 else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) 548 return 3; 549 else 550 return (int)bioc->num_stripes; 551 } 552 553 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 554 u64 full_stripe_logical, 555 int nstripes, int mirror, 556 int *stripe_index, 557 u64 *stripe_offset) 558 { 559 int i; 560 561 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 562 const int nr_data_stripes = (map_type & BTRFS_BLOCK_GROUP_RAID5) ? 563 nstripes - 1 : nstripes - 2; 564 565 /* RAID5/6 */ 566 for (i = 0; i < nr_data_stripes; i++) { 567 const u64 data_stripe_start = full_stripe_logical + 568 (i * BTRFS_STRIPE_LEN); 569 570 if (logical >= data_stripe_start && 571 logical < data_stripe_start + BTRFS_STRIPE_LEN) 572 break; 573 } 574 575 *stripe_index = i; 576 *stripe_offset = (logical - full_stripe_logical) & 577 BTRFS_STRIPE_LEN_MASK; 578 } else { 579 /* The other RAID type */ 580 *stripe_index = mirror; 581 *stripe_offset = 0; 582 } 583 } 584 585 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) 586 { 587 int ret = 0; 588 u64 length; 589 590 if (!btrfs_is_zoned(sctx->fs_info)) 591 return 0; 592 593 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) 594 return 0; 595 596 if (sctx->write_pointer < physical) { 597 length = physical - sctx->write_pointer; 598 599 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev, 600 sctx->write_pointer, length); 601 if (!ret) 602 sctx->write_pointer = physical; 603 } 604 return ret; 605 } 606 607 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr) 608 { 609 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 610 int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT; 611 612 return stripe->pages[page_index]; 613 } 614 615 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe, 616 int sector_nr) 617 { 618 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 619 620 return offset_in_page(sector_nr << fs_info->sectorsize_bits); 621 } 622 623 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr) 624 { 625 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 626 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 627 const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits); 628 const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr); 629 const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr); 630 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 631 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 632 u8 calculated_csum[BTRFS_CSUM_SIZE]; 633 struct btrfs_header *header; 634 635 /* 636 * Here we don't have a good way to attach the pages (and subpages) 637 * to a dummy extent buffer, thus we have to directly grab the members 638 * from pages. 639 */ 640 header = (struct btrfs_header *)(page_address(first_page) + first_off); 641 memcpy(on_disk_csum, header->csum, fs_info->csum_size); 642 643 if (logical != btrfs_stack_header_bytenr(header)) { 644 bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree); 645 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 646 btrfs_warn_rl(fs_info, 647 "tree block %llu mirror %u has bad bytenr, has %llu want %llu", 648 logical, stripe->mirror_num, 649 btrfs_stack_header_bytenr(header), logical); 650 return; 651 } 652 if (memcmp(header->fsid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE) != 0) { 653 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 654 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 655 btrfs_warn_rl(fs_info, 656 "tree block %llu mirror %u has bad fsid, has %pU want %pU", 657 logical, stripe->mirror_num, 658 header->fsid, fs_info->fs_devices->fsid); 659 return; 660 } 661 if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid, 662 BTRFS_UUID_SIZE) != 0) { 663 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 664 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 665 btrfs_warn_rl(fs_info, 666 "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU", 667 logical, stripe->mirror_num, 668 header->chunk_tree_uuid, fs_info->chunk_tree_uuid); 669 return; 670 } 671 672 /* Now check tree block csum. */ 673 shash->tfm = fs_info->csum_shash; 674 crypto_shash_init(shash); 675 crypto_shash_update(shash, page_address(first_page) + first_off + 676 BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE); 677 678 for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) { 679 struct page *page = scrub_stripe_get_page(stripe, i); 680 unsigned int page_off = scrub_stripe_get_page_offset(stripe, i); 681 682 crypto_shash_update(shash, page_address(page) + page_off, 683 fs_info->sectorsize); 684 } 685 686 crypto_shash_final(shash, calculated_csum); 687 if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) { 688 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 689 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 690 btrfs_warn_rl(fs_info, 691 "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT, 692 logical, stripe->mirror_num, 693 CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum), 694 CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum)); 695 return; 696 } 697 if (stripe->sectors[sector_nr].generation != 698 btrfs_stack_header_generation(header)) { 699 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 700 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 701 btrfs_warn_rl(fs_info, 702 "tree block %llu mirror %u has bad generation, has %llu want %llu", 703 logical, stripe->mirror_num, 704 btrfs_stack_header_generation(header), 705 stripe->sectors[sector_nr].generation); 706 return; 707 } 708 bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree); 709 bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree); 710 bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 711 } 712 713 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr) 714 { 715 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 716 struct scrub_sector_verification *sector = &stripe->sectors[sector_nr]; 717 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 718 struct page *page = scrub_stripe_get_page(stripe, sector_nr); 719 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr); 720 u8 csum_buf[BTRFS_CSUM_SIZE]; 721 int ret; 722 723 ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors); 724 725 /* Sector not utilized, skip it. */ 726 if (!test_bit(sector_nr, &stripe->extent_sector_bitmap)) 727 return; 728 729 /* IO error, no need to check. */ 730 if (test_bit(sector_nr, &stripe->io_error_bitmap)) 731 return; 732 733 /* Metadata, verify the full tree block. */ 734 if (sector->is_metadata) { 735 /* 736 * Check if the tree block crosses the stripe boudary. If 737 * crossed the boundary, we cannot verify it but only give a 738 * warning. 739 * 740 * This can only happen on a very old filesystem where chunks 741 * are not ensured to be stripe aligned. 742 */ 743 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) { 744 btrfs_warn_rl(fs_info, 745 "tree block at %llu crosses stripe boundary %llu", 746 stripe->logical + 747 (sector_nr << fs_info->sectorsize_bits), 748 stripe->logical); 749 return; 750 } 751 scrub_verify_one_metadata(stripe, sector_nr); 752 return; 753 } 754 755 /* 756 * Data is easier, we just verify the data csum (if we have it). For 757 * cases without csum, we have no other choice but to trust it. 758 */ 759 if (!sector->csum) { 760 clear_bit(sector_nr, &stripe->error_bitmap); 761 return; 762 } 763 764 ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum); 765 if (ret < 0) { 766 set_bit(sector_nr, &stripe->csum_error_bitmap); 767 set_bit(sector_nr, &stripe->error_bitmap); 768 } else { 769 clear_bit(sector_nr, &stripe->csum_error_bitmap); 770 clear_bit(sector_nr, &stripe->error_bitmap); 771 } 772 } 773 774 /* Verify specified sectors of a stripe. */ 775 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap) 776 { 777 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 778 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 779 int sector_nr; 780 781 for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) { 782 scrub_verify_one_sector(stripe, sector_nr); 783 if (stripe->sectors[sector_nr].is_metadata) 784 sector_nr += sectors_per_tree - 1; 785 } 786 } 787 788 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec) 789 { 790 int i; 791 792 for (i = 0; i < stripe->nr_sectors; i++) { 793 if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page && 794 scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset) 795 break; 796 } 797 ASSERT(i < stripe->nr_sectors); 798 return i; 799 } 800 801 /* 802 * Repair read is different to the regular read: 803 * 804 * - Only reads the failed sectors 805 * - May have extra blocksize limits 806 */ 807 static void scrub_repair_read_endio(struct btrfs_bio *bbio) 808 { 809 struct scrub_stripe *stripe = bbio->private; 810 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 811 struct bio_vec *bvec; 812 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); 813 u32 bio_size = 0; 814 int i; 815 816 ASSERT(sector_nr < stripe->nr_sectors); 817 818 bio_for_each_bvec_all(bvec, &bbio->bio, i) 819 bio_size += bvec->bv_len; 820 821 if (bbio->bio.bi_status) { 822 bitmap_set(&stripe->io_error_bitmap, sector_nr, 823 bio_size >> fs_info->sectorsize_bits); 824 bitmap_set(&stripe->error_bitmap, sector_nr, 825 bio_size >> fs_info->sectorsize_bits); 826 } else { 827 bitmap_clear(&stripe->io_error_bitmap, sector_nr, 828 bio_size >> fs_info->sectorsize_bits); 829 } 830 bio_put(&bbio->bio); 831 if (atomic_dec_and_test(&stripe->pending_io)) 832 wake_up(&stripe->io_wait); 833 } 834 835 static int calc_next_mirror(int mirror, int num_copies) 836 { 837 ASSERT(mirror <= num_copies); 838 return (mirror + 1 > num_copies) ? 1 : mirror + 1; 839 } 840 841 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe, 842 int mirror, int blocksize, bool wait) 843 { 844 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 845 struct btrfs_bio *bbio = NULL; 846 const unsigned long old_error_bitmap = stripe->error_bitmap; 847 int i; 848 849 ASSERT(stripe->mirror_num >= 1); 850 ASSERT(atomic_read(&stripe->pending_io) == 0); 851 852 for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) { 853 struct page *page; 854 int pgoff; 855 int ret; 856 857 page = scrub_stripe_get_page(stripe, i); 858 pgoff = scrub_stripe_get_page_offset(stripe, i); 859 860 /* The current sector cannot be merged, submit the bio. */ 861 if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) || 862 bbio->bio.bi_iter.bi_size >= blocksize)) { 863 ASSERT(bbio->bio.bi_iter.bi_size); 864 atomic_inc(&stripe->pending_io); 865 btrfs_submit_bio(bbio, mirror); 866 if (wait) 867 wait_scrub_stripe_io(stripe); 868 bbio = NULL; 869 } 870 871 if (!bbio) { 872 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ, 873 fs_info, scrub_repair_read_endio, stripe); 874 bbio->bio.bi_iter.bi_sector = (stripe->logical + 875 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT; 876 } 877 878 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); 879 ASSERT(ret == fs_info->sectorsize); 880 } 881 if (bbio) { 882 ASSERT(bbio->bio.bi_iter.bi_size); 883 atomic_inc(&stripe->pending_io); 884 btrfs_submit_bio(bbio, mirror); 885 if (wait) 886 wait_scrub_stripe_io(stripe); 887 } 888 } 889 890 static void scrub_stripe_report_errors(struct scrub_ctx *sctx, 891 struct scrub_stripe *stripe) 892 { 893 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 894 DEFAULT_RATELIMIT_BURST); 895 struct btrfs_fs_info *fs_info = sctx->fs_info; 896 struct btrfs_device *dev = NULL; 897 u64 physical = 0; 898 int nr_data_sectors = 0; 899 int nr_meta_sectors = 0; 900 int nr_nodatacsum_sectors = 0; 901 int nr_repaired_sectors = 0; 902 int sector_nr; 903 904 if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state)) 905 return; 906 907 /* 908 * Init needed infos for error reporting. 909 * 910 * Although our scrub_stripe infrastucture is mostly based on btrfs_submit_bio() 911 * thus no need for dev/physical, error reporting still needs dev and physical. 912 */ 913 if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) { 914 u64 mapped_len = fs_info->sectorsize; 915 struct btrfs_io_context *bioc = NULL; 916 int stripe_index = stripe->mirror_num - 1; 917 int ret; 918 919 /* For scrub, our mirror_num should always start at 1. */ 920 ASSERT(stripe->mirror_num >= 1); 921 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 922 stripe->logical, &mapped_len, &bioc); 923 /* 924 * If we failed, dev will be NULL, and later detailed reports 925 * will just be skipped. 926 */ 927 if (ret < 0) 928 goto skip; 929 physical = bioc->stripes[stripe_index].physical; 930 dev = bioc->stripes[stripe_index].dev; 931 btrfs_put_bioc(bioc); 932 } 933 934 skip: 935 for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) { 936 bool repaired = false; 937 938 if (stripe->sectors[sector_nr].is_metadata) { 939 nr_meta_sectors++; 940 } else { 941 nr_data_sectors++; 942 if (!stripe->sectors[sector_nr].csum) 943 nr_nodatacsum_sectors++; 944 } 945 946 if (test_bit(sector_nr, &stripe->init_error_bitmap) && 947 !test_bit(sector_nr, &stripe->error_bitmap)) { 948 nr_repaired_sectors++; 949 repaired = true; 950 } 951 952 /* Good sector from the beginning, nothing need to be done. */ 953 if (!test_bit(sector_nr, &stripe->init_error_bitmap)) 954 continue; 955 956 /* 957 * Report error for the corrupted sectors. If repaired, just 958 * output the message of repaired message. 959 */ 960 if (repaired) { 961 if (dev) { 962 btrfs_err_rl_in_rcu(fs_info, 963 "fixed up error at logical %llu on dev %s physical %llu", 964 stripe->logical, btrfs_dev_name(dev), 965 physical); 966 } else { 967 btrfs_err_rl_in_rcu(fs_info, 968 "fixed up error at logical %llu on mirror %u", 969 stripe->logical, stripe->mirror_num); 970 } 971 continue; 972 } 973 974 /* The remaining are all for unrepaired. */ 975 if (dev) { 976 btrfs_err_rl_in_rcu(fs_info, 977 "unable to fixup (regular) error at logical %llu on dev %s physical %llu", 978 stripe->logical, btrfs_dev_name(dev), 979 physical); 980 } else { 981 btrfs_err_rl_in_rcu(fs_info, 982 "unable to fixup (regular) error at logical %llu on mirror %u", 983 stripe->logical, stripe->mirror_num); 984 } 985 986 if (test_bit(sector_nr, &stripe->io_error_bitmap)) 987 if (__ratelimit(&rs) && dev) 988 scrub_print_common_warning("i/o error", dev, false, 989 stripe->logical, physical); 990 if (test_bit(sector_nr, &stripe->csum_error_bitmap)) 991 if (__ratelimit(&rs) && dev) 992 scrub_print_common_warning("checksum error", dev, false, 993 stripe->logical, physical); 994 if (test_bit(sector_nr, &stripe->meta_error_bitmap)) 995 if (__ratelimit(&rs) && dev) 996 scrub_print_common_warning("header error", dev, false, 997 stripe->logical, physical); 998 } 999 1000 spin_lock(&sctx->stat_lock); 1001 sctx->stat.data_extents_scrubbed += stripe->nr_data_extents; 1002 sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents; 1003 sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits; 1004 sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits; 1005 sctx->stat.no_csum += nr_nodatacsum_sectors; 1006 sctx->stat.read_errors += 1007 bitmap_weight(&stripe->io_error_bitmap, stripe->nr_sectors); 1008 sctx->stat.csum_errors += 1009 bitmap_weight(&stripe->csum_error_bitmap, stripe->nr_sectors); 1010 sctx->stat.verify_errors += 1011 bitmap_weight(&stripe->meta_error_bitmap, stripe->nr_sectors); 1012 sctx->stat.uncorrectable_errors += 1013 bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors); 1014 sctx->stat.corrected_errors += nr_repaired_sectors; 1015 spin_unlock(&sctx->stat_lock); 1016 } 1017 1018 /* 1019 * The main entrance for all read related scrub work, including: 1020 * 1021 * - Wait for the initial read to finish 1022 * - Verify and locate any bad sectors 1023 * - Go through the remaining mirrors and try to read as large blocksize as 1024 * possible 1025 * - Go through all mirrors (including the failed mirror) sector-by-sector 1026 * 1027 * Writeback does not happen here, it needs extra synchronization. 1028 */ 1029 static void scrub_stripe_read_repair_worker(struct work_struct *work) 1030 { 1031 struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work); 1032 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1033 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, 1034 stripe->bg->length); 1035 int mirror; 1036 int i; 1037 1038 ASSERT(stripe->mirror_num > 0); 1039 1040 wait_scrub_stripe_io(stripe); 1041 scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap); 1042 /* Save the initial failed bitmap for later repair and report usage. */ 1043 stripe->init_error_bitmap = stripe->error_bitmap; 1044 1045 if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) 1046 goto out; 1047 1048 /* 1049 * Try all remaining mirrors. 1050 * 1051 * Here we still try to read as large block as possible, as this is 1052 * faster and we have extra safety nets to rely on. 1053 */ 1054 for (mirror = calc_next_mirror(stripe->mirror_num, num_copies); 1055 mirror != stripe->mirror_num; 1056 mirror = calc_next_mirror(mirror, num_copies)) { 1057 const unsigned long old_error_bitmap = stripe->error_bitmap; 1058 1059 scrub_stripe_submit_repair_read(stripe, mirror, 1060 BTRFS_STRIPE_LEN, false); 1061 wait_scrub_stripe_io(stripe); 1062 scrub_verify_one_stripe(stripe, old_error_bitmap); 1063 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) 1064 goto out; 1065 } 1066 1067 /* 1068 * Last safety net, try re-checking all mirrors, including the failed 1069 * one, sector-by-sector. 1070 * 1071 * As if one sector failed the drive's internal csum, the whole read 1072 * containing the offending sector would be marked as error. 1073 * Thus here we do sector-by-sector read. 1074 * 1075 * This can be slow, thus we only try it as the last resort. 1076 */ 1077 1078 for (i = 0, mirror = stripe->mirror_num; 1079 i < num_copies; 1080 i++, mirror = calc_next_mirror(mirror, num_copies)) { 1081 const unsigned long old_error_bitmap = stripe->error_bitmap; 1082 1083 scrub_stripe_submit_repair_read(stripe, mirror, 1084 fs_info->sectorsize, true); 1085 wait_scrub_stripe_io(stripe); 1086 scrub_verify_one_stripe(stripe, old_error_bitmap); 1087 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) 1088 goto out; 1089 } 1090 out: 1091 scrub_stripe_report_errors(stripe->sctx, stripe); 1092 set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state); 1093 wake_up(&stripe->repair_wait); 1094 } 1095 1096 static void scrub_read_endio(struct btrfs_bio *bbio) 1097 { 1098 struct scrub_stripe *stripe = bbio->private; 1099 1100 if (bbio->bio.bi_status) { 1101 bitmap_set(&stripe->io_error_bitmap, 0, stripe->nr_sectors); 1102 bitmap_set(&stripe->error_bitmap, 0, stripe->nr_sectors); 1103 } else { 1104 bitmap_clear(&stripe->io_error_bitmap, 0, stripe->nr_sectors); 1105 } 1106 bio_put(&bbio->bio); 1107 if (atomic_dec_and_test(&stripe->pending_io)) { 1108 wake_up(&stripe->io_wait); 1109 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker); 1110 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work); 1111 } 1112 } 1113 1114 static void scrub_write_endio(struct btrfs_bio *bbio) 1115 { 1116 struct scrub_stripe *stripe = bbio->private; 1117 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1118 struct bio_vec *bvec; 1119 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); 1120 u32 bio_size = 0; 1121 int i; 1122 1123 bio_for_each_bvec_all(bvec, &bbio->bio, i) 1124 bio_size += bvec->bv_len; 1125 1126 if (bbio->bio.bi_status) { 1127 unsigned long flags; 1128 1129 spin_lock_irqsave(&stripe->write_error_lock, flags); 1130 bitmap_set(&stripe->write_error_bitmap, sector_nr, 1131 bio_size >> fs_info->sectorsize_bits); 1132 spin_unlock_irqrestore(&stripe->write_error_lock, flags); 1133 } 1134 bio_put(&bbio->bio); 1135 1136 if (atomic_dec_and_test(&stripe->pending_io)) 1137 wake_up(&stripe->io_wait); 1138 } 1139 1140 /* 1141 * Submit the write bio(s) for the sectors specified by @write_bitmap. 1142 * 1143 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits: 1144 * 1145 * - Only needs logical bytenr and mirror_num 1146 * Just like the scrub read path 1147 * 1148 * - Would only result in writes to the specified mirror 1149 * Unlike the regular writeback path, which would write back to all stripes 1150 * 1151 * - Handle dev-replace and read-repair writeback differently 1152 */ 1153 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe, 1154 unsigned long write_bitmap, bool dev_replace) 1155 { 1156 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1157 struct btrfs_bio *bbio = NULL; 1158 const bool zoned = btrfs_is_zoned(fs_info); 1159 int sector_nr; 1160 1161 for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) { 1162 struct page *page = scrub_stripe_get_page(stripe, sector_nr); 1163 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr); 1164 int ret; 1165 1166 /* We should only writeback sectors covered by an extent. */ 1167 ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap)); 1168 1169 /* Cannot merge with previous sector, submit the current one. */ 1170 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) { 1171 fill_writer_pointer_gap(sctx, stripe->physical + 1172 (sector_nr << fs_info->sectorsize_bits)); 1173 atomic_inc(&stripe->pending_io); 1174 btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace); 1175 /* For zoned writeback, queue depth must be 1. */ 1176 if (zoned) 1177 wait_scrub_stripe_io(stripe); 1178 bbio = NULL; 1179 } 1180 if (!bbio) { 1181 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE, 1182 fs_info, scrub_write_endio, stripe); 1183 bbio->bio.bi_iter.bi_sector = (stripe->logical + 1184 (sector_nr << fs_info->sectorsize_bits)) >> 1185 SECTOR_SHIFT; 1186 } 1187 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); 1188 ASSERT(ret == fs_info->sectorsize); 1189 } 1190 if (bbio) { 1191 fill_writer_pointer_gap(sctx, bbio->bio.bi_iter.bi_sector << 1192 SECTOR_SHIFT); 1193 atomic_inc(&stripe->pending_io); 1194 btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace); 1195 if (zoned) 1196 wait_scrub_stripe_io(stripe); 1197 } 1198 } 1199 1200 /* 1201 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1 1202 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max. 1203 */ 1204 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device, 1205 unsigned int bio_size) 1206 { 1207 const int time_slice = 1000; 1208 s64 delta; 1209 ktime_t now; 1210 u32 div; 1211 u64 bwlimit; 1212 1213 bwlimit = READ_ONCE(device->scrub_speed_max); 1214 if (bwlimit == 0) 1215 return; 1216 1217 /* 1218 * Slice is divided into intervals when the IO is submitted, adjust by 1219 * bwlimit and maximum of 64 intervals. 1220 */ 1221 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024))); 1222 div = min_t(u32, 64, div); 1223 1224 /* Start new epoch, set deadline */ 1225 now = ktime_get(); 1226 if (sctx->throttle_deadline == 0) { 1227 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div); 1228 sctx->throttle_sent = 0; 1229 } 1230 1231 /* Still in the time to send? */ 1232 if (ktime_before(now, sctx->throttle_deadline)) { 1233 /* If current bio is within the limit, send it */ 1234 sctx->throttle_sent += bio_size; 1235 if (sctx->throttle_sent <= div_u64(bwlimit, div)) 1236 return; 1237 1238 /* We're over the limit, sleep until the rest of the slice */ 1239 delta = ktime_ms_delta(sctx->throttle_deadline, now); 1240 } else { 1241 /* New request after deadline, start new epoch */ 1242 delta = 0; 1243 } 1244 1245 if (delta) { 1246 long timeout; 1247 1248 timeout = div_u64(delta * HZ, 1000); 1249 schedule_timeout_interruptible(timeout); 1250 } 1251 1252 /* Next call will start the deadline period */ 1253 sctx->throttle_deadline = 0; 1254 } 1255 1256 /* 1257 * Given a physical address, this will calculate it's 1258 * logical offset. if this is a parity stripe, it will return 1259 * the most left data stripe's logical offset. 1260 * 1261 * return 0 if it is a data stripe, 1 means parity stripe. 1262 */ 1263 static int get_raid56_logic_offset(u64 physical, int num, 1264 struct map_lookup *map, u64 *offset, 1265 u64 *stripe_start) 1266 { 1267 int i; 1268 int j = 0; 1269 u64 last_offset; 1270 const int data_stripes = nr_data_stripes(map); 1271 1272 last_offset = (physical - map->stripes[num].physical) * data_stripes; 1273 if (stripe_start) 1274 *stripe_start = last_offset; 1275 1276 *offset = last_offset; 1277 for (i = 0; i < data_stripes; i++) { 1278 u32 stripe_nr; 1279 u32 stripe_index; 1280 u32 rot; 1281 1282 *offset = last_offset + (i << BTRFS_STRIPE_LEN_SHIFT); 1283 1284 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes; 1285 1286 /* Work out the disk rotation on this stripe-set */ 1287 rot = stripe_nr % map->num_stripes; 1288 stripe_nr /= map->num_stripes; 1289 /* calculate which stripe this data locates */ 1290 rot += i; 1291 stripe_index = rot % map->num_stripes; 1292 if (stripe_index == num) 1293 return 0; 1294 if (stripe_index < num) 1295 j++; 1296 } 1297 *offset = last_offset + (j << BTRFS_STRIPE_LEN_SHIFT); 1298 return 1; 1299 } 1300 1301 /* 1302 * Return 0 if the extent item range covers any byte of the range. 1303 * Return <0 if the extent item is before @search_start. 1304 * Return >0 if the extent item is after @start_start + @search_len. 1305 */ 1306 static int compare_extent_item_range(struct btrfs_path *path, 1307 u64 search_start, u64 search_len) 1308 { 1309 struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info; 1310 u64 len; 1311 struct btrfs_key key; 1312 1313 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1314 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY || 1315 key.type == BTRFS_METADATA_ITEM_KEY); 1316 if (key.type == BTRFS_METADATA_ITEM_KEY) 1317 len = fs_info->nodesize; 1318 else 1319 len = key.offset; 1320 1321 if (key.objectid + len <= search_start) 1322 return -1; 1323 if (key.objectid >= search_start + search_len) 1324 return 1; 1325 return 0; 1326 } 1327 1328 /* 1329 * Locate one extent item which covers any byte in range 1330 * [@search_start, @search_start + @search_length) 1331 * 1332 * If the path is not initialized, we will initialize the search by doing 1333 * a btrfs_search_slot(). 1334 * If the path is already initialized, we will use the path as the initial 1335 * slot, to avoid duplicated btrfs_search_slot() calls. 1336 * 1337 * NOTE: If an extent item starts before @search_start, we will still 1338 * return the extent item. This is for data extent crossing stripe boundary. 1339 * 1340 * Return 0 if we found such extent item, and @path will point to the extent item. 1341 * Return >0 if no such extent item can be found, and @path will be released. 1342 * Return <0 if hit fatal error, and @path will be released. 1343 */ 1344 static int find_first_extent_item(struct btrfs_root *extent_root, 1345 struct btrfs_path *path, 1346 u64 search_start, u64 search_len) 1347 { 1348 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1349 struct btrfs_key key; 1350 int ret; 1351 1352 /* Continue using the existing path */ 1353 if (path->nodes[0]) 1354 goto search_forward; 1355 1356 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1357 key.type = BTRFS_METADATA_ITEM_KEY; 1358 else 1359 key.type = BTRFS_EXTENT_ITEM_KEY; 1360 key.objectid = search_start; 1361 key.offset = (u64)-1; 1362 1363 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 1364 if (ret < 0) 1365 return ret; 1366 1367 ASSERT(ret > 0); 1368 /* 1369 * Here we intentionally pass 0 as @min_objectid, as there could be 1370 * an extent item starting before @search_start. 1371 */ 1372 ret = btrfs_previous_extent_item(extent_root, path, 0); 1373 if (ret < 0) 1374 return ret; 1375 /* 1376 * No matter whether we have found an extent item, the next loop will 1377 * properly do every check on the key. 1378 */ 1379 search_forward: 1380 while (true) { 1381 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1382 if (key.objectid >= search_start + search_len) 1383 break; 1384 if (key.type != BTRFS_METADATA_ITEM_KEY && 1385 key.type != BTRFS_EXTENT_ITEM_KEY) 1386 goto next; 1387 1388 ret = compare_extent_item_range(path, search_start, search_len); 1389 if (ret == 0) 1390 return ret; 1391 if (ret > 0) 1392 break; 1393 next: 1394 path->slots[0]++; 1395 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 1396 ret = btrfs_next_leaf(extent_root, path); 1397 if (ret) { 1398 /* Either no more item or fatal error */ 1399 btrfs_release_path(path); 1400 return ret; 1401 } 1402 } 1403 } 1404 btrfs_release_path(path); 1405 return 1; 1406 } 1407 1408 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret, 1409 u64 *size_ret, u64 *flags_ret, u64 *generation_ret) 1410 { 1411 struct btrfs_key key; 1412 struct btrfs_extent_item *ei; 1413 1414 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1415 ASSERT(key.type == BTRFS_METADATA_ITEM_KEY || 1416 key.type == BTRFS_EXTENT_ITEM_KEY); 1417 *extent_start_ret = key.objectid; 1418 if (key.type == BTRFS_METADATA_ITEM_KEY) 1419 *size_ret = path->nodes[0]->fs_info->nodesize; 1420 else 1421 *size_ret = key.offset; 1422 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item); 1423 *flags_ret = btrfs_extent_flags(path->nodes[0], ei); 1424 *generation_ret = btrfs_extent_generation(path->nodes[0], ei); 1425 } 1426 1427 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical, 1428 u64 physical, u64 physical_end) 1429 { 1430 struct btrfs_fs_info *fs_info = sctx->fs_info; 1431 int ret = 0; 1432 1433 if (!btrfs_is_zoned(fs_info)) 1434 return 0; 1435 1436 mutex_lock(&sctx->wr_lock); 1437 if (sctx->write_pointer < physical_end) { 1438 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical, 1439 physical, 1440 sctx->write_pointer); 1441 if (ret) 1442 btrfs_err(fs_info, 1443 "zoned: failed to recover write pointer"); 1444 } 1445 mutex_unlock(&sctx->wr_lock); 1446 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical); 1447 1448 return ret; 1449 } 1450 1451 static void fill_one_extent_info(struct btrfs_fs_info *fs_info, 1452 struct scrub_stripe *stripe, 1453 u64 extent_start, u64 extent_len, 1454 u64 extent_flags, u64 extent_gen) 1455 { 1456 for (u64 cur_logical = max(stripe->logical, extent_start); 1457 cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN, 1458 extent_start + extent_len); 1459 cur_logical += fs_info->sectorsize) { 1460 const int nr_sector = (cur_logical - stripe->logical) >> 1461 fs_info->sectorsize_bits; 1462 struct scrub_sector_verification *sector = 1463 &stripe->sectors[nr_sector]; 1464 1465 set_bit(nr_sector, &stripe->extent_sector_bitmap); 1466 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1467 sector->is_metadata = true; 1468 sector->generation = extent_gen; 1469 } 1470 } 1471 } 1472 1473 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe) 1474 { 1475 stripe->extent_sector_bitmap = 0; 1476 stripe->init_error_bitmap = 0; 1477 stripe->error_bitmap = 0; 1478 stripe->io_error_bitmap = 0; 1479 stripe->csum_error_bitmap = 0; 1480 stripe->meta_error_bitmap = 0; 1481 } 1482 1483 /* 1484 * Locate one stripe which has at least one extent in its range. 1485 * 1486 * Return 0 if found such stripe, and store its info into @stripe. 1487 * Return >0 if there is no such stripe in the specified range. 1488 * Return <0 for error. 1489 */ 1490 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg, 1491 struct btrfs_device *dev, u64 physical, 1492 int mirror_num, u64 logical_start, 1493 u32 logical_len, 1494 struct scrub_stripe *stripe) 1495 { 1496 struct btrfs_fs_info *fs_info = bg->fs_info; 1497 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start); 1498 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start); 1499 const u64 logical_end = logical_start + logical_len; 1500 struct btrfs_path path = { 0 }; 1501 u64 cur_logical = logical_start; 1502 u64 stripe_end; 1503 u64 extent_start; 1504 u64 extent_len; 1505 u64 extent_flags; 1506 u64 extent_gen; 1507 int ret; 1508 1509 memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) * 1510 stripe->nr_sectors); 1511 scrub_stripe_reset_bitmaps(stripe); 1512 1513 /* The range must be inside the bg. */ 1514 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); 1515 1516 path.search_commit_root = 1; 1517 path.skip_locking = 1; 1518 1519 ret = find_first_extent_item(extent_root, &path, logical_start, logical_len); 1520 /* Either error or not found. */ 1521 if (ret) 1522 goto out; 1523 get_extent_info(&path, &extent_start, &extent_len, &extent_flags, &extent_gen); 1524 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1525 stripe->nr_meta_extents++; 1526 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) 1527 stripe->nr_data_extents++; 1528 cur_logical = max(extent_start, cur_logical); 1529 1530 /* 1531 * Round down to stripe boundary. 1532 * 1533 * The extra calculation against bg->start is to handle block groups 1534 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned. 1535 */ 1536 stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) + 1537 bg->start; 1538 stripe->physical = physical + stripe->logical - logical_start; 1539 stripe->dev = dev; 1540 stripe->bg = bg; 1541 stripe->mirror_num = mirror_num; 1542 stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1; 1543 1544 /* Fill the first extent info into stripe->sectors[] array. */ 1545 fill_one_extent_info(fs_info, stripe, extent_start, extent_len, 1546 extent_flags, extent_gen); 1547 cur_logical = extent_start + extent_len; 1548 1549 /* Fill the extent info for the remaining sectors. */ 1550 while (cur_logical <= stripe_end) { 1551 ret = find_first_extent_item(extent_root, &path, cur_logical, 1552 stripe_end - cur_logical + 1); 1553 if (ret < 0) 1554 goto out; 1555 if (ret > 0) { 1556 ret = 0; 1557 break; 1558 } 1559 get_extent_info(&path, &extent_start, &extent_len, 1560 &extent_flags, &extent_gen); 1561 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1562 stripe->nr_meta_extents++; 1563 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) 1564 stripe->nr_data_extents++; 1565 fill_one_extent_info(fs_info, stripe, extent_start, extent_len, 1566 extent_flags, extent_gen); 1567 cur_logical = extent_start + extent_len; 1568 } 1569 1570 /* Now fill the data csum. */ 1571 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) { 1572 int sector_nr; 1573 unsigned long csum_bitmap = 0; 1574 1575 /* Csum space should have already been allocated. */ 1576 ASSERT(stripe->csums); 1577 1578 /* 1579 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN 1580 * should contain at most 16 sectors. 1581 */ 1582 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); 1583 1584 ret = btrfs_lookup_csums_bitmap(csum_root, stripe->logical, 1585 stripe_end, stripe->csums, 1586 &csum_bitmap, true); 1587 if (ret < 0) 1588 goto out; 1589 if (ret > 0) 1590 ret = 0; 1591 1592 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) { 1593 stripe->sectors[sector_nr].csum = stripe->csums + 1594 sector_nr * fs_info->csum_size; 1595 } 1596 } 1597 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); 1598 out: 1599 btrfs_release_path(&path); 1600 return ret; 1601 } 1602 1603 static void scrub_reset_stripe(struct scrub_stripe *stripe) 1604 { 1605 scrub_stripe_reset_bitmaps(stripe); 1606 1607 stripe->nr_meta_extents = 0; 1608 stripe->nr_data_extents = 0; 1609 stripe->state = 0; 1610 1611 for (int i = 0; i < stripe->nr_sectors; i++) { 1612 stripe->sectors[i].is_metadata = false; 1613 stripe->sectors[i].csum = NULL; 1614 stripe->sectors[i].generation = 0; 1615 } 1616 } 1617 1618 static void scrub_submit_initial_read(struct scrub_ctx *sctx, 1619 struct scrub_stripe *stripe) 1620 { 1621 struct btrfs_fs_info *fs_info = sctx->fs_info; 1622 struct btrfs_bio *bbio; 1623 int mirror = stripe->mirror_num; 1624 1625 ASSERT(stripe->bg); 1626 ASSERT(stripe->mirror_num > 0); 1627 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state)); 1628 1629 bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info, 1630 scrub_read_endio, stripe); 1631 1632 /* Read the whole stripe. */ 1633 bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT; 1634 for (int i = 0; i < BTRFS_STRIPE_LEN >> PAGE_SHIFT; i++) { 1635 int ret; 1636 1637 ret = bio_add_page(&bbio->bio, stripe->pages[i], PAGE_SIZE, 0); 1638 /* We should have allocated enough bio vectors. */ 1639 ASSERT(ret == PAGE_SIZE); 1640 } 1641 atomic_inc(&stripe->pending_io); 1642 1643 /* 1644 * For dev-replace, either user asks to avoid the source dev, or 1645 * the device is missing, we try the next mirror instead. 1646 */ 1647 if (sctx->is_dev_replace && 1648 (fs_info->dev_replace.cont_reading_from_srcdev_mode == 1649 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID || 1650 !stripe->dev->bdev)) { 1651 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, 1652 stripe->bg->length); 1653 1654 mirror = calc_next_mirror(mirror, num_copies); 1655 } 1656 btrfs_submit_bio(bbio, mirror); 1657 } 1658 1659 static bool stripe_has_metadata_error(struct scrub_stripe *stripe) 1660 { 1661 int i; 1662 1663 for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) { 1664 if (stripe->sectors[i].is_metadata) { 1665 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1666 1667 btrfs_err(fs_info, 1668 "stripe %llu has unrepaired metadata sector at %llu", 1669 stripe->logical, 1670 stripe->logical + (i << fs_info->sectorsize_bits)); 1671 return true; 1672 } 1673 } 1674 return false; 1675 } 1676 1677 static int flush_scrub_stripes(struct scrub_ctx *sctx) 1678 { 1679 struct btrfs_fs_info *fs_info = sctx->fs_info; 1680 struct scrub_stripe *stripe; 1681 const int nr_stripes = sctx->cur_stripe; 1682 int ret = 0; 1683 1684 if (!nr_stripes) 1685 return 0; 1686 1687 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state)); 1688 1689 scrub_throttle_dev_io(sctx, sctx->stripes[0].dev, 1690 nr_stripes << BTRFS_STRIPE_LEN_SHIFT); 1691 for (int i = 0; i < nr_stripes; i++) { 1692 stripe = &sctx->stripes[i]; 1693 scrub_submit_initial_read(sctx, stripe); 1694 } 1695 1696 for (int i = 0; i < nr_stripes; i++) { 1697 stripe = &sctx->stripes[i]; 1698 1699 wait_event(stripe->repair_wait, 1700 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); 1701 } 1702 1703 /* 1704 * Submit the repaired sectors. For zoned case, we cannot do repair 1705 * in-place, but queue the bg to be relocated. 1706 */ 1707 if (btrfs_is_zoned(fs_info)) { 1708 for (int i = 0; i < nr_stripes; i++) { 1709 stripe = &sctx->stripes[i]; 1710 1711 if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) { 1712 btrfs_repair_one_zone(fs_info, 1713 sctx->stripes[0].bg->start); 1714 break; 1715 } 1716 } 1717 } else { 1718 for (int i = 0; i < nr_stripes; i++) { 1719 unsigned long repaired; 1720 1721 stripe = &sctx->stripes[i]; 1722 1723 bitmap_andnot(&repaired, &stripe->init_error_bitmap, 1724 &stripe->error_bitmap, stripe->nr_sectors); 1725 scrub_write_sectors(sctx, stripe, repaired, false); 1726 } 1727 } 1728 1729 /* Submit for dev-replace. */ 1730 if (sctx->is_dev_replace) { 1731 /* 1732 * For dev-replace, if we know there is something wrong with 1733 * metadata, we should immedately abort. 1734 */ 1735 for (int i = 0; i < nr_stripes; i++) { 1736 if (stripe_has_metadata_error(&sctx->stripes[i])) { 1737 ret = -EIO; 1738 goto out; 1739 } 1740 } 1741 for (int i = 0; i < nr_stripes; i++) { 1742 unsigned long good; 1743 1744 stripe = &sctx->stripes[i]; 1745 1746 ASSERT(stripe->dev == fs_info->dev_replace.srcdev); 1747 1748 bitmap_andnot(&good, &stripe->extent_sector_bitmap, 1749 &stripe->error_bitmap, stripe->nr_sectors); 1750 scrub_write_sectors(sctx, stripe, good, true); 1751 } 1752 } 1753 1754 /* Wait for the above writebacks to finish. */ 1755 for (int i = 0; i < nr_stripes; i++) { 1756 stripe = &sctx->stripes[i]; 1757 1758 wait_scrub_stripe_io(stripe); 1759 scrub_reset_stripe(stripe); 1760 } 1761 out: 1762 sctx->cur_stripe = 0; 1763 return ret; 1764 } 1765 1766 static void raid56_scrub_wait_endio(struct bio *bio) 1767 { 1768 complete(bio->bi_private); 1769 } 1770 1771 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg, 1772 struct btrfs_device *dev, int mirror_num, 1773 u64 logical, u32 length, u64 physical) 1774 { 1775 struct scrub_stripe *stripe; 1776 int ret; 1777 1778 /* No available slot, submit all stripes and wait for them. */ 1779 if (sctx->cur_stripe >= SCRUB_STRIPES_PER_SCTX) { 1780 ret = flush_scrub_stripes(sctx); 1781 if (ret < 0) 1782 return ret; 1783 } 1784 1785 stripe = &sctx->stripes[sctx->cur_stripe]; 1786 1787 /* We can queue one stripe using the remaining slot. */ 1788 scrub_reset_stripe(stripe); 1789 ret = scrub_find_fill_first_stripe(bg, dev, physical, mirror_num, 1790 logical, length, stripe); 1791 /* Either >0 as no more extents or <0 for error. */ 1792 if (ret) 1793 return ret; 1794 sctx->cur_stripe++; 1795 return 0; 1796 } 1797 1798 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx, 1799 struct btrfs_device *scrub_dev, 1800 struct btrfs_block_group *bg, 1801 struct map_lookup *map, 1802 u64 full_stripe_start) 1803 { 1804 DECLARE_COMPLETION_ONSTACK(io_done); 1805 struct btrfs_fs_info *fs_info = sctx->fs_info; 1806 struct btrfs_raid_bio *rbio; 1807 struct btrfs_io_context *bioc = NULL; 1808 struct bio *bio; 1809 struct scrub_stripe *stripe; 1810 bool all_empty = true; 1811 const int data_stripes = nr_data_stripes(map); 1812 unsigned long extent_bitmap = 0; 1813 u64 length = data_stripes << BTRFS_STRIPE_LEN_SHIFT; 1814 int ret; 1815 1816 ASSERT(sctx->raid56_data_stripes); 1817 1818 for (int i = 0; i < data_stripes; i++) { 1819 int stripe_index; 1820 int rot; 1821 u64 physical; 1822 1823 stripe = &sctx->raid56_data_stripes[i]; 1824 rot = div_u64(full_stripe_start - bg->start, 1825 data_stripes) >> BTRFS_STRIPE_LEN_SHIFT; 1826 stripe_index = (i + rot) % map->num_stripes; 1827 physical = map->stripes[stripe_index].physical + 1828 (rot << BTRFS_STRIPE_LEN_SHIFT); 1829 1830 scrub_reset_stripe(stripe); 1831 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state); 1832 ret = scrub_find_fill_first_stripe(bg, 1833 map->stripes[stripe_index].dev, physical, 1, 1834 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT), 1835 BTRFS_STRIPE_LEN, stripe); 1836 if (ret < 0) 1837 goto out; 1838 /* 1839 * No extent in this data stripe, need to manually mark them 1840 * initialized to make later read submission happy. 1841 */ 1842 if (ret > 0) { 1843 stripe->logical = full_stripe_start + 1844 (i << BTRFS_STRIPE_LEN_SHIFT); 1845 stripe->dev = map->stripes[stripe_index].dev; 1846 stripe->mirror_num = 1; 1847 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); 1848 } 1849 } 1850 1851 /* Check if all data stripes are empty. */ 1852 for (int i = 0; i < data_stripes; i++) { 1853 stripe = &sctx->raid56_data_stripes[i]; 1854 if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) { 1855 all_empty = false; 1856 break; 1857 } 1858 } 1859 if (all_empty) { 1860 ret = 0; 1861 goto out; 1862 } 1863 1864 for (int i = 0; i < data_stripes; i++) { 1865 stripe = &sctx->raid56_data_stripes[i]; 1866 scrub_submit_initial_read(sctx, stripe); 1867 } 1868 for (int i = 0; i < data_stripes; i++) { 1869 stripe = &sctx->raid56_data_stripes[i]; 1870 1871 wait_event(stripe->repair_wait, 1872 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); 1873 } 1874 /* For now, no zoned support for RAID56. */ 1875 ASSERT(!btrfs_is_zoned(sctx->fs_info)); 1876 1877 /* Writeback for the repaired sectors. */ 1878 for (int i = 0; i < data_stripes; i++) { 1879 unsigned long repaired; 1880 1881 stripe = &sctx->raid56_data_stripes[i]; 1882 1883 bitmap_andnot(&repaired, &stripe->init_error_bitmap, 1884 &stripe->error_bitmap, stripe->nr_sectors); 1885 scrub_write_sectors(sctx, stripe, repaired, false); 1886 } 1887 1888 /* Wait for the above writebacks to finish. */ 1889 for (int i = 0; i < data_stripes; i++) { 1890 stripe = &sctx->raid56_data_stripes[i]; 1891 1892 wait_scrub_stripe_io(stripe); 1893 } 1894 1895 /* 1896 * Now all data stripes are properly verified. Check if we have any 1897 * unrepaired, if so abort immediately or we could further corrupt the 1898 * P/Q stripes. 1899 * 1900 * During the loop, also populate extent_bitmap. 1901 */ 1902 for (int i = 0; i < data_stripes; i++) { 1903 unsigned long error; 1904 1905 stripe = &sctx->raid56_data_stripes[i]; 1906 1907 /* 1908 * We should only check the errors where there is an extent. 1909 * As we may hit an empty data stripe while it's missing. 1910 */ 1911 bitmap_and(&error, &stripe->error_bitmap, 1912 &stripe->extent_sector_bitmap, stripe->nr_sectors); 1913 if (!bitmap_empty(&error, stripe->nr_sectors)) { 1914 btrfs_err(fs_info, 1915 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl", 1916 full_stripe_start, i, stripe->nr_sectors, 1917 &error); 1918 ret = -EIO; 1919 goto out; 1920 } 1921 bitmap_or(&extent_bitmap, &extent_bitmap, 1922 &stripe->extent_sector_bitmap, stripe->nr_sectors); 1923 } 1924 1925 /* Now we can check and regenerate the P/Q stripe. */ 1926 bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS); 1927 bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT; 1928 bio->bi_private = &io_done; 1929 bio->bi_end_io = raid56_scrub_wait_endio; 1930 1931 btrfs_bio_counter_inc_blocked(fs_info); 1932 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, full_stripe_start, 1933 &length, &bioc); 1934 if (ret < 0) { 1935 btrfs_put_bioc(bioc); 1936 btrfs_bio_counter_dec(fs_info); 1937 goto out; 1938 } 1939 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap, 1940 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); 1941 btrfs_put_bioc(bioc); 1942 if (!rbio) { 1943 ret = -ENOMEM; 1944 btrfs_bio_counter_dec(fs_info); 1945 goto out; 1946 } 1947 raid56_parity_submit_scrub_rbio(rbio); 1948 wait_for_completion_io(&io_done); 1949 ret = blk_status_to_errno(bio->bi_status); 1950 bio_put(bio); 1951 btrfs_bio_counter_dec(fs_info); 1952 1953 out: 1954 return ret; 1955 } 1956 1957 /* 1958 * Scrub one range which can only has simple mirror based profile. 1959 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in 1960 * RAID0/RAID10). 1961 * 1962 * Since we may need to handle a subset of block group, we need @logical_start 1963 * and @logical_length parameter. 1964 */ 1965 static int scrub_simple_mirror(struct scrub_ctx *sctx, 1966 struct btrfs_block_group *bg, 1967 struct map_lookup *map, 1968 u64 logical_start, u64 logical_length, 1969 struct btrfs_device *device, 1970 u64 physical, int mirror_num) 1971 { 1972 struct btrfs_fs_info *fs_info = sctx->fs_info; 1973 const u64 logical_end = logical_start + logical_length; 1974 /* An artificial limit, inherit from old scrub behavior */ 1975 struct btrfs_path path = { 0 }; 1976 u64 cur_logical = logical_start; 1977 int ret; 1978 1979 /* The range must be inside the bg */ 1980 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); 1981 1982 path.search_commit_root = 1; 1983 path.skip_locking = 1; 1984 /* Go through each extent items inside the logical range */ 1985 while (cur_logical < logical_end) { 1986 u64 cur_physical = physical + cur_logical - logical_start; 1987 1988 /* Canceled? */ 1989 if (atomic_read(&fs_info->scrub_cancel_req) || 1990 atomic_read(&sctx->cancel_req)) { 1991 ret = -ECANCELED; 1992 break; 1993 } 1994 /* Paused? */ 1995 if (atomic_read(&fs_info->scrub_pause_req)) { 1996 /* Push queued extents */ 1997 scrub_blocked_if_needed(fs_info); 1998 } 1999 /* Block group removed? */ 2000 spin_lock(&bg->lock); 2001 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) { 2002 spin_unlock(&bg->lock); 2003 ret = 0; 2004 break; 2005 } 2006 spin_unlock(&bg->lock); 2007 2008 ret = queue_scrub_stripe(sctx, bg, device, mirror_num, 2009 cur_logical, logical_end - cur_logical, 2010 cur_physical); 2011 if (ret > 0) { 2012 /* No more extent, just update the accounting */ 2013 sctx->stat.last_physical = physical + logical_length; 2014 ret = 0; 2015 break; 2016 } 2017 if (ret < 0) 2018 break; 2019 2020 ASSERT(sctx->cur_stripe > 0); 2021 cur_logical = sctx->stripes[sctx->cur_stripe - 1].logical 2022 + BTRFS_STRIPE_LEN; 2023 2024 /* Don't hold CPU for too long time */ 2025 cond_resched(); 2026 } 2027 btrfs_release_path(&path); 2028 return ret; 2029 } 2030 2031 /* Calculate the full stripe length for simple stripe based profiles */ 2032 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map) 2033 { 2034 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2035 BTRFS_BLOCK_GROUP_RAID10)); 2036 2037 return (map->num_stripes / map->sub_stripes) << BTRFS_STRIPE_LEN_SHIFT; 2038 } 2039 2040 /* Get the logical bytenr for the stripe */ 2041 static u64 simple_stripe_get_logical(struct map_lookup *map, 2042 struct btrfs_block_group *bg, 2043 int stripe_index) 2044 { 2045 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2046 BTRFS_BLOCK_GROUP_RAID10)); 2047 ASSERT(stripe_index < map->num_stripes); 2048 2049 /* 2050 * (stripe_index / sub_stripes) gives how many data stripes we need to 2051 * skip. 2052 */ 2053 return ((stripe_index / map->sub_stripes) << BTRFS_STRIPE_LEN_SHIFT) + 2054 bg->start; 2055 } 2056 2057 /* Get the mirror number for the stripe */ 2058 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index) 2059 { 2060 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2061 BTRFS_BLOCK_GROUP_RAID10)); 2062 ASSERT(stripe_index < map->num_stripes); 2063 2064 /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */ 2065 return stripe_index % map->sub_stripes + 1; 2066 } 2067 2068 static int scrub_simple_stripe(struct scrub_ctx *sctx, 2069 struct btrfs_block_group *bg, 2070 struct map_lookup *map, 2071 struct btrfs_device *device, 2072 int stripe_index) 2073 { 2074 const u64 logical_increment = simple_stripe_full_stripe_len(map); 2075 const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index); 2076 const u64 orig_physical = map->stripes[stripe_index].physical; 2077 const int mirror_num = simple_stripe_mirror_num(map, stripe_index); 2078 u64 cur_logical = orig_logical; 2079 u64 cur_physical = orig_physical; 2080 int ret = 0; 2081 2082 while (cur_logical < bg->start + bg->length) { 2083 /* 2084 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is 2085 * just RAID1, so we can reuse scrub_simple_mirror() to scrub 2086 * this stripe. 2087 */ 2088 ret = scrub_simple_mirror(sctx, bg, map, cur_logical, 2089 BTRFS_STRIPE_LEN, device, cur_physical, 2090 mirror_num); 2091 if (ret) 2092 return ret; 2093 /* Skip to next stripe which belongs to the target device */ 2094 cur_logical += logical_increment; 2095 /* For physical offset, we just go to next stripe */ 2096 cur_physical += BTRFS_STRIPE_LEN; 2097 } 2098 return ret; 2099 } 2100 2101 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 2102 struct btrfs_block_group *bg, 2103 struct extent_map *em, 2104 struct btrfs_device *scrub_dev, 2105 int stripe_index) 2106 { 2107 struct btrfs_fs_info *fs_info = sctx->fs_info; 2108 struct map_lookup *map = em->map_lookup; 2109 const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; 2110 const u64 chunk_logical = bg->start; 2111 int ret; 2112 int ret2; 2113 u64 physical = map->stripes[stripe_index].physical; 2114 const u64 dev_stripe_len = btrfs_calc_stripe_length(em); 2115 const u64 physical_end = physical + dev_stripe_len; 2116 u64 logical; 2117 u64 logic_end; 2118 /* The logical increment after finishing one stripe */ 2119 u64 increment; 2120 /* Offset inside the chunk */ 2121 u64 offset; 2122 u64 stripe_logical; 2123 int stop_loop = 0; 2124 2125 scrub_blocked_if_needed(fs_info); 2126 2127 if (sctx->is_dev_replace && 2128 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) { 2129 mutex_lock(&sctx->wr_lock); 2130 sctx->write_pointer = physical; 2131 mutex_unlock(&sctx->wr_lock); 2132 } 2133 2134 /* Prepare the extra data stripes used by RAID56. */ 2135 if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) { 2136 ASSERT(sctx->raid56_data_stripes == NULL); 2137 2138 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map), 2139 sizeof(struct scrub_stripe), 2140 GFP_KERNEL); 2141 if (!sctx->raid56_data_stripes) { 2142 ret = -ENOMEM; 2143 goto out; 2144 } 2145 for (int i = 0; i < nr_data_stripes(map); i++) { 2146 ret = init_scrub_stripe(fs_info, 2147 &sctx->raid56_data_stripes[i]); 2148 if (ret < 0) 2149 goto out; 2150 sctx->raid56_data_stripes[i].bg = bg; 2151 sctx->raid56_data_stripes[i].sctx = sctx; 2152 } 2153 } 2154 /* 2155 * There used to be a big double loop to handle all profiles using the 2156 * same routine, which grows larger and more gross over time. 2157 * 2158 * So here we handle each profile differently, so simpler profiles 2159 * have simpler scrubbing function. 2160 */ 2161 if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 | 2162 BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2163 /* 2164 * Above check rules out all complex profile, the remaining 2165 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple 2166 * mirrored duplication without stripe. 2167 * 2168 * Only @physical and @mirror_num needs to calculated using 2169 * @stripe_index. 2170 */ 2171 ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length, 2172 scrub_dev, map->stripes[stripe_index].physical, 2173 stripe_index + 1); 2174 offset = 0; 2175 goto out; 2176 } 2177 if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 2178 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index); 2179 offset = (stripe_index / map->sub_stripes) << BTRFS_STRIPE_LEN_SHIFT; 2180 goto out; 2181 } 2182 2183 /* Only RAID56 goes through the old code */ 2184 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK); 2185 ret = 0; 2186 2187 /* Calculate the logical end of the stripe */ 2188 get_raid56_logic_offset(physical_end, stripe_index, 2189 map, &logic_end, NULL); 2190 logic_end += chunk_logical; 2191 2192 /* Initialize @offset in case we need to go to out: label */ 2193 get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL); 2194 increment = nr_data_stripes(map) << BTRFS_STRIPE_LEN_SHIFT; 2195 2196 /* 2197 * Due to the rotation, for RAID56 it's better to iterate each stripe 2198 * using their physical offset. 2199 */ 2200 while (physical < physical_end) { 2201 ret = get_raid56_logic_offset(physical, stripe_index, map, 2202 &logical, &stripe_logical); 2203 logical += chunk_logical; 2204 if (ret) { 2205 /* it is parity strip */ 2206 stripe_logical += chunk_logical; 2207 ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg, 2208 map, stripe_logical); 2209 if (ret) 2210 goto out; 2211 goto next; 2212 } 2213 2214 /* 2215 * Now we're at a data stripe, scrub each extents in the range. 2216 * 2217 * At this stage, if we ignore the repair part, inside each data 2218 * stripe it is no different than SINGLE profile. 2219 * We can reuse scrub_simple_mirror() here, as the repair part 2220 * is still based on @mirror_num. 2221 */ 2222 ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN, 2223 scrub_dev, physical, 1); 2224 if (ret < 0) 2225 goto out; 2226 next: 2227 logical += increment; 2228 physical += BTRFS_STRIPE_LEN; 2229 spin_lock(&sctx->stat_lock); 2230 if (stop_loop) 2231 sctx->stat.last_physical = 2232 map->stripes[stripe_index].physical + dev_stripe_len; 2233 else 2234 sctx->stat.last_physical = physical; 2235 spin_unlock(&sctx->stat_lock); 2236 if (stop_loop) 2237 break; 2238 } 2239 out: 2240 ret2 = flush_scrub_stripes(sctx); 2241 if (!ret2) 2242 ret = ret2; 2243 if (sctx->raid56_data_stripes) { 2244 for (int i = 0; i < nr_data_stripes(map); i++) 2245 release_scrub_stripe(&sctx->raid56_data_stripes[i]); 2246 kfree(sctx->raid56_data_stripes); 2247 sctx->raid56_data_stripes = NULL; 2248 } 2249 2250 if (sctx->is_dev_replace && ret >= 0) { 2251 int ret2; 2252 2253 ret2 = sync_write_pointer_for_zoned(sctx, 2254 chunk_logical + offset, 2255 map->stripes[stripe_index].physical, 2256 physical_end); 2257 if (ret2) 2258 ret = ret2; 2259 } 2260 2261 return ret < 0 ? ret : 0; 2262 } 2263 2264 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 2265 struct btrfs_block_group *bg, 2266 struct btrfs_device *scrub_dev, 2267 u64 dev_offset, 2268 u64 dev_extent_len) 2269 { 2270 struct btrfs_fs_info *fs_info = sctx->fs_info; 2271 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 2272 struct map_lookup *map; 2273 struct extent_map *em; 2274 int i; 2275 int ret = 0; 2276 2277 read_lock(&map_tree->lock); 2278 em = lookup_extent_mapping(map_tree, bg->start, bg->length); 2279 read_unlock(&map_tree->lock); 2280 2281 if (!em) { 2282 /* 2283 * Might have been an unused block group deleted by the cleaner 2284 * kthread or relocation. 2285 */ 2286 spin_lock(&bg->lock); 2287 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) 2288 ret = -EINVAL; 2289 spin_unlock(&bg->lock); 2290 2291 return ret; 2292 } 2293 if (em->start != bg->start) 2294 goto out; 2295 if (em->len < dev_extent_len) 2296 goto out; 2297 2298 map = em->map_lookup; 2299 for (i = 0; i < map->num_stripes; ++i) { 2300 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 2301 map->stripes[i].physical == dev_offset) { 2302 ret = scrub_stripe(sctx, bg, em, scrub_dev, i); 2303 if (ret) 2304 goto out; 2305 } 2306 } 2307 out: 2308 free_extent_map(em); 2309 2310 return ret; 2311 } 2312 2313 static int finish_extent_writes_for_zoned(struct btrfs_root *root, 2314 struct btrfs_block_group *cache) 2315 { 2316 struct btrfs_fs_info *fs_info = cache->fs_info; 2317 struct btrfs_trans_handle *trans; 2318 2319 if (!btrfs_is_zoned(fs_info)) 2320 return 0; 2321 2322 btrfs_wait_block_group_reservations(cache); 2323 btrfs_wait_nocow_writers(cache); 2324 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length); 2325 2326 trans = btrfs_join_transaction(root); 2327 if (IS_ERR(trans)) 2328 return PTR_ERR(trans); 2329 return btrfs_commit_transaction(trans); 2330 } 2331 2332 static noinline_for_stack 2333 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 2334 struct btrfs_device *scrub_dev, u64 start, u64 end) 2335 { 2336 struct btrfs_dev_extent *dev_extent = NULL; 2337 struct btrfs_path *path; 2338 struct btrfs_fs_info *fs_info = sctx->fs_info; 2339 struct btrfs_root *root = fs_info->dev_root; 2340 u64 chunk_offset; 2341 int ret = 0; 2342 int ro_set; 2343 int slot; 2344 struct extent_buffer *l; 2345 struct btrfs_key key; 2346 struct btrfs_key found_key; 2347 struct btrfs_block_group *cache; 2348 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 2349 2350 path = btrfs_alloc_path(); 2351 if (!path) 2352 return -ENOMEM; 2353 2354 path->reada = READA_FORWARD; 2355 path->search_commit_root = 1; 2356 path->skip_locking = 1; 2357 2358 key.objectid = scrub_dev->devid; 2359 key.offset = 0ull; 2360 key.type = BTRFS_DEV_EXTENT_KEY; 2361 2362 while (1) { 2363 u64 dev_extent_len; 2364 2365 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2366 if (ret < 0) 2367 break; 2368 if (ret > 0) { 2369 if (path->slots[0] >= 2370 btrfs_header_nritems(path->nodes[0])) { 2371 ret = btrfs_next_leaf(root, path); 2372 if (ret < 0) 2373 break; 2374 if (ret > 0) { 2375 ret = 0; 2376 break; 2377 } 2378 } else { 2379 ret = 0; 2380 } 2381 } 2382 2383 l = path->nodes[0]; 2384 slot = path->slots[0]; 2385 2386 btrfs_item_key_to_cpu(l, &found_key, slot); 2387 2388 if (found_key.objectid != scrub_dev->devid) 2389 break; 2390 2391 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 2392 break; 2393 2394 if (found_key.offset >= end) 2395 break; 2396 2397 if (found_key.offset < key.offset) 2398 break; 2399 2400 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 2401 dev_extent_len = btrfs_dev_extent_length(l, dev_extent); 2402 2403 if (found_key.offset + dev_extent_len <= start) 2404 goto skip; 2405 2406 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 2407 2408 /* 2409 * get a reference on the corresponding block group to prevent 2410 * the chunk from going away while we scrub it 2411 */ 2412 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2413 2414 /* some chunks are removed but not committed to disk yet, 2415 * continue scrubbing */ 2416 if (!cache) 2417 goto skip; 2418 2419 ASSERT(cache->start <= chunk_offset); 2420 /* 2421 * We are using the commit root to search for device extents, so 2422 * that means we could have found a device extent item from a 2423 * block group that was deleted in the current transaction. The 2424 * logical start offset of the deleted block group, stored at 2425 * @chunk_offset, might be part of the logical address range of 2426 * a new block group (which uses different physical extents). 2427 * In this case btrfs_lookup_block_group() has returned the new 2428 * block group, and its start address is less than @chunk_offset. 2429 * 2430 * We skip such new block groups, because it's pointless to 2431 * process them, as we won't find their extents because we search 2432 * for them using the commit root of the extent tree. For a device 2433 * replace it's also fine to skip it, we won't miss copying them 2434 * to the target device because we have the write duplication 2435 * setup through the regular write path (by btrfs_map_block()), 2436 * and we have committed a transaction when we started the device 2437 * replace, right after setting up the device replace state. 2438 */ 2439 if (cache->start < chunk_offset) { 2440 btrfs_put_block_group(cache); 2441 goto skip; 2442 } 2443 2444 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) { 2445 if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) { 2446 btrfs_put_block_group(cache); 2447 goto skip; 2448 } 2449 } 2450 2451 /* 2452 * Make sure that while we are scrubbing the corresponding block 2453 * group doesn't get its logical address and its device extents 2454 * reused for another block group, which can possibly be of a 2455 * different type and different profile. We do this to prevent 2456 * false error detections and crashes due to bogus attempts to 2457 * repair extents. 2458 */ 2459 spin_lock(&cache->lock); 2460 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) { 2461 spin_unlock(&cache->lock); 2462 btrfs_put_block_group(cache); 2463 goto skip; 2464 } 2465 btrfs_freeze_block_group(cache); 2466 spin_unlock(&cache->lock); 2467 2468 /* 2469 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 2470 * to avoid deadlock caused by: 2471 * btrfs_inc_block_group_ro() 2472 * -> btrfs_wait_for_commit() 2473 * -> btrfs_commit_transaction() 2474 * -> btrfs_scrub_pause() 2475 */ 2476 scrub_pause_on(fs_info); 2477 2478 /* 2479 * Don't do chunk preallocation for scrub. 2480 * 2481 * This is especially important for SYSTEM bgs, or we can hit 2482 * -EFBIG from btrfs_finish_chunk_alloc() like: 2483 * 1. The only SYSTEM bg is marked RO. 2484 * Since SYSTEM bg is small, that's pretty common. 2485 * 2. New SYSTEM bg will be allocated 2486 * Due to regular version will allocate new chunk. 2487 * 3. New SYSTEM bg is empty and will get cleaned up 2488 * Before cleanup really happens, it's marked RO again. 2489 * 4. Empty SYSTEM bg get scrubbed 2490 * We go back to 2. 2491 * 2492 * This can easily boost the amount of SYSTEM chunks if cleaner 2493 * thread can't be triggered fast enough, and use up all space 2494 * of btrfs_super_block::sys_chunk_array 2495 * 2496 * While for dev replace, we need to try our best to mark block 2497 * group RO, to prevent race between: 2498 * - Write duplication 2499 * Contains latest data 2500 * - Scrub copy 2501 * Contains data from commit tree 2502 * 2503 * If target block group is not marked RO, nocow writes can 2504 * be overwritten by scrub copy, causing data corruption. 2505 * So for dev-replace, it's not allowed to continue if a block 2506 * group is not RO. 2507 */ 2508 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); 2509 if (!ret && sctx->is_dev_replace) { 2510 ret = finish_extent_writes_for_zoned(root, cache); 2511 if (ret) { 2512 btrfs_dec_block_group_ro(cache); 2513 scrub_pause_off(fs_info); 2514 btrfs_put_block_group(cache); 2515 break; 2516 } 2517 } 2518 2519 if (ret == 0) { 2520 ro_set = 1; 2521 } else if (ret == -ENOSPC && !sctx->is_dev_replace) { 2522 /* 2523 * btrfs_inc_block_group_ro return -ENOSPC when it 2524 * failed in creating new chunk for metadata. 2525 * It is not a problem for scrub, because 2526 * metadata are always cowed, and our scrub paused 2527 * commit_transactions. 2528 */ 2529 ro_set = 0; 2530 } else if (ret == -ETXTBSY) { 2531 btrfs_warn(fs_info, 2532 "skipping scrub of block group %llu due to active swapfile", 2533 cache->start); 2534 scrub_pause_off(fs_info); 2535 ret = 0; 2536 goto skip_unfreeze; 2537 } else { 2538 btrfs_warn(fs_info, 2539 "failed setting block group ro: %d", ret); 2540 btrfs_unfreeze_block_group(cache); 2541 btrfs_put_block_group(cache); 2542 scrub_pause_off(fs_info); 2543 break; 2544 } 2545 2546 /* 2547 * Now the target block is marked RO, wait for nocow writes to 2548 * finish before dev-replace. 2549 * COW is fine, as COW never overwrites extents in commit tree. 2550 */ 2551 if (sctx->is_dev_replace) { 2552 btrfs_wait_nocow_writers(cache); 2553 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, 2554 cache->length); 2555 } 2556 2557 scrub_pause_off(fs_info); 2558 down_write(&dev_replace->rwsem); 2559 dev_replace->cursor_right = found_key.offset + dev_extent_len; 2560 dev_replace->cursor_left = found_key.offset; 2561 dev_replace->item_needs_writeback = 1; 2562 up_write(&dev_replace->rwsem); 2563 2564 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset, 2565 dev_extent_len); 2566 if (sctx->is_dev_replace && 2567 !btrfs_finish_block_group_to_copy(dev_replace->srcdev, 2568 cache, found_key.offset)) 2569 ro_set = 0; 2570 2571 down_write(&dev_replace->rwsem); 2572 dev_replace->cursor_left = dev_replace->cursor_right; 2573 dev_replace->item_needs_writeback = 1; 2574 up_write(&dev_replace->rwsem); 2575 2576 if (ro_set) 2577 btrfs_dec_block_group_ro(cache); 2578 2579 /* 2580 * We might have prevented the cleaner kthread from deleting 2581 * this block group if it was already unused because we raced 2582 * and set it to RO mode first. So add it back to the unused 2583 * list, otherwise it might not ever be deleted unless a manual 2584 * balance is triggered or it becomes used and unused again. 2585 */ 2586 spin_lock(&cache->lock); 2587 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) && 2588 !cache->ro && cache->reserved == 0 && cache->used == 0) { 2589 spin_unlock(&cache->lock); 2590 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) 2591 btrfs_discard_queue_work(&fs_info->discard_ctl, 2592 cache); 2593 else 2594 btrfs_mark_bg_unused(cache); 2595 } else { 2596 spin_unlock(&cache->lock); 2597 } 2598 skip_unfreeze: 2599 btrfs_unfreeze_block_group(cache); 2600 btrfs_put_block_group(cache); 2601 if (ret) 2602 break; 2603 if (sctx->is_dev_replace && 2604 atomic64_read(&dev_replace->num_write_errors) > 0) { 2605 ret = -EIO; 2606 break; 2607 } 2608 if (sctx->stat.malloc_errors > 0) { 2609 ret = -ENOMEM; 2610 break; 2611 } 2612 skip: 2613 key.offset = found_key.offset + dev_extent_len; 2614 btrfs_release_path(path); 2615 } 2616 2617 btrfs_free_path(path); 2618 2619 return ret; 2620 } 2621 2622 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev, 2623 struct page *page, u64 physical, u64 generation) 2624 { 2625 struct btrfs_fs_info *fs_info = sctx->fs_info; 2626 struct bio_vec bvec; 2627 struct bio bio; 2628 struct btrfs_super_block *sb = page_address(page); 2629 int ret; 2630 2631 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ); 2632 bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT; 2633 __bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0); 2634 ret = submit_bio_wait(&bio); 2635 bio_uninit(&bio); 2636 2637 if (ret < 0) 2638 return ret; 2639 ret = btrfs_check_super_csum(fs_info, sb); 2640 if (ret != 0) { 2641 btrfs_err_rl(fs_info, 2642 "super block at physical %llu devid %llu has bad csum", 2643 physical, dev->devid); 2644 return -EIO; 2645 } 2646 if (btrfs_super_generation(sb) != generation) { 2647 btrfs_err_rl(fs_info, 2648 "super block at physical %llu devid %llu has bad generation %llu expect %llu", 2649 physical, dev->devid, 2650 btrfs_super_generation(sb), generation); 2651 return -EUCLEAN; 2652 } 2653 2654 return btrfs_validate_super(fs_info, sb, -1); 2655 } 2656 2657 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 2658 struct btrfs_device *scrub_dev) 2659 { 2660 int i; 2661 u64 bytenr; 2662 u64 gen; 2663 int ret = 0; 2664 struct page *page; 2665 struct btrfs_fs_info *fs_info = sctx->fs_info; 2666 2667 if (BTRFS_FS_ERROR(fs_info)) 2668 return -EROFS; 2669 2670 page = alloc_page(GFP_KERNEL); 2671 if (!page) { 2672 spin_lock(&sctx->stat_lock); 2673 sctx->stat.malloc_errors++; 2674 spin_unlock(&sctx->stat_lock); 2675 return -ENOMEM; 2676 } 2677 2678 /* Seed devices of a new filesystem has their own generation. */ 2679 if (scrub_dev->fs_devices != fs_info->fs_devices) 2680 gen = scrub_dev->generation; 2681 else 2682 gen = fs_info->last_trans_committed; 2683 2684 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2685 bytenr = btrfs_sb_offset(i); 2686 if (bytenr + BTRFS_SUPER_INFO_SIZE > 2687 scrub_dev->commit_total_bytes) 2688 break; 2689 if (!btrfs_check_super_location(scrub_dev, bytenr)) 2690 continue; 2691 2692 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen); 2693 if (ret) { 2694 spin_lock(&sctx->stat_lock); 2695 sctx->stat.super_errors++; 2696 spin_unlock(&sctx->stat_lock); 2697 } 2698 } 2699 __free_page(page); 2700 return 0; 2701 } 2702 2703 static void scrub_workers_put(struct btrfs_fs_info *fs_info) 2704 { 2705 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, 2706 &fs_info->scrub_lock)) { 2707 struct workqueue_struct *scrub_workers = fs_info->scrub_workers; 2708 struct workqueue_struct *scrub_wr_comp = 2709 fs_info->scrub_wr_completion_workers; 2710 2711 fs_info->scrub_workers = NULL; 2712 fs_info->scrub_wr_completion_workers = NULL; 2713 mutex_unlock(&fs_info->scrub_lock); 2714 2715 if (scrub_workers) 2716 destroy_workqueue(scrub_workers); 2717 if (scrub_wr_comp) 2718 destroy_workqueue(scrub_wr_comp); 2719 } 2720 } 2721 2722 /* 2723 * get a reference count on fs_info->scrub_workers. start worker if necessary 2724 */ 2725 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 2726 int is_dev_replace) 2727 { 2728 struct workqueue_struct *scrub_workers = NULL; 2729 struct workqueue_struct *scrub_wr_comp = NULL; 2730 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 2731 int max_active = fs_info->thread_pool_size; 2732 int ret = -ENOMEM; 2733 2734 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) 2735 return 0; 2736 2737 scrub_workers = alloc_workqueue("btrfs-scrub", flags, 2738 is_dev_replace ? 1 : max_active); 2739 if (!scrub_workers) 2740 goto fail_scrub_workers; 2741 2742 scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active); 2743 if (!scrub_wr_comp) 2744 goto fail_scrub_wr_completion_workers; 2745 2746 mutex_lock(&fs_info->scrub_lock); 2747 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { 2748 ASSERT(fs_info->scrub_workers == NULL && 2749 fs_info->scrub_wr_completion_workers == NULL); 2750 fs_info->scrub_workers = scrub_workers; 2751 fs_info->scrub_wr_completion_workers = scrub_wr_comp; 2752 refcount_set(&fs_info->scrub_workers_refcnt, 1); 2753 mutex_unlock(&fs_info->scrub_lock); 2754 return 0; 2755 } 2756 /* Other thread raced in and created the workers for us */ 2757 refcount_inc(&fs_info->scrub_workers_refcnt); 2758 mutex_unlock(&fs_info->scrub_lock); 2759 2760 ret = 0; 2761 2762 destroy_workqueue(scrub_wr_comp); 2763 fail_scrub_wr_completion_workers: 2764 destroy_workqueue(scrub_workers); 2765 fail_scrub_workers: 2766 return ret; 2767 } 2768 2769 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 2770 u64 end, struct btrfs_scrub_progress *progress, 2771 int readonly, int is_dev_replace) 2772 { 2773 struct btrfs_dev_lookup_args args = { .devid = devid }; 2774 struct scrub_ctx *sctx; 2775 int ret; 2776 struct btrfs_device *dev; 2777 unsigned int nofs_flag; 2778 bool need_commit = false; 2779 2780 if (btrfs_fs_closing(fs_info)) 2781 return -EAGAIN; 2782 2783 /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */ 2784 ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN); 2785 2786 /* 2787 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible 2788 * value (max nodesize / min sectorsize), thus nodesize should always 2789 * be fine. 2790 */ 2791 ASSERT(fs_info->nodesize <= 2792 SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits); 2793 2794 /* Allocate outside of device_list_mutex */ 2795 sctx = scrub_setup_ctx(fs_info, is_dev_replace); 2796 if (IS_ERR(sctx)) 2797 return PTR_ERR(sctx); 2798 2799 ret = scrub_workers_get(fs_info, is_dev_replace); 2800 if (ret) 2801 goto out_free_ctx; 2802 2803 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2804 dev = btrfs_find_device(fs_info->fs_devices, &args); 2805 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 2806 !is_dev_replace)) { 2807 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2808 ret = -ENODEV; 2809 goto out; 2810 } 2811 2812 if (!is_dev_replace && !readonly && 2813 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2814 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2815 btrfs_err_in_rcu(fs_info, 2816 "scrub on devid %llu: filesystem on %s is not writable", 2817 devid, btrfs_dev_name(dev)); 2818 ret = -EROFS; 2819 goto out; 2820 } 2821 2822 mutex_lock(&fs_info->scrub_lock); 2823 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 2824 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { 2825 mutex_unlock(&fs_info->scrub_lock); 2826 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2827 ret = -EIO; 2828 goto out; 2829 } 2830 2831 down_read(&fs_info->dev_replace.rwsem); 2832 if (dev->scrub_ctx || 2833 (!is_dev_replace && 2834 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 2835 up_read(&fs_info->dev_replace.rwsem); 2836 mutex_unlock(&fs_info->scrub_lock); 2837 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2838 ret = -EINPROGRESS; 2839 goto out; 2840 } 2841 up_read(&fs_info->dev_replace.rwsem); 2842 2843 sctx->readonly = readonly; 2844 dev->scrub_ctx = sctx; 2845 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2846 2847 /* 2848 * checking @scrub_pause_req here, we can avoid 2849 * race between committing transaction and scrubbing. 2850 */ 2851 __scrub_blocked_if_needed(fs_info); 2852 atomic_inc(&fs_info->scrubs_running); 2853 mutex_unlock(&fs_info->scrub_lock); 2854 2855 /* 2856 * In order to avoid deadlock with reclaim when there is a transaction 2857 * trying to pause scrub, make sure we use GFP_NOFS for all the 2858 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity() 2859 * invoked by our callees. The pausing request is done when the 2860 * transaction commit starts, and it blocks the transaction until scrub 2861 * is paused (done at specific points at scrub_stripe() or right above 2862 * before incrementing fs_info->scrubs_running). 2863 */ 2864 nofs_flag = memalloc_nofs_save(); 2865 if (!is_dev_replace) { 2866 u64 old_super_errors; 2867 2868 spin_lock(&sctx->stat_lock); 2869 old_super_errors = sctx->stat.super_errors; 2870 spin_unlock(&sctx->stat_lock); 2871 2872 btrfs_info(fs_info, "scrub: started on devid %llu", devid); 2873 /* 2874 * by holding device list mutex, we can 2875 * kick off writing super in log tree sync. 2876 */ 2877 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2878 ret = scrub_supers(sctx, dev); 2879 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2880 2881 spin_lock(&sctx->stat_lock); 2882 /* 2883 * Super block errors found, but we can not commit transaction 2884 * at current context, since btrfs_commit_transaction() needs 2885 * to pause the current running scrub (hold by ourselves). 2886 */ 2887 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly) 2888 need_commit = true; 2889 spin_unlock(&sctx->stat_lock); 2890 } 2891 2892 if (!ret) 2893 ret = scrub_enumerate_chunks(sctx, dev, start, end); 2894 memalloc_nofs_restore(nofs_flag); 2895 2896 atomic_dec(&fs_info->scrubs_running); 2897 wake_up(&fs_info->scrub_pause_wait); 2898 2899 if (progress) 2900 memcpy(progress, &sctx->stat, sizeof(*progress)); 2901 2902 if (!is_dev_replace) 2903 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", 2904 ret ? "not finished" : "finished", devid, ret); 2905 2906 mutex_lock(&fs_info->scrub_lock); 2907 dev->scrub_ctx = NULL; 2908 mutex_unlock(&fs_info->scrub_lock); 2909 2910 scrub_workers_put(fs_info); 2911 scrub_put_ctx(sctx); 2912 2913 /* 2914 * We found some super block errors before, now try to force a 2915 * transaction commit, as scrub has finished. 2916 */ 2917 if (need_commit) { 2918 struct btrfs_trans_handle *trans; 2919 2920 trans = btrfs_start_transaction(fs_info->tree_root, 0); 2921 if (IS_ERR(trans)) { 2922 ret = PTR_ERR(trans); 2923 btrfs_err(fs_info, 2924 "scrub: failed to start transaction to fix super block errors: %d", ret); 2925 return ret; 2926 } 2927 ret = btrfs_commit_transaction(trans); 2928 if (ret < 0) 2929 btrfs_err(fs_info, 2930 "scrub: failed to commit transaction to fix super block errors: %d", ret); 2931 } 2932 return ret; 2933 out: 2934 scrub_workers_put(fs_info); 2935 out_free_ctx: 2936 scrub_free_ctx(sctx); 2937 2938 return ret; 2939 } 2940 2941 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 2942 { 2943 mutex_lock(&fs_info->scrub_lock); 2944 atomic_inc(&fs_info->scrub_pause_req); 2945 while (atomic_read(&fs_info->scrubs_paused) != 2946 atomic_read(&fs_info->scrubs_running)) { 2947 mutex_unlock(&fs_info->scrub_lock); 2948 wait_event(fs_info->scrub_pause_wait, 2949 atomic_read(&fs_info->scrubs_paused) == 2950 atomic_read(&fs_info->scrubs_running)); 2951 mutex_lock(&fs_info->scrub_lock); 2952 } 2953 mutex_unlock(&fs_info->scrub_lock); 2954 } 2955 2956 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 2957 { 2958 atomic_dec(&fs_info->scrub_pause_req); 2959 wake_up(&fs_info->scrub_pause_wait); 2960 } 2961 2962 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 2963 { 2964 mutex_lock(&fs_info->scrub_lock); 2965 if (!atomic_read(&fs_info->scrubs_running)) { 2966 mutex_unlock(&fs_info->scrub_lock); 2967 return -ENOTCONN; 2968 } 2969 2970 atomic_inc(&fs_info->scrub_cancel_req); 2971 while (atomic_read(&fs_info->scrubs_running)) { 2972 mutex_unlock(&fs_info->scrub_lock); 2973 wait_event(fs_info->scrub_pause_wait, 2974 atomic_read(&fs_info->scrubs_running) == 0); 2975 mutex_lock(&fs_info->scrub_lock); 2976 } 2977 atomic_dec(&fs_info->scrub_cancel_req); 2978 mutex_unlock(&fs_info->scrub_lock); 2979 2980 return 0; 2981 } 2982 2983 int btrfs_scrub_cancel_dev(struct btrfs_device *dev) 2984 { 2985 struct btrfs_fs_info *fs_info = dev->fs_info; 2986 struct scrub_ctx *sctx; 2987 2988 mutex_lock(&fs_info->scrub_lock); 2989 sctx = dev->scrub_ctx; 2990 if (!sctx) { 2991 mutex_unlock(&fs_info->scrub_lock); 2992 return -ENOTCONN; 2993 } 2994 atomic_inc(&sctx->cancel_req); 2995 while (dev->scrub_ctx) { 2996 mutex_unlock(&fs_info->scrub_lock); 2997 wait_event(fs_info->scrub_pause_wait, 2998 dev->scrub_ctx == NULL); 2999 mutex_lock(&fs_info->scrub_lock); 3000 } 3001 mutex_unlock(&fs_info->scrub_lock); 3002 3003 return 0; 3004 } 3005 3006 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3007 struct btrfs_scrub_progress *progress) 3008 { 3009 struct btrfs_dev_lookup_args args = { .devid = devid }; 3010 struct btrfs_device *dev; 3011 struct scrub_ctx *sctx = NULL; 3012 3013 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3014 dev = btrfs_find_device(fs_info->fs_devices, &args); 3015 if (dev) 3016 sctx = dev->scrub_ctx; 3017 if (sctx) 3018 memcpy(progress, &sctx->stat, sizeof(*progress)); 3019 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3020 3021 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 3022 } 3023