1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/ratelimit.h> 8 #include <linux/sched/mm.h> 9 #include <crypto/hash.h> 10 #include "ctree.h" 11 #include "discard.h" 12 #include "volumes.h" 13 #include "disk-io.h" 14 #include "ordered-data.h" 15 #include "transaction.h" 16 #include "backref.h" 17 #include "extent_io.h" 18 #include "dev-replace.h" 19 #include "raid56.h" 20 #include "block-group.h" 21 #include "zoned.h" 22 #include "fs.h" 23 #include "accessors.h" 24 #include "file-item.h" 25 #include "scrub.h" 26 #include "raid-stripe-tree.h" 27 28 /* 29 * This is only the first step towards a full-features scrub. It reads all 30 * extent and super block and verifies the checksums. In case a bad checksum 31 * is found or the extent cannot be read, good data will be written back if 32 * any can be found. 33 * 34 * Future enhancements: 35 * - In case an unrepairable extent is encountered, track which files are 36 * affected and report them 37 * - track and record media errors, throw out bad devices 38 * - add a mode to also read unallocated space 39 */ 40 41 struct scrub_ctx; 42 43 /* 44 * The following value only influences the performance. 45 * 46 * This determines how many stripes would be submitted in one go, 47 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP). 48 */ 49 #define SCRUB_STRIPES_PER_GROUP 8 50 51 /* 52 * How many groups we have for each sctx. 53 * 54 * This would be 8M per device, the same value as the old scrub in-flight bios 55 * size limit. 56 */ 57 #define SCRUB_GROUPS_PER_SCTX 16 58 59 #define SCRUB_TOTAL_STRIPES (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP) 60 61 /* 62 * The following value times PAGE_SIZE needs to be large enough to match the 63 * largest node/leaf/sector size that shall be supported. 64 */ 65 #define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K) 66 67 /* Represent one sector and its needed info to verify the content. */ 68 struct scrub_sector_verification { 69 union { 70 /* 71 * Csum pointer for data csum verification. Should point to a 72 * sector csum inside scrub_stripe::csums. 73 * 74 * NULL if this data sector has no csum. 75 */ 76 u8 *csum; 77 78 /* 79 * Extra info for metadata verification. All sectors inside a 80 * tree block share the same generation. 81 */ 82 u64 generation; 83 }; 84 }; 85 86 enum scrub_stripe_flags { 87 /* Set when @mirror_num, @dev, @physical and @logical are set. */ 88 SCRUB_STRIPE_FLAG_INITIALIZED, 89 90 /* Set when the read-repair is finished. */ 91 SCRUB_STRIPE_FLAG_REPAIR_DONE, 92 93 /* 94 * Set for data stripes if it's triggered from P/Q stripe. 95 * During such scrub, we should not report errors in data stripes, nor 96 * update the accounting. 97 */ 98 SCRUB_STRIPE_FLAG_NO_REPORT, 99 }; 100 101 /* 102 * We have multiple bitmaps for one scrub_stripe. 103 * However each bitmap has at most (BTRFS_STRIPE_LEN / blocksize) bits, 104 * which is normally 16, and much smaller than BITS_PER_LONG (32 or 64). 105 * 106 * So to reduce memory usage for each scrub_stripe, we pack those bitmaps 107 * into a larger one. 108 * 109 * These enum records where the sub-bitmap are inside the larger one. 110 * Each subbitmap starts at scrub_bitmap_nr_##name * nr_sectors bit. 111 */ 112 enum { 113 /* Which blocks are covered by extent items. */ 114 scrub_bitmap_nr_has_extent = 0, 115 116 /* Which blocks are meteadata. */ 117 scrub_bitmap_nr_is_metadata, 118 119 /* 120 * Which blocks have errors, including IO, csum, and metadata 121 * errors. 122 * This sub-bitmap is the OR results of the next few error related 123 * sub-bitmaps. 124 */ 125 scrub_bitmap_nr_error, 126 scrub_bitmap_nr_io_error, 127 scrub_bitmap_nr_csum_error, 128 scrub_bitmap_nr_meta_error, 129 scrub_bitmap_nr_meta_gen_error, 130 scrub_bitmap_nr_last, 131 }; 132 133 #define SCRUB_STRIPE_PAGES (BTRFS_STRIPE_LEN / PAGE_SIZE) 134 135 /* 136 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN. 137 */ 138 struct scrub_stripe { 139 struct scrub_ctx *sctx; 140 struct btrfs_block_group *bg; 141 142 struct page *pages[SCRUB_STRIPE_PAGES]; 143 struct scrub_sector_verification *sectors; 144 145 struct btrfs_device *dev; 146 u64 logical; 147 u64 physical; 148 149 u16 mirror_num; 150 151 /* Should be BTRFS_STRIPE_LEN / sectorsize. */ 152 u16 nr_sectors; 153 154 /* 155 * How many data/meta extents are in this stripe. Only for scrub status 156 * reporting purposes. 157 */ 158 u16 nr_data_extents; 159 u16 nr_meta_extents; 160 161 atomic_t pending_io; 162 wait_queue_head_t io_wait; 163 wait_queue_head_t repair_wait; 164 165 /* 166 * Indicate the states of the stripe. Bits are defined in 167 * scrub_stripe_flags enum. 168 */ 169 unsigned long state; 170 171 /* The large bitmap contains all the sub-bitmaps. */ 172 unsigned long bitmaps[BITS_TO_LONGS(scrub_bitmap_nr_last * 173 (BTRFS_STRIPE_LEN / BTRFS_MIN_BLOCKSIZE))]; 174 175 /* 176 * For writeback (repair or replace) error reporting. 177 * This one is protected by a spinlock, thus can not be packed into 178 * the larger bitmap. 179 */ 180 unsigned long write_error_bitmap; 181 182 /* Writeback can be concurrent, thus we need to protect the bitmap. */ 183 spinlock_t write_error_lock; 184 185 /* 186 * Checksum for the whole stripe if this stripe is inside a data block 187 * group. 188 */ 189 u8 *csums; 190 191 struct work_struct work; 192 }; 193 194 struct scrub_ctx { 195 struct scrub_stripe stripes[SCRUB_TOTAL_STRIPES]; 196 struct scrub_stripe *raid56_data_stripes; 197 struct btrfs_fs_info *fs_info; 198 struct btrfs_path extent_path; 199 struct btrfs_path csum_path; 200 int first_free; 201 int cur_stripe; 202 atomic_t cancel_req; 203 int readonly; 204 205 /* State of IO submission throttling affecting the associated device */ 206 ktime_t throttle_deadline; 207 u64 throttle_sent; 208 209 int is_dev_replace; 210 u64 write_pointer; 211 212 struct mutex wr_lock; 213 struct btrfs_device *wr_tgtdev; 214 215 /* 216 * statistics 217 */ 218 struct btrfs_scrub_progress stat; 219 spinlock_t stat_lock; 220 221 /* 222 * Use a ref counter to avoid use-after-free issues. Scrub workers 223 * decrement bios_in_flight and workers_pending and then do a wakeup 224 * on the list_wait wait queue. We must ensure the main scrub task 225 * doesn't free the scrub context before or while the workers are 226 * doing the wakeup() call. 227 */ 228 refcount_t refs; 229 }; 230 231 #define scrub_calc_start_bit(stripe, name, block_nr) \ 232 ({ \ 233 unsigned int __start_bit; \ 234 \ 235 ASSERT(block_nr < stripe->nr_sectors, \ 236 "nr_sectors=%u block_nr=%u", stripe->nr_sectors, block_nr); \ 237 __start_bit = scrub_bitmap_nr_##name * stripe->nr_sectors + block_nr; \ 238 __start_bit; \ 239 }) 240 241 #define IMPLEMENT_SCRUB_BITMAP_OPS(name) \ 242 static inline void scrub_bitmap_set_##name(struct scrub_stripe *stripe, \ 243 unsigned int block_nr, \ 244 unsigned int nr_blocks) \ 245 { \ 246 const unsigned int start_bit = scrub_calc_start_bit(stripe, \ 247 name, block_nr); \ 248 \ 249 bitmap_set(stripe->bitmaps, start_bit, nr_blocks); \ 250 } \ 251 static inline void scrub_bitmap_clear_##name(struct scrub_stripe *stripe, \ 252 unsigned int block_nr, \ 253 unsigned int nr_blocks) \ 254 { \ 255 const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \ 256 block_nr); \ 257 \ 258 bitmap_clear(stripe->bitmaps, start_bit, nr_blocks); \ 259 } \ 260 static inline bool scrub_bitmap_test_bit_##name(struct scrub_stripe *stripe, \ 261 unsigned int block_nr) \ 262 { \ 263 const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \ 264 block_nr); \ 265 \ 266 return test_bit(start_bit, stripe->bitmaps); \ 267 } \ 268 static inline void scrub_bitmap_set_bit_##name(struct scrub_stripe *stripe, \ 269 unsigned int block_nr) \ 270 { \ 271 const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \ 272 block_nr); \ 273 \ 274 set_bit(start_bit, stripe->bitmaps); \ 275 } \ 276 static inline void scrub_bitmap_clear_bit_##name(struct scrub_stripe *stripe, \ 277 unsigned int block_nr) \ 278 { \ 279 const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \ 280 block_nr); \ 281 \ 282 clear_bit(start_bit, stripe->bitmaps); \ 283 } \ 284 static inline unsigned long scrub_bitmap_read_##name(struct scrub_stripe *stripe) \ 285 { \ 286 const unsigned int nr_blocks = stripe->nr_sectors; \ 287 \ 288 ASSERT(nr_blocks > 0 && nr_blocks <= BITS_PER_LONG, \ 289 "nr_blocks=%u BITS_PER_LONG=%u", \ 290 nr_blocks, BITS_PER_LONG); \ 291 \ 292 return bitmap_read(stripe->bitmaps, nr_blocks * scrub_bitmap_nr_##name, \ 293 stripe->nr_sectors); \ 294 } \ 295 static inline bool scrub_bitmap_empty_##name(struct scrub_stripe *stripe) \ 296 { \ 297 unsigned long bitmap = scrub_bitmap_read_##name(stripe); \ 298 \ 299 return bitmap_empty(&bitmap, stripe->nr_sectors); \ 300 } \ 301 static inline unsigned int scrub_bitmap_weight_##name(struct scrub_stripe *stripe) \ 302 { \ 303 unsigned long bitmap = scrub_bitmap_read_##name(stripe); \ 304 \ 305 return bitmap_weight(&bitmap, stripe->nr_sectors); \ 306 } 307 IMPLEMENT_SCRUB_BITMAP_OPS(has_extent); 308 IMPLEMENT_SCRUB_BITMAP_OPS(is_metadata); 309 IMPLEMENT_SCRUB_BITMAP_OPS(error); 310 IMPLEMENT_SCRUB_BITMAP_OPS(io_error); 311 IMPLEMENT_SCRUB_BITMAP_OPS(csum_error); 312 IMPLEMENT_SCRUB_BITMAP_OPS(meta_error); 313 IMPLEMENT_SCRUB_BITMAP_OPS(meta_gen_error); 314 315 struct scrub_warning { 316 struct btrfs_path *path; 317 u64 extent_item_size; 318 const char *errstr; 319 u64 physical; 320 u64 logical; 321 struct btrfs_device *dev; 322 }; 323 324 struct scrub_error_records { 325 /* 326 * Bitmap recording which blocks hit errors (IO/csum/...) during the 327 * initial read. 328 */ 329 unsigned long init_error_bitmap; 330 331 unsigned int nr_io_errors; 332 unsigned int nr_csum_errors; 333 unsigned int nr_meta_errors; 334 unsigned int nr_meta_gen_errors; 335 }; 336 337 static void release_scrub_stripe(struct scrub_stripe *stripe) 338 { 339 if (!stripe) 340 return; 341 342 for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) { 343 if (stripe->pages[i]) 344 __free_page(stripe->pages[i]); 345 stripe->pages[i] = NULL; 346 } 347 kfree(stripe->sectors); 348 kfree(stripe->csums); 349 stripe->sectors = NULL; 350 stripe->csums = NULL; 351 stripe->sctx = NULL; 352 stripe->state = 0; 353 } 354 355 static int init_scrub_stripe(struct btrfs_fs_info *fs_info, 356 struct scrub_stripe *stripe) 357 { 358 int ret; 359 360 memset(stripe, 0, sizeof(*stripe)); 361 362 stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; 363 stripe->state = 0; 364 365 init_waitqueue_head(&stripe->io_wait); 366 init_waitqueue_head(&stripe->repair_wait); 367 atomic_set(&stripe->pending_io, 0); 368 spin_lock_init(&stripe->write_error_lock); 369 370 ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, false); 371 if (ret < 0) 372 goto error; 373 374 stripe->sectors = kcalloc(stripe->nr_sectors, 375 sizeof(struct scrub_sector_verification), 376 GFP_KERNEL); 377 if (!stripe->sectors) 378 goto error; 379 380 stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits, 381 fs_info->csum_size, GFP_KERNEL); 382 if (!stripe->csums) 383 goto error; 384 return 0; 385 error: 386 release_scrub_stripe(stripe); 387 return -ENOMEM; 388 } 389 390 static void wait_scrub_stripe_io(struct scrub_stripe *stripe) 391 { 392 wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0); 393 } 394 395 static void scrub_put_ctx(struct scrub_ctx *sctx); 396 397 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 398 { 399 while (atomic_read(&fs_info->scrub_pause_req)) { 400 mutex_unlock(&fs_info->scrub_lock); 401 wait_event(fs_info->scrub_pause_wait, 402 atomic_read(&fs_info->scrub_pause_req) == 0); 403 mutex_lock(&fs_info->scrub_lock); 404 } 405 } 406 407 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 408 { 409 atomic_inc(&fs_info->scrubs_paused); 410 wake_up(&fs_info->scrub_pause_wait); 411 } 412 413 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 414 { 415 mutex_lock(&fs_info->scrub_lock); 416 __scrub_blocked_if_needed(fs_info); 417 atomic_dec(&fs_info->scrubs_paused); 418 mutex_unlock(&fs_info->scrub_lock); 419 420 wake_up(&fs_info->scrub_pause_wait); 421 } 422 423 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 424 { 425 scrub_pause_on(fs_info); 426 scrub_pause_off(fs_info); 427 } 428 429 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 430 { 431 int i; 432 433 if (!sctx) 434 return; 435 436 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) 437 release_scrub_stripe(&sctx->stripes[i]); 438 439 kvfree(sctx); 440 } 441 442 static void scrub_put_ctx(struct scrub_ctx *sctx) 443 { 444 if (refcount_dec_and_test(&sctx->refs)) 445 scrub_free_ctx(sctx); 446 } 447 448 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( 449 struct btrfs_fs_info *fs_info, int is_dev_replace) 450 { 451 struct scrub_ctx *sctx; 452 int i; 453 454 /* Since sctx has inline 128 stripes, it can go beyond 64K easily. Use 455 * kvzalloc(). 456 */ 457 sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL); 458 if (!sctx) 459 goto nomem; 460 refcount_set(&sctx->refs, 1); 461 sctx->is_dev_replace = is_dev_replace; 462 sctx->fs_info = fs_info; 463 sctx->extent_path.search_commit_root = 1; 464 sctx->extent_path.skip_locking = 1; 465 sctx->csum_path.search_commit_root = 1; 466 sctx->csum_path.skip_locking = 1; 467 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) { 468 int ret; 469 470 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]); 471 if (ret < 0) 472 goto nomem; 473 sctx->stripes[i].sctx = sctx; 474 } 475 sctx->first_free = 0; 476 atomic_set(&sctx->cancel_req, 0); 477 478 spin_lock_init(&sctx->stat_lock); 479 sctx->throttle_deadline = 0; 480 481 mutex_init(&sctx->wr_lock); 482 if (is_dev_replace) { 483 WARN_ON(!fs_info->dev_replace.tgtdev); 484 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 485 } 486 487 return sctx; 488 489 nomem: 490 scrub_free_ctx(sctx); 491 return ERR_PTR(-ENOMEM); 492 } 493 494 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 495 u64 root, void *warn_ctx) 496 { 497 u32 nlink; 498 int ret; 499 int i; 500 unsigned nofs_flag; 501 struct extent_buffer *eb; 502 struct btrfs_inode_item *inode_item; 503 struct scrub_warning *swarn = warn_ctx; 504 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 505 struct inode_fs_paths *ipath = NULL; 506 struct btrfs_root *local_root; 507 struct btrfs_key key; 508 509 local_root = btrfs_get_fs_root(fs_info, root, true); 510 if (IS_ERR(local_root)) { 511 ret = PTR_ERR(local_root); 512 goto err; 513 } 514 515 /* 516 * this makes the path point to (inum INODE_ITEM ioff) 517 */ 518 key.objectid = inum; 519 key.type = BTRFS_INODE_ITEM_KEY; 520 key.offset = 0; 521 522 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 523 if (ret) { 524 btrfs_put_root(local_root); 525 btrfs_release_path(swarn->path); 526 goto err; 527 } 528 529 eb = swarn->path->nodes[0]; 530 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 531 struct btrfs_inode_item); 532 nlink = btrfs_inode_nlink(eb, inode_item); 533 btrfs_release_path(swarn->path); 534 535 /* 536 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 537 * uses GFP_NOFS in this context, so we keep it consistent but it does 538 * not seem to be strictly necessary. 539 */ 540 nofs_flag = memalloc_nofs_save(); 541 ipath = init_ipath(4096, local_root, swarn->path); 542 memalloc_nofs_restore(nofs_flag); 543 if (IS_ERR(ipath)) { 544 btrfs_put_root(local_root); 545 ret = PTR_ERR(ipath); 546 ipath = NULL; 547 goto err; 548 } 549 ret = paths_from_inode(inum, ipath); 550 551 if (ret < 0) 552 goto err; 553 554 /* 555 * we deliberately ignore the bit ipath might have been too small to 556 * hold all of the paths here 557 */ 558 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 559 btrfs_warn_in_rcu(fs_info, 560 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)", 561 swarn->errstr, swarn->logical, 562 btrfs_dev_name(swarn->dev), 563 swarn->physical, 564 root, inum, offset, 565 fs_info->sectorsize, nlink, 566 (char *)(unsigned long)ipath->fspath->val[i]); 567 568 btrfs_put_root(local_root); 569 free_ipath(ipath); 570 return 0; 571 572 err: 573 btrfs_warn_in_rcu(fs_info, 574 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 575 swarn->errstr, swarn->logical, 576 btrfs_dev_name(swarn->dev), 577 swarn->physical, 578 root, inum, offset, ret); 579 580 free_ipath(ipath); 581 return 0; 582 } 583 584 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev, 585 bool is_super, u64 logical, u64 physical) 586 { 587 struct btrfs_fs_info *fs_info = dev->fs_info; 588 struct btrfs_path *path; 589 struct btrfs_key found_key; 590 struct extent_buffer *eb; 591 struct btrfs_extent_item *ei; 592 struct scrub_warning swarn; 593 u64 flags = 0; 594 u32 item_size; 595 int ret; 596 597 /* Super block error, no need to search extent tree. */ 598 if (is_super) { 599 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu", 600 errstr, btrfs_dev_name(dev), physical); 601 return; 602 } 603 path = btrfs_alloc_path(); 604 if (!path) 605 return; 606 607 swarn.physical = physical; 608 swarn.logical = logical; 609 swarn.errstr = errstr; 610 swarn.dev = NULL; 611 612 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 613 &flags); 614 if (ret < 0) 615 goto out; 616 617 swarn.extent_item_size = found_key.offset; 618 619 eb = path->nodes[0]; 620 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 621 item_size = btrfs_item_size(eb, path->slots[0]); 622 623 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 624 unsigned long ptr = 0; 625 u8 ref_level; 626 u64 ref_root; 627 628 while (true) { 629 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 630 item_size, &ref_root, 631 &ref_level); 632 if (ret < 0) { 633 btrfs_warn(fs_info, 634 "failed to resolve tree backref for logical %llu: %d", 635 swarn.logical, ret); 636 break; 637 } 638 if (ret > 0) 639 break; 640 btrfs_warn_in_rcu(fs_info, 641 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 642 errstr, swarn.logical, btrfs_dev_name(dev), 643 swarn.physical, (ref_level ? "node" : "leaf"), 644 ref_level, ref_root); 645 } 646 btrfs_release_path(path); 647 } else { 648 struct btrfs_backref_walk_ctx ctx = { 0 }; 649 650 btrfs_release_path(path); 651 652 ctx.bytenr = found_key.objectid; 653 ctx.extent_item_pos = swarn.logical - found_key.objectid; 654 ctx.fs_info = fs_info; 655 656 swarn.path = path; 657 swarn.dev = dev; 658 659 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn); 660 } 661 662 out: 663 btrfs_free_path(path); 664 } 665 666 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) 667 { 668 int ret = 0; 669 u64 length; 670 671 if (!btrfs_is_zoned(sctx->fs_info)) 672 return 0; 673 674 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) 675 return 0; 676 677 if (sctx->write_pointer < physical) { 678 length = physical - sctx->write_pointer; 679 680 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev, 681 sctx->write_pointer, length); 682 if (!ret) 683 sctx->write_pointer = physical; 684 } 685 return ret; 686 } 687 688 static void *scrub_stripe_get_kaddr(struct scrub_stripe *stripe, int sector_nr) 689 { 690 u32 offset = (sector_nr << stripe->bg->fs_info->sectorsize_bits); 691 const struct page *page = stripe->pages[offset >> PAGE_SHIFT]; 692 693 /* stripe->pages[] is allocated by us and no highmem is allowed. */ 694 ASSERT(page); 695 ASSERT(!PageHighMem(page)); 696 return page_address(page) + offset_in_page(offset); 697 } 698 699 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr) 700 { 701 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 702 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 703 const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits); 704 void *first_kaddr = scrub_stripe_get_kaddr(stripe, sector_nr); 705 struct btrfs_header *header = first_kaddr; 706 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 707 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 708 u8 calculated_csum[BTRFS_CSUM_SIZE]; 709 710 /* 711 * Here we don't have a good way to attach the pages (and subpages) 712 * to a dummy extent buffer, thus we have to directly grab the members 713 * from pages. 714 */ 715 memcpy(on_disk_csum, header->csum, fs_info->csum_size); 716 717 if (logical != btrfs_stack_header_bytenr(header)) { 718 scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree); 719 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree); 720 btrfs_warn_rl(fs_info, 721 "tree block %llu mirror %u has bad bytenr, has %llu want %llu", 722 logical, stripe->mirror_num, 723 btrfs_stack_header_bytenr(header), logical); 724 return; 725 } 726 if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid, 727 BTRFS_FSID_SIZE) != 0) { 728 scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree); 729 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree); 730 btrfs_warn_rl(fs_info, 731 "tree block %llu mirror %u has bad fsid, has %pU want %pU", 732 logical, stripe->mirror_num, 733 header->fsid, fs_info->fs_devices->fsid); 734 return; 735 } 736 if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid, 737 BTRFS_UUID_SIZE) != 0) { 738 scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree); 739 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree); 740 btrfs_warn_rl(fs_info, 741 "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU", 742 logical, stripe->mirror_num, 743 header->chunk_tree_uuid, fs_info->chunk_tree_uuid); 744 return; 745 } 746 747 /* Now check tree block csum. */ 748 shash->tfm = fs_info->csum_shash; 749 crypto_shash_init(shash); 750 crypto_shash_update(shash, first_kaddr + BTRFS_CSUM_SIZE, 751 fs_info->sectorsize - BTRFS_CSUM_SIZE); 752 753 for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) { 754 crypto_shash_update(shash, scrub_stripe_get_kaddr(stripe, i), 755 fs_info->sectorsize); 756 } 757 758 crypto_shash_final(shash, calculated_csum); 759 if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) { 760 scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree); 761 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree); 762 btrfs_warn_rl(fs_info, 763 "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT, 764 logical, stripe->mirror_num, 765 CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum), 766 CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum)); 767 return; 768 } 769 if (stripe->sectors[sector_nr].generation != 770 btrfs_stack_header_generation(header)) { 771 scrub_bitmap_set_meta_gen_error(stripe, sector_nr, sectors_per_tree); 772 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree); 773 btrfs_warn_rl(fs_info, 774 "tree block %llu mirror %u has bad generation, has %llu want %llu", 775 logical, stripe->mirror_num, 776 btrfs_stack_header_generation(header), 777 stripe->sectors[sector_nr].generation); 778 return; 779 } 780 scrub_bitmap_clear_error(stripe, sector_nr, sectors_per_tree); 781 scrub_bitmap_clear_csum_error(stripe, sector_nr, sectors_per_tree); 782 scrub_bitmap_clear_meta_error(stripe, sector_nr, sectors_per_tree); 783 scrub_bitmap_clear_meta_gen_error(stripe, sector_nr, sectors_per_tree); 784 } 785 786 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr) 787 { 788 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 789 struct scrub_sector_verification *sector = &stripe->sectors[sector_nr]; 790 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 791 void *kaddr = scrub_stripe_get_kaddr(stripe, sector_nr); 792 u8 csum_buf[BTRFS_CSUM_SIZE]; 793 int ret; 794 795 ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors); 796 797 /* Sector not utilized, skip it. */ 798 if (!scrub_bitmap_test_bit_has_extent(stripe, sector_nr)) 799 return; 800 801 /* IO error, no need to check. */ 802 if (scrub_bitmap_test_bit_io_error(stripe, sector_nr)) 803 return; 804 805 /* Metadata, verify the full tree block. */ 806 if (scrub_bitmap_test_bit_is_metadata(stripe, sector_nr)) { 807 /* 808 * Check if the tree block crosses the stripe boundary. If 809 * crossed the boundary, we cannot verify it but only give a 810 * warning. 811 * 812 * This can only happen on a very old filesystem where chunks 813 * are not ensured to be stripe aligned. 814 */ 815 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) { 816 btrfs_warn_rl(fs_info, 817 "tree block at %llu crosses stripe boundary %llu", 818 stripe->logical + 819 (sector_nr << fs_info->sectorsize_bits), 820 stripe->logical); 821 return; 822 } 823 scrub_verify_one_metadata(stripe, sector_nr); 824 return; 825 } 826 827 /* 828 * Data is easier, we just verify the data csum (if we have it). For 829 * cases without csum, we have no other choice but to trust it. 830 */ 831 if (!sector->csum) { 832 scrub_bitmap_clear_bit_error(stripe, sector_nr); 833 return; 834 } 835 836 ret = btrfs_check_sector_csum(fs_info, kaddr, csum_buf, sector->csum); 837 if (ret < 0) { 838 scrub_bitmap_set_bit_csum_error(stripe, sector_nr); 839 scrub_bitmap_set_bit_error(stripe, sector_nr); 840 } else { 841 scrub_bitmap_clear_bit_csum_error(stripe, sector_nr); 842 scrub_bitmap_clear_bit_error(stripe, sector_nr); 843 } 844 } 845 846 /* Verify specified sectors of a stripe. */ 847 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap) 848 { 849 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 850 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 851 int sector_nr; 852 853 for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) { 854 scrub_verify_one_sector(stripe, sector_nr); 855 if (scrub_bitmap_test_bit_is_metadata(stripe, sector_nr)) 856 sector_nr += sectors_per_tree - 1; 857 } 858 } 859 860 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec) 861 { 862 int i; 863 864 for (i = 0; i < stripe->nr_sectors; i++) { 865 if (scrub_stripe_get_kaddr(stripe, i) == bvec_virt(first_bvec)) 866 break; 867 } 868 ASSERT(i < stripe->nr_sectors); 869 return i; 870 } 871 872 /* 873 * Repair read is different to the regular read: 874 * 875 * - Only reads the failed sectors 876 * - May have extra blocksize limits 877 */ 878 static void scrub_repair_read_endio(struct btrfs_bio *bbio) 879 { 880 struct scrub_stripe *stripe = bbio->private; 881 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 882 struct bio_vec *bvec; 883 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); 884 u32 bio_size = 0; 885 int i; 886 887 ASSERT(sector_nr < stripe->nr_sectors); 888 889 bio_for_each_bvec_all(bvec, &bbio->bio, i) 890 bio_size += bvec->bv_len; 891 892 if (bbio->bio.bi_status) { 893 scrub_bitmap_set_io_error(stripe, sector_nr, 894 bio_size >> fs_info->sectorsize_bits); 895 scrub_bitmap_set_error(stripe, sector_nr, 896 bio_size >> fs_info->sectorsize_bits); 897 } else { 898 scrub_bitmap_clear_io_error(stripe, sector_nr, 899 bio_size >> fs_info->sectorsize_bits); 900 } 901 bio_put(&bbio->bio); 902 if (atomic_dec_and_test(&stripe->pending_io)) 903 wake_up(&stripe->io_wait); 904 } 905 906 static int calc_next_mirror(int mirror, int num_copies) 907 { 908 ASSERT(mirror <= num_copies); 909 return (mirror + 1 > num_copies) ? 1 : mirror + 1; 910 } 911 912 static void scrub_bio_add_sector(struct btrfs_bio *bbio, struct scrub_stripe *stripe, 913 int sector_nr) 914 { 915 void *kaddr = scrub_stripe_get_kaddr(stripe, sector_nr); 916 int ret; 917 918 ret = bio_add_page(&bbio->bio, virt_to_page(kaddr), bbio->fs_info->sectorsize, 919 offset_in_page(kaddr)); 920 /* 921 * Caller should ensure the bbio has enough size. 922 * And we cannot use __bio_add_page(), which doesn't do any merge. 923 * 924 * Meanwhile for scrub_submit_initial_read() we fully rely on the merge 925 * to create the minimal amount of bio vectors, for fs block size < page 926 * size cases. 927 */ 928 ASSERT(ret == bbio->fs_info->sectorsize); 929 } 930 931 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe, 932 int mirror, int blocksize, bool wait) 933 { 934 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 935 struct btrfs_bio *bbio = NULL; 936 const unsigned long old_error_bitmap = scrub_bitmap_read_error(stripe); 937 int i; 938 939 ASSERT(stripe->mirror_num >= 1); 940 ASSERT(atomic_read(&stripe->pending_io) == 0); 941 942 for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) { 943 /* The current sector cannot be merged, submit the bio. */ 944 if (bbio && ((i > 0 && !test_bit(i - 1, &old_error_bitmap)) || 945 bbio->bio.bi_iter.bi_size >= blocksize)) { 946 ASSERT(bbio->bio.bi_iter.bi_size); 947 atomic_inc(&stripe->pending_io); 948 btrfs_submit_bbio(bbio, mirror); 949 if (wait) 950 wait_scrub_stripe_io(stripe); 951 bbio = NULL; 952 } 953 954 if (!bbio) { 955 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ, 956 fs_info, scrub_repair_read_endio, stripe); 957 bbio->bio.bi_iter.bi_sector = (stripe->logical + 958 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT; 959 } 960 961 scrub_bio_add_sector(bbio, stripe, i); 962 } 963 if (bbio) { 964 ASSERT(bbio->bio.bi_iter.bi_size); 965 atomic_inc(&stripe->pending_io); 966 btrfs_submit_bbio(bbio, mirror); 967 if (wait) 968 wait_scrub_stripe_io(stripe); 969 } 970 } 971 972 static void scrub_stripe_report_errors(struct scrub_ctx *sctx, 973 struct scrub_stripe *stripe, 974 const struct scrub_error_records *errors) 975 { 976 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 977 DEFAULT_RATELIMIT_BURST); 978 struct btrfs_fs_info *fs_info = sctx->fs_info; 979 struct btrfs_device *dev = NULL; 980 const unsigned long extent_bitmap = scrub_bitmap_read_has_extent(stripe); 981 const unsigned long error_bitmap = scrub_bitmap_read_error(stripe); 982 u64 physical = 0; 983 int nr_data_sectors = 0; 984 int nr_meta_sectors = 0; 985 int nr_nodatacsum_sectors = 0; 986 int nr_repaired_sectors = 0; 987 int sector_nr; 988 989 if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state)) 990 return; 991 992 /* 993 * Init needed infos for error reporting. 994 * 995 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio() 996 * thus no need for dev/physical, error reporting still needs dev and physical. 997 */ 998 if (!bitmap_empty(&errors->init_error_bitmap, stripe->nr_sectors)) { 999 u64 mapped_len = fs_info->sectorsize; 1000 struct btrfs_io_context *bioc = NULL; 1001 int stripe_index = stripe->mirror_num - 1; 1002 int ret; 1003 1004 /* For scrub, our mirror_num should always start at 1. */ 1005 ASSERT(stripe->mirror_num >= 1); 1006 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 1007 stripe->logical, &mapped_len, &bioc, 1008 NULL, NULL); 1009 /* 1010 * If we failed, dev will be NULL, and later detailed reports 1011 * will just be skipped. 1012 */ 1013 if (ret < 0) 1014 goto skip; 1015 physical = bioc->stripes[stripe_index].physical; 1016 dev = bioc->stripes[stripe_index].dev; 1017 btrfs_put_bioc(bioc); 1018 } 1019 1020 skip: 1021 for_each_set_bit(sector_nr, &extent_bitmap, stripe->nr_sectors) { 1022 bool repaired = false; 1023 1024 if (scrub_bitmap_test_bit_is_metadata(stripe, sector_nr)) { 1025 nr_meta_sectors++; 1026 } else { 1027 nr_data_sectors++; 1028 if (!stripe->sectors[sector_nr].csum) 1029 nr_nodatacsum_sectors++; 1030 } 1031 1032 if (test_bit(sector_nr, &errors->init_error_bitmap) && 1033 !test_bit(sector_nr, &error_bitmap)) { 1034 nr_repaired_sectors++; 1035 repaired = true; 1036 } 1037 1038 /* Good sector from the beginning, nothing need to be done. */ 1039 if (!test_bit(sector_nr, &errors->init_error_bitmap)) 1040 continue; 1041 1042 /* 1043 * Report error for the corrupted sectors. If repaired, just 1044 * output the message of repaired message. 1045 */ 1046 if (repaired) { 1047 if (dev) { 1048 btrfs_err_rl_in_rcu(fs_info, 1049 "fixed up error at logical %llu on dev %s physical %llu", 1050 stripe->logical, btrfs_dev_name(dev), 1051 physical); 1052 } else { 1053 btrfs_err_rl_in_rcu(fs_info, 1054 "fixed up error at logical %llu on mirror %u", 1055 stripe->logical, stripe->mirror_num); 1056 } 1057 continue; 1058 } 1059 1060 /* The remaining are all for unrepaired. */ 1061 if (dev) { 1062 btrfs_err_rl_in_rcu(fs_info, 1063 "unable to fixup (regular) error at logical %llu on dev %s physical %llu", 1064 stripe->logical, btrfs_dev_name(dev), 1065 physical); 1066 } else { 1067 btrfs_err_rl_in_rcu(fs_info, 1068 "unable to fixup (regular) error at logical %llu on mirror %u", 1069 stripe->logical, stripe->mirror_num); 1070 } 1071 1072 if (scrub_bitmap_test_bit_io_error(stripe, sector_nr)) 1073 if (__ratelimit(&rs) && dev) 1074 scrub_print_common_warning("i/o error", dev, false, 1075 stripe->logical, physical); 1076 if (scrub_bitmap_test_bit_csum_error(stripe, sector_nr)) 1077 if (__ratelimit(&rs) && dev) 1078 scrub_print_common_warning("checksum error", dev, false, 1079 stripe->logical, physical); 1080 if (scrub_bitmap_test_bit_meta_error(stripe, sector_nr)) 1081 if (__ratelimit(&rs) && dev) 1082 scrub_print_common_warning("header error", dev, false, 1083 stripe->logical, physical); 1084 if (scrub_bitmap_test_bit_meta_gen_error(stripe, sector_nr)) 1085 if (__ratelimit(&rs) && dev) 1086 scrub_print_common_warning("generation error", dev, false, 1087 stripe->logical, physical); 1088 } 1089 1090 /* Update the device stats. */ 1091 for (int i = 0; i < errors->nr_io_errors; i++) 1092 btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_READ_ERRS); 1093 for (int i = 0; i < errors->nr_csum_errors; i++) 1094 btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 1095 /* Generation mismatch error is based on each metadata, not each block. */ 1096 for (int i = 0; i < errors->nr_meta_gen_errors; 1097 i += (fs_info->nodesize >> fs_info->sectorsize_bits)) 1098 btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_GENERATION_ERRS); 1099 1100 spin_lock(&sctx->stat_lock); 1101 sctx->stat.data_extents_scrubbed += stripe->nr_data_extents; 1102 sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents; 1103 sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits; 1104 sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits; 1105 sctx->stat.no_csum += nr_nodatacsum_sectors; 1106 sctx->stat.read_errors += errors->nr_io_errors; 1107 sctx->stat.csum_errors += errors->nr_csum_errors; 1108 sctx->stat.verify_errors += errors->nr_meta_errors + 1109 errors->nr_meta_gen_errors; 1110 sctx->stat.uncorrectable_errors += 1111 bitmap_weight(&error_bitmap, stripe->nr_sectors); 1112 sctx->stat.corrected_errors += nr_repaired_sectors; 1113 spin_unlock(&sctx->stat_lock); 1114 } 1115 1116 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe, 1117 unsigned long write_bitmap, bool dev_replace); 1118 1119 /* 1120 * The main entrance for all read related scrub work, including: 1121 * 1122 * - Wait for the initial read to finish 1123 * - Verify and locate any bad sectors 1124 * - Go through the remaining mirrors and try to read as large blocksize as 1125 * possible 1126 * - Go through all mirrors (including the failed mirror) sector-by-sector 1127 * - Submit writeback for repaired sectors 1128 * 1129 * Writeback for dev-replace does not happen here, it needs extra 1130 * synchronization for zoned devices. 1131 */ 1132 static void scrub_stripe_read_repair_worker(struct work_struct *work) 1133 { 1134 struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work); 1135 struct scrub_ctx *sctx = stripe->sctx; 1136 struct btrfs_fs_info *fs_info = sctx->fs_info; 1137 struct scrub_error_records errors = { 0 }; 1138 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, 1139 stripe->bg->length); 1140 unsigned long repaired; 1141 unsigned long error; 1142 int mirror; 1143 int i; 1144 1145 ASSERT(stripe->mirror_num > 0); 1146 1147 wait_scrub_stripe_io(stripe); 1148 scrub_verify_one_stripe(stripe, scrub_bitmap_read_has_extent(stripe)); 1149 /* Save the initial failed bitmap for later repair and report usage. */ 1150 errors.init_error_bitmap = scrub_bitmap_read_error(stripe); 1151 errors.nr_io_errors = scrub_bitmap_weight_io_error(stripe); 1152 errors.nr_csum_errors = scrub_bitmap_weight_csum_error(stripe); 1153 errors.nr_meta_errors = scrub_bitmap_weight_meta_error(stripe); 1154 errors.nr_meta_gen_errors = scrub_bitmap_weight_meta_gen_error(stripe); 1155 1156 if (bitmap_empty(&errors.init_error_bitmap, stripe->nr_sectors)) 1157 goto out; 1158 1159 /* 1160 * Try all remaining mirrors. 1161 * 1162 * Here we still try to read as large block as possible, as this is 1163 * faster and we have extra safety nets to rely on. 1164 */ 1165 for (mirror = calc_next_mirror(stripe->mirror_num, num_copies); 1166 mirror != stripe->mirror_num; 1167 mirror = calc_next_mirror(mirror, num_copies)) { 1168 const unsigned long old_error_bitmap = scrub_bitmap_read_error(stripe); 1169 1170 scrub_stripe_submit_repair_read(stripe, mirror, 1171 BTRFS_STRIPE_LEN, false); 1172 wait_scrub_stripe_io(stripe); 1173 scrub_verify_one_stripe(stripe, old_error_bitmap); 1174 if (scrub_bitmap_empty_error(stripe)) 1175 goto out; 1176 } 1177 1178 /* 1179 * Last safety net, try re-checking all mirrors, including the failed 1180 * one, sector-by-sector. 1181 * 1182 * As if one sector failed the drive's internal csum, the whole read 1183 * containing the offending sector would be marked as error. 1184 * Thus here we do sector-by-sector read. 1185 * 1186 * This can be slow, thus we only try it as the last resort. 1187 */ 1188 1189 for (i = 0, mirror = stripe->mirror_num; 1190 i < num_copies; 1191 i++, mirror = calc_next_mirror(mirror, num_copies)) { 1192 const unsigned long old_error_bitmap = scrub_bitmap_read_error(stripe); 1193 1194 scrub_stripe_submit_repair_read(stripe, mirror, 1195 fs_info->sectorsize, true); 1196 wait_scrub_stripe_io(stripe); 1197 scrub_verify_one_stripe(stripe, old_error_bitmap); 1198 if (scrub_bitmap_empty_error(stripe)) 1199 goto out; 1200 } 1201 out: 1202 error = scrub_bitmap_read_error(stripe); 1203 /* 1204 * Submit the repaired sectors. For zoned case, we cannot do repair 1205 * in-place, but queue the bg to be relocated. 1206 */ 1207 bitmap_andnot(&repaired, &errors.init_error_bitmap, &error, 1208 stripe->nr_sectors); 1209 if (!sctx->readonly && !bitmap_empty(&repaired, stripe->nr_sectors)) { 1210 if (btrfs_is_zoned(fs_info)) { 1211 btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start); 1212 } else { 1213 scrub_write_sectors(sctx, stripe, repaired, false); 1214 wait_scrub_stripe_io(stripe); 1215 } 1216 } 1217 1218 scrub_stripe_report_errors(sctx, stripe, &errors); 1219 set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state); 1220 wake_up(&stripe->repair_wait); 1221 } 1222 1223 static void scrub_read_endio(struct btrfs_bio *bbio) 1224 { 1225 struct scrub_stripe *stripe = bbio->private; 1226 struct bio_vec *bvec; 1227 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); 1228 int num_sectors; 1229 u32 bio_size = 0; 1230 int i; 1231 1232 ASSERT(sector_nr < stripe->nr_sectors); 1233 bio_for_each_bvec_all(bvec, &bbio->bio, i) 1234 bio_size += bvec->bv_len; 1235 num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits; 1236 1237 if (bbio->bio.bi_status) { 1238 scrub_bitmap_set_io_error(stripe, sector_nr, num_sectors); 1239 scrub_bitmap_set_error(stripe, sector_nr, num_sectors); 1240 } else { 1241 scrub_bitmap_clear_io_error(stripe, sector_nr, num_sectors); 1242 } 1243 bio_put(&bbio->bio); 1244 if (atomic_dec_and_test(&stripe->pending_io)) { 1245 wake_up(&stripe->io_wait); 1246 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker); 1247 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work); 1248 } 1249 } 1250 1251 static void scrub_write_endio(struct btrfs_bio *bbio) 1252 { 1253 struct scrub_stripe *stripe = bbio->private; 1254 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1255 struct bio_vec *bvec; 1256 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); 1257 u32 bio_size = 0; 1258 int i; 1259 1260 bio_for_each_bvec_all(bvec, &bbio->bio, i) 1261 bio_size += bvec->bv_len; 1262 1263 if (bbio->bio.bi_status) { 1264 unsigned long flags; 1265 1266 spin_lock_irqsave(&stripe->write_error_lock, flags); 1267 bitmap_set(&stripe->write_error_bitmap, sector_nr, 1268 bio_size >> fs_info->sectorsize_bits); 1269 spin_unlock_irqrestore(&stripe->write_error_lock, flags); 1270 for (int i = 0; i < (bio_size >> fs_info->sectorsize_bits); i++) 1271 btrfs_dev_stat_inc_and_print(stripe->dev, 1272 BTRFS_DEV_STAT_WRITE_ERRS); 1273 } 1274 bio_put(&bbio->bio); 1275 1276 if (atomic_dec_and_test(&stripe->pending_io)) 1277 wake_up(&stripe->io_wait); 1278 } 1279 1280 static void scrub_submit_write_bio(struct scrub_ctx *sctx, 1281 struct scrub_stripe *stripe, 1282 struct btrfs_bio *bbio, bool dev_replace) 1283 { 1284 struct btrfs_fs_info *fs_info = sctx->fs_info; 1285 u32 bio_len = bbio->bio.bi_iter.bi_size; 1286 u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) - 1287 stripe->logical; 1288 1289 fill_writer_pointer_gap(sctx, stripe->physical + bio_off); 1290 atomic_inc(&stripe->pending_io); 1291 btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace); 1292 if (!btrfs_is_zoned(fs_info)) 1293 return; 1294 /* 1295 * For zoned writeback, queue depth must be 1, thus we must wait for 1296 * the write to finish before the next write. 1297 */ 1298 wait_scrub_stripe_io(stripe); 1299 1300 /* 1301 * And also need to update the write pointer if write finished 1302 * successfully. 1303 */ 1304 if (!test_bit(bio_off >> fs_info->sectorsize_bits, 1305 &stripe->write_error_bitmap)) 1306 sctx->write_pointer += bio_len; 1307 } 1308 1309 /* 1310 * Submit the write bio(s) for the sectors specified by @write_bitmap. 1311 * 1312 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits: 1313 * 1314 * - Only needs logical bytenr and mirror_num 1315 * Just like the scrub read path 1316 * 1317 * - Would only result in writes to the specified mirror 1318 * Unlike the regular writeback path, which would write back to all stripes 1319 * 1320 * - Handle dev-replace and read-repair writeback differently 1321 */ 1322 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe, 1323 unsigned long write_bitmap, bool dev_replace) 1324 { 1325 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1326 struct btrfs_bio *bbio = NULL; 1327 int sector_nr; 1328 1329 for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) { 1330 /* We should only writeback sectors covered by an extent. */ 1331 ASSERT(scrub_bitmap_test_bit_has_extent(stripe, sector_nr)); 1332 1333 /* Cannot merge with previous sector, submit the current one. */ 1334 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) { 1335 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace); 1336 bbio = NULL; 1337 } 1338 if (!bbio) { 1339 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE, 1340 fs_info, scrub_write_endio, stripe); 1341 bbio->bio.bi_iter.bi_sector = (stripe->logical + 1342 (sector_nr << fs_info->sectorsize_bits)) >> 1343 SECTOR_SHIFT; 1344 } 1345 scrub_bio_add_sector(bbio, stripe, sector_nr); 1346 } 1347 if (bbio) 1348 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace); 1349 } 1350 1351 /* 1352 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1 1353 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max. 1354 */ 1355 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device, 1356 unsigned int bio_size) 1357 { 1358 const int time_slice = 1000; 1359 s64 delta; 1360 ktime_t now; 1361 u32 div; 1362 u64 bwlimit; 1363 1364 bwlimit = READ_ONCE(device->scrub_speed_max); 1365 if (bwlimit == 0) 1366 return; 1367 1368 /* 1369 * Slice is divided into intervals when the IO is submitted, adjust by 1370 * bwlimit and maximum of 64 intervals. 1371 */ 1372 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024))); 1373 div = min_t(u32, 64, div); 1374 1375 /* Start new epoch, set deadline */ 1376 now = ktime_get(); 1377 if (sctx->throttle_deadline == 0) { 1378 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div); 1379 sctx->throttle_sent = 0; 1380 } 1381 1382 /* Still in the time to send? */ 1383 if (ktime_before(now, sctx->throttle_deadline)) { 1384 /* If current bio is within the limit, send it */ 1385 sctx->throttle_sent += bio_size; 1386 if (sctx->throttle_sent <= div_u64(bwlimit, div)) 1387 return; 1388 1389 /* We're over the limit, sleep until the rest of the slice */ 1390 delta = ktime_ms_delta(sctx->throttle_deadline, now); 1391 } else { 1392 /* New request after deadline, start new epoch */ 1393 delta = 0; 1394 } 1395 1396 if (delta) { 1397 long timeout; 1398 1399 timeout = div_u64(delta * HZ, 1000); 1400 schedule_timeout_interruptible(timeout); 1401 } 1402 1403 /* Next call will start the deadline period */ 1404 sctx->throttle_deadline = 0; 1405 } 1406 1407 /* 1408 * Given a physical address, this will calculate it's 1409 * logical offset. if this is a parity stripe, it will return 1410 * the most left data stripe's logical offset. 1411 * 1412 * return 0 if it is a data stripe, 1 means parity stripe. 1413 */ 1414 static int get_raid56_logic_offset(u64 physical, int num, 1415 struct btrfs_chunk_map *map, u64 *offset, 1416 u64 *stripe_start) 1417 { 1418 int i; 1419 int j = 0; 1420 u64 last_offset; 1421 const int data_stripes = nr_data_stripes(map); 1422 1423 last_offset = (physical - map->stripes[num].physical) * data_stripes; 1424 if (stripe_start) 1425 *stripe_start = last_offset; 1426 1427 *offset = last_offset; 1428 for (i = 0; i < data_stripes; i++) { 1429 u32 stripe_nr; 1430 u32 stripe_index; 1431 u32 rot; 1432 1433 *offset = last_offset + btrfs_stripe_nr_to_offset(i); 1434 1435 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes; 1436 1437 /* Work out the disk rotation on this stripe-set */ 1438 rot = stripe_nr % map->num_stripes; 1439 /* calculate which stripe this data locates */ 1440 rot += i; 1441 stripe_index = rot % map->num_stripes; 1442 if (stripe_index == num) 1443 return 0; 1444 if (stripe_index < num) 1445 j++; 1446 } 1447 *offset = last_offset + btrfs_stripe_nr_to_offset(j); 1448 return 1; 1449 } 1450 1451 /* 1452 * Return 0 if the extent item range covers any byte of the range. 1453 * Return <0 if the extent item is before @search_start. 1454 * Return >0 if the extent item is after @start_start + @search_len. 1455 */ 1456 static int compare_extent_item_range(struct btrfs_path *path, 1457 u64 search_start, u64 search_len) 1458 { 1459 struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info; 1460 u64 len; 1461 struct btrfs_key key; 1462 1463 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1464 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY || 1465 key.type == BTRFS_METADATA_ITEM_KEY); 1466 if (key.type == BTRFS_METADATA_ITEM_KEY) 1467 len = fs_info->nodesize; 1468 else 1469 len = key.offset; 1470 1471 if (key.objectid + len <= search_start) 1472 return -1; 1473 if (key.objectid >= search_start + search_len) 1474 return 1; 1475 return 0; 1476 } 1477 1478 /* 1479 * Locate one extent item which covers any byte in range 1480 * [@search_start, @search_start + @search_length) 1481 * 1482 * If the path is not initialized, we will initialize the search by doing 1483 * a btrfs_search_slot(). 1484 * If the path is already initialized, we will use the path as the initial 1485 * slot, to avoid duplicated btrfs_search_slot() calls. 1486 * 1487 * NOTE: If an extent item starts before @search_start, we will still 1488 * return the extent item. This is for data extent crossing stripe boundary. 1489 * 1490 * Return 0 if we found such extent item, and @path will point to the extent item. 1491 * Return >0 if no such extent item can be found, and @path will be released. 1492 * Return <0 if hit fatal error, and @path will be released. 1493 */ 1494 static int find_first_extent_item(struct btrfs_root *extent_root, 1495 struct btrfs_path *path, 1496 u64 search_start, u64 search_len) 1497 { 1498 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1499 struct btrfs_key key; 1500 int ret; 1501 1502 /* Continue using the existing path */ 1503 if (path->nodes[0]) 1504 goto search_forward; 1505 1506 key.objectid = search_start; 1507 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1508 key.type = BTRFS_METADATA_ITEM_KEY; 1509 else 1510 key.type = BTRFS_EXTENT_ITEM_KEY; 1511 key.offset = (u64)-1; 1512 1513 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 1514 if (ret < 0) 1515 return ret; 1516 if (ret == 0) { 1517 /* 1518 * Key with offset -1 found, there would have to exist an extent 1519 * item with such offset, but this is out of the valid range. 1520 */ 1521 btrfs_release_path(path); 1522 return -EUCLEAN; 1523 } 1524 1525 /* 1526 * Here we intentionally pass 0 as @min_objectid, as there could be 1527 * an extent item starting before @search_start. 1528 */ 1529 ret = btrfs_previous_extent_item(extent_root, path, 0); 1530 if (ret < 0) 1531 return ret; 1532 /* 1533 * No matter whether we have found an extent item, the next loop will 1534 * properly do every check on the key. 1535 */ 1536 search_forward: 1537 while (true) { 1538 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1539 if (key.objectid >= search_start + search_len) 1540 break; 1541 if (key.type != BTRFS_METADATA_ITEM_KEY && 1542 key.type != BTRFS_EXTENT_ITEM_KEY) 1543 goto next; 1544 1545 ret = compare_extent_item_range(path, search_start, search_len); 1546 if (ret == 0) 1547 return ret; 1548 if (ret > 0) 1549 break; 1550 next: 1551 ret = btrfs_next_item(extent_root, path); 1552 if (ret) { 1553 /* Either no more items or a fatal error. */ 1554 btrfs_release_path(path); 1555 return ret; 1556 } 1557 } 1558 btrfs_release_path(path); 1559 return 1; 1560 } 1561 1562 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret, 1563 u64 *size_ret, u64 *flags_ret, u64 *generation_ret) 1564 { 1565 struct btrfs_key key; 1566 struct btrfs_extent_item *ei; 1567 1568 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1569 ASSERT(key.type == BTRFS_METADATA_ITEM_KEY || 1570 key.type == BTRFS_EXTENT_ITEM_KEY); 1571 *extent_start_ret = key.objectid; 1572 if (key.type == BTRFS_METADATA_ITEM_KEY) 1573 *size_ret = path->nodes[0]->fs_info->nodesize; 1574 else 1575 *size_ret = key.offset; 1576 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item); 1577 *flags_ret = btrfs_extent_flags(path->nodes[0], ei); 1578 *generation_ret = btrfs_extent_generation(path->nodes[0], ei); 1579 } 1580 1581 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical, 1582 u64 physical, u64 physical_end) 1583 { 1584 struct btrfs_fs_info *fs_info = sctx->fs_info; 1585 int ret = 0; 1586 1587 if (!btrfs_is_zoned(fs_info)) 1588 return 0; 1589 1590 mutex_lock(&sctx->wr_lock); 1591 if (sctx->write_pointer < physical_end) { 1592 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical, 1593 physical, 1594 sctx->write_pointer); 1595 if (ret) 1596 btrfs_err(fs_info, 1597 "zoned: failed to recover write pointer"); 1598 } 1599 mutex_unlock(&sctx->wr_lock); 1600 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical); 1601 1602 return ret; 1603 } 1604 1605 static void fill_one_extent_info(struct btrfs_fs_info *fs_info, 1606 struct scrub_stripe *stripe, 1607 u64 extent_start, u64 extent_len, 1608 u64 extent_flags, u64 extent_gen) 1609 { 1610 for (u64 cur_logical = max(stripe->logical, extent_start); 1611 cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN, 1612 extent_start + extent_len); 1613 cur_logical += fs_info->sectorsize) { 1614 const int nr_sector = (cur_logical - stripe->logical) >> 1615 fs_info->sectorsize_bits; 1616 struct scrub_sector_verification *sector = 1617 &stripe->sectors[nr_sector]; 1618 1619 scrub_bitmap_set_bit_has_extent(stripe, nr_sector); 1620 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1621 scrub_bitmap_set_bit_is_metadata(stripe, nr_sector); 1622 sector->generation = extent_gen; 1623 } 1624 } 1625 } 1626 1627 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe) 1628 { 1629 ASSERT(stripe->nr_sectors); 1630 bitmap_zero(stripe->bitmaps, scrub_bitmap_nr_last * stripe->nr_sectors); 1631 } 1632 1633 /* 1634 * Locate one stripe which has at least one extent in its range. 1635 * 1636 * Return 0 if found such stripe, and store its info into @stripe. 1637 * Return >0 if there is no such stripe in the specified range. 1638 * Return <0 for error. 1639 */ 1640 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg, 1641 struct btrfs_path *extent_path, 1642 struct btrfs_path *csum_path, 1643 struct btrfs_device *dev, u64 physical, 1644 int mirror_num, u64 logical_start, 1645 u32 logical_len, 1646 struct scrub_stripe *stripe) 1647 { 1648 struct btrfs_fs_info *fs_info = bg->fs_info; 1649 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start); 1650 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start); 1651 const u64 logical_end = logical_start + logical_len; 1652 u64 cur_logical = logical_start; 1653 u64 stripe_end; 1654 u64 extent_start; 1655 u64 extent_len; 1656 u64 extent_flags; 1657 u64 extent_gen; 1658 int ret; 1659 1660 if (unlikely(!extent_root || !csum_root)) { 1661 btrfs_err(fs_info, "no valid extent or csum root for scrub"); 1662 return -EUCLEAN; 1663 } 1664 memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) * 1665 stripe->nr_sectors); 1666 scrub_stripe_reset_bitmaps(stripe); 1667 1668 /* The range must be inside the bg. */ 1669 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); 1670 1671 ret = find_first_extent_item(extent_root, extent_path, logical_start, 1672 logical_len); 1673 /* Either error or not found. */ 1674 if (ret) 1675 goto out; 1676 get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags, 1677 &extent_gen); 1678 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1679 stripe->nr_meta_extents++; 1680 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) 1681 stripe->nr_data_extents++; 1682 cur_logical = max(extent_start, cur_logical); 1683 1684 /* 1685 * Round down to stripe boundary. 1686 * 1687 * The extra calculation against bg->start is to handle block groups 1688 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned. 1689 */ 1690 stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) + 1691 bg->start; 1692 stripe->physical = physical + stripe->logical - logical_start; 1693 stripe->dev = dev; 1694 stripe->bg = bg; 1695 stripe->mirror_num = mirror_num; 1696 stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1; 1697 1698 /* Fill the first extent info into stripe->sectors[] array. */ 1699 fill_one_extent_info(fs_info, stripe, extent_start, extent_len, 1700 extent_flags, extent_gen); 1701 cur_logical = extent_start + extent_len; 1702 1703 /* Fill the extent info for the remaining sectors. */ 1704 while (cur_logical <= stripe_end) { 1705 ret = find_first_extent_item(extent_root, extent_path, cur_logical, 1706 stripe_end - cur_logical + 1); 1707 if (ret < 0) 1708 goto out; 1709 if (ret > 0) { 1710 ret = 0; 1711 break; 1712 } 1713 get_extent_info(extent_path, &extent_start, &extent_len, 1714 &extent_flags, &extent_gen); 1715 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1716 stripe->nr_meta_extents++; 1717 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) 1718 stripe->nr_data_extents++; 1719 fill_one_extent_info(fs_info, stripe, extent_start, extent_len, 1720 extent_flags, extent_gen); 1721 cur_logical = extent_start + extent_len; 1722 } 1723 1724 /* Now fill the data csum. */ 1725 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) { 1726 int sector_nr; 1727 unsigned long csum_bitmap = 0; 1728 1729 /* Csum space should have already been allocated. */ 1730 ASSERT(stripe->csums); 1731 1732 /* 1733 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN 1734 * should contain at most 16 sectors. 1735 */ 1736 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); 1737 1738 ret = btrfs_lookup_csums_bitmap(csum_root, csum_path, 1739 stripe->logical, stripe_end, 1740 stripe->csums, &csum_bitmap); 1741 if (ret < 0) 1742 goto out; 1743 if (ret > 0) 1744 ret = 0; 1745 1746 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) { 1747 stripe->sectors[sector_nr].csum = stripe->csums + 1748 sector_nr * fs_info->csum_size; 1749 } 1750 } 1751 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); 1752 out: 1753 return ret; 1754 } 1755 1756 static void scrub_reset_stripe(struct scrub_stripe *stripe) 1757 { 1758 scrub_stripe_reset_bitmaps(stripe); 1759 1760 stripe->nr_meta_extents = 0; 1761 stripe->nr_data_extents = 0; 1762 stripe->state = 0; 1763 1764 for (int i = 0; i < stripe->nr_sectors; i++) { 1765 stripe->sectors[i].csum = NULL; 1766 stripe->sectors[i].generation = 0; 1767 } 1768 } 1769 1770 static u32 stripe_length(const struct scrub_stripe *stripe) 1771 { 1772 ASSERT(stripe->bg); 1773 1774 return min(BTRFS_STRIPE_LEN, 1775 stripe->bg->start + stripe->bg->length - stripe->logical); 1776 } 1777 1778 static void scrub_submit_extent_sector_read(struct scrub_stripe *stripe) 1779 { 1780 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1781 struct btrfs_bio *bbio = NULL; 1782 unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits; 1783 const unsigned long has_extent = scrub_bitmap_read_has_extent(stripe); 1784 u64 stripe_len = BTRFS_STRIPE_LEN; 1785 int mirror = stripe->mirror_num; 1786 int i; 1787 1788 atomic_inc(&stripe->pending_io); 1789 1790 for_each_set_bit(i, &has_extent, stripe->nr_sectors) { 1791 /* We're beyond the chunk boundary, no need to read anymore. */ 1792 if (i >= nr_sectors) 1793 break; 1794 1795 /* The current sector cannot be merged, submit the bio. */ 1796 if (bbio && 1797 ((i > 0 && !test_bit(i - 1, &has_extent)) || 1798 bbio->bio.bi_iter.bi_size >= stripe_len)) { 1799 ASSERT(bbio->bio.bi_iter.bi_size); 1800 atomic_inc(&stripe->pending_io); 1801 btrfs_submit_bbio(bbio, mirror); 1802 bbio = NULL; 1803 } 1804 1805 if (!bbio) { 1806 struct btrfs_io_stripe io_stripe = {}; 1807 struct btrfs_io_context *bioc = NULL; 1808 const u64 logical = stripe->logical + 1809 (i << fs_info->sectorsize_bits); 1810 int err; 1811 1812 io_stripe.rst_search_commit_root = true; 1813 stripe_len = (nr_sectors - i) << fs_info->sectorsize_bits; 1814 /* 1815 * For RST cases, we need to manually split the bbio to 1816 * follow the RST boundary. 1817 */ 1818 err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 1819 &stripe_len, &bioc, &io_stripe, &mirror); 1820 btrfs_put_bioc(bioc); 1821 if (err < 0) { 1822 if (err != -ENODATA) { 1823 /* 1824 * Earlier btrfs_get_raid_extent_offset() 1825 * returned -ENODATA, which means there's 1826 * no entry for the corresponding range 1827 * in the stripe tree. But if it's in 1828 * the extent tree, then it's a preallocated 1829 * extent and not an error. 1830 */ 1831 scrub_bitmap_set_bit_io_error(stripe, i); 1832 scrub_bitmap_set_bit_error(stripe, i); 1833 } 1834 continue; 1835 } 1836 1837 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ, 1838 fs_info, scrub_read_endio, stripe); 1839 bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT; 1840 } 1841 1842 scrub_bio_add_sector(bbio, stripe, i); 1843 } 1844 1845 if (bbio) { 1846 ASSERT(bbio->bio.bi_iter.bi_size); 1847 atomic_inc(&stripe->pending_io); 1848 btrfs_submit_bbio(bbio, mirror); 1849 } 1850 1851 if (atomic_dec_and_test(&stripe->pending_io)) { 1852 wake_up(&stripe->io_wait); 1853 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker); 1854 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work); 1855 } 1856 } 1857 1858 static void scrub_submit_initial_read(struct scrub_ctx *sctx, 1859 struct scrub_stripe *stripe) 1860 { 1861 struct btrfs_fs_info *fs_info = sctx->fs_info; 1862 struct btrfs_bio *bbio; 1863 unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits; 1864 int mirror = stripe->mirror_num; 1865 1866 ASSERT(stripe->bg); 1867 ASSERT(stripe->mirror_num > 0); 1868 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state)); 1869 1870 if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) { 1871 scrub_submit_extent_sector_read(stripe); 1872 return; 1873 } 1874 1875 bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info, 1876 scrub_read_endio, stripe); 1877 1878 bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT; 1879 /* Read the whole range inside the chunk boundary. */ 1880 for (unsigned int cur = 0; cur < nr_sectors; cur++) 1881 scrub_bio_add_sector(bbio, stripe, cur); 1882 atomic_inc(&stripe->pending_io); 1883 1884 /* 1885 * For dev-replace, either user asks to avoid the source dev, or 1886 * the device is missing, we try the next mirror instead. 1887 */ 1888 if (sctx->is_dev_replace && 1889 (fs_info->dev_replace.cont_reading_from_srcdev_mode == 1890 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID || 1891 !stripe->dev->bdev)) { 1892 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, 1893 stripe->bg->length); 1894 1895 mirror = calc_next_mirror(mirror, num_copies); 1896 } 1897 btrfs_submit_bbio(bbio, mirror); 1898 } 1899 1900 static bool stripe_has_metadata_error(struct scrub_stripe *stripe) 1901 { 1902 const unsigned long error = scrub_bitmap_read_error(stripe); 1903 int i; 1904 1905 for_each_set_bit(i, &error, stripe->nr_sectors) { 1906 if (scrub_bitmap_test_bit_is_metadata(stripe, i)) { 1907 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1908 1909 btrfs_err(fs_info, 1910 "stripe %llu has unrepaired metadata sector at %llu", 1911 stripe->logical, 1912 stripe->logical + (i << fs_info->sectorsize_bits)); 1913 return true; 1914 } 1915 } 1916 return false; 1917 } 1918 1919 static void submit_initial_group_read(struct scrub_ctx *sctx, 1920 unsigned int first_slot, 1921 unsigned int nr_stripes) 1922 { 1923 struct blk_plug plug; 1924 1925 ASSERT(first_slot < SCRUB_TOTAL_STRIPES); 1926 ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES); 1927 1928 scrub_throttle_dev_io(sctx, sctx->stripes[0].dev, 1929 btrfs_stripe_nr_to_offset(nr_stripes)); 1930 blk_start_plug(&plug); 1931 for (int i = 0; i < nr_stripes; i++) { 1932 struct scrub_stripe *stripe = &sctx->stripes[first_slot + i]; 1933 1934 /* Those stripes should be initialized. */ 1935 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state)); 1936 scrub_submit_initial_read(sctx, stripe); 1937 } 1938 blk_finish_plug(&plug); 1939 } 1940 1941 static int flush_scrub_stripes(struct scrub_ctx *sctx) 1942 { 1943 struct btrfs_fs_info *fs_info = sctx->fs_info; 1944 struct scrub_stripe *stripe; 1945 const int nr_stripes = sctx->cur_stripe; 1946 int ret = 0; 1947 1948 if (!nr_stripes) 1949 return 0; 1950 1951 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state)); 1952 1953 /* Submit the stripes which are populated but not submitted. */ 1954 if (nr_stripes % SCRUB_STRIPES_PER_GROUP) { 1955 const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP); 1956 1957 submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot); 1958 } 1959 1960 for (int i = 0; i < nr_stripes; i++) { 1961 stripe = &sctx->stripes[i]; 1962 1963 wait_event(stripe->repair_wait, 1964 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); 1965 } 1966 1967 /* Submit for dev-replace. */ 1968 if (sctx->is_dev_replace) { 1969 /* 1970 * For dev-replace, if we know there is something wrong with 1971 * metadata, we should immediately abort. 1972 */ 1973 for (int i = 0; i < nr_stripes; i++) { 1974 if (stripe_has_metadata_error(&sctx->stripes[i])) { 1975 ret = -EIO; 1976 goto out; 1977 } 1978 } 1979 for (int i = 0; i < nr_stripes; i++) { 1980 unsigned long good; 1981 unsigned long has_extent; 1982 unsigned long error; 1983 1984 stripe = &sctx->stripes[i]; 1985 1986 ASSERT(stripe->dev == fs_info->dev_replace.srcdev); 1987 1988 has_extent = scrub_bitmap_read_has_extent(stripe); 1989 error = scrub_bitmap_read_error(stripe); 1990 bitmap_andnot(&good, &has_extent, &error, stripe->nr_sectors); 1991 scrub_write_sectors(sctx, stripe, good, true); 1992 } 1993 } 1994 1995 /* Wait for the above writebacks to finish. */ 1996 for (int i = 0; i < nr_stripes; i++) { 1997 stripe = &sctx->stripes[i]; 1998 1999 wait_scrub_stripe_io(stripe); 2000 spin_lock(&sctx->stat_lock); 2001 sctx->stat.last_physical = stripe->physical + stripe_length(stripe); 2002 spin_unlock(&sctx->stat_lock); 2003 scrub_reset_stripe(stripe); 2004 } 2005 out: 2006 sctx->cur_stripe = 0; 2007 return ret; 2008 } 2009 2010 static void raid56_scrub_wait_endio(struct bio *bio) 2011 { 2012 complete(bio->bi_private); 2013 } 2014 2015 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg, 2016 struct btrfs_device *dev, int mirror_num, 2017 u64 logical, u32 length, u64 physical, 2018 u64 *found_logical_ret) 2019 { 2020 struct scrub_stripe *stripe; 2021 int ret; 2022 2023 /* 2024 * There should always be one slot left, as caller filling the last 2025 * slot should flush them all. 2026 */ 2027 ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES); 2028 2029 /* @found_logical_ret must be specified. */ 2030 ASSERT(found_logical_ret); 2031 2032 stripe = &sctx->stripes[sctx->cur_stripe]; 2033 scrub_reset_stripe(stripe); 2034 ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path, 2035 &sctx->csum_path, dev, physical, 2036 mirror_num, logical, length, stripe); 2037 /* Either >0 as no more extents or <0 for error. */ 2038 if (ret) 2039 return ret; 2040 *found_logical_ret = stripe->logical; 2041 sctx->cur_stripe++; 2042 2043 /* We filled one group, submit it. */ 2044 if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) { 2045 const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP; 2046 2047 submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP); 2048 } 2049 2050 /* Last slot used, flush them all. */ 2051 if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES) 2052 return flush_scrub_stripes(sctx); 2053 return 0; 2054 } 2055 2056 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx, 2057 struct btrfs_device *scrub_dev, 2058 struct btrfs_block_group *bg, 2059 struct btrfs_chunk_map *map, 2060 u64 full_stripe_start) 2061 { 2062 DECLARE_COMPLETION_ONSTACK(io_done); 2063 struct btrfs_fs_info *fs_info = sctx->fs_info; 2064 struct btrfs_raid_bio *rbio; 2065 struct btrfs_io_context *bioc = NULL; 2066 struct btrfs_path extent_path = { 0 }; 2067 struct btrfs_path csum_path = { 0 }; 2068 struct bio *bio; 2069 struct scrub_stripe *stripe; 2070 bool all_empty = true; 2071 const int data_stripes = nr_data_stripes(map); 2072 unsigned long extent_bitmap = 0; 2073 u64 length = btrfs_stripe_nr_to_offset(data_stripes); 2074 int ret; 2075 2076 ASSERT(sctx->raid56_data_stripes); 2077 2078 /* 2079 * For data stripe search, we cannot reuse the same extent/csum paths, 2080 * as the data stripe bytenr may be smaller than previous extent. Thus 2081 * we have to use our own extent/csum paths. 2082 */ 2083 extent_path.search_commit_root = 1; 2084 extent_path.skip_locking = 1; 2085 csum_path.search_commit_root = 1; 2086 csum_path.skip_locking = 1; 2087 2088 for (int i = 0; i < data_stripes; i++) { 2089 int stripe_index; 2090 int rot; 2091 u64 physical; 2092 2093 stripe = &sctx->raid56_data_stripes[i]; 2094 rot = div_u64(full_stripe_start - bg->start, 2095 data_stripes) >> BTRFS_STRIPE_LEN_SHIFT; 2096 stripe_index = (i + rot) % map->num_stripes; 2097 physical = map->stripes[stripe_index].physical + 2098 btrfs_stripe_nr_to_offset(rot); 2099 2100 scrub_reset_stripe(stripe); 2101 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state); 2102 ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path, 2103 map->stripes[stripe_index].dev, physical, 1, 2104 full_stripe_start + btrfs_stripe_nr_to_offset(i), 2105 BTRFS_STRIPE_LEN, stripe); 2106 if (ret < 0) 2107 goto out; 2108 /* 2109 * No extent in this data stripe, need to manually mark them 2110 * initialized to make later read submission happy. 2111 */ 2112 if (ret > 0) { 2113 stripe->logical = full_stripe_start + 2114 btrfs_stripe_nr_to_offset(i); 2115 stripe->dev = map->stripes[stripe_index].dev; 2116 stripe->mirror_num = 1; 2117 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); 2118 } 2119 } 2120 2121 /* Check if all data stripes are empty. */ 2122 for (int i = 0; i < data_stripes; i++) { 2123 stripe = &sctx->raid56_data_stripes[i]; 2124 if (!scrub_bitmap_empty_has_extent(stripe)) { 2125 all_empty = false; 2126 break; 2127 } 2128 } 2129 if (all_empty) { 2130 ret = 0; 2131 goto out; 2132 } 2133 2134 for (int i = 0; i < data_stripes; i++) { 2135 stripe = &sctx->raid56_data_stripes[i]; 2136 scrub_submit_initial_read(sctx, stripe); 2137 } 2138 for (int i = 0; i < data_stripes; i++) { 2139 stripe = &sctx->raid56_data_stripes[i]; 2140 2141 wait_event(stripe->repair_wait, 2142 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); 2143 } 2144 /* For now, no zoned support for RAID56. */ 2145 ASSERT(!btrfs_is_zoned(sctx->fs_info)); 2146 2147 /* 2148 * Now all data stripes are properly verified. Check if we have any 2149 * unrepaired, if so abort immediately or we could further corrupt the 2150 * P/Q stripes. 2151 * 2152 * During the loop, also populate extent_bitmap. 2153 */ 2154 for (int i = 0; i < data_stripes; i++) { 2155 unsigned long error; 2156 unsigned long has_extent; 2157 2158 stripe = &sctx->raid56_data_stripes[i]; 2159 2160 error = scrub_bitmap_read_error(stripe); 2161 has_extent = scrub_bitmap_read_has_extent(stripe); 2162 2163 /* 2164 * We should only check the errors where there is an extent. 2165 * As we may hit an empty data stripe while it's missing. 2166 */ 2167 bitmap_and(&error, &error, &has_extent, stripe->nr_sectors); 2168 if (!bitmap_empty(&error, stripe->nr_sectors)) { 2169 btrfs_err(fs_info, 2170 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl", 2171 full_stripe_start, i, stripe->nr_sectors, 2172 &error); 2173 ret = -EIO; 2174 goto out; 2175 } 2176 bitmap_or(&extent_bitmap, &extent_bitmap, &has_extent, 2177 stripe->nr_sectors); 2178 } 2179 2180 /* Now we can check and regenerate the P/Q stripe. */ 2181 bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS); 2182 bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT; 2183 bio->bi_private = &io_done; 2184 bio->bi_end_io = raid56_scrub_wait_endio; 2185 2186 btrfs_bio_counter_inc_blocked(fs_info); 2187 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start, 2188 &length, &bioc, NULL, NULL); 2189 if (ret < 0) { 2190 btrfs_put_bioc(bioc); 2191 btrfs_bio_counter_dec(fs_info); 2192 goto out; 2193 } 2194 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap, 2195 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); 2196 btrfs_put_bioc(bioc); 2197 if (!rbio) { 2198 ret = -ENOMEM; 2199 btrfs_bio_counter_dec(fs_info); 2200 goto out; 2201 } 2202 /* Use the recovered stripes as cache to avoid read them from disk again. */ 2203 for (int i = 0; i < data_stripes; i++) { 2204 stripe = &sctx->raid56_data_stripes[i]; 2205 2206 raid56_parity_cache_data_pages(rbio, stripe->pages, 2207 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT)); 2208 } 2209 raid56_parity_submit_scrub_rbio(rbio); 2210 wait_for_completion_io(&io_done); 2211 ret = blk_status_to_errno(bio->bi_status); 2212 bio_put(bio); 2213 btrfs_bio_counter_dec(fs_info); 2214 2215 btrfs_release_path(&extent_path); 2216 btrfs_release_path(&csum_path); 2217 out: 2218 return ret; 2219 } 2220 2221 /* 2222 * Scrub one range which can only has simple mirror based profile. 2223 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in 2224 * RAID0/RAID10). 2225 * 2226 * Since we may need to handle a subset of block group, we need @logical_start 2227 * and @logical_length parameter. 2228 */ 2229 static int scrub_simple_mirror(struct scrub_ctx *sctx, 2230 struct btrfs_block_group *bg, 2231 u64 logical_start, u64 logical_length, 2232 struct btrfs_device *device, 2233 u64 physical, int mirror_num) 2234 { 2235 struct btrfs_fs_info *fs_info = sctx->fs_info; 2236 const u64 logical_end = logical_start + logical_length; 2237 u64 cur_logical = logical_start; 2238 int ret = 0; 2239 2240 /* The range must be inside the bg */ 2241 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); 2242 2243 /* Go through each extent items inside the logical range */ 2244 while (cur_logical < logical_end) { 2245 u64 found_logical = U64_MAX; 2246 u64 cur_physical = physical + cur_logical - logical_start; 2247 2248 /* Canceled? */ 2249 if (atomic_read(&fs_info->scrub_cancel_req) || 2250 atomic_read(&sctx->cancel_req)) { 2251 ret = -ECANCELED; 2252 break; 2253 } 2254 /* Paused? */ 2255 if (atomic_read(&fs_info->scrub_pause_req)) { 2256 /* Push queued extents */ 2257 scrub_blocked_if_needed(fs_info); 2258 } 2259 /* Block group removed? */ 2260 spin_lock(&bg->lock); 2261 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) { 2262 spin_unlock(&bg->lock); 2263 ret = 0; 2264 break; 2265 } 2266 spin_unlock(&bg->lock); 2267 2268 ret = queue_scrub_stripe(sctx, bg, device, mirror_num, 2269 cur_logical, logical_end - cur_logical, 2270 cur_physical, &found_logical); 2271 if (ret > 0) { 2272 /* No more extent, just update the accounting */ 2273 spin_lock(&sctx->stat_lock); 2274 sctx->stat.last_physical = physical + logical_length; 2275 spin_unlock(&sctx->stat_lock); 2276 ret = 0; 2277 break; 2278 } 2279 if (ret < 0) 2280 break; 2281 2282 /* queue_scrub_stripe() returned 0, @found_logical must be updated. */ 2283 ASSERT(found_logical != U64_MAX); 2284 cur_logical = found_logical + BTRFS_STRIPE_LEN; 2285 2286 /* Don't hold CPU for too long time */ 2287 cond_resched(); 2288 } 2289 return ret; 2290 } 2291 2292 /* Calculate the full stripe length for simple stripe based profiles */ 2293 static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map) 2294 { 2295 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2296 BTRFS_BLOCK_GROUP_RAID10)); 2297 2298 return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes); 2299 } 2300 2301 /* Get the logical bytenr for the stripe */ 2302 static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map, 2303 struct btrfs_block_group *bg, 2304 int stripe_index) 2305 { 2306 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2307 BTRFS_BLOCK_GROUP_RAID10)); 2308 ASSERT(stripe_index < map->num_stripes); 2309 2310 /* 2311 * (stripe_index / sub_stripes) gives how many data stripes we need to 2312 * skip. 2313 */ 2314 return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) + 2315 bg->start; 2316 } 2317 2318 /* Get the mirror number for the stripe */ 2319 static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index) 2320 { 2321 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2322 BTRFS_BLOCK_GROUP_RAID10)); 2323 ASSERT(stripe_index < map->num_stripes); 2324 2325 /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */ 2326 return stripe_index % map->sub_stripes + 1; 2327 } 2328 2329 static int scrub_simple_stripe(struct scrub_ctx *sctx, 2330 struct btrfs_block_group *bg, 2331 struct btrfs_chunk_map *map, 2332 struct btrfs_device *device, 2333 int stripe_index) 2334 { 2335 const u64 logical_increment = simple_stripe_full_stripe_len(map); 2336 const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index); 2337 const u64 orig_physical = map->stripes[stripe_index].physical; 2338 const int mirror_num = simple_stripe_mirror_num(map, stripe_index); 2339 u64 cur_logical = orig_logical; 2340 u64 cur_physical = orig_physical; 2341 int ret = 0; 2342 2343 while (cur_logical < bg->start + bg->length) { 2344 /* 2345 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is 2346 * just RAID1, so we can reuse scrub_simple_mirror() to scrub 2347 * this stripe. 2348 */ 2349 ret = scrub_simple_mirror(sctx, bg, cur_logical, 2350 BTRFS_STRIPE_LEN, device, cur_physical, 2351 mirror_num); 2352 if (ret) 2353 return ret; 2354 /* Skip to next stripe which belongs to the target device */ 2355 cur_logical += logical_increment; 2356 /* For physical offset, we just go to next stripe */ 2357 cur_physical += BTRFS_STRIPE_LEN; 2358 } 2359 return ret; 2360 } 2361 2362 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 2363 struct btrfs_block_group *bg, 2364 struct btrfs_chunk_map *map, 2365 struct btrfs_device *scrub_dev, 2366 int stripe_index) 2367 { 2368 struct btrfs_fs_info *fs_info = sctx->fs_info; 2369 const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; 2370 const u64 chunk_logical = bg->start; 2371 int ret; 2372 int ret2; 2373 u64 physical = map->stripes[stripe_index].physical; 2374 const u64 dev_stripe_len = btrfs_calc_stripe_length(map); 2375 const u64 physical_end = physical + dev_stripe_len; 2376 u64 logical; 2377 u64 logic_end; 2378 /* The logical increment after finishing one stripe */ 2379 u64 increment; 2380 /* Offset inside the chunk */ 2381 u64 offset; 2382 u64 stripe_logical; 2383 2384 /* Extent_path should be released by now. */ 2385 ASSERT(sctx->extent_path.nodes[0] == NULL); 2386 2387 scrub_blocked_if_needed(fs_info); 2388 2389 if (sctx->is_dev_replace && 2390 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) { 2391 mutex_lock(&sctx->wr_lock); 2392 sctx->write_pointer = physical; 2393 mutex_unlock(&sctx->wr_lock); 2394 } 2395 2396 /* Prepare the extra data stripes used by RAID56. */ 2397 if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) { 2398 ASSERT(sctx->raid56_data_stripes == NULL); 2399 2400 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map), 2401 sizeof(struct scrub_stripe), 2402 GFP_KERNEL); 2403 if (!sctx->raid56_data_stripes) { 2404 ret = -ENOMEM; 2405 goto out; 2406 } 2407 for (int i = 0; i < nr_data_stripes(map); i++) { 2408 ret = init_scrub_stripe(fs_info, 2409 &sctx->raid56_data_stripes[i]); 2410 if (ret < 0) 2411 goto out; 2412 sctx->raid56_data_stripes[i].bg = bg; 2413 sctx->raid56_data_stripes[i].sctx = sctx; 2414 } 2415 } 2416 /* 2417 * There used to be a big double loop to handle all profiles using the 2418 * same routine, which grows larger and more gross over time. 2419 * 2420 * So here we handle each profile differently, so simpler profiles 2421 * have simpler scrubbing function. 2422 */ 2423 if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 | 2424 BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2425 /* 2426 * Above check rules out all complex profile, the remaining 2427 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple 2428 * mirrored duplication without stripe. 2429 * 2430 * Only @physical and @mirror_num needs to calculated using 2431 * @stripe_index. 2432 */ 2433 ret = scrub_simple_mirror(sctx, bg, bg->start, bg->length, 2434 scrub_dev, map->stripes[stripe_index].physical, 2435 stripe_index + 1); 2436 offset = 0; 2437 goto out; 2438 } 2439 if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 2440 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index); 2441 offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes); 2442 goto out; 2443 } 2444 2445 /* Only RAID56 goes through the old code */ 2446 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK); 2447 ret = 0; 2448 2449 /* Calculate the logical end of the stripe */ 2450 get_raid56_logic_offset(physical_end, stripe_index, 2451 map, &logic_end, NULL); 2452 logic_end += chunk_logical; 2453 2454 /* Initialize @offset in case we need to go to out: label */ 2455 get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL); 2456 increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 2457 2458 /* 2459 * Due to the rotation, for RAID56 it's better to iterate each stripe 2460 * using their physical offset. 2461 */ 2462 while (physical < physical_end) { 2463 ret = get_raid56_logic_offset(physical, stripe_index, map, 2464 &logical, &stripe_logical); 2465 logical += chunk_logical; 2466 if (ret) { 2467 /* it is parity strip */ 2468 stripe_logical += chunk_logical; 2469 ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg, 2470 map, stripe_logical); 2471 spin_lock(&sctx->stat_lock); 2472 sctx->stat.last_physical = min(physical + BTRFS_STRIPE_LEN, 2473 physical_end); 2474 spin_unlock(&sctx->stat_lock); 2475 if (ret) 2476 goto out; 2477 goto next; 2478 } 2479 2480 /* 2481 * Now we're at a data stripe, scrub each extents in the range. 2482 * 2483 * At this stage, if we ignore the repair part, inside each data 2484 * stripe it is no different than SINGLE profile. 2485 * We can reuse scrub_simple_mirror() here, as the repair part 2486 * is still based on @mirror_num. 2487 */ 2488 ret = scrub_simple_mirror(sctx, bg, logical, BTRFS_STRIPE_LEN, 2489 scrub_dev, physical, 1); 2490 if (ret < 0) 2491 goto out; 2492 next: 2493 logical += increment; 2494 physical += BTRFS_STRIPE_LEN; 2495 spin_lock(&sctx->stat_lock); 2496 sctx->stat.last_physical = physical; 2497 spin_unlock(&sctx->stat_lock); 2498 } 2499 out: 2500 ret2 = flush_scrub_stripes(sctx); 2501 if (!ret) 2502 ret = ret2; 2503 btrfs_release_path(&sctx->extent_path); 2504 btrfs_release_path(&sctx->csum_path); 2505 2506 if (sctx->raid56_data_stripes) { 2507 for (int i = 0; i < nr_data_stripes(map); i++) 2508 release_scrub_stripe(&sctx->raid56_data_stripes[i]); 2509 kfree(sctx->raid56_data_stripes); 2510 sctx->raid56_data_stripes = NULL; 2511 } 2512 2513 if (sctx->is_dev_replace && ret >= 0) { 2514 int ret2; 2515 2516 ret2 = sync_write_pointer_for_zoned(sctx, 2517 chunk_logical + offset, 2518 map->stripes[stripe_index].physical, 2519 physical_end); 2520 if (ret2) 2521 ret = ret2; 2522 } 2523 2524 return ret < 0 ? ret : 0; 2525 } 2526 2527 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 2528 struct btrfs_block_group *bg, 2529 struct btrfs_device *scrub_dev, 2530 u64 dev_offset, 2531 u64 dev_extent_len) 2532 { 2533 struct btrfs_fs_info *fs_info = sctx->fs_info; 2534 struct btrfs_chunk_map *map; 2535 int i; 2536 int ret = 0; 2537 2538 map = btrfs_find_chunk_map(fs_info, bg->start, bg->length); 2539 if (!map) { 2540 /* 2541 * Might have been an unused block group deleted by the cleaner 2542 * kthread or relocation. 2543 */ 2544 spin_lock(&bg->lock); 2545 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) 2546 ret = -EINVAL; 2547 spin_unlock(&bg->lock); 2548 2549 return ret; 2550 } 2551 if (map->start != bg->start) 2552 goto out; 2553 if (map->chunk_len < dev_extent_len) 2554 goto out; 2555 2556 for (i = 0; i < map->num_stripes; ++i) { 2557 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 2558 map->stripes[i].physical == dev_offset) { 2559 ret = scrub_stripe(sctx, bg, map, scrub_dev, i); 2560 if (ret) 2561 goto out; 2562 } 2563 } 2564 out: 2565 btrfs_free_chunk_map(map); 2566 2567 return ret; 2568 } 2569 2570 static int finish_extent_writes_for_zoned(struct btrfs_root *root, 2571 struct btrfs_block_group *cache) 2572 { 2573 struct btrfs_fs_info *fs_info = cache->fs_info; 2574 2575 if (!btrfs_is_zoned(fs_info)) 2576 return 0; 2577 2578 btrfs_wait_block_group_reservations(cache); 2579 btrfs_wait_nocow_writers(cache); 2580 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache); 2581 2582 return btrfs_commit_current_transaction(root); 2583 } 2584 2585 static noinline_for_stack 2586 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 2587 struct btrfs_device *scrub_dev, u64 start, u64 end) 2588 { 2589 struct btrfs_dev_extent *dev_extent = NULL; 2590 struct btrfs_path *path; 2591 struct btrfs_fs_info *fs_info = sctx->fs_info; 2592 struct btrfs_root *root = fs_info->dev_root; 2593 u64 chunk_offset; 2594 int ret = 0; 2595 int ro_set; 2596 int slot; 2597 struct extent_buffer *l; 2598 struct btrfs_key key; 2599 struct btrfs_key found_key; 2600 struct btrfs_block_group *cache; 2601 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 2602 2603 path = btrfs_alloc_path(); 2604 if (!path) 2605 return -ENOMEM; 2606 2607 path->reada = READA_FORWARD; 2608 path->search_commit_root = 1; 2609 path->skip_locking = 1; 2610 2611 key.objectid = scrub_dev->devid; 2612 key.type = BTRFS_DEV_EXTENT_KEY; 2613 key.offset = 0ull; 2614 2615 while (1) { 2616 u64 dev_extent_len; 2617 2618 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2619 if (ret < 0) 2620 break; 2621 if (ret > 0) { 2622 if (path->slots[0] >= 2623 btrfs_header_nritems(path->nodes[0])) { 2624 ret = btrfs_next_leaf(root, path); 2625 if (ret < 0) 2626 break; 2627 if (ret > 0) { 2628 ret = 0; 2629 break; 2630 } 2631 } else { 2632 ret = 0; 2633 } 2634 } 2635 2636 l = path->nodes[0]; 2637 slot = path->slots[0]; 2638 2639 btrfs_item_key_to_cpu(l, &found_key, slot); 2640 2641 if (found_key.objectid != scrub_dev->devid) 2642 break; 2643 2644 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 2645 break; 2646 2647 if (found_key.offset >= end) 2648 break; 2649 2650 if (found_key.offset < key.offset) 2651 break; 2652 2653 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 2654 dev_extent_len = btrfs_dev_extent_length(l, dev_extent); 2655 2656 if (found_key.offset + dev_extent_len <= start) 2657 goto skip; 2658 2659 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 2660 2661 /* 2662 * get a reference on the corresponding block group to prevent 2663 * the chunk from going away while we scrub it 2664 */ 2665 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2666 2667 /* some chunks are removed but not committed to disk yet, 2668 * continue scrubbing */ 2669 if (!cache) 2670 goto skip; 2671 2672 ASSERT(cache->start <= chunk_offset); 2673 /* 2674 * We are using the commit root to search for device extents, so 2675 * that means we could have found a device extent item from a 2676 * block group that was deleted in the current transaction. The 2677 * logical start offset of the deleted block group, stored at 2678 * @chunk_offset, might be part of the logical address range of 2679 * a new block group (which uses different physical extents). 2680 * In this case btrfs_lookup_block_group() has returned the new 2681 * block group, and its start address is less than @chunk_offset. 2682 * 2683 * We skip such new block groups, because it's pointless to 2684 * process them, as we won't find their extents because we search 2685 * for them using the commit root of the extent tree. For a device 2686 * replace it's also fine to skip it, we won't miss copying them 2687 * to the target device because we have the write duplication 2688 * setup through the regular write path (by btrfs_map_block()), 2689 * and we have committed a transaction when we started the device 2690 * replace, right after setting up the device replace state. 2691 */ 2692 if (cache->start < chunk_offset) { 2693 btrfs_put_block_group(cache); 2694 goto skip; 2695 } 2696 2697 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) { 2698 if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) { 2699 btrfs_put_block_group(cache); 2700 goto skip; 2701 } 2702 } 2703 2704 /* 2705 * Make sure that while we are scrubbing the corresponding block 2706 * group doesn't get its logical address and its device extents 2707 * reused for another block group, which can possibly be of a 2708 * different type and different profile. We do this to prevent 2709 * false error detections and crashes due to bogus attempts to 2710 * repair extents. 2711 */ 2712 spin_lock(&cache->lock); 2713 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) { 2714 spin_unlock(&cache->lock); 2715 btrfs_put_block_group(cache); 2716 goto skip; 2717 } 2718 btrfs_freeze_block_group(cache); 2719 spin_unlock(&cache->lock); 2720 2721 /* 2722 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 2723 * to avoid deadlock caused by: 2724 * btrfs_inc_block_group_ro() 2725 * -> btrfs_wait_for_commit() 2726 * -> btrfs_commit_transaction() 2727 * -> btrfs_scrub_pause() 2728 */ 2729 scrub_pause_on(fs_info); 2730 2731 /* 2732 * Don't do chunk preallocation for scrub. 2733 * 2734 * This is especially important for SYSTEM bgs, or we can hit 2735 * -EFBIG from btrfs_finish_chunk_alloc() like: 2736 * 1. The only SYSTEM bg is marked RO. 2737 * Since SYSTEM bg is small, that's pretty common. 2738 * 2. New SYSTEM bg will be allocated 2739 * Due to regular version will allocate new chunk. 2740 * 3. New SYSTEM bg is empty and will get cleaned up 2741 * Before cleanup really happens, it's marked RO again. 2742 * 4. Empty SYSTEM bg get scrubbed 2743 * We go back to 2. 2744 * 2745 * This can easily boost the amount of SYSTEM chunks if cleaner 2746 * thread can't be triggered fast enough, and use up all space 2747 * of btrfs_super_block::sys_chunk_array 2748 * 2749 * While for dev replace, we need to try our best to mark block 2750 * group RO, to prevent race between: 2751 * - Write duplication 2752 * Contains latest data 2753 * - Scrub copy 2754 * Contains data from commit tree 2755 * 2756 * If target block group is not marked RO, nocow writes can 2757 * be overwritten by scrub copy, causing data corruption. 2758 * So for dev-replace, it's not allowed to continue if a block 2759 * group is not RO. 2760 */ 2761 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); 2762 if (!ret && sctx->is_dev_replace) { 2763 ret = finish_extent_writes_for_zoned(root, cache); 2764 if (ret) { 2765 btrfs_dec_block_group_ro(cache); 2766 scrub_pause_off(fs_info); 2767 btrfs_put_block_group(cache); 2768 break; 2769 } 2770 } 2771 2772 if (ret == 0) { 2773 ro_set = 1; 2774 } else if (ret == -ENOSPC && !sctx->is_dev_replace && 2775 !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) { 2776 /* 2777 * btrfs_inc_block_group_ro return -ENOSPC when it 2778 * failed in creating new chunk for metadata. 2779 * It is not a problem for scrub, because 2780 * metadata are always cowed, and our scrub paused 2781 * commit_transactions. 2782 * 2783 * For RAID56 chunks, we have to mark them read-only 2784 * for scrub, as later we would use our own cache 2785 * out of RAID56 realm. 2786 * Thus we want the RAID56 bg to be marked RO to 2787 * prevent RMW from screwing up out cache. 2788 */ 2789 ro_set = 0; 2790 } else if (ret == -ETXTBSY) { 2791 btrfs_warn(fs_info, 2792 "skipping scrub of block group %llu due to active swapfile", 2793 cache->start); 2794 scrub_pause_off(fs_info); 2795 ret = 0; 2796 goto skip_unfreeze; 2797 } else { 2798 btrfs_warn(fs_info, 2799 "failed setting block group ro: %d", ret); 2800 btrfs_unfreeze_block_group(cache); 2801 btrfs_put_block_group(cache); 2802 scrub_pause_off(fs_info); 2803 break; 2804 } 2805 2806 /* 2807 * Now the target block is marked RO, wait for nocow writes to 2808 * finish before dev-replace. 2809 * COW is fine, as COW never overwrites extents in commit tree. 2810 */ 2811 if (sctx->is_dev_replace) { 2812 btrfs_wait_nocow_writers(cache); 2813 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache); 2814 } 2815 2816 scrub_pause_off(fs_info); 2817 down_write(&dev_replace->rwsem); 2818 dev_replace->cursor_right = found_key.offset + dev_extent_len; 2819 dev_replace->cursor_left = found_key.offset; 2820 dev_replace->item_needs_writeback = 1; 2821 up_write(&dev_replace->rwsem); 2822 2823 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset, 2824 dev_extent_len); 2825 if (sctx->is_dev_replace && 2826 !btrfs_finish_block_group_to_copy(dev_replace->srcdev, 2827 cache, found_key.offset)) 2828 ro_set = 0; 2829 2830 down_write(&dev_replace->rwsem); 2831 dev_replace->cursor_left = dev_replace->cursor_right; 2832 dev_replace->item_needs_writeback = 1; 2833 up_write(&dev_replace->rwsem); 2834 2835 if (ro_set) 2836 btrfs_dec_block_group_ro(cache); 2837 2838 /* 2839 * We might have prevented the cleaner kthread from deleting 2840 * this block group if it was already unused because we raced 2841 * and set it to RO mode first. So add it back to the unused 2842 * list, otherwise it might not ever be deleted unless a manual 2843 * balance is triggered or it becomes used and unused again. 2844 */ 2845 spin_lock(&cache->lock); 2846 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) && 2847 !cache->ro && cache->reserved == 0 && cache->used == 0) { 2848 spin_unlock(&cache->lock); 2849 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) 2850 btrfs_discard_queue_work(&fs_info->discard_ctl, 2851 cache); 2852 else 2853 btrfs_mark_bg_unused(cache); 2854 } else { 2855 spin_unlock(&cache->lock); 2856 } 2857 skip_unfreeze: 2858 btrfs_unfreeze_block_group(cache); 2859 btrfs_put_block_group(cache); 2860 if (ret) 2861 break; 2862 if (sctx->is_dev_replace && 2863 atomic64_read(&dev_replace->num_write_errors) > 0) { 2864 ret = -EIO; 2865 break; 2866 } 2867 if (sctx->stat.malloc_errors > 0) { 2868 ret = -ENOMEM; 2869 break; 2870 } 2871 skip: 2872 key.offset = found_key.offset + dev_extent_len; 2873 btrfs_release_path(path); 2874 } 2875 2876 btrfs_free_path(path); 2877 2878 return ret; 2879 } 2880 2881 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev, 2882 struct page *page, u64 physical, u64 generation) 2883 { 2884 struct btrfs_fs_info *fs_info = sctx->fs_info; 2885 struct btrfs_super_block *sb = page_address(page); 2886 int ret; 2887 2888 ret = bdev_rw_virt(dev->bdev, physical >> SECTOR_SHIFT, sb, 2889 BTRFS_SUPER_INFO_SIZE, REQ_OP_READ); 2890 if (ret < 0) 2891 return ret; 2892 ret = btrfs_check_super_csum(fs_info, sb); 2893 if (ret != 0) { 2894 btrfs_err_rl(fs_info, 2895 "super block at physical %llu devid %llu has bad csum", 2896 physical, dev->devid); 2897 return -EIO; 2898 } 2899 if (btrfs_super_generation(sb) != generation) { 2900 btrfs_err_rl(fs_info, 2901 "super block at physical %llu devid %llu has bad generation %llu expect %llu", 2902 physical, dev->devid, 2903 btrfs_super_generation(sb), generation); 2904 return -EUCLEAN; 2905 } 2906 2907 return btrfs_validate_super(fs_info, sb, -1); 2908 } 2909 2910 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 2911 struct btrfs_device *scrub_dev) 2912 { 2913 int i; 2914 u64 bytenr; 2915 u64 gen; 2916 int ret = 0; 2917 struct page *page; 2918 struct btrfs_fs_info *fs_info = sctx->fs_info; 2919 2920 if (BTRFS_FS_ERROR(fs_info)) 2921 return -EROFS; 2922 2923 page = alloc_page(GFP_KERNEL); 2924 if (!page) { 2925 spin_lock(&sctx->stat_lock); 2926 sctx->stat.malloc_errors++; 2927 spin_unlock(&sctx->stat_lock); 2928 return -ENOMEM; 2929 } 2930 2931 /* Seed devices of a new filesystem has their own generation. */ 2932 if (scrub_dev->fs_devices != fs_info->fs_devices) 2933 gen = scrub_dev->generation; 2934 else 2935 gen = btrfs_get_last_trans_committed(fs_info); 2936 2937 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2938 ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr); 2939 if (ret == -ENOENT) 2940 break; 2941 2942 if (ret) { 2943 spin_lock(&sctx->stat_lock); 2944 sctx->stat.super_errors++; 2945 spin_unlock(&sctx->stat_lock); 2946 continue; 2947 } 2948 2949 if (bytenr + BTRFS_SUPER_INFO_SIZE > 2950 scrub_dev->commit_total_bytes) 2951 break; 2952 if (!btrfs_check_super_location(scrub_dev, bytenr)) 2953 continue; 2954 2955 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen); 2956 if (ret) { 2957 spin_lock(&sctx->stat_lock); 2958 sctx->stat.super_errors++; 2959 spin_unlock(&sctx->stat_lock); 2960 } 2961 } 2962 __free_page(page); 2963 return 0; 2964 } 2965 2966 static void scrub_workers_put(struct btrfs_fs_info *fs_info) 2967 { 2968 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, 2969 &fs_info->scrub_lock)) { 2970 struct workqueue_struct *scrub_workers = fs_info->scrub_workers; 2971 2972 fs_info->scrub_workers = NULL; 2973 mutex_unlock(&fs_info->scrub_lock); 2974 2975 if (scrub_workers) 2976 destroy_workqueue(scrub_workers); 2977 } 2978 } 2979 2980 /* 2981 * get a reference count on fs_info->scrub_workers. start worker if necessary 2982 */ 2983 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info) 2984 { 2985 struct workqueue_struct *scrub_workers = NULL; 2986 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 2987 int max_active = fs_info->thread_pool_size; 2988 int ret = -ENOMEM; 2989 2990 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) 2991 return 0; 2992 2993 scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active); 2994 if (!scrub_workers) 2995 return -ENOMEM; 2996 2997 mutex_lock(&fs_info->scrub_lock); 2998 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { 2999 ASSERT(fs_info->scrub_workers == NULL); 3000 fs_info->scrub_workers = scrub_workers; 3001 refcount_set(&fs_info->scrub_workers_refcnt, 1); 3002 mutex_unlock(&fs_info->scrub_lock); 3003 return 0; 3004 } 3005 /* Other thread raced in and created the workers for us */ 3006 refcount_inc(&fs_info->scrub_workers_refcnt); 3007 mutex_unlock(&fs_info->scrub_lock); 3008 3009 ret = 0; 3010 3011 destroy_workqueue(scrub_workers); 3012 return ret; 3013 } 3014 3015 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3016 u64 end, struct btrfs_scrub_progress *progress, 3017 int readonly, int is_dev_replace) 3018 { 3019 struct btrfs_dev_lookup_args args = { .devid = devid }; 3020 struct scrub_ctx *sctx; 3021 int ret; 3022 struct btrfs_device *dev; 3023 unsigned int nofs_flag; 3024 bool need_commit = false; 3025 3026 if (btrfs_fs_closing(fs_info)) 3027 return -EAGAIN; 3028 3029 /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */ 3030 ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN); 3031 3032 /* 3033 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible 3034 * value (max nodesize / min sectorsize), thus nodesize should always 3035 * be fine. 3036 */ 3037 ASSERT(fs_info->nodesize <= 3038 SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits); 3039 3040 /* Allocate outside of device_list_mutex */ 3041 sctx = scrub_setup_ctx(fs_info, is_dev_replace); 3042 if (IS_ERR(sctx)) 3043 return PTR_ERR(sctx); 3044 3045 ret = scrub_workers_get(fs_info); 3046 if (ret) 3047 goto out_free_ctx; 3048 3049 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3050 dev = btrfs_find_device(fs_info->fs_devices, &args); 3051 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 3052 !is_dev_replace)) { 3053 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3054 ret = -ENODEV; 3055 goto out; 3056 } 3057 3058 if (!is_dev_replace && !readonly && 3059 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 3060 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3061 btrfs_err_in_rcu(fs_info, 3062 "scrub on devid %llu: filesystem on %s is not writable", 3063 devid, btrfs_dev_name(dev)); 3064 ret = -EROFS; 3065 goto out; 3066 } 3067 3068 mutex_lock(&fs_info->scrub_lock); 3069 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3070 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { 3071 mutex_unlock(&fs_info->scrub_lock); 3072 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3073 ret = -EIO; 3074 goto out; 3075 } 3076 3077 down_read(&fs_info->dev_replace.rwsem); 3078 if (dev->scrub_ctx || 3079 (!is_dev_replace && 3080 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 3081 up_read(&fs_info->dev_replace.rwsem); 3082 mutex_unlock(&fs_info->scrub_lock); 3083 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3084 ret = -EINPROGRESS; 3085 goto out; 3086 } 3087 up_read(&fs_info->dev_replace.rwsem); 3088 3089 sctx->readonly = readonly; 3090 dev->scrub_ctx = sctx; 3091 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3092 3093 /* 3094 * checking @scrub_pause_req here, we can avoid 3095 * race between committing transaction and scrubbing. 3096 */ 3097 __scrub_blocked_if_needed(fs_info); 3098 atomic_inc(&fs_info->scrubs_running); 3099 mutex_unlock(&fs_info->scrub_lock); 3100 3101 /* 3102 * In order to avoid deadlock with reclaim when there is a transaction 3103 * trying to pause scrub, make sure we use GFP_NOFS for all the 3104 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity() 3105 * invoked by our callees. The pausing request is done when the 3106 * transaction commit starts, and it blocks the transaction until scrub 3107 * is paused (done at specific points at scrub_stripe() or right above 3108 * before incrementing fs_info->scrubs_running). 3109 */ 3110 nofs_flag = memalloc_nofs_save(); 3111 if (!is_dev_replace) { 3112 u64 old_super_errors; 3113 3114 spin_lock(&sctx->stat_lock); 3115 old_super_errors = sctx->stat.super_errors; 3116 spin_unlock(&sctx->stat_lock); 3117 3118 btrfs_info(fs_info, "scrub: started on devid %llu", devid); 3119 /* 3120 * by holding device list mutex, we can 3121 * kick off writing super in log tree sync. 3122 */ 3123 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3124 ret = scrub_supers(sctx, dev); 3125 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3126 3127 spin_lock(&sctx->stat_lock); 3128 /* 3129 * Super block errors found, but we can not commit transaction 3130 * at current context, since btrfs_commit_transaction() needs 3131 * to pause the current running scrub (hold by ourselves). 3132 */ 3133 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly) 3134 need_commit = true; 3135 spin_unlock(&sctx->stat_lock); 3136 } 3137 3138 if (!ret) 3139 ret = scrub_enumerate_chunks(sctx, dev, start, end); 3140 memalloc_nofs_restore(nofs_flag); 3141 3142 atomic_dec(&fs_info->scrubs_running); 3143 wake_up(&fs_info->scrub_pause_wait); 3144 3145 if (progress) 3146 memcpy(progress, &sctx->stat, sizeof(*progress)); 3147 3148 if (!is_dev_replace) 3149 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", 3150 ret ? "not finished" : "finished", devid, ret); 3151 3152 mutex_lock(&fs_info->scrub_lock); 3153 dev->scrub_ctx = NULL; 3154 mutex_unlock(&fs_info->scrub_lock); 3155 3156 scrub_workers_put(fs_info); 3157 scrub_put_ctx(sctx); 3158 3159 /* 3160 * We found some super block errors before, now try to force a 3161 * transaction commit, as scrub has finished. 3162 */ 3163 if (need_commit) { 3164 struct btrfs_trans_handle *trans; 3165 3166 trans = btrfs_start_transaction(fs_info->tree_root, 0); 3167 if (IS_ERR(trans)) { 3168 ret = PTR_ERR(trans); 3169 btrfs_err(fs_info, 3170 "scrub: failed to start transaction to fix super block errors: %d", ret); 3171 return ret; 3172 } 3173 ret = btrfs_commit_transaction(trans); 3174 if (ret < 0) 3175 btrfs_err(fs_info, 3176 "scrub: failed to commit transaction to fix super block errors: %d", ret); 3177 } 3178 return ret; 3179 out: 3180 scrub_workers_put(fs_info); 3181 out_free_ctx: 3182 scrub_free_ctx(sctx); 3183 3184 return ret; 3185 } 3186 3187 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 3188 { 3189 mutex_lock(&fs_info->scrub_lock); 3190 atomic_inc(&fs_info->scrub_pause_req); 3191 while (atomic_read(&fs_info->scrubs_paused) != 3192 atomic_read(&fs_info->scrubs_running)) { 3193 mutex_unlock(&fs_info->scrub_lock); 3194 wait_event(fs_info->scrub_pause_wait, 3195 atomic_read(&fs_info->scrubs_paused) == 3196 atomic_read(&fs_info->scrubs_running)); 3197 mutex_lock(&fs_info->scrub_lock); 3198 } 3199 mutex_unlock(&fs_info->scrub_lock); 3200 } 3201 3202 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 3203 { 3204 atomic_dec(&fs_info->scrub_pause_req); 3205 wake_up(&fs_info->scrub_pause_wait); 3206 } 3207 3208 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 3209 { 3210 mutex_lock(&fs_info->scrub_lock); 3211 if (!atomic_read(&fs_info->scrubs_running)) { 3212 mutex_unlock(&fs_info->scrub_lock); 3213 return -ENOTCONN; 3214 } 3215 3216 atomic_inc(&fs_info->scrub_cancel_req); 3217 while (atomic_read(&fs_info->scrubs_running)) { 3218 mutex_unlock(&fs_info->scrub_lock); 3219 wait_event(fs_info->scrub_pause_wait, 3220 atomic_read(&fs_info->scrubs_running) == 0); 3221 mutex_lock(&fs_info->scrub_lock); 3222 } 3223 atomic_dec(&fs_info->scrub_cancel_req); 3224 mutex_unlock(&fs_info->scrub_lock); 3225 3226 return 0; 3227 } 3228 3229 int btrfs_scrub_cancel_dev(struct btrfs_device *dev) 3230 { 3231 struct btrfs_fs_info *fs_info = dev->fs_info; 3232 struct scrub_ctx *sctx; 3233 3234 mutex_lock(&fs_info->scrub_lock); 3235 sctx = dev->scrub_ctx; 3236 if (!sctx) { 3237 mutex_unlock(&fs_info->scrub_lock); 3238 return -ENOTCONN; 3239 } 3240 atomic_inc(&sctx->cancel_req); 3241 while (dev->scrub_ctx) { 3242 mutex_unlock(&fs_info->scrub_lock); 3243 wait_event(fs_info->scrub_pause_wait, 3244 dev->scrub_ctx == NULL); 3245 mutex_lock(&fs_info->scrub_lock); 3246 } 3247 mutex_unlock(&fs_info->scrub_lock); 3248 3249 return 0; 3250 } 3251 3252 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3253 struct btrfs_scrub_progress *progress) 3254 { 3255 struct btrfs_dev_lookup_args args = { .devid = devid }; 3256 struct btrfs_device *dev; 3257 struct scrub_ctx *sctx = NULL; 3258 3259 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3260 dev = btrfs_find_device(fs_info->fs_devices, &args); 3261 if (dev) 3262 sctx = dev->scrub_ctx; 3263 if (sctx) 3264 memcpy(progress, &sctx->stat, sizeof(*progress)); 3265 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3266 3267 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 3268 } 3269