1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/ratelimit.h> 8 #include <linux/sched/mm.h> 9 #include <crypto/hash.h> 10 #include "ctree.h" 11 #include "discard.h" 12 #include "volumes.h" 13 #include "disk-io.h" 14 #include "ordered-data.h" 15 #include "transaction.h" 16 #include "backref.h" 17 #include "extent_io.h" 18 #include "dev-replace.h" 19 #include "check-integrity.h" 20 #include "rcu-string.h" 21 #include "raid56.h" 22 #include "block-group.h" 23 #include "zoned.h" 24 25 /* 26 * This is only the first step towards a full-features scrub. It reads all 27 * extent and super block and verifies the checksums. In case a bad checksum 28 * is found or the extent cannot be read, good data will be written back if 29 * any can be found. 30 * 31 * Future enhancements: 32 * - In case an unrepairable extent is encountered, track which files are 33 * affected and report them 34 * - track and record media errors, throw out bad devices 35 * - add a mode to also read unallocated space 36 */ 37 38 struct scrub_block; 39 struct scrub_ctx; 40 41 /* 42 * the following three values only influence the performance. 43 * The last one configures the number of parallel and outstanding I/O 44 * operations. The first two values configure an upper limit for the number 45 * of (dynamically allocated) pages that are added to a bio. 46 */ 47 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 48 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 49 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 50 51 /* 52 * the following value times PAGE_SIZE needs to be large enough to match the 53 * largest node/leaf/sector size that shall be supported. 54 * Values larger than BTRFS_STRIPE_LEN are not supported. 55 */ 56 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 57 58 struct scrub_recover { 59 refcount_t refs; 60 struct btrfs_bio *bbio; 61 u64 map_length; 62 }; 63 64 struct scrub_page { 65 struct scrub_block *sblock; 66 struct page *page; 67 struct btrfs_device *dev; 68 struct list_head list; 69 u64 flags; /* extent flags */ 70 u64 generation; 71 u64 logical; 72 u64 physical; 73 u64 physical_for_dev_replace; 74 atomic_t refs; 75 u8 mirror_num; 76 int have_csum:1; 77 int io_error:1; 78 u8 csum[BTRFS_CSUM_SIZE]; 79 80 struct scrub_recover *recover; 81 }; 82 83 struct scrub_bio { 84 int index; 85 struct scrub_ctx *sctx; 86 struct btrfs_device *dev; 87 struct bio *bio; 88 blk_status_t status; 89 u64 logical; 90 u64 physical; 91 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 92 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 93 #else 94 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 95 #endif 96 int page_count; 97 int next_free; 98 struct btrfs_work work; 99 }; 100 101 struct scrub_block { 102 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 103 int page_count; 104 atomic_t outstanding_pages; 105 refcount_t refs; /* free mem on transition to zero */ 106 struct scrub_ctx *sctx; 107 struct scrub_parity *sparity; 108 struct { 109 unsigned int header_error:1; 110 unsigned int checksum_error:1; 111 unsigned int no_io_error_seen:1; 112 unsigned int generation_error:1; /* also sets header_error */ 113 114 /* The following is for the data used to check parity */ 115 /* It is for the data with checksum */ 116 unsigned int data_corrected:1; 117 }; 118 struct btrfs_work work; 119 }; 120 121 /* Used for the chunks with parity stripe such RAID5/6 */ 122 struct scrub_parity { 123 struct scrub_ctx *sctx; 124 125 struct btrfs_device *scrub_dev; 126 127 u64 logic_start; 128 129 u64 logic_end; 130 131 int nsectors; 132 133 u32 stripe_len; 134 135 refcount_t refs; 136 137 struct list_head spages; 138 139 /* Work of parity check and repair */ 140 struct btrfs_work work; 141 142 /* Mark the parity blocks which have data */ 143 unsigned long *dbitmap; 144 145 /* 146 * Mark the parity blocks which have data, but errors happen when 147 * read data or check data 148 */ 149 unsigned long *ebitmap; 150 151 unsigned long bitmap[]; 152 }; 153 154 struct scrub_ctx { 155 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 156 struct btrfs_fs_info *fs_info; 157 int first_free; 158 int curr; 159 atomic_t bios_in_flight; 160 atomic_t workers_pending; 161 spinlock_t list_lock; 162 wait_queue_head_t list_wait; 163 struct list_head csum_list; 164 atomic_t cancel_req; 165 int readonly; 166 int pages_per_rd_bio; 167 168 int is_dev_replace; 169 u64 write_pointer; 170 171 struct scrub_bio *wr_curr_bio; 172 struct mutex wr_lock; 173 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 174 struct btrfs_device *wr_tgtdev; 175 bool flush_all_writes; 176 177 /* 178 * statistics 179 */ 180 struct btrfs_scrub_progress stat; 181 spinlock_t stat_lock; 182 183 /* 184 * Use a ref counter to avoid use-after-free issues. Scrub workers 185 * decrement bios_in_flight and workers_pending and then do a wakeup 186 * on the list_wait wait queue. We must ensure the main scrub task 187 * doesn't free the scrub context before or while the workers are 188 * doing the wakeup() call. 189 */ 190 refcount_t refs; 191 }; 192 193 struct scrub_warning { 194 struct btrfs_path *path; 195 u64 extent_item_size; 196 const char *errstr; 197 u64 physical; 198 u64 logical; 199 struct btrfs_device *dev; 200 }; 201 202 struct full_stripe_lock { 203 struct rb_node node; 204 u64 logical; 205 u64 refs; 206 struct mutex mutex; 207 }; 208 209 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 210 struct scrub_block *sblocks_for_recheck); 211 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 212 struct scrub_block *sblock, 213 int retry_failed_mirror); 214 static void scrub_recheck_block_checksum(struct scrub_block *sblock); 215 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 216 struct scrub_block *sblock_good); 217 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 218 struct scrub_block *sblock_good, 219 int page_num, int force_write); 220 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 221 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 222 int page_num); 223 static int scrub_checksum_data(struct scrub_block *sblock); 224 static int scrub_checksum_tree_block(struct scrub_block *sblock); 225 static int scrub_checksum_super(struct scrub_block *sblock); 226 static void scrub_block_put(struct scrub_block *sblock); 227 static void scrub_page_get(struct scrub_page *spage); 228 static void scrub_page_put(struct scrub_page *spage); 229 static void scrub_parity_get(struct scrub_parity *sparity); 230 static void scrub_parity_put(struct scrub_parity *sparity); 231 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len, 232 u64 physical, struct btrfs_device *dev, u64 flags, 233 u64 gen, int mirror_num, u8 *csum, 234 u64 physical_for_dev_replace); 235 static void scrub_bio_end_io(struct bio *bio); 236 static void scrub_bio_end_io_worker(struct btrfs_work *work); 237 static void scrub_block_complete(struct scrub_block *sblock); 238 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 239 u64 extent_logical, u32 extent_len, 240 u64 *extent_physical, 241 struct btrfs_device **extent_dev, 242 int *extent_mirror_num); 243 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 244 struct scrub_page *spage); 245 static void scrub_wr_submit(struct scrub_ctx *sctx); 246 static void scrub_wr_bio_end_io(struct bio *bio); 247 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 248 static void scrub_put_ctx(struct scrub_ctx *sctx); 249 250 static inline int scrub_is_page_on_raid56(struct scrub_page *spage) 251 { 252 return spage->recover && 253 (spage->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); 254 } 255 256 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 257 { 258 refcount_inc(&sctx->refs); 259 atomic_inc(&sctx->bios_in_flight); 260 } 261 262 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 263 { 264 atomic_dec(&sctx->bios_in_flight); 265 wake_up(&sctx->list_wait); 266 scrub_put_ctx(sctx); 267 } 268 269 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 270 { 271 while (atomic_read(&fs_info->scrub_pause_req)) { 272 mutex_unlock(&fs_info->scrub_lock); 273 wait_event(fs_info->scrub_pause_wait, 274 atomic_read(&fs_info->scrub_pause_req) == 0); 275 mutex_lock(&fs_info->scrub_lock); 276 } 277 } 278 279 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 280 { 281 atomic_inc(&fs_info->scrubs_paused); 282 wake_up(&fs_info->scrub_pause_wait); 283 } 284 285 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 286 { 287 mutex_lock(&fs_info->scrub_lock); 288 __scrub_blocked_if_needed(fs_info); 289 atomic_dec(&fs_info->scrubs_paused); 290 mutex_unlock(&fs_info->scrub_lock); 291 292 wake_up(&fs_info->scrub_pause_wait); 293 } 294 295 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 296 { 297 scrub_pause_on(fs_info); 298 scrub_pause_off(fs_info); 299 } 300 301 /* 302 * Insert new full stripe lock into full stripe locks tree 303 * 304 * Return pointer to existing or newly inserted full_stripe_lock structure if 305 * everything works well. 306 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory 307 * 308 * NOTE: caller must hold full_stripe_locks_root->lock before calling this 309 * function 310 */ 311 static struct full_stripe_lock *insert_full_stripe_lock( 312 struct btrfs_full_stripe_locks_tree *locks_root, 313 u64 fstripe_logical) 314 { 315 struct rb_node **p; 316 struct rb_node *parent = NULL; 317 struct full_stripe_lock *entry; 318 struct full_stripe_lock *ret; 319 320 lockdep_assert_held(&locks_root->lock); 321 322 p = &locks_root->root.rb_node; 323 while (*p) { 324 parent = *p; 325 entry = rb_entry(parent, struct full_stripe_lock, node); 326 if (fstripe_logical < entry->logical) { 327 p = &(*p)->rb_left; 328 } else if (fstripe_logical > entry->logical) { 329 p = &(*p)->rb_right; 330 } else { 331 entry->refs++; 332 return entry; 333 } 334 } 335 336 /* 337 * Insert new lock. 338 */ 339 ret = kmalloc(sizeof(*ret), GFP_KERNEL); 340 if (!ret) 341 return ERR_PTR(-ENOMEM); 342 ret->logical = fstripe_logical; 343 ret->refs = 1; 344 mutex_init(&ret->mutex); 345 346 rb_link_node(&ret->node, parent, p); 347 rb_insert_color(&ret->node, &locks_root->root); 348 return ret; 349 } 350 351 /* 352 * Search for a full stripe lock of a block group 353 * 354 * Return pointer to existing full stripe lock if found 355 * Return NULL if not found 356 */ 357 static struct full_stripe_lock *search_full_stripe_lock( 358 struct btrfs_full_stripe_locks_tree *locks_root, 359 u64 fstripe_logical) 360 { 361 struct rb_node *node; 362 struct full_stripe_lock *entry; 363 364 lockdep_assert_held(&locks_root->lock); 365 366 node = locks_root->root.rb_node; 367 while (node) { 368 entry = rb_entry(node, struct full_stripe_lock, node); 369 if (fstripe_logical < entry->logical) 370 node = node->rb_left; 371 else if (fstripe_logical > entry->logical) 372 node = node->rb_right; 373 else 374 return entry; 375 } 376 return NULL; 377 } 378 379 /* 380 * Helper to get full stripe logical from a normal bytenr. 381 * 382 * Caller must ensure @cache is a RAID56 block group. 383 */ 384 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr) 385 { 386 u64 ret; 387 388 /* 389 * Due to chunk item size limit, full stripe length should not be 390 * larger than U32_MAX. Just a sanity check here. 391 */ 392 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); 393 394 /* 395 * round_down() can only handle power of 2, while RAID56 full 396 * stripe length can be 64KiB * n, so we need to manually round down. 397 */ 398 ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) * 399 cache->full_stripe_len + cache->start; 400 return ret; 401 } 402 403 /* 404 * Lock a full stripe to avoid concurrency of recovery and read 405 * 406 * It's only used for profiles with parities (RAID5/6), for other profiles it 407 * does nothing. 408 * 409 * Return 0 if we locked full stripe covering @bytenr, with a mutex held. 410 * So caller must call unlock_full_stripe() at the same context. 411 * 412 * Return <0 if encounters error. 413 */ 414 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 415 bool *locked_ret) 416 { 417 struct btrfs_block_group *bg_cache; 418 struct btrfs_full_stripe_locks_tree *locks_root; 419 struct full_stripe_lock *existing; 420 u64 fstripe_start; 421 int ret = 0; 422 423 *locked_ret = false; 424 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 425 if (!bg_cache) { 426 ASSERT(0); 427 return -ENOENT; 428 } 429 430 /* Profiles not based on parity don't need full stripe lock */ 431 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 432 goto out; 433 locks_root = &bg_cache->full_stripe_locks_root; 434 435 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 436 437 /* Now insert the full stripe lock */ 438 mutex_lock(&locks_root->lock); 439 existing = insert_full_stripe_lock(locks_root, fstripe_start); 440 mutex_unlock(&locks_root->lock); 441 if (IS_ERR(existing)) { 442 ret = PTR_ERR(existing); 443 goto out; 444 } 445 mutex_lock(&existing->mutex); 446 *locked_ret = true; 447 out: 448 btrfs_put_block_group(bg_cache); 449 return ret; 450 } 451 452 /* 453 * Unlock a full stripe. 454 * 455 * NOTE: Caller must ensure it's the same context calling corresponding 456 * lock_full_stripe(). 457 * 458 * Return 0 if we unlock full stripe without problem. 459 * Return <0 for error 460 */ 461 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 462 bool locked) 463 { 464 struct btrfs_block_group *bg_cache; 465 struct btrfs_full_stripe_locks_tree *locks_root; 466 struct full_stripe_lock *fstripe_lock; 467 u64 fstripe_start; 468 bool freeit = false; 469 int ret = 0; 470 471 /* If we didn't acquire full stripe lock, no need to continue */ 472 if (!locked) 473 return 0; 474 475 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 476 if (!bg_cache) { 477 ASSERT(0); 478 return -ENOENT; 479 } 480 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 481 goto out; 482 483 locks_root = &bg_cache->full_stripe_locks_root; 484 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 485 486 mutex_lock(&locks_root->lock); 487 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); 488 /* Unpaired unlock_full_stripe() detected */ 489 if (!fstripe_lock) { 490 WARN_ON(1); 491 ret = -ENOENT; 492 mutex_unlock(&locks_root->lock); 493 goto out; 494 } 495 496 if (fstripe_lock->refs == 0) { 497 WARN_ON(1); 498 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", 499 fstripe_lock->logical); 500 } else { 501 fstripe_lock->refs--; 502 } 503 504 if (fstripe_lock->refs == 0) { 505 rb_erase(&fstripe_lock->node, &locks_root->root); 506 freeit = true; 507 } 508 mutex_unlock(&locks_root->lock); 509 510 mutex_unlock(&fstripe_lock->mutex); 511 if (freeit) 512 kfree(fstripe_lock); 513 out: 514 btrfs_put_block_group(bg_cache); 515 return ret; 516 } 517 518 static void scrub_free_csums(struct scrub_ctx *sctx) 519 { 520 while (!list_empty(&sctx->csum_list)) { 521 struct btrfs_ordered_sum *sum; 522 sum = list_first_entry(&sctx->csum_list, 523 struct btrfs_ordered_sum, list); 524 list_del(&sum->list); 525 kfree(sum); 526 } 527 } 528 529 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 530 { 531 int i; 532 533 if (!sctx) 534 return; 535 536 /* this can happen when scrub is cancelled */ 537 if (sctx->curr != -1) { 538 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 539 540 for (i = 0; i < sbio->page_count; i++) { 541 WARN_ON(!sbio->pagev[i]->page); 542 scrub_block_put(sbio->pagev[i]->sblock); 543 } 544 bio_put(sbio->bio); 545 } 546 547 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 548 struct scrub_bio *sbio = sctx->bios[i]; 549 550 if (!sbio) 551 break; 552 kfree(sbio); 553 } 554 555 kfree(sctx->wr_curr_bio); 556 scrub_free_csums(sctx); 557 kfree(sctx); 558 } 559 560 static void scrub_put_ctx(struct scrub_ctx *sctx) 561 { 562 if (refcount_dec_and_test(&sctx->refs)) 563 scrub_free_ctx(sctx); 564 } 565 566 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( 567 struct btrfs_fs_info *fs_info, int is_dev_replace) 568 { 569 struct scrub_ctx *sctx; 570 int i; 571 572 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); 573 if (!sctx) 574 goto nomem; 575 refcount_set(&sctx->refs, 1); 576 sctx->is_dev_replace = is_dev_replace; 577 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 578 sctx->curr = -1; 579 sctx->fs_info = fs_info; 580 INIT_LIST_HEAD(&sctx->csum_list); 581 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 582 struct scrub_bio *sbio; 583 584 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); 585 if (!sbio) 586 goto nomem; 587 sctx->bios[i] = sbio; 588 589 sbio->index = i; 590 sbio->sctx = sctx; 591 sbio->page_count = 0; 592 btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL, 593 NULL); 594 595 if (i != SCRUB_BIOS_PER_SCTX - 1) 596 sctx->bios[i]->next_free = i + 1; 597 else 598 sctx->bios[i]->next_free = -1; 599 } 600 sctx->first_free = 0; 601 atomic_set(&sctx->bios_in_flight, 0); 602 atomic_set(&sctx->workers_pending, 0); 603 atomic_set(&sctx->cancel_req, 0); 604 605 spin_lock_init(&sctx->list_lock); 606 spin_lock_init(&sctx->stat_lock); 607 init_waitqueue_head(&sctx->list_wait); 608 609 WARN_ON(sctx->wr_curr_bio != NULL); 610 mutex_init(&sctx->wr_lock); 611 sctx->wr_curr_bio = NULL; 612 if (is_dev_replace) { 613 WARN_ON(!fs_info->dev_replace.tgtdev); 614 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO; 615 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 616 sctx->flush_all_writes = false; 617 } 618 619 return sctx; 620 621 nomem: 622 scrub_free_ctx(sctx); 623 return ERR_PTR(-ENOMEM); 624 } 625 626 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 627 void *warn_ctx) 628 { 629 u64 isize; 630 u32 nlink; 631 int ret; 632 int i; 633 unsigned nofs_flag; 634 struct extent_buffer *eb; 635 struct btrfs_inode_item *inode_item; 636 struct scrub_warning *swarn = warn_ctx; 637 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 638 struct inode_fs_paths *ipath = NULL; 639 struct btrfs_root *local_root; 640 struct btrfs_key key; 641 642 local_root = btrfs_get_fs_root(fs_info, root, true); 643 if (IS_ERR(local_root)) { 644 ret = PTR_ERR(local_root); 645 goto err; 646 } 647 648 /* 649 * this makes the path point to (inum INODE_ITEM ioff) 650 */ 651 key.objectid = inum; 652 key.type = BTRFS_INODE_ITEM_KEY; 653 key.offset = 0; 654 655 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 656 if (ret) { 657 btrfs_put_root(local_root); 658 btrfs_release_path(swarn->path); 659 goto err; 660 } 661 662 eb = swarn->path->nodes[0]; 663 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 664 struct btrfs_inode_item); 665 isize = btrfs_inode_size(eb, inode_item); 666 nlink = btrfs_inode_nlink(eb, inode_item); 667 btrfs_release_path(swarn->path); 668 669 /* 670 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 671 * uses GFP_NOFS in this context, so we keep it consistent but it does 672 * not seem to be strictly necessary. 673 */ 674 nofs_flag = memalloc_nofs_save(); 675 ipath = init_ipath(4096, local_root, swarn->path); 676 memalloc_nofs_restore(nofs_flag); 677 if (IS_ERR(ipath)) { 678 btrfs_put_root(local_root); 679 ret = PTR_ERR(ipath); 680 ipath = NULL; 681 goto err; 682 } 683 ret = paths_from_inode(inum, ipath); 684 685 if (ret < 0) 686 goto err; 687 688 /* 689 * we deliberately ignore the bit ipath might have been too small to 690 * hold all of the paths here 691 */ 692 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 693 btrfs_warn_in_rcu(fs_info, 694 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)", 695 swarn->errstr, swarn->logical, 696 rcu_str_deref(swarn->dev->name), 697 swarn->physical, 698 root, inum, offset, 699 min(isize - offset, (u64)PAGE_SIZE), nlink, 700 (char *)(unsigned long)ipath->fspath->val[i]); 701 702 btrfs_put_root(local_root); 703 free_ipath(ipath); 704 return 0; 705 706 err: 707 btrfs_warn_in_rcu(fs_info, 708 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 709 swarn->errstr, swarn->logical, 710 rcu_str_deref(swarn->dev->name), 711 swarn->physical, 712 root, inum, offset, ret); 713 714 free_ipath(ipath); 715 return 0; 716 } 717 718 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 719 { 720 struct btrfs_device *dev; 721 struct btrfs_fs_info *fs_info; 722 struct btrfs_path *path; 723 struct btrfs_key found_key; 724 struct extent_buffer *eb; 725 struct btrfs_extent_item *ei; 726 struct scrub_warning swarn; 727 unsigned long ptr = 0; 728 u64 extent_item_pos; 729 u64 flags = 0; 730 u64 ref_root; 731 u32 item_size; 732 u8 ref_level = 0; 733 int ret; 734 735 WARN_ON(sblock->page_count < 1); 736 dev = sblock->pagev[0]->dev; 737 fs_info = sblock->sctx->fs_info; 738 739 path = btrfs_alloc_path(); 740 if (!path) 741 return; 742 743 swarn.physical = sblock->pagev[0]->physical; 744 swarn.logical = sblock->pagev[0]->logical; 745 swarn.errstr = errstr; 746 swarn.dev = NULL; 747 748 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 749 &flags); 750 if (ret < 0) 751 goto out; 752 753 extent_item_pos = swarn.logical - found_key.objectid; 754 swarn.extent_item_size = found_key.offset; 755 756 eb = path->nodes[0]; 757 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 758 item_size = btrfs_item_size_nr(eb, path->slots[0]); 759 760 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 761 do { 762 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 763 item_size, &ref_root, 764 &ref_level); 765 btrfs_warn_in_rcu(fs_info, 766 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 767 errstr, swarn.logical, 768 rcu_str_deref(dev->name), 769 swarn.physical, 770 ref_level ? "node" : "leaf", 771 ret < 0 ? -1 : ref_level, 772 ret < 0 ? -1 : ref_root); 773 } while (ret != 1); 774 btrfs_release_path(path); 775 } else { 776 btrfs_release_path(path); 777 swarn.path = path; 778 swarn.dev = dev; 779 iterate_extent_inodes(fs_info, found_key.objectid, 780 extent_item_pos, 1, 781 scrub_print_warning_inode, &swarn, false); 782 } 783 784 out: 785 btrfs_free_path(path); 786 } 787 788 static inline void scrub_get_recover(struct scrub_recover *recover) 789 { 790 refcount_inc(&recover->refs); 791 } 792 793 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, 794 struct scrub_recover *recover) 795 { 796 if (refcount_dec_and_test(&recover->refs)) { 797 btrfs_bio_counter_dec(fs_info); 798 btrfs_put_bbio(recover->bbio); 799 kfree(recover); 800 } 801 } 802 803 /* 804 * scrub_handle_errored_block gets called when either verification of the 805 * pages failed or the bio failed to read, e.g. with EIO. In the latter 806 * case, this function handles all pages in the bio, even though only one 807 * may be bad. 808 * The goal of this function is to repair the errored block by using the 809 * contents of one of the mirrors. 810 */ 811 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 812 { 813 struct scrub_ctx *sctx = sblock_to_check->sctx; 814 struct btrfs_device *dev; 815 struct btrfs_fs_info *fs_info; 816 u64 logical; 817 unsigned int failed_mirror_index; 818 unsigned int is_metadata; 819 unsigned int have_csum; 820 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 821 struct scrub_block *sblock_bad; 822 int ret; 823 int mirror_index; 824 int page_num; 825 int success; 826 bool full_stripe_locked; 827 unsigned int nofs_flag; 828 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 829 DEFAULT_RATELIMIT_BURST); 830 831 BUG_ON(sblock_to_check->page_count < 1); 832 fs_info = sctx->fs_info; 833 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 834 /* 835 * if we find an error in a super block, we just report it. 836 * They will get written with the next transaction commit 837 * anyway 838 */ 839 spin_lock(&sctx->stat_lock); 840 ++sctx->stat.super_errors; 841 spin_unlock(&sctx->stat_lock); 842 return 0; 843 } 844 logical = sblock_to_check->pagev[0]->logical; 845 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 846 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 847 is_metadata = !(sblock_to_check->pagev[0]->flags & 848 BTRFS_EXTENT_FLAG_DATA); 849 have_csum = sblock_to_check->pagev[0]->have_csum; 850 dev = sblock_to_check->pagev[0]->dev; 851 852 if (btrfs_is_zoned(fs_info) && !sctx->is_dev_replace) 853 return btrfs_repair_one_zone(fs_info, logical); 854 855 /* 856 * We must use GFP_NOFS because the scrub task might be waiting for a 857 * worker task executing this function and in turn a transaction commit 858 * might be waiting the scrub task to pause (which needs to wait for all 859 * the worker tasks to complete before pausing). 860 * We do allocations in the workers through insert_full_stripe_lock() 861 * and scrub_add_page_to_wr_bio(), which happens down the call chain of 862 * this function. 863 */ 864 nofs_flag = memalloc_nofs_save(); 865 /* 866 * For RAID5/6, race can happen for a different device scrub thread. 867 * For data corruption, Parity and Data threads will both try 868 * to recovery the data. 869 * Race can lead to doubly added csum error, or even unrecoverable 870 * error. 871 */ 872 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); 873 if (ret < 0) { 874 memalloc_nofs_restore(nofs_flag); 875 spin_lock(&sctx->stat_lock); 876 if (ret == -ENOMEM) 877 sctx->stat.malloc_errors++; 878 sctx->stat.read_errors++; 879 sctx->stat.uncorrectable_errors++; 880 spin_unlock(&sctx->stat_lock); 881 return ret; 882 } 883 884 /* 885 * read all mirrors one after the other. This includes to 886 * re-read the extent or metadata block that failed (that was 887 * the cause that this fixup code is called) another time, 888 * page by page this time in order to know which pages 889 * caused I/O errors and which ones are good (for all mirrors). 890 * It is the goal to handle the situation when more than one 891 * mirror contains I/O errors, but the errors do not 892 * overlap, i.e. the data can be repaired by selecting the 893 * pages from those mirrors without I/O error on the 894 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) 895 * would be that mirror #1 has an I/O error on the first page, 896 * the second page is good, and mirror #2 has an I/O error on 897 * the second page, but the first page is good. 898 * Then the first page of the first mirror can be repaired by 899 * taking the first page of the second mirror, and the 900 * second page of the second mirror can be repaired by 901 * copying the contents of the 2nd page of the 1st mirror. 902 * One more note: if the pages of one mirror contain I/O 903 * errors, the checksum cannot be verified. In order to get 904 * the best data for repairing, the first attempt is to find 905 * a mirror without I/O errors and with a validated checksum. 906 * Only if this is not possible, the pages are picked from 907 * mirrors with I/O errors without considering the checksum. 908 * If the latter is the case, at the end, the checksum of the 909 * repaired area is verified in order to correctly maintain 910 * the statistics. 911 */ 912 913 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, 914 sizeof(*sblocks_for_recheck), GFP_KERNEL); 915 if (!sblocks_for_recheck) { 916 spin_lock(&sctx->stat_lock); 917 sctx->stat.malloc_errors++; 918 sctx->stat.read_errors++; 919 sctx->stat.uncorrectable_errors++; 920 spin_unlock(&sctx->stat_lock); 921 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 922 goto out; 923 } 924 925 /* setup the context, map the logical blocks and alloc the pages */ 926 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); 927 if (ret) { 928 spin_lock(&sctx->stat_lock); 929 sctx->stat.read_errors++; 930 sctx->stat.uncorrectable_errors++; 931 spin_unlock(&sctx->stat_lock); 932 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 933 goto out; 934 } 935 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 936 sblock_bad = sblocks_for_recheck + failed_mirror_index; 937 938 /* build and submit the bios for the failed mirror, check checksums */ 939 scrub_recheck_block(fs_info, sblock_bad, 1); 940 941 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 942 sblock_bad->no_io_error_seen) { 943 /* 944 * the error disappeared after reading page by page, or 945 * the area was part of a huge bio and other parts of the 946 * bio caused I/O errors, or the block layer merged several 947 * read requests into one and the error is caused by a 948 * different bio (usually one of the two latter cases is 949 * the cause) 950 */ 951 spin_lock(&sctx->stat_lock); 952 sctx->stat.unverified_errors++; 953 sblock_to_check->data_corrected = 1; 954 spin_unlock(&sctx->stat_lock); 955 956 if (sctx->is_dev_replace) 957 scrub_write_block_to_dev_replace(sblock_bad); 958 goto out; 959 } 960 961 if (!sblock_bad->no_io_error_seen) { 962 spin_lock(&sctx->stat_lock); 963 sctx->stat.read_errors++; 964 spin_unlock(&sctx->stat_lock); 965 if (__ratelimit(&rs)) 966 scrub_print_warning("i/o error", sblock_to_check); 967 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 968 } else if (sblock_bad->checksum_error) { 969 spin_lock(&sctx->stat_lock); 970 sctx->stat.csum_errors++; 971 spin_unlock(&sctx->stat_lock); 972 if (__ratelimit(&rs)) 973 scrub_print_warning("checksum error", sblock_to_check); 974 btrfs_dev_stat_inc_and_print(dev, 975 BTRFS_DEV_STAT_CORRUPTION_ERRS); 976 } else if (sblock_bad->header_error) { 977 spin_lock(&sctx->stat_lock); 978 sctx->stat.verify_errors++; 979 spin_unlock(&sctx->stat_lock); 980 if (__ratelimit(&rs)) 981 scrub_print_warning("checksum/header error", 982 sblock_to_check); 983 if (sblock_bad->generation_error) 984 btrfs_dev_stat_inc_and_print(dev, 985 BTRFS_DEV_STAT_GENERATION_ERRS); 986 else 987 btrfs_dev_stat_inc_and_print(dev, 988 BTRFS_DEV_STAT_CORRUPTION_ERRS); 989 } 990 991 if (sctx->readonly) { 992 ASSERT(!sctx->is_dev_replace); 993 goto out; 994 } 995 996 /* 997 * now build and submit the bios for the other mirrors, check 998 * checksums. 999 * First try to pick the mirror which is completely without I/O 1000 * errors and also does not have a checksum error. 1001 * If one is found, and if a checksum is present, the full block 1002 * that is known to contain an error is rewritten. Afterwards 1003 * the block is known to be corrected. 1004 * If a mirror is found which is completely correct, and no 1005 * checksum is present, only those pages are rewritten that had 1006 * an I/O error in the block to be repaired, since it cannot be 1007 * determined, which copy of the other pages is better (and it 1008 * could happen otherwise that a correct page would be 1009 * overwritten by a bad one). 1010 */ 1011 for (mirror_index = 0; ;mirror_index++) { 1012 struct scrub_block *sblock_other; 1013 1014 if (mirror_index == failed_mirror_index) 1015 continue; 1016 1017 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */ 1018 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) { 1019 if (mirror_index >= BTRFS_MAX_MIRRORS) 1020 break; 1021 if (!sblocks_for_recheck[mirror_index].page_count) 1022 break; 1023 1024 sblock_other = sblocks_for_recheck + mirror_index; 1025 } else { 1026 struct scrub_recover *r = sblock_bad->pagev[0]->recover; 1027 int max_allowed = r->bbio->num_stripes - 1028 r->bbio->num_tgtdevs; 1029 1030 if (mirror_index >= max_allowed) 1031 break; 1032 if (!sblocks_for_recheck[1].page_count) 1033 break; 1034 1035 ASSERT(failed_mirror_index == 0); 1036 sblock_other = sblocks_for_recheck + 1; 1037 sblock_other->pagev[0]->mirror_num = 1 + mirror_index; 1038 } 1039 1040 /* build and submit the bios, check checksums */ 1041 scrub_recheck_block(fs_info, sblock_other, 0); 1042 1043 if (!sblock_other->header_error && 1044 !sblock_other->checksum_error && 1045 sblock_other->no_io_error_seen) { 1046 if (sctx->is_dev_replace) { 1047 scrub_write_block_to_dev_replace(sblock_other); 1048 goto corrected_error; 1049 } else { 1050 ret = scrub_repair_block_from_good_copy( 1051 sblock_bad, sblock_other); 1052 if (!ret) 1053 goto corrected_error; 1054 } 1055 } 1056 } 1057 1058 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) 1059 goto did_not_correct_error; 1060 1061 /* 1062 * In case of I/O errors in the area that is supposed to be 1063 * repaired, continue by picking good copies of those pages. 1064 * Select the good pages from mirrors to rewrite bad pages from 1065 * the area to fix. Afterwards verify the checksum of the block 1066 * that is supposed to be repaired. This verification step is 1067 * only done for the purpose of statistic counting and for the 1068 * final scrub report, whether errors remain. 1069 * A perfect algorithm could make use of the checksum and try 1070 * all possible combinations of pages from the different mirrors 1071 * until the checksum verification succeeds. For example, when 1072 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page 1073 * of mirror #2 is readable but the final checksum test fails, 1074 * then the 2nd page of mirror #3 could be tried, whether now 1075 * the final checksum succeeds. But this would be a rare 1076 * exception and is therefore not implemented. At least it is 1077 * avoided that the good copy is overwritten. 1078 * A more useful improvement would be to pick the sectors 1079 * without I/O error based on sector sizes (512 bytes on legacy 1080 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one 1081 * mirror could be repaired by taking 512 byte of a different 1082 * mirror, even if other 512 byte sectors in the same PAGE_SIZE 1083 * area are unreadable. 1084 */ 1085 success = 1; 1086 for (page_num = 0; page_num < sblock_bad->page_count; 1087 page_num++) { 1088 struct scrub_page *spage_bad = sblock_bad->pagev[page_num]; 1089 struct scrub_block *sblock_other = NULL; 1090 1091 /* skip no-io-error page in scrub */ 1092 if (!spage_bad->io_error && !sctx->is_dev_replace) 1093 continue; 1094 1095 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) { 1096 /* 1097 * In case of dev replace, if raid56 rebuild process 1098 * didn't work out correct data, then copy the content 1099 * in sblock_bad to make sure target device is identical 1100 * to source device, instead of writing garbage data in 1101 * sblock_for_recheck array to target device. 1102 */ 1103 sblock_other = NULL; 1104 } else if (spage_bad->io_error) { 1105 /* try to find no-io-error page in mirrors */ 1106 for (mirror_index = 0; 1107 mirror_index < BTRFS_MAX_MIRRORS && 1108 sblocks_for_recheck[mirror_index].page_count > 0; 1109 mirror_index++) { 1110 if (!sblocks_for_recheck[mirror_index]. 1111 pagev[page_num]->io_error) { 1112 sblock_other = sblocks_for_recheck + 1113 mirror_index; 1114 break; 1115 } 1116 } 1117 if (!sblock_other) 1118 success = 0; 1119 } 1120 1121 if (sctx->is_dev_replace) { 1122 /* 1123 * did not find a mirror to fetch the page 1124 * from. scrub_write_page_to_dev_replace() 1125 * handles this case (page->io_error), by 1126 * filling the block with zeros before 1127 * submitting the write request 1128 */ 1129 if (!sblock_other) 1130 sblock_other = sblock_bad; 1131 1132 if (scrub_write_page_to_dev_replace(sblock_other, 1133 page_num) != 0) { 1134 atomic64_inc( 1135 &fs_info->dev_replace.num_write_errors); 1136 success = 0; 1137 } 1138 } else if (sblock_other) { 1139 ret = scrub_repair_page_from_good_copy(sblock_bad, 1140 sblock_other, 1141 page_num, 0); 1142 if (0 == ret) 1143 spage_bad->io_error = 0; 1144 else 1145 success = 0; 1146 } 1147 } 1148 1149 if (success && !sctx->is_dev_replace) { 1150 if (is_metadata || have_csum) { 1151 /* 1152 * need to verify the checksum now that all 1153 * sectors on disk are repaired (the write 1154 * request for data to be repaired is on its way). 1155 * Just be lazy and use scrub_recheck_block() 1156 * which re-reads the data before the checksum 1157 * is verified, but most likely the data comes out 1158 * of the page cache. 1159 */ 1160 scrub_recheck_block(fs_info, sblock_bad, 1); 1161 if (!sblock_bad->header_error && 1162 !sblock_bad->checksum_error && 1163 sblock_bad->no_io_error_seen) 1164 goto corrected_error; 1165 else 1166 goto did_not_correct_error; 1167 } else { 1168 corrected_error: 1169 spin_lock(&sctx->stat_lock); 1170 sctx->stat.corrected_errors++; 1171 sblock_to_check->data_corrected = 1; 1172 spin_unlock(&sctx->stat_lock); 1173 btrfs_err_rl_in_rcu(fs_info, 1174 "fixed up error at logical %llu on dev %s", 1175 logical, rcu_str_deref(dev->name)); 1176 } 1177 } else { 1178 did_not_correct_error: 1179 spin_lock(&sctx->stat_lock); 1180 sctx->stat.uncorrectable_errors++; 1181 spin_unlock(&sctx->stat_lock); 1182 btrfs_err_rl_in_rcu(fs_info, 1183 "unable to fixup (regular) error at logical %llu on dev %s", 1184 logical, rcu_str_deref(dev->name)); 1185 } 1186 1187 out: 1188 if (sblocks_for_recheck) { 1189 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1190 mirror_index++) { 1191 struct scrub_block *sblock = sblocks_for_recheck + 1192 mirror_index; 1193 struct scrub_recover *recover; 1194 int page_index; 1195 1196 for (page_index = 0; page_index < sblock->page_count; 1197 page_index++) { 1198 sblock->pagev[page_index]->sblock = NULL; 1199 recover = sblock->pagev[page_index]->recover; 1200 if (recover) { 1201 scrub_put_recover(fs_info, recover); 1202 sblock->pagev[page_index]->recover = 1203 NULL; 1204 } 1205 scrub_page_put(sblock->pagev[page_index]); 1206 } 1207 } 1208 kfree(sblocks_for_recheck); 1209 } 1210 1211 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); 1212 memalloc_nofs_restore(nofs_flag); 1213 if (ret < 0) 1214 return ret; 1215 return 0; 1216 } 1217 1218 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio) 1219 { 1220 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1221 return 2; 1222 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1223 return 3; 1224 else 1225 return (int)bbio->num_stripes; 1226 } 1227 1228 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 1229 u64 *raid_map, 1230 u64 mapped_length, 1231 int nstripes, int mirror, 1232 int *stripe_index, 1233 u64 *stripe_offset) 1234 { 1235 int i; 1236 1237 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1238 /* RAID5/6 */ 1239 for (i = 0; i < nstripes; i++) { 1240 if (raid_map[i] == RAID6_Q_STRIPE || 1241 raid_map[i] == RAID5_P_STRIPE) 1242 continue; 1243 1244 if (logical >= raid_map[i] && 1245 logical < raid_map[i] + mapped_length) 1246 break; 1247 } 1248 1249 *stripe_index = i; 1250 *stripe_offset = logical - raid_map[i]; 1251 } else { 1252 /* The other RAID type */ 1253 *stripe_index = mirror; 1254 *stripe_offset = 0; 1255 } 1256 } 1257 1258 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 1259 struct scrub_block *sblocks_for_recheck) 1260 { 1261 struct scrub_ctx *sctx = original_sblock->sctx; 1262 struct btrfs_fs_info *fs_info = sctx->fs_info; 1263 u64 length = original_sblock->page_count * PAGE_SIZE; 1264 u64 logical = original_sblock->pagev[0]->logical; 1265 u64 generation = original_sblock->pagev[0]->generation; 1266 u64 flags = original_sblock->pagev[0]->flags; 1267 u64 have_csum = original_sblock->pagev[0]->have_csum; 1268 struct scrub_recover *recover; 1269 struct btrfs_bio *bbio; 1270 u64 sublen; 1271 u64 mapped_length; 1272 u64 stripe_offset; 1273 int stripe_index; 1274 int page_index = 0; 1275 int mirror_index; 1276 int nmirrors; 1277 int ret; 1278 1279 /* 1280 * note: the two members refs and outstanding_pages 1281 * are not used (and not set) in the blocks that are used for 1282 * the recheck procedure 1283 */ 1284 1285 while (length > 0) { 1286 sublen = min_t(u64, length, PAGE_SIZE); 1287 mapped_length = sublen; 1288 bbio = NULL; 1289 1290 /* 1291 * with a length of PAGE_SIZE, each returned stripe 1292 * represents one mirror 1293 */ 1294 btrfs_bio_counter_inc_blocked(fs_info); 1295 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 1296 logical, &mapped_length, &bbio); 1297 if (ret || !bbio || mapped_length < sublen) { 1298 btrfs_put_bbio(bbio); 1299 btrfs_bio_counter_dec(fs_info); 1300 return -EIO; 1301 } 1302 1303 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); 1304 if (!recover) { 1305 btrfs_put_bbio(bbio); 1306 btrfs_bio_counter_dec(fs_info); 1307 return -ENOMEM; 1308 } 1309 1310 refcount_set(&recover->refs, 1); 1311 recover->bbio = bbio; 1312 recover->map_length = mapped_length; 1313 1314 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK); 1315 1316 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS); 1317 1318 for (mirror_index = 0; mirror_index < nmirrors; 1319 mirror_index++) { 1320 struct scrub_block *sblock; 1321 struct scrub_page *spage; 1322 1323 sblock = sblocks_for_recheck + mirror_index; 1324 sblock->sctx = sctx; 1325 1326 spage = kzalloc(sizeof(*spage), GFP_NOFS); 1327 if (!spage) { 1328 leave_nomem: 1329 spin_lock(&sctx->stat_lock); 1330 sctx->stat.malloc_errors++; 1331 spin_unlock(&sctx->stat_lock); 1332 scrub_put_recover(fs_info, recover); 1333 return -ENOMEM; 1334 } 1335 scrub_page_get(spage); 1336 sblock->pagev[page_index] = spage; 1337 spage->sblock = sblock; 1338 spage->flags = flags; 1339 spage->generation = generation; 1340 spage->logical = logical; 1341 spage->have_csum = have_csum; 1342 if (have_csum) 1343 memcpy(spage->csum, 1344 original_sblock->pagev[0]->csum, 1345 sctx->fs_info->csum_size); 1346 1347 scrub_stripe_index_and_offset(logical, 1348 bbio->map_type, 1349 bbio->raid_map, 1350 mapped_length, 1351 bbio->num_stripes - 1352 bbio->num_tgtdevs, 1353 mirror_index, 1354 &stripe_index, 1355 &stripe_offset); 1356 spage->physical = bbio->stripes[stripe_index].physical + 1357 stripe_offset; 1358 spage->dev = bbio->stripes[stripe_index].dev; 1359 1360 BUG_ON(page_index >= original_sblock->page_count); 1361 spage->physical_for_dev_replace = 1362 original_sblock->pagev[page_index]-> 1363 physical_for_dev_replace; 1364 /* for missing devices, dev->bdev is NULL */ 1365 spage->mirror_num = mirror_index + 1; 1366 sblock->page_count++; 1367 spage->page = alloc_page(GFP_NOFS); 1368 if (!spage->page) 1369 goto leave_nomem; 1370 1371 scrub_get_recover(recover); 1372 spage->recover = recover; 1373 } 1374 scrub_put_recover(fs_info, recover); 1375 length -= sublen; 1376 logical += sublen; 1377 page_index++; 1378 } 1379 1380 return 0; 1381 } 1382 1383 static void scrub_bio_wait_endio(struct bio *bio) 1384 { 1385 complete(bio->bi_private); 1386 } 1387 1388 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, 1389 struct bio *bio, 1390 struct scrub_page *spage) 1391 { 1392 DECLARE_COMPLETION_ONSTACK(done); 1393 int ret; 1394 int mirror_num; 1395 1396 bio->bi_iter.bi_sector = spage->logical >> 9; 1397 bio->bi_private = &done; 1398 bio->bi_end_io = scrub_bio_wait_endio; 1399 1400 mirror_num = spage->sblock->pagev[0]->mirror_num; 1401 ret = raid56_parity_recover(fs_info, bio, spage->recover->bbio, 1402 spage->recover->map_length, 1403 mirror_num, 0); 1404 if (ret) 1405 return ret; 1406 1407 wait_for_completion_io(&done); 1408 return blk_status_to_errno(bio->bi_status); 1409 } 1410 1411 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info, 1412 struct scrub_block *sblock) 1413 { 1414 struct scrub_page *first_page = sblock->pagev[0]; 1415 struct bio *bio; 1416 int page_num; 1417 1418 /* All pages in sblock belong to the same stripe on the same device. */ 1419 ASSERT(first_page->dev); 1420 if (!first_page->dev->bdev) 1421 goto out; 1422 1423 bio = btrfs_io_bio_alloc(BIO_MAX_VECS); 1424 bio_set_dev(bio, first_page->dev->bdev); 1425 1426 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1427 struct scrub_page *spage = sblock->pagev[page_num]; 1428 1429 WARN_ON(!spage->page); 1430 bio_add_page(bio, spage->page, PAGE_SIZE, 0); 1431 } 1432 1433 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) { 1434 bio_put(bio); 1435 goto out; 1436 } 1437 1438 bio_put(bio); 1439 1440 scrub_recheck_block_checksum(sblock); 1441 1442 return; 1443 out: 1444 for (page_num = 0; page_num < sblock->page_count; page_num++) 1445 sblock->pagev[page_num]->io_error = 1; 1446 1447 sblock->no_io_error_seen = 0; 1448 } 1449 1450 /* 1451 * this function will check the on disk data for checksum errors, header 1452 * errors and read I/O errors. If any I/O errors happen, the exact pages 1453 * which are errored are marked as being bad. The goal is to enable scrub 1454 * to take those pages that are not errored from all the mirrors so that 1455 * the pages that are errored in the just handled mirror can be repaired. 1456 */ 1457 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1458 struct scrub_block *sblock, 1459 int retry_failed_mirror) 1460 { 1461 int page_num; 1462 1463 sblock->no_io_error_seen = 1; 1464 1465 /* short cut for raid56 */ 1466 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0])) 1467 return scrub_recheck_block_on_raid56(fs_info, sblock); 1468 1469 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1470 struct bio *bio; 1471 struct scrub_page *spage = sblock->pagev[page_num]; 1472 1473 if (spage->dev->bdev == NULL) { 1474 spage->io_error = 1; 1475 sblock->no_io_error_seen = 0; 1476 continue; 1477 } 1478 1479 WARN_ON(!spage->page); 1480 bio = btrfs_io_bio_alloc(1); 1481 bio_set_dev(bio, spage->dev->bdev); 1482 1483 bio_add_page(bio, spage->page, PAGE_SIZE, 0); 1484 bio->bi_iter.bi_sector = spage->physical >> 9; 1485 bio->bi_opf = REQ_OP_READ; 1486 1487 if (btrfsic_submit_bio_wait(bio)) { 1488 spage->io_error = 1; 1489 sblock->no_io_error_seen = 0; 1490 } 1491 1492 bio_put(bio); 1493 } 1494 1495 if (sblock->no_io_error_seen) 1496 scrub_recheck_block_checksum(sblock); 1497 } 1498 1499 static inline int scrub_check_fsid(u8 fsid[], 1500 struct scrub_page *spage) 1501 { 1502 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; 1503 int ret; 1504 1505 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1506 return !ret; 1507 } 1508 1509 static void scrub_recheck_block_checksum(struct scrub_block *sblock) 1510 { 1511 sblock->header_error = 0; 1512 sblock->checksum_error = 0; 1513 sblock->generation_error = 0; 1514 1515 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA) 1516 scrub_checksum_data(sblock); 1517 else 1518 scrub_checksum_tree_block(sblock); 1519 } 1520 1521 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1522 struct scrub_block *sblock_good) 1523 { 1524 int page_num; 1525 int ret = 0; 1526 1527 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1528 int ret_sub; 1529 1530 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1531 sblock_good, 1532 page_num, 1); 1533 if (ret_sub) 1534 ret = ret_sub; 1535 } 1536 1537 return ret; 1538 } 1539 1540 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1541 struct scrub_block *sblock_good, 1542 int page_num, int force_write) 1543 { 1544 struct scrub_page *spage_bad = sblock_bad->pagev[page_num]; 1545 struct scrub_page *spage_good = sblock_good->pagev[page_num]; 1546 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; 1547 1548 BUG_ON(spage_bad->page == NULL); 1549 BUG_ON(spage_good->page == NULL); 1550 if (force_write || sblock_bad->header_error || 1551 sblock_bad->checksum_error || spage_bad->io_error) { 1552 struct bio *bio; 1553 int ret; 1554 1555 if (!spage_bad->dev->bdev) { 1556 btrfs_warn_rl(fs_info, 1557 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); 1558 return -EIO; 1559 } 1560 1561 bio = btrfs_io_bio_alloc(1); 1562 bio_set_dev(bio, spage_bad->dev->bdev); 1563 bio->bi_iter.bi_sector = spage_bad->physical >> 9; 1564 bio->bi_opf = REQ_OP_WRITE; 1565 1566 ret = bio_add_page(bio, spage_good->page, PAGE_SIZE, 0); 1567 if (PAGE_SIZE != ret) { 1568 bio_put(bio); 1569 return -EIO; 1570 } 1571 1572 if (btrfsic_submit_bio_wait(bio)) { 1573 btrfs_dev_stat_inc_and_print(spage_bad->dev, 1574 BTRFS_DEV_STAT_WRITE_ERRS); 1575 atomic64_inc(&fs_info->dev_replace.num_write_errors); 1576 bio_put(bio); 1577 return -EIO; 1578 } 1579 bio_put(bio); 1580 } 1581 1582 return 0; 1583 } 1584 1585 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1586 { 1587 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 1588 int page_num; 1589 1590 /* 1591 * This block is used for the check of the parity on the source device, 1592 * so the data needn't be written into the destination device. 1593 */ 1594 if (sblock->sparity) 1595 return; 1596 1597 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1598 int ret; 1599 1600 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1601 if (ret) 1602 atomic64_inc(&fs_info->dev_replace.num_write_errors); 1603 } 1604 } 1605 1606 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1607 int page_num) 1608 { 1609 struct scrub_page *spage = sblock->pagev[page_num]; 1610 1611 BUG_ON(spage->page == NULL); 1612 if (spage->io_error) 1613 clear_page(page_address(spage->page)); 1614 1615 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1616 } 1617 1618 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) 1619 { 1620 int ret = 0; 1621 u64 length; 1622 1623 if (!btrfs_is_zoned(sctx->fs_info)) 1624 return 0; 1625 1626 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) 1627 return 0; 1628 1629 if (sctx->write_pointer < physical) { 1630 length = physical - sctx->write_pointer; 1631 1632 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev, 1633 sctx->write_pointer, length); 1634 if (!ret) 1635 sctx->write_pointer = physical; 1636 } 1637 return ret; 1638 } 1639 1640 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1641 struct scrub_page *spage) 1642 { 1643 struct scrub_bio *sbio; 1644 int ret; 1645 1646 mutex_lock(&sctx->wr_lock); 1647 again: 1648 if (!sctx->wr_curr_bio) { 1649 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), 1650 GFP_KERNEL); 1651 if (!sctx->wr_curr_bio) { 1652 mutex_unlock(&sctx->wr_lock); 1653 return -ENOMEM; 1654 } 1655 sctx->wr_curr_bio->sctx = sctx; 1656 sctx->wr_curr_bio->page_count = 0; 1657 } 1658 sbio = sctx->wr_curr_bio; 1659 if (sbio->page_count == 0) { 1660 struct bio *bio; 1661 1662 ret = fill_writer_pointer_gap(sctx, 1663 spage->physical_for_dev_replace); 1664 if (ret) { 1665 mutex_unlock(&sctx->wr_lock); 1666 return ret; 1667 } 1668 1669 sbio->physical = spage->physical_for_dev_replace; 1670 sbio->logical = spage->logical; 1671 sbio->dev = sctx->wr_tgtdev; 1672 bio = sbio->bio; 1673 if (!bio) { 1674 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio); 1675 sbio->bio = bio; 1676 } 1677 1678 bio->bi_private = sbio; 1679 bio->bi_end_io = scrub_wr_bio_end_io; 1680 bio_set_dev(bio, sbio->dev->bdev); 1681 bio->bi_iter.bi_sector = sbio->physical >> 9; 1682 bio->bi_opf = REQ_OP_WRITE; 1683 sbio->status = 0; 1684 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1685 spage->physical_for_dev_replace || 1686 sbio->logical + sbio->page_count * PAGE_SIZE != 1687 spage->logical) { 1688 scrub_wr_submit(sctx); 1689 goto again; 1690 } 1691 1692 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1693 if (ret != PAGE_SIZE) { 1694 if (sbio->page_count < 1) { 1695 bio_put(sbio->bio); 1696 sbio->bio = NULL; 1697 mutex_unlock(&sctx->wr_lock); 1698 return -EIO; 1699 } 1700 scrub_wr_submit(sctx); 1701 goto again; 1702 } 1703 1704 sbio->pagev[sbio->page_count] = spage; 1705 scrub_page_get(spage); 1706 sbio->page_count++; 1707 if (sbio->page_count == sctx->pages_per_wr_bio) 1708 scrub_wr_submit(sctx); 1709 mutex_unlock(&sctx->wr_lock); 1710 1711 return 0; 1712 } 1713 1714 static void scrub_wr_submit(struct scrub_ctx *sctx) 1715 { 1716 struct scrub_bio *sbio; 1717 1718 if (!sctx->wr_curr_bio) 1719 return; 1720 1721 sbio = sctx->wr_curr_bio; 1722 sctx->wr_curr_bio = NULL; 1723 WARN_ON(!sbio->bio->bi_bdev); 1724 scrub_pending_bio_inc(sctx); 1725 /* process all writes in a single worker thread. Then the block layer 1726 * orders the requests before sending them to the driver which 1727 * doubled the write performance on spinning disks when measured 1728 * with Linux 3.5 */ 1729 btrfsic_submit_bio(sbio->bio); 1730 1731 if (btrfs_is_zoned(sctx->fs_info)) 1732 sctx->write_pointer = sbio->physical + sbio->page_count * PAGE_SIZE; 1733 } 1734 1735 static void scrub_wr_bio_end_io(struct bio *bio) 1736 { 1737 struct scrub_bio *sbio = bio->bi_private; 1738 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 1739 1740 sbio->status = bio->bi_status; 1741 sbio->bio = bio; 1742 1743 btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL); 1744 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 1745 } 1746 1747 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 1748 { 1749 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1750 struct scrub_ctx *sctx = sbio->sctx; 1751 int i; 1752 1753 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 1754 if (sbio->status) { 1755 struct btrfs_dev_replace *dev_replace = 1756 &sbio->sctx->fs_info->dev_replace; 1757 1758 for (i = 0; i < sbio->page_count; i++) { 1759 struct scrub_page *spage = sbio->pagev[i]; 1760 1761 spage->io_error = 1; 1762 atomic64_inc(&dev_replace->num_write_errors); 1763 } 1764 } 1765 1766 for (i = 0; i < sbio->page_count; i++) 1767 scrub_page_put(sbio->pagev[i]); 1768 1769 bio_put(sbio->bio); 1770 kfree(sbio); 1771 scrub_pending_bio_dec(sctx); 1772 } 1773 1774 static int scrub_checksum(struct scrub_block *sblock) 1775 { 1776 u64 flags; 1777 int ret; 1778 1779 /* 1780 * No need to initialize these stats currently, 1781 * because this function only use return value 1782 * instead of these stats value. 1783 * 1784 * Todo: 1785 * always use stats 1786 */ 1787 sblock->header_error = 0; 1788 sblock->generation_error = 0; 1789 sblock->checksum_error = 0; 1790 1791 WARN_ON(sblock->page_count < 1); 1792 flags = sblock->pagev[0]->flags; 1793 ret = 0; 1794 if (flags & BTRFS_EXTENT_FLAG_DATA) 1795 ret = scrub_checksum_data(sblock); 1796 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1797 ret = scrub_checksum_tree_block(sblock); 1798 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1799 (void)scrub_checksum_super(sblock); 1800 else 1801 WARN_ON(1); 1802 if (ret) 1803 scrub_handle_errored_block(sblock); 1804 1805 return ret; 1806 } 1807 1808 static int scrub_checksum_data(struct scrub_block *sblock) 1809 { 1810 struct scrub_ctx *sctx = sblock->sctx; 1811 struct btrfs_fs_info *fs_info = sctx->fs_info; 1812 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1813 u8 csum[BTRFS_CSUM_SIZE]; 1814 struct scrub_page *spage; 1815 char *kaddr; 1816 1817 BUG_ON(sblock->page_count < 1); 1818 spage = sblock->pagev[0]; 1819 if (!spage->have_csum) 1820 return 0; 1821 1822 kaddr = page_address(spage->page); 1823 1824 shash->tfm = fs_info->csum_shash; 1825 crypto_shash_init(shash); 1826 1827 /* 1828 * In scrub_pages() and scrub_pages_for_parity() we ensure each spage 1829 * only contains one sector of data. 1830 */ 1831 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 1832 1833 if (memcmp(csum, spage->csum, fs_info->csum_size)) 1834 sblock->checksum_error = 1; 1835 return sblock->checksum_error; 1836 } 1837 1838 static int scrub_checksum_tree_block(struct scrub_block *sblock) 1839 { 1840 struct scrub_ctx *sctx = sblock->sctx; 1841 struct btrfs_header *h; 1842 struct btrfs_fs_info *fs_info = sctx->fs_info; 1843 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1844 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1845 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1846 /* 1847 * This is done in sectorsize steps even for metadata as there's a 1848 * constraint for nodesize to be aligned to sectorsize. This will need 1849 * to change so we don't misuse data and metadata units like that. 1850 */ 1851 const u32 sectorsize = sctx->fs_info->sectorsize; 1852 const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits; 1853 int i; 1854 struct scrub_page *spage; 1855 char *kaddr; 1856 1857 BUG_ON(sblock->page_count < 1); 1858 1859 /* Each member in pagev is just one block, not a full page */ 1860 ASSERT(sblock->page_count == num_sectors); 1861 1862 spage = sblock->pagev[0]; 1863 kaddr = page_address(spage->page); 1864 h = (struct btrfs_header *)kaddr; 1865 memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size); 1866 1867 /* 1868 * we don't use the getter functions here, as we 1869 * a) don't have an extent buffer and 1870 * b) the page is already kmapped 1871 */ 1872 if (spage->logical != btrfs_stack_header_bytenr(h)) 1873 sblock->header_error = 1; 1874 1875 if (spage->generation != btrfs_stack_header_generation(h)) { 1876 sblock->header_error = 1; 1877 sblock->generation_error = 1; 1878 } 1879 1880 if (!scrub_check_fsid(h->fsid, spage)) 1881 sblock->header_error = 1; 1882 1883 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1884 BTRFS_UUID_SIZE)) 1885 sblock->header_error = 1; 1886 1887 shash->tfm = fs_info->csum_shash; 1888 crypto_shash_init(shash); 1889 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 1890 sectorsize - BTRFS_CSUM_SIZE); 1891 1892 for (i = 1; i < num_sectors; i++) { 1893 kaddr = page_address(sblock->pagev[i]->page); 1894 crypto_shash_update(shash, kaddr, sectorsize); 1895 } 1896 1897 crypto_shash_final(shash, calculated_csum); 1898 if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size)) 1899 sblock->checksum_error = 1; 1900 1901 return sblock->header_error || sblock->checksum_error; 1902 } 1903 1904 static int scrub_checksum_super(struct scrub_block *sblock) 1905 { 1906 struct btrfs_super_block *s; 1907 struct scrub_ctx *sctx = sblock->sctx; 1908 struct btrfs_fs_info *fs_info = sctx->fs_info; 1909 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1910 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1911 struct scrub_page *spage; 1912 char *kaddr; 1913 int fail_gen = 0; 1914 int fail_cor = 0; 1915 1916 BUG_ON(sblock->page_count < 1); 1917 spage = sblock->pagev[0]; 1918 kaddr = page_address(spage->page); 1919 s = (struct btrfs_super_block *)kaddr; 1920 1921 if (spage->logical != btrfs_super_bytenr(s)) 1922 ++fail_cor; 1923 1924 if (spage->generation != btrfs_super_generation(s)) 1925 ++fail_gen; 1926 1927 if (!scrub_check_fsid(s->fsid, spage)) 1928 ++fail_cor; 1929 1930 shash->tfm = fs_info->csum_shash; 1931 crypto_shash_init(shash); 1932 crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE, 1933 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum); 1934 1935 if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size)) 1936 ++fail_cor; 1937 1938 if (fail_cor + fail_gen) { 1939 /* 1940 * if we find an error in a super block, we just report it. 1941 * They will get written with the next transaction commit 1942 * anyway 1943 */ 1944 spin_lock(&sctx->stat_lock); 1945 ++sctx->stat.super_errors; 1946 spin_unlock(&sctx->stat_lock); 1947 if (fail_cor) 1948 btrfs_dev_stat_inc_and_print(spage->dev, 1949 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1950 else 1951 btrfs_dev_stat_inc_and_print(spage->dev, 1952 BTRFS_DEV_STAT_GENERATION_ERRS); 1953 } 1954 1955 return fail_cor + fail_gen; 1956 } 1957 1958 static void scrub_block_get(struct scrub_block *sblock) 1959 { 1960 refcount_inc(&sblock->refs); 1961 } 1962 1963 static void scrub_block_put(struct scrub_block *sblock) 1964 { 1965 if (refcount_dec_and_test(&sblock->refs)) { 1966 int i; 1967 1968 if (sblock->sparity) 1969 scrub_parity_put(sblock->sparity); 1970 1971 for (i = 0; i < sblock->page_count; i++) 1972 scrub_page_put(sblock->pagev[i]); 1973 kfree(sblock); 1974 } 1975 } 1976 1977 static void scrub_page_get(struct scrub_page *spage) 1978 { 1979 atomic_inc(&spage->refs); 1980 } 1981 1982 static void scrub_page_put(struct scrub_page *spage) 1983 { 1984 if (atomic_dec_and_test(&spage->refs)) { 1985 if (spage->page) 1986 __free_page(spage->page); 1987 kfree(spage); 1988 } 1989 } 1990 1991 static void scrub_submit(struct scrub_ctx *sctx) 1992 { 1993 struct scrub_bio *sbio; 1994 1995 if (sctx->curr == -1) 1996 return; 1997 1998 sbio = sctx->bios[sctx->curr]; 1999 sctx->curr = -1; 2000 scrub_pending_bio_inc(sctx); 2001 btrfsic_submit_bio(sbio->bio); 2002 } 2003 2004 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 2005 struct scrub_page *spage) 2006 { 2007 struct scrub_block *sblock = spage->sblock; 2008 struct scrub_bio *sbio; 2009 int ret; 2010 2011 again: 2012 /* 2013 * grab a fresh bio or wait for one to become available 2014 */ 2015 while (sctx->curr == -1) { 2016 spin_lock(&sctx->list_lock); 2017 sctx->curr = sctx->first_free; 2018 if (sctx->curr != -1) { 2019 sctx->first_free = sctx->bios[sctx->curr]->next_free; 2020 sctx->bios[sctx->curr]->next_free = -1; 2021 sctx->bios[sctx->curr]->page_count = 0; 2022 spin_unlock(&sctx->list_lock); 2023 } else { 2024 spin_unlock(&sctx->list_lock); 2025 wait_event(sctx->list_wait, sctx->first_free != -1); 2026 } 2027 } 2028 sbio = sctx->bios[sctx->curr]; 2029 if (sbio->page_count == 0) { 2030 struct bio *bio; 2031 2032 sbio->physical = spage->physical; 2033 sbio->logical = spage->logical; 2034 sbio->dev = spage->dev; 2035 bio = sbio->bio; 2036 if (!bio) { 2037 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio); 2038 sbio->bio = bio; 2039 } 2040 2041 bio->bi_private = sbio; 2042 bio->bi_end_io = scrub_bio_end_io; 2043 bio_set_dev(bio, sbio->dev->bdev); 2044 bio->bi_iter.bi_sector = sbio->physical >> 9; 2045 bio->bi_opf = REQ_OP_READ; 2046 sbio->status = 0; 2047 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 2048 spage->physical || 2049 sbio->logical + sbio->page_count * PAGE_SIZE != 2050 spage->logical || 2051 sbio->dev != spage->dev) { 2052 scrub_submit(sctx); 2053 goto again; 2054 } 2055 2056 sbio->pagev[sbio->page_count] = spage; 2057 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 2058 if (ret != PAGE_SIZE) { 2059 if (sbio->page_count < 1) { 2060 bio_put(sbio->bio); 2061 sbio->bio = NULL; 2062 return -EIO; 2063 } 2064 scrub_submit(sctx); 2065 goto again; 2066 } 2067 2068 scrub_block_get(sblock); /* one for the page added to the bio */ 2069 atomic_inc(&sblock->outstanding_pages); 2070 sbio->page_count++; 2071 if (sbio->page_count == sctx->pages_per_rd_bio) 2072 scrub_submit(sctx); 2073 2074 return 0; 2075 } 2076 2077 static void scrub_missing_raid56_end_io(struct bio *bio) 2078 { 2079 struct scrub_block *sblock = bio->bi_private; 2080 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 2081 2082 if (bio->bi_status) 2083 sblock->no_io_error_seen = 0; 2084 2085 bio_put(bio); 2086 2087 btrfs_queue_work(fs_info->scrub_workers, &sblock->work); 2088 } 2089 2090 static void scrub_missing_raid56_worker(struct btrfs_work *work) 2091 { 2092 struct scrub_block *sblock = container_of(work, struct scrub_block, work); 2093 struct scrub_ctx *sctx = sblock->sctx; 2094 struct btrfs_fs_info *fs_info = sctx->fs_info; 2095 u64 logical; 2096 struct btrfs_device *dev; 2097 2098 logical = sblock->pagev[0]->logical; 2099 dev = sblock->pagev[0]->dev; 2100 2101 if (sblock->no_io_error_seen) 2102 scrub_recheck_block_checksum(sblock); 2103 2104 if (!sblock->no_io_error_seen) { 2105 spin_lock(&sctx->stat_lock); 2106 sctx->stat.read_errors++; 2107 spin_unlock(&sctx->stat_lock); 2108 btrfs_err_rl_in_rcu(fs_info, 2109 "IO error rebuilding logical %llu for dev %s", 2110 logical, rcu_str_deref(dev->name)); 2111 } else if (sblock->header_error || sblock->checksum_error) { 2112 spin_lock(&sctx->stat_lock); 2113 sctx->stat.uncorrectable_errors++; 2114 spin_unlock(&sctx->stat_lock); 2115 btrfs_err_rl_in_rcu(fs_info, 2116 "failed to rebuild valid logical %llu for dev %s", 2117 logical, rcu_str_deref(dev->name)); 2118 } else { 2119 scrub_write_block_to_dev_replace(sblock); 2120 } 2121 2122 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2123 mutex_lock(&sctx->wr_lock); 2124 scrub_wr_submit(sctx); 2125 mutex_unlock(&sctx->wr_lock); 2126 } 2127 2128 scrub_block_put(sblock); 2129 scrub_pending_bio_dec(sctx); 2130 } 2131 2132 static void scrub_missing_raid56_pages(struct scrub_block *sblock) 2133 { 2134 struct scrub_ctx *sctx = sblock->sctx; 2135 struct btrfs_fs_info *fs_info = sctx->fs_info; 2136 u64 length = sblock->page_count * PAGE_SIZE; 2137 u64 logical = sblock->pagev[0]->logical; 2138 struct btrfs_bio *bbio = NULL; 2139 struct bio *bio; 2140 struct btrfs_raid_bio *rbio; 2141 int ret; 2142 int i; 2143 2144 btrfs_bio_counter_inc_blocked(fs_info); 2145 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 2146 &length, &bbio); 2147 if (ret || !bbio || !bbio->raid_map) 2148 goto bbio_out; 2149 2150 if (WARN_ON(!sctx->is_dev_replace || 2151 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2152 /* 2153 * We shouldn't be scrubbing a missing device. Even for dev 2154 * replace, we should only get here for RAID 5/6. We either 2155 * managed to mount something with no mirrors remaining or 2156 * there's a bug in scrub_remap_extent()/btrfs_map_block(). 2157 */ 2158 goto bbio_out; 2159 } 2160 2161 bio = btrfs_io_bio_alloc(0); 2162 bio->bi_iter.bi_sector = logical >> 9; 2163 bio->bi_private = sblock; 2164 bio->bi_end_io = scrub_missing_raid56_end_io; 2165 2166 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length); 2167 if (!rbio) 2168 goto rbio_out; 2169 2170 for (i = 0; i < sblock->page_count; i++) { 2171 struct scrub_page *spage = sblock->pagev[i]; 2172 2173 raid56_add_scrub_pages(rbio, spage->page, spage->logical); 2174 } 2175 2176 btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL); 2177 scrub_block_get(sblock); 2178 scrub_pending_bio_inc(sctx); 2179 raid56_submit_missing_rbio(rbio); 2180 return; 2181 2182 rbio_out: 2183 bio_put(bio); 2184 bbio_out: 2185 btrfs_bio_counter_dec(fs_info); 2186 btrfs_put_bbio(bbio); 2187 spin_lock(&sctx->stat_lock); 2188 sctx->stat.malloc_errors++; 2189 spin_unlock(&sctx->stat_lock); 2190 } 2191 2192 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len, 2193 u64 physical, struct btrfs_device *dev, u64 flags, 2194 u64 gen, int mirror_num, u8 *csum, 2195 u64 physical_for_dev_replace) 2196 { 2197 struct scrub_block *sblock; 2198 const u32 sectorsize = sctx->fs_info->sectorsize; 2199 int index; 2200 2201 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2202 if (!sblock) { 2203 spin_lock(&sctx->stat_lock); 2204 sctx->stat.malloc_errors++; 2205 spin_unlock(&sctx->stat_lock); 2206 return -ENOMEM; 2207 } 2208 2209 /* one ref inside this function, plus one for each page added to 2210 * a bio later on */ 2211 refcount_set(&sblock->refs, 1); 2212 sblock->sctx = sctx; 2213 sblock->no_io_error_seen = 1; 2214 2215 for (index = 0; len > 0; index++) { 2216 struct scrub_page *spage; 2217 /* 2218 * Here we will allocate one page for one sector to scrub. 2219 * This is fine if PAGE_SIZE == sectorsize, but will cost 2220 * more memory for PAGE_SIZE > sectorsize case. 2221 */ 2222 u32 l = min(sectorsize, len); 2223 2224 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2225 if (!spage) { 2226 leave_nomem: 2227 spin_lock(&sctx->stat_lock); 2228 sctx->stat.malloc_errors++; 2229 spin_unlock(&sctx->stat_lock); 2230 scrub_block_put(sblock); 2231 return -ENOMEM; 2232 } 2233 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2234 scrub_page_get(spage); 2235 sblock->pagev[index] = spage; 2236 spage->sblock = sblock; 2237 spage->dev = dev; 2238 spage->flags = flags; 2239 spage->generation = gen; 2240 spage->logical = logical; 2241 spage->physical = physical; 2242 spage->physical_for_dev_replace = physical_for_dev_replace; 2243 spage->mirror_num = mirror_num; 2244 if (csum) { 2245 spage->have_csum = 1; 2246 memcpy(spage->csum, csum, sctx->fs_info->csum_size); 2247 } else { 2248 spage->have_csum = 0; 2249 } 2250 sblock->page_count++; 2251 spage->page = alloc_page(GFP_KERNEL); 2252 if (!spage->page) 2253 goto leave_nomem; 2254 len -= l; 2255 logical += l; 2256 physical += l; 2257 physical_for_dev_replace += l; 2258 } 2259 2260 WARN_ON(sblock->page_count == 0); 2261 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2262 /* 2263 * This case should only be hit for RAID 5/6 device replace. See 2264 * the comment in scrub_missing_raid56_pages() for details. 2265 */ 2266 scrub_missing_raid56_pages(sblock); 2267 } else { 2268 for (index = 0; index < sblock->page_count; index++) { 2269 struct scrub_page *spage = sblock->pagev[index]; 2270 int ret; 2271 2272 ret = scrub_add_page_to_rd_bio(sctx, spage); 2273 if (ret) { 2274 scrub_block_put(sblock); 2275 return ret; 2276 } 2277 } 2278 2279 if (flags & BTRFS_EXTENT_FLAG_SUPER) 2280 scrub_submit(sctx); 2281 } 2282 2283 /* last one frees, either here or in bio completion for last page */ 2284 scrub_block_put(sblock); 2285 return 0; 2286 } 2287 2288 static void scrub_bio_end_io(struct bio *bio) 2289 { 2290 struct scrub_bio *sbio = bio->bi_private; 2291 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 2292 2293 sbio->status = bio->bi_status; 2294 sbio->bio = bio; 2295 2296 btrfs_queue_work(fs_info->scrub_workers, &sbio->work); 2297 } 2298 2299 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2300 { 2301 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2302 struct scrub_ctx *sctx = sbio->sctx; 2303 int i; 2304 2305 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2306 if (sbio->status) { 2307 for (i = 0; i < sbio->page_count; i++) { 2308 struct scrub_page *spage = sbio->pagev[i]; 2309 2310 spage->io_error = 1; 2311 spage->sblock->no_io_error_seen = 0; 2312 } 2313 } 2314 2315 /* now complete the scrub_block items that have all pages completed */ 2316 for (i = 0; i < sbio->page_count; i++) { 2317 struct scrub_page *spage = sbio->pagev[i]; 2318 struct scrub_block *sblock = spage->sblock; 2319 2320 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2321 scrub_block_complete(sblock); 2322 scrub_block_put(sblock); 2323 } 2324 2325 bio_put(sbio->bio); 2326 sbio->bio = NULL; 2327 spin_lock(&sctx->list_lock); 2328 sbio->next_free = sctx->first_free; 2329 sctx->first_free = sbio->index; 2330 spin_unlock(&sctx->list_lock); 2331 2332 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2333 mutex_lock(&sctx->wr_lock); 2334 scrub_wr_submit(sctx); 2335 mutex_unlock(&sctx->wr_lock); 2336 } 2337 2338 scrub_pending_bio_dec(sctx); 2339 } 2340 2341 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, 2342 unsigned long *bitmap, 2343 u64 start, u32 len) 2344 { 2345 u64 offset; 2346 u32 nsectors; 2347 u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits; 2348 2349 if (len >= sparity->stripe_len) { 2350 bitmap_set(bitmap, 0, sparity->nsectors); 2351 return; 2352 } 2353 2354 start -= sparity->logic_start; 2355 start = div64_u64_rem(start, sparity->stripe_len, &offset); 2356 offset = offset >> sectorsize_bits; 2357 nsectors = len >> sectorsize_bits; 2358 2359 if (offset + nsectors <= sparity->nsectors) { 2360 bitmap_set(bitmap, offset, nsectors); 2361 return; 2362 } 2363 2364 bitmap_set(bitmap, offset, sparity->nsectors - offset); 2365 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); 2366 } 2367 2368 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, 2369 u64 start, u32 len) 2370 { 2371 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); 2372 } 2373 2374 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, 2375 u64 start, u32 len) 2376 { 2377 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); 2378 } 2379 2380 static void scrub_block_complete(struct scrub_block *sblock) 2381 { 2382 int corrupted = 0; 2383 2384 if (!sblock->no_io_error_seen) { 2385 corrupted = 1; 2386 scrub_handle_errored_block(sblock); 2387 } else { 2388 /* 2389 * if has checksum error, write via repair mechanism in 2390 * dev replace case, otherwise write here in dev replace 2391 * case. 2392 */ 2393 corrupted = scrub_checksum(sblock); 2394 if (!corrupted && sblock->sctx->is_dev_replace) 2395 scrub_write_block_to_dev_replace(sblock); 2396 } 2397 2398 if (sblock->sparity && corrupted && !sblock->data_corrected) { 2399 u64 start = sblock->pagev[0]->logical; 2400 u64 end = sblock->pagev[sblock->page_count - 1]->logical + 2401 PAGE_SIZE; 2402 2403 ASSERT(end - start <= U32_MAX); 2404 scrub_parity_mark_sectors_error(sblock->sparity, 2405 start, end - start); 2406 } 2407 } 2408 2409 static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum) 2410 { 2411 sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits; 2412 list_del(&sum->list); 2413 kfree(sum); 2414 } 2415 2416 /* 2417 * Find the desired csum for range [logical, logical + sectorsize), and store 2418 * the csum into @csum. 2419 * 2420 * The search source is sctx->csum_list, which is a pre-populated list 2421 * storing bytenr ordered csum ranges. We're reponsible to cleanup any range 2422 * that is before @logical. 2423 * 2424 * Return 0 if there is no csum for the range. 2425 * Return 1 if there is csum for the range and copied to @csum. 2426 */ 2427 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) 2428 { 2429 bool found = false; 2430 2431 while (!list_empty(&sctx->csum_list)) { 2432 struct btrfs_ordered_sum *sum = NULL; 2433 unsigned long index; 2434 unsigned long num_sectors; 2435 2436 sum = list_first_entry(&sctx->csum_list, 2437 struct btrfs_ordered_sum, list); 2438 /* The current csum range is beyond our range, no csum found */ 2439 if (sum->bytenr > logical) 2440 break; 2441 2442 /* 2443 * The current sum is before our bytenr, since scrub is always 2444 * done in bytenr order, the csum will never be used anymore, 2445 * clean it up so that later calls won't bother with the range, 2446 * and continue search the next range. 2447 */ 2448 if (sum->bytenr + sum->len <= logical) { 2449 drop_csum_range(sctx, sum); 2450 continue; 2451 } 2452 2453 /* Now the csum range covers our bytenr, copy the csum */ 2454 found = true; 2455 index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits; 2456 num_sectors = sum->len >> sctx->fs_info->sectorsize_bits; 2457 2458 memcpy(csum, sum->sums + index * sctx->fs_info->csum_size, 2459 sctx->fs_info->csum_size); 2460 2461 /* Cleanup the range if we're at the end of the csum range */ 2462 if (index == num_sectors - 1) 2463 drop_csum_range(sctx, sum); 2464 break; 2465 } 2466 if (!found) 2467 return 0; 2468 return 1; 2469 } 2470 2471 /* scrub extent tries to collect up to 64 kB for each bio */ 2472 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map, 2473 u64 logical, u32 len, 2474 u64 physical, struct btrfs_device *dev, u64 flags, 2475 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2476 { 2477 int ret; 2478 u8 csum[BTRFS_CSUM_SIZE]; 2479 u32 blocksize; 2480 2481 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2482 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2483 blocksize = map->stripe_len; 2484 else 2485 blocksize = sctx->fs_info->sectorsize; 2486 spin_lock(&sctx->stat_lock); 2487 sctx->stat.data_extents_scrubbed++; 2488 sctx->stat.data_bytes_scrubbed += len; 2489 spin_unlock(&sctx->stat_lock); 2490 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2491 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2492 blocksize = map->stripe_len; 2493 else 2494 blocksize = sctx->fs_info->nodesize; 2495 spin_lock(&sctx->stat_lock); 2496 sctx->stat.tree_extents_scrubbed++; 2497 sctx->stat.tree_bytes_scrubbed += len; 2498 spin_unlock(&sctx->stat_lock); 2499 } else { 2500 blocksize = sctx->fs_info->sectorsize; 2501 WARN_ON(1); 2502 } 2503 2504 while (len) { 2505 u32 l = min(len, blocksize); 2506 int have_csum = 0; 2507 2508 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2509 /* push csums to sbio */ 2510 have_csum = scrub_find_csum(sctx, logical, csum); 2511 if (have_csum == 0) 2512 ++sctx->stat.no_csum; 2513 } 2514 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2515 mirror_num, have_csum ? csum : NULL, 2516 physical_for_dev_replace); 2517 if (ret) 2518 return ret; 2519 len -= l; 2520 logical += l; 2521 physical += l; 2522 physical_for_dev_replace += l; 2523 } 2524 return 0; 2525 } 2526 2527 static int scrub_pages_for_parity(struct scrub_parity *sparity, 2528 u64 logical, u32 len, 2529 u64 physical, struct btrfs_device *dev, 2530 u64 flags, u64 gen, int mirror_num, u8 *csum) 2531 { 2532 struct scrub_ctx *sctx = sparity->sctx; 2533 struct scrub_block *sblock; 2534 const u32 sectorsize = sctx->fs_info->sectorsize; 2535 int index; 2536 2537 ASSERT(IS_ALIGNED(len, sectorsize)); 2538 2539 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2540 if (!sblock) { 2541 spin_lock(&sctx->stat_lock); 2542 sctx->stat.malloc_errors++; 2543 spin_unlock(&sctx->stat_lock); 2544 return -ENOMEM; 2545 } 2546 2547 /* one ref inside this function, plus one for each page added to 2548 * a bio later on */ 2549 refcount_set(&sblock->refs, 1); 2550 sblock->sctx = sctx; 2551 sblock->no_io_error_seen = 1; 2552 sblock->sparity = sparity; 2553 scrub_parity_get(sparity); 2554 2555 for (index = 0; len > 0; index++) { 2556 struct scrub_page *spage; 2557 2558 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2559 if (!spage) { 2560 leave_nomem: 2561 spin_lock(&sctx->stat_lock); 2562 sctx->stat.malloc_errors++; 2563 spin_unlock(&sctx->stat_lock); 2564 scrub_block_put(sblock); 2565 return -ENOMEM; 2566 } 2567 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2568 /* For scrub block */ 2569 scrub_page_get(spage); 2570 sblock->pagev[index] = spage; 2571 /* For scrub parity */ 2572 scrub_page_get(spage); 2573 list_add_tail(&spage->list, &sparity->spages); 2574 spage->sblock = sblock; 2575 spage->dev = dev; 2576 spage->flags = flags; 2577 spage->generation = gen; 2578 spage->logical = logical; 2579 spage->physical = physical; 2580 spage->mirror_num = mirror_num; 2581 if (csum) { 2582 spage->have_csum = 1; 2583 memcpy(spage->csum, csum, sctx->fs_info->csum_size); 2584 } else { 2585 spage->have_csum = 0; 2586 } 2587 sblock->page_count++; 2588 spage->page = alloc_page(GFP_KERNEL); 2589 if (!spage->page) 2590 goto leave_nomem; 2591 2592 2593 /* Iterate over the stripe range in sectorsize steps */ 2594 len -= sectorsize; 2595 logical += sectorsize; 2596 physical += sectorsize; 2597 } 2598 2599 WARN_ON(sblock->page_count == 0); 2600 for (index = 0; index < sblock->page_count; index++) { 2601 struct scrub_page *spage = sblock->pagev[index]; 2602 int ret; 2603 2604 ret = scrub_add_page_to_rd_bio(sctx, spage); 2605 if (ret) { 2606 scrub_block_put(sblock); 2607 return ret; 2608 } 2609 } 2610 2611 /* last one frees, either here or in bio completion for last page */ 2612 scrub_block_put(sblock); 2613 return 0; 2614 } 2615 2616 static int scrub_extent_for_parity(struct scrub_parity *sparity, 2617 u64 logical, u32 len, 2618 u64 physical, struct btrfs_device *dev, 2619 u64 flags, u64 gen, int mirror_num) 2620 { 2621 struct scrub_ctx *sctx = sparity->sctx; 2622 int ret; 2623 u8 csum[BTRFS_CSUM_SIZE]; 2624 u32 blocksize; 2625 2626 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2627 scrub_parity_mark_sectors_error(sparity, logical, len); 2628 return 0; 2629 } 2630 2631 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2632 blocksize = sparity->stripe_len; 2633 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2634 blocksize = sparity->stripe_len; 2635 } else { 2636 blocksize = sctx->fs_info->sectorsize; 2637 WARN_ON(1); 2638 } 2639 2640 while (len) { 2641 u32 l = min(len, blocksize); 2642 int have_csum = 0; 2643 2644 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2645 /* push csums to sbio */ 2646 have_csum = scrub_find_csum(sctx, logical, csum); 2647 if (have_csum == 0) 2648 goto skip; 2649 } 2650 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, 2651 flags, gen, mirror_num, 2652 have_csum ? csum : NULL); 2653 if (ret) 2654 return ret; 2655 skip: 2656 len -= l; 2657 logical += l; 2658 physical += l; 2659 } 2660 return 0; 2661 } 2662 2663 /* 2664 * Given a physical address, this will calculate it's 2665 * logical offset. if this is a parity stripe, it will return 2666 * the most left data stripe's logical offset. 2667 * 2668 * return 0 if it is a data stripe, 1 means parity stripe. 2669 */ 2670 static int get_raid56_logic_offset(u64 physical, int num, 2671 struct map_lookup *map, u64 *offset, 2672 u64 *stripe_start) 2673 { 2674 int i; 2675 int j = 0; 2676 u64 stripe_nr; 2677 u64 last_offset; 2678 u32 stripe_index; 2679 u32 rot; 2680 const int data_stripes = nr_data_stripes(map); 2681 2682 last_offset = (physical - map->stripes[num].physical) * data_stripes; 2683 if (stripe_start) 2684 *stripe_start = last_offset; 2685 2686 *offset = last_offset; 2687 for (i = 0; i < data_stripes; i++) { 2688 *offset = last_offset + i * map->stripe_len; 2689 2690 stripe_nr = div64_u64(*offset, map->stripe_len); 2691 stripe_nr = div_u64(stripe_nr, data_stripes); 2692 2693 /* Work out the disk rotation on this stripe-set */ 2694 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); 2695 /* calculate which stripe this data locates */ 2696 rot += i; 2697 stripe_index = rot % map->num_stripes; 2698 if (stripe_index == num) 2699 return 0; 2700 if (stripe_index < num) 2701 j++; 2702 } 2703 *offset = last_offset + j * map->stripe_len; 2704 return 1; 2705 } 2706 2707 static void scrub_free_parity(struct scrub_parity *sparity) 2708 { 2709 struct scrub_ctx *sctx = sparity->sctx; 2710 struct scrub_page *curr, *next; 2711 int nbits; 2712 2713 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); 2714 if (nbits) { 2715 spin_lock(&sctx->stat_lock); 2716 sctx->stat.read_errors += nbits; 2717 sctx->stat.uncorrectable_errors += nbits; 2718 spin_unlock(&sctx->stat_lock); 2719 } 2720 2721 list_for_each_entry_safe(curr, next, &sparity->spages, list) { 2722 list_del_init(&curr->list); 2723 scrub_page_put(curr); 2724 } 2725 2726 kfree(sparity); 2727 } 2728 2729 static void scrub_parity_bio_endio_worker(struct btrfs_work *work) 2730 { 2731 struct scrub_parity *sparity = container_of(work, struct scrub_parity, 2732 work); 2733 struct scrub_ctx *sctx = sparity->sctx; 2734 2735 scrub_free_parity(sparity); 2736 scrub_pending_bio_dec(sctx); 2737 } 2738 2739 static void scrub_parity_bio_endio(struct bio *bio) 2740 { 2741 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; 2742 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; 2743 2744 if (bio->bi_status) 2745 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2746 sparity->nsectors); 2747 2748 bio_put(bio); 2749 2750 btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL, 2751 NULL); 2752 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work); 2753 } 2754 2755 static void scrub_parity_check_and_repair(struct scrub_parity *sparity) 2756 { 2757 struct scrub_ctx *sctx = sparity->sctx; 2758 struct btrfs_fs_info *fs_info = sctx->fs_info; 2759 struct bio *bio; 2760 struct btrfs_raid_bio *rbio; 2761 struct btrfs_bio *bbio = NULL; 2762 u64 length; 2763 int ret; 2764 2765 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, 2766 sparity->nsectors)) 2767 goto out; 2768 2769 length = sparity->logic_end - sparity->logic_start; 2770 2771 btrfs_bio_counter_inc_blocked(fs_info); 2772 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, 2773 &length, &bbio); 2774 if (ret || !bbio || !bbio->raid_map) 2775 goto bbio_out; 2776 2777 bio = btrfs_io_bio_alloc(0); 2778 bio->bi_iter.bi_sector = sparity->logic_start >> 9; 2779 bio->bi_private = sparity; 2780 bio->bi_end_io = scrub_parity_bio_endio; 2781 2782 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio, 2783 length, sparity->scrub_dev, 2784 sparity->dbitmap, 2785 sparity->nsectors); 2786 if (!rbio) 2787 goto rbio_out; 2788 2789 scrub_pending_bio_inc(sctx); 2790 raid56_parity_submit_scrub_rbio(rbio); 2791 return; 2792 2793 rbio_out: 2794 bio_put(bio); 2795 bbio_out: 2796 btrfs_bio_counter_dec(fs_info); 2797 btrfs_put_bbio(bbio); 2798 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2799 sparity->nsectors); 2800 spin_lock(&sctx->stat_lock); 2801 sctx->stat.malloc_errors++; 2802 spin_unlock(&sctx->stat_lock); 2803 out: 2804 scrub_free_parity(sparity); 2805 } 2806 2807 static inline int scrub_calc_parity_bitmap_len(int nsectors) 2808 { 2809 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long); 2810 } 2811 2812 static void scrub_parity_get(struct scrub_parity *sparity) 2813 { 2814 refcount_inc(&sparity->refs); 2815 } 2816 2817 static void scrub_parity_put(struct scrub_parity *sparity) 2818 { 2819 if (!refcount_dec_and_test(&sparity->refs)) 2820 return; 2821 2822 scrub_parity_check_and_repair(sparity); 2823 } 2824 2825 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, 2826 struct map_lookup *map, 2827 struct btrfs_device *sdev, 2828 struct btrfs_path *path, 2829 u64 logic_start, 2830 u64 logic_end) 2831 { 2832 struct btrfs_fs_info *fs_info = sctx->fs_info; 2833 struct btrfs_root *root = fs_info->extent_root; 2834 struct btrfs_root *csum_root = fs_info->csum_root; 2835 struct btrfs_extent_item *extent; 2836 struct btrfs_bio *bbio = NULL; 2837 u64 flags; 2838 int ret; 2839 int slot; 2840 struct extent_buffer *l; 2841 struct btrfs_key key; 2842 u64 generation; 2843 u64 extent_logical; 2844 u64 extent_physical; 2845 /* Check the comment in scrub_stripe() for why u32 is enough here */ 2846 u32 extent_len; 2847 u64 mapped_length; 2848 struct btrfs_device *extent_dev; 2849 struct scrub_parity *sparity; 2850 int nsectors; 2851 int bitmap_len; 2852 int extent_mirror_num; 2853 int stop_loop = 0; 2854 2855 ASSERT(map->stripe_len <= U32_MAX); 2856 nsectors = map->stripe_len >> fs_info->sectorsize_bits; 2857 bitmap_len = scrub_calc_parity_bitmap_len(nsectors); 2858 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, 2859 GFP_NOFS); 2860 if (!sparity) { 2861 spin_lock(&sctx->stat_lock); 2862 sctx->stat.malloc_errors++; 2863 spin_unlock(&sctx->stat_lock); 2864 return -ENOMEM; 2865 } 2866 2867 ASSERT(map->stripe_len <= U32_MAX); 2868 sparity->stripe_len = map->stripe_len; 2869 sparity->nsectors = nsectors; 2870 sparity->sctx = sctx; 2871 sparity->scrub_dev = sdev; 2872 sparity->logic_start = logic_start; 2873 sparity->logic_end = logic_end; 2874 refcount_set(&sparity->refs, 1); 2875 INIT_LIST_HEAD(&sparity->spages); 2876 sparity->dbitmap = sparity->bitmap; 2877 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; 2878 2879 ret = 0; 2880 while (logic_start < logic_end) { 2881 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2882 key.type = BTRFS_METADATA_ITEM_KEY; 2883 else 2884 key.type = BTRFS_EXTENT_ITEM_KEY; 2885 key.objectid = logic_start; 2886 key.offset = (u64)-1; 2887 2888 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2889 if (ret < 0) 2890 goto out; 2891 2892 if (ret > 0) { 2893 ret = btrfs_previous_extent_item(root, path, 0); 2894 if (ret < 0) 2895 goto out; 2896 if (ret > 0) { 2897 btrfs_release_path(path); 2898 ret = btrfs_search_slot(NULL, root, &key, 2899 path, 0, 0); 2900 if (ret < 0) 2901 goto out; 2902 } 2903 } 2904 2905 stop_loop = 0; 2906 while (1) { 2907 u64 bytes; 2908 2909 l = path->nodes[0]; 2910 slot = path->slots[0]; 2911 if (slot >= btrfs_header_nritems(l)) { 2912 ret = btrfs_next_leaf(root, path); 2913 if (ret == 0) 2914 continue; 2915 if (ret < 0) 2916 goto out; 2917 2918 stop_loop = 1; 2919 break; 2920 } 2921 btrfs_item_key_to_cpu(l, &key, slot); 2922 2923 if (key.type != BTRFS_EXTENT_ITEM_KEY && 2924 key.type != BTRFS_METADATA_ITEM_KEY) 2925 goto next; 2926 2927 if (key.type == BTRFS_METADATA_ITEM_KEY) 2928 bytes = fs_info->nodesize; 2929 else 2930 bytes = key.offset; 2931 2932 if (key.objectid + bytes <= logic_start) 2933 goto next; 2934 2935 if (key.objectid >= logic_end) { 2936 stop_loop = 1; 2937 break; 2938 } 2939 2940 while (key.objectid >= logic_start + map->stripe_len) 2941 logic_start += map->stripe_len; 2942 2943 extent = btrfs_item_ptr(l, slot, 2944 struct btrfs_extent_item); 2945 flags = btrfs_extent_flags(l, extent); 2946 generation = btrfs_extent_generation(l, extent); 2947 2948 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 2949 (key.objectid < logic_start || 2950 key.objectid + bytes > 2951 logic_start + map->stripe_len)) { 2952 btrfs_err(fs_info, 2953 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 2954 key.objectid, logic_start); 2955 spin_lock(&sctx->stat_lock); 2956 sctx->stat.uncorrectable_errors++; 2957 spin_unlock(&sctx->stat_lock); 2958 goto next; 2959 } 2960 again: 2961 extent_logical = key.objectid; 2962 ASSERT(bytes <= U32_MAX); 2963 extent_len = bytes; 2964 2965 if (extent_logical < logic_start) { 2966 extent_len -= logic_start - extent_logical; 2967 extent_logical = logic_start; 2968 } 2969 2970 if (extent_logical + extent_len > 2971 logic_start + map->stripe_len) 2972 extent_len = logic_start + map->stripe_len - 2973 extent_logical; 2974 2975 scrub_parity_mark_sectors_data(sparity, extent_logical, 2976 extent_len); 2977 2978 mapped_length = extent_len; 2979 bbio = NULL; 2980 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, 2981 extent_logical, &mapped_length, &bbio, 2982 0); 2983 if (!ret) { 2984 if (!bbio || mapped_length < extent_len) 2985 ret = -EIO; 2986 } 2987 if (ret) { 2988 btrfs_put_bbio(bbio); 2989 goto out; 2990 } 2991 extent_physical = bbio->stripes[0].physical; 2992 extent_mirror_num = bbio->mirror_num; 2993 extent_dev = bbio->stripes[0].dev; 2994 btrfs_put_bbio(bbio); 2995 2996 ret = btrfs_lookup_csums_range(csum_root, 2997 extent_logical, 2998 extent_logical + extent_len - 1, 2999 &sctx->csum_list, 1); 3000 if (ret) 3001 goto out; 3002 3003 ret = scrub_extent_for_parity(sparity, extent_logical, 3004 extent_len, 3005 extent_physical, 3006 extent_dev, flags, 3007 generation, 3008 extent_mirror_num); 3009 3010 scrub_free_csums(sctx); 3011 3012 if (ret) 3013 goto out; 3014 3015 if (extent_logical + extent_len < 3016 key.objectid + bytes) { 3017 logic_start += map->stripe_len; 3018 3019 if (logic_start >= logic_end) { 3020 stop_loop = 1; 3021 break; 3022 } 3023 3024 if (logic_start < key.objectid + bytes) { 3025 cond_resched(); 3026 goto again; 3027 } 3028 } 3029 next: 3030 path->slots[0]++; 3031 } 3032 3033 btrfs_release_path(path); 3034 3035 if (stop_loop) 3036 break; 3037 3038 logic_start += map->stripe_len; 3039 } 3040 out: 3041 if (ret < 0) { 3042 ASSERT(logic_end - logic_start <= U32_MAX); 3043 scrub_parity_mark_sectors_error(sparity, logic_start, 3044 logic_end - logic_start); 3045 } 3046 scrub_parity_put(sparity); 3047 scrub_submit(sctx); 3048 mutex_lock(&sctx->wr_lock); 3049 scrub_wr_submit(sctx); 3050 mutex_unlock(&sctx->wr_lock); 3051 3052 btrfs_release_path(path); 3053 return ret < 0 ? ret : 0; 3054 } 3055 3056 static void sync_replace_for_zoned(struct scrub_ctx *sctx) 3057 { 3058 if (!btrfs_is_zoned(sctx->fs_info)) 3059 return; 3060 3061 sctx->flush_all_writes = true; 3062 scrub_submit(sctx); 3063 mutex_lock(&sctx->wr_lock); 3064 scrub_wr_submit(sctx); 3065 mutex_unlock(&sctx->wr_lock); 3066 3067 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3068 } 3069 3070 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical, 3071 u64 physical, u64 physical_end) 3072 { 3073 struct btrfs_fs_info *fs_info = sctx->fs_info; 3074 int ret = 0; 3075 3076 if (!btrfs_is_zoned(fs_info)) 3077 return 0; 3078 3079 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3080 3081 mutex_lock(&sctx->wr_lock); 3082 if (sctx->write_pointer < physical_end) { 3083 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical, 3084 physical, 3085 sctx->write_pointer); 3086 if (ret) 3087 btrfs_err(fs_info, 3088 "zoned: failed to recover write pointer"); 3089 } 3090 mutex_unlock(&sctx->wr_lock); 3091 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical); 3092 3093 return ret; 3094 } 3095 3096 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 3097 struct map_lookup *map, 3098 struct btrfs_device *scrub_dev, 3099 int num, u64 base, u64 length, 3100 struct btrfs_block_group *cache) 3101 { 3102 struct btrfs_path *path, *ppath; 3103 struct btrfs_fs_info *fs_info = sctx->fs_info; 3104 struct btrfs_root *root = fs_info->extent_root; 3105 struct btrfs_root *csum_root = fs_info->csum_root; 3106 struct btrfs_extent_item *extent; 3107 struct blk_plug plug; 3108 u64 flags; 3109 int ret; 3110 int slot; 3111 u64 nstripes; 3112 struct extent_buffer *l; 3113 u64 physical; 3114 u64 logical; 3115 u64 logic_end; 3116 u64 physical_end; 3117 u64 generation; 3118 int mirror_num; 3119 struct reada_control *reada1; 3120 struct reada_control *reada2; 3121 struct btrfs_key key; 3122 struct btrfs_key key_end; 3123 u64 increment = map->stripe_len; 3124 u64 offset; 3125 u64 extent_logical; 3126 u64 extent_physical; 3127 /* 3128 * Unlike chunk length, extent length should never go beyond 3129 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here. 3130 */ 3131 u32 extent_len; 3132 u64 stripe_logical; 3133 u64 stripe_end; 3134 struct btrfs_device *extent_dev; 3135 int extent_mirror_num; 3136 int stop_loop = 0; 3137 3138 physical = map->stripes[num].physical; 3139 offset = 0; 3140 nstripes = div64_u64(length, map->stripe_len); 3141 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3142 offset = map->stripe_len * num; 3143 increment = map->stripe_len * map->num_stripes; 3144 mirror_num = 1; 3145 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3146 int factor = map->num_stripes / map->sub_stripes; 3147 offset = map->stripe_len * (num / map->sub_stripes); 3148 increment = map->stripe_len * factor; 3149 mirror_num = num % map->sub_stripes + 1; 3150 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 3151 increment = map->stripe_len; 3152 mirror_num = num % map->num_stripes + 1; 3153 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3154 increment = map->stripe_len; 3155 mirror_num = num % map->num_stripes + 1; 3156 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3157 get_raid56_logic_offset(physical, num, map, &offset, NULL); 3158 increment = map->stripe_len * nr_data_stripes(map); 3159 mirror_num = 1; 3160 } else { 3161 increment = map->stripe_len; 3162 mirror_num = 1; 3163 } 3164 3165 path = btrfs_alloc_path(); 3166 if (!path) 3167 return -ENOMEM; 3168 3169 ppath = btrfs_alloc_path(); 3170 if (!ppath) { 3171 btrfs_free_path(path); 3172 return -ENOMEM; 3173 } 3174 3175 /* 3176 * work on commit root. The related disk blocks are static as 3177 * long as COW is applied. This means, it is save to rewrite 3178 * them to repair disk errors without any race conditions 3179 */ 3180 path->search_commit_root = 1; 3181 path->skip_locking = 1; 3182 3183 ppath->search_commit_root = 1; 3184 ppath->skip_locking = 1; 3185 /* 3186 * trigger the readahead for extent tree csum tree and wait for 3187 * completion. During readahead, the scrub is officially paused 3188 * to not hold off transaction commits 3189 */ 3190 logical = base + offset; 3191 physical_end = physical + nstripes * map->stripe_len; 3192 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3193 get_raid56_logic_offset(physical_end, num, 3194 map, &logic_end, NULL); 3195 logic_end += base; 3196 } else { 3197 logic_end = logical + increment * nstripes; 3198 } 3199 wait_event(sctx->list_wait, 3200 atomic_read(&sctx->bios_in_flight) == 0); 3201 scrub_blocked_if_needed(fs_info); 3202 3203 /* FIXME it might be better to start readahead at commit root */ 3204 key.objectid = logical; 3205 key.type = BTRFS_EXTENT_ITEM_KEY; 3206 key.offset = (u64)0; 3207 key_end.objectid = logic_end; 3208 key_end.type = BTRFS_METADATA_ITEM_KEY; 3209 key_end.offset = (u64)-1; 3210 reada1 = btrfs_reada_add(root, &key, &key_end); 3211 3212 if (cache->flags & BTRFS_BLOCK_GROUP_DATA) { 3213 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3214 key.type = BTRFS_EXTENT_CSUM_KEY; 3215 key.offset = logical; 3216 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3217 key_end.type = BTRFS_EXTENT_CSUM_KEY; 3218 key_end.offset = logic_end; 3219 reada2 = btrfs_reada_add(csum_root, &key, &key_end); 3220 } else { 3221 reada2 = NULL; 3222 } 3223 3224 if (!IS_ERR(reada1)) 3225 btrfs_reada_wait(reada1); 3226 if (!IS_ERR_OR_NULL(reada2)) 3227 btrfs_reada_wait(reada2); 3228 3229 3230 /* 3231 * collect all data csums for the stripe to avoid seeking during 3232 * the scrub. This might currently (crc32) end up to be about 1MB 3233 */ 3234 blk_start_plug(&plug); 3235 3236 if (sctx->is_dev_replace && 3237 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) { 3238 mutex_lock(&sctx->wr_lock); 3239 sctx->write_pointer = physical; 3240 mutex_unlock(&sctx->wr_lock); 3241 sctx->flush_all_writes = true; 3242 } 3243 3244 /* 3245 * now find all extents for each stripe and scrub them 3246 */ 3247 ret = 0; 3248 while (physical < physical_end) { 3249 /* 3250 * canceled? 3251 */ 3252 if (atomic_read(&fs_info->scrub_cancel_req) || 3253 atomic_read(&sctx->cancel_req)) { 3254 ret = -ECANCELED; 3255 goto out; 3256 } 3257 /* 3258 * check to see if we have to pause 3259 */ 3260 if (atomic_read(&fs_info->scrub_pause_req)) { 3261 /* push queued extents */ 3262 sctx->flush_all_writes = true; 3263 scrub_submit(sctx); 3264 mutex_lock(&sctx->wr_lock); 3265 scrub_wr_submit(sctx); 3266 mutex_unlock(&sctx->wr_lock); 3267 wait_event(sctx->list_wait, 3268 atomic_read(&sctx->bios_in_flight) == 0); 3269 sctx->flush_all_writes = false; 3270 scrub_blocked_if_needed(fs_info); 3271 } 3272 3273 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3274 ret = get_raid56_logic_offset(physical, num, map, 3275 &logical, 3276 &stripe_logical); 3277 logical += base; 3278 if (ret) { 3279 /* it is parity strip */ 3280 stripe_logical += base; 3281 stripe_end = stripe_logical + increment; 3282 ret = scrub_raid56_parity(sctx, map, scrub_dev, 3283 ppath, stripe_logical, 3284 stripe_end); 3285 if (ret) 3286 goto out; 3287 goto skip; 3288 } 3289 } 3290 3291 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3292 key.type = BTRFS_METADATA_ITEM_KEY; 3293 else 3294 key.type = BTRFS_EXTENT_ITEM_KEY; 3295 key.objectid = logical; 3296 key.offset = (u64)-1; 3297 3298 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3299 if (ret < 0) 3300 goto out; 3301 3302 if (ret > 0) { 3303 ret = btrfs_previous_extent_item(root, path, 0); 3304 if (ret < 0) 3305 goto out; 3306 if (ret > 0) { 3307 /* there's no smaller item, so stick with the 3308 * larger one */ 3309 btrfs_release_path(path); 3310 ret = btrfs_search_slot(NULL, root, &key, 3311 path, 0, 0); 3312 if (ret < 0) 3313 goto out; 3314 } 3315 } 3316 3317 stop_loop = 0; 3318 while (1) { 3319 u64 bytes; 3320 3321 l = path->nodes[0]; 3322 slot = path->slots[0]; 3323 if (slot >= btrfs_header_nritems(l)) { 3324 ret = btrfs_next_leaf(root, path); 3325 if (ret == 0) 3326 continue; 3327 if (ret < 0) 3328 goto out; 3329 3330 stop_loop = 1; 3331 break; 3332 } 3333 btrfs_item_key_to_cpu(l, &key, slot); 3334 3335 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3336 key.type != BTRFS_METADATA_ITEM_KEY) 3337 goto next; 3338 3339 if (key.type == BTRFS_METADATA_ITEM_KEY) 3340 bytes = fs_info->nodesize; 3341 else 3342 bytes = key.offset; 3343 3344 if (key.objectid + bytes <= logical) 3345 goto next; 3346 3347 if (key.objectid >= logical + map->stripe_len) { 3348 /* out of this device extent */ 3349 if (key.objectid >= logic_end) 3350 stop_loop = 1; 3351 break; 3352 } 3353 3354 /* 3355 * If our block group was removed in the meanwhile, just 3356 * stop scrubbing since there is no point in continuing. 3357 * Continuing would prevent reusing its device extents 3358 * for new block groups for a long time. 3359 */ 3360 spin_lock(&cache->lock); 3361 if (cache->removed) { 3362 spin_unlock(&cache->lock); 3363 ret = 0; 3364 goto out; 3365 } 3366 spin_unlock(&cache->lock); 3367 3368 extent = btrfs_item_ptr(l, slot, 3369 struct btrfs_extent_item); 3370 flags = btrfs_extent_flags(l, extent); 3371 generation = btrfs_extent_generation(l, extent); 3372 3373 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3374 (key.objectid < logical || 3375 key.objectid + bytes > 3376 logical + map->stripe_len)) { 3377 btrfs_err(fs_info, 3378 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3379 key.objectid, logical); 3380 spin_lock(&sctx->stat_lock); 3381 sctx->stat.uncorrectable_errors++; 3382 spin_unlock(&sctx->stat_lock); 3383 goto next; 3384 } 3385 3386 again: 3387 extent_logical = key.objectid; 3388 ASSERT(bytes <= U32_MAX); 3389 extent_len = bytes; 3390 3391 /* 3392 * trim extent to this stripe 3393 */ 3394 if (extent_logical < logical) { 3395 extent_len -= logical - extent_logical; 3396 extent_logical = logical; 3397 } 3398 if (extent_logical + extent_len > 3399 logical + map->stripe_len) { 3400 extent_len = logical + map->stripe_len - 3401 extent_logical; 3402 } 3403 3404 extent_physical = extent_logical - logical + physical; 3405 extent_dev = scrub_dev; 3406 extent_mirror_num = mirror_num; 3407 if (sctx->is_dev_replace) 3408 scrub_remap_extent(fs_info, extent_logical, 3409 extent_len, &extent_physical, 3410 &extent_dev, 3411 &extent_mirror_num); 3412 3413 if (flags & BTRFS_EXTENT_FLAG_DATA) { 3414 ret = btrfs_lookup_csums_range(csum_root, 3415 extent_logical, 3416 extent_logical + extent_len - 1, 3417 &sctx->csum_list, 1); 3418 if (ret) 3419 goto out; 3420 } 3421 3422 ret = scrub_extent(sctx, map, extent_logical, extent_len, 3423 extent_physical, extent_dev, flags, 3424 generation, extent_mirror_num, 3425 extent_logical - logical + physical); 3426 3427 scrub_free_csums(sctx); 3428 3429 if (ret) 3430 goto out; 3431 3432 if (sctx->is_dev_replace) 3433 sync_replace_for_zoned(sctx); 3434 3435 if (extent_logical + extent_len < 3436 key.objectid + bytes) { 3437 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3438 /* 3439 * loop until we find next data stripe 3440 * or we have finished all stripes. 3441 */ 3442 loop: 3443 physical += map->stripe_len; 3444 ret = get_raid56_logic_offset(physical, 3445 num, map, &logical, 3446 &stripe_logical); 3447 logical += base; 3448 3449 if (ret && physical < physical_end) { 3450 stripe_logical += base; 3451 stripe_end = stripe_logical + 3452 increment; 3453 ret = scrub_raid56_parity(sctx, 3454 map, scrub_dev, ppath, 3455 stripe_logical, 3456 stripe_end); 3457 if (ret) 3458 goto out; 3459 goto loop; 3460 } 3461 } else { 3462 physical += map->stripe_len; 3463 logical += increment; 3464 } 3465 if (logical < key.objectid + bytes) { 3466 cond_resched(); 3467 goto again; 3468 } 3469 3470 if (physical >= physical_end) { 3471 stop_loop = 1; 3472 break; 3473 } 3474 } 3475 next: 3476 path->slots[0]++; 3477 } 3478 btrfs_release_path(path); 3479 skip: 3480 logical += increment; 3481 physical += map->stripe_len; 3482 spin_lock(&sctx->stat_lock); 3483 if (stop_loop) 3484 sctx->stat.last_physical = map->stripes[num].physical + 3485 length; 3486 else 3487 sctx->stat.last_physical = physical; 3488 spin_unlock(&sctx->stat_lock); 3489 if (stop_loop) 3490 break; 3491 } 3492 out: 3493 /* push queued extents */ 3494 scrub_submit(sctx); 3495 mutex_lock(&sctx->wr_lock); 3496 scrub_wr_submit(sctx); 3497 mutex_unlock(&sctx->wr_lock); 3498 3499 blk_finish_plug(&plug); 3500 btrfs_free_path(path); 3501 btrfs_free_path(ppath); 3502 3503 if (sctx->is_dev_replace && ret >= 0) { 3504 int ret2; 3505 3506 ret2 = sync_write_pointer_for_zoned(sctx, base + offset, 3507 map->stripes[num].physical, 3508 physical_end); 3509 if (ret2) 3510 ret = ret2; 3511 } 3512 3513 return ret < 0 ? ret : 0; 3514 } 3515 3516 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 3517 struct btrfs_device *scrub_dev, 3518 u64 chunk_offset, u64 length, 3519 u64 dev_offset, 3520 struct btrfs_block_group *cache) 3521 { 3522 struct btrfs_fs_info *fs_info = sctx->fs_info; 3523 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 3524 struct map_lookup *map; 3525 struct extent_map *em; 3526 int i; 3527 int ret = 0; 3528 3529 read_lock(&map_tree->lock); 3530 em = lookup_extent_mapping(map_tree, chunk_offset, 1); 3531 read_unlock(&map_tree->lock); 3532 3533 if (!em) { 3534 /* 3535 * Might have been an unused block group deleted by the cleaner 3536 * kthread or relocation. 3537 */ 3538 spin_lock(&cache->lock); 3539 if (!cache->removed) 3540 ret = -EINVAL; 3541 spin_unlock(&cache->lock); 3542 3543 return ret; 3544 } 3545 3546 map = em->map_lookup; 3547 if (em->start != chunk_offset) 3548 goto out; 3549 3550 if (em->len < length) 3551 goto out; 3552 3553 for (i = 0; i < map->num_stripes; ++i) { 3554 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 3555 map->stripes[i].physical == dev_offset) { 3556 ret = scrub_stripe(sctx, map, scrub_dev, i, 3557 chunk_offset, length, cache); 3558 if (ret) 3559 goto out; 3560 } 3561 } 3562 out: 3563 free_extent_map(em); 3564 3565 return ret; 3566 } 3567 3568 static int finish_extent_writes_for_zoned(struct btrfs_root *root, 3569 struct btrfs_block_group *cache) 3570 { 3571 struct btrfs_fs_info *fs_info = cache->fs_info; 3572 struct btrfs_trans_handle *trans; 3573 3574 if (!btrfs_is_zoned(fs_info)) 3575 return 0; 3576 3577 btrfs_wait_block_group_reservations(cache); 3578 btrfs_wait_nocow_writers(cache); 3579 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length); 3580 3581 trans = btrfs_join_transaction(root); 3582 if (IS_ERR(trans)) 3583 return PTR_ERR(trans); 3584 return btrfs_commit_transaction(trans); 3585 } 3586 3587 static noinline_for_stack 3588 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 3589 struct btrfs_device *scrub_dev, u64 start, u64 end) 3590 { 3591 struct btrfs_dev_extent *dev_extent = NULL; 3592 struct btrfs_path *path; 3593 struct btrfs_fs_info *fs_info = sctx->fs_info; 3594 struct btrfs_root *root = fs_info->dev_root; 3595 u64 length; 3596 u64 chunk_offset; 3597 int ret = 0; 3598 int ro_set; 3599 int slot; 3600 struct extent_buffer *l; 3601 struct btrfs_key key; 3602 struct btrfs_key found_key; 3603 struct btrfs_block_group *cache; 3604 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 3605 3606 path = btrfs_alloc_path(); 3607 if (!path) 3608 return -ENOMEM; 3609 3610 path->reada = READA_FORWARD; 3611 path->search_commit_root = 1; 3612 path->skip_locking = 1; 3613 3614 key.objectid = scrub_dev->devid; 3615 key.offset = 0ull; 3616 key.type = BTRFS_DEV_EXTENT_KEY; 3617 3618 while (1) { 3619 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3620 if (ret < 0) 3621 break; 3622 if (ret > 0) { 3623 if (path->slots[0] >= 3624 btrfs_header_nritems(path->nodes[0])) { 3625 ret = btrfs_next_leaf(root, path); 3626 if (ret < 0) 3627 break; 3628 if (ret > 0) { 3629 ret = 0; 3630 break; 3631 } 3632 } else { 3633 ret = 0; 3634 } 3635 } 3636 3637 l = path->nodes[0]; 3638 slot = path->slots[0]; 3639 3640 btrfs_item_key_to_cpu(l, &found_key, slot); 3641 3642 if (found_key.objectid != scrub_dev->devid) 3643 break; 3644 3645 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 3646 break; 3647 3648 if (found_key.offset >= end) 3649 break; 3650 3651 if (found_key.offset < key.offset) 3652 break; 3653 3654 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3655 length = btrfs_dev_extent_length(l, dev_extent); 3656 3657 if (found_key.offset + length <= start) 3658 goto skip; 3659 3660 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3661 3662 /* 3663 * get a reference on the corresponding block group to prevent 3664 * the chunk from going away while we scrub it 3665 */ 3666 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3667 3668 /* some chunks are removed but not committed to disk yet, 3669 * continue scrubbing */ 3670 if (!cache) 3671 goto skip; 3672 3673 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) { 3674 spin_lock(&cache->lock); 3675 if (!cache->to_copy) { 3676 spin_unlock(&cache->lock); 3677 btrfs_put_block_group(cache); 3678 goto skip; 3679 } 3680 spin_unlock(&cache->lock); 3681 } 3682 3683 /* 3684 * Make sure that while we are scrubbing the corresponding block 3685 * group doesn't get its logical address and its device extents 3686 * reused for another block group, which can possibly be of a 3687 * different type and different profile. We do this to prevent 3688 * false error detections and crashes due to bogus attempts to 3689 * repair extents. 3690 */ 3691 spin_lock(&cache->lock); 3692 if (cache->removed) { 3693 spin_unlock(&cache->lock); 3694 btrfs_put_block_group(cache); 3695 goto skip; 3696 } 3697 btrfs_freeze_block_group(cache); 3698 spin_unlock(&cache->lock); 3699 3700 /* 3701 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 3702 * to avoid deadlock caused by: 3703 * btrfs_inc_block_group_ro() 3704 * -> btrfs_wait_for_commit() 3705 * -> btrfs_commit_transaction() 3706 * -> btrfs_scrub_pause() 3707 */ 3708 scrub_pause_on(fs_info); 3709 3710 /* 3711 * Don't do chunk preallocation for scrub. 3712 * 3713 * This is especially important for SYSTEM bgs, or we can hit 3714 * -EFBIG from btrfs_finish_chunk_alloc() like: 3715 * 1. The only SYSTEM bg is marked RO. 3716 * Since SYSTEM bg is small, that's pretty common. 3717 * 2. New SYSTEM bg will be allocated 3718 * Due to regular version will allocate new chunk. 3719 * 3. New SYSTEM bg is empty and will get cleaned up 3720 * Before cleanup really happens, it's marked RO again. 3721 * 4. Empty SYSTEM bg get scrubbed 3722 * We go back to 2. 3723 * 3724 * This can easily boost the amount of SYSTEM chunks if cleaner 3725 * thread can't be triggered fast enough, and use up all space 3726 * of btrfs_super_block::sys_chunk_array 3727 * 3728 * While for dev replace, we need to try our best to mark block 3729 * group RO, to prevent race between: 3730 * - Write duplication 3731 * Contains latest data 3732 * - Scrub copy 3733 * Contains data from commit tree 3734 * 3735 * If target block group is not marked RO, nocow writes can 3736 * be overwritten by scrub copy, causing data corruption. 3737 * So for dev-replace, it's not allowed to continue if a block 3738 * group is not RO. 3739 */ 3740 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); 3741 if (!ret && sctx->is_dev_replace) { 3742 ret = finish_extent_writes_for_zoned(root, cache); 3743 if (ret) { 3744 btrfs_dec_block_group_ro(cache); 3745 scrub_pause_off(fs_info); 3746 btrfs_put_block_group(cache); 3747 break; 3748 } 3749 } 3750 3751 if (ret == 0) { 3752 ro_set = 1; 3753 } else if (ret == -ENOSPC && !sctx->is_dev_replace) { 3754 /* 3755 * btrfs_inc_block_group_ro return -ENOSPC when it 3756 * failed in creating new chunk for metadata. 3757 * It is not a problem for scrub, because 3758 * metadata are always cowed, and our scrub paused 3759 * commit_transactions. 3760 */ 3761 ro_set = 0; 3762 } else if (ret == -ETXTBSY) { 3763 btrfs_warn(fs_info, 3764 "skipping scrub of block group %llu due to active swapfile", 3765 cache->start); 3766 scrub_pause_off(fs_info); 3767 ret = 0; 3768 goto skip_unfreeze; 3769 } else { 3770 btrfs_warn(fs_info, 3771 "failed setting block group ro: %d", ret); 3772 btrfs_unfreeze_block_group(cache); 3773 btrfs_put_block_group(cache); 3774 scrub_pause_off(fs_info); 3775 break; 3776 } 3777 3778 /* 3779 * Now the target block is marked RO, wait for nocow writes to 3780 * finish before dev-replace. 3781 * COW is fine, as COW never overwrites extents in commit tree. 3782 */ 3783 if (sctx->is_dev_replace) { 3784 btrfs_wait_nocow_writers(cache); 3785 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, 3786 cache->length); 3787 } 3788 3789 scrub_pause_off(fs_info); 3790 down_write(&dev_replace->rwsem); 3791 dev_replace->cursor_right = found_key.offset + length; 3792 dev_replace->cursor_left = found_key.offset; 3793 dev_replace->item_needs_writeback = 1; 3794 up_write(&dev_replace->rwsem); 3795 3796 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length, 3797 found_key.offset, cache); 3798 3799 /* 3800 * flush, submit all pending read and write bios, afterwards 3801 * wait for them. 3802 * Note that in the dev replace case, a read request causes 3803 * write requests that are submitted in the read completion 3804 * worker. Therefore in the current situation, it is required 3805 * that all write requests are flushed, so that all read and 3806 * write requests are really completed when bios_in_flight 3807 * changes to 0. 3808 */ 3809 sctx->flush_all_writes = true; 3810 scrub_submit(sctx); 3811 mutex_lock(&sctx->wr_lock); 3812 scrub_wr_submit(sctx); 3813 mutex_unlock(&sctx->wr_lock); 3814 3815 wait_event(sctx->list_wait, 3816 atomic_read(&sctx->bios_in_flight) == 0); 3817 3818 scrub_pause_on(fs_info); 3819 3820 /* 3821 * must be called before we decrease @scrub_paused. 3822 * make sure we don't block transaction commit while 3823 * we are waiting pending workers finished. 3824 */ 3825 wait_event(sctx->list_wait, 3826 atomic_read(&sctx->workers_pending) == 0); 3827 sctx->flush_all_writes = false; 3828 3829 scrub_pause_off(fs_info); 3830 3831 if (sctx->is_dev_replace && 3832 !btrfs_finish_block_group_to_copy(dev_replace->srcdev, 3833 cache, found_key.offset)) 3834 ro_set = 0; 3835 3836 down_write(&dev_replace->rwsem); 3837 dev_replace->cursor_left = dev_replace->cursor_right; 3838 dev_replace->item_needs_writeback = 1; 3839 up_write(&dev_replace->rwsem); 3840 3841 if (ro_set) 3842 btrfs_dec_block_group_ro(cache); 3843 3844 /* 3845 * We might have prevented the cleaner kthread from deleting 3846 * this block group if it was already unused because we raced 3847 * and set it to RO mode first. So add it back to the unused 3848 * list, otherwise it might not ever be deleted unless a manual 3849 * balance is triggered or it becomes used and unused again. 3850 */ 3851 spin_lock(&cache->lock); 3852 if (!cache->removed && !cache->ro && cache->reserved == 0 && 3853 cache->used == 0) { 3854 spin_unlock(&cache->lock); 3855 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) 3856 btrfs_discard_queue_work(&fs_info->discard_ctl, 3857 cache); 3858 else 3859 btrfs_mark_bg_unused(cache); 3860 } else { 3861 spin_unlock(&cache->lock); 3862 } 3863 skip_unfreeze: 3864 btrfs_unfreeze_block_group(cache); 3865 btrfs_put_block_group(cache); 3866 if (ret) 3867 break; 3868 if (sctx->is_dev_replace && 3869 atomic64_read(&dev_replace->num_write_errors) > 0) { 3870 ret = -EIO; 3871 break; 3872 } 3873 if (sctx->stat.malloc_errors > 0) { 3874 ret = -ENOMEM; 3875 break; 3876 } 3877 skip: 3878 key.offset = found_key.offset + length; 3879 btrfs_release_path(path); 3880 } 3881 3882 btrfs_free_path(path); 3883 3884 return ret; 3885 } 3886 3887 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 3888 struct btrfs_device *scrub_dev) 3889 { 3890 int i; 3891 u64 bytenr; 3892 u64 gen; 3893 int ret; 3894 struct btrfs_fs_info *fs_info = sctx->fs_info; 3895 3896 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3897 return -EROFS; 3898 3899 /* Seed devices of a new filesystem has their own generation. */ 3900 if (scrub_dev->fs_devices != fs_info->fs_devices) 3901 gen = scrub_dev->generation; 3902 else 3903 gen = fs_info->last_trans_committed; 3904 3905 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 3906 bytenr = btrfs_sb_offset(i); 3907 if (bytenr + BTRFS_SUPER_INFO_SIZE > 3908 scrub_dev->commit_total_bytes) 3909 break; 3910 if (!btrfs_check_super_location(scrub_dev, bytenr)) 3911 continue; 3912 3913 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 3914 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 3915 NULL, bytenr); 3916 if (ret) 3917 return ret; 3918 } 3919 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3920 3921 return 0; 3922 } 3923 3924 static void scrub_workers_put(struct btrfs_fs_info *fs_info) 3925 { 3926 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, 3927 &fs_info->scrub_lock)) { 3928 struct btrfs_workqueue *scrub_workers = NULL; 3929 struct btrfs_workqueue *scrub_wr_comp = NULL; 3930 struct btrfs_workqueue *scrub_parity = NULL; 3931 3932 scrub_workers = fs_info->scrub_workers; 3933 scrub_wr_comp = fs_info->scrub_wr_completion_workers; 3934 scrub_parity = fs_info->scrub_parity_workers; 3935 3936 fs_info->scrub_workers = NULL; 3937 fs_info->scrub_wr_completion_workers = NULL; 3938 fs_info->scrub_parity_workers = NULL; 3939 mutex_unlock(&fs_info->scrub_lock); 3940 3941 btrfs_destroy_workqueue(scrub_workers); 3942 btrfs_destroy_workqueue(scrub_wr_comp); 3943 btrfs_destroy_workqueue(scrub_parity); 3944 } 3945 } 3946 3947 /* 3948 * get a reference count on fs_info->scrub_workers. start worker if necessary 3949 */ 3950 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 3951 int is_dev_replace) 3952 { 3953 struct btrfs_workqueue *scrub_workers = NULL; 3954 struct btrfs_workqueue *scrub_wr_comp = NULL; 3955 struct btrfs_workqueue *scrub_parity = NULL; 3956 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 3957 int max_active = fs_info->thread_pool_size; 3958 int ret = -ENOMEM; 3959 3960 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) 3961 return 0; 3962 3963 scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags, 3964 is_dev_replace ? 1 : max_active, 4); 3965 if (!scrub_workers) 3966 goto fail_scrub_workers; 3967 3968 scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags, 3969 max_active, 2); 3970 if (!scrub_wr_comp) 3971 goto fail_scrub_wr_completion_workers; 3972 3973 scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags, 3974 max_active, 2); 3975 if (!scrub_parity) 3976 goto fail_scrub_parity_workers; 3977 3978 mutex_lock(&fs_info->scrub_lock); 3979 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { 3980 ASSERT(fs_info->scrub_workers == NULL && 3981 fs_info->scrub_wr_completion_workers == NULL && 3982 fs_info->scrub_parity_workers == NULL); 3983 fs_info->scrub_workers = scrub_workers; 3984 fs_info->scrub_wr_completion_workers = scrub_wr_comp; 3985 fs_info->scrub_parity_workers = scrub_parity; 3986 refcount_set(&fs_info->scrub_workers_refcnt, 1); 3987 mutex_unlock(&fs_info->scrub_lock); 3988 return 0; 3989 } 3990 /* Other thread raced in and created the workers for us */ 3991 refcount_inc(&fs_info->scrub_workers_refcnt); 3992 mutex_unlock(&fs_info->scrub_lock); 3993 3994 ret = 0; 3995 btrfs_destroy_workqueue(scrub_parity); 3996 fail_scrub_parity_workers: 3997 btrfs_destroy_workqueue(scrub_wr_comp); 3998 fail_scrub_wr_completion_workers: 3999 btrfs_destroy_workqueue(scrub_workers); 4000 fail_scrub_workers: 4001 return ret; 4002 } 4003 4004 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 4005 u64 end, struct btrfs_scrub_progress *progress, 4006 int readonly, int is_dev_replace) 4007 { 4008 struct scrub_ctx *sctx; 4009 int ret; 4010 struct btrfs_device *dev; 4011 unsigned int nofs_flag; 4012 4013 if (btrfs_fs_closing(fs_info)) 4014 return -EAGAIN; 4015 4016 if (fs_info->nodesize > BTRFS_STRIPE_LEN) { 4017 /* 4018 * in this case scrub is unable to calculate the checksum 4019 * the way scrub is implemented. Do not handle this 4020 * situation at all because it won't ever happen. 4021 */ 4022 btrfs_err(fs_info, 4023 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", 4024 fs_info->nodesize, 4025 BTRFS_STRIPE_LEN); 4026 return -EINVAL; 4027 } 4028 4029 if (fs_info->nodesize > 4030 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 4031 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 4032 /* 4033 * would exhaust the array bounds of pagev member in 4034 * struct scrub_block 4035 */ 4036 btrfs_err(fs_info, 4037 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", 4038 fs_info->nodesize, 4039 SCRUB_MAX_PAGES_PER_BLOCK, 4040 fs_info->sectorsize, 4041 SCRUB_MAX_PAGES_PER_BLOCK); 4042 return -EINVAL; 4043 } 4044 4045 /* Allocate outside of device_list_mutex */ 4046 sctx = scrub_setup_ctx(fs_info, is_dev_replace); 4047 if (IS_ERR(sctx)) 4048 return PTR_ERR(sctx); 4049 4050 ret = scrub_workers_get(fs_info, is_dev_replace); 4051 if (ret) 4052 goto out_free_ctx; 4053 4054 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4055 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL); 4056 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 4057 !is_dev_replace)) { 4058 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4059 ret = -ENODEV; 4060 goto out; 4061 } 4062 4063 if (!is_dev_replace && !readonly && 4064 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 4065 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4066 btrfs_err_in_rcu(fs_info, 4067 "scrub on devid %llu: filesystem on %s is not writable", 4068 devid, rcu_str_deref(dev->name)); 4069 ret = -EROFS; 4070 goto out; 4071 } 4072 4073 mutex_lock(&fs_info->scrub_lock); 4074 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4075 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { 4076 mutex_unlock(&fs_info->scrub_lock); 4077 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4078 ret = -EIO; 4079 goto out; 4080 } 4081 4082 down_read(&fs_info->dev_replace.rwsem); 4083 if (dev->scrub_ctx || 4084 (!is_dev_replace && 4085 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 4086 up_read(&fs_info->dev_replace.rwsem); 4087 mutex_unlock(&fs_info->scrub_lock); 4088 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4089 ret = -EINPROGRESS; 4090 goto out; 4091 } 4092 up_read(&fs_info->dev_replace.rwsem); 4093 4094 sctx->readonly = readonly; 4095 dev->scrub_ctx = sctx; 4096 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4097 4098 /* 4099 * checking @scrub_pause_req here, we can avoid 4100 * race between committing transaction and scrubbing. 4101 */ 4102 __scrub_blocked_if_needed(fs_info); 4103 atomic_inc(&fs_info->scrubs_running); 4104 mutex_unlock(&fs_info->scrub_lock); 4105 4106 /* 4107 * In order to avoid deadlock with reclaim when there is a transaction 4108 * trying to pause scrub, make sure we use GFP_NOFS for all the 4109 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity() 4110 * invoked by our callees. The pausing request is done when the 4111 * transaction commit starts, and it blocks the transaction until scrub 4112 * is paused (done at specific points at scrub_stripe() or right above 4113 * before incrementing fs_info->scrubs_running). 4114 */ 4115 nofs_flag = memalloc_nofs_save(); 4116 if (!is_dev_replace) { 4117 btrfs_info(fs_info, "scrub: started on devid %llu", devid); 4118 /* 4119 * by holding device list mutex, we can 4120 * kick off writing super in log tree sync. 4121 */ 4122 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4123 ret = scrub_supers(sctx, dev); 4124 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4125 } 4126 4127 if (!ret) 4128 ret = scrub_enumerate_chunks(sctx, dev, start, end); 4129 memalloc_nofs_restore(nofs_flag); 4130 4131 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 4132 atomic_dec(&fs_info->scrubs_running); 4133 wake_up(&fs_info->scrub_pause_wait); 4134 4135 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 4136 4137 if (progress) 4138 memcpy(progress, &sctx->stat, sizeof(*progress)); 4139 4140 if (!is_dev_replace) 4141 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", 4142 ret ? "not finished" : "finished", devid, ret); 4143 4144 mutex_lock(&fs_info->scrub_lock); 4145 dev->scrub_ctx = NULL; 4146 mutex_unlock(&fs_info->scrub_lock); 4147 4148 scrub_workers_put(fs_info); 4149 scrub_put_ctx(sctx); 4150 4151 return ret; 4152 out: 4153 scrub_workers_put(fs_info); 4154 out_free_ctx: 4155 scrub_free_ctx(sctx); 4156 4157 return ret; 4158 } 4159 4160 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 4161 { 4162 mutex_lock(&fs_info->scrub_lock); 4163 atomic_inc(&fs_info->scrub_pause_req); 4164 while (atomic_read(&fs_info->scrubs_paused) != 4165 atomic_read(&fs_info->scrubs_running)) { 4166 mutex_unlock(&fs_info->scrub_lock); 4167 wait_event(fs_info->scrub_pause_wait, 4168 atomic_read(&fs_info->scrubs_paused) == 4169 atomic_read(&fs_info->scrubs_running)); 4170 mutex_lock(&fs_info->scrub_lock); 4171 } 4172 mutex_unlock(&fs_info->scrub_lock); 4173 } 4174 4175 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 4176 { 4177 atomic_dec(&fs_info->scrub_pause_req); 4178 wake_up(&fs_info->scrub_pause_wait); 4179 } 4180 4181 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 4182 { 4183 mutex_lock(&fs_info->scrub_lock); 4184 if (!atomic_read(&fs_info->scrubs_running)) { 4185 mutex_unlock(&fs_info->scrub_lock); 4186 return -ENOTCONN; 4187 } 4188 4189 atomic_inc(&fs_info->scrub_cancel_req); 4190 while (atomic_read(&fs_info->scrubs_running)) { 4191 mutex_unlock(&fs_info->scrub_lock); 4192 wait_event(fs_info->scrub_pause_wait, 4193 atomic_read(&fs_info->scrubs_running) == 0); 4194 mutex_lock(&fs_info->scrub_lock); 4195 } 4196 atomic_dec(&fs_info->scrub_cancel_req); 4197 mutex_unlock(&fs_info->scrub_lock); 4198 4199 return 0; 4200 } 4201 4202 int btrfs_scrub_cancel_dev(struct btrfs_device *dev) 4203 { 4204 struct btrfs_fs_info *fs_info = dev->fs_info; 4205 struct scrub_ctx *sctx; 4206 4207 mutex_lock(&fs_info->scrub_lock); 4208 sctx = dev->scrub_ctx; 4209 if (!sctx) { 4210 mutex_unlock(&fs_info->scrub_lock); 4211 return -ENOTCONN; 4212 } 4213 atomic_inc(&sctx->cancel_req); 4214 while (dev->scrub_ctx) { 4215 mutex_unlock(&fs_info->scrub_lock); 4216 wait_event(fs_info->scrub_pause_wait, 4217 dev->scrub_ctx == NULL); 4218 mutex_lock(&fs_info->scrub_lock); 4219 } 4220 mutex_unlock(&fs_info->scrub_lock); 4221 4222 return 0; 4223 } 4224 4225 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 4226 struct btrfs_scrub_progress *progress) 4227 { 4228 struct btrfs_device *dev; 4229 struct scrub_ctx *sctx = NULL; 4230 4231 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4232 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL); 4233 if (dev) 4234 sctx = dev->scrub_ctx; 4235 if (sctx) 4236 memcpy(progress, &sctx->stat, sizeof(*progress)); 4237 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4238 4239 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 4240 } 4241 4242 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 4243 u64 extent_logical, u32 extent_len, 4244 u64 *extent_physical, 4245 struct btrfs_device **extent_dev, 4246 int *extent_mirror_num) 4247 { 4248 u64 mapped_length; 4249 struct btrfs_bio *bbio = NULL; 4250 int ret; 4251 4252 mapped_length = extent_len; 4253 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, 4254 &mapped_length, &bbio, 0); 4255 if (ret || !bbio || mapped_length < extent_len || 4256 !bbio->stripes[0].dev->bdev) { 4257 btrfs_put_bbio(bbio); 4258 return; 4259 } 4260 4261 *extent_physical = bbio->stripes[0].physical; 4262 *extent_mirror_num = bbio->mirror_num; 4263 *extent_dev = bbio->stripes[0].dev; 4264 btrfs_put_bbio(bbio); 4265 } 4266