xref: /linux/fs/btrfs/scrub.c (revision a224bd36bf5ccc72d0f12ab11216706762133177)
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32 
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45 
46 struct scrub_block;
47 struct scrub_ctx;
48 
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
65 
66 struct scrub_page {
67 	struct scrub_block	*sblock;
68 	struct page		*page;
69 	struct btrfs_device	*dev;
70 	u64			flags;  /* extent flags */
71 	u64			generation;
72 	u64			logical;
73 	u64			physical;
74 	u64			physical_for_dev_replace;
75 	atomic_t		ref_count;
76 	struct {
77 		unsigned int	mirror_num:8;
78 		unsigned int	have_csum:1;
79 		unsigned int	io_error:1;
80 	};
81 	u8			csum[BTRFS_CSUM_SIZE];
82 };
83 
84 struct scrub_bio {
85 	int			index;
86 	struct scrub_ctx	*sctx;
87 	struct btrfs_device	*dev;
88 	struct bio		*bio;
89 	int			err;
90 	u64			logical;
91 	u64			physical;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
94 #else
95 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
96 #endif
97 	int			page_count;
98 	int			next_free;
99 	struct btrfs_work	work;
100 };
101 
102 struct scrub_block {
103 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 	int			page_count;
105 	atomic_t		outstanding_pages;
106 	atomic_t		ref_count; /* free mem on transition to zero */
107 	struct scrub_ctx	*sctx;
108 	struct {
109 		unsigned int	header_error:1;
110 		unsigned int	checksum_error:1;
111 		unsigned int	no_io_error_seen:1;
112 		unsigned int	generation_error:1; /* also sets header_error */
113 	};
114 };
115 
116 struct scrub_wr_ctx {
117 	struct scrub_bio *wr_curr_bio;
118 	struct btrfs_device *tgtdev;
119 	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120 	atomic_t flush_all_writes;
121 	struct mutex wr_lock;
122 };
123 
124 struct scrub_ctx {
125 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
126 	struct btrfs_root	*dev_root;
127 	int			first_free;
128 	int			curr;
129 	atomic_t		bios_in_flight;
130 	atomic_t		workers_pending;
131 	spinlock_t		list_lock;
132 	wait_queue_head_t	list_wait;
133 	u16			csum_size;
134 	struct list_head	csum_list;
135 	atomic_t		cancel_req;
136 	int			readonly;
137 	int			pages_per_rd_bio;
138 	u32			sectorsize;
139 	u32			nodesize;
140 	u32			leafsize;
141 
142 	int			is_dev_replace;
143 	struct scrub_wr_ctx	wr_ctx;
144 
145 	/*
146 	 * statistics
147 	 */
148 	struct btrfs_scrub_progress stat;
149 	spinlock_t		stat_lock;
150 };
151 
152 struct scrub_fixup_nodatasum {
153 	struct scrub_ctx	*sctx;
154 	struct btrfs_device	*dev;
155 	u64			logical;
156 	struct btrfs_root	*root;
157 	struct btrfs_work	work;
158 	int			mirror_num;
159 };
160 
161 struct scrub_copy_nocow_ctx {
162 	struct scrub_ctx	*sctx;
163 	u64			logical;
164 	u64			len;
165 	int			mirror_num;
166 	u64			physical_for_dev_replace;
167 	struct btrfs_work	work;
168 };
169 
170 struct scrub_warning {
171 	struct btrfs_path	*path;
172 	u64			extent_item_size;
173 	char			*scratch_buf;
174 	char			*msg_buf;
175 	const char		*errstr;
176 	sector_t		sector;
177 	u64			logical;
178 	struct btrfs_device	*dev;
179 	int			msg_bufsize;
180 	int			scratch_bufsize;
181 };
182 
183 
184 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
185 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
186 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
187 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
188 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
189 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
190 				     struct btrfs_fs_info *fs_info,
191 				     struct scrub_block *original_sblock,
192 				     u64 length, u64 logical,
193 				     struct scrub_block *sblocks_for_recheck);
194 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
195 				struct scrub_block *sblock, int is_metadata,
196 				int have_csum, u8 *csum, u64 generation,
197 				u16 csum_size);
198 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
199 					 struct scrub_block *sblock,
200 					 int is_metadata, int have_csum,
201 					 const u8 *csum, u64 generation,
202 					 u16 csum_size);
203 static void scrub_complete_bio_end_io(struct bio *bio, int err);
204 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
205 					     struct scrub_block *sblock_good,
206 					     int force_write);
207 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
208 					    struct scrub_block *sblock_good,
209 					    int page_num, int force_write);
210 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
211 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
212 					   int page_num);
213 static int scrub_checksum_data(struct scrub_block *sblock);
214 static int scrub_checksum_tree_block(struct scrub_block *sblock);
215 static int scrub_checksum_super(struct scrub_block *sblock);
216 static void scrub_block_get(struct scrub_block *sblock);
217 static void scrub_block_put(struct scrub_block *sblock);
218 static void scrub_page_get(struct scrub_page *spage);
219 static void scrub_page_put(struct scrub_page *spage);
220 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
221 				    struct scrub_page *spage);
222 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
223 		       u64 physical, struct btrfs_device *dev, u64 flags,
224 		       u64 gen, int mirror_num, u8 *csum, int force,
225 		       u64 physical_for_dev_replace);
226 static void scrub_bio_end_io(struct bio *bio, int err);
227 static void scrub_bio_end_io_worker(struct btrfs_work *work);
228 static void scrub_block_complete(struct scrub_block *sblock);
229 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
230 			       u64 extent_logical, u64 extent_len,
231 			       u64 *extent_physical,
232 			       struct btrfs_device **extent_dev,
233 			       int *extent_mirror_num);
234 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
235 			      struct scrub_wr_ctx *wr_ctx,
236 			      struct btrfs_fs_info *fs_info,
237 			      struct btrfs_device *dev,
238 			      int is_dev_replace);
239 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
240 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
241 				    struct scrub_page *spage);
242 static void scrub_wr_submit(struct scrub_ctx *sctx);
243 static void scrub_wr_bio_end_io(struct bio *bio, int err);
244 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
245 static int write_page_nocow(struct scrub_ctx *sctx,
246 			    u64 physical_for_dev_replace, struct page *page);
247 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
248 				      void *ctx);
249 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
250 			    int mirror_num, u64 physical_for_dev_replace);
251 static void copy_nocow_pages_worker(struct btrfs_work *work);
252 
253 
254 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
255 {
256 	atomic_inc(&sctx->bios_in_flight);
257 }
258 
259 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
260 {
261 	atomic_dec(&sctx->bios_in_flight);
262 	wake_up(&sctx->list_wait);
263 }
264 
265 /*
266  * used for workers that require transaction commits (i.e., for the
267  * NOCOW case)
268  */
269 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
270 {
271 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
272 
273 	/*
274 	 * increment scrubs_running to prevent cancel requests from
275 	 * completing as long as a worker is running. we must also
276 	 * increment scrubs_paused to prevent deadlocking on pause
277 	 * requests used for transactions commits (as the worker uses a
278 	 * transaction context). it is safe to regard the worker
279 	 * as paused for all matters practical. effectively, we only
280 	 * avoid cancellation requests from completing.
281 	 */
282 	mutex_lock(&fs_info->scrub_lock);
283 	atomic_inc(&fs_info->scrubs_running);
284 	atomic_inc(&fs_info->scrubs_paused);
285 	mutex_unlock(&fs_info->scrub_lock);
286 	atomic_inc(&sctx->workers_pending);
287 }
288 
289 /* used for workers that require transaction commits */
290 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
291 {
292 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
293 
294 	/*
295 	 * see scrub_pending_trans_workers_inc() why we're pretending
296 	 * to be paused in the scrub counters
297 	 */
298 	mutex_lock(&fs_info->scrub_lock);
299 	atomic_dec(&fs_info->scrubs_running);
300 	atomic_dec(&fs_info->scrubs_paused);
301 	mutex_unlock(&fs_info->scrub_lock);
302 	atomic_dec(&sctx->workers_pending);
303 	wake_up(&fs_info->scrub_pause_wait);
304 	wake_up(&sctx->list_wait);
305 }
306 
307 static void scrub_free_csums(struct scrub_ctx *sctx)
308 {
309 	while (!list_empty(&sctx->csum_list)) {
310 		struct btrfs_ordered_sum *sum;
311 		sum = list_first_entry(&sctx->csum_list,
312 				       struct btrfs_ordered_sum, list);
313 		list_del(&sum->list);
314 		kfree(sum);
315 	}
316 }
317 
318 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
319 {
320 	int i;
321 
322 	if (!sctx)
323 		return;
324 
325 	scrub_free_wr_ctx(&sctx->wr_ctx);
326 
327 	/* this can happen when scrub is cancelled */
328 	if (sctx->curr != -1) {
329 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
330 
331 		for (i = 0; i < sbio->page_count; i++) {
332 			WARN_ON(!sbio->pagev[i]->page);
333 			scrub_block_put(sbio->pagev[i]->sblock);
334 		}
335 		bio_put(sbio->bio);
336 	}
337 
338 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
339 		struct scrub_bio *sbio = sctx->bios[i];
340 
341 		if (!sbio)
342 			break;
343 		kfree(sbio);
344 	}
345 
346 	scrub_free_csums(sctx);
347 	kfree(sctx);
348 }
349 
350 static noinline_for_stack
351 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
352 {
353 	struct scrub_ctx *sctx;
354 	int		i;
355 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
356 	int pages_per_rd_bio;
357 	int ret;
358 
359 	/*
360 	 * the setting of pages_per_rd_bio is correct for scrub but might
361 	 * be wrong for the dev_replace code where we might read from
362 	 * different devices in the initial huge bios. However, that
363 	 * code is able to correctly handle the case when adding a page
364 	 * to a bio fails.
365 	 */
366 	if (dev->bdev)
367 		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
368 					 bio_get_nr_vecs(dev->bdev));
369 	else
370 		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
371 	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
372 	if (!sctx)
373 		goto nomem;
374 	sctx->is_dev_replace = is_dev_replace;
375 	sctx->pages_per_rd_bio = pages_per_rd_bio;
376 	sctx->curr = -1;
377 	sctx->dev_root = dev->dev_root;
378 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
379 		struct scrub_bio *sbio;
380 
381 		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
382 		if (!sbio)
383 			goto nomem;
384 		sctx->bios[i] = sbio;
385 
386 		sbio->index = i;
387 		sbio->sctx = sctx;
388 		sbio->page_count = 0;
389 		sbio->work.func = scrub_bio_end_io_worker;
390 
391 		if (i != SCRUB_BIOS_PER_SCTX - 1)
392 			sctx->bios[i]->next_free = i + 1;
393 		else
394 			sctx->bios[i]->next_free = -1;
395 	}
396 	sctx->first_free = 0;
397 	sctx->nodesize = dev->dev_root->nodesize;
398 	sctx->leafsize = dev->dev_root->leafsize;
399 	sctx->sectorsize = dev->dev_root->sectorsize;
400 	atomic_set(&sctx->bios_in_flight, 0);
401 	atomic_set(&sctx->workers_pending, 0);
402 	atomic_set(&sctx->cancel_req, 0);
403 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
404 	INIT_LIST_HEAD(&sctx->csum_list);
405 
406 	spin_lock_init(&sctx->list_lock);
407 	spin_lock_init(&sctx->stat_lock);
408 	init_waitqueue_head(&sctx->list_wait);
409 
410 	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
411 				 fs_info->dev_replace.tgtdev, is_dev_replace);
412 	if (ret) {
413 		scrub_free_ctx(sctx);
414 		return ERR_PTR(ret);
415 	}
416 	return sctx;
417 
418 nomem:
419 	scrub_free_ctx(sctx);
420 	return ERR_PTR(-ENOMEM);
421 }
422 
423 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
424 				     void *warn_ctx)
425 {
426 	u64 isize;
427 	u32 nlink;
428 	int ret;
429 	int i;
430 	struct extent_buffer *eb;
431 	struct btrfs_inode_item *inode_item;
432 	struct scrub_warning *swarn = warn_ctx;
433 	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
434 	struct inode_fs_paths *ipath = NULL;
435 	struct btrfs_root *local_root;
436 	struct btrfs_key root_key;
437 
438 	root_key.objectid = root;
439 	root_key.type = BTRFS_ROOT_ITEM_KEY;
440 	root_key.offset = (u64)-1;
441 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
442 	if (IS_ERR(local_root)) {
443 		ret = PTR_ERR(local_root);
444 		goto err;
445 	}
446 
447 	ret = inode_item_info(inum, 0, local_root, swarn->path);
448 	if (ret) {
449 		btrfs_release_path(swarn->path);
450 		goto err;
451 	}
452 
453 	eb = swarn->path->nodes[0];
454 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
455 					struct btrfs_inode_item);
456 	isize = btrfs_inode_size(eb, inode_item);
457 	nlink = btrfs_inode_nlink(eb, inode_item);
458 	btrfs_release_path(swarn->path);
459 
460 	ipath = init_ipath(4096, local_root, swarn->path);
461 	if (IS_ERR(ipath)) {
462 		ret = PTR_ERR(ipath);
463 		ipath = NULL;
464 		goto err;
465 	}
466 	ret = paths_from_inode(inum, ipath);
467 
468 	if (ret < 0)
469 		goto err;
470 
471 	/*
472 	 * we deliberately ignore the bit ipath might have been too small to
473 	 * hold all of the paths here
474 	 */
475 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
476 		printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
477 			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
478 			"length %llu, links %u (path: %s)\n", swarn->errstr,
479 			swarn->logical, rcu_str_deref(swarn->dev->name),
480 			(unsigned long long)swarn->sector, root, inum, offset,
481 			min(isize - offset, (u64)PAGE_SIZE), nlink,
482 			(char *)(unsigned long)ipath->fspath->val[i]);
483 
484 	free_ipath(ipath);
485 	return 0;
486 
487 err:
488 	printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
489 		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
490 		"resolving failed with ret=%d\n", swarn->errstr,
491 		swarn->logical, rcu_str_deref(swarn->dev->name),
492 		(unsigned long long)swarn->sector, root, inum, offset, ret);
493 
494 	free_ipath(ipath);
495 	return 0;
496 }
497 
498 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
499 {
500 	struct btrfs_device *dev;
501 	struct btrfs_fs_info *fs_info;
502 	struct btrfs_path *path;
503 	struct btrfs_key found_key;
504 	struct extent_buffer *eb;
505 	struct btrfs_extent_item *ei;
506 	struct scrub_warning swarn;
507 	unsigned long ptr = 0;
508 	u64 extent_item_pos;
509 	u64 flags = 0;
510 	u64 ref_root;
511 	u32 item_size;
512 	u8 ref_level;
513 	const int bufsize = 4096;
514 	int ret;
515 
516 	WARN_ON(sblock->page_count < 1);
517 	dev = sblock->pagev[0]->dev;
518 	fs_info = sblock->sctx->dev_root->fs_info;
519 
520 	path = btrfs_alloc_path();
521 
522 	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
523 	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
524 	swarn.sector = (sblock->pagev[0]->physical) >> 9;
525 	swarn.logical = sblock->pagev[0]->logical;
526 	swarn.errstr = errstr;
527 	swarn.dev = NULL;
528 	swarn.msg_bufsize = bufsize;
529 	swarn.scratch_bufsize = bufsize;
530 
531 	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
532 		goto out;
533 
534 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
535 				  &flags);
536 	if (ret < 0)
537 		goto out;
538 
539 	extent_item_pos = swarn.logical - found_key.objectid;
540 	swarn.extent_item_size = found_key.offset;
541 
542 	eb = path->nodes[0];
543 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
544 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
545 
546 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
547 		do {
548 			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
549 							&ref_root, &ref_level);
550 			printk_in_rcu(KERN_WARNING
551 				"btrfs: %s at logical %llu on dev %s, "
552 				"sector %llu: metadata %s (level %d) in tree "
553 				"%llu\n", errstr, swarn.logical,
554 				rcu_str_deref(dev->name),
555 				(unsigned long long)swarn.sector,
556 				ref_level ? "node" : "leaf",
557 				ret < 0 ? -1 : ref_level,
558 				ret < 0 ? -1 : ref_root);
559 		} while (ret != 1);
560 		btrfs_release_path(path);
561 	} else {
562 		btrfs_release_path(path);
563 		swarn.path = path;
564 		swarn.dev = dev;
565 		iterate_extent_inodes(fs_info, found_key.objectid,
566 					extent_item_pos, 1,
567 					scrub_print_warning_inode, &swarn);
568 	}
569 
570 out:
571 	btrfs_free_path(path);
572 	kfree(swarn.scratch_buf);
573 	kfree(swarn.msg_buf);
574 }
575 
576 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
577 {
578 	struct page *page = NULL;
579 	unsigned long index;
580 	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
581 	int ret;
582 	int corrected = 0;
583 	struct btrfs_key key;
584 	struct inode *inode = NULL;
585 	struct btrfs_fs_info *fs_info;
586 	u64 end = offset + PAGE_SIZE - 1;
587 	struct btrfs_root *local_root;
588 	int srcu_index;
589 
590 	key.objectid = root;
591 	key.type = BTRFS_ROOT_ITEM_KEY;
592 	key.offset = (u64)-1;
593 
594 	fs_info = fixup->root->fs_info;
595 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
596 
597 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
598 	if (IS_ERR(local_root)) {
599 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
600 		return PTR_ERR(local_root);
601 	}
602 
603 	key.type = BTRFS_INODE_ITEM_KEY;
604 	key.objectid = inum;
605 	key.offset = 0;
606 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
607 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
608 	if (IS_ERR(inode))
609 		return PTR_ERR(inode);
610 
611 	index = offset >> PAGE_CACHE_SHIFT;
612 
613 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
614 	if (!page) {
615 		ret = -ENOMEM;
616 		goto out;
617 	}
618 
619 	if (PageUptodate(page)) {
620 		if (PageDirty(page)) {
621 			/*
622 			 * we need to write the data to the defect sector. the
623 			 * data that was in that sector is not in memory,
624 			 * because the page was modified. we must not write the
625 			 * modified page to that sector.
626 			 *
627 			 * TODO: what could be done here: wait for the delalloc
628 			 *       runner to write out that page (might involve
629 			 *       COW) and see whether the sector is still
630 			 *       referenced afterwards.
631 			 *
632 			 * For the meantime, we'll treat this error
633 			 * incorrectable, although there is a chance that a
634 			 * later scrub will find the bad sector again and that
635 			 * there's no dirty page in memory, then.
636 			 */
637 			ret = -EIO;
638 			goto out;
639 		}
640 		fs_info = BTRFS_I(inode)->root->fs_info;
641 		ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
642 					fixup->logical, page,
643 					fixup->mirror_num);
644 		unlock_page(page);
645 		corrected = !ret;
646 	} else {
647 		/*
648 		 * we need to get good data first. the general readpage path
649 		 * will call repair_io_failure for us, we just have to make
650 		 * sure we read the bad mirror.
651 		 */
652 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
653 					EXTENT_DAMAGED, GFP_NOFS);
654 		if (ret) {
655 			/* set_extent_bits should give proper error */
656 			WARN_ON(ret > 0);
657 			if (ret > 0)
658 				ret = -EFAULT;
659 			goto out;
660 		}
661 
662 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
663 						btrfs_get_extent,
664 						fixup->mirror_num);
665 		wait_on_page_locked(page);
666 
667 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
668 						end, EXTENT_DAMAGED, 0, NULL);
669 		if (!corrected)
670 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
671 						EXTENT_DAMAGED, GFP_NOFS);
672 	}
673 
674 out:
675 	if (page)
676 		put_page(page);
677 	if (inode)
678 		iput(inode);
679 
680 	if (ret < 0)
681 		return ret;
682 
683 	if (ret == 0 && corrected) {
684 		/*
685 		 * we only need to call readpage for one of the inodes belonging
686 		 * to this extent. so make iterate_extent_inodes stop
687 		 */
688 		return 1;
689 	}
690 
691 	return -EIO;
692 }
693 
694 static void scrub_fixup_nodatasum(struct btrfs_work *work)
695 {
696 	int ret;
697 	struct scrub_fixup_nodatasum *fixup;
698 	struct scrub_ctx *sctx;
699 	struct btrfs_trans_handle *trans = NULL;
700 	struct btrfs_fs_info *fs_info;
701 	struct btrfs_path *path;
702 	int uncorrectable = 0;
703 
704 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
705 	sctx = fixup->sctx;
706 	fs_info = fixup->root->fs_info;
707 
708 	path = btrfs_alloc_path();
709 	if (!path) {
710 		spin_lock(&sctx->stat_lock);
711 		++sctx->stat.malloc_errors;
712 		spin_unlock(&sctx->stat_lock);
713 		uncorrectable = 1;
714 		goto out;
715 	}
716 
717 	trans = btrfs_join_transaction(fixup->root);
718 	if (IS_ERR(trans)) {
719 		uncorrectable = 1;
720 		goto out;
721 	}
722 
723 	/*
724 	 * the idea is to trigger a regular read through the standard path. we
725 	 * read a page from the (failed) logical address by specifying the
726 	 * corresponding copynum of the failed sector. thus, that readpage is
727 	 * expected to fail.
728 	 * that is the point where on-the-fly error correction will kick in
729 	 * (once it's finished) and rewrite the failed sector if a good copy
730 	 * can be found.
731 	 */
732 	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
733 						path, scrub_fixup_readpage,
734 						fixup);
735 	if (ret < 0) {
736 		uncorrectable = 1;
737 		goto out;
738 	}
739 	WARN_ON(ret != 1);
740 
741 	spin_lock(&sctx->stat_lock);
742 	++sctx->stat.corrected_errors;
743 	spin_unlock(&sctx->stat_lock);
744 
745 out:
746 	if (trans && !IS_ERR(trans))
747 		btrfs_end_transaction(trans, fixup->root);
748 	if (uncorrectable) {
749 		spin_lock(&sctx->stat_lock);
750 		++sctx->stat.uncorrectable_errors;
751 		spin_unlock(&sctx->stat_lock);
752 		btrfs_dev_replace_stats_inc(
753 			&sctx->dev_root->fs_info->dev_replace.
754 			num_uncorrectable_read_errors);
755 		printk_ratelimited_in_rcu(KERN_ERR
756 			"btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
757 			fixup->logical, rcu_str_deref(fixup->dev->name));
758 	}
759 
760 	btrfs_free_path(path);
761 	kfree(fixup);
762 
763 	scrub_pending_trans_workers_dec(sctx);
764 }
765 
766 /*
767  * scrub_handle_errored_block gets called when either verification of the
768  * pages failed or the bio failed to read, e.g. with EIO. In the latter
769  * case, this function handles all pages in the bio, even though only one
770  * may be bad.
771  * The goal of this function is to repair the errored block by using the
772  * contents of one of the mirrors.
773  */
774 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
775 {
776 	struct scrub_ctx *sctx = sblock_to_check->sctx;
777 	struct btrfs_device *dev;
778 	struct btrfs_fs_info *fs_info;
779 	u64 length;
780 	u64 logical;
781 	u64 generation;
782 	unsigned int failed_mirror_index;
783 	unsigned int is_metadata;
784 	unsigned int have_csum;
785 	u8 *csum;
786 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
787 	struct scrub_block *sblock_bad;
788 	int ret;
789 	int mirror_index;
790 	int page_num;
791 	int success;
792 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
793 				      DEFAULT_RATELIMIT_BURST);
794 
795 	BUG_ON(sblock_to_check->page_count < 1);
796 	fs_info = sctx->dev_root->fs_info;
797 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
798 		/*
799 		 * if we find an error in a super block, we just report it.
800 		 * They will get written with the next transaction commit
801 		 * anyway
802 		 */
803 		spin_lock(&sctx->stat_lock);
804 		++sctx->stat.super_errors;
805 		spin_unlock(&sctx->stat_lock);
806 		return 0;
807 	}
808 	length = sblock_to_check->page_count * PAGE_SIZE;
809 	logical = sblock_to_check->pagev[0]->logical;
810 	generation = sblock_to_check->pagev[0]->generation;
811 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
812 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
813 	is_metadata = !(sblock_to_check->pagev[0]->flags &
814 			BTRFS_EXTENT_FLAG_DATA);
815 	have_csum = sblock_to_check->pagev[0]->have_csum;
816 	csum = sblock_to_check->pagev[0]->csum;
817 	dev = sblock_to_check->pagev[0]->dev;
818 
819 	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
820 		sblocks_for_recheck = NULL;
821 		goto nodatasum_case;
822 	}
823 
824 	/*
825 	 * read all mirrors one after the other. This includes to
826 	 * re-read the extent or metadata block that failed (that was
827 	 * the cause that this fixup code is called) another time,
828 	 * page by page this time in order to know which pages
829 	 * caused I/O errors and which ones are good (for all mirrors).
830 	 * It is the goal to handle the situation when more than one
831 	 * mirror contains I/O errors, but the errors do not
832 	 * overlap, i.e. the data can be repaired by selecting the
833 	 * pages from those mirrors without I/O error on the
834 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
835 	 * would be that mirror #1 has an I/O error on the first page,
836 	 * the second page is good, and mirror #2 has an I/O error on
837 	 * the second page, but the first page is good.
838 	 * Then the first page of the first mirror can be repaired by
839 	 * taking the first page of the second mirror, and the
840 	 * second page of the second mirror can be repaired by
841 	 * copying the contents of the 2nd page of the 1st mirror.
842 	 * One more note: if the pages of one mirror contain I/O
843 	 * errors, the checksum cannot be verified. In order to get
844 	 * the best data for repairing, the first attempt is to find
845 	 * a mirror without I/O errors and with a validated checksum.
846 	 * Only if this is not possible, the pages are picked from
847 	 * mirrors with I/O errors without considering the checksum.
848 	 * If the latter is the case, at the end, the checksum of the
849 	 * repaired area is verified in order to correctly maintain
850 	 * the statistics.
851 	 */
852 
853 	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
854 				     sizeof(*sblocks_for_recheck),
855 				     GFP_NOFS);
856 	if (!sblocks_for_recheck) {
857 		spin_lock(&sctx->stat_lock);
858 		sctx->stat.malloc_errors++;
859 		sctx->stat.read_errors++;
860 		sctx->stat.uncorrectable_errors++;
861 		spin_unlock(&sctx->stat_lock);
862 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
863 		goto out;
864 	}
865 
866 	/* setup the context, map the logical blocks and alloc the pages */
867 	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
868 					logical, sblocks_for_recheck);
869 	if (ret) {
870 		spin_lock(&sctx->stat_lock);
871 		sctx->stat.read_errors++;
872 		sctx->stat.uncorrectable_errors++;
873 		spin_unlock(&sctx->stat_lock);
874 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
875 		goto out;
876 	}
877 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
878 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
879 
880 	/* build and submit the bios for the failed mirror, check checksums */
881 	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
882 			    csum, generation, sctx->csum_size);
883 
884 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
885 	    sblock_bad->no_io_error_seen) {
886 		/*
887 		 * the error disappeared after reading page by page, or
888 		 * the area was part of a huge bio and other parts of the
889 		 * bio caused I/O errors, or the block layer merged several
890 		 * read requests into one and the error is caused by a
891 		 * different bio (usually one of the two latter cases is
892 		 * the cause)
893 		 */
894 		spin_lock(&sctx->stat_lock);
895 		sctx->stat.unverified_errors++;
896 		spin_unlock(&sctx->stat_lock);
897 
898 		if (sctx->is_dev_replace)
899 			scrub_write_block_to_dev_replace(sblock_bad);
900 		goto out;
901 	}
902 
903 	if (!sblock_bad->no_io_error_seen) {
904 		spin_lock(&sctx->stat_lock);
905 		sctx->stat.read_errors++;
906 		spin_unlock(&sctx->stat_lock);
907 		if (__ratelimit(&_rs))
908 			scrub_print_warning("i/o error", sblock_to_check);
909 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
910 	} else if (sblock_bad->checksum_error) {
911 		spin_lock(&sctx->stat_lock);
912 		sctx->stat.csum_errors++;
913 		spin_unlock(&sctx->stat_lock);
914 		if (__ratelimit(&_rs))
915 			scrub_print_warning("checksum error", sblock_to_check);
916 		btrfs_dev_stat_inc_and_print(dev,
917 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
918 	} else if (sblock_bad->header_error) {
919 		spin_lock(&sctx->stat_lock);
920 		sctx->stat.verify_errors++;
921 		spin_unlock(&sctx->stat_lock);
922 		if (__ratelimit(&_rs))
923 			scrub_print_warning("checksum/header error",
924 					    sblock_to_check);
925 		if (sblock_bad->generation_error)
926 			btrfs_dev_stat_inc_and_print(dev,
927 				BTRFS_DEV_STAT_GENERATION_ERRS);
928 		else
929 			btrfs_dev_stat_inc_and_print(dev,
930 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
931 	}
932 
933 	if (sctx->readonly && !sctx->is_dev_replace)
934 		goto did_not_correct_error;
935 
936 	if (!is_metadata && !have_csum) {
937 		struct scrub_fixup_nodatasum *fixup_nodatasum;
938 
939 nodatasum_case:
940 		WARN_ON(sctx->is_dev_replace);
941 
942 		/*
943 		 * !is_metadata and !have_csum, this means that the data
944 		 * might not be COW'ed, that it might be modified
945 		 * concurrently. The general strategy to work on the
946 		 * commit root does not help in the case when COW is not
947 		 * used.
948 		 */
949 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
950 		if (!fixup_nodatasum)
951 			goto did_not_correct_error;
952 		fixup_nodatasum->sctx = sctx;
953 		fixup_nodatasum->dev = dev;
954 		fixup_nodatasum->logical = logical;
955 		fixup_nodatasum->root = fs_info->extent_root;
956 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
957 		scrub_pending_trans_workers_inc(sctx);
958 		fixup_nodatasum->work.func = scrub_fixup_nodatasum;
959 		btrfs_queue_worker(&fs_info->scrub_workers,
960 				   &fixup_nodatasum->work);
961 		goto out;
962 	}
963 
964 	/*
965 	 * now build and submit the bios for the other mirrors, check
966 	 * checksums.
967 	 * First try to pick the mirror which is completely without I/O
968 	 * errors and also does not have a checksum error.
969 	 * If one is found, and if a checksum is present, the full block
970 	 * that is known to contain an error is rewritten. Afterwards
971 	 * the block is known to be corrected.
972 	 * If a mirror is found which is completely correct, and no
973 	 * checksum is present, only those pages are rewritten that had
974 	 * an I/O error in the block to be repaired, since it cannot be
975 	 * determined, which copy of the other pages is better (and it
976 	 * could happen otherwise that a correct page would be
977 	 * overwritten by a bad one).
978 	 */
979 	for (mirror_index = 0;
980 	     mirror_index < BTRFS_MAX_MIRRORS &&
981 	     sblocks_for_recheck[mirror_index].page_count > 0;
982 	     mirror_index++) {
983 		struct scrub_block *sblock_other;
984 
985 		if (mirror_index == failed_mirror_index)
986 			continue;
987 		sblock_other = sblocks_for_recheck + mirror_index;
988 
989 		/* build and submit the bios, check checksums */
990 		scrub_recheck_block(fs_info, sblock_other, is_metadata,
991 				    have_csum, csum, generation,
992 				    sctx->csum_size);
993 
994 		if (!sblock_other->header_error &&
995 		    !sblock_other->checksum_error &&
996 		    sblock_other->no_io_error_seen) {
997 			if (sctx->is_dev_replace) {
998 				scrub_write_block_to_dev_replace(sblock_other);
999 			} else {
1000 				int force_write = is_metadata || have_csum;
1001 
1002 				ret = scrub_repair_block_from_good_copy(
1003 						sblock_bad, sblock_other,
1004 						force_write);
1005 			}
1006 			if (0 == ret)
1007 				goto corrected_error;
1008 		}
1009 	}
1010 
1011 	/*
1012 	 * for dev_replace, pick good pages and write to the target device.
1013 	 */
1014 	if (sctx->is_dev_replace) {
1015 		success = 1;
1016 		for (page_num = 0; page_num < sblock_bad->page_count;
1017 		     page_num++) {
1018 			int sub_success;
1019 
1020 			sub_success = 0;
1021 			for (mirror_index = 0;
1022 			     mirror_index < BTRFS_MAX_MIRRORS &&
1023 			     sblocks_for_recheck[mirror_index].page_count > 0;
1024 			     mirror_index++) {
1025 				struct scrub_block *sblock_other =
1026 					sblocks_for_recheck + mirror_index;
1027 				struct scrub_page *page_other =
1028 					sblock_other->pagev[page_num];
1029 
1030 				if (!page_other->io_error) {
1031 					ret = scrub_write_page_to_dev_replace(
1032 							sblock_other, page_num);
1033 					if (ret == 0) {
1034 						/* succeeded for this page */
1035 						sub_success = 1;
1036 						break;
1037 					} else {
1038 						btrfs_dev_replace_stats_inc(
1039 							&sctx->dev_root->
1040 							fs_info->dev_replace.
1041 							num_write_errors);
1042 					}
1043 				}
1044 			}
1045 
1046 			if (!sub_success) {
1047 				/*
1048 				 * did not find a mirror to fetch the page
1049 				 * from. scrub_write_page_to_dev_replace()
1050 				 * handles this case (page->io_error), by
1051 				 * filling the block with zeros before
1052 				 * submitting the write request
1053 				 */
1054 				success = 0;
1055 				ret = scrub_write_page_to_dev_replace(
1056 						sblock_bad, page_num);
1057 				if (ret)
1058 					btrfs_dev_replace_stats_inc(
1059 						&sctx->dev_root->fs_info->
1060 						dev_replace.num_write_errors);
1061 			}
1062 		}
1063 
1064 		goto out;
1065 	}
1066 
1067 	/*
1068 	 * for regular scrub, repair those pages that are errored.
1069 	 * In case of I/O errors in the area that is supposed to be
1070 	 * repaired, continue by picking good copies of those pages.
1071 	 * Select the good pages from mirrors to rewrite bad pages from
1072 	 * the area to fix. Afterwards verify the checksum of the block
1073 	 * that is supposed to be repaired. This verification step is
1074 	 * only done for the purpose of statistic counting and for the
1075 	 * final scrub report, whether errors remain.
1076 	 * A perfect algorithm could make use of the checksum and try
1077 	 * all possible combinations of pages from the different mirrors
1078 	 * until the checksum verification succeeds. For example, when
1079 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1080 	 * of mirror #2 is readable but the final checksum test fails,
1081 	 * then the 2nd page of mirror #3 could be tried, whether now
1082 	 * the final checksum succeedes. But this would be a rare
1083 	 * exception and is therefore not implemented. At least it is
1084 	 * avoided that the good copy is overwritten.
1085 	 * A more useful improvement would be to pick the sectors
1086 	 * without I/O error based on sector sizes (512 bytes on legacy
1087 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1088 	 * mirror could be repaired by taking 512 byte of a different
1089 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1090 	 * area are unreadable.
1091 	 */
1092 
1093 	/* can only fix I/O errors from here on */
1094 	if (sblock_bad->no_io_error_seen)
1095 		goto did_not_correct_error;
1096 
1097 	success = 1;
1098 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1099 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1100 
1101 		if (!page_bad->io_error)
1102 			continue;
1103 
1104 		for (mirror_index = 0;
1105 		     mirror_index < BTRFS_MAX_MIRRORS &&
1106 		     sblocks_for_recheck[mirror_index].page_count > 0;
1107 		     mirror_index++) {
1108 			struct scrub_block *sblock_other = sblocks_for_recheck +
1109 							   mirror_index;
1110 			struct scrub_page *page_other = sblock_other->pagev[
1111 							page_num];
1112 
1113 			if (!page_other->io_error) {
1114 				ret = scrub_repair_page_from_good_copy(
1115 					sblock_bad, sblock_other, page_num, 0);
1116 				if (0 == ret) {
1117 					page_bad->io_error = 0;
1118 					break; /* succeeded for this page */
1119 				}
1120 			}
1121 		}
1122 
1123 		if (page_bad->io_error) {
1124 			/* did not find a mirror to copy the page from */
1125 			success = 0;
1126 		}
1127 	}
1128 
1129 	if (success) {
1130 		if (is_metadata || have_csum) {
1131 			/*
1132 			 * need to verify the checksum now that all
1133 			 * sectors on disk are repaired (the write
1134 			 * request for data to be repaired is on its way).
1135 			 * Just be lazy and use scrub_recheck_block()
1136 			 * which re-reads the data before the checksum
1137 			 * is verified, but most likely the data comes out
1138 			 * of the page cache.
1139 			 */
1140 			scrub_recheck_block(fs_info, sblock_bad,
1141 					    is_metadata, have_csum, csum,
1142 					    generation, sctx->csum_size);
1143 			if (!sblock_bad->header_error &&
1144 			    !sblock_bad->checksum_error &&
1145 			    sblock_bad->no_io_error_seen)
1146 				goto corrected_error;
1147 			else
1148 				goto did_not_correct_error;
1149 		} else {
1150 corrected_error:
1151 			spin_lock(&sctx->stat_lock);
1152 			sctx->stat.corrected_errors++;
1153 			spin_unlock(&sctx->stat_lock);
1154 			printk_ratelimited_in_rcu(KERN_ERR
1155 				"btrfs: fixed up error at logical %llu on dev %s\n",
1156 				logical, rcu_str_deref(dev->name));
1157 		}
1158 	} else {
1159 did_not_correct_error:
1160 		spin_lock(&sctx->stat_lock);
1161 		sctx->stat.uncorrectable_errors++;
1162 		spin_unlock(&sctx->stat_lock);
1163 		printk_ratelimited_in_rcu(KERN_ERR
1164 			"btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
1165 			logical, rcu_str_deref(dev->name));
1166 	}
1167 
1168 out:
1169 	if (sblocks_for_recheck) {
1170 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1171 		     mirror_index++) {
1172 			struct scrub_block *sblock = sblocks_for_recheck +
1173 						     mirror_index;
1174 			int page_index;
1175 
1176 			for (page_index = 0; page_index < sblock->page_count;
1177 			     page_index++) {
1178 				sblock->pagev[page_index]->sblock = NULL;
1179 				scrub_page_put(sblock->pagev[page_index]);
1180 			}
1181 		}
1182 		kfree(sblocks_for_recheck);
1183 	}
1184 
1185 	return 0;
1186 }
1187 
1188 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1189 				     struct btrfs_fs_info *fs_info,
1190 				     struct scrub_block *original_sblock,
1191 				     u64 length, u64 logical,
1192 				     struct scrub_block *sblocks_for_recheck)
1193 {
1194 	int page_index;
1195 	int mirror_index;
1196 	int ret;
1197 
1198 	/*
1199 	 * note: the two members ref_count and outstanding_pages
1200 	 * are not used (and not set) in the blocks that are used for
1201 	 * the recheck procedure
1202 	 */
1203 
1204 	page_index = 0;
1205 	while (length > 0) {
1206 		u64 sublen = min_t(u64, length, PAGE_SIZE);
1207 		u64 mapped_length = sublen;
1208 		struct btrfs_bio *bbio = NULL;
1209 
1210 		/*
1211 		 * with a length of PAGE_SIZE, each returned stripe
1212 		 * represents one mirror
1213 		 */
1214 		ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1215 				      &mapped_length, &bbio, 0);
1216 		if (ret || !bbio || mapped_length < sublen) {
1217 			kfree(bbio);
1218 			return -EIO;
1219 		}
1220 
1221 		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1222 		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1223 		     mirror_index++) {
1224 			struct scrub_block *sblock;
1225 			struct scrub_page *page;
1226 
1227 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1228 				continue;
1229 
1230 			sblock = sblocks_for_recheck + mirror_index;
1231 			sblock->sctx = sctx;
1232 			page = kzalloc(sizeof(*page), GFP_NOFS);
1233 			if (!page) {
1234 leave_nomem:
1235 				spin_lock(&sctx->stat_lock);
1236 				sctx->stat.malloc_errors++;
1237 				spin_unlock(&sctx->stat_lock);
1238 				kfree(bbio);
1239 				return -ENOMEM;
1240 			}
1241 			scrub_page_get(page);
1242 			sblock->pagev[page_index] = page;
1243 			page->logical = logical;
1244 			page->physical = bbio->stripes[mirror_index].physical;
1245 			BUG_ON(page_index >= original_sblock->page_count);
1246 			page->physical_for_dev_replace =
1247 				original_sblock->pagev[page_index]->
1248 				physical_for_dev_replace;
1249 			/* for missing devices, dev->bdev is NULL */
1250 			page->dev = bbio->stripes[mirror_index].dev;
1251 			page->mirror_num = mirror_index + 1;
1252 			sblock->page_count++;
1253 			page->page = alloc_page(GFP_NOFS);
1254 			if (!page->page)
1255 				goto leave_nomem;
1256 		}
1257 		kfree(bbio);
1258 		length -= sublen;
1259 		logical += sublen;
1260 		page_index++;
1261 	}
1262 
1263 	return 0;
1264 }
1265 
1266 /*
1267  * this function will check the on disk data for checksum errors, header
1268  * errors and read I/O errors. If any I/O errors happen, the exact pages
1269  * which are errored are marked as being bad. The goal is to enable scrub
1270  * to take those pages that are not errored from all the mirrors so that
1271  * the pages that are errored in the just handled mirror can be repaired.
1272  */
1273 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1274 				struct scrub_block *sblock, int is_metadata,
1275 				int have_csum, u8 *csum, u64 generation,
1276 				u16 csum_size)
1277 {
1278 	int page_num;
1279 
1280 	sblock->no_io_error_seen = 1;
1281 	sblock->header_error = 0;
1282 	sblock->checksum_error = 0;
1283 
1284 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1285 		struct bio *bio;
1286 		struct scrub_page *page = sblock->pagev[page_num];
1287 		DECLARE_COMPLETION_ONSTACK(complete);
1288 
1289 		if (page->dev->bdev == NULL) {
1290 			page->io_error = 1;
1291 			sblock->no_io_error_seen = 0;
1292 			continue;
1293 		}
1294 
1295 		WARN_ON(!page->page);
1296 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1297 		if (!bio) {
1298 			page->io_error = 1;
1299 			sblock->no_io_error_seen = 0;
1300 			continue;
1301 		}
1302 		bio->bi_bdev = page->dev->bdev;
1303 		bio->bi_sector = page->physical >> 9;
1304 		bio->bi_end_io = scrub_complete_bio_end_io;
1305 		bio->bi_private = &complete;
1306 
1307 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1308 		btrfsic_submit_bio(READ, bio);
1309 
1310 		/* this will also unplug the queue */
1311 		wait_for_completion(&complete);
1312 
1313 		page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1314 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1315 			sblock->no_io_error_seen = 0;
1316 		bio_put(bio);
1317 	}
1318 
1319 	if (sblock->no_io_error_seen)
1320 		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1321 					     have_csum, csum, generation,
1322 					     csum_size);
1323 
1324 	return;
1325 }
1326 
1327 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1328 					 struct scrub_block *sblock,
1329 					 int is_metadata, int have_csum,
1330 					 const u8 *csum, u64 generation,
1331 					 u16 csum_size)
1332 {
1333 	int page_num;
1334 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1335 	u32 crc = ~(u32)0;
1336 	void *mapped_buffer;
1337 
1338 	WARN_ON(!sblock->pagev[0]->page);
1339 	if (is_metadata) {
1340 		struct btrfs_header *h;
1341 
1342 		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1343 		h = (struct btrfs_header *)mapped_buffer;
1344 
1345 		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1346 		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1347 		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1348 			   BTRFS_UUID_SIZE)) {
1349 			sblock->header_error = 1;
1350 		} else if (generation != btrfs_stack_header_generation(h)) {
1351 			sblock->header_error = 1;
1352 			sblock->generation_error = 1;
1353 		}
1354 		csum = h->csum;
1355 	} else {
1356 		if (!have_csum)
1357 			return;
1358 
1359 		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1360 	}
1361 
1362 	for (page_num = 0;;) {
1363 		if (page_num == 0 && is_metadata)
1364 			crc = btrfs_csum_data(
1365 				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1366 				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1367 		else
1368 			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1369 
1370 		kunmap_atomic(mapped_buffer);
1371 		page_num++;
1372 		if (page_num >= sblock->page_count)
1373 			break;
1374 		WARN_ON(!sblock->pagev[page_num]->page);
1375 
1376 		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1377 	}
1378 
1379 	btrfs_csum_final(crc, calculated_csum);
1380 	if (memcmp(calculated_csum, csum, csum_size))
1381 		sblock->checksum_error = 1;
1382 }
1383 
1384 static void scrub_complete_bio_end_io(struct bio *bio, int err)
1385 {
1386 	complete((struct completion *)bio->bi_private);
1387 }
1388 
1389 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1390 					     struct scrub_block *sblock_good,
1391 					     int force_write)
1392 {
1393 	int page_num;
1394 	int ret = 0;
1395 
1396 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1397 		int ret_sub;
1398 
1399 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1400 							   sblock_good,
1401 							   page_num,
1402 							   force_write);
1403 		if (ret_sub)
1404 			ret = ret_sub;
1405 	}
1406 
1407 	return ret;
1408 }
1409 
1410 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1411 					    struct scrub_block *sblock_good,
1412 					    int page_num, int force_write)
1413 {
1414 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1415 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1416 
1417 	BUG_ON(page_bad->page == NULL);
1418 	BUG_ON(page_good->page == NULL);
1419 	if (force_write || sblock_bad->header_error ||
1420 	    sblock_bad->checksum_error || page_bad->io_error) {
1421 		struct bio *bio;
1422 		int ret;
1423 		DECLARE_COMPLETION_ONSTACK(complete);
1424 
1425 		if (!page_bad->dev->bdev) {
1426 			printk_ratelimited(KERN_WARNING
1427 				"btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n");
1428 			return -EIO;
1429 		}
1430 
1431 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1432 		if (!bio)
1433 			return -EIO;
1434 		bio->bi_bdev = page_bad->dev->bdev;
1435 		bio->bi_sector = page_bad->physical >> 9;
1436 		bio->bi_end_io = scrub_complete_bio_end_io;
1437 		bio->bi_private = &complete;
1438 
1439 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1440 		if (PAGE_SIZE != ret) {
1441 			bio_put(bio);
1442 			return -EIO;
1443 		}
1444 		btrfsic_submit_bio(WRITE, bio);
1445 
1446 		/* this will also unplug the queue */
1447 		wait_for_completion(&complete);
1448 		if (!bio_flagged(bio, BIO_UPTODATE)) {
1449 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1450 				BTRFS_DEV_STAT_WRITE_ERRS);
1451 			btrfs_dev_replace_stats_inc(
1452 				&sblock_bad->sctx->dev_root->fs_info->
1453 				dev_replace.num_write_errors);
1454 			bio_put(bio);
1455 			return -EIO;
1456 		}
1457 		bio_put(bio);
1458 	}
1459 
1460 	return 0;
1461 }
1462 
1463 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1464 {
1465 	int page_num;
1466 
1467 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1468 		int ret;
1469 
1470 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1471 		if (ret)
1472 			btrfs_dev_replace_stats_inc(
1473 				&sblock->sctx->dev_root->fs_info->dev_replace.
1474 				num_write_errors);
1475 	}
1476 }
1477 
1478 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1479 					   int page_num)
1480 {
1481 	struct scrub_page *spage = sblock->pagev[page_num];
1482 
1483 	BUG_ON(spage->page == NULL);
1484 	if (spage->io_error) {
1485 		void *mapped_buffer = kmap_atomic(spage->page);
1486 
1487 		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1488 		flush_dcache_page(spage->page);
1489 		kunmap_atomic(mapped_buffer);
1490 	}
1491 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1492 }
1493 
1494 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1495 				    struct scrub_page *spage)
1496 {
1497 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1498 	struct scrub_bio *sbio;
1499 	int ret;
1500 
1501 	mutex_lock(&wr_ctx->wr_lock);
1502 again:
1503 	if (!wr_ctx->wr_curr_bio) {
1504 		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1505 					      GFP_NOFS);
1506 		if (!wr_ctx->wr_curr_bio) {
1507 			mutex_unlock(&wr_ctx->wr_lock);
1508 			return -ENOMEM;
1509 		}
1510 		wr_ctx->wr_curr_bio->sctx = sctx;
1511 		wr_ctx->wr_curr_bio->page_count = 0;
1512 	}
1513 	sbio = wr_ctx->wr_curr_bio;
1514 	if (sbio->page_count == 0) {
1515 		struct bio *bio;
1516 
1517 		sbio->physical = spage->physical_for_dev_replace;
1518 		sbio->logical = spage->logical;
1519 		sbio->dev = wr_ctx->tgtdev;
1520 		bio = sbio->bio;
1521 		if (!bio) {
1522 			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1523 			if (!bio) {
1524 				mutex_unlock(&wr_ctx->wr_lock);
1525 				return -ENOMEM;
1526 			}
1527 			sbio->bio = bio;
1528 		}
1529 
1530 		bio->bi_private = sbio;
1531 		bio->bi_end_io = scrub_wr_bio_end_io;
1532 		bio->bi_bdev = sbio->dev->bdev;
1533 		bio->bi_sector = sbio->physical >> 9;
1534 		sbio->err = 0;
1535 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1536 		   spage->physical_for_dev_replace ||
1537 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1538 		   spage->logical) {
1539 		scrub_wr_submit(sctx);
1540 		goto again;
1541 	}
1542 
1543 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1544 	if (ret != PAGE_SIZE) {
1545 		if (sbio->page_count < 1) {
1546 			bio_put(sbio->bio);
1547 			sbio->bio = NULL;
1548 			mutex_unlock(&wr_ctx->wr_lock);
1549 			return -EIO;
1550 		}
1551 		scrub_wr_submit(sctx);
1552 		goto again;
1553 	}
1554 
1555 	sbio->pagev[sbio->page_count] = spage;
1556 	scrub_page_get(spage);
1557 	sbio->page_count++;
1558 	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1559 		scrub_wr_submit(sctx);
1560 	mutex_unlock(&wr_ctx->wr_lock);
1561 
1562 	return 0;
1563 }
1564 
1565 static void scrub_wr_submit(struct scrub_ctx *sctx)
1566 {
1567 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1568 	struct scrub_bio *sbio;
1569 
1570 	if (!wr_ctx->wr_curr_bio)
1571 		return;
1572 
1573 	sbio = wr_ctx->wr_curr_bio;
1574 	wr_ctx->wr_curr_bio = NULL;
1575 	WARN_ON(!sbio->bio->bi_bdev);
1576 	scrub_pending_bio_inc(sctx);
1577 	/* process all writes in a single worker thread. Then the block layer
1578 	 * orders the requests before sending them to the driver which
1579 	 * doubled the write performance on spinning disks when measured
1580 	 * with Linux 3.5 */
1581 	btrfsic_submit_bio(WRITE, sbio->bio);
1582 }
1583 
1584 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1585 {
1586 	struct scrub_bio *sbio = bio->bi_private;
1587 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1588 
1589 	sbio->err = err;
1590 	sbio->bio = bio;
1591 
1592 	sbio->work.func = scrub_wr_bio_end_io_worker;
1593 	btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work);
1594 }
1595 
1596 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1597 {
1598 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1599 	struct scrub_ctx *sctx = sbio->sctx;
1600 	int i;
1601 
1602 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1603 	if (sbio->err) {
1604 		struct btrfs_dev_replace *dev_replace =
1605 			&sbio->sctx->dev_root->fs_info->dev_replace;
1606 
1607 		for (i = 0; i < sbio->page_count; i++) {
1608 			struct scrub_page *spage = sbio->pagev[i];
1609 
1610 			spage->io_error = 1;
1611 			btrfs_dev_replace_stats_inc(&dev_replace->
1612 						    num_write_errors);
1613 		}
1614 	}
1615 
1616 	for (i = 0; i < sbio->page_count; i++)
1617 		scrub_page_put(sbio->pagev[i]);
1618 
1619 	bio_put(sbio->bio);
1620 	kfree(sbio);
1621 	scrub_pending_bio_dec(sctx);
1622 }
1623 
1624 static int scrub_checksum(struct scrub_block *sblock)
1625 {
1626 	u64 flags;
1627 	int ret;
1628 
1629 	WARN_ON(sblock->page_count < 1);
1630 	flags = sblock->pagev[0]->flags;
1631 	ret = 0;
1632 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1633 		ret = scrub_checksum_data(sblock);
1634 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1635 		ret = scrub_checksum_tree_block(sblock);
1636 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1637 		(void)scrub_checksum_super(sblock);
1638 	else
1639 		WARN_ON(1);
1640 	if (ret)
1641 		scrub_handle_errored_block(sblock);
1642 
1643 	return ret;
1644 }
1645 
1646 static int scrub_checksum_data(struct scrub_block *sblock)
1647 {
1648 	struct scrub_ctx *sctx = sblock->sctx;
1649 	u8 csum[BTRFS_CSUM_SIZE];
1650 	u8 *on_disk_csum;
1651 	struct page *page;
1652 	void *buffer;
1653 	u32 crc = ~(u32)0;
1654 	int fail = 0;
1655 	u64 len;
1656 	int index;
1657 
1658 	BUG_ON(sblock->page_count < 1);
1659 	if (!sblock->pagev[0]->have_csum)
1660 		return 0;
1661 
1662 	on_disk_csum = sblock->pagev[0]->csum;
1663 	page = sblock->pagev[0]->page;
1664 	buffer = kmap_atomic(page);
1665 
1666 	len = sctx->sectorsize;
1667 	index = 0;
1668 	for (;;) {
1669 		u64 l = min_t(u64, len, PAGE_SIZE);
1670 
1671 		crc = btrfs_csum_data(buffer, crc, l);
1672 		kunmap_atomic(buffer);
1673 		len -= l;
1674 		if (len == 0)
1675 			break;
1676 		index++;
1677 		BUG_ON(index >= sblock->page_count);
1678 		BUG_ON(!sblock->pagev[index]->page);
1679 		page = sblock->pagev[index]->page;
1680 		buffer = kmap_atomic(page);
1681 	}
1682 
1683 	btrfs_csum_final(crc, csum);
1684 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1685 		fail = 1;
1686 
1687 	return fail;
1688 }
1689 
1690 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1691 {
1692 	struct scrub_ctx *sctx = sblock->sctx;
1693 	struct btrfs_header *h;
1694 	struct btrfs_root *root = sctx->dev_root;
1695 	struct btrfs_fs_info *fs_info = root->fs_info;
1696 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1697 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1698 	struct page *page;
1699 	void *mapped_buffer;
1700 	u64 mapped_size;
1701 	void *p;
1702 	u32 crc = ~(u32)0;
1703 	int fail = 0;
1704 	int crc_fail = 0;
1705 	u64 len;
1706 	int index;
1707 
1708 	BUG_ON(sblock->page_count < 1);
1709 	page = sblock->pagev[0]->page;
1710 	mapped_buffer = kmap_atomic(page);
1711 	h = (struct btrfs_header *)mapped_buffer;
1712 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1713 
1714 	/*
1715 	 * we don't use the getter functions here, as we
1716 	 * a) don't have an extent buffer and
1717 	 * b) the page is already kmapped
1718 	 */
1719 
1720 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1721 		++fail;
1722 
1723 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1724 		++fail;
1725 
1726 	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1727 		++fail;
1728 
1729 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1730 		   BTRFS_UUID_SIZE))
1731 		++fail;
1732 
1733 	WARN_ON(sctx->nodesize != sctx->leafsize);
1734 	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1735 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1736 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1737 	index = 0;
1738 	for (;;) {
1739 		u64 l = min_t(u64, len, mapped_size);
1740 
1741 		crc = btrfs_csum_data(p, crc, l);
1742 		kunmap_atomic(mapped_buffer);
1743 		len -= l;
1744 		if (len == 0)
1745 			break;
1746 		index++;
1747 		BUG_ON(index >= sblock->page_count);
1748 		BUG_ON(!sblock->pagev[index]->page);
1749 		page = sblock->pagev[index]->page;
1750 		mapped_buffer = kmap_atomic(page);
1751 		mapped_size = PAGE_SIZE;
1752 		p = mapped_buffer;
1753 	}
1754 
1755 	btrfs_csum_final(crc, calculated_csum);
1756 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1757 		++crc_fail;
1758 
1759 	return fail || crc_fail;
1760 }
1761 
1762 static int scrub_checksum_super(struct scrub_block *sblock)
1763 {
1764 	struct btrfs_super_block *s;
1765 	struct scrub_ctx *sctx = sblock->sctx;
1766 	struct btrfs_root *root = sctx->dev_root;
1767 	struct btrfs_fs_info *fs_info = root->fs_info;
1768 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1769 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1770 	struct page *page;
1771 	void *mapped_buffer;
1772 	u64 mapped_size;
1773 	void *p;
1774 	u32 crc = ~(u32)0;
1775 	int fail_gen = 0;
1776 	int fail_cor = 0;
1777 	u64 len;
1778 	int index;
1779 
1780 	BUG_ON(sblock->page_count < 1);
1781 	page = sblock->pagev[0]->page;
1782 	mapped_buffer = kmap_atomic(page);
1783 	s = (struct btrfs_super_block *)mapped_buffer;
1784 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1785 
1786 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1787 		++fail_cor;
1788 
1789 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1790 		++fail_gen;
1791 
1792 	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1793 		++fail_cor;
1794 
1795 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1796 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1797 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1798 	index = 0;
1799 	for (;;) {
1800 		u64 l = min_t(u64, len, mapped_size);
1801 
1802 		crc = btrfs_csum_data(p, crc, l);
1803 		kunmap_atomic(mapped_buffer);
1804 		len -= l;
1805 		if (len == 0)
1806 			break;
1807 		index++;
1808 		BUG_ON(index >= sblock->page_count);
1809 		BUG_ON(!sblock->pagev[index]->page);
1810 		page = sblock->pagev[index]->page;
1811 		mapped_buffer = kmap_atomic(page);
1812 		mapped_size = PAGE_SIZE;
1813 		p = mapped_buffer;
1814 	}
1815 
1816 	btrfs_csum_final(crc, calculated_csum);
1817 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1818 		++fail_cor;
1819 
1820 	if (fail_cor + fail_gen) {
1821 		/*
1822 		 * if we find an error in a super block, we just report it.
1823 		 * They will get written with the next transaction commit
1824 		 * anyway
1825 		 */
1826 		spin_lock(&sctx->stat_lock);
1827 		++sctx->stat.super_errors;
1828 		spin_unlock(&sctx->stat_lock);
1829 		if (fail_cor)
1830 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1831 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1832 		else
1833 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1834 				BTRFS_DEV_STAT_GENERATION_ERRS);
1835 	}
1836 
1837 	return fail_cor + fail_gen;
1838 }
1839 
1840 static void scrub_block_get(struct scrub_block *sblock)
1841 {
1842 	atomic_inc(&sblock->ref_count);
1843 }
1844 
1845 static void scrub_block_put(struct scrub_block *sblock)
1846 {
1847 	if (atomic_dec_and_test(&sblock->ref_count)) {
1848 		int i;
1849 
1850 		for (i = 0; i < sblock->page_count; i++)
1851 			scrub_page_put(sblock->pagev[i]);
1852 		kfree(sblock);
1853 	}
1854 }
1855 
1856 static void scrub_page_get(struct scrub_page *spage)
1857 {
1858 	atomic_inc(&spage->ref_count);
1859 }
1860 
1861 static void scrub_page_put(struct scrub_page *spage)
1862 {
1863 	if (atomic_dec_and_test(&spage->ref_count)) {
1864 		if (spage->page)
1865 			__free_page(spage->page);
1866 		kfree(spage);
1867 	}
1868 }
1869 
1870 static void scrub_submit(struct scrub_ctx *sctx)
1871 {
1872 	struct scrub_bio *sbio;
1873 
1874 	if (sctx->curr == -1)
1875 		return;
1876 
1877 	sbio = sctx->bios[sctx->curr];
1878 	sctx->curr = -1;
1879 	scrub_pending_bio_inc(sctx);
1880 
1881 	if (!sbio->bio->bi_bdev) {
1882 		/*
1883 		 * this case should not happen. If btrfs_map_block() is
1884 		 * wrong, it could happen for dev-replace operations on
1885 		 * missing devices when no mirrors are available, but in
1886 		 * this case it should already fail the mount.
1887 		 * This case is handled correctly (but _very_ slowly).
1888 		 */
1889 		printk_ratelimited(KERN_WARNING
1890 			"btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n");
1891 		bio_endio(sbio->bio, -EIO);
1892 	} else {
1893 		btrfsic_submit_bio(READ, sbio->bio);
1894 	}
1895 }
1896 
1897 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1898 				    struct scrub_page *spage)
1899 {
1900 	struct scrub_block *sblock = spage->sblock;
1901 	struct scrub_bio *sbio;
1902 	int ret;
1903 
1904 again:
1905 	/*
1906 	 * grab a fresh bio or wait for one to become available
1907 	 */
1908 	while (sctx->curr == -1) {
1909 		spin_lock(&sctx->list_lock);
1910 		sctx->curr = sctx->first_free;
1911 		if (sctx->curr != -1) {
1912 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
1913 			sctx->bios[sctx->curr]->next_free = -1;
1914 			sctx->bios[sctx->curr]->page_count = 0;
1915 			spin_unlock(&sctx->list_lock);
1916 		} else {
1917 			spin_unlock(&sctx->list_lock);
1918 			wait_event(sctx->list_wait, sctx->first_free != -1);
1919 		}
1920 	}
1921 	sbio = sctx->bios[sctx->curr];
1922 	if (sbio->page_count == 0) {
1923 		struct bio *bio;
1924 
1925 		sbio->physical = spage->physical;
1926 		sbio->logical = spage->logical;
1927 		sbio->dev = spage->dev;
1928 		bio = sbio->bio;
1929 		if (!bio) {
1930 			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1931 			if (!bio)
1932 				return -ENOMEM;
1933 			sbio->bio = bio;
1934 		}
1935 
1936 		bio->bi_private = sbio;
1937 		bio->bi_end_io = scrub_bio_end_io;
1938 		bio->bi_bdev = sbio->dev->bdev;
1939 		bio->bi_sector = sbio->physical >> 9;
1940 		sbio->err = 0;
1941 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1942 		   spage->physical ||
1943 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1944 		   spage->logical ||
1945 		   sbio->dev != spage->dev) {
1946 		scrub_submit(sctx);
1947 		goto again;
1948 	}
1949 
1950 	sbio->pagev[sbio->page_count] = spage;
1951 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1952 	if (ret != PAGE_SIZE) {
1953 		if (sbio->page_count < 1) {
1954 			bio_put(sbio->bio);
1955 			sbio->bio = NULL;
1956 			return -EIO;
1957 		}
1958 		scrub_submit(sctx);
1959 		goto again;
1960 	}
1961 
1962 	scrub_block_get(sblock); /* one for the page added to the bio */
1963 	atomic_inc(&sblock->outstanding_pages);
1964 	sbio->page_count++;
1965 	if (sbio->page_count == sctx->pages_per_rd_bio)
1966 		scrub_submit(sctx);
1967 
1968 	return 0;
1969 }
1970 
1971 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1972 		       u64 physical, struct btrfs_device *dev, u64 flags,
1973 		       u64 gen, int mirror_num, u8 *csum, int force,
1974 		       u64 physical_for_dev_replace)
1975 {
1976 	struct scrub_block *sblock;
1977 	int index;
1978 
1979 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1980 	if (!sblock) {
1981 		spin_lock(&sctx->stat_lock);
1982 		sctx->stat.malloc_errors++;
1983 		spin_unlock(&sctx->stat_lock);
1984 		return -ENOMEM;
1985 	}
1986 
1987 	/* one ref inside this function, plus one for each page added to
1988 	 * a bio later on */
1989 	atomic_set(&sblock->ref_count, 1);
1990 	sblock->sctx = sctx;
1991 	sblock->no_io_error_seen = 1;
1992 
1993 	for (index = 0; len > 0; index++) {
1994 		struct scrub_page *spage;
1995 		u64 l = min_t(u64, len, PAGE_SIZE);
1996 
1997 		spage = kzalloc(sizeof(*spage), GFP_NOFS);
1998 		if (!spage) {
1999 leave_nomem:
2000 			spin_lock(&sctx->stat_lock);
2001 			sctx->stat.malloc_errors++;
2002 			spin_unlock(&sctx->stat_lock);
2003 			scrub_block_put(sblock);
2004 			return -ENOMEM;
2005 		}
2006 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2007 		scrub_page_get(spage);
2008 		sblock->pagev[index] = spage;
2009 		spage->sblock = sblock;
2010 		spage->dev = dev;
2011 		spage->flags = flags;
2012 		spage->generation = gen;
2013 		spage->logical = logical;
2014 		spage->physical = physical;
2015 		spage->physical_for_dev_replace = physical_for_dev_replace;
2016 		spage->mirror_num = mirror_num;
2017 		if (csum) {
2018 			spage->have_csum = 1;
2019 			memcpy(spage->csum, csum, sctx->csum_size);
2020 		} else {
2021 			spage->have_csum = 0;
2022 		}
2023 		sblock->page_count++;
2024 		spage->page = alloc_page(GFP_NOFS);
2025 		if (!spage->page)
2026 			goto leave_nomem;
2027 		len -= l;
2028 		logical += l;
2029 		physical += l;
2030 		physical_for_dev_replace += l;
2031 	}
2032 
2033 	WARN_ON(sblock->page_count == 0);
2034 	for (index = 0; index < sblock->page_count; index++) {
2035 		struct scrub_page *spage = sblock->pagev[index];
2036 		int ret;
2037 
2038 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2039 		if (ret) {
2040 			scrub_block_put(sblock);
2041 			return ret;
2042 		}
2043 	}
2044 
2045 	if (force)
2046 		scrub_submit(sctx);
2047 
2048 	/* last one frees, either here or in bio completion for last page */
2049 	scrub_block_put(sblock);
2050 	return 0;
2051 }
2052 
2053 static void scrub_bio_end_io(struct bio *bio, int err)
2054 {
2055 	struct scrub_bio *sbio = bio->bi_private;
2056 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2057 
2058 	sbio->err = err;
2059 	sbio->bio = bio;
2060 
2061 	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
2062 }
2063 
2064 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2065 {
2066 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2067 	struct scrub_ctx *sctx = sbio->sctx;
2068 	int i;
2069 
2070 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2071 	if (sbio->err) {
2072 		for (i = 0; i < sbio->page_count; i++) {
2073 			struct scrub_page *spage = sbio->pagev[i];
2074 
2075 			spage->io_error = 1;
2076 			spage->sblock->no_io_error_seen = 0;
2077 		}
2078 	}
2079 
2080 	/* now complete the scrub_block items that have all pages completed */
2081 	for (i = 0; i < sbio->page_count; i++) {
2082 		struct scrub_page *spage = sbio->pagev[i];
2083 		struct scrub_block *sblock = spage->sblock;
2084 
2085 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2086 			scrub_block_complete(sblock);
2087 		scrub_block_put(sblock);
2088 	}
2089 
2090 	bio_put(sbio->bio);
2091 	sbio->bio = NULL;
2092 	spin_lock(&sctx->list_lock);
2093 	sbio->next_free = sctx->first_free;
2094 	sctx->first_free = sbio->index;
2095 	spin_unlock(&sctx->list_lock);
2096 
2097 	if (sctx->is_dev_replace &&
2098 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2099 		mutex_lock(&sctx->wr_ctx.wr_lock);
2100 		scrub_wr_submit(sctx);
2101 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2102 	}
2103 
2104 	scrub_pending_bio_dec(sctx);
2105 }
2106 
2107 static void scrub_block_complete(struct scrub_block *sblock)
2108 {
2109 	if (!sblock->no_io_error_seen) {
2110 		scrub_handle_errored_block(sblock);
2111 	} else {
2112 		/*
2113 		 * if has checksum error, write via repair mechanism in
2114 		 * dev replace case, otherwise write here in dev replace
2115 		 * case.
2116 		 */
2117 		if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2118 			scrub_write_block_to_dev_replace(sblock);
2119 	}
2120 }
2121 
2122 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2123 			   u8 *csum)
2124 {
2125 	struct btrfs_ordered_sum *sum = NULL;
2126 	unsigned long index;
2127 	unsigned long num_sectors;
2128 
2129 	while (!list_empty(&sctx->csum_list)) {
2130 		sum = list_first_entry(&sctx->csum_list,
2131 				       struct btrfs_ordered_sum, list);
2132 		if (sum->bytenr > logical)
2133 			return 0;
2134 		if (sum->bytenr + sum->len > logical)
2135 			break;
2136 
2137 		++sctx->stat.csum_discards;
2138 		list_del(&sum->list);
2139 		kfree(sum);
2140 		sum = NULL;
2141 	}
2142 	if (!sum)
2143 		return 0;
2144 
2145 	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2146 	num_sectors = sum->len / sctx->sectorsize;
2147 	memcpy(csum, sum->sums + index, sctx->csum_size);
2148 	if (index == num_sectors - 1) {
2149 		list_del(&sum->list);
2150 		kfree(sum);
2151 	}
2152 	return 1;
2153 }
2154 
2155 /* scrub extent tries to collect up to 64 kB for each bio */
2156 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2157 			u64 physical, struct btrfs_device *dev, u64 flags,
2158 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2159 {
2160 	int ret;
2161 	u8 csum[BTRFS_CSUM_SIZE];
2162 	u32 blocksize;
2163 
2164 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2165 		blocksize = sctx->sectorsize;
2166 		spin_lock(&sctx->stat_lock);
2167 		sctx->stat.data_extents_scrubbed++;
2168 		sctx->stat.data_bytes_scrubbed += len;
2169 		spin_unlock(&sctx->stat_lock);
2170 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2171 		WARN_ON(sctx->nodesize != sctx->leafsize);
2172 		blocksize = sctx->nodesize;
2173 		spin_lock(&sctx->stat_lock);
2174 		sctx->stat.tree_extents_scrubbed++;
2175 		sctx->stat.tree_bytes_scrubbed += len;
2176 		spin_unlock(&sctx->stat_lock);
2177 	} else {
2178 		blocksize = sctx->sectorsize;
2179 		WARN_ON(1);
2180 	}
2181 
2182 	while (len) {
2183 		u64 l = min_t(u64, len, blocksize);
2184 		int have_csum = 0;
2185 
2186 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2187 			/* push csums to sbio */
2188 			have_csum = scrub_find_csum(sctx, logical, l, csum);
2189 			if (have_csum == 0)
2190 				++sctx->stat.no_csum;
2191 			if (sctx->is_dev_replace && !have_csum) {
2192 				ret = copy_nocow_pages(sctx, logical, l,
2193 						       mirror_num,
2194 						      physical_for_dev_replace);
2195 				goto behind_scrub_pages;
2196 			}
2197 		}
2198 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2199 				  mirror_num, have_csum ? csum : NULL, 0,
2200 				  physical_for_dev_replace);
2201 behind_scrub_pages:
2202 		if (ret)
2203 			return ret;
2204 		len -= l;
2205 		logical += l;
2206 		physical += l;
2207 		physical_for_dev_replace += l;
2208 	}
2209 	return 0;
2210 }
2211 
2212 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2213 					   struct map_lookup *map,
2214 					   struct btrfs_device *scrub_dev,
2215 					   int num, u64 base, u64 length,
2216 					   int is_dev_replace)
2217 {
2218 	struct btrfs_path *path;
2219 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2220 	struct btrfs_root *root = fs_info->extent_root;
2221 	struct btrfs_root *csum_root = fs_info->csum_root;
2222 	struct btrfs_extent_item *extent;
2223 	struct blk_plug plug;
2224 	u64 flags;
2225 	int ret;
2226 	int slot;
2227 	u64 nstripes;
2228 	struct extent_buffer *l;
2229 	struct btrfs_key key;
2230 	u64 physical;
2231 	u64 logical;
2232 	u64 logic_end;
2233 	u64 generation;
2234 	int mirror_num;
2235 	struct reada_control *reada1;
2236 	struct reada_control *reada2;
2237 	struct btrfs_key key_start;
2238 	struct btrfs_key key_end;
2239 	u64 increment = map->stripe_len;
2240 	u64 offset;
2241 	u64 extent_logical;
2242 	u64 extent_physical;
2243 	u64 extent_len;
2244 	struct btrfs_device *extent_dev;
2245 	int extent_mirror_num;
2246 	int stop_loop;
2247 
2248 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2249 			 BTRFS_BLOCK_GROUP_RAID6)) {
2250 		if (num >= nr_data_stripes(map)) {
2251 			return 0;
2252 		}
2253 	}
2254 
2255 	nstripes = length;
2256 	offset = 0;
2257 	do_div(nstripes, map->stripe_len);
2258 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2259 		offset = map->stripe_len * num;
2260 		increment = map->stripe_len * map->num_stripes;
2261 		mirror_num = 1;
2262 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2263 		int factor = map->num_stripes / map->sub_stripes;
2264 		offset = map->stripe_len * (num / map->sub_stripes);
2265 		increment = map->stripe_len * factor;
2266 		mirror_num = num % map->sub_stripes + 1;
2267 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2268 		increment = map->stripe_len;
2269 		mirror_num = num % map->num_stripes + 1;
2270 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2271 		increment = map->stripe_len;
2272 		mirror_num = num % map->num_stripes + 1;
2273 	} else {
2274 		increment = map->stripe_len;
2275 		mirror_num = 1;
2276 	}
2277 
2278 	path = btrfs_alloc_path();
2279 	if (!path)
2280 		return -ENOMEM;
2281 
2282 	/*
2283 	 * work on commit root. The related disk blocks are static as
2284 	 * long as COW is applied. This means, it is save to rewrite
2285 	 * them to repair disk errors without any race conditions
2286 	 */
2287 	path->search_commit_root = 1;
2288 	path->skip_locking = 1;
2289 
2290 	/*
2291 	 * trigger the readahead for extent tree csum tree and wait for
2292 	 * completion. During readahead, the scrub is officially paused
2293 	 * to not hold off transaction commits
2294 	 */
2295 	logical = base + offset;
2296 
2297 	wait_event(sctx->list_wait,
2298 		   atomic_read(&sctx->bios_in_flight) == 0);
2299 	atomic_inc(&fs_info->scrubs_paused);
2300 	wake_up(&fs_info->scrub_pause_wait);
2301 
2302 	/* FIXME it might be better to start readahead at commit root */
2303 	key_start.objectid = logical;
2304 	key_start.type = BTRFS_EXTENT_ITEM_KEY;
2305 	key_start.offset = (u64)0;
2306 	key_end.objectid = base + offset + nstripes * increment;
2307 	key_end.type = BTRFS_METADATA_ITEM_KEY;
2308 	key_end.offset = (u64)-1;
2309 	reada1 = btrfs_reada_add(root, &key_start, &key_end);
2310 
2311 	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2312 	key_start.type = BTRFS_EXTENT_CSUM_KEY;
2313 	key_start.offset = logical;
2314 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2315 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
2316 	key_end.offset = base + offset + nstripes * increment;
2317 	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2318 
2319 	if (!IS_ERR(reada1))
2320 		btrfs_reada_wait(reada1);
2321 	if (!IS_ERR(reada2))
2322 		btrfs_reada_wait(reada2);
2323 
2324 	mutex_lock(&fs_info->scrub_lock);
2325 	while (atomic_read(&fs_info->scrub_pause_req)) {
2326 		mutex_unlock(&fs_info->scrub_lock);
2327 		wait_event(fs_info->scrub_pause_wait,
2328 		   atomic_read(&fs_info->scrub_pause_req) == 0);
2329 		mutex_lock(&fs_info->scrub_lock);
2330 	}
2331 	atomic_dec(&fs_info->scrubs_paused);
2332 	mutex_unlock(&fs_info->scrub_lock);
2333 	wake_up(&fs_info->scrub_pause_wait);
2334 
2335 	/*
2336 	 * collect all data csums for the stripe to avoid seeking during
2337 	 * the scrub. This might currently (crc32) end up to be about 1MB
2338 	 */
2339 	blk_start_plug(&plug);
2340 
2341 	/*
2342 	 * now find all extents for each stripe and scrub them
2343 	 */
2344 	logical = base + offset;
2345 	physical = map->stripes[num].physical;
2346 	logic_end = logical + increment * nstripes;
2347 	ret = 0;
2348 	while (logical < logic_end) {
2349 		/*
2350 		 * canceled?
2351 		 */
2352 		if (atomic_read(&fs_info->scrub_cancel_req) ||
2353 		    atomic_read(&sctx->cancel_req)) {
2354 			ret = -ECANCELED;
2355 			goto out;
2356 		}
2357 		/*
2358 		 * check to see if we have to pause
2359 		 */
2360 		if (atomic_read(&fs_info->scrub_pause_req)) {
2361 			/* push queued extents */
2362 			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2363 			scrub_submit(sctx);
2364 			mutex_lock(&sctx->wr_ctx.wr_lock);
2365 			scrub_wr_submit(sctx);
2366 			mutex_unlock(&sctx->wr_ctx.wr_lock);
2367 			wait_event(sctx->list_wait,
2368 				   atomic_read(&sctx->bios_in_flight) == 0);
2369 			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2370 			atomic_inc(&fs_info->scrubs_paused);
2371 			wake_up(&fs_info->scrub_pause_wait);
2372 			mutex_lock(&fs_info->scrub_lock);
2373 			while (atomic_read(&fs_info->scrub_pause_req)) {
2374 				mutex_unlock(&fs_info->scrub_lock);
2375 				wait_event(fs_info->scrub_pause_wait,
2376 				   atomic_read(&fs_info->scrub_pause_req) == 0);
2377 				mutex_lock(&fs_info->scrub_lock);
2378 			}
2379 			atomic_dec(&fs_info->scrubs_paused);
2380 			mutex_unlock(&fs_info->scrub_lock);
2381 			wake_up(&fs_info->scrub_pause_wait);
2382 		}
2383 
2384 		key.objectid = logical;
2385 		key.type = BTRFS_EXTENT_ITEM_KEY;
2386 		key.offset = (u64)-1;
2387 
2388 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2389 		if (ret < 0)
2390 			goto out;
2391 
2392 		if (ret > 0) {
2393 			ret = btrfs_previous_item(root, path, 0,
2394 						  BTRFS_EXTENT_ITEM_KEY);
2395 			if (ret < 0)
2396 				goto out;
2397 			if (ret > 0) {
2398 				/* there's no smaller item, so stick with the
2399 				 * larger one */
2400 				btrfs_release_path(path);
2401 				ret = btrfs_search_slot(NULL, root, &key,
2402 							path, 0, 0);
2403 				if (ret < 0)
2404 					goto out;
2405 			}
2406 		}
2407 
2408 		stop_loop = 0;
2409 		while (1) {
2410 			u64 bytes;
2411 
2412 			l = path->nodes[0];
2413 			slot = path->slots[0];
2414 			if (slot >= btrfs_header_nritems(l)) {
2415 				ret = btrfs_next_leaf(root, path);
2416 				if (ret == 0)
2417 					continue;
2418 				if (ret < 0)
2419 					goto out;
2420 
2421 				stop_loop = 1;
2422 				break;
2423 			}
2424 			btrfs_item_key_to_cpu(l, &key, slot);
2425 
2426 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2427 				bytes = root->leafsize;
2428 			else
2429 				bytes = key.offset;
2430 
2431 			if (key.objectid + bytes <= logical)
2432 				goto next;
2433 
2434 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2435 			    key.type != BTRFS_METADATA_ITEM_KEY)
2436 				goto next;
2437 
2438 			if (key.objectid >= logical + map->stripe_len) {
2439 				/* out of this device extent */
2440 				if (key.objectid >= logic_end)
2441 					stop_loop = 1;
2442 				break;
2443 			}
2444 
2445 			extent = btrfs_item_ptr(l, slot,
2446 						struct btrfs_extent_item);
2447 			flags = btrfs_extent_flags(l, extent);
2448 			generation = btrfs_extent_generation(l, extent);
2449 
2450 			if (key.objectid < logical &&
2451 			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2452 				printk(KERN_ERR
2453 				       "btrfs scrub: tree block %llu spanning "
2454 				       "stripes, ignored. logical=%llu\n",
2455 				       key.objectid, logical);
2456 				goto next;
2457 			}
2458 
2459 again:
2460 			extent_logical = key.objectid;
2461 			extent_len = bytes;
2462 
2463 			/*
2464 			 * trim extent to this stripe
2465 			 */
2466 			if (extent_logical < logical) {
2467 				extent_len -= logical - extent_logical;
2468 				extent_logical = logical;
2469 			}
2470 			if (extent_logical + extent_len >
2471 			    logical + map->stripe_len) {
2472 				extent_len = logical + map->stripe_len -
2473 					     extent_logical;
2474 			}
2475 
2476 			extent_physical = extent_logical - logical + physical;
2477 			extent_dev = scrub_dev;
2478 			extent_mirror_num = mirror_num;
2479 			if (is_dev_replace)
2480 				scrub_remap_extent(fs_info, extent_logical,
2481 						   extent_len, &extent_physical,
2482 						   &extent_dev,
2483 						   &extent_mirror_num);
2484 
2485 			ret = btrfs_lookup_csums_range(csum_root, logical,
2486 						logical + map->stripe_len - 1,
2487 						&sctx->csum_list, 1);
2488 			if (ret)
2489 				goto out;
2490 
2491 			ret = scrub_extent(sctx, extent_logical, extent_len,
2492 					   extent_physical, extent_dev, flags,
2493 					   generation, extent_mirror_num,
2494 					   extent_logical - logical + physical);
2495 			if (ret)
2496 				goto out;
2497 
2498 			scrub_free_csums(sctx);
2499 			if (extent_logical + extent_len <
2500 			    key.objectid + bytes) {
2501 				logical += increment;
2502 				physical += map->stripe_len;
2503 
2504 				if (logical < key.objectid + bytes) {
2505 					cond_resched();
2506 					goto again;
2507 				}
2508 
2509 				if (logical >= logic_end) {
2510 					stop_loop = 1;
2511 					break;
2512 				}
2513 			}
2514 next:
2515 			path->slots[0]++;
2516 		}
2517 		btrfs_release_path(path);
2518 		logical += increment;
2519 		physical += map->stripe_len;
2520 		spin_lock(&sctx->stat_lock);
2521 		if (stop_loop)
2522 			sctx->stat.last_physical = map->stripes[num].physical +
2523 						   length;
2524 		else
2525 			sctx->stat.last_physical = physical;
2526 		spin_unlock(&sctx->stat_lock);
2527 		if (stop_loop)
2528 			break;
2529 	}
2530 out:
2531 	/* push queued extents */
2532 	scrub_submit(sctx);
2533 	mutex_lock(&sctx->wr_ctx.wr_lock);
2534 	scrub_wr_submit(sctx);
2535 	mutex_unlock(&sctx->wr_ctx.wr_lock);
2536 
2537 	blk_finish_plug(&plug);
2538 	btrfs_free_path(path);
2539 	return ret < 0 ? ret : 0;
2540 }
2541 
2542 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2543 					  struct btrfs_device *scrub_dev,
2544 					  u64 chunk_tree, u64 chunk_objectid,
2545 					  u64 chunk_offset, u64 length,
2546 					  u64 dev_offset, int is_dev_replace)
2547 {
2548 	struct btrfs_mapping_tree *map_tree =
2549 		&sctx->dev_root->fs_info->mapping_tree;
2550 	struct map_lookup *map;
2551 	struct extent_map *em;
2552 	int i;
2553 	int ret = 0;
2554 
2555 	read_lock(&map_tree->map_tree.lock);
2556 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2557 	read_unlock(&map_tree->map_tree.lock);
2558 
2559 	if (!em)
2560 		return -EINVAL;
2561 
2562 	map = (struct map_lookup *)em->bdev;
2563 	if (em->start != chunk_offset)
2564 		goto out;
2565 
2566 	if (em->len < length)
2567 		goto out;
2568 
2569 	for (i = 0; i < map->num_stripes; ++i) {
2570 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2571 		    map->stripes[i].physical == dev_offset) {
2572 			ret = scrub_stripe(sctx, map, scrub_dev, i,
2573 					   chunk_offset, length,
2574 					   is_dev_replace);
2575 			if (ret)
2576 				goto out;
2577 		}
2578 	}
2579 out:
2580 	free_extent_map(em);
2581 
2582 	return ret;
2583 }
2584 
2585 static noinline_for_stack
2586 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2587 			   struct btrfs_device *scrub_dev, u64 start, u64 end,
2588 			   int is_dev_replace)
2589 {
2590 	struct btrfs_dev_extent *dev_extent = NULL;
2591 	struct btrfs_path *path;
2592 	struct btrfs_root *root = sctx->dev_root;
2593 	struct btrfs_fs_info *fs_info = root->fs_info;
2594 	u64 length;
2595 	u64 chunk_tree;
2596 	u64 chunk_objectid;
2597 	u64 chunk_offset;
2598 	int ret;
2599 	int slot;
2600 	struct extent_buffer *l;
2601 	struct btrfs_key key;
2602 	struct btrfs_key found_key;
2603 	struct btrfs_block_group_cache *cache;
2604 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2605 
2606 	path = btrfs_alloc_path();
2607 	if (!path)
2608 		return -ENOMEM;
2609 
2610 	path->reada = 2;
2611 	path->search_commit_root = 1;
2612 	path->skip_locking = 1;
2613 
2614 	key.objectid = scrub_dev->devid;
2615 	key.offset = 0ull;
2616 	key.type = BTRFS_DEV_EXTENT_KEY;
2617 
2618 	while (1) {
2619 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2620 		if (ret < 0)
2621 			break;
2622 		if (ret > 0) {
2623 			if (path->slots[0] >=
2624 			    btrfs_header_nritems(path->nodes[0])) {
2625 				ret = btrfs_next_leaf(root, path);
2626 				if (ret)
2627 					break;
2628 			}
2629 		}
2630 
2631 		l = path->nodes[0];
2632 		slot = path->slots[0];
2633 
2634 		btrfs_item_key_to_cpu(l, &found_key, slot);
2635 
2636 		if (found_key.objectid != scrub_dev->devid)
2637 			break;
2638 
2639 		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2640 			break;
2641 
2642 		if (found_key.offset >= end)
2643 			break;
2644 
2645 		if (found_key.offset < key.offset)
2646 			break;
2647 
2648 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2649 		length = btrfs_dev_extent_length(l, dev_extent);
2650 
2651 		if (found_key.offset + length <= start) {
2652 			key.offset = found_key.offset + length;
2653 			btrfs_release_path(path);
2654 			continue;
2655 		}
2656 
2657 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2658 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2659 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2660 
2661 		/*
2662 		 * get a reference on the corresponding block group to prevent
2663 		 * the chunk from going away while we scrub it
2664 		 */
2665 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2666 		if (!cache) {
2667 			ret = -ENOENT;
2668 			break;
2669 		}
2670 		dev_replace->cursor_right = found_key.offset + length;
2671 		dev_replace->cursor_left = found_key.offset;
2672 		dev_replace->item_needs_writeback = 1;
2673 		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2674 				  chunk_offset, length, found_key.offset,
2675 				  is_dev_replace);
2676 
2677 		/*
2678 		 * flush, submit all pending read and write bios, afterwards
2679 		 * wait for them.
2680 		 * Note that in the dev replace case, a read request causes
2681 		 * write requests that are submitted in the read completion
2682 		 * worker. Therefore in the current situation, it is required
2683 		 * that all write requests are flushed, so that all read and
2684 		 * write requests are really completed when bios_in_flight
2685 		 * changes to 0.
2686 		 */
2687 		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2688 		scrub_submit(sctx);
2689 		mutex_lock(&sctx->wr_ctx.wr_lock);
2690 		scrub_wr_submit(sctx);
2691 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2692 
2693 		wait_event(sctx->list_wait,
2694 			   atomic_read(&sctx->bios_in_flight) == 0);
2695 		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2696 		atomic_inc(&fs_info->scrubs_paused);
2697 		wake_up(&fs_info->scrub_pause_wait);
2698 		wait_event(sctx->list_wait,
2699 			   atomic_read(&sctx->workers_pending) == 0);
2700 
2701 		mutex_lock(&fs_info->scrub_lock);
2702 		while (atomic_read(&fs_info->scrub_pause_req)) {
2703 			mutex_unlock(&fs_info->scrub_lock);
2704 			wait_event(fs_info->scrub_pause_wait,
2705 			   atomic_read(&fs_info->scrub_pause_req) == 0);
2706 			mutex_lock(&fs_info->scrub_lock);
2707 		}
2708 		atomic_dec(&fs_info->scrubs_paused);
2709 		mutex_unlock(&fs_info->scrub_lock);
2710 		wake_up(&fs_info->scrub_pause_wait);
2711 
2712 		dev_replace->cursor_left = dev_replace->cursor_right;
2713 		dev_replace->item_needs_writeback = 1;
2714 		btrfs_put_block_group(cache);
2715 		if (ret)
2716 			break;
2717 		if (is_dev_replace &&
2718 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2719 			ret = -EIO;
2720 			break;
2721 		}
2722 		if (sctx->stat.malloc_errors > 0) {
2723 			ret = -ENOMEM;
2724 			break;
2725 		}
2726 
2727 		key.offset = found_key.offset + length;
2728 		btrfs_release_path(path);
2729 	}
2730 
2731 	btrfs_free_path(path);
2732 
2733 	/*
2734 	 * ret can still be 1 from search_slot or next_leaf,
2735 	 * that's not an error
2736 	 */
2737 	return ret < 0 ? ret : 0;
2738 }
2739 
2740 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2741 					   struct btrfs_device *scrub_dev)
2742 {
2743 	int	i;
2744 	u64	bytenr;
2745 	u64	gen;
2746 	int	ret;
2747 	struct btrfs_root *root = sctx->dev_root;
2748 
2749 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2750 		return -EIO;
2751 
2752 	gen = root->fs_info->last_trans_committed;
2753 
2754 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2755 		bytenr = btrfs_sb_offset(i);
2756 		if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2757 			break;
2758 
2759 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2760 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2761 				  NULL, 1, bytenr);
2762 		if (ret)
2763 			return ret;
2764 	}
2765 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2766 
2767 	return 0;
2768 }
2769 
2770 /*
2771  * get a reference count on fs_info->scrub_workers. start worker if necessary
2772  */
2773 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2774 						int is_dev_replace)
2775 {
2776 	int ret = 0;
2777 
2778 	mutex_lock(&fs_info->scrub_lock);
2779 	if (fs_info->scrub_workers_refcnt == 0) {
2780 		if (is_dev_replace)
2781 			btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1,
2782 					&fs_info->generic_worker);
2783 		else
2784 			btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2785 					fs_info->thread_pool_size,
2786 					&fs_info->generic_worker);
2787 		fs_info->scrub_workers.idle_thresh = 4;
2788 		ret = btrfs_start_workers(&fs_info->scrub_workers);
2789 		if (ret)
2790 			goto out;
2791 		btrfs_init_workers(&fs_info->scrub_wr_completion_workers,
2792 				   "scrubwrc",
2793 				   fs_info->thread_pool_size,
2794 				   &fs_info->generic_worker);
2795 		fs_info->scrub_wr_completion_workers.idle_thresh = 2;
2796 		ret = btrfs_start_workers(
2797 				&fs_info->scrub_wr_completion_workers);
2798 		if (ret)
2799 			goto out;
2800 		btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1,
2801 				   &fs_info->generic_worker);
2802 		ret = btrfs_start_workers(&fs_info->scrub_nocow_workers);
2803 		if (ret)
2804 			goto out;
2805 	}
2806 	++fs_info->scrub_workers_refcnt;
2807 out:
2808 	mutex_unlock(&fs_info->scrub_lock);
2809 
2810 	return ret;
2811 }
2812 
2813 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2814 {
2815 	mutex_lock(&fs_info->scrub_lock);
2816 	if (--fs_info->scrub_workers_refcnt == 0) {
2817 		btrfs_stop_workers(&fs_info->scrub_workers);
2818 		btrfs_stop_workers(&fs_info->scrub_wr_completion_workers);
2819 		btrfs_stop_workers(&fs_info->scrub_nocow_workers);
2820 	}
2821 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
2822 	mutex_unlock(&fs_info->scrub_lock);
2823 }
2824 
2825 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2826 		    u64 end, struct btrfs_scrub_progress *progress,
2827 		    int readonly, int is_dev_replace)
2828 {
2829 	struct scrub_ctx *sctx;
2830 	int ret;
2831 	struct btrfs_device *dev;
2832 
2833 	if (btrfs_fs_closing(fs_info))
2834 		return -EINVAL;
2835 
2836 	/*
2837 	 * check some assumptions
2838 	 */
2839 	if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2840 		printk(KERN_ERR
2841 		       "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2842 		       fs_info->chunk_root->nodesize,
2843 		       fs_info->chunk_root->leafsize);
2844 		return -EINVAL;
2845 	}
2846 
2847 	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2848 		/*
2849 		 * in this case scrub is unable to calculate the checksum
2850 		 * the way scrub is implemented. Do not handle this
2851 		 * situation at all because it won't ever happen.
2852 		 */
2853 		printk(KERN_ERR
2854 		       "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2855 		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2856 		return -EINVAL;
2857 	}
2858 
2859 	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2860 		/* not supported for data w/o checksums */
2861 		printk(KERN_ERR
2862 		       "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails\n",
2863 		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
2864 		return -EINVAL;
2865 	}
2866 
2867 	if (fs_info->chunk_root->nodesize >
2868 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2869 	    fs_info->chunk_root->sectorsize >
2870 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2871 		/*
2872 		 * would exhaust the array bounds of pagev member in
2873 		 * struct scrub_block
2874 		 */
2875 		pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n",
2876 		       fs_info->chunk_root->nodesize,
2877 		       SCRUB_MAX_PAGES_PER_BLOCK,
2878 		       fs_info->chunk_root->sectorsize,
2879 		       SCRUB_MAX_PAGES_PER_BLOCK);
2880 		return -EINVAL;
2881 	}
2882 
2883 	ret = scrub_workers_get(fs_info, is_dev_replace);
2884 	if (ret)
2885 		return ret;
2886 
2887 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2888 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2889 	if (!dev || (dev->missing && !is_dev_replace)) {
2890 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2891 		scrub_workers_put(fs_info);
2892 		return -ENODEV;
2893 	}
2894 	mutex_lock(&fs_info->scrub_lock);
2895 
2896 	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2897 		mutex_unlock(&fs_info->scrub_lock);
2898 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2899 		scrub_workers_put(fs_info);
2900 		return -EIO;
2901 	}
2902 
2903 	btrfs_dev_replace_lock(&fs_info->dev_replace);
2904 	if (dev->scrub_device ||
2905 	    (!is_dev_replace &&
2906 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2907 		btrfs_dev_replace_unlock(&fs_info->dev_replace);
2908 		mutex_unlock(&fs_info->scrub_lock);
2909 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2910 		scrub_workers_put(fs_info);
2911 		return -EINPROGRESS;
2912 	}
2913 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
2914 	sctx = scrub_setup_ctx(dev, is_dev_replace);
2915 	if (IS_ERR(sctx)) {
2916 		mutex_unlock(&fs_info->scrub_lock);
2917 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2918 		scrub_workers_put(fs_info);
2919 		return PTR_ERR(sctx);
2920 	}
2921 	sctx->readonly = readonly;
2922 	dev->scrub_device = sctx;
2923 
2924 	atomic_inc(&fs_info->scrubs_running);
2925 	mutex_unlock(&fs_info->scrub_lock);
2926 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2927 
2928 	if (!is_dev_replace) {
2929 		down_read(&fs_info->scrub_super_lock);
2930 		ret = scrub_supers(sctx, dev);
2931 		up_read(&fs_info->scrub_super_lock);
2932 	}
2933 
2934 	if (!ret)
2935 		ret = scrub_enumerate_chunks(sctx, dev, start, end,
2936 					     is_dev_replace);
2937 
2938 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2939 	atomic_dec(&fs_info->scrubs_running);
2940 	wake_up(&fs_info->scrub_pause_wait);
2941 
2942 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
2943 
2944 	if (progress)
2945 		memcpy(progress, &sctx->stat, sizeof(*progress));
2946 
2947 	mutex_lock(&fs_info->scrub_lock);
2948 	dev->scrub_device = NULL;
2949 	mutex_unlock(&fs_info->scrub_lock);
2950 
2951 	scrub_free_ctx(sctx);
2952 	scrub_workers_put(fs_info);
2953 
2954 	return ret;
2955 }
2956 
2957 void btrfs_scrub_pause(struct btrfs_root *root)
2958 {
2959 	struct btrfs_fs_info *fs_info = root->fs_info;
2960 
2961 	mutex_lock(&fs_info->scrub_lock);
2962 	atomic_inc(&fs_info->scrub_pause_req);
2963 	while (atomic_read(&fs_info->scrubs_paused) !=
2964 	       atomic_read(&fs_info->scrubs_running)) {
2965 		mutex_unlock(&fs_info->scrub_lock);
2966 		wait_event(fs_info->scrub_pause_wait,
2967 			   atomic_read(&fs_info->scrubs_paused) ==
2968 			   atomic_read(&fs_info->scrubs_running));
2969 		mutex_lock(&fs_info->scrub_lock);
2970 	}
2971 	mutex_unlock(&fs_info->scrub_lock);
2972 }
2973 
2974 void btrfs_scrub_continue(struct btrfs_root *root)
2975 {
2976 	struct btrfs_fs_info *fs_info = root->fs_info;
2977 
2978 	atomic_dec(&fs_info->scrub_pause_req);
2979 	wake_up(&fs_info->scrub_pause_wait);
2980 }
2981 
2982 void btrfs_scrub_pause_super(struct btrfs_root *root)
2983 {
2984 	down_write(&root->fs_info->scrub_super_lock);
2985 }
2986 
2987 void btrfs_scrub_continue_super(struct btrfs_root *root)
2988 {
2989 	up_write(&root->fs_info->scrub_super_lock);
2990 }
2991 
2992 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2993 {
2994 	mutex_lock(&fs_info->scrub_lock);
2995 	if (!atomic_read(&fs_info->scrubs_running)) {
2996 		mutex_unlock(&fs_info->scrub_lock);
2997 		return -ENOTCONN;
2998 	}
2999 
3000 	atomic_inc(&fs_info->scrub_cancel_req);
3001 	while (atomic_read(&fs_info->scrubs_running)) {
3002 		mutex_unlock(&fs_info->scrub_lock);
3003 		wait_event(fs_info->scrub_pause_wait,
3004 			   atomic_read(&fs_info->scrubs_running) == 0);
3005 		mutex_lock(&fs_info->scrub_lock);
3006 	}
3007 	atomic_dec(&fs_info->scrub_cancel_req);
3008 	mutex_unlock(&fs_info->scrub_lock);
3009 
3010 	return 0;
3011 }
3012 
3013 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3014 			   struct btrfs_device *dev)
3015 {
3016 	struct scrub_ctx *sctx;
3017 
3018 	mutex_lock(&fs_info->scrub_lock);
3019 	sctx = dev->scrub_device;
3020 	if (!sctx) {
3021 		mutex_unlock(&fs_info->scrub_lock);
3022 		return -ENOTCONN;
3023 	}
3024 	atomic_inc(&sctx->cancel_req);
3025 	while (dev->scrub_device) {
3026 		mutex_unlock(&fs_info->scrub_lock);
3027 		wait_event(fs_info->scrub_pause_wait,
3028 			   dev->scrub_device == NULL);
3029 		mutex_lock(&fs_info->scrub_lock);
3030 	}
3031 	mutex_unlock(&fs_info->scrub_lock);
3032 
3033 	return 0;
3034 }
3035 
3036 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3037 			 struct btrfs_scrub_progress *progress)
3038 {
3039 	struct btrfs_device *dev;
3040 	struct scrub_ctx *sctx = NULL;
3041 
3042 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3043 	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3044 	if (dev)
3045 		sctx = dev->scrub_device;
3046 	if (sctx)
3047 		memcpy(progress, &sctx->stat, sizeof(*progress));
3048 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3049 
3050 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3051 }
3052 
3053 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3054 			       u64 extent_logical, u64 extent_len,
3055 			       u64 *extent_physical,
3056 			       struct btrfs_device **extent_dev,
3057 			       int *extent_mirror_num)
3058 {
3059 	u64 mapped_length;
3060 	struct btrfs_bio *bbio = NULL;
3061 	int ret;
3062 
3063 	mapped_length = extent_len;
3064 	ret = btrfs_map_block(fs_info, READ, extent_logical,
3065 			      &mapped_length, &bbio, 0);
3066 	if (ret || !bbio || mapped_length < extent_len ||
3067 	    !bbio->stripes[0].dev->bdev) {
3068 		kfree(bbio);
3069 		return;
3070 	}
3071 
3072 	*extent_physical = bbio->stripes[0].physical;
3073 	*extent_mirror_num = bbio->mirror_num;
3074 	*extent_dev = bbio->stripes[0].dev;
3075 	kfree(bbio);
3076 }
3077 
3078 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3079 			      struct scrub_wr_ctx *wr_ctx,
3080 			      struct btrfs_fs_info *fs_info,
3081 			      struct btrfs_device *dev,
3082 			      int is_dev_replace)
3083 {
3084 	WARN_ON(wr_ctx->wr_curr_bio != NULL);
3085 
3086 	mutex_init(&wr_ctx->wr_lock);
3087 	wr_ctx->wr_curr_bio = NULL;
3088 	if (!is_dev_replace)
3089 		return 0;
3090 
3091 	WARN_ON(!dev->bdev);
3092 	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3093 					 bio_get_nr_vecs(dev->bdev));
3094 	wr_ctx->tgtdev = dev;
3095 	atomic_set(&wr_ctx->flush_all_writes, 0);
3096 	return 0;
3097 }
3098 
3099 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3100 {
3101 	mutex_lock(&wr_ctx->wr_lock);
3102 	kfree(wr_ctx->wr_curr_bio);
3103 	wr_ctx->wr_curr_bio = NULL;
3104 	mutex_unlock(&wr_ctx->wr_lock);
3105 }
3106 
3107 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3108 			    int mirror_num, u64 physical_for_dev_replace)
3109 {
3110 	struct scrub_copy_nocow_ctx *nocow_ctx;
3111 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3112 
3113 	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3114 	if (!nocow_ctx) {
3115 		spin_lock(&sctx->stat_lock);
3116 		sctx->stat.malloc_errors++;
3117 		spin_unlock(&sctx->stat_lock);
3118 		return -ENOMEM;
3119 	}
3120 
3121 	scrub_pending_trans_workers_inc(sctx);
3122 
3123 	nocow_ctx->sctx = sctx;
3124 	nocow_ctx->logical = logical;
3125 	nocow_ctx->len = len;
3126 	nocow_ctx->mirror_num = mirror_num;
3127 	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3128 	nocow_ctx->work.func = copy_nocow_pages_worker;
3129 	btrfs_queue_worker(&fs_info->scrub_nocow_workers,
3130 			   &nocow_ctx->work);
3131 
3132 	return 0;
3133 }
3134 
3135 static void copy_nocow_pages_worker(struct btrfs_work *work)
3136 {
3137 	struct scrub_copy_nocow_ctx *nocow_ctx =
3138 		container_of(work, struct scrub_copy_nocow_ctx, work);
3139 	struct scrub_ctx *sctx = nocow_ctx->sctx;
3140 	u64 logical = nocow_ctx->logical;
3141 	u64 len = nocow_ctx->len;
3142 	int mirror_num = nocow_ctx->mirror_num;
3143 	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3144 	int ret;
3145 	struct btrfs_trans_handle *trans = NULL;
3146 	struct btrfs_fs_info *fs_info;
3147 	struct btrfs_path *path;
3148 	struct btrfs_root *root;
3149 	int not_written = 0;
3150 
3151 	fs_info = sctx->dev_root->fs_info;
3152 	root = fs_info->extent_root;
3153 
3154 	path = btrfs_alloc_path();
3155 	if (!path) {
3156 		spin_lock(&sctx->stat_lock);
3157 		sctx->stat.malloc_errors++;
3158 		spin_unlock(&sctx->stat_lock);
3159 		not_written = 1;
3160 		goto out;
3161 	}
3162 
3163 	trans = btrfs_join_transaction(root);
3164 	if (IS_ERR(trans)) {
3165 		not_written = 1;
3166 		goto out;
3167 	}
3168 
3169 	ret = iterate_inodes_from_logical(logical, fs_info, path,
3170 					  copy_nocow_pages_for_inode,
3171 					  nocow_ctx);
3172 	if (ret != 0 && ret != -ENOENT) {
3173 		pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d\n",
3174 			logical, physical_for_dev_replace, len, mirror_num,
3175 			ret);
3176 		not_written = 1;
3177 		goto out;
3178 	}
3179 
3180 out:
3181 	if (trans && !IS_ERR(trans))
3182 		btrfs_end_transaction(trans, root);
3183 	if (not_written)
3184 		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3185 					    num_uncorrectable_read_errors);
3186 
3187 	btrfs_free_path(path);
3188 	kfree(nocow_ctx);
3189 
3190 	scrub_pending_trans_workers_dec(sctx);
3191 }
3192 
3193 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, void *ctx)
3194 {
3195 	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3196 	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3197 	struct btrfs_key key;
3198 	struct inode *inode;
3199 	struct page *page;
3200 	struct btrfs_root *local_root;
3201 	u64 physical_for_dev_replace;
3202 	u64 len;
3203 	unsigned long index;
3204 	int srcu_index;
3205 	int ret;
3206 	int err;
3207 
3208 	key.objectid = root;
3209 	key.type = BTRFS_ROOT_ITEM_KEY;
3210 	key.offset = (u64)-1;
3211 
3212 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3213 
3214 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3215 	if (IS_ERR(local_root)) {
3216 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3217 		return PTR_ERR(local_root);
3218 	}
3219 
3220 	key.type = BTRFS_INODE_ITEM_KEY;
3221 	key.objectid = inum;
3222 	key.offset = 0;
3223 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3224 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3225 	if (IS_ERR(inode))
3226 		return PTR_ERR(inode);
3227 
3228 	/* Avoid truncate/dio/punch hole.. */
3229 	mutex_lock(&inode->i_mutex);
3230 	inode_dio_wait(inode);
3231 
3232 	ret = 0;
3233 	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3234 	len = nocow_ctx->len;
3235 	while (len >= PAGE_CACHE_SIZE) {
3236 		index = offset >> PAGE_CACHE_SHIFT;
3237 again:
3238 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3239 		if (!page) {
3240 			pr_err("find_or_create_page() failed\n");
3241 			ret = -ENOMEM;
3242 			goto out;
3243 		}
3244 
3245 		if (PageUptodate(page)) {
3246 			if (PageDirty(page))
3247 				goto next_page;
3248 		} else {
3249 			ClearPageError(page);
3250 			err = extent_read_full_page(&BTRFS_I(inode)->
3251 							 io_tree,
3252 							page, btrfs_get_extent,
3253 							nocow_ctx->mirror_num);
3254 			if (err) {
3255 				ret = err;
3256 				goto next_page;
3257 			}
3258 
3259 			lock_page(page);
3260 			/*
3261 			 * If the page has been remove from the page cache,
3262 			 * the data on it is meaningless, because it may be
3263 			 * old one, the new data may be written into the new
3264 			 * page in the page cache.
3265 			 */
3266 			if (page->mapping != inode->i_mapping) {
3267 				page_cache_release(page);
3268 				goto again;
3269 			}
3270 			if (!PageUptodate(page)) {
3271 				ret = -EIO;
3272 				goto next_page;
3273 			}
3274 		}
3275 		err = write_page_nocow(nocow_ctx->sctx,
3276 				       physical_for_dev_replace, page);
3277 		if (err)
3278 			ret = err;
3279 next_page:
3280 		unlock_page(page);
3281 		page_cache_release(page);
3282 
3283 		if (ret)
3284 			break;
3285 
3286 		offset += PAGE_CACHE_SIZE;
3287 		physical_for_dev_replace += PAGE_CACHE_SIZE;
3288 		len -= PAGE_CACHE_SIZE;
3289 	}
3290 out:
3291 	mutex_unlock(&inode->i_mutex);
3292 	iput(inode);
3293 	return ret;
3294 }
3295 
3296 static int write_page_nocow(struct scrub_ctx *sctx,
3297 			    u64 physical_for_dev_replace, struct page *page)
3298 {
3299 	struct bio *bio;
3300 	struct btrfs_device *dev;
3301 	int ret;
3302 	DECLARE_COMPLETION_ONSTACK(compl);
3303 
3304 	dev = sctx->wr_ctx.tgtdev;
3305 	if (!dev)
3306 		return -EIO;
3307 	if (!dev->bdev) {
3308 		printk_ratelimited(KERN_WARNING
3309 			"btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3310 		return -EIO;
3311 	}
3312 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3313 	if (!bio) {
3314 		spin_lock(&sctx->stat_lock);
3315 		sctx->stat.malloc_errors++;
3316 		spin_unlock(&sctx->stat_lock);
3317 		return -ENOMEM;
3318 	}
3319 	bio->bi_private = &compl;
3320 	bio->bi_end_io = scrub_complete_bio_end_io;
3321 	bio->bi_size = 0;
3322 	bio->bi_sector = physical_for_dev_replace >> 9;
3323 	bio->bi_bdev = dev->bdev;
3324 	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3325 	if (ret != PAGE_CACHE_SIZE) {
3326 leave_with_eio:
3327 		bio_put(bio);
3328 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3329 		return -EIO;
3330 	}
3331 	btrfsic_submit_bio(WRITE_SYNC, bio);
3332 	wait_for_completion(&compl);
3333 
3334 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
3335 		goto leave_with_eio;
3336 
3337 	bio_put(bio);
3338 	return 0;
3339 }
3340