xref: /linux/fs/btrfs/scrub.c (revision 64b14a184e83eb62ea0615e31a409956049d40e7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "rcu-string.h"
21 #include "raid56.h"
22 #include "block-group.h"
23 #include "zoned.h"
24 
25 /*
26  * This is only the first step towards a full-features scrub. It reads all
27  * extent and super block and verifies the checksums. In case a bad checksum
28  * is found or the extent cannot be read, good data will be written back if
29  * any can be found.
30  *
31  * Future enhancements:
32  *  - In case an unrepairable extent is encountered, track which files are
33  *    affected and report them
34  *  - track and record media errors, throw out bad devices
35  *  - add a mode to also read unallocated space
36  */
37 
38 struct scrub_block;
39 struct scrub_ctx;
40 
41 /*
42  * The following three values only influence the performance.
43  *
44  * The last one configures the number of parallel and outstanding I/O
45  * operations. The first one configures an upper limit for the number
46  * of (dynamically allocated) pages that are added to a bio.
47  */
48 #define SCRUB_PAGES_PER_BIO	32	/* 128KiB per bio for x86 */
49 #define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for x86 */
50 
51 /*
52  * The following value times PAGE_SIZE needs to be large enough to match the
53  * largest node/leaf/sector size that shall be supported.
54  */
55 #define SCRUB_MAX_PAGES_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
56 
57 struct scrub_recover {
58 	refcount_t		refs;
59 	struct btrfs_io_context	*bioc;
60 	u64			map_length;
61 };
62 
63 struct scrub_page {
64 	struct scrub_block	*sblock;
65 	struct page		*page;
66 	struct btrfs_device	*dev;
67 	struct list_head	list;
68 	u64			flags;  /* extent flags */
69 	u64			generation;
70 	u64			logical;
71 	u64			physical;
72 	u64			physical_for_dev_replace;
73 	atomic_t		refs;
74 	u8			mirror_num;
75 	unsigned int		have_csum:1;
76 	unsigned int		io_error:1;
77 	u8			csum[BTRFS_CSUM_SIZE];
78 
79 	struct scrub_recover	*recover;
80 };
81 
82 struct scrub_bio {
83 	int			index;
84 	struct scrub_ctx	*sctx;
85 	struct btrfs_device	*dev;
86 	struct bio		*bio;
87 	blk_status_t		status;
88 	u64			logical;
89 	u64			physical;
90 	struct scrub_page	*pagev[SCRUB_PAGES_PER_BIO];
91 	int			page_count;
92 	int			next_free;
93 	struct btrfs_work	work;
94 };
95 
96 struct scrub_block {
97 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
98 	int			page_count;
99 	atomic_t		outstanding_pages;
100 	refcount_t		refs; /* free mem on transition to zero */
101 	struct scrub_ctx	*sctx;
102 	struct scrub_parity	*sparity;
103 	struct {
104 		unsigned int	header_error:1;
105 		unsigned int	checksum_error:1;
106 		unsigned int	no_io_error_seen:1;
107 		unsigned int	generation_error:1; /* also sets header_error */
108 
109 		/* The following is for the data used to check parity */
110 		/* It is for the data with checksum */
111 		unsigned int	data_corrected:1;
112 	};
113 	struct btrfs_work	work;
114 };
115 
116 /* Used for the chunks with parity stripe such RAID5/6 */
117 struct scrub_parity {
118 	struct scrub_ctx	*sctx;
119 
120 	struct btrfs_device	*scrub_dev;
121 
122 	u64			logic_start;
123 
124 	u64			logic_end;
125 
126 	int			nsectors;
127 
128 	u32			stripe_len;
129 
130 	refcount_t		refs;
131 
132 	struct list_head	spages;
133 
134 	/* Work of parity check and repair */
135 	struct btrfs_work	work;
136 
137 	/* Mark the parity blocks which have data */
138 	unsigned long		*dbitmap;
139 
140 	/*
141 	 * Mark the parity blocks which have data, but errors happen when
142 	 * read data or check data
143 	 */
144 	unsigned long		*ebitmap;
145 
146 	unsigned long		bitmap[];
147 };
148 
149 struct scrub_ctx {
150 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
151 	struct btrfs_fs_info	*fs_info;
152 	int			first_free;
153 	int			curr;
154 	atomic_t		bios_in_flight;
155 	atomic_t		workers_pending;
156 	spinlock_t		list_lock;
157 	wait_queue_head_t	list_wait;
158 	struct list_head	csum_list;
159 	atomic_t		cancel_req;
160 	int			readonly;
161 	int			pages_per_bio;
162 
163 	/* State of IO submission throttling affecting the associated device */
164 	ktime_t			throttle_deadline;
165 	u64			throttle_sent;
166 
167 	int			is_dev_replace;
168 	u64			write_pointer;
169 
170 	struct scrub_bio        *wr_curr_bio;
171 	struct mutex            wr_lock;
172 	struct btrfs_device     *wr_tgtdev;
173 	bool                    flush_all_writes;
174 
175 	/*
176 	 * statistics
177 	 */
178 	struct btrfs_scrub_progress stat;
179 	spinlock_t		stat_lock;
180 
181 	/*
182 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
183 	 * decrement bios_in_flight and workers_pending and then do a wakeup
184 	 * on the list_wait wait queue. We must ensure the main scrub task
185 	 * doesn't free the scrub context before or while the workers are
186 	 * doing the wakeup() call.
187 	 */
188 	refcount_t              refs;
189 };
190 
191 struct scrub_warning {
192 	struct btrfs_path	*path;
193 	u64			extent_item_size;
194 	const char		*errstr;
195 	u64			physical;
196 	u64			logical;
197 	struct btrfs_device	*dev;
198 };
199 
200 struct full_stripe_lock {
201 	struct rb_node node;
202 	u64 logical;
203 	u64 refs;
204 	struct mutex mutex;
205 };
206 
207 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
208 				     struct scrub_block *sblocks_for_recheck);
209 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
210 				struct scrub_block *sblock,
211 				int retry_failed_mirror);
212 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
213 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
214 					     struct scrub_block *sblock_good);
215 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
216 					    struct scrub_block *sblock_good,
217 					    int page_num, int force_write);
218 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
219 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
220 					   int page_num);
221 static int scrub_checksum_data(struct scrub_block *sblock);
222 static int scrub_checksum_tree_block(struct scrub_block *sblock);
223 static int scrub_checksum_super(struct scrub_block *sblock);
224 static void scrub_block_put(struct scrub_block *sblock);
225 static void scrub_page_get(struct scrub_page *spage);
226 static void scrub_page_put(struct scrub_page *spage);
227 static void scrub_parity_get(struct scrub_parity *sparity);
228 static void scrub_parity_put(struct scrub_parity *sparity);
229 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
230 		       u64 physical, struct btrfs_device *dev, u64 flags,
231 		       u64 gen, int mirror_num, u8 *csum,
232 		       u64 physical_for_dev_replace);
233 static void scrub_bio_end_io(struct bio *bio);
234 static void scrub_bio_end_io_worker(struct btrfs_work *work);
235 static void scrub_block_complete(struct scrub_block *sblock);
236 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
237 			       u64 extent_logical, u32 extent_len,
238 			       u64 *extent_physical,
239 			       struct btrfs_device **extent_dev,
240 			       int *extent_mirror_num);
241 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
242 				    struct scrub_page *spage);
243 static void scrub_wr_submit(struct scrub_ctx *sctx);
244 static void scrub_wr_bio_end_io(struct bio *bio);
245 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
246 static void scrub_put_ctx(struct scrub_ctx *sctx);
247 
248 static inline int scrub_is_page_on_raid56(struct scrub_page *spage)
249 {
250 	return spage->recover &&
251 	       (spage->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
252 }
253 
254 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
255 {
256 	refcount_inc(&sctx->refs);
257 	atomic_inc(&sctx->bios_in_flight);
258 }
259 
260 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
261 {
262 	atomic_dec(&sctx->bios_in_flight);
263 	wake_up(&sctx->list_wait);
264 	scrub_put_ctx(sctx);
265 }
266 
267 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
268 {
269 	while (atomic_read(&fs_info->scrub_pause_req)) {
270 		mutex_unlock(&fs_info->scrub_lock);
271 		wait_event(fs_info->scrub_pause_wait,
272 		   atomic_read(&fs_info->scrub_pause_req) == 0);
273 		mutex_lock(&fs_info->scrub_lock);
274 	}
275 }
276 
277 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
278 {
279 	atomic_inc(&fs_info->scrubs_paused);
280 	wake_up(&fs_info->scrub_pause_wait);
281 }
282 
283 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
284 {
285 	mutex_lock(&fs_info->scrub_lock);
286 	__scrub_blocked_if_needed(fs_info);
287 	atomic_dec(&fs_info->scrubs_paused);
288 	mutex_unlock(&fs_info->scrub_lock);
289 
290 	wake_up(&fs_info->scrub_pause_wait);
291 }
292 
293 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
294 {
295 	scrub_pause_on(fs_info);
296 	scrub_pause_off(fs_info);
297 }
298 
299 /*
300  * Insert new full stripe lock into full stripe locks tree
301  *
302  * Return pointer to existing or newly inserted full_stripe_lock structure if
303  * everything works well.
304  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
305  *
306  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
307  * function
308  */
309 static struct full_stripe_lock *insert_full_stripe_lock(
310 		struct btrfs_full_stripe_locks_tree *locks_root,
311 		u64 fstripe_logical)
312 {
313 	struct rb_node **p;
314 	struct rb_node *parent = NULL;
315 	struct full_stripe_lock *entry;
316 	struct full_stripe_lock *ret;
317 
318 	lockdep_assert_held(&locks_root->lock);
319 
320 	p = &locks_root->root.rb_node;
321 	while (*p) {
322 		parent = *p;
323 		entry = rb_entry(parent, struct full_stripe_lock, node);
324 		if (fstripe_logical < entry->logical) {
325 			p = &(*p)->rb_left;
326 		} else if (fstripe_logical > entry->logical) {
327 			p = &(*p)->rb_right;
328 		} else {
329 			entry->refs++;
330 			return entry;
331 		}
332 	}
333 
334 	/*
335 	 * Insert new lock.
336 	 */
337 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
338 	if (!ret)
339 		return ERR_PTR(-ENOMEM);
340 	ret->logical = fstripe_logical;
341 	ret->refs = 1;
342 	mutex_init(&ret->mutex);
343 
344 	rb_link_node(&ret->node, parent, p);
345 	rb_insert_color(&ret->node, &locks_root->root);
346 	return ret;
347 }
348 
349 /*
350  * Search for a full stripe lock of a block group
351  *
352  * Return pointer to existing full stripe lock if found
353  * Return NULL if not found
354  */
355 static struct full_stripe_lock *search_full_stripe_lock(
356 		struct btrfs_full_stripe_locks_tree *locks_root,
357 		u64 fstripe_logical)
358 {
359 	struct rb_node *node;
360 	struct full_stripe_lock *entry;
361 
362 	lockdep_assert_held(&locks_root->lock);
363 
364 	node = locks_root->root.rb_node;
365 	while (node) {
366 		entry = rb_entry(node, struct full_stripe_lock, node);
367 		if (fstripe_logical < entry->logical)
368 			node = node->rb_left;
369 		else if (fstripe_logical > entry->logical)
370 			node = node->rb_right;
371 		else
372 			return entry;
373 	}
374 	return NULL;
375 }
376 
377 /*
378  * Helper to get full stripe logical from a normal bytenr.
379  *
380  * Caller must ensure @cache is a RAID56 block group.
381  */
382 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
383 {
384 	u64 ret;
385 
386 	/*
387 	 * Due to chunk item size limit, full stripe length should not be
388 	 * larger than U32_MAX. Just a sanity check here.
389 	 */
390 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
391 
392 	/*
393 	 * round_down() can only handle power of 2, while RAID56 full
394 	 * stripe length can be 64KiB * n, so we need to manually round down.
395 	 */
396 	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
397 			cache->full_stripe_len + cache->start;
398 	return ret;
399 }
400 
401 /*
402  * Lock a full stripe to avoid concurrency of recovery and read
403  *
404  * It's only used for profiles with parities (RAID5/6), for other profiles it
405  * does nothing.
406  *
407  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
408  * So caller must call unlock_full_stripe() at the same context.
409  *
410  * Return <0 if encounters error.
411  */
412 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
413 			    bool *locked_ret)
414 {
415 	struct btrfs_block_group *bg_cache;
416 	struct btrfs_full_stripe_locks_tree *locks_root;
417 	struct full_stripe_lock *existing;
418 	u64 fstripe_start;
419 	int ret = 0;
420 
421 	*locked_ret = false;
422 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
423 	if (!bg_cache) {
424 		ASSERT(0);
425 		return -ENOENT;
426 	}
427 
428 	/* Profiles not based on parity don't need full stripe lock */
429 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
430 		goto out;
431 	locks_root = &bg_cache->full_stripe_locks_root;
432 
433 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
434 
435 	/* Now insert the full stripe lock */
436 	mutex_lock(&locks_root->lock);
437 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
438 	mutex_unlock(&locks_root->lock);
439 	if (IS_ERR(existing)) {
440 		ret = PTR_ERR(existing);
441 		goto out;
442 	}
443 	mutex_lock(&existing->mutex);
444 	*locked_ret = true;
445 out:
446 	btrfs_put_block_group(bg_cache);
447 	return ret;
448 }
449 
450 /*
451  * Unlock a full stripe.
452  *
453  * NOTE: Caller must ensure it's the same context calling corresponding
454  * lock_full_stripe().
455  *
456  * Return 0 if we unlock full stripe without problem.
457  * Return <0 for error
458  */
459 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
460 			      bool locked)
461 {
462 	struct btrfs_block_group *bg_cache;
463 	struct btrfs_full_stripe_locks_tree *locks_root;
464 	struct full_stripe_lock *fstripe_lock;
465 	u64 fstripe_start;
466 	bool freeit = false;
467 	int ret = 0;
468 
469 	/* If we didn't acquire full stripe lock, no need to continue */
470 	if (!locked)
471 		return 0;
472 
473 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
474 	if (!bg_cache) {
475 		ASSERT(0);
476 		return -ENOENT;
477 	}
478 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
479 		goto out;
480 
481 	locks_root = &bg_cache->full_stripe_locks_root;
482 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
483 
484 	mutex_lock(&locks_root->lock);
485 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
486 	/* Unpaired unlock_full_stripe() detected */
487 	if (!fstripe_lock) {
488 		WARN_ON(1);
489 		ret = -ENOENT;
490 		mutex_unlock(&locks_root->lock);
491 		goto out;
492 	}
493 
494 	if (fstripe_lock->refs == 0) {
495 		WARN_ON(1);
496 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
497 			fstripe_lock->logical);
498 	} else {
499 		fstripe_lock->refs--;
500 	}
501 
502 	if (fstripe_lock->refs == 0) {
503 		rb_erase(&fstripe_lock->node, &locks_root->root);
504 		freeit = true;
505 	}
506 	mutex_unlock(&locks_root->lock);
507 
508 	mutex_unlock(&fstripe_lock->mutex);
509 	if (freeit)
510 		kfree(fstripe_lock);
511 out:
512 	btrfs_put_block_group(bg_cache);
513 	return ret;
514 }
515 
516 static void scrub_free_csums(struct scrub_ctx *sctx)
517 {
518 	while (!list_empty(&sctx->csum_list)) {
519 		struct btrfs_ordered_sum *sum;
520 		sum = list_first_entry(&sctx->csum_list,
521 				       struct btrfs_ordered_sum, list);
522 		list_del(&sum->list);
523 		kfree(sum);
524 	}
525 }
526 
527 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
528 {
529 	int i;
530 
531 	if (!sctx)
532 		return;
533 
534 	/* this can happen when scrub is cancelled */
535 	if (sctx->curr != -1) {
536 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
537 
538 		for (i = 0; i < sbio->page_count; i++) {
539 			WARN_ON(!sbio->pagev[i]->page);
540 			scrub_block_put(sbio->pagev[i]->sblock);
541 		}
542 		bio_put(sbio->bio);
543 	}
544 
545 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
546 		struct scrub_bio *sbio = sctx->bios[i];
547 
548 		if (!sbio)
549 			break;
550 		kfree(sbio);
551 	}
552 
553 	kfree(sctx->wr_curr_bio);
554 	scrub_free_csums(sctx);
555 	kfree(sctx);
556 }
557 
558 static void scrub_put_ctx(struct scrub_ctx *sctx)
559 {
560 	if (refcount_dec_and_test(&sctx->refs))
561 		scrub_free_ctx(sctx);
562 }
563 
564 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
565 		struct btrfs_fs_info *fs_info, int is_dev_replace)
566 {
567 	struct scrub_ctx *sctx;
568 	int		i;
569 
570 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
571 	if (!sctx)
572 		goto nomem;
573 	refcount_set(&sctx->refs, 1);
574 	sctx->is_dev_replace = is_dev_replace;
575 	sctx->pages_per_bio = SCRUB_PAGES_PER_BIO;
576 	sctx->curr = -1;
577 	sctx->fs_info = fs_info;
578 	INIT_LIST_HEAD(&sctx->csum_list);
579 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
580 		struct scrub_bio *sbio;
581 
582 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
583 		if (!sbio)
584 			goto nomem;
585 		sctx->bios[i] = sbio;
586 
587 		sbio->index = i;
588 		sbio->sctx = sctx;
589 		sbio->page_count = 0;
590 		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
591 				NULL);
592 
593 		if (i != SCRUB_BIOS_PER_SCTX - 1)
594 			sctx->bios[i]->next_free = i + 1;
595 		else
596 			sctx->bios[i]->next_free = -1;
597 	}
598 	sctx->first_free = 0;
599 	atomic_set(&sctx->bios_in_flight, 0);
600 	atomic_set(&sctx->workers_pending, 0);
601 	atomic_set(&sctx->cancel_req, 0);
602 
603 	spin_lock_init(&sctx->list_lock);
604 	spin_lock_init(&sctx->stat_lock);
605 	init_waitqueue_head(&sctx->list_wait);
606 	sctx->throttle_deadline = 0;
607 
608 	WARN_ON(sctx->wr_curr_bio != NULL);
609 	mutex_init(&sctx->wr_lock);
610 	sctx->wr_curr_bio = NULL;
611 	if (is_dev_replace) {
612 		WARN_ON(!fs_info->dev_replace.tgtdev);
613 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
614 		sctx->flush_all_writes = false;
615 	}
616 
617 	return sctx;
618 
619 nomem:
620 	scrub_free_ctx(sctx);
621 	return ERR_PTR(-ENOMEM);
622 }
623 
624 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
625 				     void *warn_ctx)
626 {
627 	u32 nlink;
628 	int ret;
629 	int i;
630 	unsigned nofs_flag;
631 	struct extent_buffer *eb;
632 	struct btrfs_inode_item *inode_item;
633 	struct scrub_warning *swarn = warn_ctx;
634 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
635 	struct inode_fs_paths *ipath = NULL;
636 	struct btrfs_root *local_root;
637 	struct btrfs_key key;
638 
639 	local_root = btrfs_get_fs_root(fs_info, root, true);
640 	if (IS_ERR(local_root)) {
641 		ret = PTR_ERR(local_root);
642 		goto err;
643 	}
644 
645 	/*
646 	 * this makes the path point to (inum INODE_ITEM ioff)
647 	 */
648 	key.objectid = inum;
649 	key.type = BTRFS_INODE_ITEM_KEY;
650 	key.offset = 0;
651 
652 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
653 	if (ret) {
654 		btrfs_put_root(local_root);
655 		btrfs_release_path(swarn->path);
656 		goto err;
657 	}
658 
659 	eb = swarn->path->nodes[0];
660 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
661 					struct btrfs_inode_item);
662 	nlink = btrfs_inode_nlink(eb, inode_item);
663 	btrfs_release_path(swarn->path);
664 
665 	/*
666 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
667 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
668 	 * not seem to be strictly necessary.
669 	 */
670 	nofs_flag = memalloc_nofs_save();
671 	ipath = init_ipath(4096, local_root, swarn->path);
672 	memalloc_nofs_restore(nofs_flag);
673 	if (IS_ERR(ipath)) {
674 		btrfs_put_root(local_root);
675 		ret = PTR_ERR(ipath);
676 		ipath = NULL;
677 		goto err;
678 	}
679 	ret = paths_from_inode(inum, ipath);
680 
681 	if (ret < 0)
682 		goto err;
683 
684 	/*
685 	 * we deliberately ignore the bit ipath might have been too small to
686 	 * hold all of the paths here
687 	 */
688 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
689 		btrfs_warn_in_rcu(fs_info,
690 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
691 				  swarn->errstr, swarn->logical,
692 				  rcu_str_deref(swarn->dev->name),
693 				  swarn->physical,
694 				  root, inum, offset,
695 				  fs_info->sectorsize, nlink,
696 				  (char *)(unsigned long)ipath->fspath->val[i]);
697 
698 	btrfs_put_root(local_root);
699 	free_ipath(ipath);
700 	return 0;
701 
702 err:
703 	btrfs_warn_in_rcu(fs_info,
704 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
705 			  swarn->errstr, swarn->logical,
706 			  rcu_str_deref(swarn->dev->name),
707 			  swarn->physical,
708 			  root, inum, offset, ret);
709 
710 	free_ipath(ipath);
711 	return 0;
712 }
713 
714 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
715 {
716 	struct btrfs_device *dev;
717 	struct btrfs_fs_info *fs_info;
718 	struct btrfs_path *path;
719 	struct btrfs_key found_key;
720 	struct extent_buffer *eb;
721 	struct btrfs_extent_item *ei;
722 	struct scrub_warning swarn;
723 	unsigned long ptr = 0;
724 	u64 extent_item_pos;
725 	u64 flags = 0;
726 	u64 ref_root;
727 	u32 item_size;
728 	u8 ref_level = 0;
729 	int ret;
730 
731 	WARN_ON(sblock->page_count < 1);
732 	dev = sblock->pagev[0]->dev;
733 	fs_info = sblock->sctx->fs_info;
734 
735 	path = btrfs_alloc_path();
736 	if (!path)
737 		return;
738 
739 	swarn.physical = sblock->pagev[0]->physical;
740 	swarn.logical = sblock->pagev[0]->logical;
741 	swarn.errstr = errstr;
742 	swarn.dev = NULL;
743 
744 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
745 				  &flags);
746 	if (ret < 0)
747 		goto out;
748 
749 	extent_item_pos = swarn.logical - found_key.objectid;
750 	swarn.extent_item_size = found_key.offset;
751 
752 	eb = path->nodes[0];
753 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
754 	item_size = btrfs_item_size(eb, path->slots[0]);
755 
756 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
757 		do {
758 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
759 						      item_size, &ref_root,
760 						      &ref_level);
761 			btrfs_warn_in_rcu(fs_info,
762 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
763 				errstr, swarn.logical,
764 				rcu_str_deref(dev->name),
765 				swarn.physical,
766 				ref_level ? "node" : "leaf",
767 				ret < 0 ? -1 : ref_level,
768 				ret < 0 ? -1 : ref_root);
769 		} while (ret != 1);
770 		btrfs_release_path(path);
771 	} else {
772 		btrfs_release_path(path);
773 		swarn.path = path;
774 		swarn.dev = dev;
775 		iterate_extent_inodes(fs_info, found_key.objectid,
776 					extent_item_pos, 1,
777 					scrub_print_warning_inode, &swarn, false);
778 	}
779 
780 out:
781 	btrfs_free_path(path);
782 }
783 
784 static inline void scrub_get_recover(struct scrub_recover *recover)
785 {
786 	refcount_inc(&recover->refs);
787 }
788 
789 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
790 				     struct scrub_recover *recover)
791 {
792 	if (refcount_dec_and_test(&recover->refs)) {
793 		btrfs_bio_counter_dec(fs_info);
794 		btrfs_put_bioc(recover->bioc);
795 		kfree(recover);
796 	}
797 }
798 
799 /*
800  * scrub_handle_errored_block gets called when either verification of the
801  * pages failed or the bio failed to read, e.g. with EIO. In the latter
802  * case, this function handles all pages in the bio, even though only one
803  * may be bad.
804  * The goal of this function is to repair the errored block by using the
805  * contents of one of the mirrors.
806  */
807 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
808 {
809 	struct scrub_ctx *sctx = sblock_to_check->sctx;
810 	struct btrfs_device *dev;
811 	struct btrfs_fs_info *fs_info;
812 	u64 logical;
813 	unsigned int failed_mirror_index;
814 	unsigned int is_metadata;
815 	unsigned int have_csum;
816 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
817 	struct scrub_block *sblock_bad;
818 	int ret;
819 	int mirror_index;
820 	int page_num;
821 	int success;
822 	bool full_stripe_locked;
823 	unsigned int nofs_flag;
824 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
825 				      DEFAULT_RATELIMIT_BURST);
826 
827 	BUG_ON(sblock_to_check->page_count < 1);
828 	fs_info = sctx->fs_info;
829 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
830 		/*
831 		 * if we find an error in a super block, we just report it.
832 		 * They will get written with the next transaction commit
833 		 * anyway
834 		 */
835 		spin_lock(&sctx->stat_lock);
836 		++sctx->stat.super_errors;
837 		spin_unlock(&sctx->stat_lock);
838 		return 0;
839 	}
840 	logical = sblock_to_check->pagev[0]->logical;
841 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
842 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
843 	is_metadata = !(sblock_to_check->pagev[0]->flags &
844 			BTRFS_EXTENT_FLAG_DATA);
845 	have_csum = sblock_to_check->pagev[0]->have_csum;
846 	dev = sblock_to_check->pagev[0]->dev;
847 
848 	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
849 		return 0;
850 
851 	/*
852 	 * We must use GFP_NOFS because the scrub task might be waiting for a
853 	 * worker task executing this function and in turn a transaction commit
854 	 * might be waiting the scrub task to pause (which needs to wait for all
855 	 * the worker tasks to complete before pausing).
856 	 * We do allocations in the workers through insert_full_stripe_lock()
857 	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
858 	 * this function.
859 	 */
860 	nofs_flag = memalloc_nofs_save();
861 	/*
862 	 * For RAID5/6, race can happen for a different device scrub thread.
863 	 * For data corruption, Parity and Data threads will both try
864 	 * to recovery the data.
865 	 * Race can lead to doubly added csum error, or even unrecoverable
866 	 * error.
867 	 */
868 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
869 	if (ret < 0) {
870 		memalloc_nofs_restore(nofs_flag);
871 		spin_lock(&sctx->stat_lock);
872 		if (ret == -ENOMEM)
873 			sctx->stat.malloc_errors++;
874 		sctx->stat.read_errors++;
875 		sctx->stat.uncorrectable_errors++;
876 		spin_unlock(&sctx->stat_lock);
877 		return ret;
878 	}
879 
880 	/*
881 	 * read all mirrors one after the other. This includes to
882 	 * re-read the extent or metadata block that failed (that was
883 	 * the cause that this fixup code is called) another time,
884 	 * sector by sector this time in order to know which sectors
885 	 * caused I/O errors and which ones are good (for all mirrors).
886 	 * It is the goal to handle the situation when more than one
887 	 * mirror contains I/O errors, but the errors do not
888 	 * overlap, i.e. the data can be repaired by selecting the
889 	 * sectors from those mirrors without I/O error on the
890 	 * particular sectors. One example (with blocks >= 2 * sectorsize)
891 	 * would be that mirror #1 has an I/O error on the first sector,
892 	 * the second sector is good, and mirror #2 has an I/O error on
893 	 * the second sector, but the first sector is good.
894 	 * Then the first sector of the first mirror can be repaired by
895 	 * taking the first sector of the second mirror, and the
896 	 * second sector of the second mirror can be repaired by
897 	 * copying the contents of the 2nd sector of the 1st mirror.
898 	 * One more note: if the sectors of one mirror contain I/O
899 	 * errors, the checksum cannot be verified. In order to get
900 	 * the best data for repairing, the first attempt is to find
901 	 * a mirror without I/O errors and with a validated checksum.
902 	 * Only if this is not possible, the sectors are picked from
903 	 * mirrors with I/O errors without considering the checksum.
904 	 * If the latter is the case, at the end, the checksum of the
905 	 * repaired area is verified in order to correctly maintain
906 	 * the statistics.
907 	 */
908 
909 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
910 				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
911 	if (!sblocks_for_recheck) {
912 		spin_lock(&sctx->stat_lock);
913 		sctx->stat.malloc_errors++;
914 		sctx->stat.read_errors++;
915 		sctx->stat.uncorrectable_errors++;
916 		spin_unlock(&sctx->stat_lock);
917 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
918 		goto out;
919 	}
920 
921 	/* setup the context, map the logical blocks and alloc the pages */
922 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
923 	if (ret) {
924 		spin_lock(&sctx->stat_lock);
925 		sctx->stat.read_errors++;
926 		sctx->stat.uncorrectable_errors++;
927 		spin_unlock(&sctx->stat_lock);
928 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
929 		goto out;
930 	}
931 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
932 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
933 
934 	/* build and submit the bios for the failed mirror, check checksums */
935 	scrub_recheck_block(fs_info, sblock_bad, 1);
936 
937 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
938 	    sblock_bad->no_io_error_seen) {
939 		/*
940 		 * the error disappeared after reading page by page, or
941 		 * the area was part of a huge bio and other parts of the
942 		 * bio caused I/O errors, or the block layer merged several
943 		 * read requests into one and the error is caused by a
944 		 * different bio (usually one of the two latter cases is
945 		 * the cause)
946 		 */
947 		spin_lock(&sctx->stat_lock);
948 		sctx->stat.unverified_errors++;
949 		sblock_to_check->data_corrected = 1;
950 		spin_unlock(&sctx->stat_lock);
951 
952 		if (sctx->is_dev_replace)
953 			scrub_write_block_to_dev_replace(sblock_bad);
954 		goto out;
955 	}
956 
957 	if (!sblock_bad->no_io_error_seen) {
958 		spin_lock(&sctx->stat_lock);
959 		sctx->stat.read_errors++;
960 		spin_unlock(&sctx->stat_lock);
961 		if (__ratelimit(&rs))
962 			scrub_print_warning("i/o error", sblock_to_check);
963 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
964 	} else if (sblock_bad->checksum_error) {
965 		spin_lock(&sctx->stat_lock);
966 		sctx->stat.csum_errors++;
967 		spin_unlock(&sctx->stat_lock);
968 		if (__ratelimit(&rs))
969 			scrub_print_warning("checksum error", sblock_to_check);
970 		btrfs_dev_stat_inc_and_print(dev,
971 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
972 	} else if (sblock_bad->header_error) {
973 		spin_lock(&sctx->stat_lock);
974 		sctx->stat.verify_errors++;
975 		spin_unlock(&sctx->stat_lock);
976 		if (__ratelimit(&rs))
977 			scrub_print_warning("checksum/header error",
978 					    sblock_to_check);
979 		if (sblock_bad->generation_error)
980 			btrfs_dev_stat_inc_and_print(dev,
981 				BTRFS_DEV_STAT_GENERATION_ERRS);
982 		else
983 			btrfs_dev_stat_inc_and_print(dev,
984 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
985 	}
986 
987 	if (sctx->readonly) {
988 		ASSERT(!sctx->is_dev_replace);
989 		goto out;
990 	}
991 
992 	/*
993 	 * now build and submit the bios for the other mirrors, check
994 	 * checksums.
995 	 * First try to pick the mirror which is completely without I/O
996 	 * errors and also does not have a checksum error.
997 	 * If one is found, and if a checksum is present, the full block
998 	 * that is known to contain an error is rewritten. Afterwards
999 	 * the block is known to be corrected.
1000 	 * If a mirror is found which is completely correct, and no
1001 	 * checksum is present, only those pages are rewritten that had
1002 	 * an I/O error in the block to be repaired, since it cannot be
1003 	 * determined, which copy of the other pages is better (and it
1004 	 * could happen otherwise that a correct page would be
1005 	 * overwritten by a bad one).
1006 	 */
1007 	for (mirror_index = 0; ;mirror_index++) {
1008 		struct scrub_block *sblock_other;
1009 
1010 		if (mirror_index == failed_mirror_index)
1011 			continue;
1012 
1013 		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1014 		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1015 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1016 				break;
1017 			if (!sblocks_for_recheck[mirror_index].page_count)
1018 				break;
1019 
1020 			sblock_other = sblocks_for_recheck + mirror_index;
1021 		} else {
1022 			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1023 			int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1024 
1025 			if (mirror_index >= max_allowed)
1026 				break;
1027 			if (!sblocks_for_recheck[1].page_count)
1028 				break;
1029 
1030 			ASSERT(failed_mirror_index == 0);
1031 			sblock_other = sblocks_for_recheck + 1;
1032 			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1033 		}
1034 
1035 		/* build and submit the bios, check checksums */
1036 		scrub_recheck_block(fs_info, sblock_other, 0);
1037 
1038 		if (!sblock_other->header_error &&
1039 		    !sblock_other->checksum_error &&
1040 		    sblock_other->no_io_error_seen) {
1041 			if (sctx->is_dev_replace) {
1042 				scrub_write_block_to_dev_replace(sblock_other);
1043 				goto corrected_error;
1044 			} else {
1045 				ret = scrub_repair_block_from_good_copy(
1046 						sblock_bad, sblock_other);
1047 				if (!ret)
1048 					goto corrected_error;
1049 			}
1050 		}
1051 	}
1052 
1053 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1054 		goto did_not_correct_error;
1055 
1056 	/*
1057 	 * In case of I/O errors in the area that is supposed to be
1058 	 * repaired, continue by picking good copies of those sectors.
1059 	 * Select the good sectors from mirrors to rewrite bad sectors from
1060 	 * the area to fix. Afterwards verify the checksum of the block
1061 	 * that is supposed to be repaired. This verification step is
1062 	 * only done for the purpose of statistic counting and for the
1063 	 * final scrub report, whether errors remain.
1064 	 * A perfect algorithm could make use of the checksum and try
1065 	 * all possible combinations of sectors from the different mirrors
1066 	 * until the checksum verification succeeds. For example, when
1067 	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1068 	 * of mirror #2 is readable but the final checksum test fails,
1069 	 * then the 2nd sector of mirror #3 could be tried, whether now
1070 	 * the final checksum succeeds. But this would be a rare
1071 	 * exception and is therefore not implemented. At least it is
1072 	 * avoided that the good copy is overwritten.
1073 	 * A more useful improvement would be to pick the sectors
1074 	 * without I/O error based on sector sizes (512 bytes on legacy
1075 	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1076 	 * mirror could be repaired by taking 512 byte of a different
1077 	 * mirror, even if other 512 byte sectors in the same sectorsize
1078 	 * area are unreadable.
1079 	 */
1080 	success = 1;
1081 	for (page_num = 0; page_num < sblock_bad->page_count;
1082 	     page_num++) {
1083 		struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1084 		struct scrub_block *sblock_other = NULL;
1085 
1086 		/* skip no-io-error page in scrub */
1087 		if (!spage_bad->io_error && !sctx->is_dev_replace)
1088 			continue;
1089 
1090 		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1091 			/*
1092 			 * In case of dev replace, if raid56 rebuild process
1093 			 * didn't work out correct data, then copy the content
1094 			 * in sblock_bad to make sure target device is identical
1095 			 * to source device, instead of writing garbage data in
1096 			 * sblock_for_recheck array to target device.
1097 			 */
1098 			sblock_other = NULL;
1099 		} else if (spage_bad->io_error) {
1100 			/* try to find no-io-error page in mirrors */
1101 			for (mirror_index = 0;
1102 			     mirror_index < BTRFS_MAX_MIRRORS &&
1103 			     sblocks_for_recheck[mirror_index].page_count > 0;
1104 			     mirror_index++) {
1105 				if (!sblocks_for_recheck[mirror_index].
1106 				    pagev[page_num]->io_error) {
1107 					sblock_other = sblocks_for_recheck +
1108 						       mirror_index;
1109 					break;
1110 				}
1111 			}
1112 			if (!sblock_other)
1113 				success = 0;
1114 		}
1115 
1116 		if (sctx->is_dev_replace) {
1117 			/*
1118 			 * did not find a mirror to fetch the page
1119 			 * from. scrub_write_page_to_dev_replace()
1120 			 * handles this case (page->io_error), by
1121 			 * filling the block with zeros before
1122 			 * submitting the write request
1123 			 */
1124 			if (!sblock_other)
1125 				sblock_other = sblock_bad;
1126 
1127 			if (scrub_write_page_to_dev_replace(sblock_other,
1128 							    page_num) != 0) {
1129 				atomic64_inc(
1130 					&fs_info->dev_replace.num_write_errors);
1131 				success = 0;
1132 			}
1133 		} else if (sblock_other) {
1134 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1135 							       sblock_other,
1136 							       page_num, 0);
1137 			if (0 == ret)
1138 				spage_bad->io_error = 0;
1139 			else
1140 				success = 0;
1141 		}
1142 	}
1143 
1144 	if (success && !sctx->is_dev_replace) {
1145 		if (is_metadata || have_csum) {
1146 			/*
1147 			 * need to verify the checksum now that all
1148 			 * sectors on disk are repaired (the write
1149 			 * request for data to be repaired is on its way).
1150 			 * Just be lazy and use scrub_recheck_block()
1151 			 * which re-reads the data before the checksum
1152 			 * is verified, but most likely the data comes out
1153 			 * of the page cache.
1154 			 */
1155 			scrub_recheck_block(fs_info, sblock_bad, 1);
1156 			if (!sblock_bad->header_error &&
1157 			    !sblock_bad->checksum_error &&
1158 			    sblock_bad->no_io_error_seen)
1159 				goto corrected_error;
1160 			else
1161 				goto did_not_correct_error;
1162 		} else {
1163 corrected_error:
1164 			spin_lock(&sctx->stat_lock);
1165 			sctx->stat.corrected_errors++;
1166 			sblock_to_check->data_corrected = 1;
1167 			spin_unlock(&sctx->stat_lock);
1168 			btrfs_err_rl_in_rcu(fs_info,
1169 				"fixed up error at logical %llu on dev %s",
1170 				logical, rcu_str_deref(dev->name));
1171 		}
1172 	} else {
1173 did_not_correct_error:
1174 		spin_lock(&sctx->stat_lock);
1175 		sctx->stat.uncorrectable_errors++;
1176 		spin_unlock(&sctx->stat_lock);
1177 		btrfs_err_rl_in_rcu(fs_info,
1178 			"unable to fixup (regular) error at logical %llu on dev %s",
1179 			logical, rcu_str_deref(dev->name));
1180 	}
1181 
1182 out:
1183 	if (sblocks_for_recheck) {
1184 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1185 		     mirror_index++) {
1186 			struct scrub_block *sblock = sblocks_for_recheck +
1187 						     mirror_index;
1188 			struct scrub_recover *recover;
1189 			int page_index;
1190 
1191 			for (page_index = 0; page_index < sblock->page_count;
1192 			     page_index++) {
1193 				sblock->pagev[page_index]->sblock = NULL;
1194 				recover = sblock->pagev[page_index]->recover;
1195 				if (recover) {
1196 					scrub_put_recover(fs_info, recover);
1197 					sblock->pagev[page_index]->recover =
1198 									NULL;
1199 				}
1200 				scrub_page_put(sblock->pagev[page_index]);
1201 			}
1202 		}
1203 		kfree(sblocks_for_recheck);
1204 	}
1205 
1206 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1207 	memalloc_nofs_restore(nofs_flag);
1208 	if (ret < 0)
1209 		return ret;
1210 	return 0;
1211 }
1212 
1213 static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1214 {
1215 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
1216 		return 2;
1217 	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
1218 		return 3;
1219 	else
1220 		return (int)bioc->num_stripes;
1221 }
1222 
1223 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1224 						 u64 *raid_map,
1225 						 u64 mapped_length,
1226 						 int nstripes, int mirror,
1227 						 int *stripe_index,
1228 						 u64 *stripe_offset)
1229 {
1230 	int i;
1231 
1232 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1233 		/* RAID5/6 */
1234 		for (i = 0; i < nstripes; i++) {
1235 			if (raid_map[i] == RAID6_Q_STRIPE ||
1236 			    raid_map[i] == RAID5_P_STRIPE)
1237 				continue;
1238 
1239 			if (logical >= raid_map[i] &&
1240 			    logical < raid_map[i] + mapped_length)
1241 				break;
1242 		}
1243 
1244 		*stripe_index = i;
1245 		*stripe_offset = logical - raid_map[i];
1246 	} else {
1247 		/* The other RAID type */
1248 		*stripe_index = mirror;
1249 		*stripe_offset = 0;
1250 	}
1251 }
1252 
1253 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1254 				     struct scrub_block *sblocks_for_recheck)
1255 {
1256 	struct scrub_ctx *sctx = original_sblock->sctx;
1257 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1258 	u64 length = original_sblock->page_count * fs_info->sectorsize;
1259 	u64 logical = original_sblock->pagev[0]->logical;
1260 	u64 generation = original_sblock->pagev[0]->generation;
1261 	u64 flags = original_sblock->pagev[0]->flags;
1262 	u64 have_csum = original_sblock->pagev[0]->have_csum;
1263 	struct scrub_recover *recover;
1264 	struct btrfs_io_context *bioc;
1265 	u64 sublen;
1266 	u64 mapped_length;
1267 	u64 stripe_offset;
1268 	int stripe_index;
1269 	int page_index = 0;
1270 	int mirror_index;
1271 	int nmirrors;
1272 	int ret;
1273 
1274 	/*
1275 	 * note: the two members refs and outstanding_pages
1276 	 * are not used (and not set) in the blocks that are used for
1277 	 * the recheck procedure
1278 	 */
1279 
1280 	while (length > 0) {
1281 		sublen = min_t(u64, length, fs_info->sectorsize);
1282 		mapped_length = sublen;
1283 		bioc = NULL;
1284 
1285 		/*
1286 		 * With a length of sectorsize, each returned stripe represents
1287 		 * one mirror
1288 		 */
1289 		btrfs_bio_counter_inc_blocked(fs_info);
1290 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1291 				       logical, &mapped_length, &bioc);
1292 		if (ret || !bioc || mapped_length < sublen) {
1293 			btrfs_put_bioc(bioc);
1294 			btrfs_bio_counter_dec(fs_info);
1295 			return -EIO;
1296 		}
1297 
1298 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1299 		if (!recover) {
1300 			btrfs_put_bioc(bioc);
1301 			btrfs_bio_counter_dec(fs_info);
1302 			return -ENOMEM;
1303 		}
1304 
1305 		refcount_set(&recover->refs, 1);
1306 		recover->bioc = bioc;
1307 		recover->map_length = mapped_length;
1308 
1309 		ASSERT(page_index < SCRUB_MAX_PAGES_PER_BLOCK);
1310 
1311 		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
1312 
1313 		for (mirror_index = 0; mirror_index < nmirrors;
1314 		     mirror_index++) {
1315 			struct scrub_block *sblock;
1316 			struct scrub_page *spage;
1317 
1318 			sblock = sblocks_for_recheck + mirror_index;
1319 			sblock->sctx = sctx;
1320 
1321 			spage = kzalloc(sizeof(*spage), GFP_NOFS);
1322 			if (!spage) {
1323 leave_nomem:
1324 				spin_lock(&sctx->stat_lock);
1325 				sctx->stat.malloc_errors++;
1326 				spin_unlock(&sctx->stat_lock);
1327 				scrub_put_recover(fs_info, recover);
1328 				return -ENOMEM;
1329 			}
1330 			scrub_page_get(spage);
1331 			sblock->pagev[page_index] = spage;
1332 			spage->sblock = sblock;
1333 			spage->flags = flags;
1334 			spage->generation = generation;
1335 			spage->logical = logical;
1336 			spage->have_csum = have_csum;
1337 			if (have_csum)
1338 				memcpy(spage->csum,
1339 				       original_sblock->pagev[0]->csum,
1340 				       sctx->fs_info->csum_size);
1341 
1342 			scrub_stripe_index_and_offset(logical,
1343 						      bioc->map_type,
1344 						      bioc->raid_map,
1345 						      mapped_length,
1346 						      bioc->num_stripes -
1347 						      bioc->num_tgtdevs,
1348 						      mirror_index,
1349 						      &stripe_index,
1350 						      &stripe_offset);
1351 			spage->physical = bioc->stripes[stripe_index].physical +
1352 					 stripe_offset;
1353 			spage->dev = bioc->stripes[stripe_index].dev;
1354 
1355 			BUG_ON(page_index >= original_sblock->page_count);
1356 			spage->physical_for_dev_replace =
1357 				original_sblock->pagev[page_index]->
1358 				physical_for_dev_replace;
1359 			/* for missing devices, dev->bdev is NULL */
1360 			spage->mirror_num = mirror_index + 1;
1361 			sblock->page_count++;
1362 			spage->page = alloc_page(GFP_NOFS);
1363 			if (!spage->page)
1364 				goto leave_nomem;
1365 
1366 			scrub_get_recover(recover);
1367 			spage->recover = recover;
1368 		}
1369 		scrub_put_recover(fs_info, recover);
1370 		length -= sublen;
1371 		logical += sublen;
1372 		page_index++;
1373 	}
1374 
1375 	return 0;
1376 }
1377 
1378 static void scrub_bio_wait_endio(struct bio *bio)
1379 {
1380 	complete(bio->bi_private);
1381 }
1382 
1383 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1384 					struct bio *bio,
1385 					struct scrub_page *spage)
1386 {
1387 	DECLARE_COMPLETION_ONSTACK(done);
1388 	int ret;
1389 	int mirror_num;
1390 
1391 	bio->bi_iter.bi_sector = spage->logical >> 9;
1392 	bio->bi_private = &done;
1393 	bio->bi_end_io = scrub_bio_wait_endio;
1394 
1395 	mirror_num = spage->sblock->pagev[0]->mirror_num;
1396 	ret = raid56_parity_recover(bio, spage->recover->bioc,
1397 				    spage->recover->map_length,
1398 				    mirror_num, 0);
1399 	if (ret)
1400 		return ret;
1401 
1402 	wait_for_completion_io(&done);
1403 	return blk_status_to_errno(bio->bi_status);
1404 }
1405 
1406 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1407 					  struct scrub_block *sblock)
1408 {
1409 	struct scrub_page *first_page = sblock->pagev[0];
1410 	struct bio *bio;
1411 	int page_num;
1412 
1413 	/* All pages in sblock belong to the same stripe on the same device. */
1414 	ASSERT(first_page->dev);
1415 	if (!first_page->dev->bdev)
1416 		goto out;
1417 
1418 	bio = btrfs_bio_alloc(BIO_MAX_VECS);
1419 	bio_set_dev(bio, first_page->dev->bdev);
1420 
1421 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1422 		struct scrub_page *spage = sblock->pagev[page_num];
1423 
1424 		WARN_ON(!spage->page);
1425 		bio_add_page(bio, spage->page, PAGE_SIZE, 0);
1426 	}
1427 
1428 	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1429 		bio_put(bio);
1430 		goto out;
1431 	}
1432 
1433 	bio_put(bio);
1434 
1435 	scrub_recheck_block_checksum(sblock);
1436 
1437 	return;
1438 out:
1439 	for (page_num = 0; page_num < sblock->page_count; page_num++)
1440 		sblock->pagev[page_num]->io_error = 1;
1441 
1442 	sblock->no_io_error_seen = 0;
1443 }
1444 
1445 /*
1446  * this function will check the on disk data for checksum errors, header
1447  * errors and read I/O errors. If any I/O errors happen, the exact pages
1448  * which are errored are marked as being bad. The goal is to enable scrub
1449  * to take those pages that are not errored from all the mirrors so that
1450  * the pages that are errored in the just handled mirror can be repaired.
1451  */
1452 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1453 				struct scrub_block *sblock,
1454 				int retry_failed_mirror)
1455 {
1456 	int page_num;
1457 
1458 	sblock->no_io_error_seen = 1;
1459 
1460 	/* short cut for raid56 */
1461 	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1462 		return scrub_recheck_block_on_raid56(fs_info, sblock);
1463 
1464 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1465 		struct bio *bio;
1466 		struct scrub_page *spage = sblock->pagev[page_num];
1467 
1468 		if (spage->dev->bdev == NULL) {
1469 			spage->io_error = 1;
1470 			sblock->no_io_error_seen = 0;
1471 			continue;
1472 		}
1473 
1474 		WARN_ON(!spage->page);
1475 		bio = btrfs_bio_alloc(1);
1476 		bio_set_dev(bio, spage->dev->bdev);
1477 
1478 		bio_add_page(bio, spage->page, fs_info->sectorsize, 0);
1479 		bio->bi_iter.bi_sector = spage->physical >> 9;
1480 		bio->bi_opf = REQ_OP_READ;
1481 
1482 		if (btrfsic_submit_bio_wait(bio)) {
1483 			spage->io_error = 1;
1484 			sblock->no_io_error_seen = 0;
1485 		}
1486 
1487 		bio_put(bio);
1488 	}
1489 
1490 	if (sblock->no_io_error_seen)
1491 		scrub_recheck_block_checksum(sblock);
1492 }
1493 
1494 static inline int scrub_check_fsid(u8 fsid[],
1495 				   struct scrub_page *spage)
1496 {
1497 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1498 	int ret;
1499 
1500 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1501 	return !ret;
1502 }
1503 
1504 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1505 {
1506 	sblock->header_error = 0;
1507 	sblock->checksum_error = 0;
1508 	sblock->generation_error = 0;
1509 
1510 	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1511 		scrub_checksum_data(sblock);
1512 	else
1513 		scrub_checksum_tree_block(sblock);
1514 }
1515 
1516 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1517 					     struct scrub_block *sblock_good)
1518 {
1519 	int page_num;
1520 	int ret = 0;
1521 
1522 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1523 		int ret_sub;
1524 
1525 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1526 							   sblock_good,
1527 							   page_num, 1);
1528 		if (ret_sub)
1529 			ret = ret_sub;
1530 	}
1531 
1532 	return ret;
1533 }
1534 
1535 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1536 					    struct scrub_block *sblock_good,
1537 					    int page_num, int force_write)
1538 {
1539 	struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1540 	struct scrub_page *spage_good = sblock_good->pagev[page_num];
1541 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1542 	const u32 sectorsize = fs_info->sectorsize;
1543 
1544 	BUG_ON(spage_bad->page == NULL);
1545 	BUG_ON(spage_good->page == NULL);
1546 	if (force_write || sblock_bad->header_error ||
1547 	    sblock_bad->checksum_error || spage_bad->io_error) {
1548 		struct bio *bio;
1549 		int ret;
1550 
1551 		if (!spage_bad->dev->bdev) {
1552 			btrfs_warn_rl(fs_info,
1553 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1554 			return -EIO;
1555 		}
1556 
1557 		bio = btrfs_bio_alloc(1);
1558 		bio_set_dev(bio, spage_bad->dev->bdev);
1559 		bio->bi_iter.bi_sector = spage_bad->physical >> 9;
1560 		bio->bi_opf = REQ_OP_WRITE;
1561 
1562 		ret = bio_add_page(bio, spage_good->page, sectorsize, 0);
1563 		if (ret != sectorsize) {
1564 			bio_put(bio);
1565 			return -EIO;
1566 		}
1567 
1568 		if (btrfsic_submit_bio_wait(bio)) {
1569 			btrfs_dev_stat_inc_and_print(spage_bad->dev,
1570 				BTRFS_DEV_STAT_WRITE_ERRS);
1571 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1572 			bio_put(bio);
1573 			return -EIO;
1574 		}
1575 		bio_put(bio);
1576 	}
1577 
1578 	return 0;
1579 }
1580 
1581 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1582 {
1583 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1584 	int page_num;
1585 
1586 	/*
1587 	 * This block is used for the check of the parity on the source device,
1588 	 * so the data needn't be written into the destination device.
1589 	 */
1590 	if (sblock->sparity)
1591 		return;
1592 
1593 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1594 		int ret;
1595 
1596 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1597 		if (ret)
1598 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1599 	}
1600 }
1601 
1602 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1603 					   int page_num)
1604 {
1605 	struct scrub_page *spage = sblock->pagev[page_num];
1606 
1607 	BUG_ON(spage->page == NULL);
1608 	if (spage->io_error)
1609 		clear_page(page_address(spage->page));
1610 
1611 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1612 }
1613 
1614 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
1615 {
1616 	int ret = 0;
1617 	u64 length;
1618 
1619 	if (!btrfs_is_zoned(sctx->fs_info))
1620 		return 0;
1621 
1622 	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
1623 		return 0;
1624 
1625 	if (sctx->write_pointer < physical) {
1626 		length = physical - sctx->write_pointer;
1627 
1628 		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
1629 						sctx->write_pointer, length);
1630 		if (!ret)
1631 			sctx->write_pointer = physical;
1632 	}
1633 	return ret;
1634 }
1635 
1636 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1637 				    struct scrub_page *spage)
1638 {
1639 	struct scrub_bio *sbio;
1640 	int ret;
1641 	const u32 sectorsize = sctx->fs_info->sectorsize;
1642 
1643 	mutex_lock(&sctx->wr_lock);
1644 again:
1645 	if (!sctx->wr_curr_bio) {
1646 		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1647 					      GFP_KERNEL);
1648 		if (!sctx->wr_curr_bio) {
1649 			mutex_unlock(&sctx->wr_lock);
1650 			return -ENOMEM;
1651 		}
1652 		sctx->wr_curr_bio->sctx = sctx;
1653 		sctx->wr_curr_bio->page_count = 0;
1654 	}
1655 	sbio = sctx->wr_curr_bio;
1656 	if (sbio->page_count == 0) {
1657 		struct bio *bio;
1658 
1659 		ret = fill_writer_pointer_gap(sctx,
1660 					      spage->physical_for_dev_replace);
1661 		if (ret) {
1662 			mutex_unlock(&sctx->wr_lock);
1663 			return ret;
1664 		}
1665 
1666 		sbio->physical = spage->physical_for_dev_replace;
1667 		sbio->logical = spage->logical;
1668 		sbio->dev = sctx->wr_tgtdev;
1669 		bio = sbio->bio;
1670 		if (!bio) {
1671 			bio = btrfs_bio_alloc(sctx->pages_per_bio);
1672 			sbio->bio = bio;
1673 		}
1674 
1675 		bio->bi_private = sbio;
1676 		bio->bi_end_io = scrub_wr_bio_end_io;
1677 		bio_set_dev(bio, sbio->dev->bdev);
1678 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1679 		bio->bi_opf = REQ_OP_WRITE;
1680 		sbio->status = 0;
1681 	} else if (sbio->physical + sbio->page_count * sectorsize !=
1682 		   spage->physical_for_dev_replace ||
1683 		   sbio->logical + sbio->page_count * sectorsize !=
1684 		   spage->logical) {
1685 		scrub_wr_submit(sctx);
1686 		goto again;
1687 	}
1688 
1689 	ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
1690 	if (ret != sectorsize) {
1691 		if (sbio->page_count < 1) {
1692 			bio_put(sbio->bio);
1693 			sbio->bio = NULL;
1694 			mutex_unlock(&sctx->wr_lock);
1695 			return -EIO;
1696 		}
1697 		scrub_wr_submit(sctx);
1698 		goto again;
1699 	}
1700 
1701 	sbio->pagev[sbio->page_count] = spage;
1702 	scrub_page_get(spage);
1703 	sbio->page_count++;
1704 	if (sbio->page_count == sctx->pages_per_bio)
1705 		scrub_wr_submit(sctx);
1706 	mutex_unlock(&sctx->wr_lock);
1707 
1708 	return 0;
1709 }
1710 
1711 static void scrub_wr_submit(struct scrub_ctx *sctx)
1712 {
1713 	struct scrub_bio *sbio;
1714 
1715 	if (!sctx->wr_curr_bio)
1716 		return;
1717 
1718 	sbio = sctx->wr_curr_bio;
1719 	sctx->wr_curr_bio = NULL;
1720 	WARN_ON(!sbio->bio->bi_bdev);
1721 	scrub_pending_bio_inc(sctx);
1722 	/* process all writes in a single worker thread. Then the block layer
1723 	 * orders the requests before sending them to the driver which
1724 	 * doubled the write performance on spinning disks when measured
1725 	 * with Linux 3.5 */
1726 	btrfsic_submit_bio(sbio->bio);
1727 
1728 	if (btrfs_is_zoned(sctx->fs_info))
1729 		sctx->write_pointer = sbio->physical + sbio->page_count *
1730 			sctx->fs_info->sectorsize;
1731 }
1732 
1733 static void scrub_wr_bio_end_io(struct bio *bio)
1734 {
1735 	struct scrub_bio *sbio = bio->bi_private;
1736 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1737 
1738 	sbio->status = bio->bi_status;
1739 	sbio->bio = bio;
1740 
1741 	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1742 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1743 }
1744 
1745 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1746 {
1747 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1748 	struct scrub_ctx *sctx = sbio->sctx;
1749 	int i;
1750 
1751 	ASSERT(sbio->page_count <= SCRUB_PAGES_PER_BIO);
1752 	if (sbio->status) {
1753 		struct btrfs_dev_replace *dev_replace =
1754 			&sbio->sctx->fs_info->dev_replace;
1755 
1756 		for (i = 0; i < sbio->page_count; i++) {
1757 			struct scrub_page *spage = sbio->pagev[i];
1758 
1759 			spage->io_error = 1;
1760 			atomic64_inc(&dev_replace->num_write_errors);
1761 		}
1762 	}
1763 
1764 	for (i = 0; i < sbio->page_count; i++)
1765 		scrub_page_put(sbio->pagev[i]);
1766 
1767 	bio_put(sbio->bio);
1768 	kfree(sbio);
1769 	scrub_pending_bio_dec(sctx);
1770 }
1771 
1772 static int scrub_checksum(struct scrub_block *sblock)
1773 {
1774 	u64 flags;
1775 	int ret;
1776 
1777 	/*
1778 	 * No need to initialize these stats currently,
1779 	 * because this function only use return value
1780 	 * instead of these stats value.
1781 	 *
1782 	 * Todo:
1783 	 * always use stats
1784 	 */
1785 	sblock->header_error = 0;
1786 	sblock->generation_error = 0;
1787 	sblock->checksum_error = 0;
1788 
1789 	WARN_ON(sblock->page_count < 1);
1790 	flags = sblock->pagev[0]->flags;
1791 	ret = 0;
1792 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1793 		ret = scrub_checksum_data(sblock);
1794 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1795 		ret = scrub_checksum_tree_block(sblock);
1796 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1797 		(void)scrub_checksum_super(sblock);
1798 	else
1799 		WARN_ON(1);
1800 	if (ret)
1801 		scrub_handle_errored_block(sblock);
1802 
1803 	return ret;
1804 }
1805 
1806 static int scrub_checksum_data(struct scrub_block *sblock)
1807 {
1808 	struct scrub_ctx *sctx = sblock->sctx;
1809 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1810 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1811 	u8 csum[BTRFS_CSUM_SIZE];
1812 	struct scrub_page *spage;
1813 	char *kaddr;
1814 
1815 	BUG_ON(sblock->page_count < 1);
1816 	spage = sblock->pagev[0];
1817 	if (!spage->have_csum)
1818 		return 0;
1819 
1820 	kaddr = page_address(spage->page);
1821 
1822 	shash->tfm = fs_info->csum_shash;
1823 	crypto_shash_init(shash);
1824 
1825 	/*
1826 	 * In scrub_pages() and scrub_pages_for_parity() we ensure each spage
1827 	 * only contains one sector of data.
1828 	 */
1829 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
1830 
1831 	if (memcmp(csum, spage->csum, fs_info->csum_size))
1832 		sblock->checksum_error = 1;
1833 	return sblock->checksum_error;
1834 }
1835 
1836 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1837 {
1838 	struct scrub_ctx *sctx = sblock->sctx;
1839 	struct btrfs_header *h;
1840 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1841 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1842 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1843 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1844 	/*
1845 	 * This is done in sectorsize steps even for metadata as there's a
1846 	 * constraint for nodesize to be aligned to sectorsize. This will need
1847 	 * to change so we don't misuse data and metadata units like that.
1848 	 */
1849 	const u32 sectorsize = sctx->fs_info->sectorsize;
1850 	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1851 	int i;
1852 	struct scrub_page *spage;
1853 	char *kaddr;
1854 
1855 	BUG_ON(sblock->page_count < 1);
1856 
1857 	/* Each member in pagev is just one block, not a full page */
1858 	ASSERT(sblock->page_count == num_sectors);
1859 
1860 	spage = sblock->pagev[0];
1861 	kaddr = page_address(spage->page);
1862 	h = (struct btrfs_header *)kaddr;
1863 	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
1864 
1865 	/*
1866 	 * we don't use the getter functions here, as we
1867 	 * a) don't have an extent buffer and
1868 	 * b) the page is already kmapped
1869 	 */
1870 	if (spage->logical != btrfs_stack_header_bytenr(h))
1871 		sblock->header_error = 1;
1872 
1873 	if (spage->generation != btrfs_stack_header_generation(h)) {
1874 		sblock->header_error = 1;
1875 		sblock->generation_error = 1;
1876 	}
1877 
1878 	if (!scrub_check_fsid(h->fsid, spage))
1879 		sblock->header_error = 1;
1880 
1881 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1882 		   BTRFS_UUID_SIZE))
1883 		sblock->header_error = 1;
1884 
1885 	shash->tfm = fs_info->csum_shash;
1886 	crypto_shash_init(shash);
1887 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1888 			    sectorsize - BTRFS_CSUM_SIZE);
1889 
1890 	for (i = 1; i < num_sectors; i++) {
1891 		kaddr = page_address(sblock->pagev[i]->page);
1892 		crypto_shash_update(shash, kaddr, sectorsize);
1893 	}
1894 
1895 	crypto_shash_final(shash, calculated_csum);
1896 	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1897 		sblock->checksum_error = 1;
1898 
1899 	return sblock->header_error || sblock->checksum_error;
1900 }
1901 
1902 static int scrub_checksum_super(struct scrub_block *sblock)
1903 {
1904 	struct btrfs_super_block *s;
1905 	struct scrub_ctx *sctx = sblock->sctx;
1906 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1907 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1908 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1909 	struct scrub_page *spage;
1910 	char *kaddr;
1911 	int fail_gen = 0;
1912 	int fail_cor = 0;
1913 
1914 	BUG_ON(sblock->page_count < 1);
1915 	spage = sblock->pagev[0];
1916 	kaddr = page_address(spage->page);
1917 	s = (struct btrfs_super_block *)kaddr;
1918 
1919 	if (spage->logical != btrfs_super_bytenr(s))
1920 		++fail_cor;
1921 
1922 	if (spage->generation != btrfs_super_generation(s))
1923 		++fail_gen;
1924 
1925 	if (!scrub_check_fsid(s->fsid, spage))
1926 		++fail_cor;
1927 
1928 	shash->tfm = fs_info->csum_shash;
1929 	crypto_shash_init(shash);
1930 	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
1931 			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1932 
1933 	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1934 		++fail_cor;
1935 
1936 	if (fail_cor + fail_gen) {
1937 		/*
1938 		 * if we find an error in a super block, we just report it.
1939 		 * They will get written with the next transaction commit
1940 		 * anyway
1941 		 */
1942 		spin_lock(&sctx->stat_lock);
1943 		++sctx->stat.super_errors;
1944 		spin_unlock(&sctx->stat_lock);
1945 		if (fail_cor)
1946 			btrfs_dev_stat_inc_and_print(spage->dev,
1947 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1948 		else
1949 			btrfs_dev_stat_inc_and_print(spage->dev,
1950 				BTRFS_DEV_STAT_GENERATION_ERRS);
1951 	}
1952 
1953 	return fail_cor + fail_gen;
1954 }
1955 
1956 static void scrub_block_get(struct scrub_block *sblock)
1957 {
1958 	refcount_inc(&sblock->refs);
1959 }
1960 
1961 static void scrub_block_put(struct scrub_block *sblock)
1962 {
1963 	if (refcount_dec_and_test(&sblock->refs)) {
1964 		int i;
1965 
1966 		if (sblock->sparity)
1967 			scrub_parity_put(sblock->sparity);
1968 
1969 		for (i = 0; i < sblock->page_count; i++)
1970 			scrub_page_put(sblock->pagev[i]);
1971 		kfree(sblock);
1972 	}
1973 }
1974 
1975 static void scrub_page_get(struct scrub_page *spage)
1976 {
1977 	atomic_inc(&spage->refs);
1978 }
1979 
1980 static void scrub_page_put(struct scrub_page *spage)
1981 {
1982 	if (atomic_dec_and_test(&spage->refs)) {
1983 		if (spage->page)
1984 			__free_page(spage->page);
1985 		kfree(spage);
1986 	}
1987 }
1988 
1989 /*
1990  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1991  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1992  */
1993 static void scrub_throttle(struct scrub_ctx *sctx)
1994 {
1995 	const int time_slice = 1000;
1996 	struct scrub_bio *sbio;
1997 	struct btrfs_device *device;
1998 	s64 delta;
1999 	ktime_t now;
2000 	u32 div;
2001 	u64 bwlimit;
2002 
2003 	sbio = sctx->bios[sctx->curr];
2004 	device = sbio->dev;
2005 	bwlimit = READ_ONCE(device->scrub_speed_max);
2006 	if (bwlimit == 0)
2007 		return;
2008 
2009 	/*
2010 	 * Slice is divided into intervals when the IO is submitted, adjust by
2011 	 * bwlimit and maximum of 64 intervals.
2012 	 */
2013 	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
2014 	div = min_t(u32, 64, div);
2015 
2016 	/* Start new epoch, set deadline */
2017 	now = ktime_get();
2018 	if (sctx->throttle_deadline == 0) {
2019 		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
2020 		sctx->throttle_sent = 0;
2021 	}
2022 
2023 	/* Still in the time to send? */
2024 	if (ktime_before(now, sctx->throttle_deadline)) {
2025 		/* If current bio is within the limit, send it */
2026 		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
2027 		if (sctx->throttle_sent <= div_u64(bwlimit, div))
2028 			return;
2029 
2030 		/* We're over the limit, sleep until the rest of the slice */
2031 		delta = ktime_ms_delta(sctx->throttle_deadline, now);
2032 	} else {
2033 		/* New request after deadline, start new epoch */
2034 		delta = 0;
2035 	}
2036 
2037 	if (delta) {
2038 		long timeout;
2039 
2040 		timeout = div_u64(delta * HZ, 1000);
2041 		schedule_timeout_interruptible(timeout);
2042 	}
2043 
2044 	/* Next call will start the deadline period */
2045 	sctx->throttle_deadline = 0;
2046 }
2047 
2048 static void scrub_submit(struct scrub_ctx *sctx)
2049 {
2050 	struct scrub_bio *sbio;
2051 
2052 	if (sctx->curr == -1)
2053 		return;
2054 
2055 	scrub_throttle(sctx);
2056 
2057 	sbio = sctx->bios[sctx->curr];
2058 	sctx->curr = -1;
2059 	scrub_pending_bio_inc(sctx);
2060 	btrfsic_submit_bio(sbio->bio);
2061 }
2062 
2063 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2064 				    struct scrub_page *spage)
2065 {
2066 	struct scrub_block *sblock = spage->sblock;
2067 	struct scrub_bio *sbio;
2068 	const u32 sectorsize = sctx->fs_info->sectorsize;
2069 	int ret;
2070 
2071 again:
2072 	/*
2073 	 * grab a fresh bio or wait for one to become available
2074 	 */
2075 	while (sctx->curr == -1) {
2076 		spin_lock(&sctx->list_lock);
2077 		sctx->curr = sctx->first_free;
2078 		if (sctx->curr != -1) {
2079 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2080 			sctx->bios[sctx->curr]->next_free = -1;
2081 			sctx->bios[sctx->curr]->page_count = 0;
2082 			spin_unlock(&sctx->list_lock);
2083 		} else {
2084 			spin_unlock(&sctx->list_lock);
2085 			wait_event(sctx->list_wait, sctx->first_free != -1);
2086 		}
2087 	}
2088 	sbio = sctx->bios[sctx->curr];
2089 	if (sbio->page_count == 0) {
2090 		struct bio *bio;
2091 
2092 		sbio->physical = spage->physical;
2093 		sbio->logical = spage->logical;
2094 		sbio->dev = spage->dev;
2095 		bio = sbio->bio;
2096 		if (!bio) {
2097 			bio = btrfs_bio_alloc(sctx->pages_per_bio);
2098 			sbio->bio = bio;
2099 		}
2100 
2101 		bio->bi_private = sbio;
2102 		bio->bi_end_io = scrub_bio_end_io;
2103 		bio_set_dev(bio, sbio->dev->bdev);
2104 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2105 		bio->bi_opf = REQ_OP_READ;
2106 		sbio->status = 0;
2107 	} else if (sbio->physical + sbio->page_count * sectorsize !=
2108 		   spage->physical ||
2109 		   sbio->logical + sbio->page_count * sectorsize !=
2110 		   spage->logical ||
2111 		   sbio->dev != spage->dev) {
2112 		scrub_submit(sctx);
2113 		goto again;
2114 	}
2115 
2116 	sbio->pagev[sbio->page_count] = spage;
2117 	ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
2118 	if (ret != sectorsize) {
2119 		if (sbio->page_count < 1) {
2120 			bio_put(sbio->bio);
2121 			sbio->bio = NULL;
2122 			return -EIO;
2123 		}
2124 		scrub_submit(sctx);
2125 		goto again;
2126 	}
2127 
2128 	scrub_block_get(sblock); /* one for the page added to the bio */
2129 	atomic_inc(&sblock->outstanding_pages);
2130 	sbio->page_count++;
2131 	if (sbio->page_count == sctx->pages_per_bio)
2132 		scrub_submit(sctx);
2133 
2134 	return 0;
2135 }
2136 
2137 static void scrub_missing_raid56_end_io(struct bio *bio)
2138 {
2139 	struct scrub_block *sblock = bio->bi_private;
2140 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2141 
2142 	if (bio->bi_status)
2143 		sblock->no_io_error_seen = 0;
2144 
2145 	bio_put(bio);
2146 
2147 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2148 }
2149 
2150 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2151 {
2152 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2153 	struct scrub_ctx *sctx = sblock->sctx;
2154 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2155 	u64 logical;
2156 	struct btrfs_device *dev;
2157 
2158 	logical = sblock->pagev[0]->logical;
2159 	dev = sblock->pagev[0]->dev;
2160 
2161 	if (sblock->no_io_error_seen)
2162 		scrub_recheck_block_checksum(sblock);
2163 
2164 	if (!sblock->no_io_error_seen) {
2165 		spin_lock(&sctx->stat_lock);
2166 		sctx->stat.read_errors++;
2167 		spin_unlock(&sctx->stat_lock);
2168 		btrfs_err_rl_in_rcu(fs_info,
2169 			"IO error rebuilding logical %llu for dev %s",
2170 			logical, rcu_str_deref(dev->name));
2171 	} else if (sblock->header_error || sblock->checksum_error) {
2172 		spin_lock(&sctx->stat_lock);
2173 		sctx->stat.uncorrectable_errors++;
2174 		spin_unlock(&sctx->stat_lock);
2175 		btrfs_err_rl_in_rcu(fs_info,
2176 			"failed to rebuild valid logical %llu for dev %s",
2177 			logical, rcu_str_deref(dev->name));
2178 	} else {
2179 		scrub_write_block_to_dev_replace(sblock);
2180 	}
2181 
2182 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2183 		mutex_lock(&sctx->wr_lock);
2184 		scrub_wr_submit(sctx);
2185 		mutex_unlock(&sctx->wr_lock);
2186 	}
2187 
2188 	scrub_block_put(sblock);
2189 	scrub_pending_bio_dec(sctx);
2190 }
2191 
2192 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2193 {
2194 	struct scrub_ctx *sctx = sblock->sctx;
2195 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2196 	u64 length = sblock->page_count * PAGE_SIZE;
2197 	u64 logical = sblock->pagev[0]->logical;
2198 	struct btrfs_io_context *bioc = NULL;
2199 	struct bio *bio;
2200 	struct btrfs_raid_bio *rbio;
2201 	int ret;
2202 	int i;
2203 
2204 	btrfs_bio_counter_inc_blocked(fs_info);
2205 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2206 			       &length, &bioc);
2207 	if (ret || !bioc || !bioc->raid_map)
2208 		goto bioc_out;
2209 
2210 	if (WARN_ON(!sctx->is_dev_replace ||
2211 		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2212 		/*
2213 		 * We shouldn't be scrubbing a missing device. Even for dev
2214 		 * replace, we should only get here for RAID 5/6. We either
2215 		 * managed to mount something with no mirrors remaining or
2216 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2217 		 */
2218 		goto bioc_out;
2219 	}
2220 
2221 	bio = btrfs_bio_alloc(BIO_MAX_VECS);
2222 	bio->bi_iter.bi_sector = logical >> 9;
2223 	bio->bi_private = sblock;
2224 	bio->bi_end_io = scrub_missing_raid56_end_io;
2225 
2226 	rbio = raid56_alloc_missing_rbio(bio, bioc, length);
2227 	if (!rbio)
2228 		goto rbio_out;
2229 
2230 	for (i = 0; i < sblock->page_count; i++) {
2231 		struct scrub_page *spage = sblock->pagev[i];
2232 
2233 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2234 	}
2235 
2236 	btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2237 	scrub_block_get(sblock);
2238 	scrub_pending_bio_inc(sctx);
2239 	raid56_submit_missing_rbio(rbio);
2240 	return;
2241 
2242 rbio_out:
2243 	bio_put(bio);
2244 bioc_out:
2245 	btrfs_bio_counter_dec(fs_info);
2246 	btrfs_put_bioc(bioc);
2247 	spin_lock(&sctx->stat_lock);
2248 	sctx->stat.malloc_errors++;
2249 	spin_unlock(&sctx->stat_lock);
2250 }
2251 
2252 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
2253 		       u64 physical, struct btrfs_device *dev, u64 flags,
2254 		       u64 gen, int mirror_num, u8 *csum,
2255 		       u64 physical_for_dev_replace)
2256 {
2257 	struct scrub_block *sblock;
2258 	const u32 sectorsize = sctx->fs_info->sectorsize;
2259 	int index;
2260 
2261 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2262 	if (!sblock) {
2263 		spin_lock(&sctx->stat_lock);
2264 		sctx->stat.malloc_errors++;
2265 		spin_unlock(&sctx->stat_lock);
2266 		return -ENOMEM;
2267 	}
2268 
2269 	/* one ref inside this function, plus one for each page added to
2270 	 * a bio later on */
2271 	refcount_set(&sblock->refs, 1);
2272 	sblock->sctx = sctx;
2273 	sblock->no_io_error_seen = 1;
2274 
2275 	for (index = 0; len > 0; index++) {
2276 		struct scrub_page *spage;
2277 		/*
2278 		 * Here we will allocate one page for one sector to scrub.
2279 		 * This is fine if PAGE_SIZE == sectorsize, but will cost
2280 		 * more memory for PAGE_SIZE > sectorsize case.
2281 		 */
2282 		u32 l = min(sectorsize, len);
2283 
2284 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2285 		if (!spage) {
2286 leave_nomem:
2287 			spin_lock(&sctx->stat_lock);
2288 			sctx->stat.malloc_errors++;
2289 			spin_unlock(&sctx->stat_lock);
2290 			scrub_block_put(sblock);
2291 			return -ENOMEM;
2292 		}
2293 		ASSERT(index < SCRUB_MAX_PAGES_PER_BLOCK);
2294 		scrub_page_get(spage);
2295 		sblock->pagev[index] = spage;
2296 		spage->sblock = sblock;
2297 		spage->dev = dev;
2298 		spage->flags = flags;
2299 		spage->generation = gen;
2300 		spage->logical = logical;
2301 		spage->physical = physical;
2302 		spage->physical_for_dev_replace = physical_for_dev_replace;
2303 		spage->mirror_num = mirror_num;
2304 		if (csum) {
2305 			spage->have_csum = 1;
2306 			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2307 		} else {
2308 			spage->have_csum = 0;
2309 		}
2310 		sblock->page_count++;
2311 		spage->page = alloc_page(GFP_KERNEL);
2312 		if (!spage->page)
2313 			goto leave_nomem;
2314 		len -= l;
2315 		logical += l;
2316 		physical += l;
2317 		physical_for_dev_replace += l;
2318 	}
2319 
2320 	WARN_ON(sblock->page_count == 0);
2321 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2322 		/*
2323 		 * This case should only be hit for RAID 5/6 device replace. See
2324 		 * the comment in scrub_missing_raid56_pages() for details.
2325 		 */
2326 		scrub_missing_raid56_pages(sblock);
2327 	} else {
2328 		for (index = 0; index < sblock->page_count; index++) {
2329 			struct scrub_page *spage = sblock->pagev[index];
2330 			int ret;
2331 
2332 			ret = scrub_add_page_to_rd_bio(sctx, spage);
2333 			if (ret) {
2334 				scrub_block_put(sblock);
2335 				return ret;
2336 			}
2337 		}
2338 
2339 		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2340 			scrub_submit(sctx);
2341 	}
2342 
2343 	/* last one frees, either here or in bio completion for last page */
2344 	scrub_block_put(sblock);
2345 	return 0;
2346 }
2347 
2348 static void scrub_bio_end_io(struct bio *bio)
2349 {
2350 	struct scrub_bio *sbio = bio->bi_private;
2351 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2352 
2353 	sbio->status = bio->bi_status;
2354 	sbio->bio = bio;
2355 
2356 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2357 }
2358 
2359 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2360 {
2361 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2362 	struct scrub_ctx *sctx = sbio->sctx;
2363 	int i;
2364 
2365 	ASSERT(sbio->page_count <= SCRUB_PAGES_PER_BIO);
2366 	if (sbio->status) {
2367 		for (i = 0; i < sbio->page_count; i++) {
2368 			struct scrub_page *spage = sbio->pagev[i];
2369 
2370 			spage->io_error = 1;
2371 			spage->sblock->no_io_error_seen = 0;
2372 		}
2373 	}
2374 
2375 	/* now complete the scrub_block items that have all pages completed */
2376 	for (i = 0; i < sbio->page_count; i++) {
2377 		struct scrub_page *spage = sbio->pagev[i];
2378 		struct scrub_block *sblock = spage->sblock;
2379 
2380 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2381 			scrub_block_complete(sblock);
2382 		scrub_block_put(sblock);
2383 	}
2384 
2385 	bio_put(sbio->bio);
2386 	sbio->bio = NULL;
2387 	spin_lock(&sctx->list_lock);
2388 	sbio->next_free = sctx->first_free;
2389 	sctx->first_free = sbio->index;
2390 	spin_unlock(&sctx->list_lock);
2391 
2392 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2393 		mutex_lock(&sctx->wr_lock);
2394 		scrub_wr_submit(sctx);
2395 		mutex_unlock(&sctx->wr_lock);
2396 	}
2397 
2398 	scrub_pending_bio_dec(sctx);
2399 }
2400 
2401 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2402 				       unsigned long *bitmap,
2403 				       u64 start, u32 len)
2404 {
2405 	u64 offset;
2406 	u32 nsectors;
2407 	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2408 
2409 	if (len >= sparity->stripe_len) {
2410 		bitmap_set(bitmap, 0, sparity->nsectors);
2411 		return;
2412 	}
2413 
2414 	start -= sparity->logic_start;
2415 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2416 	offset = offset >> sectorsize_bits;
2417 	nsectors = len >> sectorsize_bits;
2418 
2419 	if (offset + nsectors <= sparity->nsectors) {
2420 		bitmap_set(bitmap, offset, nsectors);
2421 		return;
2422 	}
2423 
2424 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2425 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2426 }
2427 
2428 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2429 						   u64 start, u32 len)
2430 {
2431 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2432 }
2433 
2434 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2435 						  u64 start, u32 len)
2436 {
2437 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2438 }
2439 
2440 static void scrub_block_complete(struct scrub_block *sblock)
2441 {
2442 	int corrupted = 0;
2443 
2444 	if (!sblock->no_io_error_seen) {
2445 		corrupted = 1;
2446 		scrub_handle_errored_block(sblock);
2447 	} else {
2448 		/*
2449 		 * if has checksum error, write via repair mechanism in
2450 		 * dev replace case, otherwise write here in dev replace
2451 		 * case.
2452 		 */
2453 		corrupted = scrub_checksum(sblock);
2454 		if (!corrupted && sblock->sctx->is_dev_replace)
2455 			scrub_write_block_to_dev_replace(sblock);
2456 	}
2457 
2458 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2459 		u64 start = sblock->pagev[0]->logical;
2460 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2461 			  sblock->sctx->fs_info->sectorsize;
2462 
2463 		ASSERT(end - start <= U32_MAX);
2464 		scrub_parity_mark_sectors_error(sblock->sparity,
2465 						start, end - start);
2466 	}
2467 }
2468 
2469 static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
2470 {
2471 	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
2472 	list_del(&sum->list);
2473 	kfree(sum);
2474 }
2475 
2476 /*
2477  * Find the desired csum for range [logical, logical + sectorsize), and store
2478  * the csum into @csum.
2479  *
2480  * The search source is sctx->csum_list, which is a pre-populated list
2481  * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2482  * that is before @logical.
2483  *
2484  * Return 0 if there is no csum for the range.
2485  * Return 1 if there is csum for the range and copied to @csum.
2486  */
2487 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2488 {
2489 	bool found = false;
2490 
2491 	while (!list_empty(&sctx->csum_list)) {
2492 		struct btrfs_ordered_sum *sum = NULL;
2493 		unsigned long index;
2494 		unsigned long num_sectors;
2495 
2496 		sum = list_first_entry(&sctx->csum_list,
2497 				       struct btrfs_ordered_sum, list);
2498 		/* The current csum range is beyond our range, no csum found */
2499 		if (sum->bytenr > logical)
2500 			break;
2501 
2502 		/*
2503 		 * The current sum is before our bytenr, since scrub is always
2504 		 * done in bytenr order, the csum will never be used anymore,
2505 		 * clean it up so that later calls won't bother with the range,
2506 		 * and continue search the next range.
2507 		 */
2508 		if (sum->bytenr + sum->len <= logical) {
2509 			drop_csum_range(sctx, sum);
2510 			continue;
2511 		}
2512 
2513 		/* Now the csum range covers our bytenr, copy the csum */
2514 		found = true;
2515 		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
2516 		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2517 
2518 		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
2519 		       sctx->fs_info->csum_size);
2520 
2521 		/* Cleanup the range if we're at the end of the csum range */
2522 		if (index == num_sectors - 1)
2523 			drop_csum_range(sctx, sum);
2524 		break;
2525 	}
2526 	if (!found)
2527 		return 0;
2528 	return 1;
2529 }
2530 
2531 /* scrub extent tries to collect up to 64 kB for each bio */
2532 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2533 			u64 logical, u32 len,
2534 			u64 physical, struct btrfs_device *dev, u64 flags,
2535 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2536 {
2537 	int ret;
2538 	u8 csum[BTRFS_CSUM_SIZE];
2539 	u32 blocksize;
2540 
2541 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2542 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2543 			blocksize = map->stripe_len;
2544 		else
2545 			blocksize = sctx->fs_info->sectorsize;
2546 		spin_lock(&sctx->stat_lock);
2547 		sctx->stat.data_extents_scrubbed++;
2548 		sctx->stat.data_bytes_scrubbed += len;
2549 		spin_unlock(&sctx->stat_lock);
2550 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2551 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2552 			blocksize = map->stripe_len;
2553 		else
2554 			blocksize = sctx->fs_info->nodesize;
2555 		spin_lock(&sctx->stat_lock);
2556 		sctx->stat.tree_extents_scrubbed++;
2557 		sctx->stat.tree_bytes_scrubbed += len;
2558 		spin_unlock(&sctx->stat_lock);
2559 	} else {
2560 		blocksize = sctx->fs_info->sectorsize;
2561 		WARN_ON(1);
2562 	}
2563 
2564 	while (len) {
2565 		u32 l = min(len, blocksize);
2566 		int have_csum = 0;
2567 
2568 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2569 			/* push csums to sbio */
2570 			have_csum = scrub_find_csum(sctx, logical, csum);
2571 			if (have_csum == 0)
2572 				++sctx->stat.no_csum;
2573 		}
2574 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2575 				  mirror_num, have_csum ? csum : NULL,
2576 				  physical_for_dev_replace);
2577 		if (ret)
2578 			return ret;
2579 		len -= l;
2580 		logical += l;
2581 		physical += l;
2582 		physical_for_dev_replace += l;
2583 	}
2584 	return 0;
2585 }
2586 
2587 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2588 				  u64 logical, u32 len,
2589 				  u64 physical, struct btrfs_device *dev,
2590 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2591 {
2592 	struct scrub_ctx *sctx = sparity->sctx;
2593 	struct scrub_block *sblock;
2594 	const u32 sectorsize = sctx->fs_info->sectorsize;
2595 	int index;
2596 
2597 	ASSERT(IS_ALIGNED(len, sectorsize));
2598 
2599 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2600 	if (!sblock) {
2601 		spin_lock(&sctx->stat_lock);
2602 		sctx->stat.malloc_errors++;
2603 		spin_unlock(&sctx->stat_lock);
2604 		return -ENOMEM;
2605 	}
2606 
2607 	/* one ref inside this function, plus one for each page added to
2608 	 * a bio later on */
2609 	refcount_set(&sblock->refs, 1);
2610 	sblock->sctx = sctx;
2611 	sblock->no_io_error_seen = 1;
2612 	sblock->sparity = sparity;
2613 	scrub_parity_get(sparity);
2614 
2615 	for (index = 0; len > 0; index++) {
2616 		struct scrub_page *spage;
2617 
2618 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2619 		if (!spage) {
2620 leave_nomem:
2621 			spin_lock(&sctx->stat_lock);
2622 			sctx->stat.malloc_errors++;
2623 			spin_unlock(&sctx->stat_lock);
2624 			scrub_block_put(sblock);
2625 			return -ENOMEM;
2626 		}
2627 		ASSERT(index < SCRUB_MAX_PAGES_PER_BLOCK);
2628 		/* For scrub block */
2629 		scrub_page_get(spage);
2630 		sblock->pagev[index] = spage;
2631 		/* For scrub parity */
2632 		scrub_page_get(spage);
2633 		list_add_tail(&spage->list, &sparity->spages);
2634 		spage->sblock = sblock;
2635 		spage->dev = dev;
2636 		spage->flags = flags;
2637 		spage->generation = gen;
2638 		spage->logical = logical;
2639 		spage->physical = physical;
2640 		spage->mirror_num = mirror_num;
2641 		if (csum) {
2642 			spage->have_csum = 1;
2643 			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2644 		} else {
2645 			spage->have_csum = 0;
2646 		}
2647 		sblock->page_count++;
2648 		spage->page = alloc_page(GFP_KERNEL);
2649 		if (!spage->page)
2650 			goto leave_nomem;
2651 
2652 
2653 		/* Iterate over the stripe range in sectorsize steps */
2654 		len -= sectorsize;
2655 		logical += sectorsize;
2656 		physical += sectorsize;
2657 	}
2658 
2659 	WARN_ON(sblock->page_count == 0);
2660 	for (index = 0; index < sblock->page_count; index++) {
2661 		struct scrub_page *spage = sblock->pagev[index];
2662 		int ret;
2663 
2664 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2665 		if (ret) {
2666 			scrub_block_put(sblock);
2667 			return ret;
2668 		}
2669 	}
2670 
2671 	/* last one frees, either here or in bio completion for last page */
2672 	scrub_block_put(sblock);
2673 	return 0;
2674 }
2675 
2676 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2677 				   u64 logical, u32 len,
2678 				   u64 physical, struct btrfs_device *dev,
2679 				   u64 flags, u64 gen, int mirror_num)
2680 {
2681 	struct scrub_ctx *sctx = sparity->sctx;
2682 	int ret;
2683 	u8 csum[BTRFS_CSUM_SIZE];
2684 	u32 blocksize;
2685 
2686 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2687 		scrub_parity_mark_sectors_error(sparity, logical, len);
2688 		return 0;
2689 	}
2690 
2691 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2692 		blocksize = sparity->stripe_len;
2693 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2694 		blocksize = sparity->stripe_len;
2695 	} else {
2696 		blocksize = sctx->fs_info->sectorsize;
2697 		WARN_ON(1);
2698 	}
2699 
2700 	while (len) {
2701 		u32 l = min(len, blocksize);
2702 		int have_csum = 0;
2703 
2704 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2705 			/* push csums to sbio */
2706 			have_csum = scrub_find_csum(sctx, logical, csum);
2707 			if (have_csum == 0)
2708 				goto skip;
2709 		}
2710 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2711 					     flags, gen, mirror_num,
2712 					     have_csum ? csum : NULL);
2713 		if (ret)
2714 			return ret;
2715 skip:
2716 		len -= l;
2717 		logical += l;
2718 		physical += l;
2719 	}
2720 	return 0;
2721 }
2722 
2723 /*
2724  * Given a physical address, this will calculate it's
2725  * logical offset. if this is a parity stripe, it will return
2726  * the most left data stripe's logical offset.
2727  *
2728  * return 0 if it is a data stripe, 1 means parity stripe.
2729  */
2730 static int get_raid56_logic_offset(u64 physical, int num,
2731 				   struct map_lookup *map, u64 *offset,
2732 				   u64 *stripe_start)
2733 {
2734 	int i;
2735 	int j = 0;
2736 	u64 stripe_nr;
2737 	u64 last_offset;
2738 	u32 stripe_index;
2739 	u32 rot;
2740 	const int data_stripes = nr_data_stripes(map);
2741 
2742 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2743 	if (stripe_start)
2744 		*stripe_start = last_offset;
2745 
2746 	*offset = last_offset;
2747 	for (i = 0; i < data_stripes; i++) {
2748 		*offset = last_offset + i * map->stripe_len;
2749 
2750 		stripe_nr = div64_u64(*offset, map->stripe_len);
2751 		stripe_nr = div_u64(stripe_nr, data_stripes);
2752 
2753 		/* Work out the disk rotation on this stripe-set */
2754 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2755 		/* calculate which stripe this data locates */
2756 		rot += i;
2757 		stripe_index = rot % map->num_stripes;
2758 		if (stripe_index == num)
2759 			return 0;
2760 		if (stripe_index < num)
2761 			j++;
2762 	}
2763 	*offset = last_offset + j * map->stripe_len;
2764 	return 1;
2765 }
2766 
2767 static void scrub_free_parity(struct scrub_parity *sparity)
2768 {
2769 	struct scrub_ctx *sctx = sparity->sctx;
2770 	struct scrub_page *curr, *next;
2771 	int nbits;
2772 
2773 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2774 	if (nbits) {
2775 		spin_lock(&sctx->stat_lock);
2776 		sctx->stat.read_errors += nbits;
2777 		sctx->stat.uncorrectable_errors += nbits;
2778 		spin_unlock(&sctx->stat_lock);
2779 	}
2780 
2781 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2782 		list_del_init(&curr->list);
2783 		scrub_page_put(curr);
2784 	}
2785 
2786 	kfree(sparity);
2787 }
2788 
2789 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2790 {
2791 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2792 						    work);
2793 	struct scrub_ctx *sctx = sparity->sctx;
2794 
2795 	scrub_free_parity(sparity);
2796 	scrub_pending_bio_dec(sctx);
2797 }
2798 
2799 static void scrub_parity_bio_endio(struct bio *bio)
2800 {
2801 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2802 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2803 
2804 	if (bio->bi_status)
2805 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2806 			  sparity->nsectors);
2807 
2808 	bio_put(bio);
2809 
2810 	btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
2811 			NULL);
2812 	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2813 }
2814 
2815 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2816 {
2817 	struct scrub_ctx *sctx = sparity->sctx;
2818 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2819 	struct bio *bio;
2820 	struct btrfs_raid_bio *rbio;
2821 	struct btrfs_io_context *bioc = NULL;
2822 	u64 length;
2823 	int ret;
2824 
2825 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2826 			   sparity->nsectors))
2827 		goto out;
2828 
2829 	length = sparity->logic_end - sparity->logic_start;
2830 
2831 	btrfs_bio_counter_inc_blocked(fs_info);
2832 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2833 			       &length, &bioc);
2834 	if (ret || !bioc || !bioc->raid_map)
2835 		goto bioc_out;
2836 
2837 	bio = btrfs_bio_alloc(BIO_MAX_VECS);
2838 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2839 	bio->bi_private = sparity;
2840 	bio->bi_end_io = scrub_parity_bio_endio;
2841 
2842 	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, length,
2843 					      sparity->scrub_dev,
2844 					      sparity->dbitmap,
2845 					      sparity->nsectors);
2846 	if (!rbio)
2847 		goto rbio_out;
2848 
2849 	scrub_pending_bio_inc(sctx);
2850 	raid56_parity_submit_scrub_rbio(rbio);
2851 	return;
2852 
2853 rbio_out:
2854 	bio_put(bio);
2855 bioc_out:
2856 	btrfs_bio_counter_dec(fs_info);
2857 	btrfs_put_bioc(bioc);
2858 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2859 		  sparity->nsectors);
2860 	spin_lock(&sctx->stat_lock);
2861 	sctx->stat.malloc_errors++;
2862 	spin_unlock(&sctx->stat_lock);
2863 out:
2864 	scrub_free_parity(sparity);
2865 }
2866 
2867 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2868 {
2869 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2870 }
2871 
2872 static void scrub_parity_get(struct scrub_parity *sparity)
2873 {
2874 	refcount_inc(&sparity->refs);
2875 }
2876 
2877 static void scrub_parity_put(struct scrub_parity *sparity)
2878 {
2879 	if (!refcount_dec_and_test(&sparity->refs))
2880 		return;
2881 
2882 	scrub_parity_check_and_repair(sparity);
2883 }
2884 
2885 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2886 						  struct map_lookup *map,
2887 						  struct btrfs_device *sdev,
2888 						  u64 logic_start,
2889 						  u64 logic_end)
2890 {
2891 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2892 	struct btrfs_root *root = btrfs_extent_root(fs_info, logic_start);
2893 	struct btrfs_root *csum_root;
2894 	struct btrfs_extent_item *extent;
2895 	struct btrfs_io_context *bioc = NULL;
2896 	struct btrfs_path *path;
2897 	u64 flags;
2898 	int ret;
2899 	int slot;
2900 	struct extent_buffer *l;
2901 	struct btrfs_key key;
2902 	u64 generation;
2903 	u64 extent_logical;
2904 	u64 extent_physical;
2905 	/* Check the comment in scrub_stripe() for why u32 is enough here */
2906 	u32 extent_len;
2907 	u64 mapped_length;
2908 	struct btrfs_device *extent_dev;
2909 	struct scrub_parity *sparity;
2910 	int nsectors;
2911 	int bitmap_len;
2912 	int extent_mirror_num;
2913 	int stop_loop = 0;
2914 
2915 	path = btrfs_alloc_path();
2916 	if (!path) {
2917 		spin_lock(&sctx->stat_lock);
2918 		sctx->stat.malloc_errors++;
2919 		spin_unlock(&sctx->stat_lock);
2920 		return -ENOMEM;
2921 	}
2922 	path->search_commit_root = 1;
2923 	path->skip_locking = 1;
2924 
2925 	ASSERT(map->stripe_len <= U32_MAX);
2926 	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
2927 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2928 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2929 			  GFP_NOFS);
2930 	if (!sparity) {
2931 		spin_lock(&sctx->stat_lock);
2932 		sctx->stat.malloc_errors++;
2933 		spin_unlock(&sctx->stat_lock);
2934 		btrfs_free_path(path);
2935 		return -ENOMEM;
2936 	}
2937 
2938 	ASSERT(map->stripe_len <= U32_MAX);
2939 	sparity->stripe_len = map->stripe_len;
2940 	sparity->nsectors = nsectors;
2941 	sparity->sctx = sctx;
2942 	sparity->scrub_dev = sdev;
2943 	sparity->logic_start = logic_start;
2944 	sparity->logic_end = logic_end;
2945 	refcount_set(&sparity->refs, 1);
2946 	INIT_LIST_HEAD(&sparity->spages);
2947 	sparity->dbitmap = sparity->bitmap;
2948 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2949 
2950 	ret = 0;
2951 	while (logic_start < logic_end) {
2952 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2953 			key.type = BTRFS_METADATA_ITEM_KEY;
2954 		else
2955 			key.type = BTRFS_EXTENT_ITEM_KEY;
2956 		key.objectid = logic_start;
2957 		key.offset = (u64)-1;
2958 
2959 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2960 		if (ret < 0)
2961 			goto out;
2962 
2963 		if (ret > 0) {
2964 			ret = btrfs_previous_extent_item(root, path, 0);
2965 			if (ret < 0)
2966 				goto out;
2967 			if (ret > 0) {
2968 				btrfs_release_path(path);
2969 				ret = btrfs_search_slot(NULL, root, &key,
2970 							path, 0, 0);
2971 				if (ret < 0)
2972 					goto out;
2973 			}
2974 		}
2975 
2976 		stop_loop = 0;
2977 		while (1) {
2978 			u64 bytes;
2979 
2980 			l = path->nodes[0];
2981 			slot = path->slots[0];
2982 			if (slot >= btrfs_header_nritems(l)) {
2983 				ret = btrfs_next_leaf(root, path);
2984 				if (ret == 0)
2985 					continue;
2986 				if (ret < 0)
2987 					goto out;
2988 
2989 				stop_loop = 1;
2990 				break;
2991 			}
2992 			btrfs_item_key_to_cpu(l, &key, slot);
2993 
2994 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2995 			    key.type != BTRFS_METADATA_ITEM_KEY)
2996 				goto next;
2997 
2998 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2999 				bytes = fs_info->nodesize;
3000 			else
3001 				bytes = key.offset;
3002 
3003 			if (key.objectid + bytes <= logic_start)
3004 				goto next;
3005 
3006 			if (key.objectid >= logic_end) {
3007 				stop_loop = 1;
3008 				break;
3009 			}
3010 
3011 			while (key.objectid >= logic_start + map->stripe_len)
3012 				logic_start += map->stripe_len;
3013 
3014 			extent = btrfs_item_ptr(l, slot,
3015 						struct btrfs_extent_item);
3016 			flags = btrfs_extent_flags(l, extent);
3017 			generation = btrfs_extent_generation(l, extent);
3018 
3019 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3020 			    (key.objectid < logic_start ||
3021 			     key.objectid + bytes >
3022 			     logic_start + map->stripe_len)) {
3023 				btrfs_err(fs_info,
3024 					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3025 					  key.objectid, logic_start);
3026 				spin_lock(&sctx->stat_lock);
3027 				sctx->stat.uncorrectable_errors++;
3028 				spin_unlock(&sctx->stat_lock);
3029 				goto next;
3030 			}
3031 again:
3032 			extent_logical = key.objectid;
3033 			ASSERT(bytes <= U32_MAX);
3034 			extent_len = bytes;
3035 
3036 			if (extent_logical < logic_start) {
3037 				extent_len -= logic_start - extent_logical;
3038 				extent_logical = logic_start;
3039 			}
3040 
3041 			if (extent_logical + extent_len >
3042 			    logic_start + map->stripe_len)
3043 				extent_len = logic_start + map->stripe_len -
3044 					     extent_logical;
3045 
3046 			scrub_parity_mark_sectors_data(sparity, extent_logical,
3047 						       extent_len);
3048 
3049 			mapped_length = extent_len;
3050 			bioc = NULL;
3051 			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3052 					extent_logical, &mapped_length, &bioc,
3053 					0);
3054 			if (!ret) {
3055 				if (!bioc || mapped_length < extent_len)
3056 					ret = -EIO;
3057 			}
3058 			if (ret) {
3059 				btrfs_put_bioc(bioc);
3060 				goto out;
3061 			}
3062 			extent_physical = bioc->stripes[0].physical;
3063 			extent_mirror_num = bioc->mirror_num;
3064 			extent_dev = bioc->stripes[0].dev;
3065 			btrfs_put_bioc(bioc);
3066 
3067 			csum_root = btrfs_csum_root(fs_info, extent_logical);
3068 			ret = btrfs_lookup_csums_range(csum_root,
3069 						extent_logical,
3070 						extent_logical + extent_len - 1,
3071 						&sctx->csum_list, 1);
3072 			if (ret)
3073 				goto out;
3074 
3075 			ret = scrub_extent_for_parity(sparity, extent_logical,
3076 						      extent_len,
3077 						      extent_physical,
3078 						      extent_dev, flags,
3079 						      generation,
3080 						      extent_mirror_num);
3081 
3082 			scrub_free_csums(sctx);
3083 
3084 			if (ret)
3085 				goto out;
3086 
3087 			if (extent_logical + extent_len <
3088 			    key.objectid + bytes) {
3089 				logic_start += map->stripe_len;
3090 
3091 				if (logic_start >= logic_end) {
3092 					stop_loop = 1;
3093 					break;
3094 				}
3095 
3096 				if (logic_start < key.objectid + bytes) {
3097 					cond_resched();
3098 					goto again;
3099 				}
3100 			}
3101 next:
3102 			path->slots[0]++;
3103 		}
3104 
3105 		btrfs_release_path(path);
3106 
3107 		if (stop_loop)
3108 			break;
3109 
3110 		logic_start += map->stripe_len;
3111 	}
3112 out:
3113 	if (ret < 0) {
3114 		ASSERT(logic_end - logic_start <= U32_MAX);
3115 		scrub_parity_mark_sectors_error(sparity, logic_start,
3116 						logic_end - logic_start);
3117 	}
3118 	scrub_parity_put(sparity);
3119 	scrub_submit(sctx);
3120 	mutex_lock(&sctx->wr_lock);
3121 	scrub_wr_submit(sctx);
3122 	mutex_unlock(&sctx->wr_lock);
3123 
3124 	btrfs_free_path(path);
3125 	return ret < 0 ? ret : 0;
3126 }
3127 
3128 static void sync_replace_for_zoned(struct scrub_ctx *sctx)
3129 {
3130 	if (!btrfs_is_zoned(sctx->fs_info))
3131 		return;
3132 
3133 	sctx->flush_all_writes = true;
3134 	scrub_submit(sctx);
3135 	mutex_lock(&sctx->wr_lock);
3136 	scrub_wr_submit(sctx);
3137 	mutex_unlock(&sctx->wr_lock);
3138 
3139 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3140 }
3141 
3142 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
3143 					u64 physical, u64 physical_end)
3144 {
3145 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3146 	int ret = 0;
3147 
3148 	if (!btrfs_is_zoned(fs_info))
3149 		return 0;
3150 
3151 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3152 
3153 	mutex_lock(&sctx->wr_lock);
3154 	if (sctx->write_pointer < physical_end) {
3155 		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
3156 						    physical,
3157 						    sctx->write_pointer);
3158 		if (ret)
3159 			btrfs_err(fs_info,
3160 				  "zoned: failed to recover write pointer");
3161 	}
3162 	mutex_unlock(&sctx->wr_lock);
3163 	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
3164 
3165 	return ret;
3166 }
3167 
3168 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3169 					   struct btrfs_block_group *bg,
3170 					   struct map_lookup *map,
3171 					   struct btrfs_device *scrub_dev,
3172 					   int stripe_index, u64 dev_extent_len)
3173 {
3174 	struct btrfs_path *path;
3175 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3176 	struct btrfs_root *root;
3177 	struct btrfs_root *csum_root;
3178 	struct btrfs_extent_item *extent;
3179 	struct blk_plug plug;
3180 	const u64 chunk_logical = bg->start;
3181 	u64 flags;
3182 	int ret;
3183 	int slot;
3184 	u64 nstripes;
3185 	struct extent_buffer *l;
3186 	u64 physical;
3187 	u64 logical;
3188 	u64 logic_end;
3189 	u64 physical_end;
3190 	u64 generation;
3191 	int mirror_num;
3192 	struct btrfs_key key;
3193 	u64 increment = map->stripe_len;
3194 	u64 offset;
3195 	u64 extent_logical;
3196 	u64 extent_physical;
3197 	/*
3198 	 * Unlike chunk length, extent length should never go beyond
3199 	 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here.
3200 	 */
3201 	u32 extent_len;
3202 	u64 stripe_logical;
3203 	u64 stripe_end;
3204 	struct btrfs_device *extent_dev;
3205 	int extent_mirror_num;
3206 	int stop_loop = 0;
3207 
3208 	physical = map->stripes[stripe_index].physical;
3209 	offset = 0;
3210 	nstripes = div64_u64(dev_extent_len, map->stripe_len);
3211 	mirror_num = 1;
3212 	increment = map->stripe_len;
3213 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3214 		offset = map->stripe_len * stripe_index;
3215 		increment = map->stripe_len * map->num_stripes;
3216 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3217 		int factor = map->num_stripes / map->sub_stripes;
3218 		offset = map->stripe_len * (stripe_index / map->sub_stripes);
3219 		increment = map->stripe_len * factor;
3220 		mirror_num = stripe_index % map->sub_stripes + 1;
3221 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3222 		mirror_num = stripe_index % map->num_stripes + 1;
3223 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3224 		mirror_num = stripe_index % map->num_stripes + 1;
3225 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3226 		get_raid56_logic_offset(physical, stripe_index, map, &offset,
3227 					NULL);
3228 		increment = map->stripe_len * nr_data_stripes(map);
3229 	}
3230 
3231 	path = btrfs_alloc_path();
3232 	if (!path)
3233 		return -ENOMEM;
3234 
3235 	/*
3236 	 * work on commit root. The related disk blocks are static as
3237 	 * long as COW is applied. This means, it is save to rewrite
3238 	 * them to repair disk errors without any race conditions
3239 	 */
3240 	path->search_commit_root = 1;
3241 	path->skip_locking = 1;
3242 	path->reada = READA_FORWARD;
3243 
3244 	logical = chunk_logical + offset;
3245 	physical_end = physical + nstripes * map->stripe_len;
3246 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3247 		get_raid56_logic_offset(physical_end, stripe_index,
3248 					map, &logic_end, NULL);
3249 		logic_end += chunk_logical;
3250 	} else {
3251 		logic_end = logical + increment * nstripes;
3252 	}
3253 	wait_event(sctx->list_wait,
3254 		   atomic_read(&sctx->bios_in_flight) == 0);
3255 	scrub_blocked_if_needed(fs_info);
3256 
3257 	root = btrfs_extent_root(fs_info, logical);
3258 	csum_root = btrfs_csum_root(fs_info, logical);
3259 
3260 	/*
3261 	 * collect all data csums for the stripe to avoid seeking during
3262 	 * the scrub. This might currently (crc32) end up to be about 1MB
3263 	 */
3264 	blk_start_plug(&plug);
3265 
3266 	if (sctx->is_dev_replace &&
3267 	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
3268 		mutex_lock(&sctx->wr_lock);
3269 		sctx->write_pointer = physical;
3270 		mutex_unlock(&sctx->wr_lock);
3271 		sctx->flush_all_writes = true;
3272 	}
3273 
3274 	/*
3275 	 * now find all extents for each stripe and scrub them
3276 	 */
3277 	ret = 0;
3278 	while (physical < physical_end) {
3279 		/*
3280 		 * canceled?
3281 		 */
3282 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3283 		    atomic_read(&sctx->cancel_req)) {
3284 			ret = -ECANCELED;
3285 			goto out;
3286 		}
3287 		/*
3288 		 * check to see if we have to pause
3289 		 */
3290 		if (atomic_read(&fs_info->scrub_pause_req)) {
3291 			/* push queued extents */
3292 			sctx->flush_all_writes = true;
3293 			scrub_submit(sctx);
3294 			mutex_lock(&sctx->wr_lock);
3295 			scrub_wr_submit(sctx);
3296 			mutex_unlock(&sctx->wr_lock);
3297 			wait_event(sctx->list_wait,
3298 				   atomic_read(&sctx->bios_in_flight) == 0);
3299 			sctx->flush_all_writes = false;
3300 			scrub_blocked_if_needed(fs_info);
3301 		}
3302 
3303 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3304 			ret = get_raid56_logic_offset(physical, stripe_index,
3305 						      map, &logical,
3306 						      &stripe_logical);
3307 			logical += chunk_logical;
3308 			if (ret) {
3309 				/* it is parity strip */
3310 				stripe_logical += chunk_logical;
3311 				stripe_end = stripe_logical + increment;
3312 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3313 							  stripe_logical,
3314 							  stripe_end);
3315 				if (ret)
3316 					goto out;
3317 				goto skip;
3318 			}
3319 		}
3320 
3321 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3322 			key.type = BTRFS_METADATA_ITEM_KEY;
3323 		else
3324 			key.type = BTRFS_EXTENT_ITEM_KEY;
3325 		key.objectid = logical;
3326 		key.offset = (u64)-1;
3327 
3328 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3329 		if (ret < 0)
3330 			goto out;
3331 
3332 		if (ret > 0) {
3333 			ret = btrfs_previous_extent_item(root, path, 0);
3334 			if (ret < 0)
3335 				goto out;
3336 			if (ret > 0) {
3337 				/* there's no smaller item, so stick with the
3338 				 * larger one */
3339 				btrfs_release_path(path);
3340 				ret = btrfs_search_slot(NULL, root, &key,
3341 							path, 0, 0);
3342 				if (ret < 0)
3343 					goto out;
3344 			}
3345 		}
3346 
3347 		stop_loop = 0;
3348 		while (1) {
3349 			u64 bytes;
3350 
3351 			l = path->nodes[0];
3352 			slot = path->slots[0];
3353 			if (slot >= btrfs_header_nritems(l)) {
3354 				ret = btrfs_next_leaf(root, path);
3355 				if (ret == 0)
3356 					continue;
3357 				if (ret < 0)
3358 					goto out;
3359 
3360 				stop_loop = 1;
3361 				break;
3362 			}
3363 			btrfs_item_key_to_cpu(l, &key, slot);
3364 
3365 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3366 			    key.type != BTRFS_METADATA_ITEM_KEY)
3367 				goto next;
3368 
3369 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3370 				bytes = fs_info->nodesize;
3371 			else
3372 				bytes = key.offset;
3373 
3374 			if (key.objectid + bytes <= logical)
3375 				goto next;
3376 
3377 			if (key.objectid >= logical + map->stripe_len) {
3378 				/* out of this device extent */
3379 				if (key.objectid >= logic_end)
3380 					stop_loop = 1;
3381 				break;
3382 			}
3383 
3384 			/*
3385 			 * If our block group was removed in the meanwhile, just
3386 			 * stop scrubbing since there is no point in continuing.
3387 			 * Continuing would prevent reusing its device extents
3388 			 * for new block groups for a long time.
3389 			 */
3390 			spin_lock(&bg->lock);
3391 			if (bg->removed) {
3392 				spin_unlock(&bg->lock);
3393 				ret = 0;
3394 				goto out;
3395 			}
3396 			spin_unlock(&bg->lock);
3397 
3398 			extent = btrfs_item_ptr(l, slot,
3399 						struct btrfs_extent_item);
3400 			flags = btrfs_extent_flags(l, extent);
3401 			generation = btrfs_extent_generation(l, extent);
3402 
3403 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3404 			    (key.objectid < logical ||
3405 			     key.objectid + bytes >
3406 			     logical + map->stripe_len)) {
3407 				btrfs_err(fs_info,
3408 					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3409 				       key.objectid, logical);
3410 				spin_lock(&sctx->stat_lock);
3411 				sctx->stat.uncorrectable_errors++;
3412 				spin_unlock(&sctx->stat_lock);
3413 				goto next;
3414 			}
3415 
3416 again:
3417 			extent_logical = key.objectid;
3418 			ASSERT(bytes <= U32_MAX);
3419 			extent_len = bytes;
3420 
3421 			/*
3422 			 * trim extent to this stripe
3423 			 */
3424 			if (extent_logical < logical) {
3425 				extent_len -= logical - extent_logical;
3426 				extent_logical = logical;
3427 			}
3428 			if (extent_logical + extent_len >
3429 			    logical + map->stripe_len) {
3430 				extent_len = logical + map->stripe_len -
3431 					     extent_logical;
3432 			}
3433 
3434 			extent_physical = extent_logical - logical + physical;
3435 			extent_dev = scrub_dev;
3436 			extent_mirror_num = mirror_num;
3437 			if (sctx->is_dev_replace)
3438 				scrub_remap_extent(fs_info, extent_logical,
3439 						   extent_len, &extent_physical,
3440 						   &extent_dev,
3441 						   &extent_mirror_num);
3442 
3443 			if (flags & BTRFS_EXTENT_FLAG_DATA) {
3444 				ret = btrfs_lookup_csums_range(csum_root,
3445 						extent_logical,
3446 						extent_logical + extent_len - 1,
3447 						&sctx->csum_list, 1);
3448 				if (ret)
3449 					goto out;
3450 			}
3451 
3452 			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3453 					   extent_physical, extent_dev, flags,
3454 					   generation, extent_mirror_num,
3455 					   extent_logical - logical + physical);
3456 
3457 			scrub_free_csums(sctx);
3458 
3459 			if (ret)
3460 				goto out;
3461 
3462 			if (sctx->is_dev_replace)
3463 				sync_replace_for_zoned(sctx);
3464 
3465 			if (extent_logical + extent_len <
3466 			    key.objectid + bytes) {
3467 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3468 					/*
3469 					 * loop until we find next data stripe
3470 					 * or we have finished all stripes.
3471 					 */
3472 loop:
3473 					physical += map->stripe_len;
3474 					ret = get_raid56_logic_offset(physical,
3475 							stripe_index, map,
3476 							&logical, &stripe_logical);
3477 					logical += chunk_logical;
3478 
3479 					if (ret && physical < physical_end) {
3480 						stripe_logical += chunk_logical;
3481 						stripe_end = stripe_logical +
3482 								increment;
3483 						ret = scrub_raid56_parity(sctx,
3484 							map, scrub_dev,
3485 							stripe_logical,
3486 							stripe_end);
3487 						if (ret)
3488 							goto out;
3489 						goto loop;
3490 					}
3491 				} else {
3492 					physical += map->stripe_len;
3493 					logical += increment;
3494 				}
3495 				if (logical < key.objectid + bytes) {
3496 					cond_resched();
3497 					goto again;
3498 				}
3499 
3500 				if (physical >= physical_end) {
3501 					stop_loop = 1;
3502 					break;
3503 				}
3504 			}
3505 next:
3506 			path->slots[0]++;
3507 		}
3508 		btrfs_release_path(path);
3509 skip:
3510 		logical += increment;
3511 		physical += map->stripe_len;
3512 		spin_lock(&sctx->stat_lock);
3513 		if (stop_loop)
3514 			sctx->stat.last_physical = map->stripes[stripe_index].physical +
3515 						   dev_extent_len;
3516 		else
3517 			sctx->stat.last_physical = physical;
3518 		spin_unlock(&sctx->stat_lock);
3519 		if (stop_loop)
3520 			break;
3521 	}
3522 out:
3523 	/* push queued extents */
3524 	scrub_submit(sctx);
3525 	mutex_lock(&sctx->wr_lock);
3526 	scrub_wr_submit(sctx);
3527 	mutex_unlock(&sctx->wr_lock);
3528 
3529 	blk_finish_plug(&plug);
3530 	btrfs_free_path(path);
3531 
3532 	if (sctx->is_dev_replace && ret >= 0) {
3533 		int ret2;
3534 
3535 		ret2 = sync_write_pointer_for_zoned(sctx,
3536 				chunk_logical + offset,
3537 				map->stripes[stripe_index].physical,
3538 				physical_end);
3539 		if (ret2)
3540 			ret = ret2;
3541 	}
3542 
3543 	return ret < 0 ? ret : 0;
3544 }
3545 
3546 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3547 					  struct btrfs_block_group *bg,
3548 					  struct btrfs_device *scrub_dev,
3549 					  u64 dev_offset,
3550 					  u64 dev_extent_len)
3551 {
3552 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3553 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3554 	struct map_lookup *map;
3555 	struct extent_map *em;
3556 	int i;
3557 	int ret = 0;
3558 
3559 	read_lock(&map_tree->lock);
3560 	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
3561 	read_unlock(&map_tree->lock);
3562 
3563 	if (!em) {
3564 		/*
3565 		 * Might have been an unused block group deleted by the cleaner
3566 		 * kthread or relocation.
3567 		 */
3568 		spin_lock(&bg->lock);
3569 		if (!bg->removed)
3570 			ret = -EINVAL;
3571 		spin_unlock(&bg->lock);
3572 
3573 		return ret;
3574 	}
3575 	if (em->start != bg->start)
3576 		goto out;
3577 	if (em->len < dev_extent_len)
3578 		goto out;
3579 
3580 	map = em->map_lookup;
3581 	for (i = 0; i < map->num_stripes; ++i) {
3582 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3583 		    map->stripes[i].physical == dev_offset) {
3584 			ret = scrub_stripe(sctx, bg, map, scrub_dev, i,
3585 					   dev_extent_len);
3586 			if (ret)
3587 				goto out;
3588 		}
3589 	}
3590 out:
3591 	free_extent_map(em);
3592 
3593 	return ret;
3594 }
3595 
3596 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
3597 					  struct btrfs_block_group *cache)
3598 {
3599 	struct btrfs_fs_info *fs_info = cache->fs_info;
3600 	struct btrfs_trans_handle *trans;
3601 
3602 	if (!btrfs_is_zoned(fs_info))
3603 		return 0;
3604 
3605 	btrfs_wait_block_group_reservations(cache);
3606 	btrfs_wait_nocow_writers(cache);
3607 	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
3608 
3609 	trans = btrfs_join_transaction(root);
3610 	if (IS_ERR(trans))
3611 		return PTR_ERR(trans);
3612 	return btrfs_commit_transaction(trans);
3613 }
3614 
3615 static noinline_for_stack
3616 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3617 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
3618 {
3619 	struct btrfs_dev_extent *dev_extent = NULL;
3620 	struct btrfs_path *path;
3621 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3622 	struct btrfs_root *root = fs_info->dev_root;
3623 	u64 chunk_offset;
3624 	int ret = 0;
3625 	int ro_set;
3626 	int slot;
3627 	struct extent_buffer *l;
3628 	struct btrfs_key key;
3629 	struct btrfs_key found_key;
3630 	struct btrfs_block_group *cache;
3631 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3632 
3633 	path = btrfs_alloc_path();
3634 	if (!path)
3635 		return -ENOMEM;
3636 
3637 	path->reada = READA_FORWARD;
3638 	path->search_commit_root = 1;
3639 	path->skip_locking = 1;
3640 
3641 	key.objectid = scrub_dev->devid;
3642 	key.offset = 0ull;
3643 	key.type = BTRFS_DEV_EXTENT_KEY;
3644 
3645 	while (1) {
3646 		u64 dev_extent_len;
3647 
3648 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3649 		if (ret < 0)
3650 			break;
3651 		if (ret > 0) {
3652 			if (path->slots[0] >=
3653 			    btrfs_header_nritems(path->nodes[0])) {
3654 				ret = btrfs_next_leaf(root, path);
3655 				if (ret < 0)
3656 					break;
3657 				if (ret > 0) {
3658 					ret = 0;
3659 					break;
3660 				}
3661 			} else {
3662 				ret = 0;
3663 			}
3664 		}
3665 
3666 		l = path->nodes[0];
3667 		slot = path->slots[0];
3668 
3669 		btrfs_item_key_to_cpu(l, &found_key, slot);
3670 
3671 		if (found_key.objectid != scrub_dev->devid)
3672 			break;
3673 
3674 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3675 			break;
3676 
3677 		if (found_key.offset >= end)
3678 			break;
3679 
3680 		if (found_key.offset < key.offset)
3681 			break;
3682 
3683 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3684 		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
3685 
3686 		if (found_key.offset + dev_extent_len <= start)
3687 			goto skip;
3688 
3689 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3690 
3691 		/*
3692 		 * get a reference on the corresponding block group to prevent
3693 		 * the chunk from going away while we scrub it
3694 		 */
3695 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3696 
3697 		/* some chunks are removed but not committed to disk yet,
3698 		 * continue scrubbing */
3699 		if (!cache)
3700 			goto skip;
3701 
3702 		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3703 			spin_lock(&cache->lock);
3704 			if (!cache->to_copy) {
3705 				spin_unlock(&cache->lock);
3706 				btrfs_put_block_group(cache);
3707 				goto skip;
3708 			}
3709 			spin_unlock(&cache->lock);
3710 		}
3711 
3712 		/*
3713 		 * Make sure that while we are scrubbing the corresponding block
3714 		 * group doesn't get its logical address and its device extents
3715 		 * reused for another block group, which can possibly be of a
3716 		 * different type and different profile. We do this to prevent
3717 		 * false error detections and crashes due to bogus attempts to
3718 		 * repair extents.
3719 		 */
3720 		spin_lock(&cache->lock);
3721 		if (cache->removed) {
3722 			spin_unlock(&cache->lock);
3723 			btrfs_put_block_group(cache);
3724 			goto skip;
3725 		}
3726 		btrfs_freeze_block_group(cache);
3727 		spin_unlock(&cache->lock);
3728 
3729 		/*
3730 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3731 		 * to avoid deadlock caused by:
3732 		 * btrfs_inc_block_group_ro()
3733 		 * -> btrfs_wait_for_commit()
3734 		 * -> btrfs_commit_transaction()
3735 		 * -> btrfs_scrub_pause()
3736 		 */
3737 		scrub_pause_on(fs_info);
3738 
3739 		/*
3740 		 * Don't do chunk preallocation for scrub.
3741 		 *
3742 		 * This is especially important for SYSTEM bgs, or we can hit
3743 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
3744 		 * 1. The only SYSTEM bg is marked RO.
3745 		 *    Since SYSTEM bg is small, that's pretty common.
3746 		 * 2. New SYSTEM bg will be allocated
3747 		 *    Due to regular version will allocate new chunk.
3748 		 * 3. New SYSTEM bg is empty and will get cleaned up
3749 		 *    Before cleanup really happens, it's marked RO again.
3750 		 * 4. Empty SYSTEM bg get scrubbed
3751 		 *    We go back to 2.
3752 		 *
3753 		 * This can easily boost the amount of SYSTEM chunks if cleaner
3754 		 * thread can't be triggered fast enough, and use up all space
3755 		 * of btrfs_super_block::sys_chunk_array
3756 		 *
3757 		 * While for dev replace, we need to try our best to mark block
3758 		 * group RO, to prevent race between:
3759 		 * - Write duplication
3760 		 *   Contains latest data
3761 		 * - Scrub copy
3762 		 *   Contains data from commit tree
3763 		 *
3764 		 * If target block group is not marked RO, nocow writes can
3765 		 * be overwritten by scrub copy, causing data corruption.
3766 		 * So for dev-replace, it's not allowed to continue if a block
3767 		 * group is not RO.
3768 		 */
3769 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3770 		if (!ret && sctx->is_dev_replace) {
3771 			ret = finish_extent_writes_for_zoned(root, cache);
3772 			if (ret) {
3773 				btrfs_dec_block_group_ro(cache);
3774 				scrub_pause_off(fs_info);
3775 				btrfs_put_block_group(cache);
3776 				break;
3777 			}
3778 		}
3779 
3780 		if (ret == 0) {
3781 			ro_set = 1;
3782 		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3783 			/*
3784 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3785 			 * failed in creating new chunk for metadata.
3786 			 * It is not a problem for scrub, because
3787 			 * metadata are always cowed, and our scrub paused
3788 			 * commit_transactions.
3789 			 */
3790 			ro_set = 0;
3791 		} else if (ret == -ETXTBSY) {
3792 			btrfs_warn(fs_info,
3793 		   "skipping scrub of block group %llu due to active swapfile",
3794 				   cache->start);
3795 			scrub_pause_off(fs_info);
3796 			ret = 0;
3797 			goto skip_unfreeze;
3798 		} else {
3799 			btrfs_warn(fs_info,
3800 				   "failed setting block group ro: %d", ret);
3801 			btrfs_unfreeze_block_group(cache);
3802 			btrfs_put_block_group(cache);
3803 			scrub_pause_off(fs_info);
3804 			break;
3805 		}
3806 
3807 		/*
3808 		 * Now the target block is marked RO, wait for nocow writes to
3809 		 * finish before dev-replace.
3810 		 * COW is fine, as COW never overwrites extents in commit tree.
3811 		 */
3812 		if (sctx->is_dev_replace) {
3813 			btrfs_wait_nocow_writers(cache);
3814 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
3815 					cache->length);
3816 		}
3817 
3818 		scrub_pause_off(fs_info);
3819 		down_write(&dev_replace->rwsem);
3820 		dev_replace->cursor_right = found_key.offset + dev_extent_len;
3821 		dev_replace->cursor_left = found_key.offset;
3822 		dev_replace->item_needs_writeback = 1;
3823 		up_write(&dev_replace->rwsem);
3824 
3825 		ASSERT(cache->start == chunk_offset);
3826 		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
3827 				  dev_extent_len);
3828 
3829 		/*
3830 		 * flush, submit all pending read and write bios, afterwards
3831 		 * wait for them.
3832 		 * Note that in the dev replace case, a read request causes
3833 		 * write requests that are submitted in the read completion
3834 		 * worker. Therefore in the current situation, it is required
3835 		 * that all write requests are flushed, so that all read and
3836 		 * write requests are really completed when bios_in_flight
3837 		 * changes to 0.
3838 		 */
3839 		sctx->flush_all_writes = true;
3840 		scrub_submit(sctx);
3841 		mutex_lock(&sctx->wr_lock);
3842 		scrub_wr_submit(sctx);
3843 		mutex_unlock(&sctx->wr_lock);
3844 
3845 		wait_event(sctx->list_wait,
3846 			   atomic_read(&sctx->bios_in_flight) == 0);
3847 
3848 		scrub_pause_on(fs_info);
3849 
3850 		/*
3851 		 * must be called before we decrease @scrub_paused.
3852 		 * make sure we don't block transaction commit while
3853 		 * we are waiting pending workers finished.
3854 		 */
3855 		wait_event(sctx->list_wait,
3856 			   atomic_read(&sctx->workers_pending) == 0);
3857 		sctx->flush_all_writes = false;
3858 
3859 		scrub_pause_off(fs_info);
3860 
3861 		if (sctx->is_dev_replace &&
3862 		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
3863 						      cache, found_key.offset))
3864 			ro_set = 0;
3865 
3866 		down_write(&dev_replace->rwsem);
3867 		dev_replace->cursor_left = dev_replace->cursor_right;
3868 		dev_replace->item_needs_writeback = 1;
3869 		up_write(&dev_replace->rwsem);
3870 
3871 		if (ro_set)
3872 			btrfs_dec_block_group_ro(cache);
3873 
3874 		/*
3875 		 * We might have prevented the cleaner kthread from deleting
3876 		 * this block group if it was already unused because we raced
3877 		 * and set it to RO mode first. So add it back to the unused
3878 		 * list, otherwise it might not ever be deleted unless a manual
3879 		 * balance is triggered or it becomes used and unused again.
3880 		 */
3881 		spin_lock(&cache->lock);
3882 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3883 		    cache->used == 0) {
3884 			spin_unlock(&cache->lock);
3885 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
3886 				btrfs_discard_queue_work(&fs_info->discard_ctl,
3887 							 cache);
3888 			else
3889 				btrfs_mark_bg_unused(cache);
3890 		} else {
3891 			spin_unlock(&cache->lock);
3892 		}
3893 skip_unfreeze:
3894 		btrfs_unfreeze_block_group(cache);
3895 		btrfs_put_block_group(cache);
3896 		if (ret)
3897 			break;
3898 		if (sctx->is_dev_replace &&
3899 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3900 			ret = -EIO;
3901 			break;
3902 		}
3903 		if (sctx->stat.malloc_errors > 0) {
3904 			ret = -ENOMEM;
3905 			break;
3906 		}
3907 skip:
3908 		key.offset = found_key.offset + dev_extent_len;
3909 		btrfs_release_path(path);
3910 	}
3911 
3912 	btrfs_free_path(path);
3913 
3914 	return ret;
3915 }
3916 
3917 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3918 					   struct btrfs_device *scrub_dev)
3919 {
3920 	int	i;
3921 	u64	bytenr;
3922 	u64	gen;
3923 	int	ret;
3924 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3925 
3926 	if (BTRFS_FS_ERROR(fs_info))
3927 		return -EROFS;
3928 
3929 	/* Seed devices of a new filesystem has their own generation. */
3930 	if (scrub_dev->fs_devices != fs_info->fs_devices)
3931 		gen = scrub_dev->generation;
3932 	else
3933 		gen = fs_info->last_trans_committed;
3934 
3935 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3936 		bytenr = btrfs_sb_offset(i);
3937 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3938 		    scrub_dev->commit_total_bytes)
3939 			break;
3940 		if (!btrfs_check_super_location(scrub_dev, bytenr))
3941 			continue;
3942 
3943 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3944 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3945 				  NULL, bytenr);
3946 		if (ret)
3947 			return ret;
3948 	}
3949 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3950 
3951 	return 0;
3952 }
3953 
3954 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
3955 {
3956 	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
3957 					&fs_info->scrub_lock)) {
3958 		struct btrfs_workqueue *scrub_workers = NULL;
3959 		struct btrfs_workqueue *scrub_wr_comp = NULL;
3960 		struct btrfs_workqueue *scrub_parity = NULL;
3961 
3962 		scrub_workers = fs_info->scrub_workers;
3963 		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3964 		scrub_parity = fs_info->scrub_parity_workers;
3965 
3966 		fs_info->scrub_workers = NULL;
3967 		fs_info->scrub_wr_completion_workers = NULL;
3968 		fs_info->scrub_parity_workers = NULL;
3969 		mutex_unlock(&fs_info->scrub_lock);
3970 
3971 		btrfs_destroy_workqueue(scrub_workers);
3972 		btrfs_destroy_workqueue(scrub_wr_comp);
3973 		btrfs_destroy_workqueue(scrub_parity);
3974 	}
3975 }
3976 
3977 /*
3978  * get a reference count on fs_info->scrub_workers. start worker if necessary
3979  */
3980 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3981 						int is_dev_replace)
3982 {
3983 	struct btrfs_workqueue *scrub_workers = NULL;
3984 	struct btrfs_workqueue *scrub_wr_comp = NULL;
3985 	struct btrfs_workqueue *scrub_parity = NULL;
3986 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3987 	int max_active = fs_info->thread_pool_size;
3988 	int ret = -ENOMEM;
3989 
3990 	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
3991 		return 0;
3992 
3993 	scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
3994 					      is_dev_replace ? 1 : max_active, 4);
3995 	if (!scrub_workers)
3996 		goto fail_scrub_workers;
3997 
3998 	scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3999 					      max_active, 2);
4000 	if (!scrub_wr_comp)
4001 		goto fail_scrub_wr_completion_workers;
4002 
4003 	scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4004 					     max_active, 2);
4005 	if (!scrub_parity)
4006 		goto fail_scrub_parity_workers;
4007 
4008 	mutex_lock(&fs_info->scrub_lock);
4009 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
4010 		ASSERT(fs_info->scrub_workers == NULL &&
4011 		       fs_info->scrub_wr_completion_workers == NULL &&
4012 		       fs_info->scrub_parity_workers == NULL);
4013 		fs_info->scrub_workers = scrub_workers;
4014 		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
4015 		fs_info->scrub_parity_workers = scrub_parity;
4016 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4017 		mutex_unlock(&fs_info->scrub_lock);
4018 		return 0;
4019 	}
4020 	/* Other thread raced in and created the workers for us */
4021 	refcount_inc(&fs_info->scrub_workers_refcnt);
4022 	mutex_unlock(&fs_info->scrub_lock);
4023 
4024 	ret = 0;
4025 	btrfs_destroy_workqueue(scrub_parity);
4026 fail_scrub_parity_workers:
4027 	btrfs_destroy_workqueue(scrub_wr_comp);
4028 fail_scrub_wr_completion_workers:
4029 	btrfs_destroy_workqueue(scrub_workers);
4030 fail_scrub_workers:
4031 	return ret;
4032 }
4033 
4034 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4035 		    u64 end, struct btrfs_scrub_progress *progress,
4036 		    int readonly, int is_dev_replace)
4037 {
4038 	struct btrfs_dev_lookup_args args = { .devid = devid };
4039 	struct scrub_ctx *sctx;
4040 	int ret;
4041 	struct btrfs_device *dev;
4042 	unsigned int nofs_flag;
4043 
4044 	if (btrfs_fs_closing(fs_info))
4045 		return -EAGAIN;
4046 
4047 	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4048 		/*
4049 		 * in this case scrub is unable to calculate the checksum
4050 		 * the way scrub is implemented. Do not handle this
4051 		 * situation at all because it won't ever happen.
4052 		 */
4053 		btrfs_err(fs_info,
4054 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4055 		       fs_info->nodesize,
4056 		       BTRFS_STRIPE_LEN);
4057 		return -EINVAL;
4058 	}
4059 
4060 	if (fs_info->nodesize >
4061 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4062 	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4063 		/*
4064 		 * would exhaust the array bounds of pagev member in
4065 		 * struct scrub_block
4066 		 */
4067 		btrfs_err(fs_info,
4068 			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4069 		       fs_info->nodesize,
4070 		       SCRUB_MAX_PAGES_PER_BLOCK,
4071 		       fs_info->sectorsize,
4072 		       SCRUB_MAX_PAGES_PER_BLOCK);
4073 		return -EINVAL;
4074 	}
4075 
4076 	/* Allocate outside of device_list_mutex */
4077 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
4078 	if (IS_ERR(sctx))
4079 		return PTR_ERR(sctx);
4080 
4081 	ret = scrub_workers_get(fs_info, is_dev_replace);
4082 	if (ret)
4083 		goto out_free_ctx;
4084 
4085 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4086 	dev = btrfs_find_device(fs_info->fs_devices, &args);
4087 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4088 		     !is_dev_replace)) {
4089 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4090 		ret = -ENODEV;
4091 		goto out;
4092 	}
4093 
4094 	if (!is_dev_replace && !readonly &&
4095 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4096 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4097 		btrfs_err_in_rcu(fs_info,
4098 			"scrub on devid %llu: filesystem on %s is not writable",
4099 				 devid, rcu_str_deref(dev->name));
4100 		ret = -EROFS;
4101 		goto out;
4102 	}
4103 
4104 	mutex_lock(&fs_info->scrub_lock);
4105 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4106 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4107 		mutex_unlock(&fs_info->scrub_lock);
4108 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4109 		ret = -EIO;
4110 		goto out;
4111 	}
4112 
4113 	down_read(&fs_info->dev_replace.rwsem);
4114 	if (dev->scrub_ctx ||
4115 	    (!is_dev_replace &&
4116 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4117 		up_read(&fs_info->dev_replace.rwsem);
4118 		mutex_unlock(&fs_info->scrub_lock);
4119 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4120 		ret = -EINPROGRESS;
4121 		goto out;
4122 	}
4123 	up_read(&fs_info->dev_replace.rwsem);
4124 
4125 	sctx->readonly = readonly;
4126 	dev->scrub_ctx = sctx;
4127 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4128 
4129 	/*
4130 	 * checking @scrub_pause_req here, we can avoid
4131 	 * race between committing transaction and scrubbing.
4132 	 */
4133 	__scrub_blocked_if_needed(fs_info);
4134 	atomic_inc(&fs_info->scrubs_running);
4135 	mutex_unlock(&fs_info->scrub_lock);
4136 
4137 	/*
4138 	 * In order to avoid deadlock with reclaim when there is a transaction
4139 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4140 	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
4141 	 * invoked by our callees. The pausing request is done when the
4142 	 * transaction commit starts, and it blocks the transaction until scrub
4143 	 * is paused (done at specific points at scrub_stripe() or right above
4144 	 * before incrementing fs_info->scrubs_running).
4145 	 */
4146 	nofs_flag = memalloc_nofs_save();
4147 	if (!is_dev_replace) {
4148 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4149 		/*
4150 		 * by holding device list mutex, we can
4151 		 * kick off writing super in log tree sync.
4152 		 */
4153 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4154 		ret = scrub_supers(sctx, dev);
4155 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4156 	}
4157 
4158 	if (!ret)
4159 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4160 	memalloc_nofs_restore(nofs_flag);
4161 
4162 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4163 	atomic_dec(&fs_info->scrubs_running);
4164 	wake_up(&fs_info->scrub_pause_wait);
4165 
4166 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4167 
4168 	if (progress)
4169 		memcpy(progress, &sctx->stat, sizeof(*progress));
4170 
4171 	if (!is_dev_replace)
4172 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
4173 			ret ? "not finished" : "finished", devid, ret);
4174 
4175 	mutex_lock(&fs_info->scrub_lock);
4176 	dev->scrub_ctx = NULL;
4177 	mutex_unlock(&fs_info->scrub_lock);
4178 
4179 	scrub_workers_put(fs_info);
4180 	scrub_put_ctx(sctx);
4181 
4182 	return ret;
4183 out:
4184 	scrub_workers_put(fs_info);
4185 out_free_ctx:
4186 	scrub_free_ctx(sctx);
4187 
4188 	return ret;
4189 }
4190 
4191 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4192 {
4193 	mutex_lock(&fs_info->scrub_lock);
4194 	atomic_inc(&fs_info->scrub_pause_req);
4195 	while (atomic_read(&fs_info->scrubs_paused) !=
4196 	       atomic_read(&fs_info->scrubs_running)) {
4197 		mutex_unlock(&fs_info->scrub_lock);
4198 		wait_event(fs_info->scrub_pause_wait,
4199 			   atomic_read(&fs_info->scrubs_paused) ==
4200 			   atomic_read(&fs_info->scrubs_running));
4201 		mutex_lock(&fs_info->scrub_lock);
4202 	}
4203 	mutex_unlock(&fs_info->scrub_lock);
4204 }
4205 
4206 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4207 {
4208 	atomic_dec(&fs_info->scrub_pause_req);
4209 	wake_up(&fs_info->scrub_pause_wait);
4210 }
4211 
4212 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4213 {
4214 	mutex_lock(&fs_info->scrub_lock);
4215 	if (!atomic_read(&fs_info->scrubs_running)) {
4216 		mutex_unlock(&fs_info->scrub_lock);
4217 		return -ENOTCONN;
4218 	}
4219 
4220 	atomic_inc(&fs_info->scrub_cancel_req);
4221 	while (atomic_read(&fs_info->scrubs_running)) {
4222 		mutex_unlock(&fs_info->scrub_lock);
4223 		wait_event(fs_info->scrub_pause_wait,
4224 			   atomic_read(&fs_info->scrubs_running) == 0);
4225 		mutex_lock(&fs_info->scrub_lock);
4226 	}
4227 	atomic_dec(&fs_info->scrub_cancel_req);
4228 	mutex_unlock(&fs_info->scrub_lock);
4229 
4230 	return 0;
4231 }
4232 
4233 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4234 {
4235 	struct btrfs_fs_info *fs_info = dev->fs_info;
4236 	struct scrub_ctx *sctx;
4237 
4238 	mutex_lock(&fs_info->scrub_lock);
4239 	sctx = dev->scrub_ctx;
4240 	if (!sctx) {
4241 		mutex_unlock(&fs_info->scrub_lock);
4242 		return -ENOTCONN;
4243 	}
4244 	atomic_inc(&sctx->cancel_req);
4245 	while (dev->scrub_ctx) {
4246 		mutex_unlock(&fs_info->scrub_lock);
4247 		wait_event(fs_info->scrub_pause_wait,
4248 			   dev->scrub_ctx == NULL);
4249 		mutex_lock(&fs_info->scrub_lock);
4250 	}
4251 	mutex_unlock(&fs_info->scrub_lock);
4252 
4253 	return 0;
4254 }
4255 
4256 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4257 			 struct btrfs_scrub_progress *progress)
4258 {
4259 	struct btrfs_dev_lookup_args args = { .devid = devid };
4260 	struct btrfs_device *dev;
4261 	struct scrub_ctx *sctx = NULL;
4262 
4263 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4264 	dev = btrfs_find_device(fs_info->fs_devices, &args);
4265 	if (dev)
4266 		sctx = dev->scrub_ctx;
4267 	if (sctx)
4268 		memcpy(progress, &sctx->stat, sizeof(*progress));
4269 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4270 
4271 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4272 }
4273 
4274 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4275 			       u64 extent_logical, u32 extent_len,
4276 			       u64 *extent_physical,
4277 			       struct btrfs_device **extent_dev,
4278 			       int *extent_mirror_num)
4279 {
4280 	u64 mapped_length;
4281 	struct btrfs_io_context *bioc = NULL;
4282 	int ret;
4283 
4284 	mapped_length = extent_len;
4285 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4286 			      &mapped_length, &bioc, 0);
4287 	if (ret || !bioc || mapped_length < extent_len ||
4288 	    !bioc->stripes[0].dev->bdev) {
4289 		btrfs_put_bioc(bioc);
4290 		return;
4291 	}
4292 
4293 	*extent_physical = bioc->stripes[0].physical;
4294 	*extent_mirror_num = bioc->mirror_num;
4295 	*extent_dev = bioc->stripes[0].dev;
4296 	btrfs_put_bioc(bioc);
4297 }
4298