xref: /linux/fs/btrfs/scrub.c (revision 5cd2340cb6a383d04fd88e48fabc2a21a909d6a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "raid56.h"
20 #include "block-group.h"
21 #include "zoned.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "file-item.h"
25 #include "scrub.h"
26 #include "raid-stripe-tree.h"
27 
28 /*
29  * This is only the first step towards a full-features scrub. It reads all
30  * extent and super block and verifies the checksums. In case a bad checksum
31  * is found or the extent cannot be read, good data will be written back if
32  * any can be found.
33  *
34  * Future enhancements:
35  *  - In case an unrepairable extent is encountered, track which files are
36  *    affected and report them
37  *  - track and record media errors, throw out bad devices
38  *  - add a mode to also read unallocated space
39  */
40 
41 struct scrub_ctx;
42 
43 /*
44  * The following value only influences the performance.
45  *
46  * This determines how many stripes would be submitted in one go,
47  * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
48  */
49 #define SCRUB_STRIPES_PER_GROUP		8
50 
51 /*
52  * How many groups we have for each sctx.
53  *
54  * This would be 8M per device, the same value as the old scrub in-flight bios
55  * size limit.
56  */
57 #define SCRUB_GROUPS_PER_SCTX		16
58 
59 #define SCRUB_TOTAL_STRIPES		(SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
60 
61 /*
62  * The following value times PAGE_SIZE needs to be large enough to match the
63  * largest node/leaf/sector size that shall be supported.
64  */
65 #define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
66 
67 /* Represent one sector and its needed info to verify the content. */
68 struct scrub_sector_verification {
69 	bool is_metadata;
70 
71 	union {
72 		/*
73 		 * Csum pointer for data csum verification.  Should point to a
74 		 * sector csum inside scrub_stripe::csums.
75 		 *
76 		 * NULL if this data sector has no csum.
77 		 */
78 		u8 *csum;
79 
80 		/*
81 		 * Extra info for metadata verification.  All sectors inside a
82 		 * tree block share the same generation.
83 		 */
84 		u64 generation;
85 	};
86 };
87 
88 enum scrub_stripe_flags {
89 	/* Set when @mirror_num, @dev, @physical and @logical are set. */
90 	SCRUB_STRIPE_FLAG_INITIALIZED,
91 
92 	/* Set when the read-repair is finished. */
93 	SCRUB_STRIPE_FLAG_REPAIR_DONE,
94 
95 	/*
96 	 * Set for data stripes if it's triggered from P/Q stripe.
97 	 * During such scrub, we should not report errors in data stripes, nor
98 	 * update the accounting.
99 	 */
100 	SCRUB_STRIPE_FLAG_NO_REPORT,
101 };
102 
103 #define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)
104 
105 /*
106  * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
107  */
108 struct scrub_stripe {
109 	struct scrub_ctx *sctx;
110 	struct btrfs_block_group *bg;
111 
112 	struct page *pages[SCRUB_STRIPE_PAGES];
113 	struct scrub_sector_verification *sectors;
114 
115 	struct btrfs_device *dev;
116 	u64 logical;
117 	u64 physical;
118 
119 	u16 mirror_num;
120 
121 	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
122 	u16 nr_sectors;
123 
124 	/*
125 	 * How many data/meta extents are in this stripe.  Only for scrub status
126 	 * reporting purposes.
127 	 */
128 	u16 nr_data_extents;
129 	u16 nr_meta_extents;
130 
131 	atomic_t pending_io;
132 	wait_queue_head_t io_wait;
133 	wait_queue_head_t repair_wait;
134 
135 	/*
136 	 * Indicate the states of the stripe.  Bits are defined in
137 	 * scrub_stripe_flags enum.
138 	 */
139 	unsigned long state;
140 
141 	/* Indicate which sectors are covered by extent items. */
142 	unsigned long extent_sector_bitmap;
143 
144 	/*
145 	 * The errors hit during the initial read of the stripe.
146 	 *
147 	 * Would be utilized for error reporting and repair.
148 	 *
149 	 * The remaining init_nr_* records the number of errors hit, only used
150 	 * by error reporting.
151 	 */
152 	unsigned long init_error_bitmap;
153 	unsigned int init_nr_io_errors;
154 	unsigned int init_nr_csum_errors;
155 	unsigned int init_nr_meta_errors;
156 
157 	/*
158 	 * The following error bitmaps are all for the current status.
159 	 * Every time we submit a new read, these bitmaps may be updated.
160 	 *
161 	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
162 	 *
163 	 * IO and csum errors can happen for both metadata and data.
164 	 */
165 	unsigned long error_bitmap;
166 	unsigned long io_error_bitmap;
167 	unsigned long csum_error_bitmap;
168 	unsigned long meta_error_bitmap;
169 
170 	/* For writeback (repair or replace) error reporting. */
171 	unsigned long write_error_bitmap;
172 
173 	/* Writeback can be concurrent, thus we need to protect the bitmap. */
174 	spinlock_t write_error_lock;
175 
176 	/*
177 	 * Checksum for the whole stripe if this stripe is inside a data block
178 	 * group.
179 	 */
180 	u8 *csums;
181 
182 	struct work_struct work;
183 };
184 
185 struct scrub_ctx {
186 	struct scrub_stripe	stripes[SCRUB_TOTAL_STRIPES];
187 	struct scrub_stripe	*raid56_data_stripes;
188 	struct btrfs_fs_info	*fs_info;
189 	struct btrfs_path	extent_path;
190 	struct btrfs_path	csum_path;
191 	int			first_free;
192 	int			cur_stripe;
193 	atomic_t		cancel_req;
194 	int			readonly;
195 
196 	/* State of IO submission throttling affecting the associated device */
197 	ktime_t			throttle_deadline;
198 	u64			throttle_sent;
199 
200 	int			is_dev_replace;
201 	u64			write_pointer;
202 
203 	struct mutex            wr_lock;
204 	struct btrfs_device     *wr_tgtdev;
205 
206 	/*
207 	 * statistics
208 	 */
209 	struct btrfs_scrub_progress stat;
210 	spinlock_t		stat_lock;
211 
212 	/*
213 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
214 	 * decrement bios_in_flight and workers_pending and then do a wakeup
215 	 * on the list_wait wait queue. We must ensure the main scrub task
216 	 * doesn't free the scrub context before or while the workers are
217 	 * doing the wakeup() call.
218 	 */
219 	refcount_t              refs;
220 };
221 
222 struct scrub_warning {
223 	struct btrfs_path	*path;
224 	u64			extent_item_size;
225 	const char		*errstr;
226 	u64			physical;
227 	u64			logical;
228 	struct btrfs_device	*dev;
229 };
230 
231 static void release_scrub_stripe(struct scrub_stripe *stripe)
232 {
233 	if (!stripe)
234 		return;
235 
236 	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
237 		if (stripe->pages[i])
238 			__free_page(stripe->pages[i]);
239 		stripe->pages[i] = NULL;
240 	}
241 	kfree(stripe->sectors);
242 	kfree(stripe->csums);
243 	stripe->sectors = NULL;
244 	stripe->csums = NULL;
245 	stripe->sctx = NULL;
246 	stripe->state = 0;
247 }
248 
249 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
250 			     struct scrub_stripe *stripe)
251 {
252 	int ret;
253 
254 	memset(stripe, 0, sizeof(*stripe));
255 
256 	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
257 	stripe->state = 0;
258 
259 	init_waitqueue_head(&stripe->io_wait);
260 	init_waitqueue_head(&stripe->repair_wait);
261 	atomic_set(&stripe->pending_io, 0);
262 	spin_lock_init(&stripe->write_error_lock);
263 
264 	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, false);
265 	if (ret < 0)
266 		goto error;
267 
268 	stripe->sectors = kcalloc(stripe->nr_sectors,
269 				  sizeof(struct scrub_sector_verification),
270 				  GFP_KERNEL);
271 	if (!stripe->sectors)
272 		goto error;
273 
274 	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
275 				fs_info->csum_size, GFP_KERNEL);
276 	if (!stripe->csums)
277 		goto error;
278 	return 0;
279 error:
280 	release_scrub_stripe(stripe);
281 	return -ENOMEM;
282 }
283 
284 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
285 {
286 	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
287 }
288 
289 static void scrub_put_ctx(struct scrub_ctx *sctx);
290 
291 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
292 {
293 	while (atomic_read(&fs_info->scrub_pause_req)) {
294 		mutex_unlock(&fs_info->scrub_lock);
295 		wait_event(fs_info->scrub_pause_wait,
296 		   atomic_read(&fs_info->scrub_pause_req) == 0);
297 		mutex_lock(&fs_info->scrub_lock);
298 	}
299 }
300 
301 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
302 {
303 	atomic_inc(&fs_info->scrubs_paused);
304 	wake_up(&fs_info->scrub_pause_wait);
305 }
306 
307 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
308 {
309 	mutex_lock(&fs_info->scrub_lock);
310 	__scrub_blocked_if_needed(fs_info);
311 	atomic_dec(&fs_info->scrubs_paused);
312 	mutex_unlock(&fs_info->scrub_lock);
313 
314 	wake_up(&fs_info->scrub_pause_wait);
315 }
316 
317 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
318 {
319 	scrub_pause_on(fs_info);
320 	scrub_pause_off(fs_info);
321 }
322 
323 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
324 {
325 	int i;
326 
327 	if (!sctx)
328 		return;
329 
330 	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
331 		release_scrub_stripe(&sctx->stripes[i]);
332 
333 	kvfree(sctx);
334 }
335 
336 static void scrub_put_ctx(struct scrub_ctx *sctx)
337 {
338 	if (refcount_dec_and_test(&sctx->refs))
339 		scrub_free_ctx(sctx);
340 }
341 
342 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
343 		struct btrfs_fs_info *fs_info, int is_dev_replace)
344 {
345 	struct scrub_ctx *sctx;
346 	int		i;
347 
348 	/* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
349 	 * kvzalloc().
350 	 */
351 	sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
352 	if (!sctx)
353 		goto nomem;
354 	refcount_set(&sctx->refs, 1);
355 	sctx->is_dev_replace = is_dev_replace;
356 	sctx->fs_info = fs_info;
357 	sctx->extent_path.search_commit_root = 1;
358 	sctx->extent_path.skip_locking = 1;
359 	sctx->csum_path.search_commit_root = 1;
360 	sctx->csum_path.skip_locking = 1;
361 	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
362 		int ret;
363 
364 		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
365 		if (ret < 0)
366 			goto nomem;
367 		sctx->stripes[i].sctx = sctx;
368 	}
369 	sctx->first_free = 0;
370 	atomic_set(&sctx->cancel_req, 0);
371 
372 	spin_lock_init(&sctx->stat_lock);
373 	sctx->throttle_deadline = 0;
374 
375 	mutex_init(&sctx->wr_lock);
376 	if (is_dev_replace) {
377 		WARN_ON(!fs_info->dev_replace.tgtdev);
378 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
379 	}
380 
381 	return sctx;
382 
383 nomem:
384 	scrub_free_ctx(sctx);
385 	return ERR_PTR(-ENOMEM);
386 }
387 
388 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
389 				     u64 root, void *warn_ctx)
390 {
391 	u32 nlink;
392 	int ret;
393 	int i;
394 	unsigned nofs_flag;
395 	struct extent_buffer *eb;
396 	struct btrfs_inode_item *inode_item;
397 	struct scrub_warning *swarn = warn_ctx;
398 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
399 	struct inode_fs_paths *ipath = NULL;
400 	struct btrfs_root *local_root;
401 	struct btrfs_key key;
402 
403 	local_root = btrfs_get_fs_root(fs_info, root, true);
404 	if (IS_ERR(local_root)) {
405 		ret = PTR_ERR(local_root);
406 		goto err;
407 	}
408 
409 	/*
410 	 * this makes the path point to (inum INODE_ITEM ioff)
411 	 */
412 	key.objectid = inum;
413 	key.type = BTRFS_INODE_ITEM_KEY;
414 	key.offset = 0;
415 
416 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
417 	if (ret) {
418 		btrfs_put_root(local_root);
419 		btrfs_release_path(swarn->path);
420 		goto err;
421 	}
422 
423 	eb = swarn->path->nodes[0];
424 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
425 					struct btrfs_inode_item);
426 	nlink = btrfs_inode_nlink(eb, inode_item);
427 	btrfs_release_path(swarn->path);
428 
429 	/*
430 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
431 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
432 	 * not seem to be strictly necessary.
433 	 */
434 	nofs_flag = memalloc_nofs_save();
435 	ipath = init_ipath(4096, local_root, swarn->path);
436 	memalloc_nofs_restore(nofs_flag);
437 	if (IS_ERR(ipath)) {
438 		btrfs_put_root(local_root);
439 		ret = PTR_ERR(ipath);
440 		ipath = NULL;
441 		goto err;
442 	}
443 	ret = paths_from_inode(inum, ipath);
444 
445 	if (ret < 0)
446 		goto err;
447 
448 	/*
449 	 * we deliberately ignore the bit ipath might have been too small to
450 	 * hold all of the paths here
451 	 */
452 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
453 		btrfs_warn_in_rcu(fs_info,
454 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
455 				  swarn->errstr, swarn->logical,
456 				  btrfs_dev_name(swarn->dev),
457 				  swarn->physical,
458 				  root, inum, offset,
459 				  fs_info->sectorsize, nlink,
460 				  (char *)(unsigned long)ipath->fspath->val[i]);
461 
462 	btrfs_put_root(local_root);
463 	free_ipath(ipath);
464 	return 0;
465 
466 err:
467 	btrfs_warn_in_rcu(fs_info,
468 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
469 			  swarn->errstr, swarn->logical,
470 			  btrfs_dev_name(swarn->dev),
471 			  swarn->physical,
472 			  root, inum, offset, ret);
473 
474 	free_ipath(ipath);
475 	return 0;
476 }
477 
478 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
479 				       bool is_super, u64 logical, u64 physical)
480 {
481 	struct btrfs_fs_info *fs_info = dev->fs_info;
482 	struct btrfs_path *path;
483 	struct btrfs_key found_key;
484 	struct extent_buffer *eb;
485 	struct btrfs_extent_item *ei;
486 	struct scrub_warning swarn;
487 	u64 flags = 0;
488 	u32 item_size;
489 	int ret;
490 
491 	/* Super block error, no need to search extent tree. */
492 	if (is_super) {
493 		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
494 				  errstr, btrfs_dev_name(dev), physical);
495 		return;
496 	}
497 	path = btrfs_alloc_path();
498 	if (!path)
499 		return;
500 
501 	swarn.physical = physical;
502 	swarn.logical = logical;
503 	swarn.errstr = errstr;
504 	swarn.dev = NULL;
505 
506 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
507 				  &flags);
508 	if (ret < 0)
509 		goto out;
510 
511 	swarn.extent_item_size = found_key.offset;
512 
513 	eb = path->nodes[0];
514 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
515 	item_size = btrfs_item_size(eb, path->slots[0]);
516 
517 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
518 		unsigned long ptr = 0;
519 		u8 ref_level;
520 		u64 ref_root;
521 
522 		while (true) {
523 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
524 						      item_size, &ref_root,
525 						      &ref_level);
526 			if (ret < 0) {
527 				btrfs_warn(fs_info,
528 				"failed to resolve tree backref for logical %llu: %d",
529 						  swarn.logical, ret);
530 				break;
531 			}
532 			if (ret > 0)
533 				break;
534 			btrfs_warn_in_rcu(fs_info,
535 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
536 				errstr, swarn.logical, btrfs_dev_name(dev),
537 				swarn.physical, (ref_level ? "node" : "leaf"),
538 				ref_level, ref_root);
539 		}
540 		btrfs_release_path(path);
541 	} else {
542 		struct btrfs_backref_walk_ctx ctx = { 0 };
543 
544 		btrfs_release_path(path);
545 
546 		ctx.bytenr = found_key.objectid;
547 		ctx.extent_item_pos = swarn.logical - found_key.objectid;
548 		ctx.fs_info = fs_info;
549 
550 		swarn.path = path;
551 		swarn.dev = dev;
552 
553 		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
554 	}
555 
556 out:
557 	btrfs_free_path(path);
558 }
559 
560 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
561 {
562 	int ret = 0;
563 	u64 length;
564 
565 	if (!btrfs_is_zoned(sctx->fs_info))
566 		return 0;
567 
568 	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
569 		return 0;
570 
571 	if (sctx->write_pointer < physical) {
572 		length = physical - sctx->write_pointer;
573 
574 		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
575 						sctx->write_pointer, length);
576 		if (!ret)
577 			sctx->write_pointer = physical;
578 	}
579 	return ret;
580 }
581 
582 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
583 {
584 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
585 	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
586 
587 	return stripe->pages[page_index];
588 }
589 
590 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
591 						 int sector_nr)
592 {
593 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
594 
595 	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
596 }
597 
598 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
599 {
600 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
601 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
602 	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
603 	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
604 	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
605 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
606 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
607 	u8 calculated_csum[BTRFS_CSUM_SIZE];
608 	struct btrfs_header *header;
609 
610 	/*
611 	 * Here we don't have a good way to attach the pages (and subpages)
612 	 * to a dummy extent buffer, thus we have to directly grab the members
613 	 * from pages.
614 	 */
615 	header = (struct btrfs_header *)(page_address(first_page) + first_off);
616 	memcpy(on_disk_csum, header->csum, fs_info->csum_size);
617 
618 	if (logical != btrfs_stack_header_bytenr(header)) {
619 		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
620 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
621 		btrfs_warn_rl(fs_info,
622 		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
623 			      logical, stripe->mirror_num,
624 			      btrfs_stack_header_bytenr(header), logical);
625 		return;
626 	}
627 	if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
628 		   BTRFS_FSID_SIZE) != 0) {
629 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
630 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
631 		btrfs_warn_rl(fs_info,
632 		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
633 			      logical, stripe->mirror_num,
634 			      header->fsid, fs_info->fs_devices->fsid);
635 		return;
636 	}
637 	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
638 		   BTRFS_UUID_SIZE) != 0) {
639 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
640 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
641 		btrfs_warn_rl(fs_info,
642 		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
643 			      logical, stripe->mirror_num,
644 			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
645 		return;
646 	}
647 
648 	/* Now check tree block csum. */
649 	shash->tfm = fs_info->csum_shash;
650 	crypto_shash_init(shash);
651 	crypto_shash_update(shash, page_address(first_page) + first_off +
652 			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
653 
654 	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
655 		struct page *page = scrub_stripe_get_page(stripe, i);
656 		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
657 
658 		crypto_shash_update(shash, page_address(page) + page_off,
659 				    fs_info->sectorsize);
660 	}
661 
662 	crypto_shash_final(shash, calculated_csum);
663 	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
664 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
665 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
666 		btrfs_warn_rl(fs_info,
667 		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
668 			      logical, stripe->mirror_num,
669 			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
670 			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
671 		return;
672 	}
673 	if (stripe->sectors[sector_nr].generation !=
674 	    btrfs_stack_header_generation(header)) {
675 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
676 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
677 		btrfs_warn_rl(fs_info,
678 		"tree block %llu mirror %u has bad generation, has %llu want %llu",
679 			      logical, stripe->mirror_num,
680 			      btrfs_stack_header_generation(header),
681 			      stripe->sectors[sector_nr].generation);
682 		return;
683 	}
684 	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
685 	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
686 	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
687 }
688 
689 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
690 {
691 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
692 	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
693 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
694 	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
695 	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
696 	u8 csum_buf[BTRFS_CSUM_SIZE];
697 	int ret;
698 
699 	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
700 
701 	/* Sector not utilized, skip it. */
702 	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
703 		return;
704 
705 	/* IO error, no need to check. */
706 	if (test_bit(sector_nr, &stripe->io_error_bitmap))
707 		return;
708 
709 	/* Metadata, verify the full tree block. */
710 	if (sector->is_metadata) {
711 		/*
712 		 * Check if the tree block crosses the stripe boundary.  If
713 		 * crossed the boundary, we cannot verify it but only give a
714 		 * warning.
715 		 *
716 		 * This can only happen on a very old filesystem where chunks
717 		 * are not ensured to be stripe aligned.
718 		 */
719 		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
720 			btrfs_warn_rl(fs_info,
721 			"tree block at %llu crosses stripe boundary %llu",
722 				      stripe->logical +
723 				      (sector_nr << fs_info->sectorsize_bits),
724 				      stripe->logical);
725 			return;
726 		}
727 		scrub_verify_one_metadata(stripe, sector_nr);
728 		return;
729 	}
730 
731 	/*
732 	 * Data is easier, we just verify the data csum (if we have it).  For
733 	 * cases without csum, we have no other choice but to trust it.
734 	 */
735 	if (!sector->csum) {
736 		clear_bit(sector_nr, &stripe->error_bitmap);
737 		return;
738 	}
739 
740 	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
741 	if (ret < 0) {
742 		set_bit(sector_nr, &stripe->csum_error_bitmap);
743 		set_bit(sector_nr, &stripe->error_bitmap);
744 	} else {
745 		clear_bit(sector_nr, &stripe->csum_error_bitmap);
746 		clear_bit(sector_nr, &stripe->error_bitmap);
747 	}
748 }
749 
750 /* Verify specified sectors of a stripe. */
751 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
752 {
753 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
754 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
755 	int sector_nr;
756 
757 	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
758 		scrub_verify_one_sector(stripe, sector_nr);
759 		if (stripe->sectors[sector_nr].is_metadata)
760 			sector_nr += sectors_per_tree - 1;
761 	}
762 }
763 
764 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
765 {
766 	int i;
767 
768 	for (i = 0; i < stripe->nr_sectors; i++) {
769 		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
770 		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
771 			break;
772 	}
773 	ASSERT(i < stripe->nr_sectors);
774 	return i;
775 }
776 
777 /*
778  * Repair read is different to the regular read:
779  *
780  * - Only reads the failed sectors
781  * - May have extra blocksize limits
782  */
783 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
784 {
785 	struct scrub_stripe *stripe = bbio->private;
786 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
787 	struct bio_vec *bvec;
788 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
789 	u32 bio_size = 0;
790 	int i;
791 
792 	ASSERT(sector_nr < stripe->nr_sectors);
793 
794 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
795 		bio_size += bvec->bv_len;
796 
797 	if (bbio->bio.bi_status) {
798 		bitmap_set(&stripe->io_error_bitmap, sector_nr,
799 			   bio_size >> fs_info->sectorsize_bits);
800 		bitmap_set(&stripe->error_bitmap, sector_nr,
801 			   bio_size >> fs_info->sectorsize_bits);
802 	} else {
803 		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
804 			     bio_size >> fs_info->sectorsize_bits);
805 	}
806 	bio_put(&bbio->bio);
807 	if (atomic_dec_and_test(&stripe->pending_io))
808 		wake_up(&stripe->io_wait);
809 }
810 
811 static int calc_next_mirror(int mirror, int num_copies)
812 {
813 	ASSERT(mirror <= num_copies);
814 	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
815 }
816 
817 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
818 					    int mirror, int blocksize, bool wait)
819 {
820 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
821 	struct btrfs_bio *bbio = NULL;
822 	const unsigned long old_error_bitmap = stripe->error_bitmap;
823 	int i;
824 
825 	ASSERT(stripe->mirror_num >= 1);
826 	ASSERT(atomic_read(&stripe->pending_io) == 0);
827 
828 	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
829 		struct page *page;
830 		int pgoff;
831 		int ret;
832 
833 		page = scrub_stripe_get_page(stripe, i);
834 		pgoff = scrub_stripe_get_page_offset(stripe, i);
835 
836 		/* The current sector cannot be merged, submit the bio. */
837 		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
838 			     bbio->bio.bi_iter.bi_size >= blocksize)) {
839 			ASSERT(bbio->bio.bi_iter.bi_size);
840 			atomic_inc(&stripe->pending_io);
841 			btrfs_submit_bio(bbio, mirror);
842 			if (wait)
843 				wait_scrub_stripe_io(stripe);
844 			bbio = NULL;
845 		}
846 
847 		if (!bbio) {
848 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
849 				fs_info, scrub_repair_read_endio, stripe);
850 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
851 				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
852 		}
853 
854 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
855 		ASSERT(ret == fs_info->sectorsize);
856 	}
857 	if (bbio) {
858 		ASSERT(bbio->bio.bi_iter.bi_size);
859 		atomic_inc(&stripe->pending_io);
860 		btrfs_submit_bio(bbio, mirror);
861 		if (wait)
862 			wait_scrub_stripe_io(stripe);
863 	}
864 }
865 
866 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
867 				       struct scrub_stripe *stripe)
868 {
869 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
870 				      DEFAULT_RATELIMIT_BURST);
871 	struct btrfs_fs_info *fs_info = sctx->fs_info;
872 	struct btrfs_device *dev = NULL;
873 	u64 physical = 0;
874 	int nr_data_sectors = 0;
875 	int nr_meta_sectors = 0;
876 	int nr_nodatacsum_sectors = 0;
877 	int nr_repaired_sectors = 0;
878 	int sector_nr;
879 
880 	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
881 		return;
882 
883 	/*
884 	 * Init needed infos for error reporting.
885 	 *
886 	 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
887 	 * thus no need for dev/physical, error reporting still needs dev and physical.
888 	 */
889 	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
890 		u64 mapped_len = fs_info->sectorsize;
891 		struct btrfs_io_context *bioc = NULL;
892 		int stripe_index = stripe->mirror_num - 1;
893 		int ret;
894 
895 		/* For scrub, our mirror_num should always start at 1. */
896 		ASSERT(stripe->mirror_num >= 1);
897 		ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
898 				      stripe->logical, &mapped_len, &bioc,
899 				      NULL, NULL);
900 		/*
901 		 * If we failed, dev will be NULL, and later detailed reports
902 		 * will just be skipped.
903 		 */
904 		if (ret < 0)
905 			goto skip;
906 		physical = bioc->stripes[stripe_index].physical;
907 		dev = bioc->stripes[stripe_index].dev;
908 		btrfs_put_bioc(bioc);
909 	}
910 
911 skip:
912 	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
913 		bool repaired = false;
914 
915 		if (stripe->sectors[sector_nr].is_metadata) {
916 			nr_meta_sectors++;
917 		} else {
918 			nr_data_sectors++;
919 			if (!stripe->sectors[sector_nr].csum)
920 				nr_nodatacsum_sectors++;
921 		}
922 
923 		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
924 		    !test_bit(sector_nr, &stripe->error_bitmap)) {
925 			nr_repaired_sectors++;
926 			repaired = true;
927 		}
928 
929 		/* Good sector from the beginning, nothing need to be done. */
930 		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
931 			continue;
932 
933 		/*
934 		 * Report error for the corrupted sectors.  If repaired, just
935 		 * output the message of repaired message.
936 		 */
937 		if (repaired) {
938 			if (dev) {
939 				btrfs_err_rl_in_rcu(fs_info,
940 			"fixed up error at logical %llu on dev %s physical %llu",
941 					    stripe->logical, btrfs_dev_name(dev),
942 					    physical);
943 			} else {
944 				btrfs_err_rl_in_rcu(fs_info,
945 			"fixed up error at logical %llu on mirror %u",
946 					    stripe->logical, stripe->mirror_num);
947 			}
948 			continue;
949 		}
950 
951 		/* The remaining are all for unrepaired. */
952 		if (dev) {
953 			btrfs_err_rl_in_rcu(fs_info,
954 	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
955 					    stripe->logical, btrfs_dev_name(dev),
956 					    physical);
957 		} else {
958 			btrfs_err_rl_in_rcu(fs_info,
959 	"unable to fixup (regular) error at logical %llu on mirror %u",
960 					    stripe->logical, stripe->mirror_num);
961 		}
962 
963 		if (test_bit(sector_nr, &stripe->io_error_bitmap))
964 			if (__ratelimit(&rs) && dev)
965 				scrub_print_common_warning("i/o error", dev, false,
966 						     stripe->logical, physical);
967 		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
968 			if (__ratelimit(&rs) && dev)
969 				scrub_print_common_warning("checksum error", dev, false,
970 						     stripe->logical, physical);
971 		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
972 			if (__ratelimit(&rs) && dev)
973 				scrub_print_common_warning("header error", dev, false,
974 						     stripe->logical, physical);
975 	}
976 
977 	spin_lock(&sctx->stat_lock);
978 	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
979 	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
980 	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
981 	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
982 	sctx->stat.no_csum += nr_nodatacsum_sectors;
983 	sctx->stat.read_errors += stripe->init_nr_io_errors;
984 	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
985 	sctx->stat.verify_errors += stripe->init_nr_meta_errors;
986 	sctx->stat.uncorrectable_errors +=
987 		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
988 	sctx->stat.corrected_errors += nr_repaired_sectors;
989 	spin_unlock(&sctx->stat_lock);
990 }
991 
992 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
993 				unsigned long write_bitmap, bool dev_replace);
994 
995 /*
996  * The main entrance for all read related scrub work, including:
997  *
998  * - Wait for the initial read to finish
999  * - Verify and locate any bad sectors
1000  * - Go through the remaining mirrors and try to read as large blocksize as
1001  *   possible
1002  * - Go through all mirrors (including the failed mirror) sector-by-sector
1003  * - Submit writeback for repaired sectors
1004  *
1005  * Writeback for dev-replace does not happen here, it needs extra
1006  * synchronization for zoned devices.
1007  */
1008 static void scrub_stripe_read_repair_worker(struct work_struct *work)
1009 {
1010 	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1011 	struct scrub_ctx *sctx = stripe->sctx;
1012 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1013 	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1014 					  stripe->bg->length);
1015 	unsigned long repaired;
1016 	int mirror;
1017 	int i;
1018 
1019 	ASSERT(stripe->mirror_num > 0);
1020 
1021 	wait_scrub_stripe_io(stripe);
1022 	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1023 	/* Save the initial failed bitmap for later repair and report usage. */
1024 	stripe->init_error_bitmap = stripe->error_bitmap;
1025 	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1026 						  stripe->nr_sectors);
1027 	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1028 						    stripe->nr_sectors);
1029 	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1030 						    stripe->nr_sectors);
1031 
1032 	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1033 		goto out;
1034 
1035 	/*
1036 	 * Try all remaining mirrors.
1037 	 *
1038 	 * Here we still try to read as large block as possible, as this is
1039 	 * faster and we have extra safety nets to rely on.
1040 	 */
1041 	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1042 	     mirror != stripe->mirror_num;
1043 	     mirror = calc_next_mirror(mirror, num_copies)) {
1044 		const unsigned long old_error_bitmap = stripe->error_bitmap;
1045 
1046 		scrub_stripe_submit_repair_read(stripe, mirror,
1047 						BTRFS_STRIPE_LEN, false);
1048 		wait_scrub_stripe_io(stripe);
1049 		scrub_verify_one_stripe(stripe, old_error_bitmap);
1050 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1051 			goto out;
1052 	}
1053 
1054 	/*
1055 	 * Last safety net, try re-checking all mirrors, including the failed
1056 	 * one, sector-by-sector.
1057 	 *
1058 	 * As if one sector failed the drive's internal csum, the whole read
1059 	 * containing the offending sector would be marked as error.
1060 	 * Thus here we do sector-by-sector read.
1061 	 *
1062 	 * This can be slow, thus we only try it as the last resort.
1063 	 */
1064 
1065 	for (i = 0, mirror = stripe->mirror_num;
1066 	     i < num_copies;
1067 	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
1068 		const unsigned long old_error_bitmap = stripe->error_bitmap;
1069 
1070 		scrub_stripe_submit_repair_read(stripe, mirror,
1071 						fs_info->sectorsize, true);
1072 		wait_scrub_stripe_io(stripe);
1073 		scrub_verify_one_stripe(stripe, old_error_bitmap);
1074 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1075 			goto out;
1076 	}
1077 out:
1078 	/*
1079 	 * Submit the repaired sectors.  For zoned case, we cannot do repair
1080 	 * in-place, but queue the bg to be relocated.
1081 	 */
1082 	bitmap_andnot(&repaired, &stripe->init_error_bitmap, &stripe->error_bitmap,
1083 		      stripe->nr_sectors);
1084 	if (!sctx->readonly && !bitmap_empty(&repaired, stripe->nr_sectors)) {
1085 		if (btrfs_is_zoned(fs_info)) {
1086 			btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1087 		} else {
1088 			scrub_write_sectors(sctx, stripe, repaired, false);
1089 			wait_scrub_stripe_io(stripe);
1090 		}
1091 	}
1092 
1093 	scrub_stripe_report_errors(sctx, stripe);
1094 	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1095 	wake_up(&stripe->repair_wait);
1096 }
1097 
1098 static void scrub_read_endio(struct btrfs_bio *bbio)
1099 {
1100 	struct scrub_stripe *stripe = bbio->private;
1101 	struct bio_vec *bvec;
1102 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1103 	int num_sectors;
1104 	u32 bio_size = 0;
1105 	int i;
1106 
1107 	ASSERT(sector_nr < stripe->nr_sectors);
1108 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1109 		bio_size += bvec->bv_len;
1110 	num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
1111 
1112 	if (bbio->bio.bi_status) {
1113 		bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
1114 		bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
1115 	} else {
1116 		bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
1117 	}
1118 	bio_put(&bbio->bio);
1119 	if (atomic_dec_and_test(&stripe->pending_io)) {
1120 		wake_up(&stripe->io_wait);
1121 		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1122 		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1123 	}
1124 }
1125 
1126 static void scrub_write_endio(struct btrfs_bio *bbio)
1127 {
1128 	struct scrub_stripe *stripe = bbio->private;
1129 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1130 	struct bio_vec *bvec;
1131 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1132 	u32 bio_size = 0;
1133 	int i;
1134 
1135 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1136 		bio_size += bvec->bv_len;
1137 
1138 	if (bbio->bio.bi_status) {
1139 		unsigned long flags;
1140 
1141 		spin_lock_irqsave(&stripe->write_error_lock, flags);
1142 		bitmap_set(&stripe->write_error_bitmap, sector_nr,
1143 			   bio_size >> fs_info->sectorsize_bits);
1144 		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1145 	}
1146 	bio_put(&bbio->bio);
1147 
1148 	if (atomic_dec_and_test(&stripe->pending_io))
1149 		wake_up(&stripe->io_wait);
1150 }
1151 
1152 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1153 				   struct scrub_stripe *stripe,
1154 				   struct btrfs_bio *bbio, bool dev_replace)
1155 {
1156 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1157 	u32 bio_len = bbio->bio.bi_iter.bi_size;
1158 	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1159 		      stripe->logical;
1160 
1161 	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1162 	atomic_inc(&stripe->pending_io);
1163 	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1164 	if (!btrfs_is_zoned(fs_info))
1165 		return;
1166 	/*
1167 	 * For zoned writeback, queue depth must be 1, thus we must wait for
1168 	 * the write to finish before the next write.
1169 	 */
1170 	wait_scrub_stripe_io(stripe);
1171 
1172 	/*
1173 	 * And also need to update the write pointer if write finished
1174 	 * successfully.
1175 	 */
1176 	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1177 		      &stripe->write_error_bitmap))
1178 		sctx->write_pointer += bio_len;
1179 }
1180 
1181 /*
1182  * Submit the write bio(s) for the sectors specified by @write_bitmap.
1183  *
1184  * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1185  *
1186  * - Only needs logical bytenr and mirror_num
1187  *   Just like the scrub read path
1188  *
1189  * - Would only result in writes to the specified mirror
1190  *   Unlike the regular writeback path, which would write back to all stripes
1191  *
1192  * - Handle dev-replace and read-repair writeback differently
1193  */
1194 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1195 				unsigned long write_bitmap, bool dev_replace)
1196 {
1197 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1198 	struct btrfs_bio *bbio = NULL;
1199 	int sector_nr;
1200 
1201 	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1202 		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1203 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1204 		int ret;
1205 
1206 		/* We should only writeback sectors covered by an extent. */
1207 		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1208 
1209 		/* Cannot merge with previous sector, submit the current one. */
1210 		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1211 			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1212 			bbio = NULL;
1213 		}
1214 		if (!bbio) {
1215 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1216 					       fs_info, scrub_write_endio, stripe);
1217 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
1218 				(sector_nr << fs_info->sectorsize_bits)) >>
1219 				SECTOR_SHIFT;
1220 		}
1221 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1222 		ASSERT(ret == fs_info->sectorsize);
1223 	}
1224 	if (bbio)
1225 		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1226 }
1227 
1228 /*
1229  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1230  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1231  */
1232 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1233 				  unsigned int bio_size)
1234 {
1235 	const int time_slice = 1000;
1236 	s64 delta;
1237 	ktime_t now;
1238 	u32 div;
1239 	u64 bwlimit;
1240 
1241 	bwlimit = READ_ONCE(device->scrub_speed_max);
1242 	if (bwlimit == 0)
1243 		return;
1244 
1245 	/*
1246 	 * Slice is divided into intervals when the IO is submitted, adjust by
1247 	 * bwlimit and maximum of 64 intervals.
1248 	 */
1249 	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1250 	div = min_t(u32, 64, div);
1251 
1252 	/* Start new epoch, set deadline */
1253 	now = ktime_get();
1254 	if (sctx->throttle_deadline == 0) {
1255 		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1256 		sctx->throttle_sent = 0;
1257 	}
1258 
1259 	/* Still in the time to send? */
1260 	if (ktime_before(now, sctx->throttle_deadline)) {
1261 		/* If current bio is within the limit, send it */
1262 		sctx->throttle_sent += bio_size;
1263 		if (sctx->throttle_sent <= div_u64(bwlimit, div))
1264 			return;
1265 
1266 		/* We're over the limit, sleep until the rest of the slice */
1267 		delta = ktime_ms_delta(sctx->throttle_deadline, now);
1268 	} else {
1269 		/* New request after deadline, start new epoch */
1270 		delta = 0;
1271 	}
1272 
1273 	if (delta) {
1274 		long timeout;
1275 
1276 		timeout = div_u64(delta * HZ, 1000);
1277 		schedule_timeout_interruptible(timeout);
1278 	}
1279 
1280 	/* Next call will start the deadline period */
1281 	sctx->throttle_deadline = 0;
1282 }
1283 
1284 /*
1285  * Given a physical address, this will calculate it's
1286  * logical offset. if this is a parity stripe, it will return
1287  * the most left data stripe's logical offset.
1288  *
1289  * return 0 if it is a data stripe, 1 means parity stripe.
1290  */
1291 static int get_raid56_logic_offset(u64 physical, int num,
1292 				   struct btrfs_chunk_map *map, u64 *offset,
1293 				   u64 *stripe_start)
1294 {
1295 	int i;
1296 	int j = 0;
1297 	u64 last_offset;
1298 	const int data_stripes = nr_data_stripes(map);
1299 
1300 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
1301 	if (stripe_start)
1302 		*stripe_start = last_offset;
1303 
1304 	*offset = last_offset;
1305 	for (i = 0; i < data_stripes; i++) {
1306 		u32 stripe_nr;
1307 		u32 stripe_index;
1308 		u32 rot;
1309 
1310 		*offset = last_offset + btrfs_stripe_nr_to_offset(i);
1311 
1312 		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1313 
1314 		/* Work out the disk rotation on this stripe-set */
1315 		rot = stripe_nr % map->num_stripes;
1316 		/* calculate which stripe this data locates */
1317 		rot += i;
1318 		stripe_index = rot % map->num_stripes;
1319 		if (stripe_index == num)
1320 			return 0;
1321 		if (stripe_index < num)
1322 			j++;
1323 	}
1324 	*offset = last_offset + btrfs_stripe_nr_to_offset(j);
1325 	return 1;
1326 }
1327 
1328 /*
1329  * Return 0 if the extent item range covers any byte of the range.
1330  * Return <0 if the extent item is before @search_start.
1331  * Return >0 if the extent item is after @start_start + @search_len.
1332  */
1333 static int compare_extent_item_range(struct btrfs_path *path,
1334 				     u64 search_start, u64 search_len)
1335 {
1336 	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1337 	u64 len;
1338 	struct btrfs_key key;
1339 
1340 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1341 	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1342 	       key.type == BTRFS_METADATA_ITEM_KEY);
1343 	if (key.type == BTRFS_METADATA_ITEM_KEY)
1344 		len = fs_info->nodesize;
1345 	else
1346 		len = key.offset;
1347 
1348 	if (key.objectid + len <= search_start)
1349 		return -1;
1350 	if (key.objectid >= search_start + search_len)
1351 		return 1;
1352 	return 0;
1353 }
1354 
1355 /*
1356  * Locate one extent item which covers any byte in range
1357  * [@search_start, @search_start + @search_length)
1358  *
1359  * If the path is not initialized, we will initialize the search by doing
1360  * a btrfs_search_slot().
1361  * If the path is already initialized, we will use the path as the initial
1362  * slot, to avoid duplicated btrfs_search_slot() calls.
1363  *
1364  * NOTE: If an extent item starts before @search_start, we will still
1365  * return the extent item. This is for data extent crossing stripe boundary.
1366  *
1367  * Return 0 if we found such extent item, and @path will point to the extent item.
1368  * Return >0 if no such extent item can be found, and @path will be released.
1369  * Return <0 if hit fatal error, and @path will be released.
1370  */
1371 static int find_first_extent_item(struct btrfs_root *extent_root,
1372 				  struct btrfs_path *path,
1373 				  u64 search_start, u64 search_len)
1374 {
1375 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1376 	struct btrfs_key key;
1377 	int ret;
1378 
1379 	/* Continue using the existing path */
1380 	if (path->nodes[0])
1381 		goto search_forward;
1382 
1383 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1384 		key.type = BTRFS_METADATA_ITEM_KEY;
1385 	else
1386 		key.type = BTRFS_EXTENT_ITEM_KEY;
1387 	key.objectid = search_start;
1388 	key.offset = (u64)-1;
1389 
1390 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1391 	if (ret < 0)
1392 		return ret;
1393 	if (ret == 0) {
1394 		/*
1395 		 * Key with offset -1 found, there would have to exist an extent
1396 		 * item with such offset, but this is out of the valid range.
1397 		 */
1398 		btrfs_release_path(path);
1399 		return -EUCLEAN;
1400 	}
1401 
1402 	/*
1403 	 * Here we intentionally pass 0 as @min_objectid, as there could be
1404 	 * an extent item starting before @search_start.
1405 	 */
1406 	ret = btrfs_previous_extent_item(extent_root, path, 0);
1407 	if (ret < 0)
1408 		return ret;
1409 	/*
1410 	 * No matter whether we have found an extent item, the next loop will
1411 	 * properly do every check on the key.
1412 	 */
1413 search_forward:
1414 	while (true) {
1415 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1416 		if (key.objectid >= search_start + search_len)
1417 			break;
1418 		if (key.type != BTRFS_METADATA_ITEM_KEY &&
1419 		    key.type != BTRFS_EXTENT_ITEM_KEY)
1420 			goto next;
1421 
1422 		ret = compare_extent_item_range(path, search_start, search_len);
1423 		if (ret == 0)
1424 			return ret;
1425 		if (ret > 0)
1426 			break;
1427 next:
1428 		ret = btrfs_next_item(extent_root, path);
1429 		if (ret) {
1430 			/* Either no more items or a fatal error. */
1431 			btrfs_release_path(path);
1432 			return ret;
1433 		}
1434 	}
1435 	btrfs_release_path(path);
1436 	return 1;
1437 }
1438 
1439 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1440 			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1441 {
1442 	struct btrfs_key key;
1443 	struct btrfs_extent_item *ei;
1444 
1445 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1446 	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1447 	       key.type == BTRFS_EXTENT_ITEM_KEY);
1448 	*extent_start_ret = key.objectid;
1449 	if (key.type == BTRFS_METADATA_ITEM_KEY)
1450 		*size_ret = path->nodes[0]->fs_info->nodesize;
1451 	else
1452 		*size_ret = key.offset;
1453 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1454 	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1455 	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1456 }
1457 
1458 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1459 					u64 physical, u64 physical_end)
1460 {
1461 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1462 	int ret = 0;
1463 
1464 	if (!btrfs_is_zoned(fs_info))
1465 		return 0;
1466 
1467 	mutex_lock(&sctx->wr_lock);
1468 	if (sctx->write_pointer < physical_end) {
1469 		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1470 						    physical,
1471 						    sctx->write_pointer);
1472 		if (ret)
1473 			btrfs_err(fs_info,
1474 				  "zoned: failed to recover write pointer");
1475 	}
1476 	mutex_unlock(&sctx->wr_lock);
1477 	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1478 
1479 	return ret;
1480 }
1481 
1482 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1483 				 struct scrub_stripe *stripe,
1484 				 u64 extent_start, u64 extent_len,
1485 				 u64 extent_flags, u64 extent_gen)
1486 {
1487 	for (u64 cur_logical = max(stripe->logical, extent_start);
1488 	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1489 			       extent_start + extent_len);
1490 	     cur_logical += fs_info->sectorsize) {
1491 		const int nr_sector = (cur_logical - stripe->logical) >>
1492 				      fs_info->sectorsize_bits;
1493 		struct scrub_sector_verification *sector =
1494 						&stripe->sectors[nr_sector];
1495 
1496 		set_bit(nr_sector, &stripe->extent_sector_bitmap);
1497 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1498 			sector->is_metadata = true;
1499 			sector->generation = extent_gen;
1500 		}
1501 	}
1502 }
1503 
1504 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1505 {
1506 	stripe->extent_sector_bitmap = 0;
1507 	stripe->init_error_bitmap = 0;
1508 	stripe->init_nr_io_errors = 0;
1509 	stripe->init_nr_csum_errors = 0;
1510 	stripe->init_nr_meta_errors = 0;
1511 	stripe->error_bitmap = 0;
1512 	stripe->io_error_bitmap = 0;
1513 	stripe->csum_error_bitmap = 0;
1514 	stripe->meta_error_bitmap = 0;
1515 }
1516 
1517 /*
1518  * Locate one stripe which has at least one extent in its range.
1519  *
1520  * Return 0 if found such stripe, and store its info into @stripe.
1521  * Return >0 if there is no such stripe in the specified range.
1522  * Return <0 for error.
1523  */
1524 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1525 					struct btrfs_path *extent_path,
1526 					struct btrfs_path *csum_path,
1527 					struct btrfs_device *dev, u64 physical,
1528 					int mirror_num, u64 logical_start,
1529 					u32 logical_len,
1530 					struct scrub_stripe *stripe)
1531 {
1532 	struct btrfs_fs_info *fs_info = bg->fs_info;
1533 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1534 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1535 	const u64 logical_end = logical_start + logical_len;
1536 	u64 cur_logical = logical_start;
1537 	u64 stripe_end;
1538 	u64 extent_start;
1539 	u64 extent_len;
1540 	u64 extent_flags;
1541 	u64 extent_gen;
1542 	int ret;
1543 
1544 	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1545 				   stripe->nr_sectors);
1546 	scrub_stripe_reset_bitmaps(stripe);
1547 
1548 	/* The range must be inside the bg. */
1549 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1550 
1551 	ret = find_first_extent_item(extent_root, extent_path, logical_start,
1552 				     logical_len);
1553 	/* Either error or not found. */
1554 	if (ret)
1555 		goto out;
1556 	get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1557 			&extent_gen);
1558 	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1559 		stripe->nr_meta_extents++;
1560 	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1561 		stripe->nr_data_extents++;
1562 	cur_logical = max(extent_start, cur_logical);
1563 
1564 	/*
1565 	 * Round down to stripe boundary.
1566 	 *
1567 	 * The extra calculation against bg->start is to handle block groups
1568 	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1569 	 */
1570 	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1571 			  bg->start;
1572 	stripe->physical = physical + stripe->logical - logical_start;
1573 	stripe->dev = dev;
1574 	stripe->bg = bg;
1575 	stripe->mirror_num = mirror_num;
1576 	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1577 
1578 	/* Fill the first extent info into stripe->sectors[] array. */
1579 	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1580 			     extent_flags, extent_gen);
1581 	cur_logical = extent_start + extent_len;
1582 
1583 	/* Fill the extent info for the remaining sectors. */
1584 	while (cur_logical <= stripe_end) {
1585 		ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1586 					     stripe_end - cur_logical + 1);
1587 		if (ret < 0)
1588 			goto out;
1589 		if (ret > 0) {
1590 			ret = 0;
1591 			break;
1592 		}
1593 		get_extent_info(extent_path, &extent_start, &extent_len,
1594 				&extent_flags, &extent_gen);
1595 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1596 			stripe->nr_meta_extents++;
1597 		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1598 			stripe->nr_data_extents++;
1599 		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1600 				     extent_flags, extent_gen);
1601 		cur_logical = extent_start + extent_len;
1602 	}
1603 
1604 	/* Now fill the data csum. */
1605 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1606 		int sector_nr;
1607 		unsigned long csum_bitmap = 0;
1608 
1609 		/* Csum space should have already been allocated. */
1610 		ASSERT(stripe->csums);
1611 
1612 		/*
1613 		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1614 		 * should contain at most 16 sectors.
1615 		 */
1616 		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1617 
1618 		ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1619 						stripe->logical, stripe_end,
1620 						stripe->csums, &csum_bitmap);
1621 		if (ret < 0)
1622 			goto out;
1623 		if (ret > 0)
1624 			ret = 0;
1625 
1626 		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1627 			stripe->sectors[sector_nr].csum = stripe->csums +
1628 				sector_nr * fs_info->csum_size;
1629 		}
1630 	}
1631 	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1632 out:
1633 	return ret;
1634 }
1635 
1636 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1637 {
1638 	scrub_stripe_reset_bitmaps(stripe);
1639 
1640 	stripe->nr_meta_extents = 0;
1641 	stripe->nr_data_extents = 0;
1642 	stripe->state = 0;
1643 
1644 	for (int i = 0; i < stripe->nr_sectors; i++) {
1645 		stripe->sectors[i].is_metadata = false;
1646 		stripe->sectors[i].csum = NULL;
1647 		stripe->sectors[i].generation = 0;
1648 	}
1649 }
1650 
1651 static u32 stripe_length(const struct scrub_stripe *stripe)
1652 {
1653 	ASSERT(stripe->bg);
1654 
1655 	return min(BTRFS_STRIPE_LEN,
1656 		   stripe->bg->start + stripe->bg->length - stripe->logical);
1657 }
1658 
1659 static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx,
1660 					    struct scrub_stripe *stripe)
1661 {
1662 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1663 	struct btrfs_bio *bbio = NULL;
1664 	unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
1665 	u64 stripe_len = BTRFS_STRIPE_LEN;
1666 	int mirror = stripe->mirror_num;
1667 	int i;
1668 
1669 	atomic_inc(&stripe->pending_io);
1670 
1671 	for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
1672 		struct page *page = scrub_stripe_get_page(stripe, i);
1673 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);
1674 
1675 		/* We're beyond the chunk boundary, no need to read anymore. */
1676 		if (i >= nr_sectors)
1677 			break;
1678 
1679 		/* The current sector cannot be merged, submit the bio. */
1680 		if (bbio &&
1681 		    ((i > 0 &&
1682 		      !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
1683 		     bbio->bio.bi_iter.bi_size >= stripe_len)) {
1684 			ASSERT(bbio->bio.bi_iter.bi_size);
1685 			atomic_inc(&stripe->pending_io);
1686 			btrfs_submit_bio(bbio, mirror);
1687 			bbio = NULL;
1688 		}
1689 
1690 		if (!bbio) {
1691 			struct btrfs_io_stripe io_stripe = {};
1692 			struct btrfs_io_context *bioc = NULL;
1693 			const u64 logical = stripe->logical +
1694 					    (i << fs_info->sectorsize_bits);
1695 			int err;
1696 
1697 			io_stripe.is_scrub = true;
1698 			stripe_len = (nr_sectors - i) << fs_info->sectorsize_bits;
1699 			/*
1700 			 * For RST cases, we need to manually split the bbio to
1701 			 * follow the RST boundary.
1702 			 */
1703 			err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1704 					      &stripe_len, &bioc, &io_stripe, &mirror);
1705 			btrfs_put_bioc(bioc);
1706 			if (err < 0) {
1707 				set_bit(i, &stripe->io_error_bitmap);
1708 				set_bit(i, &stripe->error_bitmap);
1709 				continue;
1710 			}
1711 
1712 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1713 					       fs_info, scrub_read_endio, stripe);
1714 			bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1715 		}
1716 
1717 		__bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1718 	}
1719 
1720 	if (bbio) {
1721 		ASSERT(bbio->bio.bi_iter.bi_size);
1722 		atomic_inc(&stripe->pending_io);
1723 		btrfs_submit_bio(bbio, mirror);
1724 	}
1725 
1726 	if (atomic_dec_and_test(&stripe->pending_io)) {
1727 		wake_up(&stripe->io_wait);
1728 		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1729 		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1730 	}
1731 }
1732 
1733 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1734 				      struct scrub_stripe *stripe)
1735 {
1736 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1737 	struct btrfs_bio *bbio;
1738 	unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
1739 	int mirror = stripe->mirror_num;
1740 
1741 	ASSERT(stripe->bg);
1742 	ASSERT(stripe->mirror_num > 0);
1743 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1744 
1745 	if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1746 		scrub_submit_extent_sector_read(sctx, stripe);
1747 		return;
1748 	}
1749 
1750 	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1751 			       scrub_read_endio, stripe);
1752 
1753 	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1754 	/* Read the whole range inside the chunk boundary. */
1755 	for (unsigned int cur = 0; cur < nr_sectors; cur++) {
1756 		struct page *page = scrub_stripe_get_page(stripe, cur);
1757 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
1758 		int ret;
1759 
1760 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1761 		/* We should have allocated enough bio vectors. */
1762 		ASSERT(ret == fs_info->sectorsize);
1763 	}
1764 	atomic_inc(&stripe->pending_io);
1765 
1766 	/*
1767 	 * For dev-replace, either user asks to avoid the source dev, or
1768 	 * the device is missing, we try the next mirror instead.
1769 	 */
1770 	if (sctx->is_dev_replace &&
1771 	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1772 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1773 	     !stripe->dev->bdev)) {
1774 		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1775 						  stripe->bg->length);
1776 
1777 		mirror = calc_next_mirror(mirror, num_copies);
1778 	}
1779 	btrfs_submit_bio(bbio, mirror);
1780 }
1781 
1782 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1783 {
1784 	int i;
1785 
1786 	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1787 		if (stripe->sectors[i].is_metadata) {
1788 			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1789 
1790 			btrfs_err(fs_info,
1791 			"stripe %llu has unrepaired metadata sector at %llu",
1792 				  stripe->logical,
1793 				  stripe->logical + (i << fs_info->sectorsize_bits));
1794 			return true;
1795 		}
1796 	}
1797 	return false;
1798 }
1799 
1800 static void submit_initial_group_read(struct scrub_ctx *sctx,
1801 				      unsigned int first_slot,
1802 				      unsigned int nr_stripes)
1803 {
1804 	struct blk_plug plug;
1805 
1806 	ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1807 	ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1808 
1809 	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1810 			      btrfs_stripe_nr_to_offset(nr_stripes));
1811 	blk_start_plug(&plug);
1812 	for (int i = 0; i < nr_stripes; i++) {
1813 		struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1814 
1815 		/* Those stripes should be initialized. */
1816 		ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1817 		scrub_submit_initial_read(sctx, stripe);
1818 	}
1819 	blk_finish_plug(&plug);
1820 }
1821 
1822 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1823 {
1824 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1825 	struct scrub_stripe *stripe;
1826 	const int nr_stripes = sctx->cur_stripe;
1827 	int ret = 0;
1828 
1829 	if (!nr_stripes)
1830 		return 0;
1831 
1832 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1833 
1834 	/* Submit the stripes which are populated but not submitted. */
1835 	if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1836 		const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1837 
1838 		submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
1839 	}
1840 
1841 	for (int i = 0; i < nr_stripes; i++) {
1842 		stripe = &sctx->stripes[i];
1843 
1844 		wait_event(stripe->repair_wait,
1845 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1846 	}
1847 
1848 	/* Submit for dev-replace. */
1849 	if (sctx->is_dev_replace) {
1850 		/*
1851 		 * For dev-replace, if we know there is something wrong with
1852 		 * metadata, we should immediately abort.
1853 		 */
1854 		for (int i = 0; i < nr_stripes; i++) {
1855 			if (stripe_has_metadata_error(&sctx->stripes[i])) {
1856 				ret = -EIO;
1857 				goto out;
1858 			}
1859 		}
1860 		for (int i = 0; i < nr_stripes; i++) {
1861 			unsigned long good;
1862 
1863 			stripe = &sctx->stripes[i];
1864 
1865 			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1866 
1867 			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1868 				      &stripe->error_bitmap, stripe->nr_sectors);
1869 			scrub_write_sectors(sctx, stripe, good, true);
1870 		}
1871 	}
1872 
1873 	/* Wait for the above writebacks to finish. */
1874 	for (int i = 0; i < nr_stripes; i++) {
1875 		stripe = &sctx->stripes[i];
1876 
1877 		wait_scrub_stripe_io(stripe);
1878 		spin_lock(&sctx->stat_lock);
1879 		sctx->stat.last_physical = stripe->physical + stripe_length(stripe);
1880 		spin_unlock(&sctx->stat_lock);
1881 		scrub_reset_stripe(stripe);
1882 	}
1883 out:
1884 	sctx->cur_stripe = 0;
1885 	return ret;
1886 }
1887 
1888 static void raid56_scrub_wait_endio(struct bio *bio)
1889 {
1890 	complete(bio->bi_private);
1891 }
1892 
1893 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1894 			      struct btrfs_device *dev, int mirror_num,
1895 			      u64 logical, u32 length, u64 physical,
1896 			      u64 *found_logical_ret)
1897 {
1898 	struct scrub_stripe *stripe;
1899 	int ret;
1900 
1901 	/*
1902 	 * There should always be one slot left, as caller filling the last
1903 	 * slot should flush them all.
1904 	 */
1905 	ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1906 
1907 	/* @found_logical_ret must be specified. */
1908 	ASSERT(found_logical_ret);
1909 
1910 	stripe = &sctx->stripes[sctx->cur_stripe];
1911 	scrub_reset_stripe(stripe);
1912 	ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1913 					   &sctx->csum_path, dev, physical,
1914 					   mirror_num, logical, length, stripe);
1915 	/* Either >0 as no more extents or <0 for error. */
1916 	if (ret)
1917 		return ret;
1918 	*found_logical_ret = stripe->logical;
1919 	sctx->cur_stripe++;
1920 
1921 	/* We filled one group, submit it. */
1922 	if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1923 		const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1924 
1925 		submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
1926 	}
1927 
1928 	/* Last slot used, flush them all. */
1929 	if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1930 		return flush_scrub_stripes(sctx);
1931 	return 0;
1932 }
1933 
1934 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1935 				      struct btrfs_device *scrub_dev,
1936 				      struct btrfs_block_group *bg,
1937 				      struct btrfs_chunk_map *map,
1938 				      u64 full_stripe_start)
1939 {
1940 	DECLARE_COMPLETION_ONSTACK(io_done);
1941 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1942 	struct btrfs_raid_bio *rbio;
1943 	struct btrfs_io_context *bioc = NULL;
1944 	struct btrfs_path extent_path = { 0 };
1945 	struct btrfs_path csum_path = { 0 };
1946 	struct bio *bio;
1947 	struct scrub_stripe *stripe;
1948 	bool all_empty = true;
1949 	const int data_stripes = nr_data_stripes(map);
1950 	unsigned long extent_bitmap = 0;
1951 	u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1952 	int ret;
1953 
1954 	ASSERT(sctx->raid56_data_stripes);
1955 
1956 	/*
1957 	 * For data stripe search, we cannot re-use the same extent/csum paths,
1958 	 * as the data stripe bytenr may be smaller than previous extent.  Thus
1959 	 * we have to use our own extent/csum paths.
1960 	 */
1961 	extent_path.search_commit_root = 1;
1962 	extent_path.skip_locking = 1;
1963 	csum_path.search_commit_root = 1;
1964 	csum_path.skip_locking = 1;
1965 
1966 	for (int i = 0; i < data_stripes; i++) {
1967 		int stripe_index;
1968 		int rot;
1969 		u64 physical;
1970 
1971 		stripe = &sctx->raid56_data_stripes[i];
1972 		rot = div_u64(full_stripe_start - bg->start,
1973 			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1974 		stripe_index = (i + rot) % map->num_stripes;
1975 		physical = map->stripes[stripe_index].physical +
1976 			   btrfs_stripe_nr_to_offset(rot);
1977 
1978 		scrub_reset_stripe(stripe);
1979 		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1980 		ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1981 				map->stripes[stripe_index].dev, physical, 1,
1982 				full_stripe_start + btrfs_stripe_nr_to_offset(i),
1983 				BTRFS_STRIPE_LEN, stripe);
1984 		if (ret < 0)
1985 			goto out;
1986 		/*
1987 		 * No extent in this data stripe, need to manually mark them
1988 		 * initialized to make later read submission happy.
1989 		 */
1990 		if (ret > 0) {
1991 			stripe->logical = full_stripe_start +
1992 					  btrfs_stripe_nr_to_offset(i);
1993 			stripe->dev = map->stripes[stripe_index].dev;
1994 			stripe->mirror_num = 1;
1995 			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1996 		}
1997 	}
1998 
1999 	/* Check if all data stripes are empty. */
2000 	for (int i = 0; i < data_stripes; i++) {
2001 		stripe = &sctx->raid56_data_stripes[i];
2002 		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
2003 			all_empty = false;
2004 			break;
2005 		}
2006 	}
2007 	if (all_empty) {
2008 		ret = 0;
2009 		goto out;
2010 	}
2011 
2012 	for (int i = 0; i < data_stripes; i++) {
2013 		stripe = &sctx->raid56_data_stripes[i];
2014 		scrub_submit_initial_read(sctx, stripe);
2015 	}
2016 	for (int i = 0; i < data_stripes; i++) {
2017 		stripe = &sctx->raid56_data_stripes[i];
2018 
2019 		wait_event(stripe->repair_wait,
2020 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
2021 	}
2022 	/* For now, no zoned support for RAID56. */
2023 	ASSERT(!btrfs_is_zoned(sctx->fs_info));
2024 
2025 	/*
2026 	 * Now all data stripes are properly verified. Check if we have any
2027 	 * unrepaired, if so abort immediately or we could further corrupt the
2028 	 * P/Q stripes.
2029 	 *
2030 	 * During the loop, also populate extent_bitmap.
2031 	 */
2032 	for (int i = 0; i < data_stripes; i++) {
2033 		unsigned long error;
2034 
2035 		stripe = &sctx->raid56_data_stripes[i];
2036 
2037 		/*
2038 		 * We should only check the errors where there is an extent.
2039 		 * As we may hit an empty data stripe while it's missing.
2040 		 */
2041 		bitmap_and(&error, &stripe->error_bitmap,
2042 			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
2043 		if (!bitmap_empty(&error, stripe->nr_sectors)) {
2044 			btrfs_err(fs_info,
2045 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2046 				  full_stripe_start, i, stripe->nr_sectors,
2047 				  &error);
2048 			ret = -EIO;
2049 			goto out;
2050 		}
2051 		bitmap_or(&extent_bitmap, &extent_bitmap,
2052 			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
2053 	}
2054 
2055 	/* Now we can check and regenerate the P/Q stripe. */
2056 	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2057 	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2058 	bio->bi_private = &io_done;
2059 	bio->bi_end_io = raid56_scrub_wait_endio;
2060 
2061 	btrfs_bio_counter_inc_blocked(fs_info);
2062 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2063 			      &length, &bioc, NULL, NULL);
2064 	if (ret < 0) {
2065 		btrfs_put_bioc(bioc);
2066 		btrfs_bio_counter_dec(fs_info);
2067 		goto out;
2068 	}
2069 	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2070 				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2071 	btrfs_put_bioc(bioc);
2072 	if (!rbio) {
2073 		ret = -ENOMEM;
2074 		btrfs_bio_counter_dec(fs_info);
2075 		goto out;
2076 	}
2077 	/* Use the recovered stripes as cache to avoid read them from disk again. */
2078 	for (int i = 0; i < data_stripes; i++) {
2079 		stripe = &sctx->raid56_data_stripes[i];
2080 
2081 		raid56_parity_cache_data_pages(rbio, stripe->pages,
2082 				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
2083 	}
2084 	raid56_parity_submit_scrub_rbio(rbio);
2085 	wait_for_completion_io(&io_done);
2086 	ret = blk_status_to_errno(bio->bi_status);
2087 	bio_put(bio);
2088 	btrfs_bio_counter_dec(fs_info);
2089 
2090 	btrfs_release_path(&extent_path);
2091 	btrfs_release_path(&csum_path);
2092 out:
2093 	return ret;
2094 }
2095 
2096 /*
2097  * Scrub one range which can only has simple mirror based profile.
2098  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2099  *  RAID0/RAID10).
2100  *
2101  * Since we may need to handle a subset of block group, we need @logical_start
2102  * and @logical_length parameter.
2103  */
2104 static int scrub_simple_mirror(struct scrub_ctx *sctx,
2105 			       struct btrfs_block_group *bg,
2106 			       struct btrfs_chunk_map *map,
2107 			       u64 logical_start, u64 logical_length,
2108 			       struct btrfs_device *device,
2109 			       u64 physical, int mirror_num)
2110 {
2111 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2112 	const u64 logical_end = logical_start + logical_length;
2113 	u64 cur_logical = logical_start;
2114 	int ret = 0;
2115 
2116 	/* The range must be inside the bg */
2117 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2118 
2119 	/* Go through each extent items inside the logical range */
2120 	while (cur_logical < logical_end) {
2121 		u64 found_logical = U64_MAX;
2122 		u64 cur_physical = physical + cur_logical - logical_start;
2123 
2124 		/* Canceled? */
2125 		if (atomic_read(&fs_info->scrub_cancel_req) ||
2126 		    atomic_read(&sctx->cancel_req)) {
2127 			ret = -ECANCELED;
2128 			break;
2129 		}
2130 		/* Paused? */
2131 		if (atomic_read(&fs_info->scrub_pause_req)) {
2132 			/* Push queued extents */
2133 			scrub_blocked_if_needed(fs_info);
2134 		}
2135 		/* Block group removed? */
2136 		spin_lock(&bg->lock);
2137 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2138 			spin_unlock(&bg->lock);
2139 			ret = 0;
2140 			break;
2141 		}
2142 		spin_unlock(&bg->lock);
2143 
2144 		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2145 					 cur_logical, logical_end - cur_logical,
2146 					 cur_physical, &found_logical);
2147 		if (ret > 0) {
2148 			/* No more extent, just update the accounting */
2149 			spin_lock(&sctx->stat_lock);
2150 			sctx->stat.last_physical = physical + logical_length;
2151 			spin_unlock(&sctx->stat_lock);
2152 			ret = 0;
2153 			break;
2154 		}
2155 		if (ret < 0)
2156 			break;
2157 
2158 		/* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2159 		ASSERT(found_logical != U64_MAX);
2160 		cur_logical = found_logical + BTRFS_STRIPE_LEN;
2161 
2162 		/* Don't hold CPU for too long time */
2163 		cond_resched();
2164 	}
2165 	return ret;
2166 }
2167 
2168 /* Calculate the full stripe length for simple stripe based profiles */
2169 static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
2170 {
2171 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2172 			    BTRFS_BLOCK_GROUP_RAID10));
2173 
2174 	return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2175 }
2176 
2177 /* Get the logical bytenr for the stripe */
2178 static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
2179 				     struct btrfs_block_group *bg,
2180 				     int stripe_index)
2181 {
2182 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2183 			    BTRFS_BLOCK_GROUP_RAID10));
2184 	ASSERT(stripe_index < map->num_stripes);
2185 
2186 	/*
2187 	 * (stripe_index / sub_stripes) gives how many data stripes we need to
2188 	 * skip.
2189 	 */
2190 	return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2191 	       bg->start;
2192 }
2193 
2194 /* Get the mirror number for the stripe */
2195 static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
2196 {
2197 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2198 			    BTRFS_BLOCK_GROUP_RAID10));
2199 	ASSERT(stripe_index < map->num_stripes);
2200 
2201 	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2202 	return stripe_index % map->sub_stripes + 1;
2203 }
2204 
2205 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2206 			       struct btrfs_block_group *bg,
2207 			       struct btrfs_chunk_map *map,
2208 			       struct btrfs_device *device,
2209 			       int stripe_index)
2210 {
2211 	const u64 logical_increment = simple_stripe_full_stripe_len(map);
2212 	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2213 	const u64 orig_physical = map->stripes[stripe_index].physical;
2214 	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2215 	u64 cur_logical = orig_logical;
2216 	u64 cur_physical = orig_physical;
2217 	int ret = 0;
2218 
2219 	while (cur_logical < bg->start + bg->length) {
2220 		/*
2221 		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2222 		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2223 		 * this stripe.
2224 		 */
2225 		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2226 					  BTRFS_STRIPE_LEN, device, cur_physical,
2227 					  mirror_num);
2228 		if (ret)
2229 			return ret;
2230 		/* Skip to next stripe which belongs to the target device */
2231 		cur_logical += logical_increment;
2232 		/* For physical offset, we just go to next stripe */
2233 		cur_physical += BTRFS_STRIPE_LEN;
2234 	}
2235 	return ret;
2236 }
2237 
2238 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2239 					   struct btrfs_block_group *bg,
2240 					   struct btrfs_chunk_map *map,
2241 					   struct btrfs_device *scrub_dev,
2242 					   int stripe_index)
2243 {
2244 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2245 	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2246 	const u64 chunk_logical = bg->start;
2247 	int ret;
2248 	int ret2;
2249 	u64 physical = map->stripes[stripe_index].physical;
2250 	const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
2251 	const u64 physical_end = physical + dev_stripe_len;
2252 	u64 logical;
2253 	u64 logic_end;
2254 	/* The logical increment after finishing one stripe */
2255 	u64 increment;
2256 	/* Offset inside the chunk */
2257 	u64 offset;
2258 	u64 stripe_logical;
2259 	int stop_loop = 0;
2260 
2261 	/* Extent_path should be released by now. */
2262 	ASSERT(sctx->extent_path.nodes[0] == NULL);
2263 
2264 	scrub_blocked_if_needed(fs_info);
2265 
2266 	if (sctx->is_dev_replace &&
2267 	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2268 		mutex_lock(&sctx->wr_lock);
2269 		sctx->write_pointer = physical;
2270 		mutex_unlock(&sctx->wr_lock);
2271 	}
2272 
2273 	/* Prepare the extra data stripes used by RAID56. */
2274 	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2275 		ASSERT(sctx->raid56_data_stripes == NULL);
2276 
2277 		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2278 						    sizeof(struct scrub_stripe),
2279 						    GFP_KERNEL);
2280 		if (!sctx->raid56_data_stripes) {
2281 			ret = -ENOMEM;
2282 			goto out;
2283 		}
2284 		for (int i = 0; i < nr_data_stripes(map); i++) {
2285 			ret = init_scrub_stripe(fs_info,
2286 						&sctx->raid56_data_stripes[i]);
2287 			if (ret < 0)
2288 				goto out;
2289 			sctx->raid56_data_stripes[i].bg = bg;
2290 			sctx->raid56_data_stripes[i].sctx = sctx;
2291 		}
2292 	}
2293 	/*
2294 	 * There used to be a big double loop to handle all profiles using the
2295 	 * same routine, which grows larger and more gross over time.
2296 	 *
2297 	 * So here we handle each profile differently, so simpler profiles
2298 	 * have simpler scrubbing function.
2299 	 */
2300 	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2301 			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2302 		/*
2303 		 * Above check rules out all complex profile, the remaining
2304 		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2305 		 * mirrored duplication without stripe.
2306 		 *
2307 		 * Only @physical and @mirror_num needs to calculated using
2308 		 * @stripe_index.
2309 		 */
2310 		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2311 				scrub_dev, map->stripes[stripe_index].physical,
2312 				stripe_index + 1);
2313 		offset = 0;
2314 		goto out;
2315 	}
2316 	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2317 		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2318 		offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2319 		goto out;
2320 	}
2321 
2322 	/* Only RAID56 goes through the old code */
2323 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2324 	ret = 0;
2325 
2326 	/* Calculate the logical end of the stripe */
2327 	get_raid56_logic_offset(physical_end, stripe_index,
2328 				map, &logic_end, NULL);
2329 	logic_end += chunk_logical;
2330 
2331 	/* Initialize @offset in case we need to go to out: label */
2332 	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2333 	increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2334 
2335 	/*
2336 	 * Due to the rotation, for RAID56 it's better to iterate each stripe
2337 	 * using their physical offset.
2338 	 */
2339 	while (physical < physical_end) {
2340 		ret = get_raid56_logic_offset(physical, stripe_index, map,
2341 					      &logical, &stripe_logical);
2342 		logical += chunk_logical;
2343 		if (ret) {
2344 			/* it is parity strip */
2345 			stripe_logical += chunk_logical;
2346 			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2347 							 map, stripe_logical);
2348 			spin_lock(&sctx->stat_lock);
2349 			sctx->stat.last_physical = min(physical + BTRFS_STRIPE_LEN,
2350 						       physical_end);
2351 			spin_unlock(&sctx->stat_lock);
2352 			if (ret)
2353 				goto out;
2354 			goto next;
2355 		}
2356 
2357 		/*
2358 		 * Now we're at a data stripe, scrub each extents in the range.
2359 		 *
2360 		 * At this stage, if we ignore the repair part, inside each data
2361 		 * stripe it is no different than SINGLE profile.
2362 		 * We can reuse scrub_simple_mirror() here, as the repair part
2363 		 * is still based on @mirror_num.
2364 		 */
2365 		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2366 					  scrub_dev, physical, 1);
2367 		if (ret < 0)
2368 			goto out;
2369 next:
2370 		logical += increment;
2371 		physical += BTRFS_STRIPE_LEN;
2372 		spin_lock(&sctx->stat_lock);
2373 		if (stop_loop)
2374 			sctx->stat.last_physical =
2375 				map->stripes[stripe_index].physical + dev_stripe_len;
2376 		else
2377 			sctx->stat.last_physical = physical;
2378 		spin_unlock(&sctx->stat_lock);
2379 		if (stop_loop)
2380 			break;
2381 	}
2382 out:
2383 	ret2 = flush_scrub_stripes(sctx);
2384 	if (!ret)
2385 		ret = ret2;
2386 	btrfs_release_path(&sctx->extent_path);
2387 	btrfs_release_path(&sctx->csum_path);
2388 
2389 	if (sctx->raid56_data_stripes) {
2390 		for (int i = 0; i < nr_data_stripes(map); i++)
2391 			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2392 		kfree(sctx->raid56_data_stripes);
2393 		sctx->raid56_data_stripes = NULL;
2394 	}
2395 
2396 	if (sctx->is_dev_replace && ret >= 0) {
2397 		int ret2;
2398 
2399 		ret2 = sync_write_pointer_for_zoned(sctx,
2400 				chunk_logical + offset,
2401 				map->stripes[stripe_index].physical,
2402 				physical_end);
2403 		if (ret2)
2404 			ret = ret2;
2405 	}
2406 
2407 	return ret < 0 ? ret : 0;
2408 }
2409 
2410 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2411 					  struct btrfs_block_group *bg,
2412 					  struct btrfs_device *scrub_dev,
2413 					  u64 dev_offset,
2414 					  u64 dev_extent_len)
2415 {
2416 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2417 	struct btrfs_chunk_map *map;
2418 	int i;
2419 	int ret = 0;
2420 
2421 	map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
2422 	if (!map) {
2423 		/*
2424 		 * Might have been an unused block group deleted by the cleaner
2425 		 * kthread or relocation.
2426 		 */
2427 		spin_lock(&bg->lock);
2428 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2429 			ret = -EINVAL;
2430 		spin_unlock(&bg->lock);
2431 
2432 		return ret;
2433 	}
2434 	if (map->start != bg->start)
2435 		goto out;
2436 	if (map->chunk_len < dev_extent_len)
2437 		goto out;
2438 
2439 	for (i = 0; i < map->num_stripes; ++i) {
2440 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2441 		    map->stripes[i].physical == dev_offset) {
2442 			ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
2443 			if (ret)
2444 				goto out;
2445 		}
2446 	}
2447 out:
2448 	btrfs_free_chunk_map(map);
2449 
2450 	return ret;
2451 }
2452 
2453 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2454 					  struct btrfs_block_group *cache)
2455 {
2456 	struct btrfs_fs_info *fs_info = cache->fs_info;
2457 
2458 	if (!btrfs_is_zoned(fs_info))
2459 		return 0;
2460 
2461 	btrfs_wait_block_group_reservations(cache);
2462 	btrfs_wait_nocow_writers(cache);
2463 	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
2464 
2465 	return btrfs_commit_current_transaction(root);
2466 }
2467 
2468 static noinline_for_stack
2469 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2470 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
2471 {
2472 	struct btrfs_dev_extent *dev_extent = NULL;
2473 	struct btrfs_path *path;
2474 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2475 	struct btrfs_root *root = fs_info->dev_root;
2476 	u64 chunk_offset;
2477 	int ret = 0;
2478 	int ro_set;
2479 	int slot;
2480 	struct extent_buffer *l;
2481 	struct btrfs_key key;
2482 	struct btrfs_key found_key;
2483 	struct btrfs_block_group *cache;
2484 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2485 
2486 	path = btrfs_alloc_path();
2487 	if (!path)
2488 		return -ENOMEM;
2489 
2490 	path->reada = READA_FORWARD;
2491 	path->search_commit_root = 1;
2492 	path->skip_locking = 1;
2493 
2494 	key.objectid = scrub_dev->devid;
2495 	key.offset = 0ull;
2496 	key.type = BTRFS_DEV_EXTENT_KEY;
2497 
2498 	while (1) {
2499 		u64 dev_extent_len;
2500 
2501 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2502 		if (ret < 0)
2503 			break;
2504 		if (ret > 0) {
2505 			if (path->slots[0] >=
2506 			    btrfs_header_nritems(path->nodes[0])) {
2507 				ret = btrfs_next_leaf(root, path);
2508 				if (ret < 0)
2509 					break;
2510 				if (ret > 0) {
2511 					ret = 0;
2512 					break;
2513 				}
2514 			} else {
2515 				ret = 0;
2516 			}
2517 		}
2518 
2519 		l = path->nodes[0];
2520 		slot = path->slots[0];
2521 
2522 		btrfs_item_key_to_cpu(l, &found_key, slot);
2523 
2524 		if (found_key.objectid != scrub_dev->devid)
2525 			break;
2526 
2527 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2528 			break;
2529 
2530 		if (found_key.offset >= end)
2531 			break;
2532 
2533 		if (found_key.offset < key.offset)
2534 			break;
2535 
2536 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2537 		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2538 
2539 		if (found_key.offset + dev_extent_len <= start)
2540 			goto skip;
2541 
2542 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2543 
2544 		/*
2545 		 * get a reference on the corresponding block group to prevent
2546 		 * the chunk from going away while we scrub it
2547 		 */
2548 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2549 
2550 		/* some chunks are removed but not committed to disk yet,
2551 		 * continue scrubbing */
2552 		if (!cache)
2553 			goto skip;
2554 
2555 		ASSERT(cache->start <= chunk_offset);
2556 		/*
2557 		 * We are using the commit root to search for device extents, so
2558 		 * that means we could have found a device extent item from a
2559 		 * block group that was deleted in the current transaction. The
2560 		 * logical start offset of the deleted block group, stored at
2561 		 * @chunk_offset, might be part of the logical address range of
2562 		 * a new block group (which uses different physical extents).
2563 		 * In this case btrfs_lookup_block_group() has returned the new
2564 		 * block group, and its start address is less than @chunk_offset.
2565 		 *
2566 		 * We skip such new block groups, because it's pointless to
2567 		 * process them, as we won't find their extents because we search
2568 		 * for them using the commit root of the extent tree. For a device
2569 		 * replace it's also fine to skip it, we won't miss copying them
2570 		 * to the target device because we have the write duplication
2571 		 * setup through the regular write path (by btrfs_map_block()),
2572 		 * and we have committed a transaction when we started the device
2573 		 * replace, right after setting up the device replace state.
2574 		 */
2575 		if (cache->start < chunk_offset) {
2576 			btrfs_put_block_group(cache);
2577 			goto skip;
2578 		}
2579 
2580 		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2581 			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2582 				btrfs_put_block_group(cache);
2583 				goto skip;
2584 			}
2585 		}
2586 
2587 		/*
2588 		 * Make sure that while we are scrubbing the corresponding block
2589 		 * group doesn't get its logical address and its device extents
2590 		 * reused for another block group, which can possibly be of a
2591 		 * different type and different profile. We do this to prevent
2592 		 * false error detections and crashes due to bogus attempts to
2593 		 * repair extents.
2594 		 */
2595 		spin_lock(&cache->lock);
2596 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2597 			spin_unlock(&cache->lock);
2598 			btrfs_put_block_group(cache);
2599 			goto skip;
2600 		}
2601 		btrfs_freeze_block_group(cache);
2602 		spin_unlock(&cache->lock);
2603 
2604 		/*
2605 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2606 		 * to avoid deadlock caused by:
2607 		 * btrfs_inc_block_group_ro()
2608 		 * -> btrfs_wait_for_commit()
2609 		 * -> btrfs_commit_transaction()
2610 		 * -> btrfs_scrub_pause()
2611 		 */
2612 		scrub_pause_on(fs_info);
2613 
2614 		/*
2615 		 * Don't do chunk preallocation for scrub.
2616 		 *
2617 		 * This is especially important for SYSTEM bgs, or we can hit
2618 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
2619 		 * 1. The only SYSTEM bg is marked RO.
2620 		 *    Since SYSTEM bg is small, that's pretty common.
2621 		 * 2. New SYSTEM bg will be allocated
2622 		 *    Due to regular version will allocate new chunk.
2623 		 * 3. New SYSTEM bg is empty and will get cleaned up
2624 		 *    Before cleanup really happens, it's marked RO again.
2625 		 * 4. Empty SYSTEM bg get scrubbed
2626 		 *    We go back to 2.
2627 		 *
2628 		 * This can easily boost the amount of SYSTEM chunks if cleaner
2629 		 * thread can't be triggered fast enough, and use up all space
2630 		 * of btrfs_super_block::sys_chunk_array
2631 		 *
2632 		 * While for dev replace, we need to try our best to mark block
2633 		 * group RO, to prevent race between:
2634 		 * - Write duplication
2635 		 *   Contains latest data
2636 		 * - Scrub copy
2637 		 *   Contains data from commit tree
2638 		 *
2639 		 * If target block group is not marked RO, nocow writes can
2640 		 * be overwritten by scrub copy, causing data corruption.
2641 		 * So for dev-replace, it's not allowed to continue if a block
2642 		 * group is not RO.
2643 		 */
2644 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2645 		if (!ret && sctx->is_dev_replace) {
2646 			ret = finish_extent_writes_for_zoned(root, cache);
2647 			if (ret) {
2648 				btrfs_dec_block_group_ro(cache);
2649 				scrub_pause_off(fs_info);
2650 				btrfs_put_block_group(cache);
2651 				break;
2652 			}
2653 		}
2654 
2655 		if (ret == 0) {
2656 			ro_set = 1;
2657 		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2658 			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2659 			/*
2660 			 * btrfs_inc_block_group_ro return -ENOSPC when it
2661 			 * failed in creating new chunk for metadata.
2662 			 * It is not a problem for scrub, because
2663 			 * metadata are always cowed, and our scrub paused
2664 			 * commit_transactions.
2665 			 *
2666 			 * For RAID56 chunks, we have to mark them read-only
2667 			 * for scrub, as later we would use our own cache
2668 			 * out of RAID56 realm.
2669 			 * Thus we want the RAID56 bg to be marked RO to
2670 			 * prevent RMW from screwing up out cache.
2671 			 */
2672 			ro_set = 0;
2673 		} else if (ret == -ETXTBSY) {
2674 			btrfs_warn(fs_info,
2675 		   "skipping scrub of block group %llu due to active swapfile",
2676 				   cache->start);
2677 			scrub_pause_off(fs_info);
2678 			ret = 0;
2679 			goto skip_unfreeze;
2680 		} else {
2681 			btrfs_warn(fs_info,
2682 				   "failed setting block group ro: %d", ret);
2683 			btrfs_unfreeze_block_group(cache);
2684 			btrfs_put_block_group(cache);
2685 			scrub_pause_off(fs_info);
2686 			break;
2687 		}
2688 
2689 		/*
2690 		 * Now the target block is marked RO, wait for nocow writes to
2691 		 * finish before dev-replace.
2692 		 * COW is fine, as COW never overwrites extents in commit tree.
2693 		 */
2694 		if (sctx->is_dev_replace) {
2695 			btrfs_wait_nocow_writers(cache);
2696 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
2697 		}
2698 
2699 		scrub_pause_off(fs_info);
2700 		down_write(&dev_replace->rwsem);
2701 		dev_replace->cursor_right = found_key.offset + dev_extent_len;
2702 		dev_replace->cursor_left = found_key.offset;
2703 		dev_replace->item_needs_writeback = 1;
2704 		up_write(&dev_replace->rwsem);
2705 
2706 		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2707 				  dev_extent_len);
2708 		if (sctx->is_dev_replace &&
2709 		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2710 						      cache, found_key.offset))
2711 			ro_set = 0;
2712 
2713 		down_write(&dev_replace->rwsem);
2714 		dev_replace->cursor_left = dev_replace->cursor_right;
2715 		dev_replace->item_needs_writeback = 1;
2716 		up_write(&dev_replace->rwsem);
2717 
2718 		if (ro_set)
2719 			btrfs_dec_block_group_ro(cache);
2720 
2721 		/*
2722 		 * We might have prevented the cleaner kthread from deleting
2723 		 * this block group if it was already unused because we raced
2724 		 * and set it to RO mode first. So add it back to the unused
2725 		 * list, otherwise it might not ever be deleted unless a manual
2726 		 * balance is triggered or it becomes used and unused again.
2727 		 */
2728 		spin_lock(&cache->lock);
2729 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2730 		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
2731 			spin_unlock(&cache->lock);
2732 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2733 				btrfs_discard_queue_work(&fs_info->discard_ctl,
2734 							 cache);
2735 			else
2736 				btrfs_mark_bg_unused(cache);
2737 		} else {
2738 			spin_unlock(&cache->lock);
2739 		}
2740 skip_unfreeze:
2741 		btrfs_unfreeze_block_group(cache);
2742 		btrfs_put_block_group(cache);
2743 		if (ret)
2744 			break;
2745 		if (sctx->is_dev_replace &&
2746 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2747 			ret = -EIO;
2748 			break;
2749 		}
2750 		if (sctx->stat.malloc_errors > 0) {
2751 			ret = -ENOMEM;
2752 			break;
2753 		}
2754 skip:
2755 		key.offset = found_key.offset + dev_extent_len;
2756 		btrfs_release_path(path);
2757 	}
2758 
2759 	btrfs_free_path(path);
2760 
2761 	return ret;
2762 }
2763 
2764 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2765 			   struct page *page, u64 physical, u64 generation)
2766 {
2767 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2768 	struct bio_vec bvec;
2769 	struct bio bio;
2770 	struct btrfs_super_block *sb = page_address(page);
2771 	int ret;
2772 
2773 	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2774 	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2775 	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2776 	ret = submit_bio_wait(&bio);
2777 	bio_uninit(&bio);
2778 
2779 	if (ret < 0)
2780 		return ret;
2781 	ret = btrfs_check_super_csum(fs_info, sb);
2782 	if (ret != 0) {
2783 		btrfs_err_rl(fs_info,
2784 			"super block at physical %llu devid %llu has bad csum",
2785 			physical, dev->devid);
2786 		return -EIO;
2787 	}
2788 	if (btrfs_super_generation(sb) != generation) {
2789 		btrfs_err_rl(fs_info,
2790 "super block at physical %llu devid %llu has bad generation %llu expect %llu",
2791 			     physical, dev->devid,
2792 			     btrfs_super_generation(sb), generation);
2793 		return -EUCLEAN;
2794 	}
2795 
2796 	return btrfs_validate_super(fs_info, sb, -1);
2797 }
2798 
2799 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2800 					   struct btrfs_device *scrub_dev)
2801 {
2802 	int	i;
2803 	u64	bytenr;
2804 	u64	gen;
2805 	int ret = 0;
2806 	struct page *page;
2807 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2808 
2809 	if (BTRFS_FS_ERROR(fs_info))
2810 		return -EROFS;
2811 
2812 	page = alloc_page(GFP_KERNEL);
2813 	if (!page) {
2814 		spin_lock(&sctx->stat_lock);
2815 		sctx->stat.malloc_errors++;
2816 		spin_unlock(&sctx->stat_lock);
2817 		return -ENOMEM;
2818 	}
2819 
2820 	/* Seed devices of a new filesystem has their own generation. */
2821 	if (scrub_dev->fs_devices != fs_info->fs_devices)
2822 		gen = scrub_dev->generation;
2823 	else
2824 		gen = btrfs_get_last_trans_committed(fs_info);
2825 
2826 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2827 		ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr);
2828 		if (ret == -ENOENT)
2829 			break;
2830 
2831 		if (ret) {
2832 			spin_lock(&sctx->stat_lock);
2833 			sctx->stat.super_errors++;
2834 			spin_unlock(&sctx->stat_lock);
2835 			continue;
2836 		}
2837 
2838 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
2839 		    scrub_dev->commit_total_bytes)
2840 			break;
2841 		if (!btrfs_check_super_location(scrub_dev, bytenr))
2842 			continue;
2843 
2844 		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2845 		if (ret) {
2846 			spin_lock(&sctx->stat_lock);
2847 			sctx->stat.super_errors++;
2848 			spin_unlock(&sctx->stat_lock);
2849 		}
2850 	}
2851 	__free_page(page);
2852 	return 0;
2853 }
2854 
2855 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2856 {
2857 	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2858 					&fs_info->scrub_lock)) {
2859 		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2860 
2861 		fs_info->scrub_workers = NULL;
2862 		mutex_unlock(&fs_info->scrub_lock);
2863 
2864 		if (scrub_workers)
2865 			destroy_workqueue(scrub_workers);
2866 	}
2867 }
2868 
2869 /*
2870  * get a reference count on fs_info->scrub_workers. start worker if necessary
2871  */
2872 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
2873 {
2874 	struct workqueue_struct *scrub_workers = NULL;
2875 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2876 	int max_active = fs_info->thread_pool_size;
2877 	int ret = -ENOMEM;
2878 
2879 	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2880 		return 0;
2881 
2882 	scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2883 	if (!scrub_workers)
2884 		return -ENOMEM;
2885 
2886 	mutex_lock(&fs_info->scrub_lock);
2887 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2888 		ASSERT(fs_info->scrub_workers == NULL);
2889 		fs_info->scrub_workers = scrub_workers;
2890 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
2891 		mutex_unlock(&fs_info->scrub_lock);
2892 		return 0;
2893 	}
2894 	/* Other thread raced in and created the workers for us */
2895 	refcount_inc(&fs_info->scrub_workers_refcnt);
2896 	mutex_unlock(&fs_info->scrub_lock);
2897 
2898 	ret = 0;
2899 
2900 	destroy_workqueue(scrub_workers);
2901 	return ret;
2902 }
2903 
2904 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2905 		    u64 end, struct btrfs_scrub_progress *progress,
2906 		    int readonly, int is_dev_replace)
2907 {
2908 	struct btrfs_dev_lookup_args args = { .devid = devid };
2909 	struct scrub_ctx *sctx;
2910 	int ret;
2911 	struct btrfs_device *dev;
2912 	unsigned int nofs_flag;
2913 	bool need_commit = false;
2914 
2915 	if (btrfs_fs_closing(fs_info))
2916 		return -EAGAIN;
2917 
2918 	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2919 	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2920 
2921 	/*
2922 	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2923 	 * value (max nodesize / min sectorsize), thus nodesize should always
2924 	 * be fine.
2925 	 */
2926 	ASSERT(fs_info->nodesize <=
2927 	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2928 
2929 	/* Allocate outside of device_list_mutex */
2930 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2931 	if (IS_ERR(sctx))
2932 		return PTR_ERR(sctx);
2933 
2934 	ret = scrub_workers_get(fs_info);
2935 	if (ret)
2936 		goto out_free_ctx;
2937 
2938 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2939 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2940 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2941 		     !is_dev_replace)) {
2942 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2943 		ret = -ENODEV;
2944 		goto out;
2945 	}
2946 
2947 	if (!is_dev_replace && !readonly &&
2948 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2949 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2950 		btrfs_err_in_rcu(fs_info,
2951 			"scrub on devid %llu: filesystem on %s is not writable",
2952 				 devid, btrfs_dev_name(dev));
2953 		ret = -EROFS;
2954 		goto out;
2955 	}
2956 
2957 	mutex_lock(&fs_info->scrub_lock);
2958 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2959 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2960 		mutex_unlock(&fs_info->scrub_lock);
2961 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2962 		ret = -EIO;
2963 		goto out;
2964 	}
2965 
2966 	down_read(&fs_info->dev_replace.rwsem);
2967 	if (dev->scrub_ctx ||
2968 	    (!is_dev_replace &&
2969 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2970 		up_read(&fs_info->dev_replace.rwsem);
2971 		mutex_unlock(&fs_info->scrub_lock);
2972 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2973 		ret = -EINPROGRESS;
2974 		goto out;
2975 	}
2976 	up_read(&fs_info->dev_replace.rwsem);
2977 
2978 	sctx->readonly = readonly;
2979 	dev->scrub_ctx = sctx;
2980 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2981 
2982 	/*
2983 	 * checking @scrub_pause_req here, we can avoid
2984 	 * race between committing transaction and scrubbing.
2985 	 */
2986 	__scrub_blocked_if_needed(fs_info);
2987 	atomic_inc(&fs_info->scrubs_running);
2988 	mutex_unlock(&fs_info->scrub_lock);
2989 
2990 	/*
2991 	 * In order to avoid deadlock with reclaim when there is a transaction
2992 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
2993 	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2994 	 * invoked by our callees. The pausing request is done when the
2995 	 * transaction commit starts, and it blocks the transaction until scrub
2996 	 * is paused (done at specific points at scrub_stripe() or right above
2997 	 * before incrementing fs_info->scrubs_running).
2998 	 */
2999 	nofs_flag = memalloc_nofs_save();
3000 	if (!is_dev_replace) {
3001 		u64 old_super_errors;
3002 
3003 		spin_lock(&sctx->stat_lock);
3004 		old_super_errors = sctx->stat.super_errors;
3005 		spin_unlock(&sctx->stat_lock);
3006 
3007 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3008 		/*
3009 		 * by holding device list mutex, we can
3010 		 * kick off writing super in log tree sync.
3011 		 */
3012 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3013 		ret = scrub_supers(sctx, dev);
3014 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3015 
3016 		spin_lock(&sctx->stat_lock);
3017 		/*
3018 		 * Super block errors found, but we can not commit transaction
3019 		 * at current context, since btrfs_commit_transaction() needs
3020 		 * to pause the current running scrub (hold by ourselves).
3021 		 */
3022 		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
3023 			need_commit = true;
3024 		spin_unlock(&sctx->stat_lock);
3025 	}
3026 
3027 	if (!ret)
3028 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3029 	memalloc_nofs_restore(nofs_flag);
3030 
3031 	atomic_dec(&fs_info->scrubs_running);
3032 	wake_up(&fs_info->scrub_pause_wait);
3033 
3034 	if (progress)
3035 		memcpy(progress, &sctx->stat, sizeof(*progress));
3036 
3037 	if (!is_dev_replace)
3038 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3039 			ret ? "not finished" : "finished", devid, ret);
3040 
3041 	mutex_lock(&fs_info->scrub_lock);
3042 	dev->scrub_ctx = NULL;
3043 	mutex_unlock(&fs_info->scrub_lock);
3044 
3045 	scrub_workers_put(fs_info);
3046 	scrub_put_ctx(sctx);
3047 
3048 	/*
3049 	 * We found some super block errors before, now try to force a
3050 	 * transaction commit, as scrub has finished.
3051 	 */
3052 	if (need_commit) {
3053 		struct btrfs_trans_handle *trans;
3054 
3055 		trans = btrfs_start_transaction(fs_info->tree_root, 0);
3056 		if (IS_ERR(trans)) {
3057 			ret = PTR_ERR(trans);
3058 			btrfs_err(fs_info,
3059 	"scrub: failed to start transaction to fix super block errors: %d", ret);
3060 			return ret;
3061 		}
3062 		ret = btrfs_commit_transaction(trans);
3063 		if (ret < 0)
3064 			btrfs_err(fs_info,
3065 	"scrub: failed to commit transaction to fix super block errors: %d", ret);
3066 	}
3067 	return ret;
3068 out:
3069 	scrub_workers_put(fs_info);
3070 out_free_ctx:
3071 	scrub_free_ctx(sctx);
3072 
3073 	return ret;
3074 }
3075 
3076 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3077 {
3078 	mutex_lock(&fs_info->scrub_lock);
3079 	atomic_inc(&fs_info->scrub_pause_req);
3080 	while (atomic_read(&fs_info->scrubs_paused) !=
3081 	       atomic_read(&fs_info->scrubs_running)) {
3082 		mutex_unlock(&fs_info->scrub_lock);
3083 		wait_event(fs_info->scrub_pause_wait,
3084 			   atomic_read(&fs_info->scrubs_paused) ==
3085 			   atomic_read(&fs_info->scrubs_running));
3086 		mutex_lock(&fs_info->scrub_lock);
3087 	}
3088 	mutex_unlock(&fs_info->scrub_lock);
3089 }
3090 
3091 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3092 {
3093 	atomic_dec(&fs_info->scrub_pause_req);
3094 	wake_up(&fs_info->scrub_pause_wait);
3095 }
3096 
3097 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3098 {
3099 	mutex_lock(&fs_info->scrub_lock);
3100 	if (!atomic_read(&fs_info->scrubs_running)) {
3101 		mutex_unlock(&fs_info->scrub_lock);
3102 		return -ENOTCONN;
3103 	}
3104 
3105 	atomic_inc(&fs_info->scrub_cancel_req);
3106 	while (atomic_read(&fs_info->scrubs_running)) {
3107 		mutex_unlock(&fs_info->scrub_lock);
3108 		wait_event(fs_info->scrub_pause_wait,
3109 			   atomic_read(&fs_info->scrubs_running) == 0);
3110 		mutex_lock(&fs_info->scrub_lock);
3111 	}
3112 	atomic_dec(&fs_info->scrub_cancel_req);
3113 	mutex_unlock(&fs_info->scrub_lock);
3114 
3115 	return 0;
3116 }
3117 
3118 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3119 {
3120 	struct btrfs_fs_info *fs_info = dev->fs_info;
3121 	struct scrub_ctx *sctx;
3122 
3123 	mutex_lock(&fs_info->scrub_lock);
3124 	sctx = dev->scrub_ctx;
3125 	if (!sctx) {
3126 		mutex_unlock(&fs_info->scrub_lock);
3127 		return -ENOTCONN;
3128 	}
3129 	atomic_inc(&sctx->cancel_req);
3130 	while (dev->scrub_ctx) {
3131 		mutex_unlock(&fs_info->scrub_lock);
3132 		wait_event(fs_info->scrub_pause_wait,
3133 			   dev->scrub_ctx == NULL);
3134 		mutex_lock(&fs_info->scrub_lock);
3135 	}
3136 	mutex_unlock(&fs_info->scrub_lock);
3137 
3138 	return 0;
3139 }
3140 
3141 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3142 			 struct btrfs_scrub_progress *progress)
3143 {
3144 	struct btrfs_dev_lookup_args args = { .devid = devid };
3145 	struct btrfs_device *dev;
3146 	struct scrub_ctx *sctx = NULL;
3147 
3148 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3149 	dev = btrfs_find_device(fs_info->fs_devices, &args);
3150 	if (dev)
3151 		sctx = dev->scrub_ctx;
3152 	if (sctx)
3153 		memcpy(progress, &sctx->stat, sizeof(*progress));
3154 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3155 
3156 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3157 }
3158