1 /* 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/ratelimit.h> 21 #include <linux/sched/mm.h> 22 #include "ctree.h" 23 #include "volumes.h" 24 #include "disk-io.h" 25 #include "ordered-data.h" 26 #include "transaction.h" 27 #include "backref.h" 28 #include "extent_io.h" 29 #include "dev-replace.h" 30 #include "check-integrity.h" 31 #include "rcu-string.h" 32 #include "raid56.h" 33 34 /* 35 * This is only the first step towards a full-features scrub. It reads all 36 * extent and super block and verifies the checksums. In case a bad checksum 37 * is found or the extent cannot be read, good data will be written back if 38 * any can be found. 39 * 40 * Future enhancements: 41 * - In case an unrepairable extent is encountered, track which files are 42 * affected and report them 43 * - track and record media errors, throw out bad devices 44 * - add a mode to also read unallocated space 45 */ 46 47 struct scrub_block; 48 struct scrub_ctx; 49 50 /* 51 * the following three values only influence the performance. 52 * The last one configures the number of parallel and outstanding I/O 53 * operations. The first two values configure an upper limit for the number 54 * of (dynamically allocated) pages that are added to a bio. 55 */ 56 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 57 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 58 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 59 60 /* 61 * the following value times PAGE_SIZE needs to be large enough to match the 62 * largest node/leaf/sector size that shall be supported. 63 * Values larger than BTRFS_STRIPE_LEN are not supported. 64 */ 65 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 66 67 struct scrub_recover { 68 refcount_t refs; 69 struct btrfs_bio *bbio; 70 u64 map_length; 71 }; 72 73 struct scrub_page { 74 struct scrub_block *sblock; 75 struct page *page; 76 struct btrfs_device *dev; 77 struct list_head list; 78 u64 flags; /* extent flags */ 79 u64 generation; 80 u64 logical; 81 u64 physical; 82 u64 physical_for_dev_replace; 83 atomic_t refs; 84 struct { 85 unsigned int mirror_num:8; 86 unsigned int have_csum:1; 87 unsigned int io_error:1; 88 }; 89 u8 csum[BTRFS_CSUM_SIZE]; 90 91 struct scrub_recover *recover; 92 }; 93 94 struct scrub_bio { 95 int index; 96 struct scrub_ctx *sctx; 97 struct btrfs_device *dev; 98 struct bio *bio; 99 blk_status_t status; 100 u64 logical; 101 u64 physical; 102 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 103 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 104 #else 105 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 106 #endif 107 int page_count; 108 int next_free; 109 struct btrfs_work work; 110 }; 111 112 struct scrub_block { 113 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 114 int page_count; 115 atomic_t outstanding_pages; 116 refcount_t refs; /* free mem on transition to zero */ 117 struct scrub_ctx *sctx; 118 struct scrub_parity *sparity; 119 struct { 120 unsigned int header_error:1; 121 unsigned int checksum_error:1; 122 unsigned int no_io_error_seen:1; 123 unsigned int generation_error:1; /* also sets header_error */ 124 125 /* The following is for the data used to check parity */ 126 /* It is for the data with checksum */ 127 unsigned int data_corrected:1; 128 }; 129 struct btrfs_work work; 130 }; 131 132 /* Used for the chunks with parity stripe such RAID5/6 */ 133 struct scrub_parity { 134 struct scrub_ctx *sctx; 135 136 struct btrfs_device *scrub_dev; 137 138 u64 logic_start; 139 140 u64 logic_end; 141 142 int nsectors; 143 144 u64 stripe_len; 145 146 refcount_t refs; 147 148 struct list_head spages; 149 150 /* Work of parity check and repair */ 151 struct btrfs_work work; 152 153 /* Mark the parity blocks which have data */ 154 unsigned long *dbitmap; 155 156 /* 157 * Mark the parity blocks which have data, but errors happen when 158 * read data or check data 159 */ 160 unsigned long *ebitmap; 161 162 unsigned long bitmap[0]; 163 }; 164 165 struct scrub_ctx { 166 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 167 struct btrfs_fs_info *fs_info; 168 int first_free; 169 int curr; 170 atomic_t bios_in_flight; 171 atomic_t workers_pending; 172 spinlock_t list_lock; 173 wait_queue_head_t list_wait; 174 u16 csum_size; 175 struct list_head csum_list; 176 atomic_t cancel_req; 177 int readonly; 178 int pages_per_rd_bio; 179 180 int is_dev_replace; 181 182 struct scrub_bio *wr_curr_bio; 183 struct mutex wr_lock; 184 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 185 struct btrfs_device *wr_tgtdev; 186 bool flush_all_writes; 187 188 /* 189 * statistics 190 */ 191 struct btrfs_scrub_progress stat; 192 spinlock_t stat_lock; 193 194 /* 195 * Use a ref counter to avoid use-after-free issues. Scrub workers 196 * decrement bios_in_flight and workers_pending and then do a wakeup 197 * on the list_wait wait queue. We must ensure the main scrub task 198 * doesn't free the scrub context before or while the workers are 199 * doing the wakeup() call. 200 */ 201 refcount_t refs; 202 }; 203 204 struct scrub_fixup_nodatasum { 205 struct scrub_ctx *sctx; 206 struct btrfs_device *dev; 207 u64 logical; 208 struct btrfs_root *root; 209 struct btrfs_work work; 210 int mirror_num; 211 }; 212 213 struct scrub_nocow_inode { 214 u64 inum; 215 u64 offset; 216 u64 root; 217 struct list_head list; 218 }; 219 220 struct scrub_copy_nocow_ctx { 221 struct scrub_ctx *sctx; 222 u64 logical; 223 u64 len; 224 int mirror_num; 225 u64 physical_for_dev_replace; 226 struct list_head inodes; 227 struct btrfs_work work; 228 }; 229 230 struct scrub_warning { 231 struct btrfs_path *path; 232 u64 extent_item_size; 233 const char *errstr; 234 sector_t sector; 235 u64 logical; 236 struct btrfs_device *dev; 237 }; 238 239 struct full_stripe_lock { 240 struct rb_node node; 241 u64 logical; 242 u64 refs; 243 struct mutex mutex; 244 }; 245 246 static void scrub_pending_bio_inc(struct scrub_ctx *sctx); 247 static void scrub_pending_bio_dec(struct scrub_ctx *sctx); 248 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx); 249 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx); 250 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); 251 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 252 struct scrub_block *sblocks_for_recheck); 253 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 254 struct scrub_block *sblock, 255 int retry_failed_mirror); 256 static void scrub_recheck_block_checksum(struct scrub_block *sblock); 257 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 258 struct scrub_block *sblock_good); 259 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 260 struct scrub_block *sblock_good, 261 int page_num, int force_write); 262 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 263 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 264 int page_num); 265 static int scrub_checksum_data(struct scrub_block *sblock); 266 static int scrub_checksum_tree_block(struct scrub_block *sblock); 267 static int scrub_checksum_super(struct scrub_block *sblock); 268 static void scrub_block_get(struct scrub_block *sblock); 269 static void scrub_block_put(struct scrub_block *sblock); 270 static void scrub_page_get(struct scrub_page *spage); 271 static void scrub_page_put(struct scrub_page *spage); 272 static void scrub_parity_get(struct scrub_parity *sparity); 273 static void scrub_parity_put(struct scrub_parity *sparity); 274 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 275 struct scrub_page *spage); 276 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 277 u64 physical, struct btrfs_device *dev, u64 flags, 278 u64 gen, int mirror_num, u8 *csum, int force, 279 u64 physical_for_dev_replace); 280 static void scrub_bio_end_io(struct bio *bio); 281 static void scrub_bio_end_io_worker(struct btrfs_work *work); 282 static void scrub_block_complete(struct scrub_block *sblock); 283 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 284 u64 extent_logical, u64 extent_len, 285 u64 *extent_physical, 286 struct btrfs_device **extent_dev, 287 int *extent_mirror_num); 288 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 289 struct scrub_page *spage); 290 static void scrub_wr_submit(struct scrub_ctx *sctx); 291 static void scrub_wr_bio_end_io(struct bio *bio); 292 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 293 static int write_page_nocow(struct scrub_ctx *sctx, 294 u64 physical_for_dev_replace, struct page *page); 295 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 296 struct scrub_copy_nocow_ctx *ctx); 297 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 298 int mirror_num, u64 physical_for_dev_replace); 299 static void copy_nocow_pages_worker(struct btrfs_work *work); 300 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 301 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 302 static void scrub_put_ctx(struct scrub_ctx *sctx); 303 304 305 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 306 { 307 refcount_inc(&sctx->refs); 308 atomic_inc(&sctx->bios_in_flight); 309 } 310 311 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 312 { 313 atomic_dec(&sctx->bios_in_flight); 314 wake_up(&sctx->list_wait); 315 scrub_put_ctx(sctx); 316 } 317 318 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 319 { 320 while (atomic_read(&fs_info->scrub_pause_req)) { 321 mutex_unlock(&fs_info->scrub_lock); 322 wait_event(fs_info->scrub_pause_wait, 323 atomic_read(&fs_info->scrub_pause_req) == 0); 324 mutex_lock(&fs_info->scrub_lock); 325 } 326 } 327 328 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 329 { 330 atomic_inc(&fs_info->scrubs_paused); 331 wake_up(&fs_info->scrub_pause_wait); 332 } 333 334 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 335 { 336 mutex_lock(&fs_info->scrub_lock); 337 __scrub_blocked_if_needed(fs_info); 338 atomic_dec(&fs_info->scrubs_paused); 339 mutex_unlock(&fs_info->scrub_lock); 340 341 wake_up(&fs_info->scrub_pause_wait); 342 } 343 344 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 345 { 346 scrub_pause_on(fs_info); 347 scrub_pause_off(fs_info); 348 } 349 350 /* 351 * Insert new full stripe lock into full stripe locks tree 352 * 353 * Return pointer to existing or newly inserted full_stripe_lock structure if 354 * everything works well. 355 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory 356 * 357 * NOTE: caller must hold full_stripe_locks_root->lock before calling this 358 * function 359 */ 360 static struct full_stripe_lock *insert_full_stripe_lock( 361 struct btrfs_full_stripe_locks_tree *locks_root, 362 u64 fstripe_logical) 363 { 364 struct rb_node **p; 365 struct rb_node *parent = NULL; 366 struct full_stripe_lock *entry; 367 struct full_stripe_lock *ret; 368 369 WARN_ON(!mutex_is_locked(&locks_root->lock)); 370 371 p = &locks_root->root.rb_node; 372 while (*p) { 373 parent = *p; 374 entry = rb_entry(parent, struct full_stripe_lock, node); 375 if (fstripe_logical < entry->logical) { 376 p = &(*p)->rb_left; 377 } else if (fstripe_logical > entry->logical) { 378 p = &(*p)->rb_right; 379 } else { 380 entry->refs++; 381 return entry; 382 } 383 } 384 385 /* Insert new lock */ 386 ret = kmalloc(sizeof(*ret), GFP_KERNEL); 387 if (!ret) 388 return ERR_PTR(-ENOMEM); 389 ret->logical = fstripe_logical; 390 ret->refs = 1; 391 mutex_init(&ret->mutex); 392 393 rb_link_node(&ret->node, parent, p); 394 rb_insert_color(&ret->node, &locks_root->root); 395 return ret; 396 } 397 398 /* 399 * Search for a full stripe lock of a block group 400 * 401 * Return pointer to existing full stripe lock if found 402 * Return NULL if not found 403 */ 404 static struct full_stripe_lock *search_full_stripe_lock( 405 struct btrfs_full_stripe_locks_tree *locks_root, 406 u64 fstripe_logical) 407 { 408 struct rb_node *node; 409 struct full_stripe_lock *entry; 410 411 WARN_ON(!mutex_is_locked(&locks_root->lock)); 412 413 node = locks_root->root.rb_node; 414 while (node) { 415 entry = rb_entry(node, struct full_stripe_lock, node); 416 if (fstripe_logical < entry->logical) 417 node = node->rb_left; 418 else if (fstripe_logical > entry->logical) 419 node = node->rb_right; 420 else 421 return entry; 422 } 423 return NULL; 424 } 425 426 /* 427 * Helper to get full stripe logical from a normal bytenr. 428 * 429 * Caller must ensure @cache is a RAID56 block group. 430 */ 431 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache, 432 u64 bytenr) 433 { 434 u64 ret; 435 436 /* 437 * Due to chunk item size limit, full stripe length should not be 438 * larger than U32_MAX. Just a sanity check here. 439 */ 440 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); 441 442 /* 443 * round_down() can only handle power of 2, while RAID56 full 444 * stripe length can be 64KiB * n, so we need to manually round down. 445 */ 446 ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) * 447 cache->full_stripe_len + cache->key.objectid; 448 return ret; 449 } 450 451 /* 452 * Lock a full stripe to avoid concurrency of recovery and read 453 * 454 * It's only used for profiles with parities (RAID5/6), for other profiles it 455 * does nothing. 456 * 457 * Return 0 if we locked full stripe covering @bytenr, with a mutex held. 458 * So caller must call unlock_full_stripe() at the same context. 459 * 460 * Return <0 if encounters error. 461 */ 462 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 463 bool *locked_ret) 464 { 465 struct btrfs_block_group_cache *bg_cache; 466 struct btrfs_full_stripe_locks_tree *locks_root; 467 struct full_stripe_lock *existing; 468 u64 fstripe_start; 469 int ret = 0; 470 471 *locked_ret = false; 472 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 473 if (!bg_cache) { 474 ASSERT(0); 475 return -ENOENT; 476 } 477 478 /* Profiles not based on parity don't need full stripe lock */ 479 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 480 goto out; 481 locks_root = &bg_cache->full_stripe_locks_root; 482 483 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 484 485 /* Now insert the full stripe lock */ 486 mutex_lock(&locks_root->lock); 487 existing = insert_full_stripe_lock(locks_root, fstripe_start); 488 mutex_unlock(&locks_root->lock); 489 if (IS_ERR(existing)) { 490 ret = PTR_ERR(existing); 491 goto out; 492 } 493 mutex_lock(&existing->mutex); 494 *locked_ret = true; 495 out: 496 btrfs_put_block_group(bg_cache); 497 return ret; 498 } 499 500 /* 501 * Unlock a full stripe. 502 * 503 * NOTE: Caller must ensure it's the same context calling corresponding 504 * lock_full_stripe(). 505 * 506 * Return 0 if we unlock full stripe without problem. 507 * Return <0 for error 508 */ 509 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 510 bool locked) 511 { 512 struct btrfs_block_group_cache *bg_cache; 513 struct btrfs_full_stripe_locks_tree *locks_root; 514 struct full_stripe_lock *fstripe_lock; 515 u64 fstripe_start; 516 bool freeit = false; 517 int ret = 0; 518 519 /* If we didn't acquire full stripe lock, no need to continue */ 520 if (!locked) 521 return 0; 522 523 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 524 if (!bg_cache) { 525 ASSERT(0); 526 return -ENOENT; 527 } 528 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 529 goto out; 530 531 locks_root = &bg_cache->full_stripe_locks_root; 532 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 533 534 mutex_lock(&locks_root->lock); 535 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); 536 /* Unpaired unlock_full_stripe() detected */ 537 if (!fstripe_lock) { 538 WARN_ON(1); 539 ret = -ENOENT; 540 mutex_unlock(&locks_root->lock); 541 goto out; 542 } 543 544 if (fstripe_lock->refs == 0) { 545 WARN_ON(1); 546 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", 547 fstripe_lock->logical); 548 } else { 549 fstripe_lock->refs--; 550 } 551 552 if (fstripe_lock->refs == 0) { 553 rb_erase(&fstripe_lock->node, &locks_root->root); 554 freeit = true; 555 } 556 mutex_unlock(&locks_root->lock); 557 558 mutex_unlock(&fstripe_lock->mutex); 559 if (freeit) 560 kfree(fstripe_lock); 561 out: 562 btrfs_put_block_group(bg_cache); 563 return ret; 564 } 565 566 /* 567 * used for workers that require transaction commits (i.e., for the 568 * NOCOW case) 569 */ 570 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx) 571 { 572 struct btrfs_fs_info *fs_info = sctx->fs_info; 573 574 refcount_inc(&sctx->refs); 575 /* 576 * increment scrubs_running to prevent cancel requests from 577 * completing as long as a worker is running. we must also 578 * increment scrubs_paused to prevent deadlocking on pause 579 * requests used for transactions commits (as the worker uses a 580 * transaction context). it is safe to regard the worker 581 * as paused for all matters practical. effectively, we only 582 * avoid cancellation requests from completing. 583 */ 584 mutex_lock(&fs_info->scrub_lock); 585 atomic_inc(&fs_info->scrubs_running); 586 atomic_inc(&fs_info->scrubs_paused); 587 mutex_unlock(&fs_info->scrub_lock); 588 589 /* 590 * check if @scrubs_running=@scrubs_paused condition 591 * inside wait_event() is not an atomic operation. 592 * which means we may inc/dec @scrub_running/paused 593 * at any time. Let's wake up @scrub_pause_wait as 594 * much as we can to let commit transaction blocked less. 595 */ 596 wake_up(&fs_info->scrub_pause_wait); 597 598 atomic_inc(&sctx->workers_pending); 599 } 600 601 /* used for workers that require transaction commits */ 602 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx) 603 { 604 struct btrfs_fs_info *fs_info = sctx->fs_info; 605 606 /* 607 * see scrub_pending_trans_workers_inc() why we're pretending 608 * to be paused in the scrub counters 609 */ 610 mutex_lock(&fs_info->scrub_lock); 611 atomic_dec(&fs_info->scrubs_running); 612 atomic_dec(&fs_info->scrubs_paused); 613 mutex_unlock(&fs_info->scrub_lock); 614 atomic_dec(&sctx->workers_pending); 615 wake_up(&fs_info->scrub_pause_wait); 616 wake_up(&sctx->list_wait); 617 scrub_put_ctx(sctx); 618 } 619 620 static void scrub_free_csums(struct scrub_ctx *sctx) 621 { 622 while (!list_empty(&sctx->csum_list)) { 623 struct btrfs_ordered_sum *sum; 624 sum = list_first_entry(&sctx->csum_list, 625 struct btrfs_ordered_sum, list); 626 list_del(&sum->list); 627 kfree(sum); 628 } 629 } 630 631 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 632 { 633 int i; 634 635 if (!sctx) 636 return; 637 638 /* this can happen when scrub is cancelled */ 639 if (sctx->curr != -1) { 640 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 641 642 for (i = 0; i < sbio->page_count; i++) { 643 WARN_ON(!sbio->pagev[i]->page); 644 scrub_block_put(sbio->pagev[i]->sblock); 645 } 646 bio_put(sbio->bio); 647 } 648 649 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 650 struct scrub_bio *sbio = sctx->bios[i]; 651 652 if (!sbio) 653 break; 654 kfree(sbio); 655 } 656 657 kfree(sctx->wr_curr_bio); 658 scrub_free_csums(sctx); 659 kfree(sctx); 660 } 661 662 static void scrub_put_ctx(struct scrub_ctx *sctx) 663 { 664 if (refcount_dec_and_test(&sctx->refs)) 665 scrub_free_ctx(sctx); 666 } 667 668 static noinline_for_stack 669 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace) 670 { 671 struct scrub_ctx *sctx; 672 int i; 673 struct btrfs_fs_info *fs_info = dev->fs_info; 674 675 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); 676 if (!sctx) 677 goto nomem; 678 refcount_set(&sctx->refs, 1); 679 sctx->is_dev_replace = is_dev_replace; 680 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 681 sctx->curr = -1; 682 sctx->fs_info = dev->fs_info; 683 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 684 struct scrub_bio *sbio; 685 686 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); 687 if (!sbio) 688 goto nomem; 689 sctx->bios[i] = sbio; 690 691 sbio->index = i; 692 sbio->sctx = sctx; 693 sbio->page_count = 0; 694 btrfs_init_work(&sbio->work, btrfs_scrub_helper, 695 scrub_bio_end_io_worker, NULL, NULL); 696 697 if (i != SCRUB_BIOS_PER_SCTX - 1) 698 sctx->bios[i]->next_free = i + 1; 699 else 700 sctx->bios[i]->next_free = -1; 701 } 702 sctx->first_free = 0; 703 atomic_set(&sctx->bios_in_flight, 0); 704 atomic_set(&sctx->workers_pending, 0); 705 atomic_set(&sctx->cancel_req, 0); 706 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); 707 INIT_LIST_HEAD(&sctx->csum_list); 708 709 spin_lock_init(&sctx->list_lock); 710 spin_lock_init(&sctx->stat_lock); 711 init_waitqueue_head(&sctx->list_wait); 712 713 WARN_ON(sctx->wr_curr_bio != NULL); 714 mutex_init(&sctx->wr_lock); 715 sctx->wr_curr_bio = NULL; 716 if (is_dev_replace) { 717 WARN_ON(!fs_info->dev_replace.tgtdev); 718 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO; 719 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 720 sctx->flush_all_writes = false; 721 } 722 723 return sctx; 724 725 nomem: 726 scrub_free_ctx(sctx); 727 return ERR_PTR(-ENOMEM); 728 } 729 730 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 731 void *warn_ctx) 732 { 733 u64 isize; 734 u32 nlink; 735 int ret; 736 int i; 737 unsigned nofs_flag; 738 struct extent_buffer *eb; 739 struct btrfs_inode_item *inode_item; 740 struct scrub_warning *swarn = warn_ctx; 741 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 742 struct inode_fs_paths *ipath = NULL; 743 struct btrfs_root *local_root; 744 struct btrfs_key root_key; 745 struct btrfs_key key; 746 747 root_key.objectid = root; 748 root_key.type = BTRFS_ROOT_ITEM_KEY; 749 root_key.offset = (u64)-1; 750 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); 751 if (IS_ERR(local_root)) { 752 ret = PTR_ERR(local_root); 753 goto err; 754 } 755 756 /* 757 * this makes the path point to (inum INODE_ITEM ioff) 758 */ 759 key.objectid = inum; 760 key.type = BTRFS_INODE_ITEM_KEY; 761 key.offset = 0; 762 763 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 764 if (ret) { 765 btrfs_release_path(swarn->path); 766 goto err; 767 } 768 769 eb = swarn->path->nodes[0]; 770 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 771 struct btrfs_inode_item); 772 isize = btrfs_inode_size(eb, inode_item); 773 nlink = btrfs_inode_nlink(eb, inode_item); 774 btrfs_release_path(swarn->path); 775 776 /* 777 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 778 * uses GFP_NOFS in this context, so we keep it consistent but it does 779 * not seem to be strictly necessary. 780 */ 781 nofs_flag = memalloc_nofs_save(); 782 ipath = init_ipath(4096, local_root, swarn->path); 783 memalloc_nofs_restore(nofs_flag); 784 if (IS_ERR(ipath)) { 785 ret = PTR_ERR(ipath); 786 ipath = NULL; 787 goto err; 788 } 789 ret = paths_from_inode(inum, ipath); 790 791 if (ret < 0) 792 goto err; 793 794 /* 795 * we deliberately ignore the bit ipath might have been too small to 796 * hold all of the paths here 797 */ 798 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 799 btrfs_warn_in_rcu(fs_info, 800 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)", 801 swarn->errstr, swarn->logical, 802 rcu_str_deref(swarn->dev->name), 803 (unsigned long long)swarn->sector, 804 root, inum, offset, 805 min(isize - offset, (u64)PAGE_SIZE), nlink, 806 (char *)(unsigned long)ipath->fspath->val[i]); 807 808 free_ipath(ipath); 809 return 0; 810 811 err: 812 btrfs_warn_in_rcu(fs_info, 813 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 814 swarn->errstr, swarn->logical, 815 rcu_str_deref(swarn->dev->name), 816 (unsigned long long)swarn->sector, 817 root, inum, offset, ret); 818 819 free_ipath(ipath); 820 return 0; 821 } 822 823 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 824 { 825 struct btrfs_device *dev; 826 struct btrfs_fs_info *fs_info; 827 struct btrfs_path *path; 828 struct btrfs_key found_key; 829 struct extent_buffer *eb; 830 struct btrfs_extent_item *ei; 831 struct scrub_warning swarn; 832 unsigned long ptr = 0; 833 u64 extent_item_pos; 834 u64 flags = 0; 835 u64 ref_root; 836 u32 item_size; 837 u8 ref_level = 0; 838 int ret; 839 840 WARN_ON(sblock->page_count < 1); 841 dev = sblock->pagev[0]->dev; 842 fs_info = sblock->sctx->fs_info; 843 844 path = btrfs_alloc_path(); 845 if (!path) 846 return; 847 848 swarn.sector = (sblock->pagev[0]->physical) >> 9; 849 swarn.logical = sblock->pagev[0]->logical; 850 swarn.errstr = errstr; 851 swarn.dev = NULL; 852 853 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 854 &flags); 855 if (ret < 0) 856 goto out; 857 858 extent_item_pos = swarn.logical - found_key.objectid; 859 swarn.extent_item_size = found_key.offset; 860 861 eb = path->nodes[0]; 862 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 863 item_size = btrfs_item_size_nr(eb, path->slots[0]); 864 865 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 866 do { 867 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 868 item_size, &ref_root, 869 &ref_level); 870 btrfs_warn_in_rcu(fs_info, 871 "%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu", 872 errstr, swarn.logical, 873 rcu_str_deref(dev->name), 874 (unsigned long long)swarn.sector, 875 ref_level ? "node" : "leaf", 876 ret < 0 ? -1 : ref_level, 877 ret < 0 ? -1 : ref_root); 878 } while (ret != 1); 879 btrfs_release_path(path); 880 } else { 881 btrfs_release_path(path); 882 swarn.path = path; 883 swarn.dev = dev; 884 iterate_extent_inodes(fs_info, found_key.objectid, 885 extent_item_pos, 1, 886 scrub_print_warning_inode, &swarn); 887 } 888 889 out: 890 btrfs_free_path(path); 891 } 892 893 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx) 894 { 895 struct page *page = NULL; 896 unsigned long index; 897 struct scrub_fixup_nodatasum *fixup = fixup_ctx; 898 int ret; 899 int corrected = 0; 900 struct btrfs_key key; 901 struct inode *inode = NULL; 902 struct btrfs_fs_info *fs_info; 903 u64 end = offset + PAGE_SIZE - 1; 904 struct btrfs_root *local_root; 905 int srcu_index; 906 907 key.objectid = root; 908 key.type = BTRFS_ROOT_ITEM_KEY; 909 key.offset = (u64)-1; 910 911 fs_info = fixup->root->fs_info; 912 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 913 914 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 915 if (IS_ERR(local_root)) { 916 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 917 return PTR_ERR(local_root); 918 } 919 920 key.type = BTRFS_INODE_ITEM_KEY; 921 key.objectid = inum; 922 key.offset = 0; 923 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 924 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 925 if (IS_ERR(inode)) 926 return PTR_ERR(inode); 927 928 index = offset >> PAGE_SHIFT; 929 930 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 931 if (!page) { 932 ret = -ENOMEM; 933 goto out; 934 } 935 936 if (PageUptodate(page)) { 937 if (PageDirty(page)) { 938 /* 939 * we need to write the data to the defect sector. the 940 * data that was in that sector is not in memory, 941 * because the page was modified. we must not write the 942 * modified page to that sector. 943 * 944 * TODO: what could be done here: wait for the delalloc 945 * runner to write out that page (might involve 946 * COW) and see whether the sector is still 947 * referenced afterwards. 948 * 949 * For the meantime, we'll treat this error 950 * incorrectable, although there is a chance that a 951 * later scrub will find the bad sector again and that 952 * there's no dirty page in memory, then. 953 */ 954 ret = -EIO; 955 goto out; 956 } 957 ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE, 958 fixup->logical, page, 959 offset - page_offset(page), 960 fixup->mirror_num); 961 unlock_page(page); 962 corrected = !ret; 963 } else { 964 /* 965 * we need to get good data first. the general readpage path 966 * will call repair_io_failure for us, we just have to make 967 * sure we read the bad mirror. 968 */ 969 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 970 EXTENT_DAMAGED); 971 if (ret) { 972 /* set_extent_bits should give proper error */ 973 WARN_ON(ret > 0); 974 if (ret > 0) 975 ret = -EFAULT; 976 goto out; 977 } 978 979 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, 980 btrfs_get_extent, 981 fixup->mirror_num); 982 wait_on_page_locked(page); 983 984 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, 985 end, EXTENT_DAMAGED, 0, NULL); 986 if (!corrected) 987 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 988 EXTENT_DAMAGED); 989 } 990 991 out: 992 if (page) 993 put_page(page); 994 995 iput(inode); 996 997 if (ret < 0) 998 return ret; 999 1000 if (ret == 0 && corrected) { 1001 /* 1002 * we only need to call readpage for one of the inodes belonging 1003 * to this extent. so make iterate_extent_inodes stop 1004 */ 1005 return 1; 1006 } 1007 1008 return -EIO; 1009 } 1010 1011 static void scrub_fixup_nodatasum(struct btrfs_work *work) 1012 { 1013 struct btrfs_fs_info *fs_info; 1014 int ret; 1015 struct scrub_fixup_nodatasum *fixup; 1016 struct scrub_ctx *sctx; 1017 struct btrfs_trans_handle *trans = NULL; 1018 struct btrfs_path *path; 1019 int uncorrectable = 0; 1020 1021 fixup = container_of(work, struct scrub_fixup_nodatasum, work); 1022 sctx = fixup->sctx; 1023 fs_info = fixup->root->fs_info; 1024 1025 path = btrfs_alloc_path(); 1026 if (!path) { 1027 spin_lock(&sctx->stat_lock); 1028 ++sctx->stat.malloc_errors; 1029 spin_unlock(&sctx->stat_lock); 1030 uncorrectable = 1; 1031 goto out; 1032 } 1033 1034 trans = btrfs_join_transaction(fixup->root); 1035 if (IS_ERR(trans)) { 1036 uncorrectable = 1; 1037 goto out; 1038 } 1039 1040 /* 1041 * the idea is to trigger a regular read through the standard path. we 1042 * read a page from the (failed) logical address by specifying the 1043 * corresponding copynum of the failed sector. thus, that readpage is 1044 * expected to fail. 1045 * that is the point where on-the-fly error correction will kick in 1046 * (once it's finished) and rewrite the failed sector if a good copy 1047 * can be found. 1048 */ 1049 ret = iterate_inodes_from_logical(fixup->logical, fs_info, path, 1050 scrub_fixup_readpage, fixup); 1051 if (ret < 0) { 1052 uncorrectable = 1; 1053 goto out; 1054 } 1055 WARN_ON(ret != 1); 1056 1057 spin_lock(&sctx->stat_lock); 1058 ++sctx->stat.corrected_errors; 1059 spin_unlock(&sctx->stat_lock); 1060 1061 out: 1062 if (trans && !IS_ERR(trans)) 1063 btrfs_end_transaction(trans); 1064 if (uncorrectable) { 1065 spin_lock(&sctx->stat_lock); 1066 ++sctx->stat.uncorrectable_errors; 1067 spin_unlock(&sctx->stat_lock); 1068 btrfs_dev_replace_stats_inc( 1069 &fs_info->dev_replace.num_uncorrectable_read_errors); 1070 btrfs_err_rl_in_rcu(fs_info, 1071 "unable to fixup (nodatasum) error at logical %llu on dev %s", 1072 fixup->logical, rcu_str_deref(fixup->dev->name)); 1073 } 1074 1075 btrfs_free_path(path); 1076 kfree(fixup); 1077 1078 scrub_pending_trans_workers_dec(sctx); 1079 } 1080 1081 static inline void scrub_get_recover(struct scrub_recover *recover) 1082 { 1083 refcount_inc(&recover->refs); 1084 } 1085 1086 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, 1087 struct scrub_recover *recover) 1088 { 1089 if (refcount_dec_and_test(&recover->refs)) { 1090 btrfs_bio_counter_dec(fs_info); 1091 btrfs_put_bbio(recover->bbio); 1092 kfree(recover); 1093 } 1094 } 1095 1096 /* 1097 * scrub_handle_errored_block gets called when either verification of the 1098 * pages failed or the bio failed to read, e.g. with EIO. In the latter 1099 * case, this function handles all pages in the bio, even though only one 1100 * may be bad. 1101 * The goal of this function is to repair the errored block by using the 1102 * contents of one of the mirrors. 1103 */ 1104 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 1105 { 1106 struct scrub_ctx *sctx = sblock_to_check->sctx; 1107 struct btrfs_device *dev; 1108 struct btrfs_fs_info *fs_info; 1109 u64 length; 1110 u64 logical; 1111 unsigned int failed_mirror_index; 1112 unsigned int is_metadata; 1113 unsigned int have_csum; 1114 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 1115 struct scrub_block *sblock_bad; 1116 int ret; 1117 int mirror_index; 1118 int page_num; 1119 int success; 1120 bool full_stripe_locked; 1121 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 1122 DEFAULT_RATELIMIT_BURST); 1123 1124 BUG_ON(sblock_to_check->page_count < 1); 1125 fs_info = sctx->fs_info; 1126 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 1127 /* 1128 * if we find an error in a super block, we just report it. 1129 * They will get written with the next transaction commit 1130 * anyway 1131 */ 1132 spin_lock(&sctx->stat_lock); 1133 ++sctx->stat.super_errors; 1134 spin_unlock(&sctx->stat_lock); 1135 return 0; 1136 } 1137 length = sblock_to_check->page_count * PAGE_SIZE; 1138 logical = sblock_to_check->pagev[0]->logical; 1139 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 1140 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 1141 is_metadata = !(sblock_to_check->pagev[0]->flags & 1142 BTRFS_EXTENT_FLAG_DATA); 1143 have_csum = sblock_to_check->pagev[0]->have_csum; 1144 dev = sblock_to_check->pagev[0]->dev; 1145 1146 /* 1147 * For RAID5/6, race can happen for a different device scrub thread. 1148 * For data corruption, Parity and Data threads will both try 1149 * to recovery the data. 1150 * Race can lead to doubly added csum error, or even unrecoverable 1151 * error. 1152 */ 1153 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); 1154 if (ret < 0) { 1155 spin_lock(&sctx->stat_lock); 1156 if (ret == -ENOMEM) 1157 sctx->stat.malloc_errors++; 1158 sctx->stat.read_errors++; 1159 sctx->stat.uncorrectable_errors++; 1160 spin_unlock(&sctx->stat_lock); 1161 return ret; 1162 } 1163 1164 if (sctx->is_dev_replace && !is_metadata && !have_csum) { 1165 sblocks_for_recheck = NULL; 1166 goto nodatasum_case; 1167 } 1168 1169 /* 1170 * read all mirrors one after the other. This includes to 1171 * re-read the extent or metadata block that failed (that was 1172 * the cause that this fixup code is called) another time, 1173 * page by page this time in order to know which pages 1174 * caused I/O errors and which ones are good (for all mirrors). 1175 * It is the goal to handle the situation when more than one 1176 * mirror contains I/O errors, but the errors do not 1177 * overlap, i.e. the data can be repaired by selecting the 1178 * pages from those mirrors without I/O error on the 1179 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) 1180 * would be that mirror #1 has an I/O error on the first page, 1181 * the second page is good, and mirror #2 has an I/O error on 1182 * the second page, but the first page is good. 1183 * Then the first page of the first mirror can be repaired by 1184 * taking the first page of the second mirror, and the 1185 * second page of the second mirror can be repaired by 1186 * copying the contents of the 2nd page of the 1st mirror. 1187 * One more note: if the pages of one mirror contain I/O 1188 * errors, the checksum cannot be verified. In order to get 1189 * the best data for repairing, the first attempt is to find 1190 * a mirror without I/O errors and with a validated checksum. 1191 * Only if this is not possible, the pages are picked from 1192 * mirrors with I/O errors without considering the checksum. 1193 * If the latter is the case, at the end, the checksum of the 1194 * repaired area is verified in order to correctly maintain 1195 * the statistics. 1196 */ 1197 1198 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, 1199 sizeof(*sblocks_for_recheck), GFP_NOFS); 1200 if (!sblocks_for_recheck) { 1201 spin_lock(&sctx->stat_lock); 1202 sctx->stat.malloc_errors++; 1203 sctx->stat.read_errors++; 1204 sctx->stat.uncorrectable_errors++; 1205 spin_unlock(&sctx->stat_lock); 1206 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1207 goto out; 1208 } 1209 1210 /* setup the context, map the logical blocks and alloc the pages */ 1211 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); 1212 if (ret) { 1213 spin_lock(&sctx->stat_lock); 1214 sctx->stat.read_errors++; 1215 sctx->stat.uncorrectable_errors++; 1216 spin_unlock(&sctx->stat_lock); 1217 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1218 goto out; 1219 } 1220 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 1221 sblock_bad = sblocks_for_recheck + failed_mirror_index; 1222 1223 /* build and submit the bios for the failed mirror, check checksums */ 1224 scrub_recheck_block(fs_info, sblock_bad, 1); 1225 1226 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 1227 sblock_bad->no_io_error_seen) { 1228 /* 1229 * the error disappeared after reading page by page, or 1230 * the area was part of a huge bio and other parts of the 1231 * bio caused I/O errors, or the block layer merged several 1232 * read requests into one and the error is caused by a 1233 * different bio (usually one of the two latter cases is 1234 * the cause) 1235 */ 1236 spin_lock(&sctx->stat_lock); 1237 sctx->stat.unverified_errors++; 1238 sblock_to_check->data_corrected = 1; 1239 spin_unlock(&sctx->stat_lock); 1240 1241 if (sctx->is_dev_replace) 1242 scrub_write_block_to_dev_replace(sblock_bad); 1243 goto out; 1244 } 1245 1246 if (!sblock_bad->no_io_error_seen) { 1247 spin_lock(&sctx->stat_lock); 1248 sctx->stat.read_errors++; 1249 spin_unlock(&sctx->stat_lock); 1250 if (__ratelimit(&_rs)) 1251 scrub_print_warning("i/o error", sblock_to_check); 1252 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1253 } else if (sblock_bad->checksum_error) { 1254 spin_lock(&sctx->stat_lock); 1255 sctx->stat.csum_errors++; 1256 spin_unlock(&sctx->stat_lock); 1257 if (__ratelimit(&_rs)) 1258 scrub_print_warning("checksum error", sblock_to_check); 1259 btrfs_dev_stat_inc_and_print(dev, 1260 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1261 } else if (sblock_bad->header_error) { 1262 spin_lock(&sctx->stat_lock); 1263 sctx->stat.verify_errors++; 1264 spin_unlock(&sctx->stat_lock); 1265 if (__ratelimit(&_rs)) 1266 scrub_print_warning("checksum/header error", 1267 sblock_to_check); 1268 if (sblock_bad->generation_error) 1269 btrfs_dev_stat_inc_and_print(dev, 1270 BTRFS_DEV_STAT_GENERATION_ERRS); 1271 else 1272 btrfs_dev_stat_inc_and_print(dev, 1273 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1274 } 1275 1276 if (sctx->readonly) { 1277 ASSERT(!sctx->is_dev_replace); 1278 goto out; 1279 } 1280 1281 if (!is_metadata && !have_csum) { 1282 struct scrub_fixup_nodatasum *fixup_nodatasum; 1283 1284 WARN_ON(sctx->is_dev_replace); 1285 1286 nodatasum_case: 1287 1288 /* 1289 * !is_metadata and !have_csum, this means that the data 1290 * might not be COWed, that it might be modified 1291 * concurrently. The general strategy to work on the 1292 * commit root does not help in the case when COW is not 1293 * used. 1294 */ 1295 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS); 1296 if (!fixup_nodatasum) 1297 goto did_not_correct_error; 1298 fixup_nodatasum->sctx = sctx; 1299 fixup_nodatasum->dev = dev; 1300 fixup_nodatasum->logical = logical; 1301 fixup_nodatasum->root = fs_info->extent_root; 1302 fixup_nodatasum->mirror_num = failed_mirror_index + 1; 1303 scrub_pending_trans_workers_inc(sctx); 1304 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper, 1305 scrub_fixup_nodatasum, NULL, NULL); 1306 btrfs_queue_work(fs_info->scrub_workers, 1307 &fixup_nodatasum->work); 1308 goto out; 1309 } 1310 1311 /* 1312 * now build and submit the bios for the other mirrors, check 1313 * checksums. 1314 * First try to pick the mirror which is completely without I/O 1315 * errors and also does not have a checksum error. 1316 * If one is found, and if a checksum is present, the full block 1317 * that is known to contain an error is rewritten. Afterwards 1318 * the block is known to be corrected. 1319 * If a mirror is found which is completely correct, and no 1320 * checksum is present, only those pages are rewritten that had 1321 * an I/O error in the block to be repaired, since it cannot be 1322 * determined, which copy of the other pages is better (and it 1323 * could happen otherwise that a correct page would be 1324 * overwritten by a bad one). 1325 */ 1326 for (mirror_index = 0; 1327 mirror_index < BTRFS_MAX_MIRRORS && 1328 sblocks_for_recheck[mirror_index].page_count > 0; 1329 mirror_index++) { 1330 struct scrub_block *sblock_other; 1331 1332 if (mirror_index == failed_mirror_index) 1333 continue; 1334 sblock_other = sblocks_for_recheck + mirror_index; 1335 1336 /* build and submit the bios, check checksums */ 1337 scrub_recheck_block(fs_info, sblock_other, 0); 1338 1339 if (!sblock_other->header_error && 1340 !sblock_other->checksum_error && 1341 sblock_other->no_io_error_seen) { 1342 if (sctx->is_dev_replace) { 1343 scrub_write_block_to_dev_replace(sblock_other); 1344 goto corrected_error; 1345 } else { 1346 ret = scrub_repair_block_from_good_copy( 1347 sblock_bad, sblock_other); 1348 if (!ret) 1349 goto corrected_error; 1350 } 1351 } 1352 } 1353 1354 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) 1355 goto did_not_correct_error; 1356 1357 /* 1358 * In case of I/O errors in the area that is supposed to be 1359 * repaired, continue by picking good copies of those pages. 1360 * Select the good pages from mirrors to rewrite bad pages from 1361 * the area to fix. Afterwards verify the checksum of the block 1362 * that is supposed to be repaired. This verification step is 1363 * only done for the purpose of statistic counting and for the 1364 * final scrub report, whether errors remain. 1365 * A perfect algorithm could make use of the checksum and try 1366 * all possible combinations of pages from the different mirrors 1367 * until the checksum verification succeeds. For example, when 1368 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page 1369 * of mirror #2 is readable but the final checksum test fails, 1370 * then the 2nd page of mirror #3 could be tried, whether now 1371 * the final checksum succeeds. But this would be a rare 1372 * exception and is therefore not implemented. At least it is 1373 * avoided that the good copy is overwritten. 1374 * A more useful improvement would be to pick the sectors 1375 * without I/O error based on sector sizes (512 bytes on legacy 1376 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one 1377 * mirror could be repaired by taking 512 byte of a different 1378 * mirror, even if other 512 byte sectors in the same PAGE_SIZE 1379 * area are unreadable. 1380 */ 1381 success = 1; 1382 for (page_num = 0; page_num < sblock_bad->page_count; 1383 page_num++) { 1384 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1385 struct scrub_block *sblock_other = NULL; 1386 1387 /* skip no-io-error page in scrub */ 1388 if (!page_bad->io_error && !sctx->is_dev_replace) 1389 continue; 1390 1391 /* try to find no-io-error page in mirrors */ 1392 if (page_bad->io_error) { 1393 for (mirror_index = 0; 1394 mirror_index < BTRFS_MAX_MIRRORS && 1395 sblocks_for_recheck[mirror_index].page_count > 0; 1396 mirror_index++) { 1397 if (!sblocks_for_recheck[mirror_index]. 1398 pagev[page_num]->io_error) { 1399 sblock_other = sblocks_for_recheck + 1400 mirror_index; 1401 break; 1402 } 1403 } 1404 if (!sblock_other) 1405 success = 0; 1406 } 1407 1408 if (sctx->is_dev_replace) { 1409 /* 1410 * did not find a mirror to fetch the page 1411 * from. scrub_write_page_to_dev_replace() 1412 * handles this case (page->io_error), by 1413 * filling the block with zeros before 1414 * submitting the write request 1415 */ 1416 if (!sblock_other) 1417 sblock_other = sblock_bad; 1418 1419 if (scrub_write_page_to_dev_replace(sblock_other, 1420 page_num) != 0) { 1421 btrfs_dev_replace_stats_inc( 1422 &fs_info->dev_replace.num_write_errors); 1423 success = 0; 1424 } 1425 } else if (sblock_other) { 1426 ret = scrub_repair_page_from_good_copy(sblock_bad, 1427 sblock_other, 1428 page_num, 0); 1429 if (0 == ret) 1430 page_bad->io_error = 0; 1431 else 1432 success = 0; 1433 } 1434 } 1435 1436 if (success && !sctx->is_dev_replace) { 1437 if (is_metadata || have_csum) { 1438 /* 1439 * need to verify the checksum now that all 1440 * sectors on disk are repaired (the write 1441 * request for data to be repaired is on its way). 1442 * Just be lazy and use scrub_recheck_block() 1443 * which re-reads the data before the checksum 1444 * is verified, but most likely the data comes out 1445 * of the page cache. 1446 */ 1447 scrub_recheck_block(fs_info, sblock_bad, 1); 1448 if (!sblock_bad->header_error && 1449 !sblock_bad->checksum_error && 1450 sblock_bad->no_io_error_seen) 1451 goto corrected_error; 1452 else 1453 goto did_not_correct_error; 1454 } else { 1455 corrected_error: 1456 spin_lock(&sctx->stat_lock); 1457 sctx->stat.corrected_errors++; 1458 sblock_to_check->data_corrected = 1; 1459 spin_unlock(&sctx->stat_lock); 1460 btrfs_err_rl_in_rcu(fs_info, 1461 "fixed up error at logical %llu on dev %s", 1462 logical, rcu_str_deref(dev->name)); 1463 } 1464 } else { 1465 did_not_correct_error: 1466 spin_lock(&sctx->stat_lock); 1467 sctx->stat.uncorrectable_errors++; 1468 spin_unlock(&sctx->stat_lock); 1469 btrfs_err_rl_in_rcu(fs_info, 1470 "unable to fixup (regular) error at logical %llu on dev %s", 1471 logical, rcu_str_deref(dev->name)); 1472 } 1473 1474 out: 1475 if (sblocks_for_recheck) { 1476 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1477 mirror_index++) { 1478 struct scrub_block *sblock = sblocks_for_recheck + 1479 mirror_index; 1480 struct scrub_recover *recover; 1481 int page_index; 1482 1483 for (page_index = 0; page_index < sblock->page_count; 1484 page_index++) { 1485 sblock->pagev[page_index]->sblock = NULL; 1486 recover = sblock->pagev[page_index]->recover; 1487 if (recover) { 1488 scrub_put_recover(fs_info, recover); 1489 sblock->pagev[page_index]->recover = 1490 NULL; 1491 } 1492 scrub_page_put(sblock->pagev[page_index]); 1493 } 1494 } 1495 kfree(sblocks_for_recheck); 1496 } 1497 1498 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); 1499 if (ret < 0) 1500 return ret; 1501 return 0; 1502 } 1503 1504 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio) 1505 { 1506 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1507 return 2; 1508 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1509 return 3; 1510 else 1511 return (int)bbio->num_stripes; 1512 } 1513 1514 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 1515 u64 *raid_map, 1516 u64 mapped_length, 1517 int nstripes, int mirror, 1518 int *stripe_index, 1519 u64 *stripe_offset) 1520 { 1521 int i; 1522 1523 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1524 /* RAID5/6 */ 1525 for (i = 0; i < nstripes; i++) { 1526 if (raid_map[i] == RAID6_Q_STRIPE || 1527 raid_map[i] == RAID5_P_STRIPE) 1528 continue; 1529 1530 if (logical >= raid_map[i] && 1531 logical < raid_map[i] + mapped_length) 1532 break; 1533 } 1534 1535 *stripe_index = i; 1536 *stripe_offset = logical - raid_map[i]; 1537 } else { 1538 /* The other RAID type */ 1539 *stripe_index = mirror; 1540 *stripe_offset = 0; 1541 } 1542 } 1543 1544 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 1545 struct scrub_block *sblocks_for_recheck) 1546 { 1547 struct scrub_ctx *sctx = original_sblock->sctx; 1548 struct btrfs_fs_info *fs_info = sctx->fs_info; 1549 u64 length = original_sblock->page_count * PAGE_SIZE; 1550 u64 logical = original_sblock->pagev[0]->logical; 1551 u64 generation = original_sblock->pagev[0]->generation; 1552 u64 flags = original_sblock->pagev[0]->flags; 1553 u64 have_csum = original_sblock->pagev[0]->have_csum; 1554 struct scrub_recover *recover; 1555 struct btrfs_bio *bbio; 1556 u64 sublen; 1557 u64 mapped_length; 1558 u64 stripe_offset; 1559 int stripe_index; 1560 int page_index = 0; 1561 int mirror_index; 1562 int nmirrors; 1563 int ret; 1564 1565 /* 1566 * note: the two members refs and outstanding_pages 1567 * are not used (and not set) in the blocks that are used for 1568 * the recheck procedure 1569 */ 1570 1571 while (length > 0) { 1572 sublen = min_t(u64, length, PAGE_SIZE); 1573 mapped_length = sublen; 1574 bbio = NULL; 1575 1576 /* 1577 * with a length of PAGE_SIZE, each returned stripe 1578 * represents one mirror 1579 */ 1580 btrfs_bio_counter_inc_blocked(fs_info); 1581 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 1582 logical, &mapped_length, &bbio); 1583 if (ret || !bbio || mapped_length < sublen) { 1584 btrfs_put_bbio(bbio); 1585 btrfs_bio_counter_dec(fs_info); 1586 return -EIO; 1587 } 1588 1589 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); 1590 if (!recover) { 1591 btrfs_put_bbio(bbio); 1592 btrfs_bio_counter_dec(fs_info); 1593 return -ENOMEM; 1594 } 1595 1596 refcount_set(&recover->refs, 1); 1597 recover->bbio = bbio; 1598 recover->map_length = mapped_length; 1599 1600 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK); 1601 1602 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS); 1603 1604 for (mirror_index = 0; mirror_index < nmirrors; 1605 mirror_index++) { 1606 struct scrub_block *sblock; 1607 struct scrub_page *page; 1608 1609 sblock = sblocks_for_recheck + mirror_index; 1610 sblock->sctx = sctx; 1611 1612 page = kzalloc(sizeof(*page), GFP_NOFS); 1613 if (!page) { 1614 leave_nomem: 1615 spin_lock(&sctx->stat_lock); 1616 sctx->stat.malloc_errors++; 1617 spin_unlock(&sctx->stat_lock); 1618 scrub_put_recover(fs_info, recover); 1619 return -ENOMEM; 1620 } 1621 scrub_page_get(page); 1622 sblock->pagev[page_index] = page; 1623 page->sblock = sblock; 1624 page->flags = flags; 1625 page->generation = generation; 1626 page->logical = logical; 1627 page->have_csum = have_csum; 1628 if (have_csum) 1629 memcpy(page->csum, 1630 original_sblock->pagev[0]->csum, 1631 sctx->csum_size); 1632 1633 scrub_stripe_index_and_offset(logical, 1634 bbio->map_type, 1635 bbio->raid_map, 1636 mapped_length, 1637 bbio->num_stripes - 1638 bbio->num_tgtdevs, 1639 mirror_index, 1640 &stripe_index, 1641 &stripe_offset); 1642 page->physical = bbio->stripes[stripe_index].physical + 1643 stripe_offset; 1644 page->dev = bbio->stripes[stripe_index].dev; 1645 1646 BUG_ON(page_index >= original_sblock->page_count); 1647 page->physical_for_dev_replace = 1648 original_sblock->pagev[page_index]-> 1649 physical_for_dev_replace; 1650 /* for missing devices, dev->bdev is NULL */ 1651 page->mirror_num = mirror_index + 1; 1652 sblock->page_count++; 1653 page->page = alloc_page(GFP_NOFS); 1654 if (!page->page) 1655 goto leave_nomem; 1656 1657 scrub_get_recover(recover); 1658 page->recover = recover; 1659 } 1660 scrub_put_recover(fs_info, recover); 1661 length -= sublen; 1662 logical += sublen; 1663 page_index++; 1664 } 1665 1666 return 0; 1667 } 1668 1669 struct scrub_bio_ret { 1670 struct completion event; 1671 blk_status_t status; 1672 }; 1673 1674 static void scrub_bio_wait_endio(struct bio *bio) 1675 { 1676 struct scrub_bio_ret *ret = bio->bi_private; 1677 1678 ret->status = bio->bi_status; 1679 complete(&ret->event); 1680 } 1681 1682 static inline int scrub_is_page_on_raid56(struct scrub_page *page) 1683 { 1684 return page->recover && 1685 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); 1686 } 1687 1688 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, 1689 struct bio *bio, 1690 struct scrub_page *page) 1691 { 1692 struct scrub_bio_ret done; 1693 int ret; 1694 1695 init_completion(&done.event); 1696 done.status = 0; 1697 bio->bi_iter.bi_sector = page->logical >> 9; 1698 bio->bi_private = &done; 1699 bio->bi_end_io = scrub_bio_wait_endio; 1700 1701 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio, 1702 page->recover->map_length, 1703 page->mirror_num, 0); 1704 if (ret) 1705 return ret; 1706 1707 wait_for_completion_io(&done.event); 1708 if (done.status) 1709 return -EIO; 1710 1711 return 0; 1712 } 1713 1714 /* 1715 * this function will check the on disk data for checksum errors, header 1716 * errors and read I/O errors. If any I/O errors happen, the exact pages 1717 * which are errored are marked as being bad. The goal is to enable scrub 1718 * to take those pages that are not errored from all the mirrors so that 1719 * the pages that are errored in the just handled mirror can be repaired. 1720 */ 1721 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1722 struct scrub_block *sblock, 1723 int retry_failed_mirror) 1724 { 1725 int page_num; 1726 1727 sblock->no_io_error_seen = 1; 1728 1729 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1730 struct bio *bio; 1731 struct scrub_page *page = sblock->pagev[page_num]; 1732 1733 if (page->dev->bdev == NULL) { 1734 page->io_error = 1; 1735 sblock->no_io_error_seen = 0; 1736 continue; 1737 } 1738 1739 WARN_ON(!page->page); 1740 bio = btrfs_io_bio_alloc(1); 1741 bio_set_dev(bio, page->dev->bdev); 1742 1743 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1744 if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) { 1745 if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) { 1746 page->io_error = 1; 1747 sblock->no_io_error_seen = 0; 1748 } 1749 } else { 1750 bio->bi_iter.bi_sector = page->physical >> 9; 1751 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1752 1753 if (btrfsic_submit_bio_wait(bio)) { 1754 page->io_error = 1; 1755 sblock->no_io_error_seen = 0; 1756 } 1757 } 1758 1759 bio_put(bio); 1760 } 1761 1762 if (sblock->no_io_error_seen) 1763 scrub_recheck_block_checksum(sblock); 1764 } 1765 1766 static inline int scrub_check_fsid(u8 fsid[], 1767 struct scrub_page *spage) 1768 { 1769 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; 1770 int ret; 1771 1772 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1773 return !ret; 1774 } 1775 1776 static void scrub_recheck_block_checksum(struct scrub_block *sblock) 1777 { 1778 sblock->header_error = 0; 1779 sblock->checksum_error = 0; 1780 sblock->generation_error = 0; 1781 1782 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA) 1783 scrub_checksum_data(sblock); 1784 else 1785 scrub_checksum_tree_block(sblock); 1786 } 1787 1788 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1789 struct scrub_block *sblock_good) 1790 { 1791 int page_num; 1792 int ret = 0; 1793 1794 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1795 int ret_sub; 1796 1797 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1798 sblock_good, 1799 page_num, 1); 1800 if (ret_sub) 1801 ret = ret_sub; 1802 } 1803 1804 return ret; 1805 } 1806 1807 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1808 struct scrub_block *sblock_good, 1809 int page_num, int force_write) 1810 { 1811 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1812 struct scrub_page *page_good = sblock_good->pagev[page_num]; 1813 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; 1814 1815 BUG_ON(page_bad->page == NULL); 1816 BUG_ON(page_good->page == NULL); 1817 if (force_write || sblock_bad->header_error || 1818 sblock_bad->checksum_error || page_bad->io_error) { 1819 struct bio *bio; 1820 int ret; 1821 1822 if (!page_bad->dev->bdev) { 1823 btrfs_warn_rl(fs_info, 1824 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); 1825 return -EIO; 1826 } 1827 1828 bio = btrfs_io_bio_alloc(1); 1829 bio_set_dev(bio, page_bad->dev->bdev); 1830 bio->bi_iter.bi_sector = page_bad->physical >> 9; 1831 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 1832 1833 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); 1834 if (PAGE_SIZE != ret) { 1835 bio_put(bio); 1836 return -EIO; 1837 } 1838 1839 if (btrfsic_submit_bio_wait(bio)) { 1840 btrfs_dev_stat_inc_and_print(page_bad->dev, 1841 BTRFS_DEV_STAT_WRITE_ERRS); 1842 btrfs_dev_replace_stats_inc( 1843 &fs_info->dev_replace.num_write_errors); 1844 bio_put(bio); 1845 return -EIO; 1846 } 1847 bio_put(bio); 1848 } 1849 1850 return 0; 1851 } 1852 1853 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1854 { 1855 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 1856 int page_num; 1857 1858 /* 1859 * This block is used for the check of the parity on the source device, 1860 * so the data needn't be written into the destination device. 1861 */ 1862 if (sblock->sparity) 1863 return; 1864 1865 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1866 int ret; 1867 1868 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1869 if (ret) 1870 btrfs_dev_replace_stats_inc( 1871 &fs_info->dev_replace.num_write_errors); 1872 } 1873 } 1874 1875 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1876 int page_num) 1877 { 1878 struct scrub_page *spage = sblock->pagev[page_num]; 1879 1880 BUG_ON(spage->page == NULL); 1881 if (spage->io_error) { 1882 void *mapped_buffer = kmap_atomic(spage->page); 1883 1884 clear_page(mapped_buffer); 1885 flush_dcache_page(spage->page); 1886 kunmap_atomic(mapped_buffer); 1887 } 1888 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1889 } 1890 1891 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1892 struct scrub_page *spage) 1893 { 1894 struct scrub_bio *sbio; 1895 int ret; 1896 1897 mutex_lock(&sctx->wr_lock); 1898 again: 1899 if (!sctx->wr_curr_bio) { 1900 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), 1901 GFP_KERNEL); 1902 if (!sctx->wr_curr_bio) { 1903 mutex_unlock(&sctx->wr_lock); 1904 return -ENOMEM; 1905 } 1906 sctx->wr_curr_bio->sctx = sctx; 1907 sctx->wr_curr_bio->page_count = 0; 1908 } 1909 sbio = sctx->wr_curr_bio; 1910 if (sbio->page_count == 0) { 1911 struct bio *bio; 1912 1913 sbio->physical = spage->physical_for_dev_replace; 1914 sbio->logical = spage->logical; 1915 sbio->dev = sctx->wr_tgtdev; 1916 bio = sbio->bio; 1917 if (!bio) { 1918 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio); 1919 sbio->bio = bio; 1920 } 1921 1922 bio->bi_private = sbio; 1923 bio->bi_end_io = scrub_wr_bio_end_io; 1924 bio_set_dev(bio, sbio->dev->bdev); 1925 bio->bi_iter.bi_sector = sbio->physical >> 9; 1926 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 1927 sbio->status = 0; 1928 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1929 spage->physical_for_dev_replace || 1930 sbio->logical + sbio->page_count * PAGE_SIZE != 1931 spage->logical) { 1932 scrub_wr_submit(sctx); 1933 goto again; 1934 } 1935 1936 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1937 if (ret != PAGE_SIZE) { 1938 if (sbio->page_count < 1) { 1939 bio_put(sbio->bio); 1940 sbio->bio = NULL; 1941 mutex_unlock(&sctx->wr_lock); 1942 return -EIO; 1943 } 1944 scrub_wr_submit(sctx); 1945 goto again; 1946 } 1947 1948 sbio->pagev[sbio->page_count] = spage; 1949 scrub_page_get(spage); 1950 sbio->page_count++; 1951 if (sbio->page_count == sctx->pages_per_wr_bio) 1952 scrub_wr_submit(sctx); 1953 mutex_unlock(&sctx->wr_lock); 1954 1955 return 0; 1956 } 1957 1958 static void scrub_wr_submit(struct scrub_ctx *sctx) 1959 { 1960 struct scrub_bio *sbio; 1961 1962 if (!sctx->wr_curr_bio) 1963 return; 1964 1965 sbio = sctx->wr_curr_bio; 1966 sctx->wr_curr_bio = NULL; 1967 WARN_ON(!sbio->bio->bi_disk); 1968 scrub_pending_bio_inc(sctx); 1969 /* process all writes in a single worker thread. Then the block layer 1970 * orders the requests before sending them to the driver which 1971 * doubled the write performance on spinning disks when measured 1972 * with Linux 3.5 */ 1973 btrfsic_submit_bio(sbio->bio); 1974 } 1975 1976 static void scrub_wr_bio_end_io(struct bio *bio) 1977 { 1978 struct scrub_bio *sbio = bio->bi_private; 1979 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 1980 1981 sbio->status = bio->bi_status; 1982 sbio->bio = bio; 1983 1984 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper, 1985 scrub_wr_bio_end_io_worker, NULL, NULL); 1986 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 1987 } 1988 1989 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 1990 { 1991 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1992 struct scrub_ctx *sctx = sbio->sctx; 1993 int i; 1994 1995 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 1996 if (sbio->status) { 1997 struct btrfs_dev_replace *dev_replace = 1998 &sbio->sctx->fs_info->dev_replace; 1999 2000 for (i = 0; i < sbio->page_count; i++) { 2001 struct scrub_page *spage = sbio->pagev[i]; 2002 2003 spage->io_error = 1; 2004 btrfs_dev_replace_stats_inc(&dev_replace-> 2005 num_write_errors); 2006 } 2007 } 2008 2009 for (i = 0; i < sbio->page_count; i++) 2010 scrub_page_put(sbio->pagev[i]); 2011 2012 bio_put(sbio->bio); 2013 kfree(sbio); 2014 scrub_pending_bio_dec(sctx); 2015 } 2016 2017 static int scrub_checksum(struct scrub_block *sblock) 2018 { 2019 u64 flags; 2020 int ret; 2021 2022 /* 2023 * No need to initialize these stats currently, 2024 * because this function only use return value 2025 * instead of these stats value. 2026 * 2027 * Todo: 2028 * always use stats 2029 */ 2030 sblock->header_error = 0; 2031 sblock->generation_error = 0; 2032 sblock->checksum_error = 0; 2033 2034 WARN_ON(sblock->page_count < 1); 2035 flags = sblock->pagev[0]->flags; 2036 ret = 0; 2037 if (flags & BTRFS_EXTENT_FLAG_DATA) 2038 ret = scrub_checksum_data(sblock); 2039 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2040 ret = scrub_checksum_tree_block(sblock); 2041 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 2042 (void)scrub_checksum_super(sblock); 2043 else 2044 WARN_ON(1); 2045 if (ret) 2046 scrub_handle_errored_block(sblock); 2047 2048 return ret; 2049 } 2050 2051 static int scrub_checksum_data(struct scrub_block *sblock) 2052 { 2053 struct scrub_ctx *sctx = sblock->sctx; 2054 u8 csum[BTRFS_CSUM_SIZE]; 2055 u8 *on_disk_csum; 2056 struct page *page; 2057 void *buffer; 2058 u32 crc = ~(u32)0; 2059 u64 len; 2060 int index; 2061 2062 BUG_ON(sblock->page_count < 1); 2063 if (!sblock->pagev[0]->have_csum) 2064 return 0; 2065 2066 on_disk_csum = sblock->pagev[0]->csum; 2067 page = sblock->pagev[0]->page; 2068 buffer = kmap_atomic(page); 2069 2070 len = sctx->fs_info->sectorsize; 2071 index = 0; 2072 for (;;) { 2073 u64 l = min_t(u64, len, PAGE_SIZE); 2074 2075 crc = btrfs_csum_data(buffer, crc, l); 2076 kunmap_atomic(buffer); 2077 len -= l; 2078 if (len == 0) 2079 break; 2080 index++; 2081 BUG_ON(index >= sblock->page_count); 2082 BUG_ON(!sblock->pagev[index]->page); 2083 page = sblock->pagev[index]->page; 2084 buffer = kmap_atomic(page); 2085 } 2086 2087 btrfs_csum_final(crc, csum); 2088 if (memcmp(csum, on_disk_csum, sctx->csum_size)) 2089 sblock->checksum_error = 1; 2090 2091 return sblock->checksum_error; 2092 } 2093 2094 static int scrub_checksum_tree_block(struct scrub_block *sblock) 2095 { 2096 struct scrub_ctx *sctx = sblock->sctx; 2097 struct btrfs_header *h; 2098 struct btrfs_fs_info *fs_info = sctx->fs_info; 2099 u8 calculated_csum[BTRFS_CSUM_SIZE]; 2100 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 2101 struct page *page; 2102 void *mapped_buffer; 2103 u64 mapped_size; 2104 void *p; 2105 u32 crc = ~(u32)0; 2106 u64 len; 2107 int index; 2108 2109 BUG_ON(sblock->page_count < 1); 2110 page = sblock->pagev[0]->page; 2111 mapped_buffer = kmap_atomic(page); 2112 h = (struct btrfs_header *)mapped_buffer; 2113 memcpy(on_disk_csum, h->csum, sctx->csum_size); 2114 2115 /* 2116 * we don't use the getter functions here, as we 2117 * a) don't have an extent buffer and 2118 * b) the page is already kmapped 2119 */ 2120 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h)) 2121 sblock->header_error = 1; 2122 2123 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) { 2124 sblock->header_error = 1; 2125 sblock->generation_error = 1; 2126 } 2127 2128 if (!scrub_check_fsid(h->fsid, sblock->pagev[0])) 2129 sblock->header_error = 1; 2130 2131 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 2132 BTRFS_UUID_SIZE)) 2133 sblock->header_error = 1; 2134 2135 len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE; 2136 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 2137 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 2138 index = 0; 2139 for (;;) { 2140 u64 l = min_t(u64, len, mapped_size); 2141 2142 crc = btrfs_csum_data(p, crc, l); 2143 kunmap_atomic(mapped_buffer); 2144 len -= l; 2145 if (len == 0) 2146 break; 2147 index++; 2148 BUG_ON(index >= sblock->page_count); 2149 BUG_ON(!sblock->pagev[index]->page); 2150 page = sblock->pagev[index]->page; 2151 mapped_buffer = kmap_atomic(page); 2152 mapped_size = PAGE_SIZE; 2153 p = mapped_buffer; 2154 } 2155 2156 btrfs_csum_final(crc, calculated_csum); 2157 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 2158 sblock->checksum_error = 1; 2159 2160 return sblock->header_error || sblock->checksum_error; 2161 } 2162 2163 static int scrub_checksum_super(struct scrub_block *sblock) 2164 { 2165 struct btrfs_super_block *s; 2166 struct scrub_ctx *sctx = sblock->sctx; 2167 u8 calculated_csum[BTRFS_CSUM_SIZE]; 2168 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 2169 struct page *page; 2170 void *mapped_buffer; 2171 u64 mapped_size; 2172 void *p; 2173 u32 crc = ~(u32)0; 2174 int fail_gen = 0; 2175 int fail_cor = 0; 2176 u64 len; 2177 int index; 2178 2179 BUG_ON(sblock->page_count < 1); 2180 page = sblock->pagev[0]->page; 2181 mapped_buffer = kmap_atomic(page); 2182 s = (struct btrfs_super_block *)mapped_buffer; 2183 memcpy(on_disk_csum, s->csum, sctx->csum_size); 2184 2185 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s)) 2186 ++fail_cor; 2187 2188 if (sblock->pagev[0]->generation != btrfs_super_generation(s)) 2189 ++fail_gen; 2190 2191 if (!scrub_check_fsid(s->fsid, sblock->pagev[0])) 2192 ++fail_cor; 2193 2194 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; 2195 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 2196 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 2197 index = 0; 2198 for (;;) { 2199 u64 l = min_t(u64, len, mapped_size); 2200 2201 crc = btrfs_csum_data(p, crc, l); 2202 kunmap_atomic(mapped_buffer); 2203 len -= l; 2204 if (len == 0) 2205 break; 2206 index++; 2207 BUG_ON(index >= sblock->page_count); 2208 BUG_ON(!sblock->pagev[index]->page); 2209 page = sblock->pagev[index]->page; 2210 mapped_buffer = kmap_atomic(page); 2211 mapped_size = PAGE_SIZE; 2212 p = mapped_buffer; 2213 } 2214 2215 btrfs_csum_final(crc, calculated_csum); 2216 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 2217 ++fail_cor; 2218 2219 if (fail_cor + fail_gen) { 2220 /* 2221 * if we find an error in a super block, we just report it. 2222 * They will get written with the next transaction commit 2223 * anyway 2224 */ 2225 spin_lock(&sctx->stat_lock); 2226 ++sctx->stat.super_errors; 2227 spin_unlock(&sctx->stat_lock); 2228 if (fail_cor) 2229 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 2230 BTRFS_DEV_STAT_CORRUPTION_ERRS); 2231 else 2232 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 2233 BTRFS_DEV_STAT_GENERATION_ERRS); 2234 } 2235 2236 return fail_cor + fail_gen; 2237 } 2238 2239 static void scrub_block_get(struct scrub_block *sblock) 2240 { 2241 refcount_inc(&sblock->refs); 2242 } 2243 2244 static void scrub_block_put(struct scrub_block *sblock) 2245 { 2246 if (refcount_dec_and_test(&sblock->refs)) { 2247 int i; 2248 2249 if (sblock->sparity) 2250 scrub_parity_put(sblock->sparity); 2251 2252 for (i = 0; i < sblock->page_count; i++) 2253 scrub_page_put(sblock->pagev[i]); 2254 kfree(sblock); 2255 } 2256 } 2257 2258 static void scrub_page_get(struct scrub_page *spage) 2259 { 2260 atomic_inc(&spage->refs); 2261 } 2262 2263 static void scrub_page_put(struct scrub_page *spage) 2264 { 2265 if (atomic_dec_and_test(&spage->refs)) { 2266 if (spage->page) 2267 __free_page(spage->page); 2268 kfree(spage); 2269 } 2270 } 2271 2272 static void scrub_submit(struct scrub_ctx *sctx) 2273 { 2274 struct scrub_bio *sbio; 2275 2276 if (sctx->curr == -1) 2277 return; 2278 2279 sbio = sctx->bios[sctx->curr]; 2280 sctx->curr = -1; 2281 scrub_pending_bio_inc(sctx); 2282 btrfsic_submit_bio(sbio->bio); 2283 } 2284 2285 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 2286 struct scrub_page *spage) 2287 { 2288 struct scrub_block *sblock = spage->sblock; 2289 struct scrub_bio *sbio; 2290 int ret; 2291 2292 again: 2293 /* 2294 * grab a fresh bio or wait for one to become available 2295 */ 2296 while (sctx->curr == -1) { 2297 spin_lock(&sctx->list_lock); 2298 sctx->curr = sctx->first_free; 2299 if (sctx->curr != -1) { 2300 sctx->first_free = sctx->bios[sctx->curr]->next_free; 2301 sctx->bios[sctx->curr]->next_free = -1; 2302 sctx->bios[sctx->curr]->page_count = 0; 2303 spin_unlock(&sctx->list_lock); 2304 } else { 2305 spin_unlock(&sctx->list_lock); 2306 wait_event(sctx->list_wait, sctx->first_free != -1); 2307 } 2308 } 2309 sbio = sctx->bios[sctx->curr]; 2310 if (sbio->page_count == 0) { 2311 struct bio *bio; 2312 2313 sbio->physical = spage->physical; 2314 sbio->logical = spage->logical; 2315 sbio->dev = spage->dev; 2316 bio = sbio->bio; 2317 if (!bio) { 2318 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio); 2319 sbio->bio = bio; 2320 } 2321 2322 bio->bi_private = sbio; 2323 bio->bi_end_io = scrub_bio_end_io; 2324 bio_set_dev(bio, sbio->dev->bdev); 2325 bio->bi_iter.bi_sector = sbio->physical >> 9; 2326 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2327 sbio->status = 0; 2328 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 2329 spage->physical || 2330 sbio->logical + sbio->page_count * PAGE_SIZE != 2331 spage->logical || 2332 sbio->dev != spage->dev) { 2333 scrub_submit(sctx); 2334 goto again; 2335 } 2336 2337 sbio->pagev[sbio->page_count] = spage; 2338 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 2339 if (ret != PAGE_SIZE) { 2340 if (sbio->page_count < 1) { 2341 bio_put(sbio->bio); 2342 sbio->bio = NULL; 2343 return -EIO; 2344 } 2345 scrub_submit(sctx); 2346 goto again; 2347 } 2348 2349 scrub_block_get(sblock); /* one for the page added to the bio */ 2350 atomic_inc(&sblock->outstanding_pages); 2351 sbio->page_count++; 2352 if (sbio->page_count == sctx->pages_per_rd_bio) 2353 scrub_submit(sctx); 2354 2355 return 0; 2356 } 2357 2358 static void scrub_missing_raid56_end_io(struct bio *bio) 2359 { 2360 struct scrub_block *sblock = bio->bi_private; 2361 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 2362 2363 if (bio->bi_status) 2364 sblock->no_io_error_seen = 0; 2365 2366 bio_put(bio); 2367 2368 btrfs_queue_work(fs_info->scrub_workers, &sblock->work); 2369 } 2370 2371 static void scrub_missing_raid56_worker(struct btrfs_work *work) 2372 { 2373 struct scrub_block *sblock = container_of(work, struct scrub_block, work); 2374 struct scrub_ctx *sctx = sblock->sctx; 2375 struct btrfs_fs_info *fs_info = sctx->fs_info; 2376 u64 logical; 2377 struct btrfs_device *dev; 2378 2379 logical = sblock->pagev[0]->logical; 2380 dev = sblock->pagev[0]->dev; 2381 2382 if (sblock->no_io_error_seen) 2383 scrub_recheck_block_checksum(sblock); 2384 2385 if (!sblock->no_io_error_seen) { 2386 spin_lock(&sctx->stat_lock); 2387 sctx->stat.read_errors++; 2388 spin_unlock(&sctx->stat_lock); 2389 btrfs_err_rl_in_rcu(fs_info, 2390 "IO error rebuilding logical %llu for dev %s", 2391 logical, rcu_str_deref(dev->name)); 2392 } else if (sblock->header_error || sblock->checksum_error) { 2393 spin_lock(&sctx->stat_lock); 2394 sctx->stat.uncorrectable_errors++; 2395 spin_unlock(&sctx->stat_lock); 2396 btrfs_err_rl_in_rcu(fs_info, 2397 "failed to rebuild valid logical %llu for dev %s", 2398 logical, rcu_str_deref(dev->name)); 2399 } else { 2400 scrub_write_block_to_dev_replace(sblock); 2401 } 2402 2403 scrub_block_put(sblock); 2404 2405 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2406 mutex_lock(&sctx->wr_lock); 2407 scrub_wr_submit(sctx); 2408 mutex_unlock(&sctx->wr_lock); 2409 } 2410 2411 scrub_pending_bio_dec(sctx); 2412 } 2413 2414 static void scrub_missing_raid56_pages(struct scrub_block *sblock) 2415 { 2416 struct scrub_ctx *sctx = sblock->sctx; 2417 struct btrfs_fs_info *fs_info = sctx->fs_info; 2418 u64 length = sblock->page_count * PAGE_SIZE; 2419 u64 logical = sblock->pagev[0]->logical; 2420 struct btrfs_bio *bbio = NULL; 2421 struct bio *bio; 2422 struct btrfs_raid_bio *rbio; 2423 int ret; 2424 int i; 2425 2426 btrfs_bio_counter_inc_blocked(fs_info); 2427 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 2428 &length, &bbio); 2429 if (ret || !bbio || !bbio->raid_map) 2430 goto bbio_out; 2431 2432 if (WARN_ON(!sctx->is_dev_replace || 2433 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2434 /* 2435 * We shouldn't be scrubbing a missing device. Even for dev 2436 * replace, we should only get here for RAID 5/6. We either 2437 * managed to mount something with no mirrors remaining or 2438 * there's a bug in scrub_remap_extent()/btrfs_map_block(). 2439 */ 2440 goto bbio_out; 2441 } 2442 2443 bio = btrfs_io_bio_alloc(0); 2444 bio->bi_iter.bi_sector = logical >> 9; 2445 bio->bi_private = sblock; 2446 bio->bi_end_io = scrub_missing_raid56_end_io; 2447 2448 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length); 2449 if (!rbio) 2450 goto rbio_out; 2451 2452 for (i = 0; i < sblock->page_count; i++) { 2453 struct scrub_page *spage = sblock->pagev[i]; 2454 2455 raid56_add_scrub_pages(rbio, spage->page, spage->logical); 2456 } 2457 2458 btrfs_init_work(&sblock->work, btrfs_scrub_helper, 2459 scrub_missing_raid56_worker, NULL, NULL); 2460 scrub_block_get(sblock); 2461 scrub_pending_bio_inc(sctx); 2462 raid56_submit_missing_rbio(rbio); 2463 return; 2464 2465 rbio_out: 2466 bio_put(bio); 2467 bbio_out: 2468 btrfs_bio_counter_dec(fs_info); 2469 btrfs_put_bbio(bbio); 2470 spin_lock(&sctx->stat_lock); 2471 sctx->stat.malloc_errors++; 2472 spin_unlock(&sctx->stat_lock); 2473 } 2474 2475 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 2476 u64 physical, struct btrfs_device *dev, u64 flags, 2477 u64 gen, int mirror_num, u8 *csum, int force, 2478 u64 physical_for_dev_replace) 2479 { 2480 struct scrub_block *sblock; 2481 int index; 2482 2483 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2484 if (!sblock) { 2485 spin_lock(&sctx->stat_lock); 2486 sctx->stat.malloc_errors++; 2487 spin_unlock(&sctx->stat_lock); 2488 return -ENOMEM; 2489 } 2490 2491 /* one ref inside this function, plus one for each page added to 2492 * a bio later on */ 2493 refcount_set(&sblock->refs, 1); 2494 sblock->sctx = sctx; 2495 sblock->no_io_error_seen = 1; 2496 2497 for (index = 0; len > 0; index++) { 2498 struct scrub_page *spage; 2499 u64 l = min_t(u64, len, PAGE_SIZE); 2500 2501 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2502 if (!spage) { 2503 leave_nomem: 2504 spin_lock(&sctx->stat_lock); 2505 sctx->stat.malloc_errors++; 2506 spin_unlock(&sctx->stat_lock); 2507 scrub_block_put(sblock); 2508 return -ENOMEM; 2509 } 2510 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2511 scrub_page_get(spage); 2512 sblock->pagev[index] = spage; 2513 spage->sblock = sblock; 2514 spage->dev = dev; 2515 spage->flags = flags; 2516 spage->generation = gen; 2517 spage->logical = logical; 2518 spage->physical = physical; 2519 spage->physical_for_dev_replace = physical_for_dev_replace; 2520 spage->mirror_num = mirror_num; 2521 if (csum) { 2522 spage->have_csum = 1; 2523 memcpy(spage->csum, csum, sctx->csum_size); 2524 } else { 2525 spage->have_csum = 0; 2526 } 2527 sblock->page_count++; 2528 spage->page = alloc_page(GFP_KERNEL); 2529 if (!spage->page) 2530 goto leave_nomem; 2531 len -= l; 2532 logical += l; 2533 physical += l; 2534 physical_for_dev_replace += l; 2535 } 2536 2537 WARN_ON(sblock->page_count == 0); 2538 if (dev->missing) { 2539 /* 2540 * This case should only be hit for RAID 5/6 device replace. See 2541 * the comment in scrub_missing_raid56_pages() for details. 2542 */ 2543 scrub_missing_raid56_pages(sblock); 2544 } else { 2545 for (index = 0; index < sblock->page_count; index++) { 2546 struct scrub_page *spage = sblock->pagev[index]; 2547 int ret; 2548 2549 ret = scrub_add_page_to_rd_bio(sctx, spage); 2550 if (ret) { 2551 scrub_block_put(sblock); 2552 return ret; 2553 } 2554 } 2555 2556 if (force) 2557 scrub_submit(sctx); 2558 } 2559 2560 /* last one frees, either here or in bio completion for last page */ 2561 scrub_block_put(sblock); 2562 return 0; 2563 } 2564 2565 static void scrub_bio_end_io(struct bio *bio) 2566 { 2567 struct scrub_bio *sbio = bio->bi_private; 2568 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 2569 2570 sbio->status = bio->bi_status; 2571 sbio->bio = bio; 2572 2573 btrfs_queue_work(fs_info->scrub_workers, &sbio->work); 2574 } 2575 2576 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2577 { 2578 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2579 struct scrub_ctx *sctx = sbio->sctx; 2580 int i; 2581 2582 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2583 if (sbio->status) { 2584 for (i = 0; i < sbio->page_count; i++) { 2585 struct scrub_page *spage = sbio->pagev[i]; 2586 2587 spage->io_error = 1; 2588 spage->sblock->no_io_error_seen = 0; 2589 } 2590 } 2591 2592 /* now complete the scrub_block items that have all pages completed */ 2593 for (i = 0; i < sbio->page_count; i++) { 2594 struct scrub_page *spage = sbio->pagev[i]; 2595 struct scrub_block *sblock = spage->sblock; 2596 2597 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2598 scrub_block_complete(sblock); 2599 scrub_block_put(sblock); 2600 } 2601 2602 bio_put(sbio->bio); 2603 sbio->bio = NULL; 2604 spin_lock(&sctx->list_lock); 2605 sbio->next_free = sctx->first_free; 2606 sctx->first_free = sbio->index; 2607 spin_unlock(&sctx->list_lock); 2608 2609 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2610 mutex_lock(&sctx->wr_lock); 2611 scrub_wr_submit(sctx); 2612 mutex_unlock(&sctx->wr_lock); 2613 } 2614 2615 scrub_pending_bio_dec(sctx); 2616 } 2617 2618 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, 2619 unsigned long *bitmap, 2620 u64 start, u64 len) 2621 { 2622 u64 offset; 2623 u64 nsectors64; 2624 u32 nsectors; 2625 int sectorsize = sparity->sctx->fs_info->sectorsize; 2626 2627 if (len >= sparity->stripe_len) { 2628 bitmap_set(bitmap, 0, sparity->nsectors); 2629 return; 2630 } 2631 2632 start -= sparity->logic_start; 2633 start = div64_u64_rem(start, sparity->stripe_len, &offset); 2634 offset = div_u64(offset, sectorsize); 2635 nsectors64 = div_u64(len, sectorsize); 2636 2637 ASSERT(nsectors64 < UINT_MAX); 2638 nsectors = (u32)nsectors64; 2639 2640 if (offset + nsectors <= sparity->nsectors) { 2641 bitmap_set(bitmap, offset, nsectors); 2642 return; 2643 } 2644 2645 bitmap_set(bitmap, offset, sparity->nsectors - offset); 2646 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); 2647 } 2648 2649 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, 2650 u64 start, u64 len) 2651 { 2652 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); 2653 } 2654 2655 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, 2656 u64 start, u64 len) 2657 { 2658 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); 2659 } 2660 2661 static void scrub_block_complete(struct scrub_block *sblock) 2662 { 2663 int corrupted = 0; 2664 2665 if (!sblock->no_io_error_seen) { 2666 corrupted = 1; 2667 scrub_handle_errored_block(sblock); 2668 } else { 2669 /* 2670 * if has checksum error, write via repair mechanism in 2671 * dev replace case, otherwise write here in dev replace 2672 * case. 2673 */ 2674 corrupted = scrub_checksum(sblock); 2675 if (!corrupted && sblock->sctx->is_dev_replace) 2676 scrub_write_block_to_dev_replace(sblock); 2677 } 2678 2679 if (sblock->sparity && corrupted && !sblock->data_corrected) { 2680 u64 start = sblock->pagev[0]->logical; 2681 u64 end = sblock->pagev[sblock->page_count - 1]->logical + 2682 PAGE_SIZE; 2683 2684 scrub_parity_mark_sectors_error(sblock->sparity, 2685 start, end - start); 2686 } 2687 } 2688 2689 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) 2690 { 2691 struct btrfs_ordered_sum *sum = NULL; 2692 unsigned long index; 2693 unsigned long num_sectors; 2694 2695 while (!list_empty(&sctx->csum_list)) { 2696 sum = list_first_entry(&sctx->csum_list, 2697 struct btrfs_ordered_sum, list); 2698 if (sum->bytenr > logical) 2699 return 0; 2700 if (sum->bytenr + sum->len > logical) 2701 break; 2702 2703 ++sctx->stat.csum_discards; 2704 list_del(&sum->list); 2705 kfree(sum); 2706 sum = NULL; 2707 } 2708 if (!sum) 2709 return 0; 2710 2711 index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize); 2712 ASSERT(index < UINT_MAX); 2713 2714 num_sectors = sum->len / sctx->fs_info->sectorsize; 2715 memcpy(csum, sum->sums + index, sctx->csum_size); 2716 if (index == num_sectors - 1) { 2717 list_del(&sum->list); 2718 kfree(sum); 2719 } 2720 return 1; 2721 } 2722 2723 /* scrub extent tries to collect up to 64 kB for each bio */ 2724 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len, 2725 u64 physical, struct btrfs_device *dev, u64 flags, 2726 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2727 { 2728 int ret; 2729 u8 csum[BTRFS_CSUM_SIZE]; 2730 u32 blocksize; 2731 2732 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2733 blocksize = sctx->fs_info->sectorsize; 2734 spin_lock(&sctx->stat_lock); 2735 sctx->stat.data_extents_scrubbed++; 2736 sctx->stat.data_bytes_scrubbed += len; 2737 spin_unlock(&sctx->stat_lock); 2738 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2739 blocksize = sctx->fs_info->nodesize; 2740 spin_lock(&sctx->stat_lock); 2741 sctx->stat.tree_extents_scrubbed++; 2742 sctx->stat.tree_bytes_scrubbed += len; 2743 spin_unlock(&sctx->stat_lock); 2744 } else { 2745 blocksize = sctx->fs_info->sectorsize; 2746 WARN_ON(1); 2747 } 2748 2749 while (len) { 2750 u64 l = min_t(u64, len, blocksize); 2751 int have_csum = 0; 2752 2753 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2754 /* push csums to sbio */ 2755 have_csum = scrub_find_csum(sctx, logical, csum); 2756 if (have_csum == 0) 2757 ++sctx->stat.no_csum; 2758 if (sctx->is_dev_replace && !have_csum) { 2759 ret = copy_nocow_pages(sctx, logical, l, 2760 mirror_num, 2761 physical_for_dev_replace); 2762 goto behind_scrub_pages; 2763 } 2764 } 2765 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2766 mirror_num, have_csum ? csum : NULL, 0, 2767 physical_for_dev_replace); 2768 behind_scrub_pages: 2769 if (ret) 2770 return ret; 2771 len -= l; 2772 logical += l; 2773 physical += l; 2774 physical_for_dev_replace += l; 2775 } 2776 return 0; 2777 } 2778 2779 static int scrub_pages_for_parity(struct scrub_parity *sparity, 2780 u64 logical, u64 len, 2781 u64 physical, struct btrfs_device *dev, 2782 u64 flags, u64 gen, int mirror_num, u8 *csum) 2783 { 2784 struct scrub_ctx *sctx = sparity->sctx; 2785 struct scrub_block *sblock; 2786 int index; 2787 2788 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2789 if (!sblock) { 2790 spin_lock(&sctx->stat_lock); 2791 sctx->stat.malloc_errors++; 2792 spin_unlock(&sctx->stat_lock); 2793 return -ENOMEM; 2794 } 2795 2796 /* one ref inside this function, plus one for each page added to 2797 * a bio later on */ 2798 refcount_set(&sblock->refs, 1); 2799 sblock->sctx = sctx; 2800 sblock->no_io_error_seen = 1; 2801 sblock->sparity = sparity; 2802 scrub_parity_get(sparity); 2803 2804 for (index = 0; len > 0; index++) { 2805 struct scrub_page *spage; 2806 u64 l = min_t(u64, len, PAGE_SIZE); 2807 2808 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2809 if (!spage) { 2810 leave_nomem: 2811 spin_lock(&sctx->stat_lock); 2812 sctx->stat.malloc_errors++; 2813 spin_unlock(&sctx->stat_lock); 2814 scrub_block_put(sblock); 2815 return -ENOMEM; 2816 } 2817 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2818 /* For scrub block */ 2819 scrub_page_get(spage); 2820 sblock->pagev[index] = spage; 2821 /* For scrub parity */ 2822 scrub_page_get(spage); 2823 list_add_tail(&spage->list, &sparity->spages); 2824 spage->sblock = sblock; 2825 spage->dev = dev; 2826 spage->flags = flags; 2827 spage->generation = gen; 2828 spage->logical = logical; 2829 spage->physical = physical; 2830 spage->mirror_num = mirror_num; 2831 if (csum) { 2832 spage->have_csum = 1; 2833 memcpy(spage->csum, csum, sctx->csum_size); 2834 } else { 2835 spage->have_csum = 0; 2836 } 2837 sblock->page_count++; 2838 spage->page = alloc_page(GFP_KERNEL); 2839 if (!spage->page) 2840 goto leave_nomem; 2841 len -= l; 2842 logical += l; 2843 physical += l; 2844 } 2845 2846 WARN_ON(sblock->page_count == 0); 2847 for (index = 0; index < sblock->page_count; index++) { 2848 struct scrub_page *spage = sblock->pagev[index]; 2849 int ret; 2850 2851 ret = scrub_add_page_to_rd_bio(sctx, spage); 2852 if (ret) { 2853 scrub_block_put(sblock); 2854 return ret; 2855 } 2856 } 2857 2858 /* last one frees, either here or in bio completion for last page */ 2859 scrub_block_put(sblock); 2860 return 0; 2861 } 2862 2863 static int scrub_extent_for_parity(struct scrub_parity *sparity, 2864 u64 logical, u64 len, 2865 u64 physical, struct btrfs_device *dev, 2866 u64 flags, u64 gen, int mirror_num) 2867 { 2868 struct scrub_ctx *sctx = sparity->sctx; 2869 int ret; 2870 u8 csum[BTRFS_CSUM_SIZE]; 2871 u32 blocksize; 2872 2873 if (dev->missing) { 2874 scrub_parity_mark_sectors_error(sparity, logical, len); 2875 return 0; 2876 } 2877 2878 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2879 blocksize = sctx->fs_info->sectorsize; 2880 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2881 blocksize = sctx->fs_info->nodesize; 2882 } else { 2883 blocksize = sctx->fs_info->sectorsize; 2884 WARN_ON(1); 2885 } 2886 2887 while (len) { 2888 u64 l = min_t(u64, len, blocksize); 2889 int have_csum = 0; 2890 2891 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2892 /* push csums to sbio */ 2893 have_csum = scrub_find_csum(sctx, logical, csum); 2894 if (have_csum == 0) 2895 goto skip; 2896 } 2897 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, 2898 flags, gen, mirror_num, 2899 have_csum ? csum : NULL); 2900 if (ret) 2901 return ret; 2902 skip: 2903 len -= l; 2904 logical += l; 2905 physical += l; 2906 } 2907 return 0; 2908 } 2909 2910 /* 2911 * Given a physical address, this will calculate it's 2912 * logical offset. if this is a parity stripe, it will return 2913 * the most left data stripe's logical offset. 2914 * 2915 * return 0 if it is a data stripe, 1 means parity stripe. 2916 */ 2917 static int get_raid56_logic_offset(u64 physical, int num, 2918 struct map_lookup *map, u64 *offset, 2919 u64 *stripe_start) 2920 { 2921 int i; 2922 int j = 0; 2923 u64 stripe_nr; 2924 u64 last_offset; 2925 u32 stripe_index; 2926 u32 rot; 2927 2928 last_offset = (physical - map->stripes[num].physical) * 2929 nr_data_stripes(map); 2930 if (stripe_start) 2931 *stripe_start = last_offset; 2932 2933 *offset = last_offset; 2934 for (i = 0; i < nr_data_stripes(map); i++) { 2935 *offset = last_offset + i * map->stripe_len; 2936 2937 stripe_nr = div64_u64(*offset, map->stripe_len); 2938 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map)); 2939 2940 /* Work out the disk rotation on this stripe-set */ 2941 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); 2942 /* calculate which stripe this data locates */ 2943 rot += i; 2944 stripe_index = rot % map->num_stripes; 2945 if (stripe_index == num) 2946 return 0; 2947 if (stripe_index < num) 2948 j++; 2949 } 2950 *offset = last_offset + j * map->stripe_len; 2951 return 1; 2952 } 2953 2954 static void scrub_free_parity(struct scrub_parity *sparity) 2955 { 2956 struct scrub_ctx *sctx = sparity->sctx; 2957 struct scrub_page *curr, *next; 2958 int nbits; 2959 2960 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); 2961 if (nbits) { 2962 spin_lock(&sctx->stat_lock); 2963 sctx->stat.read_errors += nbits; 2964 sctx->stat.uncorrectable_errors += nbits; 2965 spin_unlock(&sctx->stat_lock); 2966 } 2967 2968 list_for_each_entry_safe(curr, next, &sparity->spages, list) { 2969 list_del_init(&curr->list); 2970 scrub_page_put(curr); 2971 } 2972 2973 kfree(sparity); 2974 } 2975 2976 static void scrub_parity_bio_endio_worker(struct btrfs_work *work) 2977 { 2978 struct scrub_parity *sparity = container_of(work, struct scrub_parity, 2979 work); 2980 struct scrub_ctx *sctx = sparity->sctx; 2981 2982 scrub_free_parity(sparity); 2983 scrub_pending_bio_dec(sctx); 2984 } 2985 2986 static void scrub_parity_bio_endio(struct bio *bio) 2987 { 2988 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; 2989 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; 2990 2991 if (bio->bi_status) 2992 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2993 sparity->nsectors); 2994 2995 bio_put(bio); 2996 2997 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper, 2998 scrub_parity_bio_endio_worker, NULL, NULL); 2999 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work); 3000 } 3001 3002 static void scrub_parity_check_and_repair(struct scrub_parity *sparity) 3003 { 3004 struct scrub_ctx *sctx = sparity->sctx; 3005 struct btrfs_fs_info *fs_info = sctx->fs_info; 3006 struct bio *bio; 3007 struct btrfs_raid_bio *rbio; 3008 struct btrfs_bio *bbio = NULL; 3009 u64 length; 3010 int ret; 3011 3012 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, 3013 sparity->nsectors)) 3014 goto out; 3015 3016 length = sparity->logic_end - sparity->logic_start; 3017 3018 btrfs_bio_counter_inc_blocked(fs_info); 3019 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, 3020 &length, &bbio); 3021 if (ret || !bbio || !bbio->raid_map) 3022 goto bbio_out; 3023 3024 bio = btrfs_io_bio_alloc(0); 3025 bio->bi_iter.bi_sector = sparity->logic_start >> 9; 3026 bio->bi_private = sparity; 3027 bio->bi_end_io = scrub_parity_bio_endio; 3028 3029 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio, 3030 length, sparity->scrub_dev, 3031 sparity->dbitmap, 3032 sparity->nsectors); 3033 if (!rbio) 3034 goto rbio_out; 3035 3036 scrub_pending_bio_inc(sctx); 3037 raid56_parity_submit_scrub_rbio(rbio); 3038 return; 3039 3040 rbio_out: 3041 bio_put(bio); 3042 bbio_out: 3043 btrfs_bio_counter_dec(fs_info); 3044 btrfs_put_bbio(bbio); 3045 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 3046 sparity->nsectors); 3047 spin_lock(&sctx->stat_lock); 3048 sctx->stat.malloc_errors++; 3049 spin_unlock(&sctx->stat_lock); 3050 out: 3051 scrub_free_parity(sparity); 3052 } 3053 3054 static inline int scrub_calc_parity_bitmap_len(int nsectors) 3055 { 3056 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long); 3057 } 3058 3059 static void scrub_parity_get(struct scrub_parity *sparity) 3060 { 3061 refcount_inc(&sparity->refs); 3062 } 3063 3064 static void scrub_parity_put(struct scrub_parity *sparity) 3065 { 3066 if (!refcount_dec_and_test(&sparity->refs)) 3067 return; 3068 3069 scrub_parity_check_and_repair(sparity); 3070 } 3071 3072 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, 3073 struct map_lookup *map, 3074 struct btrfs_device *sdev, 3075 struct btrfs_path *path, 3076 u64 logic_start, 3077 u64 logic_end) 3078 { 3079 struct btrfs_fs_info *fs_info = sctx->fs_info; 3080 struct btrfs_root *root = fs_info->extent_root; 3081 struct btrfs_root *csum_root = fs_info->csum_root; 3082 struct btrfs_extent_item *extent; 3083 struct btrfs_bio *bbio = NULL; 3084 u64 flags; 3085 int ret; 3086 int slot; 3087 struct extent_buffer *l; 3088 struct btrfs_key key; 3089 u64 generation; 3090 u64 extent_logical; 3091 u64 extent_physical; 3092 u64 extent_len; 3093 u64 mapped_length; 3094 struct btrfs_device *extent_dev; 3095 struct scrub_parity *sparity; 3096 int nsectors; 3097 int bitmap_len; 3098 int extent_mirror_num; 3099 int stop_loop = 0; 3100 3101 nsectors = div_u64(map->stripe_len, fs_info->sectorsize); 3102 bitmap_len = scrub_calc_parity_bitmap_len(nsectors); 3103 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, 3104 GFP_NOFS); 3105 if (!sparity) { 3106 spin_lock(&sctx->stat_lock); 3107 sctx->stat.malloc_errors++; 3108 spin_unlock(&sctx->stat_lock); 3109 return -ENOMEM; 3110 } 3111 3112 sparity->stripe_len = map->stripe_len; 3113 sparity->nsectors = nsectors; 3114 sparity->sctx = sctx; 3115 sparity->scrub_dev = sdev; 3116 sparity->logic_start = logic_start; 3117 sparity->logic_end = logic_end; 3118 refcount_set(&sparity->refs, 1); 3119 INIT_LIST_HEAD(&sparity->spages); 3120 sparity->dbitmap = sparity->bitmap; 3121 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; 3122 3123 ret = 0; 3124 while (logic_start < logic_end) { 3125 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3126 key.type = BTRFS_METADATA_ITEM_KEY; 3127 else 3128 key.type = BTRFS_EXTENT_ITEM_KEY; 3129 key.objectid = logic_start; 3130 key.offset = (u64)-1; 3131 3132 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3133 if (ret < 0) 3134 goto out; 3135 3136 if (ret > 0) { 3137 ret = btrfs_previous_extent_item(root, path, 0); 3138 if (ret < 0) 3139 goto out; 3140 if (ret > 0) { 3141 btrfs_release_path(path); 3142 ret = btrfs_search_slot(NULL, root, &key, 3143 path, 0, 0); 3144 if (ret < 0) 3145 goto out; 3146 } 3147 } 3148 3149 stop_loop = 0; 3150 while (1) { 3151 u64 bytes; 3152 3153 l = path->nodes[0]; 3154 slot = path->slots[0]; 3155 if (slot >= btrfs_header_nritems(l)) { 3156 ret = btrfs_next_leaf(root, path); 3157 if (ret == 0) 3158 continue; 3159 if (ret < 0) 3160 goto out; 3161 3162 stop_loop = 1; 3163 break; 3164 } 3165 btrfs_item_key_to_cpu(l, &key, slot); 3166 3167 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3168 key.type != BTRFS_METADATA_ITEM_KEY) 3169 goto next; 3170 3171 if (key.type == BTRFS_METADATA_ITEM_KEY) 3172 bytes = fs_info->nodesize; 3173 else 3174 bytes = key.offset; 3175 3176 if (key.objectid + bytes <= logic_start) 3177 goto next; 3178 3179 if (key.objectid >= logic_end) { 3180 stop_loop = 1; 3181 break; 3182 } 3183 3184 while (key.objectid >= logic_start + map->stripe_len) 3185 logic_start += map->stripe_len; 3186 3187 extent = btrfs_item_ptr(l, slot, 3188 struct btrfs_extent_item); 3189 flags = btrfs_extent_flags(l, extent); 3190 generation = btrfs_extent_generation(l, extent); 3191 3192 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3193 (key.objectid < logic_start || 3194 key.objectid + bytes > 3195 logic_start + map->stripe_len)) { 3196 btrfs_err(fs_info, 3197 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3198 key.objectid, logic_start); 3199 spin_lock(&sctx->stat_lock); 3200 sctx->stat.uncorrectable_errors++; 3201 spin_unlock(&sctx->stat_lock); 3202 goto next; 3203 } 3204 again: 3205 extent_logical = key.objectid; 3206 extent_len = bytes; 3207 3208 if (extent_logical < logic_start) { 3209 extent_len -= logic_start - extent_logical; 3210 extent_logical = logic_start; 3211 } 3212 3213 if (extent_logical + extent_len > 3214 logic_start + map->stripe_len) 3215 extent_len = logic_start + map->stripe_len - 3216 extent_logical; 3217 3218 scrub_parity_mark_sectors_data(sparity, extent_logical, 3219 extent_len); 3220 3221 mapped_length = extent_len; 3222 bbio = NULL; 3223 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, 3224 extent_logical, &mapped_length, &bbio, 3225 0); 3226 if (!ret) { 3227 if (!bbio || mapped_length < extent_len) 3228 ret = -EIO; 3229 } 3230 if (ret) { 3231 btrfs_put_bbio(bbio); 3232 goto out; 3233 } 3234 extent_physical = bbio->stripes[0].physical; 3235 extent_mirror_num = bbio->mirror_num; 3236 extent_dev = bbio->stripes[0].dev; 3237 btrfs_put_bbio(bbio); 3238 3239 ret = btrfs_lookup_csums_range(csum_root, 3240 extent_logical, 3241 extent_logical + extent_len - 1, 3242 &sctx->csum_list, 1); 3243 if (ret) 3244 goto out; 3245 3246 ret = scrub_extent_for_parity(sparity, extent_logical, 3247 extent_len, 3248 extent_physical, 3249 extent_dev, flags, 3250 generation, 3251 extent_mirror_num); 3252 3253 scrub_free_csums(sctx); 3254 3255 if (ret) 3256 goto out; 3257 3258 if (extent_logical + extent_len < 3259 key.objectid + bytes) { 3260 logic_start += map->stripe_len; 3261 3262 if (logic_start >= logic_end) { 3263 stop_loop = 1; 3264 break; 3265 } 3266 3267 if (logic_start < key.objectid + bytes) { 3268 cond_resched(); 3269 goto again; 3270 } 3271 } 3272 next: 3273 path->slots[0]++; 3274 } 3275 3276 btrfs_release_path(path); 3277 3278 if (stop_loop) 3279 break; 3280 3281 logic_start += map->stripe_len; 3282 } 3283 out: 3284 if (ret < 0) 3285 scrub_parity_mark_sectors_error(sparity, logic_start, 3286 logic_end - logic_start); 3287 scrub_parity_put(sparity); 3288 scrub_submit(sctx); 3289 mutex_lock(&sctx->wr_lock); 3290 scrub_wr_submit(sctx); 3291 mutex_unlock(&sctx->wr_lock); 3292 3293 btrfs_release_path(path); 3294 return ret < 0 ? ret : 0; 3295 } 3296 3297 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 3298 struct map_lookup *map, 3299 struct btrfs_device *scrub_dev, 3300 int num, u64 base, u64 length, 3301 int is_dev_replace) 3302 { 3303 struct btrfs_path *path, *ppath; 3304 struct btrfs_fs_info *fs_info = sctx->fs_info; 3305 struct btrfs_root *root = fs_info->extent_root; 3306 struct btrfs_root *csum_root = fs_info->csum_root; 3307 struct btrfs_extent_item *extent; 3308 struct blk_plug plug; 3309 u64 flags; 3310 int ret; 3311 int slot; 3312 u64 nstripes; 3313 struct extent_buffer *l; 3314 u64 physical; 3315 u64 logical; 3316 u64 logic_end; 3317 u64 physical_end; 3318 u64 generation; 3319 int mirror_num; 3320 struct reada_control *reada1; 3321 struct reada_control *reada2; 3322 struct btrfs_key key; 3323 struct btrfs_key key_end; 3324 u64 increment = map->stripe_len; 3325 u64 offset; 3326 u64 extent_logical; 3327 u64 extent_physical; 3328 u64 extent_len; 3329 u64 stripe_logical; 3330 u64 stripe_end; 3331 struct btrfs_device *extent_dev; 3332 int extent_mirror_num; 3333 int stop_loop = 0; 3334 3335 physical = map->stripes[num].physical; 3336 offset = 0; 3337 nstripes = div64_u64(length, map->stripe_len); 3338 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3339 offset = map->stripe_len * num; 3340 increment = map->stripe_len * map->num_stripes; 3341 mirror_num = 1; 3342 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3343 int factor = map->num_stripes / map->sub_stripes; 3344 offset = map->stripe_len * (num / map->sub_stripes); 3345 increment = map->stripe_len * factor; 3346 mirror_num = num % map->sub_stripes + 1; 3347 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 3348 increment = map->stripe_len; 3349 mirror_num = num % map->num_stripes + 1; 3350 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3351 increment = map->stripe_len; 3352 mirror_num = num % map->num_stripes + 1; 3353 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3354 get_raid56_logic_offset(physical, num, map, &offset, NULL); 3355 increment = map->stripe_len * nr_data_stripes(map); 3356 mirror_num = 1; 3357 } else { 3358 increment = map->stripe_len; 3359 mirror_num = 1; 3360 } 3361 3362 path = btrfs_alloc_path(); 3363 if (!path) 3364 return -ENOMEM; 3365 3366 ppath = btrfs_alloc_path(); 3367 if (!ppath) { 3368 btrfs_free_path(path); 3369 return -ENOMEM; 3370 } 3371 3372 /* 3373 * work on commit root. The related disk blocks are static as 3374 * long as COW is applied. This means, it is save to rewrite 3375 * them to repair disk errors without any race conditions 3376 */ 3377 path->search_commit_root = 1; 3378 path->skip_locking = 1; 3379 3380 ppath->search_commit_root = 1; 3381 ppath->skip_locking = 1; 3382 /* 3383 * trigger the readahead for extent tree csum tree and wait for 3384 * completion. During readahead, the scrub is officially paused 3385 * to not hold off transaction commits 3386 */ 3387 logical = base + offset; 3388 physical_end = physical + nstripes * map->stripe_len; 3389 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3390 get_raid56_logic_offset(physical_end, num, 3391 map, &logic_end, NULL); 3392 logic_end += base; 3393 } else { 3394 logic_end = logical + increment * nstripes; 3395 } 3396 wait_event(sctx->list_wait, 3397 atomic_read(&sctx->bios_in_flight) == 0); 3398 scrub_blocked_if_needed(fs_info); 3399 3400 /* FIXME it might be better to start readahead at commit root */ 3401 key.objectid = logical; 3402 key.type = BTRFS_EXTENT_ITEM_KEY; 3403 key.offset = (u64)0; 3404 key_end.objectid = logic_end; 3405 key_end.type = BTRFS_METADATA_ITEM_KEY; 3406 key_end.offset = (u64)-1; 3407 reada1 = btrfs_reada_add(root, &key, &key_end); 3408 3409 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3410 key.type = BTRFS_EXTENT_CSUM_KEY; 3411 key.offset = logical; 3412 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3413 key_end.type = BTRFS_EXTENT_CSUM_KEY; 3414 key_end.offset = logic_end; 3415 reada2 = btrfs_reada_add(csum_root, &key, &key_end); 3416 3417 if (!IS_ERR(reada1)) 3418 btrfs_reada_wait(reada1); 3419 if (!IS_ERR(reada2)) 3420 btrfs_reada_wait(reada2); 3421 3422 3423 /* 3424 * collect all data csums for the stripe to avoid seeking during 3425 * the scrub. This might currently (crc32) end up to be about 1MB 3426 */ 3427 blk_start_plug(&plug); 3428 3429 /* 3430 * now find all extents for each stripe and scrub them 3431 */ 3432 ret = 0; 3433 while (physical < physical_end) { 3434 /* 3435 * canceled? 3436 */ 3437 if (atomic_read(&fs_info->scrub_cancel_req) || 3438 atomic_read(&sctx->cancel_req)) { 3439 ret = -ECANCELED; 3440 goto out; 3441 } 3442 /* 3443 * check to see if we have to pause 3444 */ 3445 if (atomic_read(&fs_info->scrub_pause_req)) { 3446 /* push queued extents */ 3447 sctx->flush_all_writes = true; 3448 scrub_submit(sctx); 3449 mutex_lock(&sctx->wr_lock); 3450 scrub_wr_submit(sctx); 3451 mutex_unlock(&sctx->wr_lock); 3452 wait_event(sctx->list_wait, 3453 atomic_read(&sctx->bios_in_flight) == 0); 3454 sctx->flush_all_writes = false; 3455 scrub_blocked_if_needed(fs_info); 3456 } 3457 3458 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3459 ret = get_raid56_logic_offset(physical, num, map, 3460 &logical, 3461 &stripe_logical); 3462 logical += base; 3463 if (ret) { 3464 /* it is parity strip */ 3465 stripe_logical += base; 3466 stripe_end = stripe_logical + increment; 3467 ret = scrub_raid56_parity(sctx, map, scrub_dev, 3468 ppath, stripe_logical, 3469 stripe_end); 3470 if (ret) 3471 goto out; 3472 goto skip; 3473 } 3474 } 3475 3476 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3477 key.type = BTRFS_METADATA_ITEM_KEY; 3478 else 3479 key.type = BTRFS_EXTENT_ITEM_KEY; 3480 key.objectid = logical; 3481 key.offset = (u64)-1; 3482 3483 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3484 if (ret < 0) 3485 goto out; 3486 3487 if (ret > 0) { 3488 ret = btrfs_previous_extent_item(root, path, 0); 3489 if (ret < 0) 3490 goto out; 3491 if (ret > 0) { 3492 /* there's no smaller item, so stick with the 3493 * larger one */ 3494 btrfs_release_path(path); 3495 ret = btrfs_search_slot(NULL, root, &key, 3496 path, 0, 0); 3497 if (ret < 0) 3498 goto out; 3499 } 3500 } 3501 3502 stop_loop = 0; 3503 while (1) { 3504 u64 bytes; 3505 3506 l = path->nodes[0]; 3507 slot = path->slots[0]; 3508 if (slot >= btrfs_header_nritems(l)) { 3509 ret = btrfs_next_leaf(root, path); 3510 if (ret == 0) 3511 continue; 3512 if (ret < 0) 3513 goto out; 3514 3515 stop_loop = 1; 3516 break; 3517 } 3518 btrfs_item_key_to_cpu(l, &key, slot); 3519 3520 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3521 key.type != BTRFS_METADATA_ITEM_KEY) 3522 goto next; 3523 3524 if (key.type == BTRFS_METADATA_ITEM_KEY) 3525 bytes = fs_info->nodesize; 3526 else 3527 bytes = key.offset; 3528 3529 if (key.objectid + bytes <= logical) 3530 goto next; 3531 3532 if (key.objectid >= logical + map->stripe_len) { 3533 /* out of this device extent */ 3534 if (key.objectid >= logic_end) 3535 stop_loop = 1; 3536 break; 3537 } 3538 3539 extent = btrfs_item_ptr(l, slot, 3540 struct btrfs_extent_item); 3541 flags = btrfs_extent_flags(l, extent); 3542 generation = btrfs_extent_generation(l, extent); 3543 3544 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3545 (key.objectid < logical || 3546 key.objectid + bytes > 3547 logical + map->stripe_len)) { 3548 btrfs_err(fs_info, 3549 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3550 key.objectid, logical); 3551 spin_lock(&sctx->stat_lock); 3552 sctx->stat.uncorrectable_errors++; 3553 spin_unlock(&sctx->stat_lock); 3554 goto next; 3555 } 3556 3557 again: 3558 extent_logical = key.objectid; 3559 extent_len = bytes; 3560 3561 /* 3562 * trim extent to this stripe 3563 */ 3564 if (extent_logical < logical) { 3565 extent_len -= logical - extent_logical; 3566 extent_logical = logical; 3567 } 3568 if (extent_logical + extent_len > 3569 logical + map->stripe_len) { 3570 extent_len = logical + map->stripe_len - 3571 extent_logical; 3572 } 3573 3574 extent_physical = extent_logical - logical + physical; 3575 extent_dev = scrub_dev; 3576 extent_mirror_num = mirror_num; 3577 if (is_dev_replace) 3578 scrub_remap_extent(fs_info, extent_logical, 3579 extent_len, &extent_physical, 3580 &extent_dev, 3581 &extent_mirror_num); 3582 3583 ret = btrfs_lookup_csums_range(csum_root, 3584 extent_logical, 3585 extent_logical + 3586 extent_len - 1, 3587 &sctx->csum_list, 1); 3588 if (ret) 3589 goto out; 3590 3591 ret = scrub_extent(sctx, extent_logical, extent_len, 3592 extent_physical, extent_dev, flags, 3593 generation, extent_mirror_num, 3594 extent_logical - logical + physical); 3595 3596 scrub_free_csums(sctx); 3597 3598 if (ret) 3599 goto out; 3600 3601 if (extent_logical + extent_len < 3602 key.objectid + bytes) { 3603 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3604 /* 3605 * loop until we find next data stripe 3606 * or we have finished all stripes. 3607 */ 3608 loop: 3609 physical += map->stripe_len; 3610 ret = get_raid56_logic_offset(physical, 3611 num, map, &logical, 3612 &stripe_logical); 3613 logical += base; 3614 3615 if (ret && physical < physical_end) { 3616 stripe_logical += base; 3617 stripe_end = stripe_logical + 3618 increment; 3619 ret = scrub_raid56_parity(sctx, 3620 map, scrub_dev, ppath, 3621 stripe_logical, 3622 stripe_end); 3623 if (ret) 3624 goto out; 3625 goto loop; 3626 } 3627 } else { 3628 physical += map->stripe_len; 3629 logical += increment; 3630 } 3631 if (logical < key.objectid + bytes) { 3632 cond_resched(); 3633 goto again; 3634 } 3635 3636 if (physical >= physical_end) { 3637 stop_loop = 1; 3638 break; 3639 } 3640 } 3641 next: 3642 path->slots[0]++; 3643 } 3644 btrfs_release_path(path); 3645 skip: 3646 logical += increment; 3647 physical += map->stripe_len; 3648 spin_lock(&sctx->stat_lock); 3649 if (stop_loop) 3650 sctx->stat.last_physical = map->stripes[num].physical + 3651 length; 3652 else 3653 sctx->stat.last_physical = physical; 3654 spin_unlock(&sctx->stat_lock); 3655 if (stop_loop) 3656 break; 3657 } 3658 out: 3659 /* push queued extents */ 3660 scrub_submit(sctx); 3661 mutex_lock(&sctx->wr_lock); 3662 scrub_wr_submit(sctx); 3663 mutex_unlock(&sctx->wr_lock); 3664 3665 blk_finish_plug(&plug); 3666 btrfs_free_path(path); 3667 btrfs_free_path(ppath); 3668 return ret < 0 ? ret : 0; 3669 } 3670 3671 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 3672 struct btrfs_device *scrub_dev, 3673 u64 chunk_offset, u64 length, 3674 u64 dev_offset, 3675 struct btrfs_block_group_cache *cache, 3676 int is_dev_replace) 3677 { 3678 struct btrfs_fs_info *fs_info = sctx->fs_info; 3679 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 3680 struct map_lookup *map; 3681 struct extent_map *em; 3682 int i; 3683 int ret = 0; 3684 3685 read_lock(&map_tree->map_tree.lock); 3686 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 3687 read_unlock(&map_tree->map_tree.lock); 3688 3689 if (!em) { 3690 /* 3691 * Might have been an unused block group deleted by the cleaner 3692 * kthread or relocation. 3693 */ 3694 spin_lock(&cache->lock); 3695 if (!cache->removed) 3696 ret = -EINVAL; 3697 spin_unlock(&cache->lock); 3698 3699 return ret; 3700 } 3701 3702 map = em->map_lookup; 3703 if (em->start != chunk_offset) 3704 goto out; 3705 3706 if (em->len < length) 3707 goto out; 3708 3709 for (i = 0; i < map->num_stripes; ++i) { 3710 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 3711 map->stripes[i].physical == dev_offset) { 3712 ret = scrub_stripe(sctx, map, scrub_dev, i, 3713 chunk_offset, length, 3714 is_dev_replace); 3715 if (ret) 3716 goto out; 3717 } 3718 } 3719 out: 3720 free_extent_map(em); 3721 3722 return ret; 3723 } 3724 3725 static noinline_for_stack 3726 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 3727 struct btrfs_device *scrub_dev, u64 start, u64 end, 3728 int is_dev_replace) 3729 { 3730 struct btrfs_dev_extent *dev_extent = NULL; 3731 struct btrfs_path *path; 3732 struct btrfs_fs_info *fs_info = sctx->fs_info; 3733 struct btrfs_root *root = fs_info->dev_root; 3734 u64 length; 3735 u64 chunk_offset; 3736 int ret = 0; 3737 int ro_set; 3738 int slot; 3739 struct extent_buffer *l; 3740 struct btrfs_key key; 3741 struct btrfs_key found_key; 3742 struct btrfs_block_group_cache *cache; 3743 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 3744 3745 path = btrfs_alloc_path(); 3746 if (!path) 3747 return -ENOMEM; 3748 3749 path->reada = READA_FORWARD; 3750 path->search_commit_root = 1; 3751 path->skip_locking = 1; 3752 3753 key.objectid = scrub_dev->devid; 3754 key.offset = 0ull; 3755 key.type = BTRFS_DEV_EXTENT_KEY; 3756 3757 while (1) { 3758 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3759 if (ret < 0) 3760 break; 3761 if (ret > 0) { 3762 if (path->slots[0] >= 3763 btrfs_header_nritems(path->nodes[0])) { 3764 ret = btrfs_next_leaf(root, path); 3765 if (ret < 0) 3766 break; 3767 if (ret > 0) { 3768 ret = 0; 3769 break; 3770 } 3771 } else { 3772 ret = 0; 3773 } 3774 } 3775 3776 l = path->nodes[0]; 3777 slot = path->slots[0]; 3778 3779 btrfs_item_key_to_cpu(l, &found_key, slot); 3780 3781 if (found_key.objectid != scrub_dev->devid) 3782 break; 3783 3784 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 3785 break; 3786 3787 if (found_key.offset >= end) 3788 break; 3789 3790 if (found_key.offset < key.offset) 3791 break; 3792 3793 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3794 length = btrfs_dev_extent_length(l, dev_extent); 3795 3796 if (found_key.offset + length <= start) 3797 goto skip; 3798 3799 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3800 3801 /* 3802 * get a reference on the corresponding block group to prevent 3803 * the chunk from going away while we scrub it 3804 */ 3805 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3806 3807 /* some chunks are removed but not committed to disk yet, 3808 * continue scrubbing */ 3809 if (!cache) 3810 goto skip; 3811 3812 /* 3813 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 3814 * to avoid deadlock caused by: 3815 * btrfs_inc_block_group_ro() 3816 * -> btrfs_wait_for_commit() 3817 * -> btrfs_commit_transaction() 3818 * -> btrfs_scrub_pause() 3819 */ 3820 scrub_pause_on(fs_info); 3821 ret = btrfs_inc_block_group_ro(fs_info, cache); 3822 if (!ret && is_dev_replace) { 3823 /* 3824 * If we are doing a device replace wait for any tasks 3825 * that started dellaloc right before we set the block 3826 * group to RO mode, as they might have just allocated 3827 * an extent from it or decided they could do a nocow 3828 * write. And if any such tasks did that, wait for their 3829 * ordered extents to complete and then commit the 3830 * current transaction, so that we can later see the new 3831 * extent items in the extent tree - the ordered extents 3832 * create delayed data references (for cow writes) when 3833 * they complete, which will be run and insert the 3834 * corresponding extent items into the extent tree when 3835 * we commit the transaction they used when running 3836 * inode.c:btrfs_finish_ordered_io(). We later use 3837 * the commit root of the extent tree to find extents 3838 * to copy from the srcdev into the tgtdev, and we don't 3839 * want to miss any new extents. 3840 */ 3841 btrfs_wait_block_group_reservations(cache); 3842 btrfs_wait_nocow_writers(cache); 3843 ret = btrfs_wait_ordered_roots(fs_info, U64_MAX, 3844 cache->key.objectid, 3845 cache->key.offset); 3846 if (ret > 0) { 3847 struct btrfs_trans_handle *trans; 3848 3849 trans = btrfs_join_transaction(root); 3850 if (IS_ERR(trans)) 3851 ret = PTR_ERR(trans); 3852 else 3853 ret = btrfs_commit_transaction(trans); 3854 if (ret) { 3855 scrub_pause_off(fs_info); 3856 btrfs_put_block_group(cache); 3857 break; 3858 } 3859 } 3860 } 3861 scrub_pause_off(fs_info); 3862 3863 if (ret == 0) { 3864 ro_set = 1; 3865 } else if (ret == -ENOSPC) { 3866 /* 3867 * btrfs_inc_block_group_ro return -ENOSPC when it 3868 * failed in creating new chunk for metadata. 3869 * It is not a problem for scrub/replace, because 3870 * metadata are always cowed, and our scrub paused 3871 * commit_transactions. 3872 */ 3873 ro_set = 0; 3874 } else { 3875 btrfs_warn(fs_info, 3876 "failed setting block group ro: %d", ret); 3877 btrfs_put_block_group(cache); 3878 break; 3879 } 3880 3881 btrfs_dev_replace_lock(&fs_info->dev_replace, 1); 3882 dev_replace->cursor_right = found_key.offset + length; 3883 dev_replace->cursor_left = found_key.offset; 3884 dev_replace->item_needs_writeback = 1; 3885 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1); 3886 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length, 3887 found_key.offset, cache, is_dev_replace); 3888 3889 /* 3890 * flush, submit all pending read and write bios, afterwards 3891 * wait for them. 3892 * Note that in the dev replace case, a read request causes 3893 * write requests that are submitted in the read completion 3894 * worker. Therefore in the current situation, it is required 3895 * that all write requests are flushed, so that all read and 3896 * write requests are really completed when bios_in_flight 3897 * changes to 0. 3898 */ 3899 sctx->flush_all_writes = true; 3900 scrub_submit(sctx); 3901 mutex_lock(&sctx->wr_lock); 3902 scrub_wr_submit(sctx); 3903 mutex_unlock(&sctx->wr_lock); 3904 3905 wait_event(sctx->list_wait, 3906 atomic_read(&sctx->bios_in_flight) == 0); 3907 3908 scrub_pause_on(fs_info); 3909 3910 /* 3911 * must be called before we decrease @scrub_paused. 3912 * make sure we don't block transaction commit while 3913 * we are waiting pending workers finished. 3914 */ 3915 wait_event(sctx->list_wait, 3916 atomic_read(&sctx->workers_pending) == 0); 3917 sctx->flush_all_writes = false; 3918 3919 scrub_pause_off(fs_info); 3920 3921 btrfs_dev_replace_lock(&fs_info->dev_replace, 1); 3922 dev_replace->cursor_left = dev_replace->cursor_right; 3923 dev_replace->item_needs_writeback = 1; 3924 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1); 3925 3926 if (ro_set) 3927 btrfs_dec_block_group_ro(cache); 3928 3929 /* 3930 * We might have prevented the cleaner kthread from deleting 3931 * this block group if it was already unused because we raced 3932 * and set it to RO mode first. So add it back to the unused 3933 * list, otherwise it might not ever be deleted unless a manual 3934 * balance is triggered or it becomes used and unused again. 3935 */ 3936 spin_lock(&cache->lock); 3937 if (!cache->removed && !cache->ro && cache->reserved == 0 && 3938 btrfs_block_group_used(&cache->item) == 0) { 3939 spin_unlock(&cache->lock); 3940 spin_lock(&fs_info->unused_bgs_lock); 3941 if (list_empty(&cache->bg_list)) { 3942 btrfs_get_block_group(cache); 3943 list_add_tail(&cache->bg_list, 3944 &fs_info->unused_bgs); 3945 } 3946 spin_unlock(&fs_info->unused_bgs_lock); 3947 } else { 3948 spin_unlock(&cache->lock); 3949 } 3950 3951 btrfs_put_block_group(cache); 3952 if (ret) 3953 break; 3954 if (is_dev_replace && 3955 atomic64_read(&dev_replace->num_write_errors) > 0) { 3956 ret = -EIO; 3957 break; 3958 } 3959 if (sctx->stat.malloc_errors > 0) { 3960 ret = -ENOMEM; 3961 break; 3962 } 3963 skip: 3964 key.offset = found_key.offset + length; 3965 btrfs_release_path(path); 3966 } 3967 3968 btrfs_free_path(path); 3969 3970 return ret; 3971 } 3972 3973 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 3974 struct btrfs_device *scrub_dev) 3975 { 3976 int i; 3977 u64 bytenr; 3978 u64 gen; 3979 int ret; 3980 struct btrfs_fs_info *fs_info = sctx->fs_info; 3981 3982 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3983 return -EIO; 3984 3985 /* Seed devices of a new filesystem has their own generation. */ 3986 if (scrub_dev->fs_devices != fs_info->fs_devices) 3987 gen = scrub_dev->generation; 3988 else 3989 gen = fs_info->last_trans_committed; 3990 3991 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 3992 bytenr = btrfs_sb_offset(i); 3993 if (bytenr + BTRFS_SUPER_INFO_SIZE > 3994 scrub_dev->commit_total_bytes) 3995 break; 3996 3997 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 3998 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 3999 NULL, 1, bytenr); 4000 if (ret) 4001 return ret; 4002 } 4003 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 4004 4005 return 0; 4006 } 4007 4008 /* 4009 * get a reference count on fs_info->scrub_workers. start worker if necessary 4010 */ 4011 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 4012 int is_dev_replace) 4013 { 4014 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 4015 int max_active = fs_info->thread_pool_size; 4016 4017 if (fs_info->scrub_workers_refcnt == 0) { 4018 fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", 4019 flags, is_dev_replace ? 1 : max_active, 4); 4020 if (!fs_info->scrub_workers) 4021 goto fail_scrub_workers; 4022 4023 fs_info->scrub_wr_completion_workers = 4024 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags, 4025 max_active, 2); 4026 if (!fs_info->scrub_wr_completion_workers) 4027 goto fail_scrub_wr_completion_workers; 4028 4029 fs_info->scrub_nocow_workers = 4030 btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0); 4031 if (!fs_info->scrub_nocow_workers) 4032 goto fail_scrub_nocow_workers; 4033 fs_info->scrub_parity_workers = 4034 btrfs_alloc_workqueue(fs_info, "scrubparity", flags, 4035 max_active, 2); 4036 if (!fs_info->scrub_parity_workers) 4037 goto fail_scrub_parity_workers; 4038 } 4039 ++fs_info->scrub_workers_refcnt; 4040 return 0; 4041 4042 fail_scrub_parity_workers: 4043 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); 4044 fail_scrub_nocow_workers: 4045 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 4046 fail_scrub_wr_completion_workers: 4047 btrfs_destroy_workqueue(fs_info->scrub_workers); 4048 fail_scrub_workers: 4049 return -ENOMEM; 4050 } 4051 4052 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info) 4053 { 4054 if (--fs_info->scrub_workers_refcnt == 0) { 4055 btrfs_destroy_workqueue(fs_info->scrub_workers); 4056 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 4057 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); 4058 btrfs_destroy_workqueue(fs_info->scrub_parity_workers); 4059 } 4060 WARN_ON(fs_info->scrub_workers_refcnt < 0); 4061 } 4062 4063 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 4064 u64 end, struct btrfs_scrub_progress *progress, 4065 int readonly, int is_dev_replace) 4066 { 4067 struct scrub_ctx *sctx; 4068 int ret; 4069 struct btrfs_device *dev; 4070 struct rcu_string *name; 4071 4072 if (btrfs_fs_closing(fs_info)) 4073 return -EINVAL; 4074 4075 if (fs_info->nodesize > BTRFS_STRIPE_LEN) { 4076 /* 4077 * in this case scrub is unable to calculate the checksum 4078 * the way scrub is implemented. Do not handle this 4079 * situation at all because it won't ever happen. 4080 */ 4081 btrfs_err(fs_info, 4082 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", 4083 fs_info->nodesize, 4084 BTRFS_STRIPE_LEN); 4085 return -EINVAL; 4086 } 4087 4088 if (fs_info->sectorsize != PAGE_SIZE) { 4089 /* not supported for data w/o checksums */ 4090 btrfs_err_rl(fs_info, 4091 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails", 4092 fs_info->sectorsize, PAGE_SIZE); 4093 return -EINVAL; 4094 } 4095 4096 if (fs_info->nodesize > 4097 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 4098 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 4099 /* 4100 * would exhaust the array bounds of pagev member in 4101 * struct scrub_block 4102 */ 4103 btrfs_err(fs_info, 4104 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", 4105 fs_info->nodesize, 4106 SCRUB_MAX_PAGES_PER_BLOCK, 4107 fs_info->sectorsize, 4108 SCRUB_MAX_PAGES_PER_BLOCK); 4109 return -EINVAL; 4110 } 4111 4112 4113 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4114 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 4115 if (!dev || (dev->missing && !is_dev_replace)) { 4116 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4117 return -ENODEV; 4118 } 4119 4120 if (!is_dev_replace && !readonly && !dev->writeable) { 4121 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4122 rcu_read_lock(); 4123 name = rcu_dereference(dev->name); 4124 btrfs_err(fs_info, "scrub: device %s is not writable", 4125 name->str); 4126 rcu_read_unlock(); 4127 return -EROFS; 4128 } 4129 4130 mutex_lock(&fs_info->scrub_lock); 4131 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) { 4132 mutex_unlock(&fs_info->scrub_lock); 4133 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4134 return -EIO; 4135 } 4136 4137 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 4138 if (dev->scrub_device || 4139 (!is_dev_replace && 4140 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 4141 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 4142 mutex_unlock(&fs_info->scrub_lock); 4143 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4144 return -EINPROGRESS; 4145 } 4146 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 4147 4148 ret = scrub_workers_get(fs_info, is_dev_replace); 4149 if (ret) { 4150 mutex_unlock(&fs_info->scrub_lock); 4151 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4152 return ret; 4153 } 4154 4155 sctx = scrub_setup_ctx(dev, is_dev_replace); 4156 if (IS_ERR(sctx)) { 4157 mutex_unlock(&fs_info->scrub_lock); 4158 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4159 scrub_workers_put(fs_info); 4160 return PTR_ERR(sctx); 4161 } 4162 sctx->readonly = readonly; 4163 dev->scrub_device = sctx; 4164 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4165 4166 /* 4167 * checking @scrub_pause_req here, we can avoid 4168 * race between committing transaction and scrubbing. 4169 */ 4170 __scrub_blocked_if_needed(fs_info); 4171 atomic_inc(&fs_info->scrubs_running); 4172 mutex_unlock(&fs_info->scrub_lock); 4173 4174 if (!is_dev_replace) { 4175 /* 4176 * by holding device list mutex, we can 4177 * kick off writing super in log tree sync. 4178 */ 4179 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4180 ret = scrub_supers(sctx, dev); 4181 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4182 } 4183 4184 if (!ret) 4185 ret = scrub_enumerate_chunks(sctx, dev, start, end, 4186 is_dev_replace); 4187 4188 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 4189 atomic_dec(&fs_info->scrubs_running); 4190 wake_up(&fs_info->scrub_pause_wait); 4191 4192 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 4193 4194 if (progress) 4195 memcpy(progress, &sctx->stat, sizeof(*progress)); 4196 4197 mutex_lock(&fs_info->scrub_lock); 4198 dev->scrub_device = NULL; 4199 scrub_workers_put(fs_info); 4200 mutex_unlock(&fs_info->scrub_lock); 4201 4202 scrub_put_ctx(sctx); 4203 4204 return ret; 4205 } 4206 4207 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 4208 { 4209 mutex_lock(&fs_info->scrub_lock); 4210 atomic_inc(&fs_info->scrub_pause_req); 4211 while (atomic_read(&fs_info->scrubs_paused) != 4212 atomic_read(&fs_info->scrubs_running)) { 4213 mutex_unlock(&fs_info->scrub_lock); 4214 wait_event(fs_info->scrub_pause_wait, 4215 atomic_read(&fs_info->scrubs_paused) == 4216 atomic_read(&fs_info->scrubs_running)); 4217 mutex_lock(&fs_info->scrub_lock); 4218 } 4219 mutex_unlock(&fs_info->scrub_lock); 4220 } 4221 4222 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 4223 { 4224 atomic_dec(&fs_info->scrub_pause_req); 4225 wake_up(&fs_info->scrub_pause_wait); 4226 } 4227 4228 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 4229 { 4230 mutex_lock(&fs_info->scrub_lock); 4231 if (!atomic_read(&fs_info->scrubs_running)) { 4232 mutex_unlock(&fs_info->scrub_lock); 4233 return -ENOTCONN; 4234 } 4235 4236 atomic_inc(&fs_info->scrub_cancel_req); 4237 while (atomic_read(&fs_info->scrubs_running)) { 4238 mutex_unlock(&fs_info->scrub_lock); 4239 wait_event(fs_info->scrub_pause_wait, 4240 atomic_read(&fs_info->scrubs_running) == 0); 4241 mutex_lock(&fs_info->scrub_lock); 4242 } 4243 atomic_dec(&fs_info->scrub_cancel_req); 4244 mutex_unlock(&fs_info->scrub_lock); 4245 4246 return 0; 4247 } 4248 4249 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info, 4250 struct btrfs_device *dev) 4251 { 4252 struct scrub_ctx *sctx; 4253 4254 mutex_lock(&fs_info->scrub_lock); 4255 sctx = dev->scrub_device; 4256 if (!sctx) { 4257 mutex_unlock(&fs_info->scrub_lock); 4258 return -ENOTCONN; 4259 } 4260 atomic_inc(&sctx->cancel_req); 4261 while (dev->scrub_device) { 4262 mutex_unlock(&fs_info->scrub_lock); 4263 wait_event(fs_info->scrub_pause_wait, 4264 dev->scrub_device == NULL); 4265 mutex_lock(&fs_info->scrub_lock); 4266 } 4267 mutex_unlock(&fs_info->scrub_lock); 4268 4269 return 0; 4270 } 4271 4272 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 4273 struct btrfs_scrub_progress *progress) 4274 { 4275 struct btrfs_device *dev; 4276 struct scrub_ctx *sctx = NULL; 4277 4278 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4279 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 4280 if (dev) 4281 sctx = dev->scrub_device; 4282 if (sctx) 4283 memcpy(progress, &sctx->stat, sizeof(*progress)); 4284 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4285 4286 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 4287 } 4288 4289 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 4290 u64 extent_logical, u64 extent_len, 4291 u64 *extent_physical, 4292 struct btrfs_device **extent_dev, 4293 int *extent_mirror_num) 4294 { 4295 u64 mapped_length; 4296 struct btrfs_bio *bbio = NULL; 4297 int ret; 4298 4299 mapped_length = extent_len; 4300 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, 4301 &mapped_length, &bbio, 0); 4302 if (ret || !bbio || mapped_length < extent_len || 4303 !bbio->stripes[0].dev->bdev) { 4304 btrfs_put_bbio(bbio); 4305 return; 4306 } 4307 4308 *extent_physical = bbio->stripes[0].physical; 4309 *extent_mirror_num = bbio->mirror_num; 4310 *extent_dev = bbio->stripes[0].dev; 4311 btrfs_put_bbio(bbio); 4312 } 4313 4314 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 4315 int mirror_num, u64 physical_for_dev_replace) 4316 { 4317 struct scrub_copy_nocow_ctx *nocow_ctx; 4318 struct btrfs_fs_info *fs_info = sctx->fs_info; 4319 4320 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS); 4321 if (!nocow_ctx) { 4322 spin_lock(&sctx->stat_lock); 4323 sctx->stat.malloc_errors++; 4324 spin_unlock(&sctx->stat_lock); 4325 return -ENOMEM; 4326 } 4327 4328 scrub_pending_trans_workers_inc(sctx); 4329 4330 nocow_ctx->sctx = sctx; 4331 nocow_ctx->logical = logical; 4332 nocow_ctx->len = len; 4333 nocow_ctx->mirror_num = mirror_num; 4334 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace; 4335 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper, 4336 copy_nocow_pages_worker, NULL, NULL); 4337 INIT_LIST_HEAD(&nocow_ctx->inodes); 4338 btrfs_queue_work(fs_info->scrub_nocow_workers, 4339 &nocow_ctx->work); 4340 4341 return 0; 4342 } 4343 4344 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx) 4345 { 4346 struct scrub_copy_nocow_ctx *nocow_ctx = ctx; 4347 struct scrub_nocow_inode *nocow_inode; 4348 4349 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS); 4350 if (!nocow_inode) 4351 return -ENOMEM; 4352 nocow_inode->inum = inum; 4353 nocow_inode->offset = offset; 4354 nocow_inode->root = root; 4355 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes); 4356 return 0; 4357 } 4358 4359 #define COPY_COMPLETE 1 4360 4361 static void copy_nocow_pages_worker(struct btrfs_work *work) 4362 { 4363 struct scrub_copy_nocow_ctx *nocow_ctx = 4364 container_of(work, struct scrub_copy_nocow_ctx, work); 4365 struct scrub_ctx *sctx = nocow_ctx->sctx; 4366 struct btrfs_fs_info *fs_info = sctx->fs_info; 4367 struct btrfs_root *root = fs_info->extent_root; 4368 u64 logical = nocow_ctx->logical; 4369 u64 len = nocow_ctx->len; 4370 int mirror_num = nocow_ctx->mirror_num; 4371 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 4372 int ret; 4373 struct btrfs_trans_handle *trans = NULL; 4374 struct btrfs_path *path; 4375 int not_written = 0; 4376 4377 path = btrfs_alloc_path(); 4378 if (!path) { 4379 spin_lock(&sctx->stat_lock); 4380 sctx->stat.malloc_errors++; 4381 spin_unlock(&sctx->stat_lock); 4382 not_written = 1; 4383 goto out; 4384 } 4385 4386 trans = btrfs_join_transaction(root); 4387 if (IS_ERR(trans)) { 4388 not_written = 1; 4389 goto out; 4390 } 4391 4392 ret = iterate_inodes_from_logical(logical, fs_info, path, 4393 record_inode_for_nocow, nocow_ctx); 4394 if (ret != 0 && ret != -ENOENT) { 4395 btrfs_warn(fs_info, 4396 "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d", 4397 logical, physical_for_dev_replace, len, mirror_num, 4398 ret); 4399 not_written = 1; 4400 goto out; 4401 } 4402 4403 btrfs_end_transaction(trans); 4404 trans = NULL; 4405 while (!list_empty(&nocow_ctx->inodes)) { 4406 struct scrub_nocow_inode *entry; 4407 entry = list_first_entry(&nocow_ctx->inodes, 4408 struct scrub_nocow_inode, 4409 list); 4410 list_del_init(&entry->list); 4411 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset, 4412 entry->root, nocow_ctx); 4413 kfree(entry); 4414 if (ret == COPY_COMPLETE) { 4415 ret = 0; 4416 break; 4417 } else if (ret) { 4418 break; 4419 } 4420 } 4421 out: 4422 while (!list_empty(&nocow_ctx->inodes)) { 4423 struct scrub_nocow_inode *entry; 4424 entry = list_first_entry(&nocow_ctx->inodes, 4425 struct scrub_nocow_inode, 4426 list); 4427 list_del_init(&entry->list); 4428 kfree(entry); 4429 } 4430 if (trans && !IS_ERR(trans)) 4431 btrfs_end_transaction(trans); 4432 if (not_written) 4433 btrfs_dev_replace_stats_inc(&fs_info->dev_replace. 4434 num_uncorrectable_read_errors); 4435 4436 btrfs_free_path(path); 4437 kfree(nocow_ctx); 4438 4439 scrub_pending_trans_workers_dec(sctx); 4440 } 4441 4442 static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len, 4443 u64 logical) 4444 { 4445 struct extent_state *cached_state = NULL; 4446 struct btrfs_ordered_extent *ordered; 4447 struct extent_io_tree *io_tree; 4448 struct extent_map *em; 4449 u64 lockstart = start, lockend = start + len - 1; 4450 int ret = 0; 4451 4452 io_tree = &inode->io_tree; 4453 4454 lock_extent_bits(io_tree, lockstart, lockend, &cached_state); 4455 ordered = btrfs_lookup_ordered_range(inode, lockstart, len); 4456 if (ordered) { 4457 btrfs_put_ordered_extent(ordered); 4458 ret = 1; 4459 goto out_unlock; 4460 } 4461 4462 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 4463 if (IS_ERR(em)) { 4464 ret = PTR_ERR(em); 4465 goto out_unlock; 4466 } 4467 4468 /* 4469 * This extent does not actually cover the logical extent anymore, 4470 * move on to the next inode. 4471 */ 4472 if (em->block_start > logical || 4473 em->block_start + em->block_len < logical + len) { 4474 free_extent_map(em); 4475 ret = 1; 4476 goto out_unlock; 4477 } 4478 free_extent_map(em); 4479 4480 out_unlock: 4481 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state, 4482 GFP_NOFS); 4483 return ret; 4484 } 4485 4486 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 4487 struct scrub_copy_nocow_ctx *nocow_ctx) 4488 { 4489 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info; 4490 struct btrfs_key key; 4491 struct inode *inode; 4492 struct page *page; 4493 struct btrfs_root *local_root; 4494 struct extent_io_tree *io_tree; 4495 u64 physical_for_dev_replace; 4496 u64 nocow_ctx_logical; 4497 u64 len = nocow_ctx->len; 4498 unsigned long index; 4499 int srcu_index; 4500 int ret = 0; 4501 int err = 0; 4502 4503 key.objectid = root; 4504 key.type = BTRFS_ROOT_ITEM_KEY; 4505 key.offset = (u64)-1; 4506 4507 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 4508 4509 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 4510 if (IS_ERR(local_root)) { 4511 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 4512 return PTR_ERR(local_root); 4513 } 4514 4515 key.type = BTRFS_INODE_ITEM_KEY; 4516 key.objectid = inum; 4517 key.offset = 0; 4518 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 4519 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 4520 if (IS_ERR(inode)) 4521 return PTR_ERR(inode); 4522 4523 /* Avoid truncate/dio/punch hole.. */ 4524 inode_lock(inode); 4525 inode_dio_wait(inode); 4526 4527 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 4528 io_tree = &BTRFS_I(inode)->io_tree; 4529 nocow_ctx_logical = nocow_ctx->logical; 4530 4531 ret = check_extent_to_block(BTRFS_I(inode), offset, len, 4532 nocow_ctx_logical); 4533 if (ret) { 4534 ret = ret > 0 ? 0 : ret; 4535 goto out; 4536 } 4537 4538 while (len >= PAGE_SIZE) { 4539 index = offset >> PAGE_SHIFT; 4540 again: 4541 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 4542 if (!page) { 4543 btrfs_err(fs_info, "find_or_create_page() failed"); 4544 ret = -ENOMEM; 4545 goto out; 4546 } 4547 4548 if (PageUptodate(page)) { 4549 if (PageDirty(page)) 4550 goto next_page; 4551 } else { 4552 ClearPageError(page); 4553 err = extent_read_full_page(io_tree, page, 4554 btrfs_get_extent, 4555 nocow_ctx->mirror_num); 4556 if (err) { 4557 ret = err; 4558 goto next_page; 4559 } 4560 4561 lock_page(page); 4562 /* 4563 * If the page has been remove from the page cache, 4564 * the data on it is meaningless, because it may be 4565 * old one, the new data may be written into the new 4566 * page in the page cache. 4567 */ 4568 if (page->mapping != inode->i_mapping) { 4569 unlock_page(page); 4570 put_page(page); 4571 goto again; 4572 } 4573 if (!PageUptodate(page)) { 4574 ret = -EIO; 4575 goto next_page; 4576 } 4577 } 4578 4579 ret = check_extent_to_block(BTRFS_I(inode), offset, len, 4580 nocow_ctx_logical); 4581 if (ret) { 4582 ret = ret > 0 ? 0 : ret; 4583 goto next_page; 4584 } 4585 4586 err = write_page_nocow(nocow_ctx->sctx, 4587 physical_for_dev_replace, page); 4588 if (err) 4589 ret = err; 4590 next_page: 4591 unlock_page(page); 4592 put_page(page); 4593 4594 if (ret) 4595 break; 4596 4597 offset += PAGE_SIZE; 4598 physical_for_dev_replace += PAGE_SIZE; 4599 nocow_ctx_logical += PAGE_SIZE; 4600 len -= PAGE_SIZE; 4601 } 4602 ret = COPY_COMPLETE; 4603 out: 4604 inode_unlock(inode); 4605 iput(inode); 4606 return ret; 4607 } 4608 4609 static int write_page_nocow(struct scrub_ctx *sctx, 4610 u64 physical_for_dev_replace, struct page *page) 4611 { 4612 struct bio *bio; 4613 struct btrfs_device *dev; 4614 int ret; 4615 4616 dev = sctx->wr_tgtdev; 4617 if (!dev) 4618 return -EIO; 4619 if (!dev->bdev) { 4620 btrfs_warn_rl(dev->fs_info, 4621 "scrub write_page_nocow(bdev == NULL) is unexpected"); 4622 return -EIO; 4623 } 4624 bio = btrfs_io_bio_alloc(1); 4625 bio->bi_iter.bi_size = 0; 4626 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9; 4627 bio_set_dev(bio, dev->bdev); 4628 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 4629 ret = bio_add_page(bio, page, PAGE_SIZE, 0); 4630 if (ret != PAGE_SIZE) { 4631 leave_with_eio: 4632 bio_put(bio); 4633 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 4634 return -EIO; 4635 } 4636 4637 if (btrfsic_submit_bio_wait(bio)) 4638 goto leave_with_eio; 4639 4640 bio_put(bio); 4641 return 0; 4642 } 4643