1 /* 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/ratelimit.h> 21 #include <linux/sched/mm.h> 22 #include "ctree.h" 23 #include "volumes.h" 24 #include "disk-io.h" 25 #include "ordered-data.h" 26 #include "transaction.h" 27 #include "backref.h" 28 #include "extent_io.h" 29 #include "dev-replace.h" 30 #include "check-integrity.h" 31 #include "rcu-string.h" 32 #include "raid56.h" 33 34 /* 35 * This is only the first step towards a full-features scrub. It reads all 36 * extent and super block and verifies the checksums. In case a bad checksum 37 * is found or the extent cannot be read, good data will be written back if 38 * any can be found. 39 * 40 * Future enhancements: 41 * - In case an unrepairable extent is encountered, track which files are 42 * affected and report them 43 * - track and record media errors, throw out bad devices 44 * - add a mode to also read unallocated space 45 */ 46 47 struct scrub_block; 48 struct scrub_ctx; 49 50 /* 51 * the following three values only influence the performance. 52 * The last one configures the number of parallel and outstanding I/O 53 * operations. The first two values configure an upper limit for the number 54 * of (dynamically allocated) pages that are added to a bio. 55 */ 56 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 57 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 58 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 59 60 /* 61 * the following value times PAGE_SIZE needs to be large enough to match the 62 * largest node/leaf/sector size that shall be supported. 63 * Values larger than BTRFS_STRIPE_LEN are not supported. 64 */ 65 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 66 67 struct scrub_recover { 68 refcount_t refs; 69 struct btrfs_bio *bbio; 70 u64 map_length; 71 }; 72 73 struct scrub_page { 74 struct scrub_block *sblock; 75 struct page *page; 76 struct btrfs_device *dev; 77 struct list_head list; 78 u64 flags; /* extent flags */ 79 u64 generation; 80 u64 logical; 81 u64 physical; 82 u64 physical_for_dev_replace; 83 atomic_t refs; 84 struct { 85 unsigned int mirror_num:8; 86 unsigned int have_csum:1; 87 unsigned int io_error:1; 88 }; 89 u8 csum[BTRFS_CSUM_SIZE]; 90 91 struct scrub_recover *recover; 92 }; 93 94 struct scrub_bio { 95 int index; 96 struct scrub_ctx *sctx; 97 struct btrfs_device *dev; 98 struct bio *bio; 99 blk_status_t status; 100 u64 logical; 101 u64 physical; 102 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 103 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 104 #else 105 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 106 #endif 107 int page_count; 108 int next_free; 109 struct btrfs_work work; 110 }; 111 112 struct scrub_block { 113 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 114 int page_count; 115 atomic_t outstanding_pages; 116 refcount_t refs; /* free mem on transition to zero */ 117 struct scrub_ctx *sctx; 118 struct scrub_parity *sparity; 119 struct { 120 unsigned int header_error:1; 121 unsigned int checksum_error:1; 122 unsigned int no_io_error_seen:1; 123 unsigned int generation_error:1; /* also sets header_error */ 124 125 /* The following is for the data used to check parity */ 126 /* It is for the data with checksum */ 127 unsigned int data_corrected:1; 128 }; 129 struct btrfs_work work; 130 }; 131 132 /* Used for the chunks with parity stripe such RAID5/6 */ 133 struct scrub_parity { 134 struct scrub_ctx *sctx; 135 136 struct btrfs_device *scrub_dev; 137 138 u64 logic_start; 139 140 u64 logic_end; 141 142 int nsectors; 143 144 u64 stripe_len; 145 146 refcount_t refs; 147 148 struct list_head spages; 149 150 /* Work of parity check and repair */ 151 struct btrfs_work work; 152 153 /* Mark the parity blocks which have data */ 154 unsigned long *dbitmap; 155 156 /* 157 * Mark the parity blocks which have data, but errors happen when 158 * read data or check data 159 */ 160 unsigned long *ebitmap; 161 162 unsigned long bitmap[0]; 163 }; 164 165 struct scrub_ctx { 166 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 167 struct btrfs_fs_info *fs_info; 168 int first_free; 169 int curr; 170 atomic_t bios_in_flight; 171 atomic_t workers_pending; 172 spinlock_t list_lock; 173 wait_queue_head_t list_wait; 174 u16 csum_size; 175 struct list_head csum_list; 176 atomic_t cancel_req; 177 int readonly; 178 int pages_per_rd_bio; 179 180 int is_dev_replace; 181 182 struct scrub_bio *wr_curr_bio; 183 struct mutex wr_lock; 184 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 185 struct btrfs_device *wr_tgtdev; 186 bool flush_all_writes; 187 188 /* 189 * statistics 190 */ 191 struct btrfs_scrub_progress stat; 192 spinlock_t stat_lock; 193 194 /* 195 * Use a ref counter to avoid use-after-free issues. Scrub workers 196 * decrement bios_in_flight and workers_pending and then do a wakeup 197 * on the list_wait wait queue. We must ensure the main scrub task 198 * doesn't free the scrub context before or while the workers are 199 * doing the wakeup() call. 200 */ 201 refcount_t refs; 202 }; 203 204 struct scrub_fixup_nodatasum { 205 struct scrub_ctx *sctx; 206 struct btrfs_device *dev; 207 u64 logical; 208 struct btrfs_root *root; 209 struct btrfs_work work; 210 int mirror_num; 211 }; 212 213 struct scrub_nocow_inode { 214 u64 inum; 215 u64 offset; 216 u64 root; 217 struct list_head list; 218 }; 219 220 struct scrub_copy_nocow_ctx { 221 struct scrub_ctx *sctx; 222 u64 logical; 223 u64 len; 224 int mirror_num; 225 u64 physical_for_dev_replace; 226 struct list_head inodes; 227 struct btrfs_work work; 228 }; 229 230 struct scrub_warning { 231 struct btrfs_path *path; 232 u64 extent_item_size; 233 const char *errstr; 234 u64 physical; 235 u64 logical; 236 struct btrfs_device *dev; 237 }; 238 239 struct full_stripe_lock { 240 struct rb_node node; 241 u64 logical; 242 u64 refs; 243 struct mutex mutex; 244 }; 245 246 static void scrub_pending_bio_inc(struct scrub_ctx *sctx); 247 static void scrub_pending_bio_dec(struct scrub_ctx *sctx); 248 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx); 249 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx); 250 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); 251 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 252 struct scrub_block *sblocks_for_recheck); 253 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 254 struct scrub_block *sblock, 255 int retry_failed_mirror); 256 static void scrub_recheck_block_checksum(struct scrub_block *sblock); 257 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 258 struct scrub_block *sblock_good); 259 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 260 struct scrub_block *sblock_good, 261 int page_num, int force_write); 262 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 263 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 264 int page_num); 265 static int scrub_checksum_data(struct scrub_block *sblock); 266 static int scrub_checksum_tree_block(struct scrub_block *sblock); 267 static int scrub_checksum_super(struct scrub_block *sblock); 268 static void scrub_block_get(struct scrub_block *sblock); 269 static void scrub_block_put(struct scrub_block *sblock); 270 static void scrub_page_get(struct scrub_page *spage); 271 static void scrub_page_put(struct scrub_page *spage); 272 static void scrub_parity_get(struct scrub_parity *sparity); 273 static void scrub_parity_put(struct scrub_parity *sparity); 274 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 275 struct scrub_page *spage); 276 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 277 u64 physical, struct btrfs_device *dev, u64 flags, 278 u64 gen, int mirror_num, u8 *csum, int force, 279 u64 physical_for_dev_replace); 280 static void scrub_bio_end_io(struct bio *bio); 281 static void scrub_bio_end_io_worker(struct btrfs_work *work); 282 static void scrub_block_complete(struct scrub_block *sblock); 283 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 284 u64 extent_logical, u64 extent_len, 285 u64 *extent_physical, 286 struct btrfs_device **extent_dev, 287 int *extent_mirror_num); 288 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 289 struct scrub_page *spage); 290 static void scrub_wr_submit(struct scrub_ctx *sctx); 291 static void scrub_wr_bio_end_io(struct bio *bio); 292 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 293 static int write_page_nocow(struct scrub_ctx *sctx, 294 u64 physical_for_dev_replace, struct page *page); 295 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 296 struct scrub_copy_nocow_ctx *ctx); 297 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 298 int mirror_num, u64 physical_for_dev_replace); 299 static void copy_nocow_pages_worker(struct btrfs_work *work); 300 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 301 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 302 static void scrub_put_ctx(struct scrub_ctx *sctx); 303 304 static inline int scrub_is_page_on_raid56(struct scrub_page *page) 305 { 306 return page->recover && 307 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); 308 } 309 310 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 311 { 312 refcount_inc(&sctx->refs); 313 atomic_inc(&sctx->bios_in_flight); 314 } 315 316 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 317 { 318 atomic_dec(&sctx->bios_in_flight); 319 wake_up(&sctx->list_wait); 320 scrub_put_ctx(sctx); 321 } 322 323 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 324 { 325 while (atomic_read(&fs_info->scrub_pause_req)) { 326 mutex_unlock(&fs_info->scrub_lock); 327 wait_event(fs_info->scrub_pause_wait, 328 atomic_read(&fs_info->scrub_pause_req) == 0); 329 mutex_lock(&fs_info->scrub_lock); 330 } 331 } 332 333 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 334 { 335 atomic_inc(&fs_info->scrubs_paused); 336 wake_up(&fs_info->scrub_pause_wait); 337 } 338 339 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 340 { 341 mutex_lock(&fs_info->scrub_lock); 342 __scrub_blocked_if_needed(fs_info); 343 atomic_dec(&fs_info->scrubs_paused); 344 mutex_unlock(&fs_info->scrub_lock); 345 346 wake_up(&fs_info->scrub_pause_wait); 347 } 348 349 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 350 { 351 scrub_pause_on(fs_info); 352 scrub_pause_off(fs_info); 353 } 354 355 /* 356 * Insert new full stripe lock into full stripe locks tree 357 * 358 * Return pointer to existing or newly inserted full_stripe_lock structure if 359 * everything works well. 360 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory 361 * 362 * NOTE: caller must hold full_stripe_locks_root->lock before calling this 363 * function 364 */ 365 static struct full_stripe_lock *insert_full_stripe_lock( 366 struct btrfs_full_stripe_locks_tree *locks_root, 367 u64 fstripe_logical) 368 { 369 struct rb_node **p; 370 struct rb_node *parent = NULL; 371 struct full_stripe_lock *entry; 372 struct full_stripe_lock *ret; 373 374 lockdep_assert_held(&locks_root->lock); 375 376 p = &locks_root->root.rb_node; 377 while (*p) { 378 parent = *p; 379 entry = rb_entry(parent, struct full_stripe_lock, node); 380 if (fstripe_logical < entry->logical) { 381 p = &(*p)->rb_left; 382 } else if (fstripe_logical > entry->logical) { 383 p = &(*p)->rb_right; 384 } else { 385 entry->refs++; 386 return entry; 387 } 388 } 389 390 /* Insert new lock */ 391 ret = kmalloc(sizeof(*ret), GFP_KERNEL); 392 if (!ret) 393 return ERR_PTR(-ENOMEM); 394 ret->logical = fstripe_logical; 395 ret->refs = 1; 396 mutex_init(&ret->mutex); 397 398 rb_link_node(&ret->node, parent, p); 399 rb_insert_color(&ret->node, &locks_root->root); 400 return ret; 401 } 402 403 /* 404 * Search for a full stripe lock of a block group 405 * 406 * Return pointer to existing full stripe lock if found 407 * Return NULL if not found 408 */ 409 static struct full_stripe_lock *search_full_stripe_lock( 410 struct btrfs_full_stripe_locks_tree *locks_root, 411 u64 fstripe_logical) 412 { 413 struct rb_node *node; 414 struct full_stripe_lock *entry; 415 416 lockdep_assert_held(&locks_root->lock); 417 418 node = locks_root->root.rb_node; 419 while (node) { 420 entry = rb_entry(node, struct full_stripe_lock, node); 421 if (fstripe_logical < entry->logical) 422 node = node->rb_left; 423 else if (fstripe_logical > entry->logical) 424 node = node->rb_right; 425 else 426 return entry; 427 } 428 return NULL; 429 } 430 431 /* 432 * Helper to get full stripe logical from a normal bytenr. 433 * 434 * Caller must ensure @cache is a RAID56 block group. 435 */ 436 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache, 437 u64 bytenr) 438 { 439 u64 ret; 440 441 /* 442 * Due to chunk item size limit, full stripe length should not be 443 * larger than U32_MAX. Just a sanity check here. 444 */ 445 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); 446 447 /* 448 * round_down() can only handle power of 2, while RAID56 full 449 * stripe length can be 64KiB * n, so we need to manually round down. 450 */ 451 ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) * 452 cache->full_stripe_len + cache->key.objectid; 453 return ret; 454 } 455 456 /* 457 * Lock a full stripe to avoid concurrency of recovery and read 458 * 459 * It's only used for profiles with parities (RAID5/6), for other profiles it 460 * does nothing. 461 * 462 * Return 0 if we locked full stripe covering @bytenr, with a mutex held. 463 * So caller must call unlock_full_stripe() at the same context. 464 * 465 * Return <0 if encounters error. 466 */ 467 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 468 bool *locked_ret) 469 { 470 struct btrfs_block_group_cache *bg_cache; 471 struct btrfs_full_stripe_locks_tree *locks_root; 472 struct full_stripe_lock *existing; 473 u64 fstripe_start; 474 int ret = 0; 475 476 *locked_ret = false; 477 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 478 if (!bg_cache) { 479 ASSERT(0); 480 return -ENOENT; 481 } 482 483 /* Profiles not based on parity don't need full stripe lock */ 484 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 485 goto out; 486 locks_root = &bg_cache->full_stripe_locks_root; 487 488 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 489 490 /* Now insert the full stripe lock */ 491 mutex_lock(&locks_root->lock); 492 existing = insert_full_stripe_lock(locks_root, fstripe_start); 493 mutex_unlock(&locks_root->lock); 494 if (IS_ERR(existing)) { 495 ret = PTR_ERR(existing); 496 goto out; 497 } 498 mutex_lock(&existing->mutex); 499 *locked_ret = true; 500 out: 501 btrfs_put_block_group(bg_cache); 502 return ret; 503 } 504 505 /* 506 * Unlock a full stripe. 507 * 508 * NOTE: Caller must ensure it's the same context calling corresponding 509 * lock_full_stripe(). 510 * 511 * Return 0 if we unlock full stripe without problem. 512 * Return <0 for error 513 */ 514 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 515 bool locked) 516 { 517 struct btrfs_block_group_cache *bg_cache; 518 struct btrfs_full_stripe_locks_tree *locks_root; 519 struct full_stripe_lock *fstripe_lock; 520 u64 fstripe_start; 521 bool freeit = false; 522 int ret = 0; 523 524 /* If we didn't acquire full stripe lock, no need to continue */ 525 if (!locked) 526 return 0; 527 528 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 529 if (!bg_cache) { 530 ASSERT(0); 531 return -ENOENT; 532 } 533 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 534 goto out; 535 536 locks_root = &bg_cache->full_stripe_locks_root; 537 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 538 539 mutex_lock(&locks_root->lock); 540 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); 541 /* Unpaired unlock_full_stripe() detected */ 542 if (!fstripe_lock) { 543 WARN_ON(1); 544 ret = -ENOENT; 545 mutex_unlock(&locks_root->lock); 546 goto out; 547 } 548 549 if (fstripe_lock->refs == 0) { 550 WARN_ON(1); 551 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", 552 fstripe_lock->logical); 553 } else { 554 fstripe_lock->refs--; 555 } 556 557 if (fstripe_lock->refs == 0) { 558 rb_erase(&fstripe_lock->node, &locks_root->root); 559 freeit = true; 560 } 561 mutex_unlock(&locks_root->lock); 562 563 mutex_unlock(&fstripe_lock->mutex); 564 if (freeit) 565 kfree(fstripe_lock); 566 out: 567 btrfs_put_block_group(bg_cache); 568 return ret; 569 } 570 571 /* 572 * used for workers that require transaction commits (i.e., for the 573 * NOCOW case) 574 */ 575 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx) 576 { 577 struct btrfs_fs_info *fs_info = sctx->fs_info; 578 579 refcount_inc(&sctx->refs); 580 /* 581 * increment scrubs_running to prevent cancel requests from 582 * completing as long as a worker is running. we must also 583 * increment scrubs_paused to prevent deadlocking on pause 584 * requests used for transactions commits (as the worker uses a 585 * transaction context). it is safe to regard the worker 586 * as paused for all matters practical. effectively, we only 587 * avoid cancellation requests from completing. 588 */ 589 mutex_lock(&fs_info->scrub_lock); 590 atomic_inc(&fs_info->scrubs_running); 591 atomic_inc(&fs_info->scrubs_paused); 592 mutex_unlock(&fs_info->scrub_lock); 593 594 /* 595 * check if @scrubs_running=@scrubs_paused condition 596 * inside wait_event() is not an atomic operation. 597 * which means we may inc/dec @scrub_running/paused 598 * at any time. Let's wake up @scrub_pause_wait as 599 * much as we can to let commit transaction blocked less. 600 */ 601 wake_up(&fs_info->scrub_pause_wait); 602 603 atomic_inc(&sctx->workers_pending); 604 } 605 606 /* used for workers that require transaction commits */ 607 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx) 608 { 609 struct btrfs_fs_info *fs_info = sctx->fs_info; 610 611 /* 612 * see scrub_pending_trans_workers_inc() why we're pretending 613 * to be paused in the scrub counters 614 */ 615 mutex_lock(&fs_info->scrub_lock); 616 atomic_dec(&fs_info->scrubs_running); 617 atomic_dec(&fs_info->scrubs_paused); 618 mutex_unlock(&fs_info->scrub_lock); 619 atomic_dec(&sctx->workers_pending); 620 wake_up(&fs_info->scrub_pause_wait); 621 wake_up(&sctx->list_wait); 622 scrub_put_ctx(sctx); 623 } 624 625 static void scrub_free_csums(struct scrub_ctx *sctx) 626 { 627 while (!list_empty(&sctx->csum_list)) { 628 struct btrfs_ordered_sum *sum; 629 sum = list_first_entry(&sctx->csum_list, 630 struct btrfs_ordered_sum, list); 631 list_del(&sum->list); 632 kfree(sum); 633 } 634 } 635 636 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 637 { 638 int i; 639 640 if (!sctx) 641 return; 642 643 /* this can happen when scrub is cancelled */ 644 if (sctx->curr != -1) { 645 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 646 647 for (i = 0; i < sbio->page_count; i++) { 648 WARN_ON(!sbio->pagev[i]->page); 649 scrub_block_put(sbio->pagev[i]->sblock); 650 } 651 bio_put(sbio->bio); 652 } 653 654 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 655 struct scrub_bio *sbio = sctx->bios[i]; 656 657 if (!sbio) 658 break; 659 kfree(sbio); 660 } 661 662 kfree(sctx->wr_curr_bio); 663 scrub_free_csums(sctx); 664 kfree(sctx); 665 } 666 667 static void scrub_put_ctx(struct scrub_ctx *sctx) 668 { 669 if (refcount_dec_and_test(&sctx->refs)) 670 scrub_free_ctx(sctx); 671 } 672 673 static noinline_for_stack 674 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace) 675 { 676 struct scrub_ctx *sctx; 677 int i; 678 struct btrfs_fs_info *fs_info = dev->fs_info; 679 680 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); 681 if (!sctx) 682 goto nomem; 683 refcount_set(&sctx->refs, 1); 684 sctx->is_dev_replace = is_dev_replace; 685 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 686 sctx->curr = -1; 687 sctx->fs_info = dev->fs_info; 688 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 689 struct scrub_bio *sbio; 690 691 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); 692 if (!sbio) 693 goto nomem; 694 sctx->bios[i] = sbio; 695 696 sbio->index = i; 697 sbio->sctx = sctx; 698 sbio->page_count = 0; 699 btrfs_init_work(&sbio->work, btrfs_scrub_helper, 700 scrub_bio_end_io_worker, NULL, NULL); 701 702 if (i != SCRUB_BIOS_PER_SCTX - 1) 703 sctx->bios[i]->next_free = i + 1; 704 else 705 sctx->bios[i]->next_free = -1; 706 } 707 sctx->first_free = 0; 708 atomic_set(&sctx->bios_in_flight, 0); 709 atomic_set(&sctx->workers_pending, 0); 710 atomic_set(&sctx->cancel_req, 0); 711 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); 712 INIT_LIST_HEAD(&sctx->csum_list); 713 714 spin_lock_init(&sctx->list_lock); 715 spin_lock_init(&sctx->stat_lock); 716 init_waitqueue_head(&sctx->list_wait); 717 718 WARN_ON(sctx->wr_curr_bio != NULL); 719 mutex_init(&sctx->wr_lock); 720 sctx->wr_curr_bio = NULL; 721 if (is_dev_replace) { 722 WARN_ON(!fs_info->dev_replace.tgtdev); 723 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO; 724 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 725 sctx->flush_all_writes = false; 726 } 727 728 return sctx; 729 730 nomem: 731 scrub_free_ctx(sctx); 732 return ERR_PTR(-ENOMEM); 733 } 734 735 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 736 void *warn_ctx) 737 { 738 u64 isize; 739 u32 nlink; 740 int ret; 741 int i; 742 unsigned nofs_flag; 743 struct extent_buffer *eb; 744 struct btrfs_inode_item *inode_item; 745 struct scrub_warning *swarn = warn_ctx; 746 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 747 struct inode_fs_paths *ipath = NULL; 748 struct btrfs_root *local_root; 749 struct btrfs_key root_key; 750 struct btrfs_key key; 751 752 root_key.objectid = root; 753 root_key.type = BTRFS_ROOT_ITEM_KEY; 754 root_key.offset = (u64)-1; 755 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); 756 if (IS_ERR(local_root)) { 757 ret = PTR_ERR(local_root); 758 goto err; 759 } 760 761 /* 762 * this makes the path point to (inum INODE_ITEM ioff) 763 */ 764 key.objectid = inum; 765 key.type = BTRFS_INODE_ITEM_KEY; 766 key.offset = 0; 767 768 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 769 if (ret) { 770 btrfs_release_path(swarn->path); 771 goto err; 772 } 773 774 eb = swarn->path->nodes[0]; 775 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 776 struct btrfs_inode_item); 777 isize = btrfs_inode_size(eb, inode_item); 778 nlink = btrfs_inode_nlink(eb, inode_item); 779 btrfs_release_path(swarn->path); 780 781 /* 782 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 783 * uses GFP_NOFS in this context, so we keep it consistent but it does 784 * not seem to be strictly necessary. 785 */ 786 nofs_flag = memalloc_nofs_save(); 787 ipath = init_ipath(4096, local_root, swarn->path); 788 memalloc_nofs_restore(nofs_flag); 789 if (IS_ERR(ipath)) { 790 ret = PTR_ERR(ipath); 791 ipath = NULL; 792 goto err; 793 } 794 ret = paths_from_inode(inum, ipath); 795 796 if (ret < 0) 797 goto err; 798 799 /* 800 * we deliberately ignore the bit ipath might have been too small to 801 * hold all of the paths here 802 */ 803 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 804 btrfs_warn_in_rcu(fs_info, 805 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)", 806 swarn->errstr, swarn->logical, 807 rcu_str_deref(swarn->dev->name), 808 swarn->physical, 809 root, inum, offset, 810 min(isize - offset, (u64)PAGE_SIZE), nlink, 811 (char *)(unsigned long)ipath->fspath->val[i]); 812 813 free_ipath(ipath); 814 return 0; 815 816 err: 817 btrfs_warn_in_rcu(fs_info, 818 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 819 swarn->errstr, swarn->logical, 820 rcu_str_deref(swarn->dev->name), 821 swarn->physical, 822 root, inum, offset, ret); 823 824 free_ipath(ipath); 825 return 0; 826 } 827 828 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 829 { 830 struct btrfs_device *dev; 831 struct btrfs_fs_info *fs_info; 832 struct btrfs_path *path; 833 struct btrfs_key found_key; 834 struct extent_buffer *eb; 835 struct btrfs_extent_item *ei; 836 struct scrub_warning swarn; 837 unsigned long ptr = 0; 838 u64 extent_item_pos; 839 u64 flags = 0; 840 u64 ref_root; 841 u32 item_size; 842 u8 ref_level = 0; 843 int ret; 844 845 WARN_ON(sblock->page_count < 1); 846 dev = sblock->pagev[0]->dev; 847 fs_info = sblock->sctx->fs_info; 848 849 path = btrfs_alloc_path(); 850 if (!path) 851 return; 852 853 swarn.physical = sblock->pagev[0]->physical; 854 swarn.logical = sblock->pagev[0]->logical; 855 swarn.errstr = errstr; 856 swarn.dev = NULL; 857 858 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 859 &flags); 860 if (ret < 0) 861 goto out; 862 863 extent_item_pos = swarn.logical - found_key.objectid; 864 swarn.extent_item_size = found_key.offset; 865 866 eb = path->nodes[0]; 867 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 868 item_size = btrfs_item_size_nr(eb, path->slots[0]); 869 870 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 871 do { 872 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 873 item_size, &ref_root, 874 &ref_level); 875 btrfs_warn_in_rcu(fs_info, 876 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 877 errstr, swarn.logical, 878 rcu_str_deref(dev->name), 879 swarn.physical, 880 ref_level ? "node" : "leaf", 881 ret < 0 ? -1 : ref_level, 882 ret < 0 ? -1 : ref_root); 883 } while (ret != 1); 884 btrfs_release_path(path); 885 } else { 886 btrfs_release_path(path); 887 swarn.path = path; 888 swarn.dev = dev; 889 iterate_extent_inodes(fs_info, found_key.objectid, 890 extent_item_pos, 1, 891 scrub_print_warning_inode, &swarn, false); 892 } 893 894 out: 895 btrfs_free_path(path); 896 } 897 898 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx) 899 { 900 struct page *page = NULL; 901 unsigned long index; 902 struct scrub_fixup_nodatasum *fixup = fixup_ctx; 903 int ret; 904 int corrected = 0; 905 struct btrfs_key key; 906 struct inode *inode = NULL; 907 struct btrfs_fs_info *fs_info; 908 u64 end = offset + PAGE_SIZE - 1; 909 struct btrfs_root *local_root; 910 int srcu_index; 911 912 key.objectid = root; 913 key.type = BTRFS_ROOT_ITEM_KEY; 914 key.offset = (u64)-1; 915 916 fs_info = fixup->root->fs_info; 917 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 918 919 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 920 if (IS_ERR(local_root)) { 921 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 922 return PTR_ERR(local_root); 923 } 924 925 key.type = BTRFS_INODE_ITEM_KEY; 926 key.objectid = inum; 927 key.offset = 0; 928 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 929 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 930 if (IS_ERR(inode)) 931 return PTR_ERR(inode); 932 933 index = offset >> PAGE_SHIFT; 934 935 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 936 if (!page) { 937 ret = -ENOMEM; 938 goto out; 939 } 940 941 if (PageUptodate(page)) { 942 if (PageDirty(page)) { 943 /* 944 * we need to write the data to the defect sector. the 945 * data that was in that sector is not in memory, 946 * because the page was modified. we must not write the 947 * modified page to that sector. 948 * 949 * TODO: what could be done here: wait for the delalloc 950 * runner to write out that page (might involve 951 * COW) and see whether the sector is still 952 * referenced afterwards. 953 * 954 * For the meantime, we'll treat this error 955 * incorrectable, although there is a chance that a 956 * later scrub will find the bad sector again and that 957 * there's no dirty page in memory, then. 958 */ 959 ret = -EIO; 960 goto out; 961 } 962 ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE, 963 fixup->logical, page, 964 offset - page_offset(page), 965 fixup->mirror_num); 966 unlock_page(page); 967 corrected = !ret; 968 } else { 969 /* 970 * we need to get good data first. the general readpage path 971 * will call repair_io_failure for us, we just have to make 972 * sure we read the bad mirror. 973 */ 974 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 975 EXTENT_DAMAGED); 976 if (ret) { 977 /* set_extent_bits should give proper error */ 978 WARN_ON(ret > 0); 979 if (ret > 0) 980 ret = -EFAULT; 981 goto out; 982 } 983 984 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, 985 btrfs_get_extent, 986 fixup->mirror_num); 987 wait_on_page_locked(page); 988 989 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, 990 end, EXTENT_DAMAGED, 0, NULL); 991 if (!corrected) 992 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 993 EXTENT_DAMAGED); 994 } 995 996 out: 997 if (page) 998 put_page(page); 999 1000 iput(inode); 1001 1002 if (ret < 0) 1003 return ret; 1004 1005 if (ret == 0 && corrected) { 1006 /* 1007 * we only need to call readpage for one of the inodes belonging 1008 * to this extent. so make iterate_extent_inodes stop 1009 */ 1010 return 1; 1011 } 1012 1013 return -EIO; 1014 } 1015 1016 static void scrub_fixup_nodatasum(struct btrfs_work *work) 1017 { 1018 struct btrfs_fs_info *fs_info; 1019 int ret; 1020 struct scrub_fixup_nodatasum *fixup; 1021 struct scrub_ctx *sctx; 1022 struct btrfs_trans_handle *trans = NULL; 1023 struct btrfs_path *path; 1024 int uncorrectable = 0; 1025 1026 fixup = container_of(work, struct scrub_fixup_nodatasum, work); 1027 sctx = fixup->sctx; 1028 fs_info = fixup->root->fs_info; 1029 1030 path = btrfs_alloc_path(); 1031 if (!path) { 1032 spin_lock(&sctx->stat_lock); 1033 ++sctx->stat.malloc_errors; 1034 spin_unlock(&sctx->stat_lock); 1035 uncorrectable = 1; 1036 goto out; 1037 } 1038 1039 trans = btrfs_join_transaction(fixup->root); 1040 if (IS_ERR(trans)) { 1041 uncorrectable = 1; 1042 goto out; 1043 } 1044 1045 /* 1046 * the idea is to trigger a regular read through the standard path. we 1047 * read a page from the (failed) logical address by specifying the 1048 * corresponding copynum of the failed sector. thus, that readpage is 1049 * expected to fail. 1050 * that is the point where on-the-fly error correction will kick in 1051 * (once it's finished) and rewrite the failed sector if a good copy 1052 * can be found. 1053 */ 1054 ret = iterate_inodes_from_logical(fixup->logical, fs_info, path, 1055 scrub_fixup_readpage, fixup, false); 1056 if (ret < 0) { 1057 uncorrectable = 1; 1058 goto out; 1059 } 1060 WARN_ON(ret != 1); 1061 1062 spin_lock(&sctx->stat_lock); 1063 ++sctx->stat.corrected_errors; 1064 spin_unlock(&sctx->stat_lock); 1065 1066 out: 1067 if (trans && !IS_ERR(trans)) 1068 btrfs_end_transaction(trans); 1069 if (uncorrectable) { 1070 spin_lock(&sctx->stat_lock); 1071 ++sctx->stat.uncorrectable_errors; 1072 spin_unlock(&sctx->stat_lock); 1073 btrfs_dev_replace_stats_inc( 1074 &fs_info->dev_replace.num_uncorrectable_read_errors); 1075 btrfs_err_rl_in_rcu(fs_info, 1076 "unable to fixup (nodatasum) error at logical %llu on dev %s", 1077 fixup->logical, rcu_str_deref(fixup->dev->name)); 1078 } 1079 1080 btrfs_free_path(path); 1081 kfree(fixup); 1082 1083 scrub_pending_trans_workers_dec(sctx); 1084 } 1085 1086 static inline void scrub_get_recover(struct scrub_recover *recover) 1087 { 1088 refcount_inc(&recover->refs); 1089 } 1090 1091 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, 1092 struct scrub_recover *recover) 1093 { 1094 if (refcount_dec_and_test(&recover->refs)) { 1095 btrfs_bio_counter_dec(fs_info); 1096 btrfs_put_bbio(recover->bbio); 1097 kfree(recover); 1098 } 1099 } 1100 1101 /* 1102 * scrub_handle_errored_block gets called when either verification of the 1103 * pages failed or the bio failed to read, e.g. with EIO. In the latter 1104 * case, this function handles all pages in the bio, even though only one 1105 * may be bad. 1106 * The goal of this function is to repair the errored block by using the 1107 * contents of one of the mirrors. 1108 */ 1109 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 1110 { 1111 struct scrub_ctx *sctx = sblock_to_check->sctx; 1112 struct btrfs_device *dev; 1113 struct btrfs_fs_info *fs_info; 1114 u64 logical; 1115 unsigned int failed_mirror_index; 1116 unsigned int is_metadata; 1117 unsigned int have_csum; 1118 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 1119 struct scrub_block *sblock_bad; 1120 int ret; 1121 int mirror_index; 1122 int page_num; 1123 int success; 1124 bool full_stripe_locked; 1125 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 1126 DEFAULT_RATELIMIT_BURST); 1127 1128 BUG_ON(sblock_to_check->page_count < 1); 1129 fs_info = sctx->fs_info; 1130 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 1131 /* 1132 * if we find an error in a super block, we just report it. 1133 * They will get written with the next transaction commit 1134 * anyway 1135 */ 1136 spin_lock(&sctx->stat_lock); 1137 ++sctx->stat.super_errors; 1138 spin_unlock(&sctx->stat_lock); 1139 return 0; 1140 } 1141 logical = sblock_to_check->pagev[0]->logical; 1142 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 1143 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 1144 is_metadata = !(sblock_to_check->pagev[0]->flags & 1145 BTRFS_EXTENT_FLAG_DATA); 1146 have_csum = sblock_to_check->pagev[0]->have_csum; 1147 dev = sblock_to_check->pagev[0]->dev; 1148 1149 /* 1150 * For RAID5/6, race can happen for a different device scrub thread. 1151 * For data corruption, Parity and Data threads will both try 1152 * to recovery the data. 1153 * Race can lead to doubly added csum error, or even unrecoverable 1154 * error. 1155 */ 1156 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); 1157 if (ret < 0) { 1158 spin_lock(&sctx->stat_lock); 1159 if (ret == -ENOMEM) 1160 sctx->stat.malloc_errors++; 1161 sctx->stat.read_errors++; 1162 sctx->stat.uncorrectable_errors++; 1163 spin_unlock(&sctx->stat_lock); 1164 return ret; 1165 } 1166 1167 if (sctx->is_dev_replace && !is_metadata && !have_csum) { 1168 sblocks_for_recheck = NULL; 1169 goto nodatasum_case; 1170 } 1171 1172 /* 1173 * read all mirrors one after the other. This includes to 1174 * re-read the extent or metadata block that failed (that was 1175 * the cause that this fixup code is called) another time, 1176 * page by page this time in order to know which pages 1177 * caused I/O errors and which ones are good (for all mirrors). 1178 * It is the goal to handle the situation when more than one 1179 * mirror contains I/O errors, but the errors do not 1180 * overlap, i.e. the data can be repaired by selecting the 1181 * pages from those mirrors without I/O error on the 1182 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) 1183 * would be that mirror #1 has an I/O error on the first page, 1184 * the second page is good, and mirror #2 has an I/O error on 1185 * the second page, but the first page is good. 1186 * Then the first page of the first mirror can be repaired by 1187 * taking the first page of the second mirror, and the 1188 * second page of the second mirror can be repaired by 1189 * copying the contents of the 2nd page of the 1st mirror. 1190 * One more note: if the pages of one mirror contain I/O 1191 * errors, the checksum cannot be verified. In order to get 1192 * the best data for repairing, the first attempt is to find 1193 * a mirror without I/O errors and with a validated checksum. 1194 * Only if this is not possible, the pages are picked from 1195 * mirrors with I/O errors without considering the checksum. 1196 * If the latter is the case, at the end, the checksum of the 1197 * repaired area is verified in order to correctly maintain 1198 * the statistics. 1199 */ 1200 1201 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, 1202 sizeof(*sblocks_for_recheck), GFP_NOFS); 1203 if (!sblocks_for_recheck) { 1204 spin_lock(&sctx->stat_lock); 1205 sctx->stat.malloc_errors++; 1206 sctx->stat.read_errors++; 1207 sctx->stat.uncorrectable_errors++; 1208 spin_unlock(&sctx->stat_lock); 1209 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1210 goto out; 1211 } 1212 1213 /* setup the context, map the logical blocks and alloc the pages */ 1214 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); 1215 if (ret) { 1216 spin_lock(&sctx->stat_lock); 1217 sctx->stat.read_errors++; 1218 sctx->stat.uncorrectable_errors++; 1219 spin_unlock(&sctx->stat_lock); 1220 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1221 goto out; 1222 } 1223 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 1224 sblock_bad = sblocks_for_recheck + failed_mirror_index; 1225 1226 /* build and submit the bios for the failed mirror, check checksums */ 1227 scrub_recheck_block(fs_info, sblock_bad, 1); 1228 1229 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 1230 sblock_bad->no_io_error_seen) { 1231 /* 1232 * the error disappeared after reading page by page, or 1233 * the area was part of a huge bio and other parts of the 1234 * bio caused I/O errors, or the block layer merged several 1235 * read requests into one and the error is caused by a 1236 * different bio (usually one of the two latter cases is 1237 * the cause) 1238 */ 1239 spin_lock(&sctx->stat_lock); 1240 sctx->stat.unverified_errors++; 1241 sblock_to_check->data_corrected = 1; 1242 spin_unlock(&sctx->stat_lock); 1243 1244 if (sctx->is_dev_replace) 1245 scrub_write_block_to_dev_replace(sblock_bad); 1246 goto out; 1247 } 1248 1249 if (!sblock_bad->no_io_error_seen) { 1250 spin_lock(&sctx->stat_lock); 1251 sctx->stat.read_errors++; 1252 spin_unlock(&sctx->stat_lock); 1253 if (__ratelimit(&_rs)) 1254 scrub_print_warning("i/o error", sblock_to_check); 1255 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1256 } else if (sblock_bad->checksum_error) { 1257 spin_lock(&sctx->stat_lock); 1258 sctx->stat.csum_errors++; 1259 spin_unlock(&sctx->stat_lock); 1260 if (__ratelimit(&_rs)) 1261 scrub_print_warning("checksum error", sblock_to_check); 1262 btrfs_dev_stat_inc_and_print(dev, 1263 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1264 } else if (sblock_bad->header_error) { 1265 spin_lock(&sctx->stat_lock); 1266 sctx->stat.verify_errors++; 1267 spin_unlock(&sctx->stat_lock); 1268 if (__ratelimit(&_rs)) 1269 scrub_print_warning("checksum/header error", 1270 sblock_to_check); 1271 if (sblock_bad->generation_error) 1272 btrfs_dev_stat_inc_and_print(dev, 1273 BTRFS_DEV_STAT_GENERATION_ERRS); 1274 else 1275 btrfs_dev_stat_inc_and_print(dev, 1276 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1277 } 1278 1279 if (sctx->readonly) { 1280 ASSERT(!sctx->is_dev_replace); 1281 goto out; 1282 } 1283 1284 if (!is_metadata && !have_csum) { 1285 struct scrub_fixup_nodatasum *fixup_nodatasum; 1286 1287 WARN_ON(sctx->is_dev_replace); 1288 1289 nodatasum_case: 1290 1291 /* 1292 * !is_metadata and !have_csum, this means that the data 1293 * might not be COWed, that it might be modified 1294 * concurrently. The general strategy to work on the 1295 * commit root does not help in the case when COW is not 1296 * used. 1297 */ 1298 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS); 1299 if (!fixup_nodatasum) 1300 goto did_not_correct_error; 1301 fixup_nodatasum->sctx = sctx; 1302 fixup_nodatasum->dev = dev; 1303 fixup_nodatasum->logical = logical; 1304 fixup_nodatasum->root = fs_info->extent_root; 1305 fixup_nodatasum->mirror_num = failed_mirror_index + 1; 1306 scrub_pending_trans_workers_inc(sctx); 1307 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper, 1308 scrub_fixup_nodatasum, NULL, NULL); 1309 btrfs_queue_work(fs_info->scrub_workers, 1310 &fixup_nodatasum->work); 1311 goto out; 1312 } 1313 1314 /* 1315 * now build and submit the bios for the other mirrors, check 1316 * checksums. 1317 * First try to pick the mirror which is completely without I/O 1318 * errors and also does not have a checksum error. 1319 * If one is found, and if a checksum is present, the full block 1320 * that is known to contain an error is rewritten. Afterwards 1321 * the block is known to be corrected. 1322 * If a mirror is found which is completely correct, and no 1323 * checksum is present, only those pages are rewritten that had 1324 * an I/O error in the block to be repaired, since it cannot be 1325 * determined, which copy of the other pages is better (and it 1326 * could happen otherwise that a correct page would be 1327 * overwritten by a bad one). 1328 */ 1329 for (mirror_index = 0; ;mirror_index++) { 1330 struct scrub_block *sblock_other; 1331 1332 if (mirror_index == failed_mirror_index) 1333 continue; 1334 1335 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */ 1336 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) { 1337 if (mirror_index >= BTRFS_MAX_MIRRORS) 1338 break; 1339 if (!sblocks_for_recheck[mirror_index].page_count) 1340 break; 1341 1342 sblock_other = sblocks_for_recheck + mirror_index; 1343 } else { 1344 struct scrub_recover *r = sblock_bad->pagev[0]->recover; 1345 int max_allowed = r->bbio->num_stripes - 1346 r->bbio->num_tgtdevs; 1347 1348 if (mirror_index >= max_allowed) 1349 break; 1350 if (!sblocks_for_recheck[1].page_count) 1351 break; 1352 1353 ASSERT(failed_mirror_index == 0); 1354 sblock_other = sblocks_for_recheck + 1; 1355 sblock_other->pagev[0]->mirror_num = 1 + mirror_index; 1356 } 1357 1358 /* build and submit the bios, check checksums */ 1359 scrub_recheck_block(fs_info, sblock_other, 0); 1360 1361 if (!sblock_other->header_error && 1362 !sblock_other->checksum_error && 1363 sblock_other->no_io_error_seen) { 1364 if (sctx->is_dev_replace) { 1365 scrub_write_block_to_dev_replace(sblock_other); 1366 goto corrected_error; 1367 } else { 1368 ret = scrub_repair_block_from_good_copy( 1369 sblock_bad, sblock_other); 1370 if (!ret) 1371 goto corrected_error; 1372 } 1373 } 1374 } 1375 1376 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) 1377 goto did_not_correct_error; 1378 1379 /* 1380 * In case of I/O errors in the area that is supposed to be 1381 * repaired, continue by picking good copies of those pages. 1382 * Select the good pages from mirrors to rewrite bad pages from 1383 * the area to fix. Afterwards verify the checksum of the block 1384 * that is supposed to be repaired. This verification step is 1385 * only done for the purpose of statistic counting and for the 1386 * final scrub report, whether errors remain. 1387 * A perfect algorithm could make use of the checksum and try 1388 * all possible combinations of pages from the different mirrors 1389 * until the checksum verification succeeds. For example, when 1390 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page 1391 * of mirror #2 is readable but the final checksum test fails, 1392 * then the 2nd page of mirror #3 could be tried, whether now 1393 * the final checksum succeeds. But this would be a rare 1394 * exception and is therefore not implemented. At least it is 1395 * avoided that the good copy is overwritten. 1396 * A more useful improvement would be to pick the sectors 1397 * without I/O error based on sector sizes (512 bytes on legacy 1398 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one 1399 * mirror could be repaired by taking 512 byte of a different 1400 * mirror, even if other 512 byte sectors in the same PAGE_SIZE 1401 * area are unreadable. 1402 */ 1403 success = 1; 1404 for (page_num = 0; page_num < sblock_bad->page_count; 1405 page_num++) { 1406 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1407 struct scrub_block *sblock_other = NULL; 1408 1409 /* skip no-io-error page in scrub */ 1410 if (!page_bad->io_error && !sctx->is_dev_replace) 1411 continue; 1412 1413 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) { 1414 /* 1415 * In case of dev replace, if raid56 rebuild process 1416 * didn't work out correct data, then copy the content 1417 * in sblock_bad to make sure target device is identical 1418 * to source device, instead of writing garbage data in 1419 * sblock_for_recheck array to target device. 1420 */ 1421 sblock_other = NULL; 1422 } else if (page_bad->io_error) { 1423 /* try to find no-io-error page in mirrors */ 1424 for (mirror_index = 0; 1425 mirror_index < BTRFS_MAX_MIRRORS && 1426 sblocks_for_recheck[mirror_index].page_count > 0; 1427 mirror_index++) { 1428 if (!sblocks_for_recheck[mirror_index]. 1429 pagev[page_num]->io_error) { 1430 sblock_other = sblocks_for_recheck + 1431 mirror_index; 1432 break; 1433 } 1434 } 1435 if (!sblock_other) 1436 success = 0; 1437 } 1438 1439 if (sctx->is_dev_replace) { 1440 /* 1441 * did not find a mirror to fetch the page 1442 * from. scrub_write_page_to_dev_replace() 1443 * handles this case (page->io_error), by 1444 * filling the block with zeros before 1445 * submitting the write request 1446 */ 1447 if (!sblock_other) 1448 sblock_other = sblock_bad; 1449 1450 if (scrub_write_page_to_dev_replace(sblock_other, 1451 page_num) != 0) { 1452 btrfs_dev_replace_stats_inc( 1453 &fs_info->dev_replace.num_write_errors); 1454 success = 0; 1455 } 1456 } else if (sblock_other) { 1457 ret = scrub_repair_page_from_good_copy(sblock_bad, 1458 sblock_other, 1459 page_num, 0); 1460 if (0 == ret) 1461 page_bad->io_error = 0; 1462 else 1463 success = 0; 1464 } 1465 } 1466 1467 if (success && !sctx->is_dev_replace) { 1468 if (is_metadata || have_csum) { 1469 /* 1470 * need to verify the checksum now that all 1471 * sectors on disk are repaired (the write 1472 * request for data to be repaired is on its way). 1473 * Just be lazy and use scrub_recheck_block() 1474 * which re-reads the data before the checksum 1475 * is verified, but most likely the data comes out 1476 * of the page cache. 1477 */ 1478 scrub_recheck_block(fs_info, sblock_bad, 1); 1479 if (!sblock_bad->header_error && 1480 !sblock_bad->checksum_error && 1481 sblock_bad->no_io_error_seen) 1482 goto corrected_error; 1483 else 1484 goto did_not_correct_error; 1485 } else { 1486 corrected_error: 1487 spin_lock(&sctx->stat_lock); 1488 sctx->stat.corrected_errors++; 1489 sblock_to_check->data_corrected = 1; 1490 spin_unlock(&sctx->stat_lock); 1491 btrfs_err_rl_in_rcu(fs_info, 1492 "fixed up error at logical %llu on dev %s", 1493 logical, rcu_str_deref(dev->name)); 1494 } 1495 } else { 1496 did_not_correct_error: 1497 spin_lock(&sctx->stat_lock); 1498 sctx->stat.uncorrectable_errors++; 1499 spin_unlock(&sctx->stat_lock); 1500 btrfs_err_rl_in_rcu(fs_info, 1501 "unable to fixup (regular) error at logical %llu on dev %s", 1502 logical, rcu_str_deref(dev->name)); 1503 } 1504 1505 out: 1506 if (sblocks_for_recheck) { 1507 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1508 mirror_index++) { 1509 struct scrub_block *sblock = sblocks_for_recheck + 1510 mirror_index; 1511 struct scrub_recover *recover; 1512 int page_index; 1513 1514 for (page_index = 0; page_index < sblock->page_count; 1515 page_index++) { 1516 sblock->pagev[page_index]->sblock = NULL; 1517 recover = sblock->pagev[page_index]->recover; 1518 if (recover) { 1519 scrub_put_recover(fs_info, recover); 1520 sblock->pagev[page_index]->recover = 1521 NULL; 1522 } 1523 scrub_page_put(sblock->pagev[page_index]); 1524 } 1525 } 1526 kfree(sblocks_for_recheck); 1527 } 1528 1529 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); 1530 if (ret < 0) 1531 return ret; 1532 return 0; 1533 } 1534 1535 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio) 1536 { 1537 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1538 return 2; 1539 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1540 return 3; 1541 else 1542 return (int)bbio->num_stripes; 1543 } 1544 1545 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 1546 u64 *raid_map, 1547 u64 mapped_length, 1548 int nstripes, int mirror, 1549 int *stripe_index, 1550 u64 *stripe_offset) 1551 { 1552 int i; 1553 1554 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1555 /* RAID5/6 */ 1556 for (i = 0; i < nstripes; i++) { 1557 if (raid_map[i] == RAID6_Q_STRIPE || 1558 raid_map[i] == RAID5_P_STRIPE) 1559 continue; 1560 1561 if (logical >= raid_map[i] && 1562 logical < raid_map[i] + mapped_length) 1563 break; 1564 } 1565 1566 *stripe_index = i; 1567 *stripe_offset = logical - raid_map[i]; 1568 } else { 1569 /* The other RAID type */ 1570 *stripe_index = mirror; 1571 *stripe_offset = 0; 1572 } 1573 } 1574 1575 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 1576 struct scrub_block *sblocks_for_recheck) 1577 { 1578 struct scrub_ctx *sctx = original_sblock->sctx; 1579 struct btrfs_fs_info *fs_info = sctx->fs_info; 1580 u64 length = original_sblock->page_count * PAGE_SIZE; 1581 u64 logical = original_sblock->pagev[0]->logical; 1582 u64 generation = original_sblock->pagev[0]->generation; 1583 u64 flags = original_sblock->pagev[0]->flags; 1584 u64 have_csum = original_sblock->pagev[0]->have_csum; 1585 struct scrub_recover *recover; 1586 struct btrfs_bio *bbio; 1587 u64 sublen; 1588 u64 mapped_length; 1589 u64 stripe_offset; 1590 int stripe_index; 1591 int page_index = 0; 1592 int mirror_index; 1593 int nmirrors; 1594 int ret; 1595 1596 /* 1597 * note: the two members refs and outstanding_pages 1598 * are not used (and not set) in the blocks that are used for 1599 * the recheck procedure 1600 */ 1601 1602 while (length > 0) { 1603 sublen = min_t(u64, length, PAGE_SIZE); 1604 mapped_length = sublen; 1605 bbio = NULL; 1606 1607 /* 1608 * with a length of PAGE_SIZE, each returned stripe 1609 * represents one mirror 1610 */ 1611 btrfs_bio_counter_inc_blocked(fs_info); 1612 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 1613 logical, &mapped_length, &bbio); 1614 if (ret || !bbio || mapped_length < sublen) { 1615 btrfs_put_bbio(bbio); 1616 btrfs_bio_counter_dec(fs_info); 1617 return -EIO; 1618 } 1619 1620 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); 1621 if (!recover) { 1622 btrfs_put_bbio(bbio); 1623 btrfs_bio_counter_dec(fs_info); 1624 return -ENOMEM; 1625 } 1626 1627 refcount_set(&recover->refs, 1); 1628 recover->bbio = bbio; 1629 recover->map_length = mapped_length; 1630 1631 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK); 1632 1633 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS); 1634 1635 for (mirror_index = 0; mirror_index < nmirrors; 1636 mirror_index++) { 1637 struct scrub_block *sblock; 1638 struct scrub_page *page; 1639 1640 sblock = sblocks_for_recheck + mirror_index; 1641 sblock->sctx = sctx; 1642 1643 page = kzalloc(sizeof(*page), GFP_NOFS); 1644 if (!page) { 1645 leave_nomem: 1646 spin_lock(&sctx->stat_lock); 1647 sctx->stat.malloc_errors++; 1648 spin_unlock(&sctx->stat_lock); 1649 scrub_put_recover(fs_info, recover); 1650 return -ENOMEM; 1651 } 1652 scrub_page_get(page); 1653 sblock->pagev[page_index] = page; 1654 page->sblock = sblock; 1655 page->flags = flags; 1656 page->generation = generation; 1657 page->logical = logical; 1658 page->have_csum = have_csum; 1659 if (have_csum) 1660 memcpy(page->csum, 1661 original_sblock->pagev[0]->csum, 1662 sctx->csum_size); 1663 1664 scrub_stripe_index_and_offset(logical, 1665 bbio->map_type, 1666 bbio->raid_map, 1667 mapped_length, 1668 bbio->num_stripes - 1669 bbio->num_tgtdevs, 1670 mirror_index, 1671 &stripe_index, 1672 &stripe_offset); 1673 page->physical = bbio->stripes[stripe_index].physical + 1674 stripe_offset; 1675 page->dev = bbio->stripes[stripe_index].dev; 1676 1677 BUG_ON(page_index >= original_sblock->page_count); 1678 page->physical_for_dev_replace = 1679 original_sblock->pagev[page_index]-> 1680 physical_for_dev_replace; 1681 /* for missing devices, dev->bdev is NULL */ 1682 page->mirror_num = mirror_index + 1; 1683 sblock->page_count++; 1684 page->page = alloc_page(GFP_NOFS); 1685 if (!page->page) 1686 goto leave_nomem; 1687 1688 scrub_get_recover(recover); 1689 page->recover = recover; 1690 } 1691 scrub_put_recover(fs_info, recover); 1692 length -= sublen; 1693 logical += sublen; 1694 page_index++; 1695 } 1696 1697 return 0; 1698 } 1699 1700 static void scrub_bio_wait_endio(struct bio *bio) 1701 { 1702 complete(bio->bi_private); 1703 } 1704 1705 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, 1706 struct bio *bio, 1707 struct scrub_page *page) 1708 { 1709 DECLARE_COMPLETION_ONSTACK(done); 1710 int ret; 1711 int mirror_num; 1712 1713 bio->bi_iter.bi_sector = page->logical >> 9; 1714 bio->bi_private = &done; 1715 bio->bi_end_io = scrub_bio_wait_endio; 1716 1717 mirror_num = page->sblock->pagev[0]->mirror_num; 1718 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio, 1719 page->recover->map_length, 1720 mirror_num, 0); 1721 if (ret) 1722 return ret; 1723 1724 wait_for_completion_io(&done); 1725 return blk_status_to_errno(bio->bi_status); 1726 } 1727 1728 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info, 1729 struct scrub_block *sblock) 1730 { 1731 struct scrub_page *first_page = sblock->pagev[0]; 1732 struct bio *bio; 1733 int page_num; 1734 1735 /* All pages in sblock belong to the same stripe on the same device. */ 1736 ASSERT(first_page->dev); 1737 if (!first_page->dev->bdev) 1738 goto out; 1739 1740 bio = btrfs_io_bio_alloc(BIO_MAX_PAGES); 1741 bio_set_dev(bio, first_page->dev->bdev); 1742 1743 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1744 struct scrub_page *page = sblock->pagev[page_num]; 1745 1746 WARN_ON(!page->page); 1747 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1748 } 1749 1750 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) { 1751 bio_put(bio); 1752 goto out; 1753 } 1754 1755 bio_put(bio); 1756 1757 scrub_recheck_block_checksum(sblock); 1758 1759 return; 1760 out: 1761 for (page_num = 0; page_num < sblock->page_count; page_num++) 1762 sblock->pagev[page_num]->io_error = 1; 1763 1764 sblock->no_io_error_seen = 0; 1765 } 1766 1767 /* 1768 * this function will check the on disk data for checksum errors, header 1769 * errors and read I/O errors. If any I/O errors happen, the exact pages 1770 * which are errored are marked as being bad. The goal is to enable scrub 1771 * to take those pages that are not errored from all the mirrors so that 1772 * the pages that are errored in the just handled mirror can be repaired. 1773 */ 1774 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1775 struct scrub_block *sblock, 1776 int retry_failed_mirror) 1777 { 1778 int page_num; 1779 1780 sblock->no_io_error_seen = 1; 1781 1782 /* short cut for raid56 */ 1783 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0])) 1784 return scrub_recheck_block_on_raid56(fs_info, sblock); 1785 1786 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1787 struct bio *bio; 1788 struct scrub_page *page = sblock->pagev[page_num]; 1789 1790 if (page->dev->bdev == NULL) { 1791 page->io_error = 1; 1792 sblock->no_io_error_seen = 0; 1793 continue; 1794 } 1795 1796 WARN_ON(!page->page); 1797 bio = btrfs_io_bio_alloc(1); 1798 bio_set_dev(bio, page->dev->bdev); 1799 1800 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1801 bio->bi_iter.bi_sector = page->physical >> 9; 1802 bio->bi_opf = REQ_OP_READ; 1803 1804 if (btrfsic_submit_bio_wait(bio)) { 1805 page->io_error = 1; 1806 sblock->no_io_error_seen = 0; 1807 } 1808 1809 bio_put(bio); 1810 } 1811 1812 if (sblock->no_io_error_seen) 1813 scrub_recheck_block_checksum(sblock); 1814 } 1815 1816 static inline int scrub_check_fsid(u8 fsid[], 1817 struct scrub_page *spage) 1818 { 1819 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; 1820 int ret; 1821 1822 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1823 return !ret; 1824 } 1825 1826 static void scrub_recheck_block_checksum(struct scrub_block *sblock) 1827 { 1828 sblock->header_error = 0; 1829 sblock->checksum_error = 0; 1830 sblock->generation_error = 0; 1831 1832 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA) 1833 scrub_checksum_data(sblock); 1834 else 1835 scrub_checksum_tree_block(sblock); 1836 } 1837 1838 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1839 struct scrub_block *sblock_good) 1840 { 1841 int page_num; 1842 int ret = 0; 1843 1844 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1845 int ret_sub; 1846 1847 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1848 sblock_good, 1849 page_num, 1); 1850 if (ret_sub) 1851 ret = ret_sub; 1852 } 1853 1854 return ret; 1855 } 1856 1857 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1858 struct scrub_block *sblock_good, 1859 int page_num, int force_write) 1860 { 1861 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1862 struct scrub_page *page_good = sblock_good->pagev[page_num]; 1863 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; 1864 1865 BUG_ON(page_bad->page == NULL); 1866 BUG_ON(page_good->page == NULL); 1867 if (force_write || sblock_bad->header_error || 1868 sblock_bad->checksum_error || page_bad->io_error) { 1869 struct bio *bio; 1870 int ret; 1871 1872 if (!page_bad->dev->bdev) { 1873 btrfs_warn_rl(fs_info, 1874 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); 1875 return -EIO; 1876 } 1877 1878 bio = btrfs_io_bio_alloc(1); 1879 bio_set_dev(bio, page_bad->dev->bdev); 1880 bio->bi_iter.bi_sector = page_bad->physical >> 9; 1881 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 1882 1883 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); 1884 if (PAGE_SIZE != ret) { 1885 bio_put(bio); 1886 return -EIO; 1887 } 1888 1889 if (btrfsic_submit_bio_wait(bio)) { 1890 btrfs_dev_stat_inc_and_print(page_bad->dev, 1891 BTRFS_DEV_STAT_WRITE_ERRS); 1892 btrfs_dev_replace_stats_inc( 1893 &fs_info->dev_replace.num_write_errors); 1894 bio_put(bio); 1895 return -EIO; 1896 } 1897 bio_put(bio); 1898 } 1899 1900 return 0; 1901 } 1902 1903 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1904 { 1905 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 1906 int page_num; 1907 1908 /* 1909 * This block is used for the check of the parity on the source device, 1910 * so the data needn't be written into the destination device. 1911 */ 1912 if (sblock->sparity) 1913 return; 1914 1915 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1916 int ret; 1917 1918 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1919 if (ret) 1920 btrfs_dev_replace_stats_inc( 1921 &fs_info->dev_replace.num_write_errors); 1922 } 1923 } 1924 1925 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1926 int page_num) 1927 { 1928 struct scrub_page *spage = sblock->pagev[page_num]; 1929 1930 BUG_ON(spage->page == NULL); 1931 if (spage->io_error) { 1932 void *mapped_buffer = kmap_atomic(spage->page); 1933 1934 clear_page(mapped_buffer); 1935 flush_dcache_page(spage->page); 1936 kunmap_atomic(mapped_buffer); 1937 } 1938 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1939 } 1940 1941 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1942 struct scrub_page *spage) 1943 { 1944 struct scrub_bio *sbio; 1945 int ret; 1946 1947 mutex_lock(&sctx->wr_lock); 1948 again: 1949 if (!sctx->wr_curr_bio) { 1950 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), 1951 GFP_KERNEL); 1952 if (!sctx->wr_curr_bio) { 1953 mutex_unlock(&sctx->wr_lock); 1954 return -ENOMEM; 1955 } 1956 sctx->wr_curr_bio->sctx = sctx; 1957 sctx->wr_curr_bio->page_count = 0; 1958 } 1959 sbio = sctx->wr_curr_bio; 1960 if (sbio->page_count == 0) { 1961 struct bio *bio; 1962 1963 sbio->physical = spage->physical_for_dev_replace; 1964 sbio->logical = spage->logical; 1965 sbio->dev = sctx->wr_tgtdev; 1966 bio = sbio->bio; 1967 if (!bio) { 1968 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio); 1969 sbio->bio = bio; 1970 } 1971 1972 bio->bi_private = sbio; 1973 bio->bi_end_io = scrub_wr_bio_end_io; 1974 bio_set_dev(bio, sbio->dev->bdev); 1975 bio->bi_iter.bi_sector = sbio->physical >> 9; 1976 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 1977 sbio->status = 0; 1978 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1979 spage->physical_for_dev_replace || 1980 sbio->logical + sbio->page_count * PAGE_SIZE != 1981 spage->logical) { 1982 scrub_wr_submit(sctx); 1983 goto again; 1984 } 1985 1986 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1987 if (ret != PAGE_SIZE) { 1988 if (sbio->page_count < 1) { 1989 bio_put(sbio->bio); 1990 sbio->bio = NULL; 1991 mutex_unlock(&sctx->wr_lock); 1992 return -EIO; 1993 } 1994 scrub_wr_submit(sctx); 1995 goto again; 1996 } 1997 1998 sbio->pagev[sbio->page_count] = spage; 1999 scrub_page_get(spage); 2000 sbio->page_count++; 2001 if (sbio->page_count == sctx->pages_per_wr_bio) 2002 scrub_wr_submit(sctx); 2003 mutex_unlock(&sctx->wr_lock); 2004 2005 return 0; 2006 } 2007 2008 static void scrub_wr_submit(struct scrub_ctx *sctx) 2009 { 2010 struct scrub_bio *sbio; 2011 2012 if (!sctx->wr_curr_bio) 2013 return; 2014 2015 sbio = sctx->wr_curr_bio; 2016 sctx->wr_curr_bio = NULL; 2017 WARN_ON(!sbio->bio->bi_disk); 2018 scrub_pending_bio_inc(sctx); 2019 /* process all writes in a single worker thread. Then the block layer 2020 * orders the requests before sending them to the driver which 2021 * doubled the write performance on spinning disks when measured 2022 * with Linux 3.5 */ 2023 btrfsic_submit_bio(sbio->bio); 2024 } 2025 2026 static void scrub_wr_bio_end_io(struct bio *bio) 2027 { 2028 struct scrub_bio *sbio = bio->bi_private; 2029 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 2030 2031 sbio->status = bio->bi_status; 2032 sbio->bio = bio; 2033 2034 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper, 2035 scrub_wr_bio_end_io_worker, NULL, NULL); 2036 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 2037 } 2038 2039 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 2040 { 2041 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2042 struct scrub_ctx *sctx = sbio->sctx; 2043 int i; 2044 2045 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 2046 if (sbio->status) { 2047 struct btrfs_dev_replace *dev_replace = 2048 &sbio->sctx->fs_info->dev_replace; 2049 2050 for (i = 0; i < sbio->page_count; i++) { 2051 struct scrub_page *spage = sbio->pagev[i]; 2052 2053 spage->io_error = 1; 2054 btrfs_dev_replace_stats_inc(&dev_replace-> 2055 num_write_errors); 2056 } 2057 } 2058 2059 for (i = 0; i < sbio->page_count; i++) 2060 scrub_page_put(sbio->pagev[i]); 2061 2062 bio_put(sbio->bio); 2063 kfree(sbio); 2064 scrub_pending_bio_dec(sctx); 2065 } 2066 2067 static int scrub_checksum(struct scrub_block *sblock) 2068 { 2069 u64 flags; 2070 int ret; 2071 2072 /* 2073 * No need to initialize these stats currently, 2074 * because this function only use return value 2075 * instead of these stats value. 2076 * 2077 * Todo: 2078 * always use stats 2079 */ 2080 sblock->header_error = 0; 2081 sblock->generation_error = 0; 2082 sblock->checksum_error = 0; 2083 2084 WARN_ON(sblock->page_count < 1); 2085 flags = sblock->pagev[0]->flags; 2086 ret = 0; 2087 if (flags & BTRFS_EXTENT_FLAG_DATA) 2088 ret = scrub_checksum_data(sblock); 2089 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2090 ret = scrub_checksum_tree_block(sblock); 2091 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 2092 (void)scrub_checksum_super(sblock); 2093 else 2094 WARN_ON(1); 2095 if (ret) 2096 scrub_handle_errored_block(sblock); 2097 2098 return ret; 2099 } 2100 2101 static int scrub_checksum_data(struct scrub_block *sblock) 2102 { 2103 struct scrub_ctx *sctx = sblock->sctx; 2104 u8 csum[BTRFS_CSUM_SIZE]; 2105 u8 *on_disk_csum; 2106 struct page *page; 2107 void *buffer; 2108 u32 crc = ~(u32)0; 2109 u64 len; 2110 int index; 2111 2112 BUG_ON(sblock->page_count < 1); 2113 if (!sblock->pagev[0]->have_csum) 2114 return 0; 2115 2116 on_disk_csum = sblock->pagev[0]->csum; 2117 page = sblock->pagev[0]->page; 2118 buffer = kmap_atomic(page); 2119 2120 len = sctx->fs_info->sectorsize; 2121 index = 0; 2122 for (;;) { 2123 u64 l = min_t(u64, len, PAGE_SIZE); 2124 2125 crc = btrfs_csum_data(buffer, crc, l); 2126 kunmap_atomic(buffer); 2127 len -= l; 2128 if (len == 0) 2129 break; 2130 index++; 2131 BUG_ON(index >= sblock->page_count); 2132 BUG_ON(!sblock->pagev[index]->page); 2133 page = sblock->pagev[index]->page; 2134 buffer = kmap_atomic(page); 2135 } 2136 2137 btrfs_csum_final(crc, csum); 2138 if (memcmp(csum, on_disk_csum, sctx->csum_size)) 2139 sblock->checksum_error = 1; 2140 2141 return sblock->checksum_error; 2142 } 2143 2144 static int scrub_checksum_tree_block(struct scrub_block *sblock) 2145 { 2146 struct scrub_ctx *sctx = sblock->sctx; 2147 struct btrfs_header *h; 2148 struct btrfs_fs_info *fs_info = sctx->fs_info; 2149 u8 calculated_csum[BTRFS_CSUM_SIZE]; 2150 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 2151 struct page *page; 2152 void *mapped_buffer; 2153 u64 mapped_size; 2154 void *p; 2155 u32 crc = ~(u32)0; 2156 u64 len; 2157 int index; 2158 2159 BUG_ON(sblock->page_count < 1); 2160 page = sblock->pagev[0]->page; 2161 mapped_buffer = kmap_atomic(page); 2162 h = (struct btrfs_header *)mapped_buffer; 2163 memcpy(on_disk_csum, h->csum, sctx->csum_size); 2164 2165 /* 2166 * we don't use the getter functions here, as we 2167 * a) don't have an extent buffer and 2168 * b) the page is already kmapped 2169 */ 2170 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h)) 2171 sblock->header_error = 1; 2172 2173 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) { 2174 sblock->header_error = 1; 2175 sblock->generation_error = 1; 2176 } 2177 2178 if (!scrub_check_fsid(h->fsid, sblock->pagev[0])) 2179 sblock->header_error = 1; 2180 2181 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 2182 BTRFS_UUID_SIZE)) 2183 sblock->header_error = 1; 2184 2185 len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE; 2186 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 2187 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 2188 index = 0; 2189 for (;;) { 2190 u64 l = min_t(u64, len, mapped_size); 2191 2192 crc = btrfs_csum_data(p, crc, l); 2193 kunmap_atomic(mapped_buffer); 2194 len -= l; 2195 if (len == 0) 2196 break; 2197 index++; 2198 BUG_ON(index >= sblock->page_count); 2199 BUG_ON(!sblock->pagev[index]->page); 2200 page = sblock->pagev[index]->page; 2201 mapped_buffer = kmap_atomic(page); 2202 mapped_size = PAGE_SIZE; 2203 p = mapped_buffer; 2204 } 2205 2206 btrfs_csum_final(crc, calculated_csum); 2207 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 2208 sblock->checksum_error = 1; 2209 2210 return sblock->header_error || sblock->checksum_error; 2211 } 2212 2213 static int scrub_checksum_super(struct scrub_block *sblock) 2214 { 2215 struct btrfs_super_block *s; 2216 struct scrub_ctx *sctx = sblock->sctx; 2217 u8 calculated_csum[BTRFS_CSUM_SIZE]; 2218 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 2219 struct page *page; 2220 void *mapped_buffer; 2221 u64 mapped_size; 2222 void *p; 2223 u32 crc = ~(u32)0; 2224 int fail_gen = 0; 2225 int fail_cor = 0; 2226 u64 len; 2227 int index; 2228 2229 BUG_ON(sblock->page_count < 1); 2230 page = sblock->pagev[0]->page; 2231 mapped_buffer = kmap_atomic(page); 2232 s = (struct btrfs_super_block *)mapped_buffer; 2233 memcpy(on_disk_csum, s->csum, sctx->csum_size); 2234 2235 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s)) 2236 ++fail_cor; 2237 2238 if (sblock->pagev[0]->generation != btrfs_super_generation(s)) 2239 ++fail_gen; 2240 2241 if (!scrub_check_fsid(s->fsid, sblock->pagev[0])) 2242 ++fail_cor; 2243 2244 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; 2245 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 2246 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 2247 index = 0; 2248 for (;;) { 2249 u64 l = min_t(u64, len, mapped_size); 2250 2251 crc = btrfs_csum_data(p, crc, l); 2252 kunmap_atomic(mapped_buffer); 2253 len -= l; 2254 if (len == 0) 2255 break; 2256 index++; 2257 BUG_ON(index >= sblock->page_count); 2258 BUG_ON(!sblock->pagev[index]->page); 2259 page = sblock->pagev[index]->page; 2260 mapped_buffer = kmap_atomic(page); 2261 mapped_size = PAGE_SIZE; 2262 p = mapped_buffer; 2263 } 2264 2265 btrfs_csum_final(crc, calculated_csum); 2266 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 2267 ++fail_cor; 2268 2269 if (fail_cor + fail_gen) { 2270 /* 2271 * if we find an error in a super block, we just report it. 2272 * They will get written with the next transaction commit 2273 * anyway 2274 */ 2275 spin_lock(&sctx->stat_lock); 2276 ++sctx->stat.super_errors; 2277 spin_unlock(&sctx->stat_lock); 2278 if (fail_cor) 2279 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 2280 BTRFS_DEV_STAT_CORRUPTION_ERRS); 2281 else 2282 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 2283 BTRFS_DEV_STAT_GENERATION_ERRS); 2284 } 2285 2286 return fail_cor + fail_gen; 2287 } 2288 2289 static void scrub_block_get(struct scrub_block *sblock) 2290 { 2291 refcount_inc(&sblock->refs); 2292 } 2293 2294 static void scrub_block_put(struct scrub_block *sblock) 2295 { 2296 if (refcount_dec_and_test(&sblock->refs)) { 2297 int i; 2298 2299 if (sblock->sparity) 2300 scrub_parity_put(sblock->sparity); 2301 2302 for (i = 0; i < sblock->page_count; i++) 2303 scrub_page_put(sblock->pagev[i]); 2304 kfree(sblock); 2305 } 2306 } 2307 2308 static void scrub_page_get(struct scrub_page *spage) 2309 { 2310 atomic_inc(&spage->refs); 2311 } 2312 2313 static void scrub_page_put(struct scrub_page *spage) 2314 { 2315 if (atomic_dec_and_test(&spage->refs)) { 2316 if (spage->page) 2317 __free_page(spage->page); 2318 kfree(spage); 2319 } 2320 } 2321 2322 static void scrub_submit(struct scrub_ctx *sctx) 2323 { 2324 struct scrub_bio *sbio; 2325 2326 if (sctx->curr == -1) 2327 return; 2328 2329 sbio = sctx->bios[sctx->curr]; 2330 sctx->curr = -1; 2331 scrub_pending_bio_inc(sctx); 2332 btrfsic_submit_bio(sbio->bio); 2333 } 2334 2335 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 2336 struct scrub_page *spage) 2337 { 2338 struct scrub_block *sblock = spage->sblock; 2339 struct scrub_bio *sbio; 2340 int ret; 2341 2342 again: 2343 /* 2344 * grab a fresh bio or wait for one to become available 2345 */ 2346 while (sctx->curr == -1) { 2347 spin_lock(&sctx->list_lock); 2348 sctx->curr = sctx->first_free; 2349 if (sctx->curr != -1) { 2350 sctx->first_free = sctx->bios[sctx->curr]->next_free; 2351 sctx->bios[sctx->curr]->next_free = -1; 2352 sctx->bios[sctx->curr]->page_count = 0; 2353 spin_unlock(&sctx->list_lock); 2354 } else { 2355 spin_unlock(&sctx->list_lock); 2356 wait_event(sctx->list_wait, sctx->first_free != -1); 2357 } 2358 } 2359 sbio = sctx->bios[sctx->curr]; 2360 if (sbio->page_count == 0) { 2361 struct bio *bio; 2362 2363 sbio->physical = spage->physical; 2364 sbio->logical = spage->logical; 2365 sbio->dev = spage->dev; 2366 bio = sbio->bio; 2367 if (!bio) { 2368 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio); 2369 sbio->bio = bio; 2370 } 2371 2372 bio->bi_private = sbio; 2373 bio->bi_end_io = scrub_bio_end_io; 2374 bio_set_dev(bio, sbio->dev->bdev); 2375 bio->bi_iter.bi_sector = sbio->physical >> 9; 2376 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2377 sbio->status = 0; 2378 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 2379 spage->physical || 2380 sbio->logical + sbio->page_count * PAGE_SIZE != 2381 spage->logical || 2382 sbio->dev != spage->dev) { 2383 scrub_submit(sctx); 2384 goto again; 2385 } 2386 2387 sbio->pagev[sbio->page_count] = spage; 2388 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 2389 if (ret != PAGE_SIZE) { 2390 if (sbio->page_count < 1) { 2391 bio_put(sbio->bio); 2392 sbio->bio = NULL; 2393 return -EIO; 2394 } 2395 scrub_submit(sctx); 2396 goto again; 2397 } 2398 2399 scrub_block_get(sblock); /* one for the page added to the bio */ 2400 atomic_inc(&sblock->outstanding_pages); 2401 sbio->page_count++; 2402 if (sbio->page_count == sctx->pages_per_rd_bio) 2403 scrub_submit(sctx); 2404 2405 return 0; 2406 } 2407 2408 static void scrub_missing_raid56_end_io(struct bio *bio) 2409 { 2410 struct scrub_block *sblock = bio->bi_private; 2411 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 2412 2413 if (bio->bi_status) 2414 sblock->no_io_error_seen = 0; 2415 2416 bio_put(bio); 2417 2418 btrfs_queue_work(fs_info->scrub_workers, &sblock->work); 2419 } 2420 2421 static void scrub_missing_raid56_worker(struct btrfs_work *work) 2422 { 2423 struct scrub_block *sblock = container_of(work, struct scrub_block, work); 2424 struct scrub_ctx *sctx = sblock->sctx; 2425 struct btrfs_fs_info *fs_info = sctx->fs_info; 2426 u64 logical; 2427 struct btrfs_device *dev; 2428 2429 logical = sblock->pagev[0]->logical; 2430 dev = sblock->pagev[0]->dev; 2431 2432 if (sblock->no_io_error_seen) 2433 scrub_recheck_block_checksum(sblock); 2434 2435 if (!sblock->no_io_error_seen) { 2436 spin_lock(&sctx->stat_lock); 2437 sctx->stat.read_errors++; 2438 spin_unlock(&sctx->stat_lock); 2439 btrfs_err_rl_in_rcu(fs_info, 2440 "IO error rebuilding logical %llu for dev %s", 2441 logical, rcu_str_deref(dev->name)); 2442 } else if (sblock->header_error || sblock->checksum_error) { 2443 spin_lock(&sctx->stat_lock); 2444 sctx->stat.uncorrectable_errors++; 2445 spin_unlock(&sctx->stat_lock); 2446 btrfs_err_rl_in_rcu(fs_info, 2447 "failed to rebuild valid logical %llu for dev %s", 2448 logical, rcu_str_deref(dev->name)); 2449 } else { 2450 scrub_write_block_to_dev_replace(sblock); 2451 } 2452 2453 scrub_block_put(sblock); 2454 2455 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2456 mutex_lock(&sctx->wr_lock); 2457 scrub_wr_submit(sctx); 2458 mutex_unlock(&sctx->wr_lock); 2459 } 2460 2461 scrub_pending_bio_dec(sctx); 2462 } 2463 2464 static void scrub_missing_raid56_pages(struct scrub_block *sblock) 2465 { 2466 struct scrub_ctx *sctx = sblock->sctx; 2467 struct btrfs_fs_info *fs_info = sctx->fs_info; 2468 u64 length = sblock->page_count * PAGE_SIZE; 2469 u64 logical = sblock->pagev[0]->logical; 2470 struct btrfs_bio *bbio = NULL; 2471 struct bio *bio; 2472 struct btrfs_raid_bio *rbio; 2473 int ret; 2474 int i; 2475 2476 btrfs_bio_counter_inc_blocked(fs_info); 2477 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 2478 &length, &bbio); 2479 if (ret || !bbio || !bbio->raid_map) 2480 goto bbio_out; 2481 2482 if (WARN_ON(!sctx->is_dev_replace || 2483 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2484 /* 2485 * We shouldn't be scrubbing a missing device. Even for dev 2486 * replace, we should only get here for RAID 5/6. We either 2487 * managed to mount something with no mirrors remaining or 2488 * there's a bug in scrub_remap_extent()/btrfs_map_block(). 2489 */ 2490 goto bbio_out; 2491 } 2492 2493 bio = btrfs_io_bio_alloc(0); 2494 bio->bi_iter.bi_sector = logical >> 9; 2495 bio->bi_private = sblock; 2496 bio->bi_end_io = scrub_missing_raid56_end_io; 2497 2498 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length); 2499 if (!rbio) 2500 goto rbio_out; 2501 2502 for (i = 0; i < sblock->page_count; i++) { 2503 struct scrub_page *spage = sblock->pagev[i]; 2504 2505 raid56_add_scrub_pages(rbio, spage->page, spage->logical); 2506 } 2507 2508 btrfs_init_work(&sblock->work, btrfs_scrub_helper, 2509 scrub_missing_raid56_worker, NULL, NULL); 2510 scrub_block_get(sblock); 2511 scrub_pending_bio_inc(sctx); 2512 raid56_submit_missing_rbio(rbio); 2513 return; 2514 2515 rbio_out: 2516 bio_put(bio); 2517 bbio_out: 2518 btrfs_bio_counter_dec(fs_info); 2519 btrfs_put_bbio(bbio); 2520 spin_lock(&sctx->stat_lock); 2521 sctx->stat.malloc_errors++; 2522 spin_unlock(&sctx->stat_lock); 2523 } 2524 2525 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 2526 u64 physical, struct btrfs_device *dev, u64 flags, 2527 u64 gen, int mirror_num, u8 *csum, int force, 2528 u64 physical_for_dev_replace) 2529 { 2530 struct scrub_block *sblock; 2531 int index; 2532 2533 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2534 if (!sblock) { 2535 spin_lock(&sctx->stat_lock); 2536 sctx->stat.malloc_errors++; 2537 spin_unlock(&sctx->stat_lock); 2538 return -ENOMEM; 2539 } 2540 2541 /* one ref inside this function, plus one for each page added to 2542 * a bio later on */ 2543 refcount_set(&sblock->refs, 1); 2544 sblock->sctx = sctx; 2545 sblock->no_io_error_seen = 1; 2546 2547 for (index = 0; len > 0; index++) { 2548 struct scrub_page *spage; 2549 u64 l = min_t(u64, len, PAGE_SIZE); 2550 2551 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2552 if (!spage) { 2553 leave_nomem: 2554 spin_lock(&sctx->stat_lock); 2555 sctx->stat.malloc_errors++; 2556 spin_unlock(&sctx->stat_lock); 2557 scrub_block_put(sblock); 2558 return -ENOMEM; 2559 } 2560 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2561 scrub_page_get(spage); 2562 sblock->pagev[index] = spage; 2563 spage->sblock = sblock; 2564 spage->dev = dev; 2565 spage->flags = flags; 2566 spage->generation = gen; 2567 spage->logical = logical; 2568 spage->physical = physical; 2569 spage->physical_for_dev_replace = physical_for_dev_replace; 2570 spage->mirror_num = mirror_num; 2571 if (csum) { 2572 spage->have_csum = 1; 2573 memcpy(spage->csum, csum, sctx->csum_size); 2574 } else { 2575 spage->have_csum = 0; 2576 } 2577 sblock->page_count++; 2578 spage->page = alloc_page(GFP_KERNEL); 2579 if (!spage->page) 2580 goto leave_nomem; 2581 len -= l; 2582 logical += l; 2583 physical += l; 2584 physical_for_dev_replace += l; 2585 } 2586 2587 WARN_ON(sblock->page_count == 0); 2588 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2589 /* 2590 * This case should only be hit for RAID 5/6 device replace. See 2591 * the comment in scrub_missing_raid56_pages() for details. 2592 */ 2593 scrub_missing_raid56_pages(sblock); 2594 } else { 2595 for (index = 0; index < sblock->page_count; index++) { 2596 struct scrub_page *spage = sblock->pagev[index]; 2597 int ret; 2598 2599 ret = scrub_add_page_to_rd_bio(sctx, spage); 2600 if (ret) { 2601 scrub_block_put(sblock); 2602 return ret; 2603 } 2604 } 2605 2606 if (force) 2607 scrub_submit(sctx); 2608 } 2609 2610 /* last one frees, either here or in bio completion for last page */ 2611 scrub_block_put(sblock); 2612 return 0; 2613 } 2614 2615 static void scrub_bio_end_io(struct bio *bio) 2616 { 2617 struct scrub_bio *sbio = bio->bi_private; 2618 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 2619 2620 sbio->status = bio->bi_status; 2621 sbio->bio = bio; 2622 2623 btrfs_queue_work(fs_info->scrub_workers, &sbio->work); 2624 } 2625 2626 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2627 { 2628 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2629 struct scrub_ctx *sctx = sbio->sctx; 2630 int i; 2631 2632 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2633 if (sbio->status) { 2634 for (i = 0; i < sbio->page_count; i++) { 2635 struct scrub_page *spage = sbio->pagev[i]; 2636 2637 spage->io_error = 1; 2638 spage->sblock->no_io_error_seen = 0; 2639 } 2640 } 2641 2642 /* now complete the scrub_block items that have all pages completed */ 2643 for (i = 0; i < sbio->page_count; i++) { 2644 struct scrub_page *spage = sbio->pagev[i]; 2645 struct scrub_block *sblock = spage->sblock; 2646 2647 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2648 scrub_block_complete(sblock); 2649 scrub_block_put(sblock); 2650 } 2651 2652 bio_put(sbio->bio); 2653 sbio->bio = NULL; 2654 spin_lock(&sctx->list_lock); 2655 sbio->next_free = sctx->first_free; 2656 sctx->first_free = sbio->index; 2657 spin_unlock(&sctx->list_lock); 2658 2659 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2660 mutex_lock(&sctx->wr_lock); 2661 scrub_wr_submit(sctx); 2662 mutex_unlock(&sctx->wr_lock); 2663 } 2664 2665 scrub_pending_bio_dec(sctx); 2666 } 2667 2668 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, 2669 unsigned long *bitmap, 2670 u64 start, u64 len) 2671 { 2672 u64 offset; 2673 u64 nsectors64; 2674 u32 nsectors; 2675 int sectorsize = sparity->sctx->fs_info->sectorsize; 2676 2677 if (len >= sparity->stripe_len) { 2678 bitmap_set(bitmap, 0, sparity->nsectors); 2679 return; 2680 } 2681 2682 start -= sparity->logic_start; 2683 start = div64_u64_rem(start, sparity->stripe_len, &offset); 2684 offset = div_u64(offset, sectorsize); 2685 nsectors64 = div_u64(len, sectorsize); 2686 2687 ASSERT(nsectors64 < UINT_MAX); 2688 nsectors = (u32)nsectors64; 2689 2690 if (offset + nsectors <= sparity->nsectors) { 2691 bitmap_set(bitmap, offset, nsectors); 2692 return; 2693 } 2694 2695 bitmap_set(bitmap, offset, sparity->nsectors - offset); 2696 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); 2697 } 2698 2699 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, 2700 u64 start, u64 len) 2701 { 2702 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); 2703 } 2704 2705 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, 2706 u64 start, u64 len) 2707 { 2708 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); 2709 } 2710 2711 static void scrub_block_complete(struct scrub_block *sblock) 2712 { 2713 int corrupted = 0; 2714 2715 if (!sblock->no_io_error_seen) { 2716 corrupted = 1; 2717 scrub_handle_errored_block(sblock); 2718 } else { 2719 /* 2720 * if has checksum error, write via repair mechanism in 2721 * dev replace case, otherwise write here in dev replace 2722 * case. 2723 */ 2724 corrupted = scrub_checksum(sblock); 2725 if (!corrupted && sblock->sctx->is_dev_replace) 2726 scrub_write_block_to_dev_replace(sblock); 2727 } 2728 2729 if (sblock->sparity && corrupted && !sblock->data_corrected) { 2730 u64 start = sblock->pagev[0]->logical; 2731 u64 end = sblock->pagev[sblock->page_count - 1]->logical + 2732 PAGE_SIZE; 2733 2734 scrub_parity_mark_sectors_error(sblock->sparity, 2735 start, end - start); 2736 } 2737 } 2738 2739 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) 2740 { 2741 struct btrfs_ordered_sum *sum = NULL; 2742 unsigned long index; 2743 unsigned long num_sectors; 2744 2745 while (!list_empty(&sctx->csum_list)) { 2746 sum = list_first_entry(&sctx->csum_list, 2747 struct btrfs_ordered_sum, list); 2748 if (sum->bytenr > logical) 2749 return 0; 2750 if (sum->bytenr + sum->len > logical) 2751 break; 2752 2753 ++sctx->stat.csum_discards; 2754 list_del(&sum->list); 2755 kfree(sum); 2756 sum = NULL; 2757 } 2758 if (!sum) 2759 return 0; 2760 2761 index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize); 2762 ASSERT(index < UINT_MAX); 2763 2764 num_sectors = sum->len / sctx->fs_info->sectorsize; 2765 memcpy(csum, sum->sums + index, sctx->csum_size); 2766 if (index == num_sectors - 1) { 2767 list_del(&sum->list); 2768 kfree(sum); 2769 } 2770 return 1; 2771 } 2772 2773 /* scrub extent tries to collect up to 64 kB for each bio */ 2774 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map, 2775 u64 logical, u64 len, 2776 u64 physical, struct btrfs_device *dev, u64 flags, 2777 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2778 { 2779 int ret; 2780 u8 csum[BTRFS_CSUM_SIZE]; 2781 u32 blocksize; 2782 2783 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2784 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2785 blocksize = map->stripe_len; 2786 else 2787 blocksize = sctx->fs_info->sectorsize; 2788 spin_lock(&sctx->stat_lock); 2789 sctx->stat.data_extents_scrubbed++; 2790 sctx->stat.data_bytes_scrubbed += len; 2791 spin_unlock(&sctx->stat_lock); 2792 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2793 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2794 blocksize = map->stripe_len; 2795 else 2796 blocksize = sctx->fs_info->nodesize; 2797 spin_lock(&sctx->stat_lock); 2798 sctx->stat.tree_extents_scrubbed++; 2799 sctx->stat.tree_bytes_scrubbed += len; 2800 spin_unlock(&sctx->stat_lock); 2801 } else { 2802 blocksize = sctx->fs_info->sectorsize; 2803 WARN_ON(1); 2804 } 2805 2806 while (len) { 2807 u64 l = min_t(u64, len, blocksize); 2808 int have_csum = 0; 2809 2810 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2811 /* push csums to sbio */ 2812 have_csum = scrub_find_csum(sctx, logical, csum); 2813 if (have_csum == 0) 2814 ++sctx->stat.no_csum; 2815 if (sctx->is_dev_replace && !have_csum) { 2816 ret = copy_nocow_pages(sctx, logical, l, 2817 mirror_num, 2818 physical_for_dev_replace); 2819 goto behind_scrub_pages; 2820 } 2821 } 2822 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2823 mirror_num, have_csum ? csum : NULL, 0, 2824 physical_for_dev_replace); 2825 behind_scrub_pages: 2826 if (ret) 2827 return ret; 2828 len -= l; 2829 logical += l; 2830 physical += l; 2831 physical_for_dev_replace += l; 2832 } 2833 return 0; 2834 } 2835 2836 static int scrub_pages_for_parity(struct scrub_parity *sparity, 2837 u64 logical, u64 len, 2838 u64 physical, struct btrfs_device *dev, 2839 u64 flags, u64 gen, int mirror_num, u8 *csum) 2840 { 2841 struct scrub_ctx *sctx = sparity->sctx; 2842 struct scrub_block *sblock; 2843 int index; 2844 2845 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2846 if (!sblock) { 2847 spin_lock(&sctx->stat_lock); 2848 sctx->stat.malloc_errors++; 2849 spin_unlock(&sctx->stat_lock); 2850 return -ENOMEM; 2851 } 2852 2853 /* one ref inside this function, plus one for each page added to 2854 * a bio later on */ 2855 refcount_set(&sblock->refs, 1); 2856 sblock->sctx = sctx; 2857 sblock->no_io_error_seen = 1; 2858 sblock->sparity = sparity; 2859 scrub_parity_get(sparity); 2860 2861 for (index = 0; len > 0; index++) { 2862 struct scrub_page *spage; 2863 u64 l = min_t(u64, len, PAGE_SIZE); 2864 2865 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2866 if (!spage) { 2867 leave_nomem: 2868 spin_lock(&sctx->stat_lock); 2869 sctx->stat.malloc_errors++; 2870 spin_unlock(&sctx->stat_lock); 2871 scrub_block_put(sblock); 2872 return -ENOMEM; 2873 } 2874 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2875 /* For scrub block */ 2876 scrub_page_get(spage); 2877 sblock->pagev[index] = spage; 2878 /* For scrub parity */ 2879 scrub_page_get(spage); 2880 list_add_tail(&spage->list, &sparity->spages); 2881 spage->sblock = sblock; 2882 spage->dev = dev; 2883 spage->flags = flags; 2884 spage->generation = gen; 2885 spage->logical = logical; 2886 spage->physical = physical; 2887 spage->mirror_num = mirror_num; 2888 if (csum) { 2889 spage->have_csum = 1; 2890 memcpy(spage->csum, csum, sctx->csum_size); 2891 } else { 2892 spage->have_csum = 0; 2893 } 2894 sblock->page_count++; 2895 spage->page = alloc_page(GFP_KERNEL); 2896 if (!spage->page) 2897 goto leave_nomem; 2898 len -= l; 2899 logical += l; 2900 physical += l; 2901 } 2902 2903 WARN_ON(sblock->page_count == 0); 2904 for (index = 0; index < sblock->page_count; index++) { 2905 struct scrub_page *spage = sblock->pagev[index]; 2906 int ret; 2907 2908 ret = scrub_add_page_to_rd_bio(sctx, spage); 2909 if (ret) { 2910 scrub_block_put(sblock); 2911 return ret; 2912 } 2913 } 2914 2915 /* last one frees, either here or in bio completion for last page */ 2916 scrub_block_put(sblock); 2917 return 0; 2918 } 2919 2920 static int scrub_extent_for_parity(struct scrub_parity *sparity, 2921 u64 logical, u64 len, 2922 u64 physical, struct btrfs_device *dev, 2923 u64 flags, u64 gen, int mirror_num) 2924 { 2925 struct scrub_ctx *sctx = sparity->sctx; 2926 int ret; 2927 u8 csum[BTRFS_CSUM_SIZE]; 2928 u32 blocksize; 2929 2930 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2931 scrub_parity_mark_sectors_error(sparity, logical, len); 2932 return 0; 2933 } 2934 2935 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2936 blocksize = sparity->stripe_len; 2937 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2938 blocksize = sparity->stripe_len; 2939 } else { 2940 blocksize = sctx->fs_info->sectorsize; 2941 WARN_ON(1); 2942 } 2943 2944 while (len) { 2945 u64 l = min_t(u64, len, blocksize); 2946 int have_csum = 0; 2947 2948 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2949 /* push csums to sbio */ 2950 have_csum = scrub_find_csum(sctx, logical, csum); 2951 if (have_csum == 0) 2952 goto skip; 2953 } 2954 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, 2955 flags, gen, mirror_num, 2956 have_csum ? csum : NULL); 2957 if (ret) 2958 return ret; 2959 skip: 2960 len -= l; 2961 logical += l; 2962 physical += l; 2963 } 2964 return 0; 2965 } 2966 2967 /* 2968 * Given a physical address, this will calculate it's 2969 * logical offset. if this is a parity stripe, it will return 2970 * the most left data stripe's logical offset. 2971 * 2972 * return 0 if it is a data stripe, 1 means parity stripe. 2973 */ 2974 static int get_raid56_logic_offset(u64 physical, int num, 2975 struct map_lookup *map, u64 *offset, 2976 u64 *stripe_start) 2977 { 2978 int i; 2979 int j = 0; 2980 u64 stripe_nr; 2981 u64 last_offset; 2982 u32 stripe_index; 2983 u32 rot; 2984 2985 last_offset = (physical - map->stripes[num].physical) * 2986 nr_data_stripes(map); 2987 if (stripe_start) 2988 *stripe_start = last_offset; 2989 2990 *offset = last_offset; 2991 for (i = 0; i < nr_data_stripes(map); i++) { 2992 *offset = last_offset + i * map->stripe_len; 2993 2994 stripe_nr = div64_u64(*offset, map->stripe_len); 2995 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map)); 2996 2997 /* Work out the disk rotation on this stripe-set */ 2998 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); 2999 /* calculate which stripe this data locates */ 3000 rot += i; 3001 stripe_index = rot % map->num_stripes; 3002 if (stripe_index == num) 3003 return 0; 3004 if (stripe_index < num) 3005 j++; 3006 } 3007 *offset = last_offset + j * map->stripe_len; 3008 return 1; 3009 } 3010 3011 static void scrub_free_parity(struct scrub_parity *sparity) 3012 { 3013 struct scrub_ctx *sctx = sparity->sctx; 3014 struct scrub_page *curr, *next; 3015 int nbits; 3016 3017 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); 3018 if (nbits) { 3019 spin_lock(&sctx->stat_lock); 3020 sctx->stat.read_errors += nbits; 3021 sctx->stat.uncorrectable_errors += nbits; 3022 spin_unlock(&sctx->stat_lock); 3023 } 3024 3025 list_for_each_entry_safe(curr, next, &sparity->spages, list) { 3026 list_del_init(&curr->list); 3027 scrub_page_put(curr); 3028 } 3029 3030 kfree(sparity); 3031 } 3032 3033 static void scrub_parity_bio_endio_worker(struct btrfs_work *work) 3034 { 3035 struct scrub_parity *sparity = container_of(work, struct scrub_parity, 3036 work); 3037 struct scrub_ctx *sctx = sparity->sctx; 3038 3039 scrub_free_parity(sparity); 3040 scrub_pending_bio_dec(sctx); 3041 } 3042 3043 static void scrub_parity_bio_endio(struct bio *bio) 3044 { 3045 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; 3046 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; 3047 3048 if (bio->bi_status) 3049 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 3050 sparity->nsectors); 3051 3052 bio_put(bio); 3053 3054 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper, 3055 scrub_parity_bio_endio_worker, NULL, NULL); 3056 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work); 3057 } 3058 3059 static void scrub_parity_check_and_repair(struct scrub_parity *sparity) 3060 { 3061 struct scrub_ctx *sctx = sparity->sctx; 3062 struct btrfs_fs_info *fs_info = sctx->fs_info; 3063 struct bio *bio; 3064 struct btrfs_raid_bio *rbio; 3065 struct btrfs_bio *bbio = NULL; 3066 u64 length; 3067 int ret; 3068 3069 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, 3070 sparity->nsectors)) 3071 goto out; 3072 3073 length = sparity->logic_end - sparity->logic_start; 3074 3075 btrfs_bio_counter_inc_blocked(fs_info); 3076 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, 3077 &length, &bbio); 3078 if (ret || !bbio || !bbio->raid_map) 3079 goto bbio_out; 3080 3081 bio = btrfs_io_bio_alloc(0); 3082 bio->bi_iter.bi_sector = sparity->logic_start >> 9; 3083 bio->bi_private = sparity; 3084 bio->bi_end_io = scrub_parity_bio_endio; 3085 3086 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio, 3087 length, sparity->scrub_dev, 3088 sparity->dbitmap, 3089 sparity->nsectors); 3090 if (!rbio) 3091 goto rbio_out; 3092 3093 scrub_pending_bio_inc(sctx); 3094 raid56_parity_submit_scrub_rbio(rbio); 3095 return; 3096 3097 rbio_out: 3098 bio_put(bio); 3099 bbio_out: 3100 btrfs_bio_counter_dec(fs_info); 3101 btrfs_put_bbio(bbio); 3102 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 3103 sparity->nsectors); 3104 spin_lock(&sctx->stat_lock); 3105 sctx->stat.malloc_errors++; 3106 spin_unlock(&sctx->stat_lock); 3107 out: 3108 scrub_free_parity(sparity); 3109 } 3110 3111 static inline int scrub_calc_parity_bitmap_len(int nsectors) 3112 { 3113 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long); 3114 } 3115 3116 static void scrub_parity_get(struct scrub_parity *sparity) 3117 { 3118 refcount_inc(&sparity->refs); 3119 } 3120 3121 static void scrub_parity_put(struct scrub_parity *sparity) 3122 { 3123 if (!refcount_dec_and_test(&sparity->refs)) 3124 return; 3125 3126 scrub_parity_check_and_repair(sparity); 3127 } 3128 3129 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, 3130 struct map_lookup *map, 3131 struct btrfs_device *sdev, 3132 struct btrfs_path *path, 3133 u64 logic_start, 3134 u64 logic_end) 3135 { 3136 struct btrfs_fs_info *fs_info = sctx->fs_info; 3137 struct btrfs_root *root = fs_info->extent_root; 3138 struct btrfs_root *csum_root = fs_info->csum_root; 3139 struct btrfs_extent_item *extent; 3140 struct btrfs_bio *bbio = NULL; 3141 u64 flags; 3142 int ret; 3143 int slot; 3144 struct extent_buffer *l; 3145 struct btrfs_key key; 3146 u64 generation; 3147 u64 extent_logical; 3148 u64 extent_physical; 3149 u64 extent_len; 3150 u64 mapped_length; 3151 struct btrfs_device *extent_dev; 3152 struct scrub_parity *sparity; 3153 int nsectors; 3154 int bitmap_len; 3155 int extent_mirror_num; 3156 int stop_loop = 0; 3157 3158 nsectors = div_u64(map->stripe_len, fs_info->sectorsize); 3159 bitmap_len = scrub_calc_parity_bitmap_len(nsectors); 3160 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, 3161 GFP_NOFS); 3162 if (!sparity) { 3163 spin_lock(&sctx->stat_lock); 3164 sctx->stat.malloc_errors++; 3165 spin_unlock(&sctx->stat_lock); 3166 return -ENOMEM; 3167 } 3168 3169 sparity->stripe_len = map->stripe_len; 3170 sparity->nsectors = nsectors; 3171 sparity->sctx = sctx; 3172 sparity->scrub_dev = sdev; 3173 sparity->logic_start = logic_start; 3174 sparity->logic_end = logic_end; 3175 refcount_set(&sparity->refs, 1); 3176 INIT_LIST_HEAD(&sparity->spages); 3177 sparity->dbitmap = sparity->bitmap; 3178 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; 3179 3180 ret = 0; 3181 while (logic_start < logic_end) { 3182 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3183 key.type = BTRFS_METADATA_ITEM_KEY; 3184 else 3185 key.type = BTRFS_EXTENT_ITEM_KEY; 3186 key.objectid = logic_start; 3187 key.offset = (u64)-1; 3188 3189 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3190 if (ret < 0) 3191 goto out; 3192 3193 if (ret > 0) { 3194 ret = btrfs_previous_extent_item(root, path, 0); 3195 if (ret < 0) 3196 goto out; 3197 if (ret > 0) { 3198 btrfs_release_path(path); 3199 ret = btrfs_search_slot(NULL, root, &key, 3200 path, 0, 0); 3201 if (ret < 0) 3202 goto out; 3203 } 3204 } 3205 3206 stop_loop = 0; 3207 while (1) { 3208 u64 bytes; 3209 3210 l = path->nodes[0]; 3211 slot = path->slots[0]; 3212 if (slot >= btrfs_header_nritems(l)) { 3213 ret = btrfs_next_leaf(root, path); 3214 if (ret == 0) 3215 continue; 3216 if (ret < 0) 3217 goto out; 3218 3219 stop_loop = 1; 3220 break; 3221 } 3222 btrfs_item_key_to_cpu(l, &key, slot); 3223 3224 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3225 key.type != BTRFS_METADATA_ITEM_KEY) 3226 goto next; 3227 3228 if (key.type == BTRFS_METADATA_ITEM_KEY) 3229 bytes = fs_info->nodesize; 3230 else 3231 bytes = key.offset; 3232 3233 if (key.objectid + bytes <= logic_start) 3234 goto next; 3235 3236 if (key.objectid >= logic_end) { 3237 stop_loop = 1; 3238 break; 3239 } 3240 3241 while (key.objectid >= logic_start + map->stripe_len) 3242 logic_start += map->stripe_len; 3243 3244 extent = btrfs_item_ptr(l, slot, 3245 struct btrfs_extent_item); 3246 flags = btrfs_extent_flags(l, extent); 3247 generation = btrfs_extent_generation(l, extent); 3248 3249 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3250 (key.objectid < logic_start || 3251 key.objectid + bytes > 3252 logic_start + map->stripe_len)) { 3253 btrfs_err(fs_info, 3254 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3255 key.objectid, logic_start); 3256 spin_lock(&sctx->stat_lock); 3257 sctx->stat.uncorrectable_errors++; 3258 spin_unlock(&sctx->stat_lock); 3259 goto next; 3260 } 3261 again: 3262 extent_logical = key.objectid; 3263 extent_len = bytes; 3264 3265 if (extent_logical < logic_start) { 3266 extent_len -= logic_start - extent_logical; 3267 extent_logical = logic_start; 3268 } 3269 3270 if (extent_logical + extent_len > 3271 logic_start + map->stripe_len) 3272 extent_len = logic_start + map->stripe_len - 3273 extent_logical; 3274 3275 scrub_parity_mark_sectors_data(sparity, extent_logical, 3276 extent_len); 3277 3278 mapped_length = extent_len; 3279 bbio = NULL; 3280 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, 3281 extent_logical, &mapped_length, &bbio, 3282 0); 3283 if (!ret) { 3284 if (!bbio || mapped_length < extent_len) 3285 ret = -EIO; 3286 } 3287 if (ret) { 3288 btrfs_put_bbio(bbio); 3289 goto out; 3290 } 3291 extent_physical = bbio->stripes[0].physical; 3292 extent_mirror_num = bbio->mirror_num; 3293 extent_dev = bbio->stripes[0].dev; 3294 btrfs_put_bbio(bbio); 3295 3296 ret = btrfs_lookup_csums_range(csum_root, 3297 extent_logical, 3298 extent_logical + extent_len - 1, 3299 &sctx->csum_list, 1); 3300 if (ret) 3301 goto out; 3302 3303 ret = scrub_extent_for_parity(sparity, extent_logical, 3304 extent_len, 3305 extent_physical, 3306 extent_dev, flags, 3307 generation, 3308 extent_mirror_num); 3309 3310 scrub_free_csums(sctx); 3311 3312 if (ret) 3313 goto out; 3314 3315 if (extent_logical + extent_len < 3316 key.objectid + bytes) { 3317 logic_start += map->stripe_len; 3318 3319 if (logic_start >= logic_end) { 3320 stop_loop = 1; 3321 break; 3322 } 3323 3324 if (logic_start < key.objectid + bytes) { 3325 cond_resched(); 3326 goto again; 3327 } 3328 } 3329 next: 3330 path->slots[0]++; 3331 } 3332 3333 btrfs_release_path(path); 3334 3335 if (stop_loop) 3336 break; 3337 3338 logic_start += map->stripe_len; 3339 } 3340 out: 3341 if (ret < 0) 3342 scrub_parity_mark_sectors_error(sparity, logic_start, 3343 logic_end - logic_start); 3344 scrub_parity_put(sparity); 3345 scrub_submit(sctx); 3346 mutex_lock(&sctx->wr_lock); 3347 scrub_wr_submit(sctx); 3348 mutex_unlock(&sctx->wr_lock); 3349 3350 btrfs_release_path(path); 3351 return ret < 0 ? ret : 0; 3352 } 3353 3354 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 3355 struct map_lookup *map, 3356 struct btrfs_device *scrub_dev, 3357 int num, u64 base, u64 length, 3358 int is_dev_replace) 3359 { 3360 struct btrfs_path *path, *ppath; 3361 struct btrfs_fs_info *fs_info = sctx->fs_info; 3362 struct btrfs_root *root = fs_info->extent_root; 3363 struct btrfs_root *csum_root = fs_info->csum_root; 3364 struct btrfs_extent_item *extent; 3365 struct blk_plug plug; 3366 u64 flags; 3367 int ret; 3368 int slot; 3369 u64 nstripes; 3370 struct extent_buffer *l; 3371 u64 physical; 3372 u64 logical; 3373 u64 logic_end; 3374 u64 physical_end; 3375 u64 generation; 3376 int mirror_num; 3377 struct reada_control *reada1; 3378 struct reada_control *reada2; 3379 struct btrfs_key key; 3380 struct btrfs_key key_end; 3381 u64 increment = map->stripe_len; 3382 u64 offset; 3383 u64 extent_logical; 3384 u64 extent_physical; 3385 u64 extent_len; 3386 u64 stripe_logical; 3387 u64 stripe_end; 3388 struct btrfs_device *extent_dev; 3389 int extent_mirror_num; 3390 int stop_loop = 0; 3391 3392 physical = map->stripes[num].physical; 3393 offset = 0; 3394 nstripes = div64_u64(length, map->stripe_len); 3395 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3396 offset = map->stripe_len * num; 3397 increment = map->stripe_len * map->num_stripes; 3398 mirror_num = 1; 3399 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3400 int factor = map->num_stripes / map->sub_stripes; 3401 offset = map->stripe_len * (num / map->sub_stripes); 3402 increment = map->stripe_len * factor; 3403 mirror_num = num % map->sub_stripes + 1; 3404 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 3405 increment = map->stripe_len; 3406 mirror_num = num % map->num_stripes + 1; 3407 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3408 increment = map->stripe_len; 3409 mirror_num = num % map->num_stripes + 1; 3410 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3411 get_raid56_logic_offset(physical, num, map, &offset, NULL); 3412 increment = map->stripe_len * nr_data_stripes(map); 3413 mirror_num = 1; 3414 } else { 3415 increment = map->stripe_len; 3416 mirror_num = 1; 3417 } 3418 3419 path = btrfs_alloc_path(); 3420 if (!path) 3421 return -ENOMEM; 3422 3423 ppath = btrfs_alloc_path(); 3424 if (!ppath) { 3425 btrfs_free_path(path); 3426 return -ENOMEM; 3427 } 3428 3429 /* 3430 * work on commit root. The related disk blocks are static as 3431 * long as COW is applied. This means, it is save to rewrite 3432 * them to repair disk errors without any race conditions 3433 */ 3434 path->search_commit_root = 1; 3435 path->skip_locking = 1; 3436 3437 ppath->search_commit_root = 1; 3438 ppath->skip_locking = 1; 3439 /* 3440 * trigger the readahead for extent tree csum tree and wait for 3441 * completion. During readahead, the scrub is officially paused 3442 * to not hold off transaction commits 3443 */ 3444 logical = base + offset; 3445 physical_end = physical + nstripes * map->stripe_len; 3446 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3447 get_raid56_logic_offset(physical_end, num, 3448 map, &logic_end, NULL); 3449 logic_end += base; 3450 } else { 3451 logic_end = logical + increment * nstripes; 3452 } 3453 wait_event(sctx->list_wait, 3454 atomic_read(&sctx->bios_in_flight) == 0); 3455 scrub_blocked_if_needed(fs_info); 3456 3457 /* FIXME it might be better to start readahead at commit root */ 3458 key.objectid = logical; 3459 key.type = BTRFS_EXTENT_ITEM_KEY; 3460 key.offset = (u64)0; 3461 key_end.objectid = logic_end; 3462 key_end.type = BTRFS_METADATA_ITEM_KEY; 3463 key_end.offset = (u64)-1; 3464 reada1 = btrfs_reada_add(root, &key, &key_end); 3465 3466 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3467 key.type = BTRFS_EXTENT_CSUM_KEY; 3468 key.offset = logical; 3469 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3470 key_end.type = BTRFS_EXTENT_CSUM_KEY; 3471 key_end.offset = logic_end; 3472 reada2 = btrfs_reada_add(csum_root, &key, &key_end); 3473 3474 if (!IS_ERR(reada1)) 3475 btrfs_reada_wait(reada1); 3476 if (!IS_ERR(reada2)) 3477 btrfs_reada_wait(reada2); 3478 3479 3480 /* 3481 * collect all data csums for the stripe to avoid seeking during 3482 * the scrub. This might currently (crc32) end up to be about 1MB 3483 */ 3484 blk_start_plug(&plug); 3485 3486 /* 3487 * now find all extents for each stripe and scrub them 3488 */ 3489 ret = 0; 3490 while (physical < physical_end) { 3491 /* 3492 * canceled? 3493 */ 3494 if (atomic_read(&fs_info->scrub_cancel_req) || 3495 atomic_read(&sctx->cancel_req)) { 3496 ret = -ECANCELED; 3497 goto out; 3498 } 3499 /* 3500 * check to see if we have to pause 3501 */ 3502 if (atomic_read(&fs_info->scrub_pause_req)) { 3503 /* push queued extents */ 3504 sctx->flush_all_writes = true; 3505 scrub_submit(sctx); 3506 mutex_lock(&sctx->wr_lock); 3507 scrub_wr_submit(sctx); 3508 mutex_unlock(&sctx->wr_lock); 3509 wait_event(sctx->list_wait, 3510 atomic_read(&sctx->bios_in_flight) == 0); 3511 sctx->flush_all_writes = false; 3512 scrub_blocked_if_needed(fs_info); 3513 } 3514 3515 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3516 ret = get_raid56_logic_offset(physical, num, map, 3517 &logical, 3518 &stripe_logical); 3519 logical += base; 3520 if (ret) { 3521 /* it is parity strip */ 3522 stripe_logical += base; 3523 stripe_end = stripe_logical + increment; 3524 ret = scrub_raid56_parity(sctx, map, scrub_dev, 3525 ppath, stripe_logical, 3526 stripe_end); 3527 if (ret) 3528 goto out; 3529 goto skip; 3530 } 3531 } 3532 3533 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3534 key.type = BTRFS_METADATA_ITEM_KEY; 3535 else 3536 key.type = BTRFS_EXTENT_ITEM_KEY; 3537 key.objectid = logical; 3538 key.offset = (u64)-1; 3539 3540 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3541 if (ret < 0) 3542 goto out; 3543 3544 if (ret > 0) { 3545 ret = btrfs_previous_extent_item(root, path, 0); 3546 if (ret < 0) 3547 goto out; 3548 if (ret > 0) { 3549 /* there's no smaller item, so stick with the 3550 * larger one */ 3551 btrfs_release_path(path); 3552 ret = btrfs_search_slot(NULL, root, &key, 3553 path, 0, 0); 3554 if (ret < 0) 3555 goto out; 3556 } 3557 } 3558 3559 stop_loop = 0; 3560 while (1) { 3561 u64 bytes; 3562 3563 l = path->nodes[0]; 3564 slot = path->slots[0]; 3565 if (slot >= btrfs_header_nritems(l)) { 3566 ret = btrfs_next_leaf(root, path); 3567 if (ret == 0) 3568 continue; 3569 if (ret < 0) 3570 goto out; 3571 3572 stop_loop = 1; 3573 break; 3574 } 3575 btrfs_item_key_to_cpu(l, &key, slot); 3576 3577 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3578 key.type != BTRFS_METADATA_ITEM_KEY) 3579 goto next; 3580 3581 if (key.type == BTRFS_METADATA_ITEM_KEY) 3582 bytes = fs_info->nodesize; 3583 else 3584 bytes = key.offset; 3585 3586 if (key.objectid + bytes <= logical) 3587 goto next; 3588 3589 if (key.objectid >= logical + map->stripe_len) { 3590 /* out of this device extent */ 3591 if (key.objectid >= logic_end) 3592 stop_loop = 1; 3593 break; 3594 } 3595 3596 extent = btrfs_item_ptr(l, slot, 3597 struct btrfs_extent_item); 3598 flags = btrfs_extent_flags(l, extent); 3599 generation = btrfs_extent_generation(l, extent); 3600 3601 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3602 (key.objectid < logical || 3603 key.objectid + bytes > 3604 logical + map->stripe_len)) { 3605 btrfs_err(fs_info, 3606 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3607 key.objectid, logical); 3608 spin_lock(&sctx->stat_lock); 3609 sctx->stat.uncorrectable_errors++; 3610 spin_unlock(&sctx->stat_lock); 3611 goto next; 3612 } 3613 3614 again: 3615 extent_logical = key.objectid; 3616 extent_len = bytes; 3617 3618 /* 3619 * trim extent to this stripe 3620 */ 3621 if (extent_logical < logical) { 3622 extent_len -= logical - extent_logical; 3623 extent_logical = logical; 3624 } 3625 if (extent_logical + extent_len > 3626 logical + map->stripe_len) { 3627 extent_len = logical + map->stripe_len - 3628 extent_logical; 3629 } 3630 3631 extent_physical = extent_logical - logical + physical; 3632 extent_dev = scrub_dev; 3633 extent_mirror_num = mirror_num; 3634 if (is_dev_replace) 3635 scrub_remap_extent(fs_info, extent_logical, 3636 extent_len, &extent_physical, 3637 &extent_dev, 3638 &extent_mirror_num); 3639 3640 ret = btrfs_lookup_csums_range(csum_root, 3641 extent_logical, 3642 extent_logical + 3643 extent_len - 1, 3644 &sctx->csum_list, 1); 3645 if (ret) 3646 goto out; 3647 3648 ret = scrub_extent(sctx, map, extent_logical, extent_len, 3649 extent_physical, extent_dev, flags, 3650 generation, extent_mirror_num, 3651 extent_logical - logical + physical); 3652 3653 scrub_free_csums(sctx); 3654 3655 if (ret) 3656 goto out; 3657 3658 if (extent_logical + extent_len < 3659 key.objectid + bytes) { 3660 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3661 /* 3662 * loop until we find next data stripe 3663 * or we have finished all stripes. 3664 */ 3665 loop: 3666 physical += map->stripe_len; 3667 ret = get_raid56_logic_offset(physical, 3668 num, map, &logical, 3669 &stripe_logical); 3670 logical += base; 3671 3672 if (ret && physical < physical_end) { 3673 stripe_logical += base; 3674 stripe_end = stripe_logical + 3675 increment; 3676 ret = scrub_raid56_parity(sctx, 3677 map, scrub_dev, ppath, 3678 stripe_logical, 3679 stripe_end); 3680 if (ret) 3681 goto out; 3682 goto loop; 3683 } 3684 } else { 3685 physical += map->stripe_len; 3686 logical += increment; 3687 } 3688 if (logical < key.objectid + bytes) { 3689 cond_resched(); 3690 goto again; 3691 } 3692 3693 if (physical >= physical_end) { 3694 stop_loop = 1; 3695 break; 3696 } 3697 } 3698 next: 3699 path->slots[0]++; 3700 } 3701 btrfs_release_path(path); 3702 skip: 3703 logical += increment; 3704 physical += map->stripe_len; 3705 spin_lock(&sctx->stat_lock); 3706 if (stop_loop) 3707 sctx->stat.last_physical = map->stripes[num].physical + 3708 length; 3709 else 3710 sctx->stat.last_physical = physical; 3711 spin_unlock(&sctx->stat_lock); 3712 if (stop_loop) 3713 break; 3714 } 3715 out: 3716 /* push queued extents */ 3717 scrub_submit(sctx); 3718 mutex_lock(&sctx->wr_lock); 3719 scrub_wr_submit(sctx); 3720 mutex_unlock(&sctx->wr_lock); 3721 3722 blk_finish_plug(&plug); 3723 btrfs_free_path(path); 3724 btrfs_free_path(ppath); 3725 return ret < 0 ? ret : 0; 3726 } 3727 3728 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 3729 struct btrfs_device *scrub_dev, 3730 u64 chunk_offset, u64 length, 3731 u64 dev_offset, 3732 struct btrfs_block_group_cache *cache, 3733 int is_dev_replace) 3734 { 3735 struct btrfs_fs_info *fs_info = sctx->fs_info; 3736 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 3737 struct map_lookup *map; 3738 struct extent_map *em; 3739 int i; 3740 int ret = 0; 3741 3742 read_lock(&map_tree->map_tree.lock); 3743 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 3744 read_unlock(&map_tree->map_tree.lock); 3745 3746 if (!em) { 3747 /* 3748 * Might have been an unused block group deleted by the cleaner 3749 * kthread or relocation. 3750 */ 3751 spin_lock(&cache->lock); 3752 if (!cache->removed) 3753 ret = -EINVAL; 3754 spin_unlock(&cache->lock); 3755 3756 return ret; 3757 } 3758 3759 map = em->map_lookup; 3760 if (em->start != chunk_offset) 3761 goto out; 3762 3763 if (em->len < length) 3764 goto out; 3765 3766 for (i = 0; i < map->num_stripes; ++i) { 3767 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 3768 map->stripes[i].physical == dev_offset) { 3769 ret = scrub_stripe(sctx, map, scrub_dev, i, 3770 chunk_offset, length, 3771 is_dev_replace); 3772 if (ret) 3773 goto out; 3774 } 3775 } 3776 out: 3777 free_extent_map(em); 3778 3779 return ret; 3780 } 3781 3782 static noinline_for_stack 3783 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 3784 struct btrfs_device *scrub_dev, u64 start, u64 end, 3785 int is_dev_replace) 3786 { 3787 struct btrfs_dev_extent *dev_extent = NULL; 3788 struct btrfs_path *path; 3789 struct btrfs_fs_info *fs_info = sctx->fs_info; 3790 struct btrfs_root *root = fs_info->dev_root; 3791 u64 length; 3792 u64 chunk_offset; 3793 int ret = 0; 3794 int ro_set; 3795 int slot; 3796 struct extent_buffer *l; 3797 struct btrfs_key key; 3798 struct btrfs_key found_key; 3799 struct btrfs_block_group_cache *cache; 3800 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 3801 3802 path = btrfs_alloc_path(); 3803 if (!path) 3804 return -ENOMEM; 3805 3806 path->reada = READA_FORWARD; 3807 path->search_commit_root = 1; 3808 path->skip_locking = 1; 3809 3810 key.objectid = scrub_dev->devid; 3811 key.offset = 0ull; 3812 key.type = BTRFS_DEV_EXTENT_KEY; 3813 3814 while (1) { 3815 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3816 if (ret < 0) 3817 break; 3818 if (ret > 0) { 3819 if (path->slots[0] >= 3820 btrfs_header_nritems(path->nodes[0])) { 3821 ret = btrfs_next_leaf(root, path); 3822 if (ret < 0) 3823 break; 3824 if (ret > 0) { 3825 ret = 0; 3826 break; 3827 } 3828 } else { 3829 ret = 0; 3830 } 3831 } 3832 3833 l = path->nodes[0]; 3834 slot = path->slots[0]; 3835 3836 btrfs_item_key_to_cpu(l, &found_key, slot); 3837 3838 if (found_key.objectid != scrub_dev->devid) 3839 break; 3840 3841 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 3842 break; 3843 3844 if (found_key.offset >= end) 3845 break; 3846 3847 if (found_key.offset < key.offset) 3848 break; 3849 3850 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3851 length = btrfs_dev_extent_length(l, dev_extent); 3852 3853 if (found_key.offset + length <= start) 3854 goto skip; 3855 3856 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3857 3858 /* 3859 * get a reference on the corresponding block group to prevent 3860 * the chunk from going away while we scrub it 3861 */ 3862 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3863 3864 /* some chunks are removed but not committed to disk yet, 3865 * continue scrubbing */ 3866 if (!cache) 3867 goto skip; 3868 3869 /* 3870 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 3871 * to avoid deadlock caused by: 3872 * btrfs_inc_block_group_ro() 3873 * -> btrfs_wait_for_commit() 3874 * -> btrfs_commit_transaction() 3875 * -> btrfs_scrub_pause() 3876 */ 3877 scrub_pause_on(fs_info); 3878 ret = btrfs_inc_block_group_ro(fs_info, cache); 3879 if (!ret && is_dev_replace) { 3880 /* 3881 * If we are doing a device replace wait for any tasks 3882 * that started dellaloc right before we set the block 3883 * group to RO mode, as they might have just allocated 3884 * an extent from it or decided they could do a nocow 3885 * write. And if any such tasks did that, wait for their 3886 * ordered extents to complete and then commit the 3887 * current transaction, so that we can later see the new 3888 * extent items in the extent tree - the ordered extents 3889 * create delayed data references (for cow writes) when 3890 * they complete, which will be run and insert the 3891 * corresponding extent items into the extent tree when 3892 * we commit the transaction they used when running 3893 * inode.c:btrfs_finish_ordered_io(). We later use 3894 * the commit root of the extent tree to find extents 3895 * to copy from the srcdev into the tgtdev, and we don't 3896 * want to miss any new extents. 3897 */ 3898 btrfs_wait_block_group_reservations(cache); 3899 btrfs_wait_nocow_writers(cache); 3900 ret = btrfs_wait_ordered_roots(fs_info, U64_MAX, 3901 cache->key.objectid, 3902 cache->key.offset); 3903 if (ret > 0) { 3904 struct btrfs_trans_handle *trans; 3905 3906 trans = btrfs_join_transaction(root); 3907 if (IS_ERR(trans)) 3908 ret = PTR_ERR(trans); 3909 else 3910 ret = btrfs_commit_transaction(trans); 3911 if (ret) { 3912 scrub_pause_off(fs_info); 3913 btrfs_put_block_group(cache); 3914 break; 3915 } 3916 } 3917 } 3918 scrub_pause_off(fs_info); 3919 3920 if (ret == 0) { 3921 ro_set = 1; 3922 } else if (ret == -ENOSPC) { 3923 /* 3924 * btrfs_inc_block_group_ro return -ENOSPC when it 3925 * failed in creating new chunk for metadata. 3926 * It is not a problem for scrub/replace, because 3927 * metadata are always cowed, and our scrub paused 3928 * commit_transactions. 3929 */ 3930 ro_set = 0; 3931 } else { 3932 btrfs_warn(fs_info, 3933 "failed setting block group ro: %d", ret); 3934 btrfs_put_block_group(cache); 3935 break; 3936 } 3937 3938 btrfs_dev_replace_write_lock(&fs_info->dev_replace); 3939 dev_replace->cursor_right = found_key.offset + length; 3940 dev_replace->cursor_left = found_key.offset; 3941 dev_replace->item_needs_writeback = 1; 3942 btrfs_dev_replace_write_unlock(&fs_info->dev_replace); 3943 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length, 3944 found_key.offset, cache, is_dev_replace); 3945 3946 /* 3947 * flush, submit all pending read and write bios, afterwards 3948 * wait for them. 3949 * Note that in the dev replace case, a read request causes 3950 * write requests that are submitted in the read completion 3951 * worker. Therefore in the current situation, it is required 3952 * that all write requests are flushed, so that all read and 3953 * write requests are really completed when bios_in_flight 3954 * changes to 0. 3955 */ 3956 sctx->flush_all_writes = true; 3957 scrub_submit(sctx); 3958 mutex_lock(&sctx->wr_lock); 3959 scrub_wr_submit(sctx); 3960 mutex_unlock(&sctx->wr_lock); 3961 3962 wait_event(sctx->list_wait, 3963 atomic_read(&sctx->bios_in_flight) == 0); 3964 3965 scrub_pause_on(fs_info); 3966 3967 /* 3968 * must be called before we decrease @scrub_paused. 3969 * make sure we don't block transaction commit while 3970 * we are waiting pending workers finished. 3971 */ 3972 wait_event(sctx->list_wait, 3973 atomic_read(&sctx->workers_pending) == 0); 3974 sctx->flush_all_writes = false; 3975 3976 scrub_pause_off(fs_info); 3977 3978 btrfs_dev_replace_write_lock(&fs_info->dev_replace); 3979 dev_replace->cursor_left = dev_replace->cursor_right; 3980 dev_replace->item_needs_writeback = 1; 3981 btrfs_dev_replace_write_unlock(&fs_info->dev_replace); 3982 3983 if (ro_set) 3984 btrfs_dec_block_group_ro(cache); 3985 3986 /* 3987 * We might have prevented the cleaner kthread from deleting 3988 * this block group if it was already unused because we raced 3989 * and set it to RO mode first. So add it back to the unused 3990 * list, otherwise it might not ever be deleted unless a manual 3991 * balance is triggered or it becomes used and unused again. 3992 */ 3993 spin_lock(&cache->lock); 3994 if (!cache->removed && !cache->ro && cache->reserved == 0 && 3995 btrfs_block_group_used(&cache->item) == 0) { 3996 spin_unlock(&cache->lock); 3997 spin_lock(&fs_info->unused_bgs_lock); 3998 if (list_empty(&cache->bg_list)) { 3999 btrfs_get_block_group(cache); 4000 list_add_tail(&cache->bg_list, 4001 &fs_info->unused_bgs); 4002 } 4003 spin_unlock(&fs_info->unused_bgs_lock); 4004 } else { 4005 spin_unlock(&cache->lock); 4006 } 4007 4008 btrfs_put_block_group(cache); 4009 if (ret) 4010 break; 4011 if (is_dev_replace && 4012 atomic64_read(&dev_replace->num_write_errors) > 0) { 4013 ret = -EIO; 4014 break; 4015 } 4016 if (sctx->stat.malloc_errors > 0) { 4017 ret = -ENOMEM; 4018 break; 4019 } 4020 skip: 4021 key.offset = found_key.offset + length; 4022 btrfs_release_path(path); 4023 } 4024 4025 btrfs_free_path(path); 4026 4027 return ret; 4028 } 4029 4030 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 4031 struct btrfs_device *scrub_dev) 4032 { 4033 int i; 4034 u64 bytenr; 4035 u64 gen; 4036 int ret; 4037 struct btrfs_fs_info *fs_info = sctx->fs_info; 4038 4039 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4040 return -EIO; 4041 4042 /* Seed devices of a new filesystem has their own generation. */ 4043 if (scrub_dev->fs_devices != fs_info->fs_devices) 4044 gen = scrub_dev->generation; 4045 else 4046 gen = fs_info->last_trans_committed; 4047 4048 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 4049 bytenr = btrfs_sb_offset(i); 4050 if (bytenr + BTRFS_SUPER_INFO_SIZE > 4051 scrub_dev->commit_total_bytes) 4052 break; 4053 4054 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 4055 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 4056 NULL, 1, bytenr); 4057 if (ret) 4058 return ret; 4059 } 4060 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 4061 4062 return 0; 4063 } 4064 4065 /* 4066 * get a reference count on fs_info->scrub_workers. start worker if necessary 4067 */ 4068 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 4069 int is_dev_replace) 4070 { 4071 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 4072 int max_active = fs_info->thread_pool_size; 4073 4074 if (fs_info->scrub_workers_refcnt == 0) { 4075 fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", 4076 flags, is_dev_replace ? 1 : max_active, 4); 4077 if (!fs_info->scrub_workers) 4078 goto fail_scrub_workers; 4079 4080 fs_info->scrub_wr_completion_workers = 4081 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags, 4082 max_active, 2); 4083 if (!fs_info->scrub_wr_completion_workers) 4084 goto fail_scrub_wr_completion_workers; 4085 4086 fs_info->scrub_nocow_workers = 4087 btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0); 4088 if (!fs_info->scrub_nocow_workers) 4089 goto fail_scrub_nocow_workers; 4090 fs_info->scrub_parity_workers = 4091 btrfs_alloc_workqueue(fs_info, "scrubparity", flags, 4092 max_active, 2); 4093 if (!fs_info->scrub_parity_workers) 4094 goto fail_scrub_parity_workers; 4095 } 4096 ++fs_info->scrub_workers_refcnt; 4097 return 0; 4098 4099 fail_scrub_parity_workers: 4100 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); 4101 fail_scrub_nocow_workers: 4102 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 4103 fail_scrub_wr_completion_workers: 4104 btrfs_destroy_workqueue(fs_info->scrub_workers); 4105 fail_scrub_workers: 4106 return -ENOMEM; 4107 } 4108 4109 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info) 4110 { 4111 if (--fs_info->scrub_workers_refcnt == 0) { 4112 btrfs_destroy_workqueue(fs_info->scrub_workers); 4113 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 4114 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); 4115 btrfs_destroy_workqueue(fs_info->scrub_parity_workers); 4116 } 4117 WARN_ON(fs_info->scrub_workers_refcnt < 0); 4118 } 4119 4120 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 4121 u64 end, struct btrfs_scrub_progress *progress, 4122 int readonly, int is_dev_replace) 4123 { 4124 struct scrub_ctx *sctx; 4125 int ret; 4126 struct btrfs_device *dev; 4127 struct rcu_string *name; 4128 4129 if (btrfs_fs_closing(fs_info)) 4130 return -EINVAL; 4131 4132 if (fs_info->nodesize > BTRFS_STRIPE_LEN) { 4133 /* 4134 * in this case scrub is unable to calculate the checksum 4135 * the way scrub is implemented. Do not handle this 4136 * situation at all because it won't ever happen. 4137 */ 4138 btrfs_err(fs_info, 4139 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", 4140 fs_info->nodesize, 4141 BTRFS_STRIPE_LEN); 4142 return -EINVAL; 4143 } 4144 4145 if (fs_info->sectorsize != PAGE_SIZE) { 4146 /* not supported for data w/o checksums */ 4147 btrfs_err_rl(fs_info, 4148 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails", 4149 fs_info->sectorsize, PAGE_SIZE); 4150 return -EINVAL; 4151 } 4152 4153 if (fs_info->nodesize > 4154 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 4155 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 4156 /* 4157 * would exhaust the array bounds of pagev member in 4158 * struct scrub_block 4159 */ 4160 btrfs_err(fs_info, 4161 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", 4162 fs_info->nodesize, 4163 SCRUB_MAX_PAGES_PER_BLOCK, 4164 fs_info->sectorsize, 4165 SCRUB_MAX_PAGES_PER_BLOCK); 4166 return -EINVAL; 4167 } 4168 4169 4170 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4171 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 4172 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 4173 !is_dev_replace)) { 4174 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4175 return -ENODEV; 4176 } 4177 4178 if (!is_dev_replace && !readonly && 4179 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 4180 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4181 rcu_read_lock(); 4182 name = rcu_dereference(dev->name); 4183 btrfs_err(fs_info, "scrub: device %s is not writable", 4184 name->str); 4185 rcu_read_unlock(); 4186 return -EROFS; 4187 } 4188 4189 mutex_lock(&fs_info->scrub_lock); 4190 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4191 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { 4192 mutex_unlock(&fs_info->scrub_lock); 4193 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4194 return -EIO; 4195 } 4196 4197 btrfs_dev_replace_read_lock(&fs_info->dev_replace); 4198 if (dev->scrub_ctx || 4199 (!is_dev_replace && 4200 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 4201 btrfs_dev_replace_read_unlock(&fs_info->dev_replace); 4202 mutex_unlock(&fs_info->scrub_lock); 4203 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4204 return -EINPROGRESS; 4205 } 4206 btrfs_dev_replace_read_unlock(&fs_info->dev_replace); 4207 4208 ret = scrub_workers_get(fs_info, is_dev_replace); 4209 if (ret) { 4210 mutex_unlock(&fs_info->scrub_lock); 4211 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4212 return ret; 4213 } 4214 4215 sctx = scrub_setup_ctx(dev, is_dev_replace); 4216 if (IS_ERR(sctx)) { 4217 mutex_unlock(&fs_info->scrub_lock); 4218 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4219 scrub_workers_put(fs_info); 4220 return PTR_ERR(sctx); 4221 } 4222 sctx->readonly = readonly; 4223 dev->scrub_ctx = sctx; 4224 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4225 4226 /* 4227 * checking @scrub_pause_req here, we can avoid 4228 * race between committing transaction and scrubbing. 4229 */ 4230 __scrub_blocked_if_needed(fs_info); 4231 atomic_inc(&fs_info->scrubs_running); 4232 mutex_unlock(&fs_info->scrub_lock); 4233 4234 if (!is_dev_replace) { 4235 /* 4236 * by holding device list mutex, we can 4237 * kick off writing super in log tree sync. 4238 */ 4239 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4240 ret = scrub_supers(sctx, dev); 4241 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4242 } 4243 4244 if (!ret) 4245 ret = scrub_enumerate_chunks(sctx, dev, start, end, 4246 is_dev_replace); 4247 4248 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 4249 atomic_dec(&fs_info->scrubs_running); 4250 wake_up(&fs_info->scrub_pause_wait); 4251 4252 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 4253 4254 if (progress) 4255 memcpy(progress, &sctx->stat, sizeof(*progress)); 4256 4257 mutex_lock(&fs_info->scrub_lock); 4258 dev->scrub_ctx = NULL; 4259 scrub_workers_put(fs_info); 4260 mutex_unlock(&fs_info->scrub_lock); 4261 4262 scrub_put_ctx(sctx); 4263 4264 return ret; 4265 } 4266 4267 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 4268 { 4269 mutex_lock(&fs_info->scrub_lock); 4270 atomic_inc(&fs_info->scrub_pause_req); 4271 while (atomic_read(&fs_info->scrubs_paused) != 4272 atomic_read(&fs_info->scrubs_running)) { 4273 mutex_unlock(&fs_info->scrub_lock); 4274 wait_event(fs_info->scrub_pause_wait, 4275 atomic_read(&fs_info->scrubs_paused) == 4276 atomic_read(&fs_info->scrubs_running)); 4277 mutex_lock(&fs_info->scrub_lock); 4278 } 4279 mutex_unlock(&fs_info->scrub_lock); 4280 } 4281 4282 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 4283 { 4284 atomic_dec(&fs_info->scrub_pause_req); 4285 wake_up(&fs_info->scrub_pause_wait); 4286 } 4287 4288 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 4289 { 4290 mutex_lock(&fs_info->scrub_lock); 4291 if (!atomic_read(&fs_info->scrubs_running)) { 4292 mutex_unlock(&fs_info->scrub_lock); 4293 return -ENOTCONN; 4294 } 4295 4296 atomic_inc(&fs_info->scrub_cancel_req); 4297 while (atomic_read(&fs_info->scrubs_running)) { 4298 mutex_unlock(&fs_info->scrub_lock); 4299 wait_event(fs_info->scrub_pause_wait, 4300 atomic_read(&fs_info->scrubs_running) == 0); 4301 mutex_lock(&fs_info->scrub_lock); 4302 } 4303 atomic_dec(&fs_info->scrub_cancel_req); 4304 mutex_unlock(&fs_info->scrub_lock); 4305 4306 return 0; 4307 } 4308 4309 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info, 4310 struct btrfs_device *dev) 4311 { 4312 struct scrub_ctx *sctx; 4313 4314 mutex_lock(&fs_info->scrub_lock); 4315 sctx = dev->scrub_ctx; 4316 if (!sctx) { 4317 mutex_unlock(&fs_info->scrub_lock); 4318 return -ENOTCONN; 4319 } 4320 atomic_inc(&sctx->cancel_req); 4321 while (dev->scrub_ctx) { 4322 mutex_unlock(&fs_info->scrub_lock); 4323 wait_event(fs_info->scrub_pause_wait, 4324 dev->scrub_ctx == NULL); 4325 mutex_lock(&fs_info->scrub_lock); 4326 } 4327 mutex_unlock(&fs_info->scrub_lock); 4328 4329 return 0; 4330 } 4331 4332 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 4333 struct btrfs_scrub_progress *progress) 4334 { 4335 struct btrfs_device *dev; 4336 struct scrub_ctx *sctx = NULL; 4337 4338 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4339 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 4340 if (dev) 4341 sctx = dev->scrub_ctx; 4342 if (sctx) 4343 memcpy(progress, &sctx->stat, sizeof(*progress)); 4344 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4345 4346 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 4347 } 4348 4349 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 4350 u64 extent_logical, u64 extent_len, 4351 u64 *extent_physical, 4352 struct btrfs_device **extent_dev, 4353 int *extent_mirror_num) 4354 { 4355 u64 mapped_length; 4356 struct btrfs_bio *bbio = NULL; 4357 int ret; 4358 4359 mapped_length = extent_len; 4360 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, 4361 &mapped_length, &bbio, 0); 4362 if (ret || !bbio || mapped_length < extent_len || 4363 !bbio->stripes[0].dev->bdev) { 4364 btrfs_put_bbio(bbio); 4365 return; 4366 } 4367 4368 *extent_physical = bbio->stripes[0].physical; 4369 *extent_mirror_num = bbio->mirror_num; 4370 *extent_dev = bbio->stripes[0].dev; 4371 btrfs_put_bbio(bbio); 4372 } 4373 4374 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 4375 int mirror_num, u64 physical_for_dev_replace) 4376 { 4377 struct scrub_copy_nocow_ctx *nocow_ctx; 4378 struct btrfs_fs_info *fs_info = sctx->fs_info; 4379 4380 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS); 4381 if (!nocow_ctx) { 4382 spin_lock(&sctx->stat_lock); 4383 sctx->stat.malloc_errors++; 4384 spin_unlock(&sctx->stat_lock); 4385 return -ENOMEM; 4386 } 4387 4388 scrub_pending_trans_workers_inc(sctx); 4389 4390 nocow_ctx->sctx = sctx; 4391 nocow_ctx->logical = logical; 4392 nocow_ctx->len = len; 4393 nocow_ctx->mirror_num = mirror_num; 4394 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace; 4395 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper, 4396 copy_nocow_pages_worker, NULL, NULL); 4397 INIT_LIST_HEAD(&nocow_ctx->inodes); 4398 btrfs_queue_work(fs_info->scrub_nocow_workers, 4399 &nocow_ctx->work); 4400 4401 return 0; 4402 } 4403 4404 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx) 4405 { 4406 struct scrub_copy_nocow_ctx *nocow_ctx = ctx; 4407 struct scrub_nocow_inode *nocow_inode; 4408 4409 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS); 4410 if (!nocow_inode) 4411 return -ENOMEM; 4412 nocow_inode->inum = inum; 4413 nocow_inode->offset = offset; 4414 nocow_inode->root = root; 4415 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes); 4416 return 0; 4417 } 4418 4419 #define COPY_COMPLETE 1 4420 4421 static void copy_nocow_pages_worker(struct btrfs_work *work) 4422 { 4423 struct scrub_copy_nocow_ctx *nocow_ctx = 4424 container_of(work, struct scrub_copy_nocow_ctx, work); 4425 struct scrub_ctx *sctx = nocow_ctx->sctx; 4426 struct btrfs_fs_info *fs_info = sctx->fs_info; 4427 struct btrfs_root *root = fs_info->extent_root; 4428 u64 logical = nocow_ctx->logical; 4429 u64 len = nocow_ctx->len; 4430 int mirror_num = nocow_ctx->mirror_num; 4431 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 4432 int ret; 4433 struct btrfs_trans_handle *trans = NULL; 4434 struct btrfs_path *path; 4435 int not_written = 0; 4436 4437 path = btrfs_alloc_path(); 4438 if (!path) { 4439 spin_lock(&sctx->stat_lock); 4440 sctx->stat.malloc_errors++; 4441 spin_unlock(&sctx->stat_lock); 4442 not_written = 1; 4443 goto out; 4444 } 4445 4446 trans = btrfs_join_transaction(root); 4447 if (IS_ERR(trans)) { 4448 not_written = 1; 4449 goto out; 4450 } 4451 4452 ret = iterate_inodes_from_logical(logical, fs_info, path, 4453 record_inode_for_nocow, nocow_ctx, false); 4454 if (ret != 0 && ret != -ENOENT) { 4455 btrfs_warn(fs_info, 4456 "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d", 4457 logical, physical_for_dev_replace, len, mirror_num, 4458 ret); 4459 not_written = 1; 4460 goto out; 4461 } 4462 4463 btrfs_end_transaction(trans); 4464 trans = NULL; 4465 while (!list_empty(&nocow_ctx->inodes)) { 4466 struct scrub_nocow_inode *entry; 4467 entry = list_first_entry(&nocow_ctx->inodes, 4468 struct scrub_nocow_inode, 4469 list); 4470 list_del_init(&entry->list); 4471 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset, 4472 entry->root, nocow_ctx); 4473 kfree(entry); 4474 if (ret == COPY_COMPLETE) { 4475 ret = 0; 4476 break; 4477 } else if (ret) { 4478 break; 4479 } 4480 } 4481 out: 4482 while (!list_empty(&nocow_ctx->inodes)) { 4483 struct scrub_nocow_inode *entry; 4484 entry = list_first_entry(&nocow_ctx->inodes, 4485 struct scrub_nocow_inode, 4486 list); 4487 list_del_init(&entry->list); 4488 kfree(entry); 4489 } 4490 if (trans && !IS_ERR(trans)) 4491 btrfs_end_transaction(trans); 4492 if (not_written) 4493 btrfs_dev_replace_stats_inc(&fs_info->dev_replace. 4494 num_uncorrectable_read_errors); 4495 4496 btrfs_free_path(path); 4497 kfree(nocow_ctx); 4498 4499 scrub_pending_trans_workers_dec(sctx); 4500 } 4501 4502 static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len, 4503 u64 logical) 4504 { 4505 struct extent_state *cached_state = NULL; 4506 struct btrfs_ordered_extent *ordered; 4507 struct extent_io_tree *io_tree; 4508 struct extent_map *em; 4509 u64 lockstart = start, lockend = start + len - 1; 4510 int ret = 0; 4511 4512 io_tree = &inode->io_tree; 4513 4514 lock_extent_bits(io_tree, lockstart, lockend, &cached_state); 4515 ordered = btrfs_lookup_ordered_range(inode, lockstart, len); 4516 if (ordered) { 4517 btrfs_put_ordered_extent(ordered); 4518 ret = 1; 4519 goto out_unlock; 4520 } 4521 4522 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 4523 if (IS_ERR(em)) { 4524 ret = PTR_ERR(em); 4525 goto out_unlock; 4526 } 4527 4528 /* 4529 * This extent does not actually cover the logical extent anymore, 4530 * move on to the next inode. 4531 */ 4532 if (em->block_start > logical || 4533 em->block_start + em->block_len < logical + len || 4534 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4535 free_extent_map(em); 4536 ret = 1; 4537 goto out_unlock; 4538 } 4539 free_extent_map(em); 4540 4541 out_unlock: 4542 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state); 4543 return ret; 4544 } 4545 4546 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 4547 struct scrub_copy_nocow_ctx *nocow_ctx) 4548 { 4549 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info; 4550 struct btrfs_key key; 4551 struct inode *inode; 4552 struct page *page; 4553 struct btrfs_root *local_root; 4554 struct extent_io_tree *io_tree; 4555 u64 physical_for_dev_replace; 4556 u64 nocow_ctx_logical; 4557 u64 len = nocow_ctx->len; 4558 unsigned long index; 4559 int srcu_index; 4560 int ret = 0; 4561 int err = 0; 4562 4563 key.objectid = root; 4564 key.type = BTRFS_ROOT_ITEM_KEY; 4565 key.offset = (u64)-1; 4566 4567 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 4568 4569 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 4570 if (IS_ERR(local_root)) { 4571 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 4572 return PTR_ERR(local_root); 4573 } 4574 4575 key.type = BTRFS_INODE_ITEM_KEY; 4576 key.objectid = inum; 4577 key.offset = 0; 4578 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 4579 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 4580 if (IS_ERR(inode)) 4581 return PTR_ERR(inode); 4582 4583 /* Avoid truncate/dio/punch hole.. */ 4584 inode_lock(inode); 4585 inode_dio_wait(inode); 4586 4587 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 4588 io_tree = &BTRFS_I(inode)->io_tree; 4589 nocow_ctx_logical = nocow_ctx->logical; 4590 4591 ret = check_extent_to_block(BTRFS_I(inode), offset, len, 4592 nocow_ctx_logical); 4593 if (ret) { 4594 ret = ret > 0 ? 0 : ret; 4595 goto out; 4596 } 4597 4598 while (len >= PAGE_SIZE) { 4599 index = offset >> PAGE_SHIFT; 4600 again: 4601 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 4602 if (!page) { 4603 btrfs_err(fs_info, "find_or_create_page() failed"); 4604 ret = -ENOMEM; 4605 goto out; 4606 } 4607 4608 if (PageUptodate(page)) { 4609 if (PageDirty(page)) 4610 goto next_page; 4611 } else { 4612 ClearPageError(page); 4613 err = extent_read_full_page(io_tree, page, 4614 btrfs_get_extent, 4615 nocow_ctx->mirror_num); 4616 if (err) { 4617 ret = err; 4618 goto next_page; 4619 } 4620 4621 lock_page(page); 4622 /* 4623 * If the page has been remove from the page cache, 4624 * the data on it is meaningless, because it may be 4625 * old one, the new data may be written into the new 4626 * page in the page cache. 4627 */ 4628 if (page->mapping != inode->i_mapping) { 4629 unlock_page(page); 4630 put_page(page); 4631 goto again; 4632 } 4633 if (!PageUptodate(page)) { 4634 ret = -EIO; 4635 goto next_page; 4636 } 4637 } 4638 4639 ret = check_extent_to_block(BTRFS_I(inode), offset, len, 4640 nocow_ctx_logical); 4641 if (ret) { 4642 ret = ret > 0 ? 0 : ret; 4643 goto next_page; 4644 } 4645 4646 err = write_page_nocow(nocow_ctx->sctx, 4647 physical_for_dev_replace, page); 4648 if (err) 4649 ret = err; 4650 next_page: 4651 unlock_page(page); 4652 put_page(page); 4653 4654 if (ret) 4655 break; 4656 4657 offset += PAGE_SIZE; 4658 physical_for_dev_replace += PAGE_SIZE; 4659 nocow_ctx_logical += PAGE_SIZE; 4660 len -= PAGE_SIZE; 4661 } 4662 ret = COPY_COMPLETE; 4663 out: 4664 inode_unlock(inode); 4665 iput(inode); 4666 return ret; 4667 } 4668 4669 static int write_page_nocow(struct scrub_ctx *sctx, 4670 u64 physical_for_dev_replace, struct page *page) 4671 { 4672 struct bio *bio; 4673 struct btrfs_device *dev; 4674 4675 dev = sctx->wr_tgtdev; 4676 if (!dev) 4677 return -EIO; 4678 if (!dev->bdev) { 4679 btrfs_warn_rl(dev->fs_info, 4680 "scrub write_page_nocow(bdev == NULL) is unexpected"); 4681 return -EIO; 4682 } 4683 bio = btrfs_io_bio_alloc(1); 4684 bio->bi_iter.bi_size = 0; 4685 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9; 4686 bio_set_dev(bio, dev->bdev); 4687 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 4688 /* bio_add_page won't fail on a freshly allocated bio */ 4689 bio_add_page(bio, page, PAGE_SIZE, 0); 4690 4691 if (btrfsic_submit_bio_wait(bio)) { 4692 bio_put(bio); 4693 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 4694 return -EIO; 4695 } 4696 4697 bio_put(bio); 4698 return 0; 4699 } 4700