xref: /linux/fs/btrfs/scrub.c (revision 3652117f854819a148ff0fbe4492587d3520b5e5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "raid56.h"
20 #include "block-group.h"
21 #include "zoned.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "file-item.h"
25 #include "scrub.h"
26 #include "raid-stripe-tree.h"
27 
28 /*
29  * This is only the first step towards a full-features scrub. It reads all
30  * extent and super block and verifies the checksums. In case a bad checksum
31  * is found or the extent cannot be read, good data will be written back if
32  * any can be found.
33  *
34  * Future enhancements:
35  *  - In case an unrepairable extent is encountered, track which files are
36  *    affected and report them
37  *  - track and record media errors, throw out bad devices
38  *  - add a mode to also read unallocated space
39  */
40 
41 struct scrub_ctx;
42 
43 /*
44  * The following value only influences the performance.
45  *
46  * This detemines how many stripes would be submitted in one go,
47  * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
48  */
49 #define SCRUB_STRIPES_PER_GROUP		8
50 
51 /*
52  * How many groups we have for each sctx.
53  *
54  * This would be 8M per device, the same value as the old scrub in-flight bios
55  * size limit.
56  */
57 #define SCRUB_GROUPS_PER_SCTX		16
58 
59 #define SCRUB_TOTAL_STRIPES		(SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
60 
61 /*
62  * The following value times PAGE_SIZE needs to be large enough to match the
63  * largest node/leaf/sector size that shall be supported.
64  */
65 #define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
66 
67 /* Represent one sector and its needed info to verify the content. */
68 struct scrub_sector_verification {
69 	bool is_metadata;
70 
71 	union {
72 		/*
73 		 * Csum pointer for data csum verification.  Should point to a
74 		 * sector csum inside scrub_stripe::csums.
75 		 *
76 		 * NULL if this data sector has no csum.
77 		 */
78 		u8 *csum;
79 
80 		/*
81 		 * Extra info for metadata verification.  All sectors inside a
82 		 * tree block share the same generation.
83 		 */
84 		u64 generation;
85 	};
86 };
87 
88 enum scrub_stripe_flags {
89 	/* Set when @mirror_num, @dev, @physical and @logical are set. */
90 	SCRUB_STRIPE_FLAG_INITIALIZED,
91 
92 	/* Set when the read-repair is finished. */
93 	SCRUB_STRIPE_FLAG_REPAIR_DONE,
94 
95 	/*
96 	 * Set for data stripes if it's triggered from P/Q stripe.
97 	 * During such scrub, we should not report errors in data stripes, nor
98 	 * update the accounting.
99 	 */
100 	SCRUB_STRIPE_FLAG_NO_REPORT,
101 };
102 
103 #define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)
104 
105 /*
106  * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
107  */
108 struct scrub_stripe {
109 	struct scrub_ctx *sctx;
110 	struct btrfs_block_group *bg;
111 
112 	struct page *pages[SCRUB_STRIPE_PAGES];
113 	struct scrub_sector_verification *sectors;
114 
115 	struct btrfs_device *dev;
116 	u64 logical;
117 	u64 physical;
118 
119 	u16 mirror_num;
120 
121 	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
122 	u16 nr_sectors;
123 
124 	/*
125 	 * How many data/meta extents are in this stripe.  Only for scrub status
126 	 * reporting purposes.
127 	 */
128 	u16 nr_data_extents;
129 	u16 nr_meta_extents;
130 
131 	atomic_t pending_io;
132 	wait_queue_head_t io_wait;
133 	wait_queue_head_t repair_wait;
134 
135 	/*
136 	 * Indicate the states of the stripe.  Bits are defined in
137 	 * scrub_stripe_flags enum.
138 	 */
139 	unsigned long state;
140 
141 	/* Indicate which sectors are covered by extent items. */
142 	unsigned long extent_sector_bitmap;
143 
144 	/*
145 	 * The errors hit during the initial read of the stripe.
146 	 *
147 	 * Would be utilized for error reporting and repair.
148 	 *
149 	 * The remaining init_nr_* records the number of errors hit, only used
150 	 * by error reporting.
151 	 */
152 	unsigned long init_error_bitmap;
153 	unsigned int init_nr_io_errors;
154 	unsigned int init_nr_csum_errors;
155 	unsigned int init_nr_meta_errors;
156 
157 	/*
158 	 * The following error bitmaps are all for the current status.
159 	 * Every time we submit a new read, these bitmaps may be updated.
160 	 *
161 	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
162 	 *
163 	 * IO and csum errors can happen for both metadata and data.
164 	 */
165 	unsigned long error_bitmap;
166 	unsigned long io_error_bitmap;
167 	unsigned long csum_error_bitmap;
168 	unsigned long meta_error_bitmap;
169 
170 	/* For writeback (repair or replace) error reporting. */
171 	unsigned long write_error_bitmap;
172 
173 	/* Writeback can be concurrent, thus we need to protect the bitmap. */
174 	spinlock_t write_error_lock;
175 
176 	/*
177 	 * Checksum for the whole stripe if this stripe is inside a data block
178 	 * group.
179 	 */
180 	u8 *csums;
181 
182 	struct work_struct work;
183 };
184 
185 struct scrub_ctx {
186 	struct scrub_stripe	stripes[SCRUB_TOTAL_STRIPES];
187 	struct scrub_stripe	*raid56_data_stripes;
188 	struct btrfs_fs_info	*fs_info;
189 	struct btrfs_path	extent_path;
190 	struct btrfs_path	csum_path;
191 	int			first_free;
192 	int			cur_stripe;
193 	atomic_t		cancel_req;
194 	int			readonly;
195 	int			sectors_per_bio;
196 
197 	/* State of IO submission throttling affecting the associated device */
198 	ktime_t			throttle_deadline;
199 	u64			throttle_sent;
200 
201 	int			is_dev_replace;
202 	u64			write_pointer;
203 
204 	struct mutex            wr_lock;
205 	struct btrfs_device     *wr_tgtdev;
206 
207 	/*
208 	 * statistics
209 	 */
210 	struct btrfs_scrub_progress stat;
211 	spinlock_t		stat_lock;
212 
213 	/*
214 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
215 	 * decrement bios_in_flight and workers_pending and then do a wakeup
216 	 * on the list_wait wait queue. We must ensure the main scrub task
217 	 * doesn't free the scrub context before or while the workers are
218 	 * doing the wakeup() call.
219 	 */
220 	refcount_t              refs;
221 };
222 
223 struct scrub_warning {
224 	struct btrfs_path	*path;
225 	u64			extent_item_size;
226 	const char		*errstr;
227 	u64			physical;
228 	u64			logical;
229 	struct btrfs_device	*dev;
230 };
231 
232 static void release_scrub_stripe(struct scrub_stripe *stripe)
233 {
234 	if (!stripe)
235 		return;
236 
237 	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
238 		if (stripe->pages[i])
239 			__free_page(stripe->pages[i]);
240 		stripe->pages[i] = NULL;
241 	}
242 	kfree(stripe->sectors);
243 	kfree(stripe->csums);
244 	stripe->sectors = NULL;
245 	stripe->csums = NULL;
246 	stripe->sctx = NULL;
247 	stripe->state = 0;
248 }
249 
250 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
251 			     struct scrub_stripe *stripe)
252 {
253 	int ret;
254 
255 	memset(stripe, 0, sizeof(*stripe));
256 
257 	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
258 	stripe->state = 0;
259 
260 	init_waitqueue_head(&stripe->io_wait);
261 	init_waitqueue_head(&stripe->repair_wait);
262 	atomic_set(&stripe->pending_io, 0);
263 	spin_lock_init(&stripe->write_error_lock);
264 
265 	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages);
266 	if (ret < 0)
267 		goto error;
268 
269 	stripe->sectors = kcalloc(stripe->nr_sectors,
270 				  sizeof(struct scrub_sector_verification),
271 				  GFP_KERNEL);
272 	if (!stripe->sectors)
273 		goto error;
274 
275 	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
276 				fs_info->csum_size, GFP_KERNEL);
277 	if (!stripe->csums)
278 		goto error;
279 	return 0;
280 error:
281 	release_scrub_stripe(stripe);
282 	return -ENOMEM;
283 }
284 
285 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
286 {
287 	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
288 }
289 
290 static void scrub_put_ctx(struct scrub_ctx *sctx);
291 
292 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
293 {
294 	while (atomic_read(&fs_info->scrub_pause_req)) {
295 		mutex_unlock(&fs_info->scrub_lock);
296 		wait_event(fs_info->scrub_pause_wait,
297 		   atomic_read(&fs_info->scrub_pause_req) == 0);
298 		mutex_lock(&fs_info->scrub_lock);
299 	}
300 }
301 
302 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
303 {
304 	atomic_inc(&fs_info->scrubs_paused);
305 	wake_up(&fs_info->scrub_pause_wait);
306 }
307 
308 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
309 {
310 	mutex_lock(&fs_info->scrub_lock);
311 	__scrub_blocked_if_needed(fs_info);
312 	atomic_dec(&fs_info->scrubs_paused);
313 	mutex_unlock(&fs_info->scrub_lock);
314 
315 	wake_up(&fs_info->scrub_pause_wait);
316 }
317 
318 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
319 {
320 	scrub_pause_on(fs_info);
321 	scrub_pause_off(fs_info);
322 }
323 
324 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
325 {
326 	int i;
327 
328 	if (!sctx)
329 		return;
330 
331 	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
332 		release_scrub_stripe(&sctx->stripes[i]);
333 
334 	kvfree(sctx);
335 }
336 
337 static void scrub_put_ctx(struct scrub_ctx *sctx)
338 {
339 	if (refcount_dec_and_test(&sctx->refs))
340 		scrub_free_ctx(sctx);
341 }
342 
343 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
344 		struct btrfs_fs_info *fs_info, int is_dev_replace)
345 {
346 	struct scrub_ctx *sctx;
347 	int		i;
348 
349 	/* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
350 	 * kvzalloc().
351 	 */
352 	sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
353 	if (!sctx)
354 		goto nomem;
355 	refcount_set(&sctx->refs, 1);
356 	sctx->is_dev_replace = is_dev_replace;
357 	sctx->fs_info = fs_info;
358 	sctx->extent_path.search_commit_root = 1;
359 	sctx->extent_path.skip_locking = 1;
360 	sctx->csum_path.search_commit_root = 1;
361 	sctx->csum_path.skip_locking = 1;
362 	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
363 		int ret;
364 
365 		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
366 		if (ret < 0)
367 			goto nomem;
368 		sctx->stripes[i].sctx = sctx;
369 	}
370 	sctx->first_free = 0;
371 	atomic_set(&sctx->cancel_req, 0);
372 
373 	spin_lock_init(&sctx->stat_lock);
374 	sctx->throttle_deadline = 0;
375 
376 	mutex_init(&sctx->wr_lock);
377 	if (is_dev_replace) {
378 		WARN_ON(!fs_info->dev_replace.tgtdev);
379 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
380 	}
381 
382 	return sctx;
383 
384 nomem:
385 	scrub_free_ctx(sctx);
386 	return ERR_PTR(-ENOMEM);
387 }
388 
389 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
390 				     u64 root, void *warn_ctx)
391 {
392 	u32 nlink;
393 	int ret;
394 	int i;
395 	unsigned nofs_flag;
396 	struct extent_buffer *eb;
397 	struct btrfs_inode_item *inode_item;
398 	struct scrub_warning *swarn = warn_ctx;
399 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
400 	struct inode_fs_paths *ipath = NULL;
401 	struct btrfs_root *local_root;
402 	struct btrfs_key key;
403 
404 	local_root = btrfs_get_fs_root(fs_info, root, true);
405 	if (IS_ERR(local_root)) {
406 		ret = PTR_ERR(local_root);
407 		goto err;
408 	}
409 
410 	/*
411 	 * this makes the path point to (inum INODE_ITEM ioff)
412 	 */
413 	key.objectid = inum;
414 	key.type = BTRFS_INODE_ITEM_KEY;
415 	key.offset = 0;
416 
417 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
418 	if (ret) {
419 		btrfs_put_root(local_root);
420 		btrfs_release_path(swarn->path);
421 		goto err;
422 	}
423 
424 	eb = swarn->path->nodes[0];
425 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
426 					struct btrfs_inode_item);
427 	nlink = btrfs_inode_nlink(eb, inode_item);
428 	btrfs_release_path(swarn->path);
429 
430 	/*
431 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
432 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
433 	 * not seem to be strictly necessary.
434 	 */
435 	nofs_flag = memalloc_nofs_save();
436 	ipath = init_ipath(4096, local_root, swarn->path);
437 	memalloc_nofs_restore(nofs_flag);
438 	if (IS_ERR(ipath)) {
439 		btrfs_put_root(local_root);
440 		ret = PTR_ERR(ipath);
441 		ipath = NULL;
442 		goto err;
443 	}
444 	ret = paths_from_inode(inum, ipath);
445 
446 	if (ret < 0)
447 		goto err;
448 
449 	/*
450 	 * we deliberately ignore the bit ipath might have been too small to
451 	 * hold all of the paths here
452 	 */
453 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
454 		btrfs_warn_in_rcu(fs_info,
455 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
456 				  swarn->errstr, swarn->logical,
457 				  btrfs_dev_name(swarn->dev),
458 				  swarn->physical,
459 				  root, inum, offset,
460 				  fs_info->sectorsize, nlink,
461 				  (char *)(unsigned long)ipath->fspath->val[i]);
462 
463 	btrfs_put_root(local_root);
464 	free_ipath(ipath);
465 	return 0;
466 
467 err:
468 	btrfs_warn_in_rcu(fs_info,
469 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
470 			  swarn->errstr, swarn->logical,
471 			  btrfs_dev_name(swarn->dev),
472 			  swarn->physical,
473 			  root, inum, offset, ret);
474 
475 	free_ipath(ipath);
476 	return 0;
477 }
478 
479 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
480 				       bool is_super, u64 logical, u64 physical)
481 {
482 	struct btrfs_fs_info *fs_info = dev->fs_info;
483 	struct btrfs_path *path;
484 	struct btrfs_key found_key;
485 	struct extent_buffer *eb;
486 	struct btrfs_extent_item *ei;
487 	struct scrub_warning swarn;
488 	u64 flags = 0;
489 	u32 item_size;
490 	int ret;
491 
492 	/* Super block error, no need to search extent tree. */
493 	if (is_super) {
494 		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
495 				  errstr, btrfs_dev_name(dev), physical);
496 		return;
497 	}
498 	path = btrfs_alloc_path();
499 	if (!path)
500 		return;
501 
502 	swarn.physical = physical;
503 	swarn.logical = logical;
504 	swarn.errstr = errstr;
505 	swarn.dev = NULL;
506 
507 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
508 				  &flags);
509 	if (ret < 0)
510 		goto out;
511 
512 	swarn.extent_item_size = found_key.offset;
513 
514 	eb = path->nodes[0];
515 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
516 	item_size = btrfs_item_size(eb, path->slots[0]);
517 
518 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
519 		unsigned long ptr = 0;
520 		u8 ref_level;
521 		u64 ref_root;
522 
523 		while (true) {
524 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
525 						      item_size, &ref_root,
526 						      &ref_level);
527 			if (ret < 0) {
528 				btrfs_warn(fs_info,
529 				"failed to resolve tree backref for logical %llu: %d",
530 						  swarn.logical, ret);
531 				break;
532 			}
533 			if (ret > 0)
534 				break;
535 			btrfs_warn_in_rcu(fs_info,
536 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
537 				errstr, swarn.logical, btrfs_dev_name(dev),
538 				swarn.physical, (ref_level ? "node" : "leaf"),
539 				ref_level, ref_root);
540 		}
541 		btrfs_release_path(path);
542 	} else {
543 		struct btrfs_backref_walk_ctx ctx = { 0 };
544 
545 		btrfs_release_path(path);
546 
547 		ctx.bytenr = found_key.objectid;
548 		ctx.extent_item_pos = swarn.logical - found_key.objectid;
549 		ctx.fs_info = fs_info;
550 
551 		swarn.path = path;
552 		swarn.dev = dev;
553 
554 		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
555 	}
556 
557 out:
558 	btrfs_free_path(path);
559 }
560 
561 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
562 {
563 	int ret = 0;
564 	u64 length;
565 
566 	if (!btrfs_is_zoned(sctx->fs_info))
567 		return 0;
568 
569 	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
570 		return 0;
571 
572 	if (sctx->write_pointer < physical) {
573 		length = physical - sctx->write_pointer;
574 
575 		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
576 						sctx->write_pointer, length);
577 		if (!ret)
578 			sctx->write_pointer = physical;
579 	}
580 	return ret;
581 }
582 
583 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
584 {
585 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
586 	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
587 
588 	return stripe->pages[page_index];
589 }
590 
591 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
592 						 int sector_nr)
593 {
594 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
595 
596 	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
597 }
598 
599 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
600 {
601 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
602 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
603 	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
604 	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
605 	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
606 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
607 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
608 	u8 calculated_csum[BTRFS_CSUM_SIZE];
609 	struct btrfs_header *header;
610 
611 	/*
612 	 * Here we don't have a good way to attach the pages (and subpages)
613 	 * to a dummy extent buffer, thus we have to directly grab the members
614 	 * from pages.
615 	 */
616 	header = (struct btrfs_header *)(page_address(first_page) + first_off);
617 	memcpy(on_disk_csum, header->csum, fs_info->csum_size);
618 
619 	if (logical != btrfs_stack_header_bytenr(header)) {
620 		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
621 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
622 		btrfs_warn_rl(fs_info,
623 		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
624 			      logical, stripe->mirror_num,
625 			      btrfs_stack_header_bytenr(header), logical);
626 		return;
627 	}
628 	if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
629 		   BTRFS_FSID_SIZE) != 0) {
630 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
631 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
632 		btrfs_warn_rl(fs_info,
633 		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
634 			      logical, stripe->mirror_num,
635 			      header->fsid, fs_info->fs_devices->fsid);
636 		return;
637 	}
638 	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
639 		   BTRFS_UUID_SIZE) != 0) {
640 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
641 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
642 		btrfs_warn_rl(fs_info,
643 		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
644 			      logical, stripe->mirror_num,
645 			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
646 		return;
647 	}
648 
649 	/* Now check tree block csum. */
650 	shash->tfm = fs_info->csum_shash;
651 	crypto_shash_init(shash);
652 	crypto_shash_update(shash, page_address(first_page) + first_off +
653 			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
654 
655 	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
656 		struct page *page = scrub_stripe_get_page(stripe, i);
657 		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
658 
659 		crypto_shash_update(shash, page_address(page) + page_off,
660 				    fs_info->sectorsize);
661 	}
662 
663 	crypto_shash_final(shash, calculated_csum);
664 	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
665 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
666 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
667 		btrfs_warn_rl(fs_info,
668 		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
669 			      logical, stripe->mirror_num,
670 			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
671 			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
672 		return;
673 	}
674 	if (stripe->sectors[sector_nr].generation !=
675 	    btrfs_stack_header_generation(header)) {
676 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
677 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
678 		btrfs_warn_rl(fs_info,
679 		"tree block %llu mirror %u has bad generation, has %llu want %llu",
680 			      logical, stripe->mirror_num,
681 			      btrfs_stack_header_generation(header),
682 			      stripe->sectors[sector_nr].generation);
683 		return;
684 	}
685 	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
686 	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
687 	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
688 }
689 
690 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
691 {
692 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
693 	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
694 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
695 	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
696 	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
697 	u8 csum_buf[BTRFS_CSUM_SIZE];
698 	int ret;
699 
700 	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
701 
702 	/* Sector not utilized, skip it. */
703 	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
704 		return;
705 
706 	/* IO error, no need to check. */
707 	if (test_bit(sector_nr, &stripe->io_error_bitmap))
708 		return;
709 
710 	/* Metadata, verify the full tree block. */
711 	if (sector->is_metadata) {
712 		/*
713 		 * Check if the tree block crosses the stripe boudary.  If
714 		 * crossed the boundary, we cannot verify it but only give a
715 		 * warning.
716 		 *
717 		 * This can only happen on a very old filesystem where chunks
718 		 * are not ensured to be stripe aligned.
719 		 */
720 		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
721 			btrfs_warn_rl(fs_info,
722 			"tree block at %llu crosses stripe boundary %llu",
723 				      stripe->logical +
724 				      (sector_nr << fs_info->sectorsize_bits),
725 				      stripe->logical);
726 			return;
727 		}
728 		scrub_verify_one_metadata(stripe, sector_nr);
729 		return;
730 	}
731 
732 	/*
733 	 * Data is easier, we just verify the data csum (if we have it).  For
734 	 * cases without csum, we have no other choice but to trust it.
735 	 */
736 	if (!sector->csum) {
737 		clear_bit(sector_nr, &stripe->error_bitmap);
738 		return;
739 	}
740 
741 	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
742 	if (ret < 0) {
743 		set_bit(sector_nr, &stripe->csum_error_bitmap);
744 		set_bit(sector_nr, &stripe->error_bitmap);
745 	} else {
746 		clear_bit(sector_nr, &stripe->csum_error_bitmap);
747 		clear_bit(sector_nr, &stripe->error_bitmap);
748 	}
749 }
750 
751 /* Verify specified sectors of a stripe. */
752 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
753 {
754 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
755 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
756 	int sector_nr;
757 
758 	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
759 		scrub_verify_one_sector(stripe, sector_nr);
760 		if (stripe->sectors[sector_nr].is_metadata)
761 			sector_nr += sectors_per_tree - 1;
762 	}
763 }
764 
765 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
766 {
767 	int i;
768 
769 	for (i = 0; i < stripe->nr_sectors; i++) {
770 		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
771 		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
772 			break;
773 	}
774 	ASSERT(i < stripe->nr_sectors);
775 	return i;
776 }
777 
778 /*
779  * Repair read is different to the regular read:
780  *
781  * - Only reads the failed sectors
782  * - May have extra blocksize limits
783  */
784 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
785 {
786 	struct scrub_stripe *stripe = bbio->private;
787 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
788 	struct bio_vec *bvec;
789 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
790 	u32 bio_size = 0;
791 	int i;
792 
793 	ASSERT(sector_nr < stripe->nr_sectors);
794 
795 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
796 		bio_size += bvec->bv_len;
797 
798 	if (bbio->bio.bi_status) {
799 		bitmap_set(&stripe->io_error_bitmap, sector_nr,
800 			   bio_size >> fs_info->sectorsize_bits);
801 		bitmap_set(&stripe->error_bitmap, sector_nr,
802 			   bio_size >> fs_info->sectorsize_bits);
803 	} else {
804 		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
805 			     bio_size >> fs_info->sectorsize_bits);
806 	}
807 	bio_put(&bbio->bio);
808 	if (atomic_dec_and_test(&stripe->pending_io))
809 		wake_up(&stripe->io_wait);
810 }
811 
812 static int calc_next_mirror(int mirror, int num_copies)
813 {
814 	ASSERT(mirror <= num_copies);
815 	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
816 }
817 
818 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
819 					    int mirror, int blocksize, bool wait)
820 {
821 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
822 	struct btrfs_bio *bbio = NULL;
823 	const unsigned long old_error_bitmap = stripe->error_bitmap;
824 	int i;
825 
826 	ASSERT(stripe->mirror_num >= 1);
827 	ASSERT(atomic_read(&stripe->pending_io) == 0);
828 
829 	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
830 		struct page *page;
831 		int pgoff;
832 		int ret;
833 
834 		page = scrub_stripe_get_page(stripe, i);
835 		pgoff = scrub_stripe_get_page_offset(stripe, i);
836 
837 		/* The current sector cannot be merged, submit the bio. */
838 		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
839 			     bbio->bio.bi_iter.bi_size >= blocksize)) {
840 			ASSERT(bbio->bio.bi_iter.bi_size);
841 			atomic_inc(&stripe->pending_io);
842 			btrfs_submit_bio(bbio, mirror);
843 			if (wait)
844 				wait_scrub_stripe_io(stripe);
845 			bbio = NULL;
846 		}
847 
848 		if (!bbio) {
849 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
850 				fs_info, scrub_repair_read_endio, stripe);
851 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
852 				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
853 		}
854 
855 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
856 		ASSERT(ret == fs_info->sectorsize);
857 	}
858 	if (bbio) {
859 		ASSERT(bbio->bio.bi_iter.bi_size);
860 		atomic_inc(&stripe->pending_io);
861 		btrfs_submit_bio(bbio, mirror);
862 		if (wait)
863 			wait_scrub_stripe_io(stripe);
864 	}
865 }
866 
867 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
868 				       struct scrub_stripe *stripe)
869 {
870 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
871 				      DEFAULT_RATELIMIT_BURST);
872 	struct btrfs_fs_info *fs_info = sctx->fs_info;
873 	struct btrfs_device *dev = NULL;
874 	u64 physical = 0;
875 	int nr_data_sectors = 0;
876 	int nr_meta_sectors = 0;
877 	int nr_nodatacsum_sectors = 0;
878 	int nr_repaired_sectors = 0;
879 	int sector_nr;
880 
881 	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
882 		return;
883 
884 	/*
885 	 * Init needed infos for error reporting.
886 	 *
887 	 * Although our scrub_stripe infrastucture is mostly based on btrfs_submit_bio()
888 	 * thus no need for dev/physical, error reporting still needs dev and physical.
889 	 */
890 	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
891 		u64 mapped_len = fs_info->sectorsize;
892 		struct btrfs_io_context *bioc = NULL;
893 		int stripe_index = stripe->mirror_num - 1;
894 		int ret;
895 
896 		/* For scrub, our mirror_num should always start at 1. */
897 		ASSERT(stripe->mirror_num >= 1);
898 		ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
899 				      stripe->logical, &mapped_len, &bioc,
900 				      NULL, NULL);
901 		/*
902 		 * If we failed, dev will be NULL, and later detailed reports
903 		 * will just be skipped.
904 		 */
905 		if (ret < 0)
906 			goto skip;
907 		physical = bioc->stripes[stripe_index].physical;
908 		dev = bioc->stripes[stripe_index].dev;
909 		btrfs_put_bioc(bioc);
910 	}
911 
912 skip:
913 	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
914 		bool repaired = false;
915 
916 		if (stripe->sectors[sector_nr].is_metadata) {
917 			nr_meta_sectors++;
918 		} else {
919 			nr_data_sectors++;
920 			if (!stripe->sectors[sector_nr].csum)
921 				nr_nodatacsum_sectors++;
922 		}
923 
924 		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
925 		    !test_bit(sector_nr, &stripe->error_bitmap)) {
926 			nr_repaired_sectors++;
927 			repaired = true;
928 		}
929 
930 		/* Good sector from the beginning, nothing need to be done. */
931 		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
932 			continue;
933 
934 		/*
935 		 * Report error for the corrupted sectors.  If repaired, just
936 		 * output the message of repaired message.
937 		 */
938 		if (repaired) {
939 			if (dev) {
940 				btrfs_err_rl_in_rcu(fs_info,
941 			"fixed up error at logical %llu on dev %s physical %llu",
942 					    stripe->logical, btrfs_dev_name(dev),
943 					    physical);
944 			} else {
945 				btrfs_err_rl_in_rcu(fs_info,
946 			"fixed up error at logical %llu on mirror %u",
947 					    stripe->logical, stripe->mirror_num);
948 			}
949 			continue;
950 		}
951 
952 		/* The remaining are all for unrepaired. */
953 		if (dev) {
954 			btrfs_err_rl_in_rcu(fs_info,
955 	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
956 					    stripe->logical, btrfs_dev_name(dev),
957 					    physical);
958 		} else {
959 			btrfs_err_rl_in_rcu(fs_info,
960 	"unable to fixup (regular) error at logical %llu on mirror %u",
961 					    stripe->logical, stripe->mirror_num);
962 		}
963 
964 		if (test_bit(sector_nr, &stripe->io_error_bitmap))
965 			if (__ratelimit(&rs) && dev)
966 				scrub_print_common_warning("i/o error", dev, false,
967 						     stripe->logical, physical);
968 		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
969 			if (__ratelimit(&rs) && dev)
970 				scrub_print_common_warning("checksum error", dev, false,
971 						     stripe->logical, physical);
972 		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
973 			if (__ratelimit(&rs) && dev)
974 				scrub_print_common_warning("header error", dev, false,
975 						     stripe->logical, physical);
976 	}
977 
978 	spin_lock(&sctx->stat_lock);
979 	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
980 	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
981 	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
982 	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
983 	sctx->stat.no_csum += nr_nodatacsum_sectors;
984 	sctx->stat.read_errors += stripe->init_nr_io_errors;
985 	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
986 	sctx->stat.verify_errors += stripe->init_nr_meta_errors;
987 	sctx->stat.uncorrectable_errors +=
988 		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
989 	sctx->stat.corrected_errors += nr_repaired_sectors;
990 	spin_unlock(&sctx->stat_lock);
991 }
992 
993 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
994 				unsigned long write_bitmap, bool dev_replace);
995 
996 /*
997  * The main entrance for all read related scrub work, including:
998  *
999  * - Wait for the initial read to finish
1000  * - Verify and locate any bad sectors
1001  * - Go through the remaining mirrors and try to read as large blocksize as
1002  *   possible
1003  * - Go through all mirrors (including the failed mirror) sector-by-sector
1004  * - Submit writeback for repaired sectors
1005  *
1006  * Writeback for dev-replace does not happen here, it needs extra
1007  * synchronization for zoned devices.
1008  */
1009 static void scrub_stripe_read_repair_worker(struct work_struct *work)
1010 {
1011 	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1012 	struct scrub_ctx *sctx = stripe->sctx;
1013 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1014 	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1015 					  stripe->bg->length);
1016 	int mirror;
1017 	int i;
1018 
1019 	ASSERT(stripe->mirror_num > 0);
1020 
1021 	wait_scrub_stripe_io(stripe);
1022 	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1023 	/* Save the initial failed bitmap for later repair and report usage. */
1024 	stripe->init_error_bitmap = stripe->error_bitmap;
1025 	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1026 						  stripe->nr_sectors);
1027 	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1028 						    stripe->nr_sectors);
1029 	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1030 						    stripe->nr_sectors);
1031 
1032 	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1033 		goto out;
1034 
1035 	/*
1036 	 * Try all remaining mirrors.
1037 	 *
1038 	 * Here we still try to read as large block as possible, as this is
1039 	 * faster and we have extra safety nets to rely on.
1040 	 */
1041 	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1042 	     mirror != stripe->mirror_num;
1043 	     mirror = calc_next_mirror(mirror, num_copies)) {
1044 		const unsigned long old_error_bitmap = stripe->error_bitmap;
1045 
1046 		scrub_stripe_submit_repair_read(stripe, mirror,
1047 						BTRFS_STRIPE_LEN, false);
1048 		wait_scrub_stripe_io(stripe);
1049 		scrub_verify_one_stripe(stripe, old_error_bitmap);
1050 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1051 			goto out;
1052 	}
1053 
1054 	/*
1055 	 * Last safety net, try re-checking all mirrors, including the failed
1056 	 * one, sector-by-sector.
1057 	 *
1058 	 * As if one sector failed the drive's internal csum, the whole read
1059 	 * containing the offending sector would be marked as error.
1060 	 * Thus here we do sector-by-sector read.
1061 	 *
1062 	 * This can be slow, thus we only try it as the last resort.
1063 	 */
1064 
1065 	for (i = 0, mirror = stripe->mirror_num;
1066 	     i < num_copies;
1067 	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
1068 		const unsigned long old_error_bitmap = stripe->error_bitmap;
1069 
1070 		scrub_stripe_submit_repair_read(stripe, mirror,
1071 						fs_info->sectorsize, true);
1072 		wait_scrub_stripe_io(stripe);
1073 		scrub_verify_one_stripe(stripe, old_error_bitmap);
1074 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1075 			goto out;
1076 	}
1077 out:
1078 	/*
1079 	 * Submit the repaired sectors.  For zoned case, we cannot do repair
1080 	 * in-place, but queue the bg to be relocated.
1081 	 */
1082 	if (btrfs_is_zoned(fs_info)) {
1083 		if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1084 			btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1085 	} else if (!sctx->readonly) {
1086 		unsigned long repaired;
1087 
1088 		bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1089 			      &stripe->error_bitmap, stripe->nr_sectors);
1090 		scrub_write_sectors(sctx, stripe, repaired, false);
1091 		wait_scrub_stripe_io(stripe);
1092 	}
1093 
1094 	scrub_stripe_report_errors(sctx, stripe);
1095 	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1096 	wake_up(&stripe->repair_wait);
1097 }
1098 
1099 static void scrub_read_endio(struct btrfs_bio *bbio)
1100 {
1101 	struct scrub_stripe *stripe = bbio->private;
1102 
1103 	if (bbio->bio.bi_status) {
1104 		bitmap_set(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
1105 		bitmap_set(&stripe->error_bitmap, 0, stripe->nr_sectors);
1106 	} else {
1107 		bitmap_clear(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
1108 	}
1109 	bio_put(&bbio->bio);
1110 	if (atomic_dec_and_test(&stripe->pending_io)) {
1111 		wake_up(&stripe->io_wait);
1112 		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1113 		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1114 	}
1115 }
1116 
1117 static void scrub_write_endio(struct btrfs_bio *bbio)
1118 {
1119 	struct scrub_stripe *stripe = bbio->private;
1120 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1121 	struct bio_vec *bvec;
1122 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1123 	u32 bio_size = 0;
1124 	int i;
1125 
1126 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1127 		bio_size += bvec->bv_len;
1128 
1129 	if (bbio->bio.bi_status) {
1130 		unsigned long flags;
1131 
1132 		spin_lock_irqsave(&stripe->write_error_lock, flags);
1133 		bitmap_set(&stripe->write_error_bitmap, sector_nr,
1134 			   bio_size >> fs_info->sectorsize_bits);
1135 		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1136 	}
1137 	bio_put(&bbio->bio);
1138 
1139 	if (atomic_dec_and_test(&stripe->pending_io))
1140 		wake_up(&stripe->io_wait);
1141 }
1142 
1143 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1144 				   struct scrub_stripe *stripe,
1145 				   struct btrfs_bio *bbio, bool dev_replace)
1146 {
1147 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1148 	u32 bio_len = bbio->bio.bi_iter.bi_size;
1149 	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1150 		      stripe->logical;
1151 
1152 	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1153 	atomic_inc(&stripe->pending_io);
1154 	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1155 	if (!btrfs_is_zoned(fs_info))
1156 		return;
1157 	/*
1158 	 * For zoned writeback, queue depth must be 1, thus we must wait for
1159 	 * the write to finish before the next write.
1160 	 */
1161 	wait_scrub_stripe_io(stripe);
1162 
1163 	/*
1164 	 * And also need to update the write pointer if write finished
1165 	 * successfully.
1166 	 */
1167 	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1168 		      &stripe->write_error_bitmap))
1169 		sctx->write_pointer += bio_len;
1170 }
1171 
1172 /*
1173  * Submit the write bio(s) for the sectors specified by @write_bitmap.
1174  *
1175  * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1176  *
1177  * - Only needs logical bytenr and mirror_num
1178  *   Just like the scrub read path
1179  *
1180  * - Would only result in writes to the specified mirror
1181  *   Unlike the regular writeback path, which would write back to all stripes
1182  *
1183  * - Handle dev-replace and read-repair writeback differently
1184  */
1185 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1186 				unsigned long write_bitmap, bool dev_replace)
1187 {
1188 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1189 	struct btrfs_bio *bbio = NULL;
1190 	int sector_nr;
1191 
1192 	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1193 		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1194 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1195 		int ret;
1196 
1197 		/* We should only writeback sectors covered by an extent. */
1198 		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1199 
1200 		/* Cannot merge with previous sector, submit the current one. */
1201 		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1202 			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1203 			bbio = NULL;
1204 		}
1205 		if (!bbio) {
1206 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1207 					       fs_info, scrub_write_endio, stripe);
1208 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
1209 				(sector_nr << fs_info->sectorsize_bits)) >>
1210 				SECTOR_SHIFT;
1211 		}
1212 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1213 		ASSERT(ret == fs_info->sectorsize);
1214 	}
1215 	if (bbio)
1216 		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1217 }
1218 
1219 /*
1220  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1221  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1222  */
1223 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1224 				  unsigned int bio_size)
1225 {
1226 	const int time_slice = 1000;
1227 	s64 delta;
1228 	ktime_t now;
1229 	u32 div;
1230 	u64 bwlimit;
1231 
1232 	bwlimit = READ_ONCE(device->scrub_speed_max);
1233 	if (bwlimit == 0)
1234 		return;
1235 
1236 	/*
1237 	 * Slice is divided into intervals when the IO is submitted, adjust by
1238 	 * bwlimit and maximum of 64 intervals.
1239 	 */
1240 	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1241 	div = min_t(u32, 64, div);
1242 
1243 	/* Start new epoch, set deadline */
1244 	now = ktime_get();
1245 	if (sctx->throttle_deadline == 0) {
1246 		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1247 		sctx->throttle_sent = 0;
1248 	}
1249 
1250 	/* Still in the time to send? */
1251 	if (ktime_before(now, sctx->throttle_deadline)) {
1252 		/* If current bio is within the limit, send it */
1253 		sctx->throttle_sent += bio_size;
1254 		if (sctx->throttle_sent <= div_u64(bwlimit, div))
1255 			return;
1256 
1257 		/* We're over the limit, sleep until the rest of the slice */
1258 		delta = ktime_ms_delta(sctx->throttle_deadline, now);
1259 	} else {
1260 		/* New request after deadline, start new epoch */
1261 		delta = 0;
1262 	}
1263 
1264 	if (delta) {
1265 		long timeout;
1266 
1267 		timeout = div_u64(delta * HZ, 1000);
1268 		schedule_timeout_interruptible(timeout);
1269 	}
1270 
1271 	/* Next call will start the deadline period */
1272 	sctx->throttle_deadline = 0;
1273 }
1274 
1275 /*
1276  * Given a physical address, this will calculate it's
1277  * logical offset. if this is a parity stripe, it will return
1278  * the most left data stripe's logical offset.
1279  *
1280  * return 0 if it is a data stripe, 1 means parity stripe.
1281  */
1282 static int get_raid56_logic_offset(u64 physical, int num,
1283 				   struct map_lookup *map, u64 *offset,
1284 				   u64 *stripe_start)
1285 {
1286 	int i;
1287 	int j = 0;
1288 	u64 last_offset;
1289 	const int data_stripes = nr_data_stripes(map);
1290 
1291 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
1292 	if (stripe_start)
1293 		*stripe_start = last_offset;
1294 
1295 	*offset = last_offset;
1296 	for (i = 0; i < data_stripes; i++) {
1297 		u32 stripe_nr;
1298 		u32 stripe_index;
1299 		u32 rot;
1300 
1301 		*offset = last_offset + btrfs_stripe_nr_to_offset(i);
1302 
1303 		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1304 
1305 		/* Work out the disk rotation on this stripe-set */
1306 		rot = stripe_nr % map->num_stripes;
1307 		/* calculate which stripe this data locates */
1308 		rot += i;
1309 		stripe_index = rot % map->num_stripes;
1310 		if (stripe_index == num)
1311 			return 0;
1312 		if (stripe_index < num)
1313 			j++;
1314 	}
1315 	*offset = last_offset + btrfs_stripe_nr_to_offset(j);
1316 	return 1;
1317 }
1318 
1319 /*
1320  * Return 0 if the extent item range covers any byte of the range.
1321  * Return <0 if the extent item is before @search_start.
1322  * Return >0 if the extent item is after @start_start + @search_len.
1323  */
1324 static int compare_extent_item_range(struct btrfs_path *path,
1325 				     u64 search_start, u64 search_len)
1326 {
1327 	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1328 	u64 len;
1329 	struct btrfs_key key;
1330 
1331 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1332 	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1333 	       key.type == BTRFS_METADATA_ITEM_KEY);
1334 	if (key.type == BTRFS_METADATA_ITEM_KEY)
1335 		len = fs_info->nodesize;
1336 	else
1337 		len = key.offset;
1338 
1339 	if (key.objectid + len <= search_start)
1340 		return -1;
1341 	if (key.objectid >= search_start + search_len)
1342 		return 1;
1343 	return 0;
1344 }
1345 
1346 /*
1347  * Locate one extent item which covers any byte in range
1348  * [@search_start, @search_start + @search_length)
1349  *
1350  * If the path is not initialized, we will initialize the search by doing
1351  * a btrfs_search_slot().
1352  * If the path is already initialized, we will use the path as the initial
1353  * slot, to avoid duplicated btrfs_search_slot() calls.
1354  *
1355  * NOTE: If an extent item starts before @search_start, we will still
1356  * return the extent item. This is for data extent crossing stripe boundary.
1357  *
1358  * Return 0 if we found such extent item, and @path will point to the extent item.
1359  * Return >0 if no such extent item can be found, and @path will be released.
1360  * Return <0 if hit fatal error, and @path will be released.
1361  */
1362 static int find_first_extent_item(struct btrfs_root *extent_root,
1363 				  struct btrfs_path *path,
1364 				  u64 search_start, u64 search_len)
1365 {
1366 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1367 	struct btrfs_key key;
1368 	int ret;
1369 
1370 	/* Continue using the existing path */
1371 	if (path->nodes[0])
1372 		goto search_forward;
1373 
1374 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1375 		key.type = BTRFS_METADATA_ITEM_KEY;
1376 	else
1377 		key.type = BTRFS_EXTENT_ITEM_KEY;
1378 	key.objectid = search_start;
1379 	key.offset = (u64)-1;
1380 
1381 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1382 	if (ret < 0)
1383 		return ret;
1384 
1385 	ASSERT(ret > 0);
1386 	/*
1387 	 * Here we intentionally pass 0 as @min_objectid, as there could be
1388 	 * an extent item starting before @search_start.
1389 	 */
1390 	ret = btrfs_previous_extent_item(extent_root, path, 0);
1391 	if (ret < 0)
1392 		return ret;
1393 	/*
1394 	 * No matter whether we have found an extent item, the next loop will
1395 	 * properly do every check on the key.
1396 	 */
1397 search_forward:
1398 	while (true) {
1399 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1400 		if (key.objectid >= search_start + search_len)
1401 			break;
1402 		if (key.type != BTRFS_METADATA_ITEM_KEY &&
1403 		    key.type != BTRFS_EXTENT_ITEM_KEY)
1404 			goto next;
1405 
1406 		ret = compare_extent_item_range(path, search_start, search_len);
1407 		if (ret == 0)
1408 			return ret;
1409 		if (ret > 0)
1410 			break;
1411 next:
1412 		path->slots[0]++;
1413 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
1414 			ret = btrfs_next_leaf(extent_root, path);
1415 			if (ret) {
1416 				/* Either no more item or fatal error */
1417 				btrfs_release_path(path);
1418 				return ret;
1419 			}
1420 		}
1421 	}
1422 	btrfs_release_path(path);
1423 	return 1;
1424 }
1425 
1426 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1427 			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1428 {
1429 	struct btrfs_key key;
1430 	struct btrfs_extent_item *ei;
1431 
1432 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1433 	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1434 	       key.type == BTRFS_EXTENT_ITEM_KEY);
1435 	*extent_start_ret = key.objectid;
1436 	if (key.type == BTRFS_METADATA_ITEM_KEY)
1437 		*size_ret = path->nodes[0]->fs_info->nodesize;
1438 	else
1439 		*size_ret = key.offset;
1440 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1441 	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1442 	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1443 }
1444 
1445 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1446 					u64 physical, u64 physical_end)
1447 {
1448 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1449 	int ret = 0;
1450 
1451 	if (!btrfs_is_zoned(fs_info))
1452 		return 0;
1453 
1454 	mutex_lock(&sctx->wr_lock);
1455 	if (sctx->write_pointer < physical_end) {
1456 		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1457 						    physical,
1458 						    sctx->write_pointer);
1459 		if (ret)
1460 			btrfs_err(fs_info,
1461 				  "zoned: failed to recover write pointer");
1462 	}
1463 	mutex_unlock(&sctx->wr_lock);
1464 	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1465 
1466 	return ret;
1467 }
1468 
1469 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1470 				 struct scrub_stripe *stripe,
1471 				 u64 extent_start, u64 extent_len,
1472 				 u64 extent_flags, u64 extent_gen)
1473 {
1474 	for (u64 cur_logical = max(stripe->logical, extent_start);
1475 	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1476 			       extent_start + extent_len);
1477 	     cur_logical += fs_info->sectorsize) {
1478 		const int nr_sector = (cur_logical - stripe->logical) >>
1479 				      fs_info->sectorsize_bits;
1480 		struct scrub_sector_verification *sector =
1481 						&stripe->sectors[nr_sector];
1482 
1483 		set_bit(nr_sector, &stripe->extent_sector_bitmap);
1484 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1485 			sector->is_metadata = true;
1486 			sector->generation = extent_gen;
1487 		}
1488 	}
1489 }
1490 
1491 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1492 {
1493 	stripe->extent_sector_bitmap = 0;
1494 	stripe->init_error_bitmap = 0;
1495 	stripe->init_nr_io_errors = 0;
1496 	stripe->init_nr_csum_errors = 0;
1497 	stripe->init_nr_meta_errors = 0;
1498 	stripe->error_bitmap = 0;
1499 	stripe->io_error_bitmap = 0;
1500 	stripe->csum_error_bitmap = 0;
1501 	stripe->meta_error_bitmap = 0;
1502 }
1503 
1504 /*
1505  * Locate one stripe which has at least one extent in its range.
1506  *
1507  * Return 0 if found such stripe, and store its info into @stripe.
1508  * Return >0 if there is no such stripe in the specified range.
1509  * Return <0 for error.
1510  */
1511 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1512 					struct btrfs_path *extent_path,
1513 					struct btrfs_path *csum_path,
1514 					struct btrfs_device *dev, u64 physical,
1515 					int mirror_num, u64 logical_start,
1516 					u32 logical_len,
1517 					struct scrub_stripe *stripe)
1518 {
1519 	struct btrfs_fs_info *fs_info = bg->fs_info;
1520 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1521 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1522 	const u64 logical_end = logical_start + logical_len;
1523 	u64 cur_logical = logical_start;
1524 	u64 stripe_end;
1525 	u64 extent_start;
1526 	u64 extent_len;
1527 	u64 extent_flags;
1528 	u64 extent_gen;
1529 	int ret;
1530 
1531 	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1532 				   stripe->nr_sectors);
1533 	scrub_stripe_reset_bitmaps(stripe);
1534 
1535 	/* The range must be inside the bg. */
1536 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1537 
1538 	ret = find_first_extent_item(extent_root, extent_path, logical_start,
1539 				     logical_len);
1540 	/* Either error or not found. */
1541 	if (ret)
1542 		goto out;
1543 	get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1544 			&extent_gen);
1545 	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1546 		stripe->nr_meta_extents++;
1547 	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1548 		stripe->nr_data_extents++;
1549 	cur_logical = max(extent_start, cur_logical);
1550 
1551 	/*
1552 	 * Round down to stripe boundary.
1553 	 *
1554 	 * The extra calculation against bg->start is to handle block groups
1555 	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1556 	 */
1557 	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1558 			  bg->start;
1559 	stripe->physical = physical + stripe->logical - logical_start;
1560 	stripe->dev = dev;
1561 	stripe->bg = bg;
1562 	stripe->mirror_num = mirror_num;
1563 	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1564 
1565 	/* Fill the first extent info into stripe->sectors[] array. */
1566 	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1567 			     extent_flags, extent_gen);
1568 	cur_logical = extent_start + extent_len;
1569 
1570 	/* Fill the extent info for the remaining sectors. */
1571 	while (cur_logical <= stripe_end) {
1572 		ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1573 					     stripe_end - cur_logical + 1);
1574 		if (ret < 0)
1575 			goto out;
1576 		if (ret > 0) {
1577 			ret = 0;
1578 			break;
1579 		}
1580 		get_extent_info(extent_path, &extent_start, &extent_len,
1581 				&extent_flags, &extent_gen);
1582 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1583 			stripe->nr_meta_extents++;
1584 		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1585 			stripe->nr_data_extents++;
1586 		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1587 				     extent_flags, extent_gen);
1588 		cur_logical = extent_start + extent_len;
1589 	}
1590 
1591 	/* Now fill the data csum. */
1592 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1593 		int sector_nr;
1594 		unsigned long csum_bitmap = 0;
1595 
1596 		/* Csum space should have already been allocated. */
1597 		ASSERT(stripe->csums);
1598 
1599 		/*
1600 		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1601 		 * should contain at most 16 sectors.
1602 		 */
1603 		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1604 
1605 		ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1606 						stripe->logical, stripe_end,
1607 						stripe->csums, &csum_bitmap);
1608 		if (ret < 0)
1609 			goto out;
1610 		if (ret > 0)
1611 			ret = 0;
1612 
1613 		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1614 			stripe->sectors[sector_nr].csum = stripe->csums +
1615 				sector_nr * fs_info->csum_size;
1616 		}
1617 	}
1618 	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1619 out:
1620 	return ret;
1621 }
1622 
1623 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1624 {
1625 	scrub_stripe_reset_bitmaps(stripe);
1626 
1627 	stripe->nr_meta_extents = 0;
1628 	stripe->nr_data_extents = 0;
1629 	stripe->state = 0;
1630 
1631 	for (int i = 0; i < stripe->nr_sectors; i++) {
1632 		stripe->sectors[i].is_metadata = false;
1633 		stripe->sectors[i].csum = NULL;
1634 		stripe->sectors[i].generation = 0;
1635 	}
1636 }
1637 
1638 static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx,
1639 					    struct scrub_stripe *stripe)
1640 {
1641 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1642 	struct btrfs_bio *bbio = NULL;
1643 	u64 stripe_len = BTRFS_STRIPE_LEN;
1644 	int mirror = stripe->mirror_num;
1645 	int i;
1646 
1647 	atomic_inc(&stripe->pending_io);
1648 
1649 	for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
1650 		struct page *page = scrub_stripe_get_page(stripe, i);
1651 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);
1652 
1653 		/* The current sector cannot be merged, submit the bio. */
1654 		if (bbio &&
1655 		    ((i > 0 &&
1656 		      !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
1657 		     bbio->bio.bi_iter.bi_size >= stripe_len)) {
1658 			ASSERT(bbio->bio.bi_iter.bi_size);
1659 			atomic_inc(&stripe->pending_io);
1660 			btrfs_submit_bio(bbio, mirror);
1661 			bbio = NULL;
1662 		}
1663 
1664 		if (!bbio) {
1665 			struct btrfs_io_stripe io_stripe = {};
1666 			struct btrfs_io_context *bioc = NULL;
1667 			const u64 logical = stripe->logical +
1668 					    (i << fs_info->sectorsize_bits);
1669 			int err;
1670 
1671 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1672 					       fs_info, scrub_read_endio, stripe);
1673 			bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1674 
1675 			io_stripe.is_scrub = true;
1676 			err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1677 					      &stripe_len, &bioc, &io_stripe,
1678 					      &mirror);
1679 			btrfs_put_bioc(bioc);
1680 			if (err) {
1681 				btrfs_bio_end_io(bbio,
1682 						 errno_to_blk_status(err));
1683 				return;
1684 			}
1685 		}
1686 
1687 		__bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1688 	}
1689 
1690 	if (bbio) {
1691 		ASSERT(bbio->bio.bi_iter.bi_size);
1692 		atomic_inc(&stripe->pending_io);
1693 		btrfs_submit_bio(bbio, mirror);
1694 	}
1695 
1696 	if (atomic_dec_and_test(&stripe->pending_io)) {
1697 		wake_up(&stripe->io_wait);
1698 		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1699 		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1700 	}
1701 }
1702 
1703 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1704 				      struct scrub_stripe *stripe)
1705 {
1706 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1707 	struct btrfs_bio *bbio;
1708 	int mirror = stripe->mirror_num;
1709 
1710 	ASSERT(stripe->bg);
1711 	ASSERT(stripe->mirror_num > 0);
1712 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1713 
1714 	if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1715 		scrub_submit_extent_sector_read(sctx, stripe);
1716 		return;
1717 	}
1718 
1719 	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1720 			       scrub_read_endio, stripe);
1721 
1722 	/* Read the whole stripe. */
1723 	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1724 	for (int i = 0; i < BTRFS_STRIPE_LEN >> PAGE_SHIFT; i++) {
1725 		int ret;
1726 
1727 		ret = bio_add_page(&bbio->bio, stripe->pages[i], PAGE_SIZE, 0);
1728 		/* We should have allocated enough bio vectors. */
1729 		ASSERT(ret == PAGE_SIZE);
1730 	}
1731 	atomic_inc(&stripe->pending_io);
1732 
1733 	/*
1734 	 * For dev-replace, either user asks to avoid the source dev, or
1735 	 * the device is missing, we try the next mirror instead.
1736 	 */
1737 	if (sctx->is_dev_replace &&
1738 	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1739 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1740 	     !stripe->dev->bdev)) {
1741 		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1742 						  stripe->bg->length);
1743 
1744 		mirror = calc_next_mirror(mirror, num_copies);
1745 	}
1746 	btrfs_submit_bio(bbio, mirror);
1747 }
1748 
1749 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1750 {
1751 	int i;
1752 
1753 	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1754 		if (stripe->sectors[i].is_metadata) {
1755 			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1756 
1757 			btrfs_err(fs_info,
1758 			"stripe %llu has unrepaired metadata sector at %llu",
1759 				  stripe->logical,
1760 				  stripe->logical + (i << fs_info->sectorsize_bits));
1761 			return true;
1762 		}
1763 	}
1764 	return false;
1765 }
1766 
1767 static void submit_initial_group_read(struct scrub_ctx *sctx,
1768 				      unsigned int first_slot,
1769 				      unsigned int nr_stripes)
1770 {
1771 	struct blk_plug plug;
1772 
1773 	ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1774 	ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1775 
1776 	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1777 			      btrfs_stripe_nr_to_offset(nr_stripes));
1778 	blk_start_plug(&plug);
1779 	for (int i = 0; i < nr_stripes; i++) {
1780 		struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1781 
1782 		/* Those stripes should be initialized. */
1783 		ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1784 		scrub_submit_initial_read(sctx, stripe);
1785 	}
1786 	blk_finish_plug(&plug);
1787 }
1788 
1789 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1790 {
1791 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1792 	struct scrub_stripe *stripe;
1793 	const int nr_stripes = sctx->cur_stripe;
1794 	int ret = 0;
1795 
1796 	if (!nr_stripes)
1797 		return 0;
1798 
1799 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1800 
1801 	/* Submit the stripes which are populated but not submitted. */
1802 	if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1803 		const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1804 
1805 		submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
1806 	}
1807 
1808 	for (int i = 0; i < nr_stripes; i++) {
1809 		stripe = &sctx->stripes[i];
1810 
1811 		wait_event(stripe->repair_wait,
1812 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1813 	}
1814 
1815 	/* Submit for dev-replace. */
1816 	if (sctx->is_dev_replace) {
1817 		/*
1818 		 * For dev-replace, if we know there is something wrong with
1819 		 * metadata, we should immedately abort.
1820 		 */
1821 		for (int i = 0; i < nr_stripes; i++) {
1822 			if (stripe_has_metadata_error(&sctx->stripes[i])) {
1823 				ret = -EIO;
1824 				goto out;
1825 			}
1826 		}
1827 		for (int i = 0; i < nr_stripes; i++) {
1828 			unsigned long good;
1829 
1830 			stripe = &sctx->stripes[i];
1831 
1832 			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1833 
1834 			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1835 				      &stripe->error_bitmap, stripe->nr_sectors);
1836 			scrub_write_sectors(sctx, stripe, good, true);
1837 		}
1838 	}
1839 
1840 	/* Wait for the above writebacks to finish. */
1841 	for (int i = 0; i < nr_stripes; i++) {
1842 		stripe = &sctx->stripes[i];
1843 
1844 		wait_scrub_stripe_io(stripe);
1845 		scrub_reset_stripe(stripe);
1846 	}
1847 out:
1848 	sctx->cur_stripe = 0;
1849 	return ret;
1850 }
1851 
1852 static void raid56_scrub_wait_endio(struct bio *bio)
1853 {
1854 	complete(bio->bi_private);
1855 }
1856 
1857 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1858 			      struct btrfs_device *dev, int mirror_num,
1859 			      u64 logical, u32 length, u64 physical,
1860 			      u64 *found_logical_ret)
1861 {
1862 	struct scrub_stripe *stripe;
1863 	int ret;
1864 
1865 	/*
1866 	 * There should always be one slot left, as caller filling the last
1867 	 * slot should flush them all.
1868 	 */
1869 	ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1870 
1871 	stripe = &sctx->stripes[sctx->cur_stripe];
1872 	scrub_reset_stripe(stripe);
1873 	ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1874 					   &sctx->csum_path, dev, physical,
1875 					   mirror_num, logical, length, stripe);
1876 	/* Either >0 as no more extents or <0 for error. */
1877 	if (ret)
1878 		return ret;
1879 	if (found_logical_ret)
1880 		*found_logical_ret = stripe->logical;
1881 	sctx->cur_stripe++;
1882 
1883 	/* We filled one group, submit it. */
1884 	if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1885 		const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1886 
1887 		submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
1888 	}
1889 
1890 	/* Last slot used, flush them all. */
1891 	if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1892 		return flush_scrub_stripes(sctx);
1893 	return 0;
1894 }
1895 
1896 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1897 				      struct btrfs_device *scrub_dev,
1898 				      struct btrfs_block_group *bg,
1899 				      struct map_lookup *map,
1900 				      u64 full_stripe_start)
1901 {
1902 	DECLARE_COMPLETION_ONSTACK(io_done);
1903 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1904 	struct btrfs_raid_bio *rbio;
1905 	struct btrfs_io_context *bioc = NULL;
1906 	struct btrfs_path extent_path = { 0 };
1907 	struct btrfs_path csum_path = { 0 };
1908 	struct bio *bio;
1909 	struct scrub_stripe *stripe;
1910 	bool all_empty = true;
1911 	const int data_stripes = nr_data_stripes(map);
1912 	unsigned long extent_bitmap = 0;
1913 	u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1914 	int ret;
1915 
1916 	ASSERT(sctx->raid56_data_stripes);
1917 
1918 	/*
1919 	 * For data stripe search, we cannot re-use the same extent/csum paths,
1920 	 * as the data stripe bytenr may be smaller than previous extent.  Thus
1921 	 * we have to use our own extent/csum paths.
1922 	 */
1923 	extent_path.search_commit_root = 1;
1924 	extent_path.skip_locking = 1;
1925 	csum_path.search_commit_root = 1;
1926 	csum_path.skip_locking = 1;
1927 
1928 	for (int i = 0; i < data_stripes; i++) {
1929 		int stripe_index;
1930 		int rot;
1931 		u64 physical;
1932 
1933 		stripe = &sctx->raid56_data_stripes[i];
1934 		rot = div_u64(full_stripe_start - bg->start,
1935 			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1936 		stripe_index = (i + rot) % map->num_stripes;
1937 		physical = map->stripes[stripe_index].physical +
1938 			   btrfs_stripe_nr_to_offset(rot);
1939 
1940 		scrub_reset_stripe(stripe);
1941 		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1942 		ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1943 				map->stripes[stripe_index].dev, physical, 1,
1944 				full_stripe_start + btrfs_stripe_nr_to_offset(i),
1945 				BTRFS_STRIPE_LEN, stripe);
1946 		if (ret < 0)
1947 			goto out;
1948 		/*
1949 		 * No extent in this data stripe, need to manually mark them
1950 		 * initialized to make later read submission happy.
1951 		 */
1952 		if (ret > 0) {
1953 			stripe->logical = full_stripe_start +
1954 					  btrfs_stripe_nr_to_offset(i);
1955 			stripe->dev = map->stripes[stripe_index].dev;
1956 			stripe->mirror_num = 1;
1957 			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1958 		}
1959 	}
1960 
1961 	/* Check if all data stripes are empty. */
1962 	for (int i = 0; i < data_stripes; i++) {
1963 		stripe = &sctx->raid56_data_stripes[i];
1964 		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1965 			all_empty = false;
1966 			break;
1967 		}
1968 	}
1969 	if (all_empty) {
1970 		ret = 0;
1971 		goto out;
1972 	}
1973 
1974 	for (int i = 0; i < data_stripes; i++) {
1975 		stripe = &sctx->raid56_data_stripes[i];
1976 		scrub_submit_initial_read(sctx, stripe);
1977 	}
1978 	for (int i = 0; i < data_stripes; i++) {
1979 		stripe = &sctx->raid56_data_stripes[i];
1980 
1981 		wait_event(stripe->repair_wait,
1982 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1983 	}
1984 	/* For now, no zoned support for RAID56. */
1985 	ASSERT(!btrfs_is_zoned(sctx->fs_info));
1986 
1987 	/*
1988 	 * Now all data stripes are properly verified. Check if we have any
1989 	 * unrepaired, if so abort immediately or we could further corrupt the
1990 	 * P/Q stripes.
1991 	 *
1992 	 * During the loop, also populate extent_bitmap.
1993 	 */
1994 	for (int i = 0; i < data_stripes; i++) {
1995 		unsigned long error;
1996 
1997 		stripe = &sctx->raid56_data_stripes[i];
1998 
1999 		/*
2000 		 * We should only check the errors where there is an extent.
2001 		 * As we may hit an empty data stripe while it's missing.
2002 		 */
2003 		bitmap_and(&error, &stripe->error_bitmap,
2004 			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
2005 		if (!bitmap_empty(&error, stripe->nr_sectors)) {
2006 			btrfs_err(fs_info,
2007 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2008 				  full_stripe_start, i, stripe->nr_sectors,
2009 				  &error);
2010 			ret = -EIO;
2011 			goto out;
2012 		}
2013 		bitmap_or(&extent_bitmap, &extent_bitmap,
2014 			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
2015 	}
2016 
2017 	/* Now we can check and regenerate the P/Q stripe. */
2018 	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2019 	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2020 	bio->bi_private = &io_done;
2021 	bio->bi_end_io = raid56_scrub_wait_endio;
2022 
2023 	btrfs_bio_counter_inc_blocked(fs_info);
2024 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2025 			      &length, &bioc, NULL, NULL);
2026 	if (ret < 0) {
2027 		btrfs_put_bioc(bioc);
2028 		btrfs_bio_counter_dec(fs_info);
2029 		goto out;
2030 	}
2031 	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2032 				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2033 	btrfs_put_bioc(bioc);
2034 	if (!rbio) {
2035 		ret = -ENOMEM;
2036 		btrfs_bio_counter_dec(fs_info);
2037 		goto out;
2038 	}
2039 	/* Use the recovered stripes as cache to avoid read them from disk again. */
2040 	for (int i = 0; i < data_stripes; i++) {
2041 		stripe = &sctx->raid56_data_stripes[i];
2042 
2043 		raid56_parity_cache_data_pages(rbio, stripe->pages,
2044 				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
2045 	}
2046 	raid56_parity_submit_scrub_rbio(rbio);
2047 	wait_for_completion_io(&io_done);
2048 	ret = blk_status_to_errno(bio->bi_status);
2049 	bio_put(bio);
2050 	btrfs_bio_counter_dec(fs_info);
2051 
2052 	btrfs_release_path(&extent_path);
2053 	btrfs_release_path(&csum_path);
2054 out:
2055 	return ret;
2056 }
2057 
2058 /*
2059  * Scrub one range which can only has simple mirror based profile.
2060  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2061  *  RAID0/RAID10).
2062  *
2063  * Since we may need to handle a subset of block group, we need @logical_start
2064  * and @logical_length parameter.
2065  */
2066 static int scrub_simple_mirror(struct scrub_ctx *sctx,
2067 			       struct btrfs_block_group *bg,
2068 			       struct map_lookup *map,
2069 			       u64 logical_start, u64 logical_length,
2070 			       struct btrfs_device *device,
2071 			       u64 physical, int mirror_num)
2072 {
2073 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2074 	const u64 logical_end = logical_start + logical_length;
2075 	u64 cur_logical = logical_start;
2076 	int ret;
2077 
2078 	/* The range must be inside the bg */
2079 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2080 
2081 	/* Go through each extent items inside the logical range */
2082 	while (cur_logical < logical_end) {
2083 		u64 found_logical;
2084 		u64 cur_physical = physical + cur_logical - logical_start;
2085 
2086 		/* Canceled? */
2087 		if (atomic_read(&fs_info->scrub_cancel_req) ||
2088 		    atomic_read(&sctx->cancel_req)) {
2089 			ret = -ECANCELED;
2090 			break;
2091 		}
2092 		/* Paused? */
2093 		if (atomic_read(&fs_info->scrub_pause_req)) {
2094 			/* Push queued extents */
2095 			scrub_blocked_if_needed(fs_info);
2096 		}
2097 		/* Block group removed? */
2098 		spin_lock(&bg->lock);
2099 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2100 			spin_unlock(&bg->lock);
2101 			ret = 0;
2102 			break;
2103 		}
2104 		spin_unlock(&bg->lock);
2105 
2106 		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2107 					 cur_logical, logical_end - cur_logical,
2108 					 cur_physical, &found_logical);
2109 		if (ret > 0) {
2110 			/* No more extent, just update the accounting */
2111 			sctx->stat.last_physical = physical + logical_length;
2112 			ret = 0;
2113 			break;
2114 		}
2115 		if (ret < 0)
2116 			break;
2117 
2118 		cur_logical = found_logical + BTRFS_STRIPE_LEN;
2119 
2120 		/* Don't hold CPU for too long time */
2121 		cond_resched();
2122 	}
2123 	return ret;
2124 }
2125 
2126 /* Calculate the full stripe length for simple stripe based profiles */
2127 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
2128 {
2129 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2130 			    BTRFS_BLOCK_GROUP_RAID10));
2131 
2132 	return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2133 }
2134 
2135 /* Get the logical bytenr for the stripe */
2136 static u64 simple_stripe_get_logical(struct map_lookup *map,
2137 				     struct btrfs_block_group *bg,
2138 				     int stripe_index)
2139 {
2140 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2141 			    BTRFS_BLOCK_GROUP_RAID10));
2142 	ASSERT(stripe_index < map->num_stripes);
2143 
2144 	/*
2145 	 * (stripe_index / sub_stripes) gives how many data stripes we need to
2146 	 * skip.
2147 	 */
2148 	return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2149 	       bg->start;
2150 }
2151 
2152 /* Get the mirror number for the stripe */
2153 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
2154 {
2155 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2156 			    BTRFS_BLOCK_GROUP_RAID10));
2157 	ASSERT(stripe_index < map->num_stripes);
2158 
2159 	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2160 	return stripe_index % map->sub_stripes + 1;
2161 }
2162 
2163 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2164 			       struct btrfs_block_group *bg,
2165 			       struct map_lookup *map,
2166 			       struct btrfs_device *device,
2167 			       int stripe_index)
2168 {
2169 	const u64 logical_increment = simple_stripe_full_stripe_len(map);
2170 	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2171 	const u64 orig_physical = map->stripes[stripe_index].physical;
2172 	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2173 	u64 cur_logical = orig_logical;
2174 	u64 cur_physical = orig_physical;
2175 	int ret = 0;
2176 
2177 	while (cur_logical < bg->start + bg->length) {
2178 		/*
2179 		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2180 		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2181 		 * this stripe.
2182 		 */
2183 		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2184 					  BTRFS_STRIPE_LEN, device, cur_physical,
2185 					  mirror_num);
2186 		if (ret)
2187 			return ret;
2188 		/* Skip to next stripe which belongs to the target device */
2189 		cur_logical += logical_increment;
2190 		/* For physical offset, we just go to next stripe */
2191 		cur_physical += BTRFS_STRIPE_LEN;
2192 	}
2193 	return ret;
2194 }
2195 
2196 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2197 					   struct btrfs_block_group *bg,
2198 					   struct extent_map *em,
2199 					   struct btrfs_device *scrub_dev,
2200 					   int stripe_index)
2201 {
2202 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2203 	struct map_lookup *map = em->map_lookup;
2204 	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2205 	const u64 chunk_logical = bg->start;
2206 	int ret;
2207 	int ret2;
2208 	u64 physical = map->stripes[stripe_index].physical;
2209 	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
2210 	const u64 physical_end = physical + dev_stripe_len;
2211 	u64 logical;
2212 	u64 logic_end;
2213 	/* The logical increment after finishing one stripe */
2214 	u64 increment;
2215 	/* Offset inside the chunk */
2216 	u64 offset;
2217 	u64 stripe_logical;
2218 	int stop_loop = 0;
2219 
2220 	/* Extent_path should be released by now. */
2221 	ASSERT(sctx->extent_path.nodes[0] == NULL);
2222 
2223 	scrub_blocked_if_needed(fs_info);
2224 
2225 	if (sctx->is_dev_replace &&
2226 	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2227 		mutex_lock(&sctx->wr_lock);
2228 		sctx->write_pointer = physical;
2229 		mutex_unlock(&sctx->wr_lock);
2230 	}
2231 
2232 	/* Prepare the extra data stripes used by RAID56. */
2233 	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2234 		ASSERT(sctx->raid56_data_stripes == NULL);
2235 
2236 		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2237 						    sizeof(struct scrub_stripe),
2238 						    GFP_KERNEL);
2239 		if (!sctx->raid56_data_stripes) {
2240 			ret = -ENOMEM;
2241 			goto out;
2242 		}
2243 		for (int i = 0; i < nr_data_stripes(map); i++) {
2244 			ret = init_scrub_stripe(fs_info,
2245 						&sctx->raid56_data_stripes[i]);
2246 			if (ret < 0)
2247 				goto out;
2248 			sctx->raid56_data_stripes[i].bg = bg;
2249 			sctx->raid56_data_stripes[i].sctx = sctx;
2250 		}
2251 	}
2252 	/*
2253 	 * There used to be a big double loop to handle all profiles using the
2254 	 * same routine, which grows larger and more gross over time.
2255 	 *
2256 	 * So here we handle each profile differently, so simpler profiles
2257 	 * have simpler scrubbing function.
2258 	 */
2259 	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2260 			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2261 		/*
2262 		 * Above check rules out all complex profile, the remaining
2263 		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2264 		 * mirrored duplication without stripe.
2265 		 *
2266 		 * Only @physical and @mirror_num needs to calculated using
2267 		 * @stripe_index.
2268 		 */
2269 		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2270 				scrub_dev, map->stripes[stripe_index].physical,
2271 				stripe_index + 1);
2272 		offset = 0;
2273 		goto out;
2274 	}
2275 	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2276 		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2277 		offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2278 		goto out;
2279 	}
2280 
2281 	/* Only RAID56 goes through the old code */
2282 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2283 	ret = 0;
2284 
2285 	/* Calculate the logical end of the stripe */
2286 	get_raid56_logic_offset(physical_end, stripe_index,
2287 				map, &logic_end, NULL);
2288 	logic_end += chunk_logical;
2289 
2290 	/* Initialize @offset in case we need to go to out: label */
2291 	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2292 	increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2293 
2294 	/*
2295 	 * Due to the rotation, for RAID56 it's better to iterate each stripe
2296 	 * using their physical offset.
2297 	 */
2298 	while (physical < physical_end) {
2299 		ret = get_raid56_logic_offset(physical, stripe_index, map,
2300 					      &logical, &stripe_logical);
2301 		logical += chunk_logical;
2302 		if (ret) {
2303 			/* it is parity strip */
2304 			stripe_logical += chunk_logical;
2305 			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2306 							 map, stripe_logical);
2307 			if (ret)
2308 				goto out;
2309 			goto next;
2310 		}
2311 
2312 		/*
2313 		 * Now we're at a data stripe, scrub each extents in the range.
2314 		 *
2315 		 * At this stage, if we ignore the repair part, inside each data
2316 		 * stripe it is no different than SINGLE profile.
2317 		 * We can reuse scrub_simple_mirror() here, as the repair part
2318 		 * is still based on @mirror_num.
2319 		 */
2320 		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2321 					  scrub_dev, physical, 1);
2322 		if (ret < 0)
2323 			goto out;
2324 next:
2325 		logical += increment;
2326 		physical += BTRFS_STRIPE_LEN;
2327 		spin_lock(&sctx->stat_lock);
2328 		if (stop_loop)
2329 			sctx->stat.last_physical =
2330 				map->stripes[stripe_index].physical + dev_stripe_len;
2331 		else
2332 			sctx->stat.last_physical = physical;
2333 		spin_unlock(&sctx->stat_lock);
2334 		if (stop_loop)
2335 			break;
2336 	}
2337 out:
2338 	ret2 = flush_scrub_stripes(sctx);
2339 	if (!ret)
2340 		ret = ret2;
2341 	btrfs_release_path(&sctx->extent_path);
2342 	btrfs_release_path(&sctx->csum_path);
2343 
2344 	if (sctx->raid56_data_stripes) {
2345 		for (int i = 0; i < nr_data_stripes(map); i++)
2346 			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2347 		kfree(sctx->raid56_data_stripes);
2348 		sctx->raid56_data_stripes = NULL;
2349 	}
2350 
2351 	if (sctx->is_dev_replace && ret >= 0) {
2352 		int ret2;
2353 
2354 		ret2 = sync_write_pointer_for_zoned(sctx,
2355 				chunk_logical + offset,
2356 				map->stripes[stripe_index].physical,
2357 				physical_end);
2358 		if (ret2)
2359 			ret = ret2;
2360 	}
2361 
2362 	return ret < 0 ? ret : 0;
2363 }
2364 
2365 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2366 					  struct btrfs_block_group *bg,
2367 					  struct btrfs_device *scrub_dev,
2368 					  u64 dev_offset,
2369 					  u64 dev_extent_len)
2370 {
2371 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2372 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2373 	struct map_lookup *map;
2374 	struct extent_map *em;
2375 	int i;
2376 	int ret = 0;
2377 
2378 	read_lock(&map_tree->lock);
2379 	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
2380 	read_unlock(&map_tree->lock);
2381 
2382 	if (!em) {
2383 		/*
2384 		 * Might have been an unused block group deleted by the cleaner
2385 		 * kthread or relocation.
2386 		 */
2387 		spin_lock(&bg->lock);
2388 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2389 			ret = -EINVAL;
2390 		spin_unlock(&bg->lock);
2391 
2392 		return ret;
2393 	}
2394 	if (em->start != bg->start)
2395 		goto out;
2396 	if (em->len < dev_extent_len)
2397 		goto out;
2398 
2399 	map = em->map_lookup;
2400 	for (i = 0; i < map->num_stripes; ++i) {
2401 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2402 		    map->stripes[i].physical == dev_offset) {
2403 			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
2404 			if (ret)
2405 				goto out;
2406 		}
2407 	}
2408 out:
2409 	free_extent_map(em);
2410 
2411 	return ret;
2412 }
2413 
2414 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2415 					  struct btrfs_block_group *cache)
2416 {
2417 	struct btrfs_fs_info *fs_info = cache->fs_info;
2418 	struct btrfs_trans_handle *trans;
2419 
2420 	if (!btrfs_is_zoned(fs_info))
2421 		return 0;
2422 
2423 	btrfs_wait_block_group_reservations(cache);
2424 	btrfs_wait_nocow_writers(cache);
2425 	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2426 
2427 	trans = btrfs_join_transaction(root);
2428 	if (IS_ERR(trans))
2429 		return PTR_ERR(trans);
2430 	return btrfs_commit_transaction(trans);
2431 }
2432 
2433 static noinline_for_stack
2434 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2435 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
2436 {
2437 	struct btrfs_dev_extent *dev_extent = NULL;
2438 	struct btrfs_path *path;
2439 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2440 	struct btrfs_root *root = fs_info->dev_root;
2441 	u64 chunk_offset;
2442 	int ret = 0;
2443 	int ro_set;
2444 	int slot;
2445 	struct extent_buffer *l;
2446 	struct btrfs_key key;
2447 	struct btrfs_key found_key;
2448 	struct btrfs_block_group *cache;
2449 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2450 
2451 	path = btrfs_alloc_path();
2452 	if (!path)
2453 		return -ENOMEM;
2454 
2455 	path->reada = READA_FORWARD;
2456 	path->search_commit_root = 1;
2457 	path->skip_locking = 1;
2458 
2459 	key.objectid = scrub_dev->devid;
2460 	key.offset = 0ull;
2461 	key.type = BTRFS_DEV_EXTENT_KEY;
2462 
2463 	while (1) {
2464 		u64 dev_extent_len;
2465 
2466 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2467 		if (ret < 0)
2468 			break;
2469 		if (ret > 0) {
2470 			if (path->slots[0] >=
2471 			    btrfs_header_nritems(path->nodes[0])) {
2472 				ret = btrfs_next_leaf(root, path);
2473 				if (ret < 0)
2474 					break;
2475 				if (ret > 0) {
2476 					ret = 0;
2477 					break;
2478 				}
2479 			} else {
2480 				ret = 0;
2481 			}
2482 		}
2483 
2484 		l = path->nodes[0];
2485 		slot = path->slots[0];
2486 
2487 		btrfs_item_key_to_cpu(l, &found_key, slot);
2488 
2489 		if (found_key.objectid != scrub_dev->devid)
2490 			break;
2491 
2492 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2493 			break;
2494 
2495 		if (found_key.offset >= end)
2496 			break;
2497 
2498 		if (found_key.offset < key.offset)
2499 			break;
2500 
2501 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2502 		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2503 
2504 		if (found_key.offset + dev_extent_len <= start)
2505 			goto skip;
2506 
2507 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2508 
2509 		/*
2510 		 * get a reference on the corresponding block group to prevent
2511 		 * the chunk from going away while we scrub it
2512 		 */
2513 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2514 
2515 		/* some chunks are removed but not committed to disk yet,
2516 		 * continue scrubbing */
2517 		if (!cache)
2518 			goto skip;
2519 
2520 		ASSERT(cache->start <= chunk_offset);
2521 		/*
2522 		 * We are using the commit root to search for device extents, so
2523 		 * that means we could have found a device extent item from a
2524 		 * block group that was deleted in the current transaction. The
2525 		 * logical start offset of the deleted block group, stored at
2526 		 * @chunk_offset, might be part of the logical address range of
2527 		 * a new block group (which uses different physical extents).
2528 		 * In this case btrfs_lookup_block_group() has returned the new
2529 		 * block group, and its start address is less than @chunk_offset.
2530 		 *
2531 		 * We skip such new block groups, because it's pointless to
2532 		 * process them, as we won't find their extents because we search
2533 		 * for them using the commit root of the extent tree. For a device
2534 		 * replace it's also fine to skip it, we won't miss copying them
2535 		 * to the target device because we have the write duplication
2536 		 * setup through the regular write path (by btrfs_map_block()),
2537 		 * and we have committed a transaction when we started the device
2538 		 * replace, right after setting up the device replace state.
2539 		 */
2540 		if (cache->start < chunk_offset) {
2541 			btrfs_put_block_group(cache);
2542 			goto skip;
2543 		}
2544 
2545 		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2546 			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2547 				btrfs_put_block_group(cache);
2548 				goto skip;
2549 			}
2550 		}
2551 
2552 		/*
2553 		 * Make sure that while we are scrubbing the corresponding block
2554 		 * group doesn't get its logical address and its device extents
2555 		 * reused for another block group, which can possibly be of a
2556 		 * different type and different profile. We do this to prevent
2557 		 * false error detections and crashes due to bogus attempts to
2558 		 * repair extents.
2559 		 */
2560 		spin_lock(&cache->lock);
2561 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2562 			spin_unlock(&cache->lock);
2563 			btrfs_put_block_group(cache);
2564 			goto skip;
2565 		}
2566 		btrfs_freeze_block_group(cache);
2567 		spin_unlock(&cache->lock);
2568 
2569 		/*
2570 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2571 		 * to avoid deadlock caused by:
2572 		 * btrfs_inc_block_group_ro()
2573 		 * -> btrfs_wait_for_commit()
2574 		 * -> btrfs_commit_transaction()
2575 		 * -> btrfs_scrub_pause()
2576 		 */
2577 		scrub_pause_on(fs_info);
2578 
2579 		/*
2580 		 * Don't do chunk preallocation for scrub.
2581 		 *
2582 		 * This is especially important for SYSTEM bgs, or we can hit
2583 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
2584 		 * 1. The only SYSTEM bg is marked RO.
2585 		 *    Since SYSTEM bg is small, that's pretty common.
2586 		 * 2. New SYSTEM bg will be allocated
2587 		 *    Due to regular version will allocate new chunk.
2588 		 * 3. New SYSTEM bg is empty and will get cleaned up
2589 		 *    Before cleanup really happens, it's marked RO again.
2590 		 * 4. Empty SYSTEM bg get scrubbed
2591 		 *    We go back to 2.
2592 		 *
2593 		 * This can easily boost the amount of SYSTEM chunks if cleaner
2594 		 * thread can't be triggered fast enough, and use up all space
2595 		 * of btrfs_super_block::sys_chunk_array
2596 		 *
2597 		 * While for dev replace, we need to try our best to mark block
2598 		 * group RO, to prevent race between:
2599 		 * - Write duplication
2600 		 *   Contains latest data
2601 		 * - Scrub copy
2602 		 *   Contains data from commit tree
2603 		 *
2604 		 * If target block group is not marked RO, nocow writes can
2605 		 * be overwritten by scrub copy, causing data corruption.
2606 		 * So for dev-replace, it's not allowed to continue if a block
2607 		 * group is not RO.
2608 		 */
2609 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2610 		if (!ret && sctx->is_dev_replace) {
2611 			ret = finish_extent_writes_for_zoned(root, cache);
2612 			if (ret) {
2613 				btrfs_dec_block_group_ro(cache);
2614 				scrub_pause_off(fs_info);
2615 				btrfs_put_block_group(cache);
2616 				break;
2617 			}
2618 		}
2619 
2620 		if (ret == 0) {
2621 			ro_set = 1;
2622 		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2623 			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2624 			/*
2625 			 * btrfs_inc_block_group_ro return -ENOSPC when it
2626 			 * failed in creating new chunk for metadata.
2627 			 * It is not a problem for scrub, because
2628 			 * metadata are always cowed, and our scrub paused
2629 			 * commit_transactions.
2630 			 *
2631 			 * For RAID56 chunks, we have to mark them read-only
2632 			 * for scrub, as later we would use our own cache
2633 			 * out of RAID56 realm.
2634 			 * Thus we want the RAID56 bg to be marked RO to
2635 			 * prevent RMW from screwing up out cache.
2636 			 */
2637 			ro_set = 0;
2638 		} else if (ret == -ETXTBSY) {
2639 			btrfs_warn(fs_info,
2640 		   "skipping scrub of block group %llu due to active swapfile",
2641 				   cache->start);
2642 			scrub_pause_off(fs_info);
2643 			ret = 0;
2644 			goto skip_unfreeze;
2645 		} else {
2646 			btrfs_warn(fs_info,
2647 				   "failed setting block group ro: %d", ret);
2648 			btrfs_unfreeze_block_group(cache);
2649 			btrfs_put_block_group(cache);
2650 			scrub_pause_off(fs_info);
2651 			break;
2652 		}
2653 
2654 		/*
2655 		 * Now the target block is marked RO, wait for nocow writes to
2656 		 * finish before dev-replace.
2657 		 * COW is fine, as COW never overwrites extents in commit tree.
2658 		 */
2659 		if (sctx->is_dev_replace) {
2660 			btrfs_wait_nocow_writers(cache);
2661 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2662 					cache->length);
2663 		}
2664 
2665 		scrub_pause_off(fs_info);
2666 		down_write(&dev_replace->rwsem);
2667 		dev_replace->cursor_right = found_key.offset + dev_extent_len;
2668 		dev_replace->cursor_left = found_key.offset;
2669 		dev_replace->item_needs_writeback = 1;
2670 		up_write(&dev_replace->rwsem);
2671 
2672 		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2673 				  dev_extent_len);
2674 		if (sctx->is_dev_replace &&
2675 		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2676 						      cache, found_key.offset))
2677 			ro_set = 0;
2678 
2679 		down_write(&dev_replace->rwsem);
2680 		dev_replace->cursor_left = dev_replace->cursor_right;
2681 		dev_replace->item_needs_writeback = 1;
2682 		up_write(&dev_replace->rwsem);
2683 
2684 		if (ro_set)
2685 			btrfs_dec_block_group_ro(cache);
2686 
2687 		/*
2688 		 * We might have prevented the cleaner kthread from deleting
2689 		 * this block group if it was already unused because we raced
2690 		 * and set it to RO mode first. So add it back to the unused
2691 		 * list, otherwise it might not ever be deleted unless a manual
2692 		 * balance is triggered or it becomes used and unused again.
2693 		 */
2694 		spin_lock(&cache->lock);
2695 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2696 		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
2697 			spin_unlock(&cache->lock);
2698 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2699 				btrfs_discard_queue_work(&fs_info->discard_ctl,
2700 							 cache);
2701 			else
2702 				btrfs_mark_bg_unused(cache);
2703 		} else {
2704 			spin_unlock(&cache->lock);
2705 		}
2706 skip_unfreeze:
2707 		btrfs_unfreeze_block_group(cache);
2708 		btrfs_put_block_group(cache);
2709 		if (ret)
2710 			break;
2711 		if (sctx->is_dev_replace &&
2712 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2713 			ret = -EIO;
2714 			break;
2715 		}
2716 		if (sctx->stat.malloc_errors > 0) {
2717 			ret = -ENOMEM;
2718 			break;
2719 		}
2720 skip:
2721 		key.offset = found_key.offset + dev_extent_len;
2722 		btrfs_release_path(path);
2723 	}
2724 
2725 	btrfs_free_path(path);
2726 
2727 	return ret;
2728 }
2729 
2730 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2731 			   struct page *page, u64 physical, u64 generation)
2732 {
2733 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2734 	struct bio_vec bvec;
2735 	struct bio bio;
2736 	struct btrfs_super_block *sb = page_address(page);
2737 	int ret;
2738 
2739 	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2740 	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2741 	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2742 	ret = submit_bio_wait(&bio);
2743 	bio_uninit(&bio);
2744 
2745 	if (ret < 0)
2746 		return ret;
2747 	ret = btrfs_check_super_csum(fs_info, sb);
2748 	if (ret != 0) {
2749 		btrfs_err_rl(fs_info,
2750 			"super block at physical %llu devid %llu has bad csum",
2751 			physical, dev->devid);
2752 		return -EIO;
2753 	}
2754 	if (btrfs_super_generation(sb) != generation) {
2755 		btrfs_err_rl(fs_info,
2756 "super block at physical %llu devid %llu has bad generation %llu expect %llu",
2757 			     physical, dev->devid,
2758 			     btrfs_super_generation(sb), generation);
2759 		return -EUCLEAN;
2760 	}
2761 
2762 	return btrfs_validate_super(fs_info, sb, -1);
2763 }
2764 
2765 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2766 					   struct btrfs_device *scrub_dev)
2767 {
2768 	int	i;
2769 	u64	bytenr;
2770 	u64	gen;
2771 	int ret = 0;
2772 	struct page *page;
2773 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2774 
2775 	if (BTRFS_FS_ERROR(fs_info))
2776 		return -EROFS;
2777 
2778 	page = alloc_page(GFP_KERNEL);
2779 	if (!page) {
2780 		spin_lock(&sctx->stat_lock);
2781 		sctx->stat.malloc_errors++;
2782 		spin_unlock(&sctx->stat_lock);
2783 		return -ENOMEM;
2784 	}
2785 
2786 	/* Seed devices of a new filesystem has their own generation. */
2787 	if (scrub_dev->fs_devices != fs_info->fs_devices)
2788 		gen = scrub_dev->generation;
2789 	else
2790 		gen = btrfs_get_last_trans_committed(fs_info);
2791 
2792 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2793 		bytenr = btrfs_sb_offset(i);
2794 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
2795 		    scrub_dev->commit_total_bytes)
2796 			break;
2797 		if (!btrfs_check_super_location(scrub_dev, bytenr))
2798 			continue;
2799 
2800 		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2801 		if (ret) {
2802 			spin_lock(&sctx->stat_lock);
2803 			sctx->stat.super_errors++;
2804 			spin_unlock(&sctx->stat_lock);
2805 		}
2806 	}
2807 	__free_page(page);
2808 	return 0;
2809 }
2810 
2811 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2812 {
2813 	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2814 					&fs_info->scrub_lock)) {
2815 		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2816 
2817 		fs_info->scrub_workers = NULL;
2818 		mutex_unlock(&fs_info->scrub_lock);
2819 
2820 		if (scrub_workers)
2821 			destroy_workqueue(scrub_workers);
2822 	}
2823 }
2824 
2825 /*
2826  * get a reference count on fs_info->scrub_workers. start worker if necessary
2827  */
2828 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
2829 {
2830 	struct workqueue_struct *scrub_workers = NULL;
2831 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2832 	int max_active = fs_info->thread_pool_size;
2833 	int ret = -ENOMEM;
2834 
2835 	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2836 		return 0;
2837 
2838 	scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2839 	if (!scrub_workers)
2840 		return -ENOMEM;
2841 
2842 	mutex_lock(&fs_info->scrub_lock);
2843 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2844 		ASSERT(fs_info->scrub_workers == NULL);
2845 		fs_info->scrub_workers = scrub_workers;
2846 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
2847 		mutex_unlock(&fs_info->scrub_lock);
2848 		return 0;
2849 	}
2850 	/* Other thread raced in and created the workers for us */
2851 	refcount_inc(&fs_info->scrub_workers_refcnt);
2852 	mutex_unlock(&fs_info->scrub_lock);
2853 
2854 	ret = 0;
2855 
2856 	destroy_workqueue(scrub_workers);
2857 	return ret;
2858 }
2859 
2860 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2861 		    u64 end, struct btrfs_scrub_progress *progress,
2862 		    int readonly, int is_dev_replace)
2863 {
2864 	struct btrfs_dev_lookup_args args = { .devid = devid };
2865 	struct scrub_ctx *sctx;
2866 	int ret;
2867 	struct btrfs_device *dev;
2868 	unsigned int nofs_flag;
2869 	bool need_commit = false;
2870 
2871 	if (btrfs_fs_closing(fs_info))
2872 		return -EAGAIN;
2873 
2874 	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2875 	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2876 
2877 	/*
2878 	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2879 	 * value (max nodesize / min sectorsize), thus nodesize should always
2880 	 * be fine.
2881 	 */
2882 	ASSERT(fs_info->nodesize <=
2883 	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2884 
2885 	/* Allocate outside of device_list_mutex */
2886 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2887 	if (IS_ERR(sctx))
2888 		return PTR_ERR(sctx);
2889 
2890 	ret = scrub_workers_get(fs_info);
2891 	if (ret)
2892 		goto out_free_ctx;
2893 
2894 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2895 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2896 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2897 		     !is_dev_replace)) {
2898 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2899 		ret = -ENODEV;
2900 		goto out;
2901 	}
2902 
2903 	if (!is_dev_replace && !readonly &&
2904 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2905 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2906 		btrfs_err_in_rcu(fs_info,
2907 			"scrub on devid %llu: filesystem on %s is not writable",
2908 				 devid, btrfs_dev_name(dev));
2909 		ret = -EROFS;
2910 		goto out;
2911 	}
2912 
2913 	mutex_lock(&fs_info->scrub_lock);
2914 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2915 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2916 		mutex_unlock(&fs_info->scrub_lock);
2917 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2918 		ret = -EIO;
2919 		goto out;
2920 	}
2921 
2922 	down_read(&fs_info->dev_replace.rwsem);
2923 	if (dev->scrub_ctx ||
2924 	    (!is_dev_replace &&
2925 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2926 		up_read(&fs_info->dev_replace.rwsem);
2927 		mutex_unlock(&fs_info->scrub_lock);
2928 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2929 		ret = -EINPROGRESS;
2930 		goto out;
2931 	}
2932 	up_read(&fs_info->dev_replace.rwsem);
2933 
2934 	sctx->readonly = readonly;
2935 	dev->scrub_ctx = sctx;
2936 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2937 
2938 	/*
2939 	 * checking @scrub_pause_req here, we can avoid
2940 	 * race between committing transaction and scrubbing.
2941 	 */
2942 	__scrub_blocked_if_needed(fs_info);
2943 	atomic_inc(&fs_info->scrubs_running);
2944 	mutex_unlock(&fs_info->scrub_lock);
2945 
2946 	/*
2947 	 * In order to avoid deadlock with reclaim when there is a transaction
2948 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
2949 	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2950 	 * invoked by our callees. The pausing request is done when the
2951 	 * transaction commit starts, and it blocks the transaction until scrub
2952 	 * is paused (done at specific points at scrub_stripe() or right above
2953 	 * before incrementing fs_info->scrubs_running).
2954 	 */
2955 	nofs_flag = memalloc_nofs_save();
2956 	if (!is_dev_replace) {
2957 		u64 old_super_errors;
2958 
2959 		spin_lock(&sctx->stat_lock);
2960 		old_super_errors = sctx->stat.super_errors;
2961 		spin_unlock(&sctx->stat_lock);
2962 
2963 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2964 		/*
2965 		 * by holding device list mutex, we can
2966 		 * kick off writing super in log tree sync.
2967 		 */
2968 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
2969 		ret = scrub_supers(sctx, dev);
2970 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2971 
2972 		spin_lock(&sctx->stat_lock);
2973 		/*
2974 		 * Super block errors found, but we can not commit transaction
2975 		 * at current context, since btrfs_commit_transaction() needs
2976 		 * to pause the current running scrub (hold by ourselves).
2977 		 */
2978 		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
2979 			need_commit = true;
2980 		spin_unlock(&sctx->stat_lock);
2981 	}
2982 
2983 	if (!ret)
2984 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
2985 	memalloc_nofs_restore(nofs_flag);
2986 
2987 	atomic_dec(&fs_info->scrubs_running);
2988 	wake_up(&fs_info->scrub_pause_wait);
2989 
2990 	if (progress)
2991 		memcpy(progress, &sctx->stat, sizeof(*progress));
2992 
2993 	if (!is_dev_replace)
2994 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
2995 			ret ? "not finished" : "finished", devid, ret);
2996 
2997 	mutex_lock(&fs_info->scrub_lock);
2998 	dev->scrub_ctx = NULL;
2999 	mutex_unlock(&fs_info->scrub_lock);
3000 
3001 	scrub_workers_put(fs_info);
3002 	scrub_put_ctx(sctx);
3003 
3004 	/*
3005 	 * We found some super block errors before, now try to force a
3006 	 * transaction commit, as scrub has finished.
3007 	 */
3008 	if (need_commit) {
3009 		struct btrfs_trans_handle *trans;
3010 
3011 		trans = btrfs_start_transaction(fs_info->tree_root, 0);
3012 		if (IS_ERR(trans)) {
3013 			ret = PTR_ERR(trans);
3014 			btrfs_err(fs_info,
3015 	"scrub: failed to start transaction to fix super block errors: %d", ret);
3016 			return ret;
3017 		}
3018 		ret = btrfs_commit_transaction(trans);
3019 		if (ret < 0)
3020 			btrfs_err(fs_info,
3021 	"scrub: failed to commit transaction to fix super block errors: %d", ret);
3022 	}
3023 	return ret;
3024 out:
3025 	scrub_workers_put(fs_info);
3026 out_free_ctx:
3027 	scrub_free_ctx(sctx);
3028 
3029 	return ret;
3030 }
3031 
3032 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3033 {
3034 	mutex_lock(&fs_info->scrub_lock);
3035 	atomic_inc(&fs_info->scrub_pause_req);
3036 	while (atomic_read(&fs_info->scrubs_paused) !=
3037 	       atomic_read(&fs_info->scrubs_running)) {
3038 		mutex_unlock(&fs_info->scrub_lock);
3039 		wait_event(fs_info->scrub_pause_wait,
3040 			   atomic_read(&fs_info->scrubs_paused) ==
3041 			   atomic_read(&fs_info->scrubs_running));
3042 		mutex_lock(&fs_info->scrub_lock);
3043 	}
3044 	mutex_unlock(&fs_info->scrub_lock);
3045 }
3046 
3047 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3048 {
3049 	atomic_dec(&fs_info->scrub_pause_req);
3050 	wake_up(&fs_info->scrub_pause_wait);
3051 }
3052 
3053 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3054 {
3055 	mutex_lock(&fs_info->scrub_lock);
3056 	if (!atomic_read(&fs_info->scrubs_running)) {
3057 		mutex_unlock(&fs_info->scrub_lock);
3058 		return -ENOTCONN;
3059 	}
3060 
3061 	atomic_inc(&fs_info->scrub_cancel_req);
3062 	while (atomic_read(&fs_info->scrubs_running)) {
3063 		mutex_unlock(&fs_info->scrub_lock);
3064 		wait_event(fs_info->scrub_pause_wait,
3065 			   atomic_read(&fs_info->scrubs_running) == 0);
3066 		mutex_lock(&fs_info->scrub_lock);
3067 	}
3068 	atomic_dec(&fs_info->scrub_cancel_req);
3069 	mutex_unlock(&fs_info->scrub_lock);
3070 
3071 	return 0;
3072 }
3073 
3074 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3075 {
3076 	struct btrfs_fs_info *fs_info = dev->fs_info;
3077 	struct scrub_ctx *sctx;
3078 
3079 	mutex_lock(&fs_info->scrub_lock);
3080 	sctx = dev->scrub_ctx;
3081 	if (!sctx) {
3082 		mutex_unlock(&fs_info->scrub_lock);
3083 		return -ENOTCONN;
3084 	}
3085 	atomic_inc(&sctx->cancel_req);
3086 	while (dev->scrub_ctx) {
3087 		mutex_unlock(&fs_info->scrub_lock);
3088 		wait_event(fs_info->scrub_pause_wait,
3089 			   dev->scrub_ctx == NULL);
3090 		mutex_lock(&fs_info->scrub_lock);
3091 	}
3092 	mutex_unlock(&fs_info->scrub_lock);
3093 
3094 	return 0;
3095 }
3096 
3097 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3098 			 struct btrfs_scrub_progress *progress)
3099 {
3100 	struct btrfs_dev_lookup_args args = { .devid = devid };
3101 	struct btrfs_device *dev;
3102 	struct scrub_ctx *sctx = NULL;
3103 
3104 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3105 	dev = btrfs_find_device(fs_info->fs_devices, &args);
3106 	if (dev)
3107 		sctx = dev->scrub_ctx;
3108 	if (sctx)
3109 		memcpy(progress, &sctx->stat, sizeof(*progress));
3110 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3111 
3112 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3113 }
3114