xref: /linux/fs/btrfs/scrub.c (revision 34dc1baba215b826e454b8d19e4f24adbeb7d00d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "raid56.h"
21 #include "block-group.h"
22 #include "zoned.h"
23 #include "fs.h"
24 #include "accessors.h"
25 #include "file-item.h"
26 #include "scrub.h"
27 
28 /*
29  * This is only the first step towards a full-features scrub. It reads all
30  * extent and super block and verifies the checksums. In case a bad checksum
31  * is found or the extent cannot be read, good data will be written back if
32  * any can be found.
33  *
34  * Future enhancements:
35  *  - In case an unrepairable extent is encountered, track which files are
36  *    affected and report them
37  *  - track and record media errors, throw out bad devices
38  *  - add a mode to also read unallocated space
39  */
40 
41 struct scrub_ctx;
42 
43 /*
44  * The following value only influences the performance.
45  *
46  * This detemines how many stripes would be submitted in one go,
47  * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
48  */
49 #define SCRUB_STRIPES_PER_GROUP		8
50 
51 /*
52  * How many groups we have for each sctx.
53  *
54  * This would be 8M per device, the same value as the old scrub in-flight bios
55  * size limit.
56  */
57 #define SCRUB_GROUPS_PER_SCTX		16
58 
59 #define SCRUB_TOTAL_STRIPES		(SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
60 
61 /*
62  * The following value times PAGE_SIZE needs to be large enough to match the
63  * largest node/leaf/sector size that shall be supported.
64  */
65 #define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
66 
67 /* Represent one sector and its needed info to verify the content. */
68 struct scrub_sector_verification {
69 	bool is_metadata;
70 
71 	union {
72 		/*
73 		 * Csum pointer for data csum verification.  Should point to a
74 		 * sector csum inside scrub_stripe::csums.
75 		 *
76 		 * NULL if this data sector has no csum.
77 		 */
78 		u8 *csum;
79 
80 		/*
81 		 * Extra info for metadata verification.  All sectors inside a
82 		 * tree block share the same generation.
83 		 */
84 		u64 generation;
85 	};
86 };
87 
88 enum scrub_stripe_flags {
89 	/* Set when @mirror_num, @dev, @physical and @logical are set. */
90 	SCRUB_STRIPE_FLAG_INITIALIZED,
91 
92 	/* Set when the read-repair is finished. */
93 	SCRUB_STRIPE_FLAG_REPAIR_DONE,
94 
95 	/*
96 	 * Set for data stripes if it's triggered from P/Q stripe.
97 	 * During such scrub, we should not report errors in data stripes, nor
98 	 * update the accounting.
99 	 */
100 	SCRUB_STRIPE_FLAG_NO_REPORT,
101 };
102 
103 #define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)
104 
105 /*
106  * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
107  */
108 struct scrub_stripe {
109 	struct scrub_ctx *sctx;
110 	struct btrfs_block_group *bg;
111 
112 	struct page *pages[SCRUB_STRIPE_PAGES];
113 	struct scrub_sector_verification *sectors;
114 
115 	struct btrfs_device *dev;
116 	u64 logical;
117 	u64 physical;
118 
119 	u16 mirror_num;
120 
121 	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
122 	u16 nr_sectors;
123 
124 	/*
125 	 * How many data/meta extents are in this stripe.  Only for scrub status
126 	 * reporting purposes.
127 	 */
128 	u16 nr_data_extents;
129 	u16 nr_meta_extents;
130 
131 	atomic_t pending_io;
132 	wait_queue_head_t io_wait;
133 	wait_queue_head_t repair_wait;
134 
135 	/*
136 	 * Indicate the states of the stripe.  Bits are defined in
137 	 * scrub_stripe_flags enum.
138 	 */
139 	unsigned long state;
140 
141 	/* Indicate which sectors are covered by extent items. */
142 	unsigned long extent_sector_bitmap;
143 
144 	/*
145 	 * The errors hit during the initial read of the stripe.
146 	 *
147 	 * Would be utilized for error reporting and repair.
148 	 *
149 	 * The remaining init_nr_* records the number of errors hit, only used
150 	 * by error reporting.
151 	 */
152 	unsigned long init_error_bitmap;
153 	unsigned int init_nr_io_errors;
154 	unsigned int init_nr_csum_errors;
155 	unsigned int init_nr_meta_errors;
156 
157 	/*
158 	 * The following error bitmaps are all for the current status.
159 	 * Every time we submit a new read, these bitmaps may be updated.
160 	 *
161 	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
162 	 *
163 	 * IO and csum errors can happen for both metadata and data.
164 	 */
165 	unsigned long error_bitmap;
166 	unsigned long io_error_bitmap;
167 	unsigned long csum_error_bitmap;
168 	unsigned long meta_error_bitmap;
169 
170 	/* For writeback (repair or replace) error reporting. */
171 	unsigned long write_error_bitmap;
172 
173 	/* Writeback can be concurrent, thus we need to protect the bitmap. */
174 	spinlock_t write_error_lock;
175 
176 	/*
177 	 * Checksum for the whole stripe if this stripe is inside a data block
178 	 * group.
179 	 */
180 	u8 *csums;
181 
182 	struct work_struct work;
183 };
184 
185 struct scrub_ctx {
186 	struct scrub_stripe	stripes[SCRUB_TOTAL_STRIPES];
187 	struct scrub_stripe	*raid56_data_stripes;
188 	struct btrfs_fs_info	*fs_info;
189 	struct btrfs_path	extent_path;
190 	struct btrfs_path	csum_path;
191 	int			first_free;
192 	int			cur_stripe;
193 	atomic_t		cancel_req;
194 	int			readonly;
195 	int			sectors_per_bio;
196 
197 	/* State of IO submission throttling affecting the associated device */
198 	ktime_t			throttle_deadline;
199 	u64			throttle_sent;
200 
201 	int			is_dev_replace;
202 	u64			write_pointer;
203 
204 	struct mutex            wr_lock;
205 	struct btrfs_device     *wr_tgtdev;
206 
207 	/*
208 	 * statistics
209 	 */
210 	struct btrfs_scrub_progress stat;
211 	spinlock_t		stat_lock;
212 
213 	/*
214 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
215 	 * decrement bios_in_flight and workers_pending and then do a wakeup
216 	 * on the list_wait wait queue. We must ensure the main scrub task
217 	 * doesn't free the scrub context before or while the workers are
218 	 * doing the wakeup() call.
219 	 */
220 	refcount_t              refs;
221 };
222 
223 struct scrub_warning {
224 	struct btrfs_path	*path;
225 	u64			extent_item_size;
226 	const char		*errstr;
227 	u64			physical;
228 	u64			logical;
229 	struct btrfs_device	*dev;
230 };
231 
232 static void release_scrub_stripe(struct scrub_stripe *stripe)
233 {
234 	if (!stripe)
235 		return;
236 
237 	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
238 		if (stripe->pages[i])
239 			__free_page(stripe->pages[i]);
240 		stripe->pages[i] = NULL;
241 	}
242 	kfree(stripe->sectors);
243 	kfree(stripe->csums);
244 	stripe->sectors = NULL;
245 	stripe->csums = NULL;
246 	stripe->sctx = NULL;
247 	stripe->state = 0;
248 }
249 
250 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
251 			     struct scrub_stripe *stripe)
252 {
253 	int ret;
254 
255 	memset(stripe, 0, sizeof(*stripe));
256 
257 	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
258 	stripe->state = 0;
259 
260 	init_waitqueue_head(&stripe->io_wait);
261 	init_waitqueue_head(&stripe->repair_wait);
262 	atomic_set(&stripe->pending_io, 0);
263 	spin_lock_init(&stripe->write_error_lock);
264 
265 	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages);
266 	if (ret < 0)
267 		goto error;
268 
269 	stripe->sectors = kcalloc(stripe->nr_sectors,
270 				  sizeof(struct scrub_sector_verification),
271 				  GFP_KERNEL);
272 	if (!stripe->sectors)
273 		goto error;
274 
275 	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
276 				fs_info->csum_size, GFP_KERNEL);
277 	if (!stripe->csums)
278 		goto error;
279 	return 0;
280 error:
281 	release_scrub_stripe(stripe);
282 	return -ENOMEM;
283 }
284 
285 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
286 {
287 	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
288 }
289 
290 static void scrub_put_ctx(struct scrub_ctx *sctx);
291 
292 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
293 {
294 	while (atomic_read(&fs_info->scrub_pause_req)) {
295 		mutex_unlock(&fs_info->scrub_lock);
296 		wait_event(fs_info->scrub_pause_wait,
297 		   atomic_read(&fs_info->scrub_pause_req) == 0);
298 		mutex_lock(&fs_info->scrub_lock);
299 	}
300 }
301 
302 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
303 {
304 	atomic_inc(&fs_info->scrubs_paused);
305 	wake_up(&fs_info->scrub_pause_wait);
306 }
307 
308 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
309 {
310 	mutex_lock(&fs_info->scrub_lock);
311 	__scrub_blocked_if_needed(fs_info);
312 	atomic_dec(&fs_info->scrubs_paused);
313 	mutex_unlock(&fs_info->scrub_lock);
314 
315 	wake_up(&fs_info->scrub_pause_wait);
316 }
317 
318 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
319 {
320 	scrub_pause_on(fs_info);
321 	scrub_pause_off(fs_info);
322 }
323 
324 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
325 {
326 	int i;
327 
328 	if (!sctx)
329 		return;
330 
331 	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
332 		release_scrub_stripe(&sctx->stripes[i]);
333 
334 	kvfree(sctx);
335 }
336 
337 static void scrub_put_ctx(struct scrub_ctx *sctx)
338 {
339 	if (refcount_dec_and_test(&sctx->refs))
340 		scrub_free_ctx(sctx);
341 }
342 
343 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
344 		struct btrfs_fs_info *fs_info, int is_dev_replace)
345 {
346 	struct scrub_ctx *sctx;
347 	int		i;
348 
349 	/* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
350 	 * kvzalloc().
351 	 */
352 	sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
353 	if (!sctx)
354 		goto nomem;
355 	refcount_set(&sctx->refs, 1);
356 	sctx->is_dev_replace = is_dev_replace;
357 	sctx->fs_info = fs_info;
358 	sctx->extent_path.search_commit_root = 1;
359 	sctx->extent_path.skip_locking = 1;
360 	sctx->csum_path.search_commit_root = 1;
361 	sctx->csum_path.skip_locking = 1;
362 	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
363 		int ret;
364 
365 		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
366 		if (ret < 0)
367 			goto nomem;
368 		sctx->stripes[i].sctx = sctx;
369 	}
370 	sctx->first_free = 0;
371 	atomic_set(&sctx->cancel_req, 0);
372 
373 	spin_lock_init(&sctx->stat_lock);
374 	sctx->throttle_deadline = 0;
375 
376 	mutex_init(&sctx->wr_lock);
377 	if (is_dev_replace) {
378 		WARN_ON(!fs_info->dev_replace.tgtdev);
379 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
380 	}
381 
382 	return sctx;
383 
384 nomem:
385 	scrub_free_ctx(sctx);
386 	return ERR_PTR(-ENOMEM);
387 }
388 
389 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
390 				     u64 root, void *warn_ctx)
391 {
392 	u32 nlink;
393 	int ret;
394 	int i;
395 	unsigned nofs_flag;
396 	struct extent_buffer *eb;
397 	struct btrfs_inode_item *inode_item;
398 	struct scrub_warning *swarn = warn_ctx;
399 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
400 	struct inode_fs_paths *ipath = NULL;
401 	struct btrfs_root *local_root;
402 	struct btrfs_key key;
403 
404 	local_root = btrfs_get_fs_root(fs_info, root, true);
405 	if (IS_ERR(local_root)) {
406 		ret = PTR_ERR(local_root);
407 		goto err;
408 	}
409 
410 	/*
411 	 * this makes the path point to (inum INODE_ITEM ioff)
412 	 */
413 	key.objectid = inum;
414 	key.type = BTRFS_INODE_ITEM_KEY;
415 	key.offset = 0;
416 
417 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
418 	if (ret) {
419 		btrfs_put_root(local_root);
420 		btrfs_release_path(swarn->path);
421 		goto err;
422 	}
423 
424 	eb = swarn->path->nodes[0];
425 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
426 					struct btrfs_inode_item);
427 	nlink = btrfs_inode_nlink(eb, inode_item);
428 	btrfs_release_path(swarn->path);
429 
430 	/*
431 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
432 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
433 	 * not seem to be strictly necessary.
434 	 */
435 	nofs_flag = memalloc_nofs_save();
436 	ipath = init_ipath(4096, local_root, swarn->path);
437 	memalloc_nofs_restore(nofs_flag);
438 	if (IS_ERR(ipath)) {
439 		btrfs_put_root(local_root);
440 		ret = PTR_ERR(ipath);
441 		ipath = NULL;
442 		goto err;
443 	}
444 	ret = paths_from_inode(inum, ipath);
445 
446 	if (ret < 0)
447 		goto err;
448 
449 	/*
450 	 * we deliberately ignore the bit ipath might have been too small to
451 	 * hold all of the paths here
452 	 */
453 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
454 		btrfs_warn_in_rcu(fs_info,
455 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
456 				  swarn->errstr, swarn->logical,
457 				  btrfs_dev_name(swarn->dev),
458 				  swarn->physical,
459 				  root, inum, offset,
460 				  fs_info->sectorsize, nlink,
461 				  (char *)(unsigned long)ipath->fspath->val[i]);
462 
463 	btrfs_put_root(local_root);
464 	free_ipath(ipath);
465 	return 0;
466 
467 err:
468 	btrfs_warn_in_rcu(fs_info,
469 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
470 			  swarn->errstr, swarn->logical,
471 			  btrfs_dev_name(swarn->dev),
472 			  swarn->physical,
473 			  root, inum, offset, ret);
474 
475 	free_ipath(ipath);
476 	return 0;
477 }
478 
479 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
480 				       bool is_super, u64 logical, u64 physical)
481 {
482 	struct btrfs_fs_info *fs_info = dev->fs_info;
483 	struct btrfs_path *path;
484 	struct btrfs_key found_key;
485 	struct extent_buffer *eb;
486 	struct btrfs_extent_item *ei;
487 	struct scrub_warning swarn;
488 	u64 flags = 0;
489 	u32 item_size;
490 	int ret;
491 
492 	/* Super block error, no need to search extent tree. */
493 	if (is_super) {
494 		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
495 				  errstr, btrfs_dev_name(dev), physical);
496 		return;
497 	}
498 	path = btrfs_alloc_path();
499 	if (!path)
500 		return;
501 
502 	swarn.physical = physical;
503 	swarn.logical = logical;
504 	swarn.errstr = errstr;
505 	swarn.dev = NULL;
506 
507 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
508 				  &flags);
509 	if (ret < 0)
510 		goto out;
511 
512 	swarn.extent_item_size = found_key.offset;
513 
514 	eb = path->nodes[0];
515 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
516 	item_size = btrfs_item_size(eb, path->slots[0]);
517 
518 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
519 		unsigned long ptr = 0;
520 		u8 ref_level;
521 		u64 ref_root;
522 
523 		while (true) {
524 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
525 						      item_size, &ref_root,
526 						      &ref_level);
527 			if (ret < 0) {
528 				btrfs_warn(fs_info,
529 				"failed to resolve tree backref for logical %llu: %d",
530 						  swarn.logical, ret);
531 				break;
532 			}
533 			if (ret > 0)
534 				break;
535 			btrfs_warn_in_rcu(fs_info,
536 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
537 				errstr, swarn.logical, btrfs_dev_name(dev),
538 				swarn.physical, (ref_level ? "node" : "leaf"),
539 				ref_level, ref_root);
540 		}
541 		btrfs_release_path(path);
542 	} else {
543 		struct btrfs_backref_walk_ctx ctx = { 0 };
544 
545 		btrfs_release_path(path);
546 
547 		ctx.bytenr = found_key.objectid;
548 		ctx.extent_item_pos = swarn.logical - found_key.objectid;
549 		ctx.fs_info = fs_info;
550 
551 		swarn.path = path;
552 		swarn.dev = dev;
553 
554 		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
555 	}
556 
557 out:
558 	btrfs_free_path(path);
559 }
560 
561 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
562 {
563 	int ret = 0;
564 	u64 length;
565 
566 	if (!btrfs_is_zoned(sctx->fs_info))
567 		return 0;
568 
569 	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
570 		return 0;
571 
572 	if (sctx->write_pointer < physical) {
573 		length = physical - sctx->write_pointer;
574 
575 		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
576 						sctx->write_pointer, length);
577 		if (!ret)
578 			sctx->write_pointer = physical;
579 	}
580 	return ret;
581 }
582 
583 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
584 {
585 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
586 	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
587 
588 	return stripe->pages[page_index];
589 }
590 
591 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
592 						 int sector_nr)
593 {
594 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
595 
596 	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
597 }
598 
599 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
600 {
601 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
602 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
603 	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
604 	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
605 	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
606 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
607 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
608 	u8 calculated_csum[BTRFS_CSUM_SIZE];
609 	struct btrfs_header *header;
610 
611 	/*
612 	 * Here we don't have a good way to attach the pages (and subpages)
613 	 * to a dummy extent buffer, thus we have to directly grab the members
614 	 * from pages.
615 	 */
616 	header = (struct btrfs_header *)(page_address(first_page) + first_off);
617 	memcpy(on_disk_csum, header->csum, fs_info->csum_size);
618 
619 	if (logical != btrfs_stack_header_bytenr(header)) {
620 		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
621 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
622 		btrfs_warn_rl(fs_info,
623 		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
624 			      logical, stripe->mirror_num,
625 			      btrfs_stack_header_bytenr(header), logical);
626 		return;
627 	}
628 	if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
629 		   BTRFS_FSID_SIZE) != 0) {
630 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
631 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
632 		btrfs_warn_rl(fs_info,
633 		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
634 			      logical, stripe->mirror_num,
635 			      header->fsid, fs_info->fs_devices->fsid);
636 		return;
637 	}
638 	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
639 		   BTRFS_UUID_SIZE) != 0) {
640 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
641 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
642 		btrfs_warn_rl(fs_info,
643 		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
644 			      logical, stripe->mirror_num,
645 			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
646 		return;
647 	}
648 
649 	/* Now check tree block csum. */
650 	shash->tfm = fs_info->csum_shash;
651 	crypto_shash_init(shash);
652 	crypto_shash_update(shash, page_address(first_page) + first_off +
653 			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
654 
655 	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
656 		struct page *page = scrub_stripe_get_page(stripe, i);
657 		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
658 
659 		crypto_shash_update(shash, page_address(page) + page_off,
660 				    fs_info->sectorsize);
661 	}
662 
663 	crypto_shash_final(shash, calculated_csum);
664 	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
665 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
666 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
667 		btrfs_warn_rl(fs_info,
668 		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
669 			      logical, stripe->mirror_num,
670 			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
671 			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
672 		return;
673 	}
674 	if (stripe->sectors[sector_nr].generation !=
675 	    btrfs_stack_header_generation(header)) {
676 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
677 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
678 		btrfs_warn_rl(fs_info,
679 		"tree block %llu mirror %u has bad generation, has %llu want %llu",
680 			      logical, stripe->mirror_num,
681 			      btrfs_stack_header_generation(header),
682 			      stripe->sectors[sector_nr].generation);
683 		return;
684 	}
685 	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
686 	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
687 	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
688 }
689 
690 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
691 {
692 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
693 	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
694 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
695 	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
696 	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
697 	u8 csum_buf[BTRFS_CSUM_SIZE];
698 	int ret;
699 
700 	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
701 
702 	/* Sector not utilized, skip it. */
703 	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
704 		return;
705 
706 	/* IO error, no need to check. */
707 	if (test_bit(sector_nr, &stripe->io_error_bitmap))
708 		return;
709 
710 	/* Metadata, verify the full tree block. */
711 	if (sector->is_metadata) {
712 		/*
713 		 * Check if the tree block crosses the stripe boudary.  If
714 		 * crossed the boundary, we cannot verify it but only give a
715 		 * warning.
716 		 *
717 		 * This can only happen on a very old filesystem where chunks
718 		 * are not ensured to be stripe aligned.
719 		 */
720 		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
721 			btrfs_warn_rl(fs_info,
722 			"tree block at %llu crosses stripe boundary %llu",
723 				      stripe->logical +
724 				      (sector_nr << fs_info->sectorsize_bits),
725 				      stripe->logical);
726 			return;
727 		}
728 		scrub_verify_one_metadata(stripe, sector_nr);
729 		return;
730 	}
731 
732 	/*
733 	 * Data is easier, we just verify the data csum (if we have it).  For
734 	 * cases without csum, we have no other choice but to trust it.
735 	 */
736 	if (!sector->csum) {
737 		clear_bit(sector_nr, &stripe->error_bitmap);
738 		return;
739 	}
740 
741 	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
742 	if (ret < 0) {
743 		set_bit(sector_nr, &stripe->csum_error_bitmap);
744 		set_bit(sector_nr, &stripe->error_bitmap);
745 	} else {
746 		clear_bit(sector_nr, &stripe->csum_error_bitmap);
747 		clear_bit(sector_nr, &stripe->error_bitmap);
748 	}
749 }
750 
751 /* Verify specified sectors of a stripe. */
752 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
753 {
754 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
755 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
756 	int sector_nr;
757 
758 	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
759 		scrub_verify_one_sector(stripe, sector_nr);
760 		if (stripe->sectors[sector_nr].is_metadata)
761 			sector_nr += sectors_per_tree - 1;
762 	}
763 }
764 
765 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
766 {
767 	int i;
768 
769 	for (i = 0; i < stripe->nr_sectors; i++) {
770 		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
771 		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
772 			break;
773 	}
774 	ASSERT(i < stripe->nr_sectors);
775 	return i;
776 }
777 
778 /*
779  * Repair read is different to the regular read:
780  *
781  * - Only reads the failed sectors
782  * - May have extra blocksize limits
783  */
784 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
785 {
786 	struct scrub_stripe *stripe = bbio->private;
787 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
788 	struct bio_vec *bvec;
789 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
790 	u32 bio_size = 0;
791 	int i;
792 
793 	ASSERT(sector_nr < stripe->nr_sectors);
794 
795 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
796 		bio_size += bvec->bv_len;
797 
798 	if (bbio->bio.bi_status) {
799 		bitmap_set(&stripe->io_error_bitmap, sector_nr,
800 			   bio_size >> fs_info->sectorsize_bits);
801 		bitmap_set(&stripe->error_bitmap, sector_nr,
802 			   bio_size >> fs_info->sectorsize_bits);
803 	} else {
804 		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
805 			     bio_size >> fs_info->sectorsize_bits);
806 	}
807 	bio_put(&bbio->bio);
808 	if (atomic_dec_and_test(&stripe->pending_io))
809 		wake_up(&stripe->io_wait);
810 }
811 
812 static int calc_next_mirror(int mirror, int num_copies)
813 {
814 	ASSERT(mirror <= num_copies);
815 	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
816 }
817 
818 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
819 					    int mirror, int blocksize, bool wait)
820 {
821 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
822 	struct btrfs_bio *bbio = NULL;
823 	const unsigned long old_error_bitmap = stripe->error_bitmap;
824 	int i;
825 
826 	ASSERT(stripe->mirror_num >= 1);
827 	ASSERT(atomic_read(&stripe->pending_io) == 0);
828 
829 	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
830 		struct page *page;
831 		int pgoff;
832 		int ret;
833 
834 		page = scrub_stripe_get_page(stripe, i);
835 		pgoff = scrub_stripe_get_page_offset(stripe, i);
836 
837 		/* The current sector cannot be merged, submit the bio. */
838 		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
839 			     bbio->bio.bi_iter.bi_size >= blocksize)) {
840 			ASSERT(bbio->bio.bi_iter.bi_size);
841 			atomic_inc(&stripe->pending_io);
842 			btrfs_submit_bio(bbio, mirror);
843 			if (wait)
844 				wait_scrub_stripe_io(stripe);
845 			bbio = NULL;
846 		}
847 
848 		if (!bbio) {
849 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
850 				fs_info, scrub_repair_read_endio, stripe);
851 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
852 				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
853 		}
854 
855 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
856 		ASSERT(ret == fs_info->sectorsize);
857 	}
858 	if (bbio) {
859 		ASSERT(bbio->bio.bi_iter.bi_size);
860 		atomic_inc(&stripe->pending_io);
861 		btrfs_submit_bio(bbio, mirror);
862 		if (wait)
863 			wait_scrub_stripe_io(stripe);
864 	}
865 }
866 
867 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
868 				       struct scrub_stripe *stripe)
869 {
870 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
871 				      DEFAULT_RATELIMIT_BURST);
872 	struct btrfs_fs_info *fs_info = sctx->fs_info;
873 	struct btrfs_device *dev = NULL;
874 	u64 physical = 0;
875 	int nr_data_sectors = 0;
876 	int nr_meta_sectors = 0;
877 	int nr_nodatacsum_sectors = 0;
878 	int nr_repaired_sectors = 0;
879 	int sector_nr;
880 
881 	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
882 		return;
883 
884 	/*
885 	 * Init needed infos for error reporting.
886 	 *
887 	 * Although our scrub_stripe infrastucture is mostly based on btrfs_submit_bio()
888 	 * thus no need for dev/physical, error reporting still needs dev and physical.
889 	 */
890 	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
891 		u64 mapped_len = fs_info->sectorsize;
892 		struct btrfs_io_context *bioc = NULL;
893 		int stripe_index = stripe->mirror_num - 1;
894 		int ret;
895 
896 		/* For scrub, our mirror_num should always start at 1. */
897 		ASSERT(stripe->mirror_num >= 1);
898 		ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
899 				      stripe->logical, &mapped_len, &bioc,
900 				      NULL, NULL, 1);
901 		/*
902 		 * If we failed, dev will be NULL, and later detailed reports
903 		 * will just be skipped.
904 		 */
905 		if (ret < 0)
906 			goto skip;
907 		physical = bioc->stripes[stripe_index].physical;
908 		dev = bioc->stripes[stripe_index].dev;
909 		btrfs_put_bioc(bioc);
910 	}
911 
912 skip:
913 	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
914 		bool repaired = false;
915 
916 		if (stripe->sectors[sector_nr].is_metadata) {
917 			nr_meta_sectors++;
918 		} else {
919 			nr_data_sectors++;
920 			if (!stripe->sectors[sector_nr].csum)
921 				nr_nodatacsum_sectors++;
922 		}
923 
924 		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
925 		    !test_bit(sector_nr, &stripe->error_bitmap)) {
926 			nr_repaired_sectors++;
927 			repaired = true;
928 		}
929 
930 		/* Good sector from the beginning, nothing need to be done. */
931 		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
932 			continue;
933 
934 		/*
935 		 * Report error for the corrupted sectors.  If repaired, just
936 		 * output the message of repaired message.
937 		 */
938 		if (repaired) {
939 			if (dev) {
940 				btrfs_err_rl_in_rcu(fs_info,
941 			"fixed up error at logical %llu on dev %s physical %llu",
942 					    stripe->logical, btrfs_dev_name(dev),
943 					    physical);
944 			} else {
945 				btrfs_err_rl_in_rcu(fs_info,
946 			"fixed up error at logical %llu on mirror %u",
947 					    stripe->logical, stripe->mirror_num);
948 			}
949 			continue;
950 		}
951 
952 		/* The remaining are all for unrepaired. */
953 		if (dev) {
954 			btrfs_err_rl_in_rcu(fs_info,
955 	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
956 					    stripe->logical, btrfs_dev_name(dev),
957 					    physical);
958 		} else {
959 			btrfs_err_rl_in_rcu(fs_info,
960 	"unable to fixup (regular) error at logical %llu on mirror %u",
961 					    stripe->logical, stripe->mirror_num);
962 		}
963 
964 		if (test_bit(sector_nr, &stripe->io_error_bitmap))
965 			if (__ratelimit(&rs) && dev)
966 				scrub_print_common_warning("i/o error", dev, false,
967 						     stripe->logical, physical);
968 		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
969 			if (__ratelimit(&rs) && dev)
970 				scrub_print_common_warning("checksum error", dev, false,
971 						     stripe->logical, physical);
972 		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
973 			if (__ratelimit(&rs) && dev)
974 				scrub_print_common_warning("header error", dev, false,
975 						     stripe->logical, physical);
976 	}
977 
978 	spin_lock(&sctx->stat_lock);
979 	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
980 	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
981 	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
982 	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
983 	sctx->stat.no_csum += nr_nodatacsum_sectors;
984 	sctx->stat.read_errors += stripe->init_nr_io_errors;
985 	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
986 	sctx->stat.verify_errors += stripe->init_nr_meta_errors;
987 	sctx->stat.uncorrectable_errors +=
988 		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
989 	sctx->stat.corrected_errors += nr_repaired_sectors;
990 	spin_unlock(&sctx->stat_lock);
991 }
992 
993 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
994 				unsigned long write_bitmap, bool dev_replace);
995 
996 /*
997  * The main entrance for all read related scrub work, including:
998  *
999  * - Wait for the initial read to finish
1000  * - Verify and locate any bad sectors
1001  * - Go through the remaining mirrors and try to read as large blocksize as
1002  *   possible
1003  * - Go through all mirrors (including the failed mirror) sector-by-sector
1004  * - Submit writeback for repaired sectors
1005  *
1006  * Writeback for dev-replace does not happen here, it needs extra
1007  * synchronization for zoned devices.
1008  */
1009 static void scrub_stripe_read_repair_worker(struct work_struct *work)
1010 {
1011 	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1012 	struct scrub_ctx *sctx = stripe->sctx;
1013 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1014 	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1015 					  stripe->bg->length);
1016 	int mirror;
1017 	int i;
1018 
1019 	ASSERT(stripe->mirror_num > 0);
1020 
1021 	wait_scrub_stripe_io(stripe);
1022 	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1023 	/* Save the initial failed bitmap for later repair and report usage. */
1024 	stripe->init_error_bitmap = stripe->error_bitmap;
1025 	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1026 						  stripe->nr_sectors);
1027 	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1028 						    stripe->nr_sectors);
1029 	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1030 						    stripe->nr_sectors);
1031 
1032 	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1033 		goto out;
1034 
1035 	/*
1036 	 * Try all remaining mirrors.
1037 	 *
1038 	 * Here we still try to read as large block as possible, as this is
1039 	 * faster and we have extra safety nets to rely on.
1040 	 */
1041 	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1042 	     mirror != stripe->mirror_num;
1043 	     mirror = calc_next_mirror(mirror, num_copies)) {
1044 		const unsigned long old_error_bitmap = stripe->error_bitmap;
1045 
1046 		scrub_stripe_submit_repair_read(stripe, mirror,
1047 						BTRFS_STRIPE_LEN, false);
1048 		wait_scrub_stripe_io(stripe);
1049 		scrub_verify_one_stripe(stripe, old_error_bitmap);
1050 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1051 			goto out;
1052 	}
1053 
1054 	/*
1055 	 * Last safety net, try re-checking all mirrors, including the failed
1056 	 * one, sector-by-sector.
1057 	 *
1058 	 * As if one sector failed the drive's internal csum, the whole read
1059 	 * containing the offending sector would be marked as error.
1060 	 * Thus here we do sector-by-sector read.
1061 	 *
1062 	 * This can be slow, thus we only try it as the last resort.
1063 	 */
1064 
1065 	for (i = 0, mirror = stripe->mirror_num;
1066 	     i < num_copies;
1067 	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
1068 		const unsigned long old_error_bitmap = stripe->error_bitmap;
1069 
1070 		scrub_stripe_submit_repair_read(stripe, mirror,
1071 						fs_info->sectorsize, true);
1072 		wait_scrub_stripe_io(stripe);
1073 		scrub_verify_one_stripe(stripe, old_error_bitmap);
1074 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1075 			goto out;
1076 	}
1077 out:
1078 	/*
1079 	 * Submit the repaired sectors.  For zoned case, we cannot do repair
1080 	 * in-place, but queue the bg to be relocated.
1081 	 */
1082 	if (btrfs_is_zoned(fs_info)) {
1083 		if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1084 			btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1085 	} else if (!sctx->readonly) {
1086 		unsigned long repaired;
1087 
1088 		bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1089 			      &stripe->error_bitmap, stripe->nr_sectors);
1090 		scrub_write_sectors(sctx, stripe, repaired, false);
1091 		wait_scrub_stripe_io(stripe);
1092 	}
1093 
1094 	scrub_stripe_report_errors(sctx, stripe);
1095 	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1096 	wake_up(&stripe->repair_wait);
1097 }
1098 
1099 static void scrub_read_endio(struct btrfs_bio *bbio)
1100 {
1101 	struct scrub_stripe *stripe = bbio->private;
1102 
1103 	if (bbio->bio.bi_status) {
1104 		bitmap_set(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
1105 		bitmap_set(&stripe->error_bitmap, 0, stripe->nr_sectors);
1106 	} else {
1107 		bitmap_clear(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
1108 	}
1109 	bio_put(&bbio->bio);
1110 	if (atomic_dec_and_test(&stripe->pending_io)) {
1111 		wake_up(&stripe->io_wait);
1112 		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1113 		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1114 	}
1115 }
1116 
1117 static void scrub_write_endio(struct btrfs_bio *bbio)
1118 {
1119 	struct scrub_stripe *stripe = bbio->private;
1120 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1121 	struct bio_vec *bvec;
1122 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1123 	u32 bio_size = 0;
1124 	int i;
1125 
1126 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1127 		bio_size += bvec->bv_len;
1128 
1129 	if (bbio->bio.bi_status) {
1130 		unsigned long flags;
1131 
1132 		spin_lock_irqsave(&stripe->write_error_lock, flags);
1133 		bitmap_set(&stripe->write_error_bitmap, sector_nr,
1134 			   bio_size >> fs_info->sectorsize_bits);
1135 		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1136 	}
1137 	bio_put(&bbio->bio);
1138 
1139 	if (atomic_dec_and_test(&stripe->pending_io))
1140 		wake_up(&stripe->io_wait);
1141 }
1142 
1143 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1144 				   struct scrub_stripe *stripe,
1145 				   struct btrfs_bio *bbio, bool dev_replace)
1146 {
1147 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1148 	u32 bio_len = bbio->bio.bi_iter.bi_size;
1149 	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1150 		      stripe->logical;
1151 
1152 	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1153 	atomic_inc(&stripe->pending_io);
1154 	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1155 	if (!btrfs_is_zoned(fs_info))
1156 		return;
1157 	/*
1158 	 * For zoned writeback, queue depth must be 1, thus we must wait for
1159 	 * the write to finish before the next write.
1160 	 */
1161 	wait_scrub_stripe_io(stripe);
1162 
1163 	/*
1164 	 * And also need to update the write pointer if write finished
1165 	 * successfully.
1166 	 */
1167 	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1168 		      &stripe->write_error_bitmap))
1169 		sctx->write_pointer += bio_len;
1170 }
1171 
1172 /*
1173  * Submit the write bio(s) for the sectors specified by @write_bitmap.
1174  *
1175  * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1176  *
1177  * - Only needs logical bytenr and mirror_num
1178  *   Just like the scrub read path
1179  *
1180  * - Would only result in writes to the specified mirror
1181  *   Unlike the regular writeback path, which would write back to all stripes
1182  *
1183  * - Handle dev-replace and read-repair writeback differently
1184  */
1185 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1186 				unsigned long write_bitmap, bool dev_replace)
1187 {
1188 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1189 	struct btrfs_bio *bbio = NULL;
1190 	int sector_nr;
1191 
1192 	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1193 		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1194 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1195 		int ret;
1196 
1197 		/* We should only writeback sectors covered by an extent. */
1198 		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1199 
1200 		/* Cannot merge with previous sector, submit the current one. */
1201 		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1202 			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1203 			bbio = NULL;
1204 		}
1205 		if (!bbio) {
1206 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1207 					       fs_info, scrub_write_endio, stripe);
1208 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
1209 				(sector_nr << fs_info->sectorsize_bits)) >>
1210 				SECTOR_SHIFT;
1211 		}
1212 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1213 		ASSERT(ret == fs_info->sectorsize);
1214 	}
1215 	if (bbio)
1216 		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1217 }
1218 
1219 /*
1220  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1221  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1222  */
1223 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1224 				  unsigned int bio_size)
1225 {
1226 	const int time_slice = 1000;
1227 	s64 delta;
1228 	ktime_t now;
1229 	u32 div;
1230 	u64 bwlimit;
1231 
1232 	bwlimit = READ_ONCE(device->scrub_speed_max);
1233 	if (bwlimit == 0)
1234 		return;
1235 
1236 	/*
1237 	 * Slice is divided into intervals when the IO is submitted, adjust by
1238 	 * bwlimit and maximum of 64 intervals.
1239 	 */
1240 	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1241 	div = min_t(u32, 64, div);
1242 
1243 	/* Start new epoch, set deadline */
1244 	now = ktime_get();
1245 	if (sctx->throttle_deadline == 0) {
1246 		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1247 		sctx->throttle_sent = 0;
1248 	}
1249 
1250 	/* Still in the time to send? */
1251 	if (ktime_before(now, sctx->throttle_deadline)) {
1252 		/* If current bio is within the limit, send it */
1253 		sctx->throttle_sent += bio_size;
1254 		if (sctx->throttle_sent <= div_u64(bwlimit, div))
1255 			return;
1256 
1257 		/* We're over the limit, sleep until the rest of the slice */
1258 		delta = ktime_ms_delta(sctx->throttle_deadline, now);
1259 	} else {
1260 		/* New request after deadline, start new epoch */
1261 		delta = 0;
1262 	}
1263 
1264 	if (delta) {
1265 		long timeout;
1266 
1267 		timeout = div_u64(delta * HZ, 1000);
1268 		schedule_timeout_interruptible(timeout);
1269 	}
1270 
1271 	/* Next call will start the deadline period */
1272 	sctx->throttle_deadline = 0;
1273 }
1274 
1275 /*
1276  * Given a physical address, this will calculate it's
1277  * logical offset. if this is a parity stripe, it will return
1278  * the most left data stripe's logical offset.
1279  *
1280  * return 0 if it is a data stripe, 1 means parity stripe.
1281  */
1282 static int get_raid56_logic_offset(u64 physical, int num,
1283 				   struct map_lookup *map, u64 *offset,
1284 				   u64 *stripe_start)
1285 {
1286 	int i;
1287 	int j = 0;
1288 	u64 last_offset;
1289 	const int data_stripes = nr_data_stripes(map);
1290 
1291 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
1292 	if (stripe_start)
1293 		*stripe_start = last_offset;
1294 
1295 	*offset = last_offset;
1296 	for (i = 0; i < data_stripes; i++) {
1297 		u32 stripe_nr;
1298 		u32 stripe_index;
1299 		u32 rot;
1300 
1301 		*offset = last_offset + btrfs_stripe_nr_to_offset(i);
1302 
1303 		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1304 
1305 		/* Work out the disk rotation on this stripe-set */
1306 		rot = stripe_nr % map->num_stripes;
1307 		/* calculate which stripe this data locates */
1308 		rot += i;
1309 		stripe_index = rot % map->num_stripes;
1310 		if (stripe_index == num)
1311 			return 0;
1312 		if (stripe_index < num)
1313 			j++;
1314 	}
1315 	*offset = last_offset + btrfs_stripe_nr_to_offset(j);
1316 	return 1;
1317 }
1318 
1319 /*
1320  * Return 0 if the extent item range covers any byte of the range.
1321  * Return <0 if the extent item is before @search_start.
1322  * Return >0 if the extent item is after @start_start + @search_len.
1323  */
1324 static int compare_extent_item_range(struct btrfs_path *path,
1325 				     u64 search_start, u64 search_len)
1326 {
1327 	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1328 	u64 len;
1329 	struct btrfs_key key;
1330 
1331 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1332 	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1333 	       key.type == BTRFS_METADATA_ITEM_KEY);
1334 	if (key.type == BTRFS_METADATA_ITEM_KEY)
1335 		len = fs_info->nodesize;
1336 	else
1337 		len = key.offset;
1338 
1339 	if (key.objectid + len <= search_start)
1340 		return -1;
1341 	if (key.objectid >= search_start + search_len)
1342 		return 1;
1343 	return 0;
1344 }
1345 
1346 /*
1347  * Locate one extent item which covers any byte in range
1348  * [@search_start, @search_start + @search_length)
1349  *
1350  * If the path is not initialized, we will initialize the search by doing
1351  * a btrfs_search_slot().
1352  * If the path is already initialized, we will use the path as the initial
1353  * slot, to avoid duplicated btrfs_search_slot() calls.
1354  *
1355  * NOTE: If an extent item starts before @search_start, we will still
1356  * return the extent item. This is for data extent crossing stripe boundary.
1357  *
1358  * Return 0 if we found such extent item, and @path will point to the extent item.
1359  * Return >0 if no such extent item can be found, and @path will be released.
1360  * Return <0 if hit fatal error, and @path will be released.
1361  */
1362 static int find_first_extent_item(struct btrfs_root *extent_root,
1363 				  struct btrfs_path *path,
1364 				  u64 search_start, u64 search_len)
1365 {
1366 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1367 	struct btrfs_key key;
1368 	int ret;
1369 
1370 	/* Continue using the existing path */
1371 	if (path->nodes[0])
1372 		goto search_forward;
1373 
1374 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1375 		key.type = BTRFS_METADATA_ITEM_KEY;
1376 	else
1377 		key.type = BTRFS_EXTENT_ITEM_KEY;
1378 	key.objectid = search_start;
1379 	key.offset = (u64)-1;
1380 
1381 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1382 	if (ret < 0)
1383 		return ret;
1384 
1385 	ASSERT(ret > 0);
1386 	/*
1387 	 * Here we intentionally pass 0 as @min_objectid, as there could be
1388 	 * an extent item starting before @search_start.
1389 	 */
1390 	ret = btrfs_previous_extent_item(extent_root, path, 0);
1391 	if (ret < 0)
1392 		return ret;
1393 	/*
1394 	 * No matter whether we have found an extent item, the next loop will
1395 	 * properly do every check on the key.
1396 	 */
1397 search_forward:
1398 	while (true) {
1399 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1400 		if (key.objectid >= search_start + search_len)
1401 			break;
1402 		if (key.type != BTRFS_METADATA_ITEM_KEY &&
1403 		    key.type != BTRFS_EXTENT_ITEM_KEY)
1404 			goto next;
1405 
1406 		ret = compare_extent_item_range(path, search_start, search_len);
1407 		if (ret == 0)
1408 			return ret;
1409 		if (ret > 0)
1410 			break;
1411 next:
1412 		path->slots[0]++;
1413 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
1414 			ret = btrfs_next_leaf(extent_root, path);
1415 			if (ret) {
1416 				/* Either no more item or fatal error */
1417 				btrfs_release_path(path);
1418 				return ret;
1419 			}
1420 		}
1421 	}
1422 	btrfs_release_path(path);
1423 	return 1;
1424 }
1425 
1426 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1427 			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1428 {
1429 	struct btrfs_key key;
1430 	struct btrfs_extent_item *ei;
1431 
1432 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1433 	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1434 	       key.type == BTRFS_EXTENT_ITEM_KEY);
1435 	*extent_start_ret = key.objectid;
1436 	if (key.type == BTRFS_METADATA_ITEM_KEY)
1437 		*size_ret = path->nodes[0]->fs_info->nodesize;
1438 	else
1439 		*size_ret = key.offset;
1440 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1441 	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1442 	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1443 }
1444 
1445 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1446 					u64 physical, u64 physical_end)
1447 {
1448 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1449 	int ret = 0;
1450 
1451 	if (!btrfs_is_zoned(fs_info))
1452 		return 0;
1453 
1454 	mutex_lock(&sctx->wr_lock);
1455 	if (sctx->write_pointer < physical_end) {
1456 		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1457 						    physical,
1458 						    sctx->write_pointer);
1459 		if (ret)
1460 			btrfs_err(fs_info,
1461 				  "zoned: failed to recover write pointer");
1462 	}
1463 	mutex_unlock(&sctx->wr_lock);
1464 	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1465 
1466 	return ret;
1467 }
1468 
1469 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1470 				 struct scrub_stripe *stripe,
1471 				 u64 extent_start, u64 extent_len,
1472 				 u64 extent_flags, u64 extent_gen)
1473 {
1474 	for (u64 cur_logical = max(stripe->logical, extent_start);
1475 	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1476 			       extent_start + extent_len);
1477 	     cur_logical += fs_info->sectorsize) {
1478 		const int nr_sector = (cur_logical - stripe->logical) >>
1479 				      fs_info->sectorsize_bits;
1480 		struct scrub_sector_verification *sector =
1481 						&stripe->sectors[nr_sector];
1482 
1483 		set_bit(nr_sector, &stripe->extent_sector_bitmap);
1484 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1485 			sector->is_metadata = true;
1486 			sector->generation = extent_gen;
1487 		}
1488 	}
1489 }
1490 
1491 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1492 {
1493 	stripe->extent_sector_bitmap = 0;
1494 	stripe->init_error_bitmap = 0;
1495 	stripe->init_nr_io_errors = 0;
1496 	stripe->init_nr_csum_errors = 0;
1497 	stripe->init_nr_meta_errors = 0;
1498 	stripe->error_bitmap = 0;
1499 	stripe->io_error_bitmap = 0;
1500 	stripe->csum_error_bitmap = 0;
1501 	stripe->meta_error_bitmap = 0;
1502 }
1503 
1504 /*
1505  * Locate one stripe which has at least one extent in its range.
1506  *
1507  * Return 0 if found such stripe, and store its info into @stripe.
1508  * Return >0 if there is no such stripe in the specified range.
1509  * Return <0 for error.
1510  */
1511 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1512 					struct btrfs_path *extent_path,
1513 					struct btrfs_path *csum_path,
1514 					struct btrfs_device *dev, u64 physical,
1515 					int mirror_num, u64 logical_start,
1516 					u32 logical_len,
1517 					struct scrub_stripe *stripe)
1518 {
1519 	struct btrfs_fs_info *fs_info = bg->fs_info;
1520 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1521 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1522 	const u64 logical_end = logical_start + logical_len;
1523 	u64 cur_logical = logical_start;
1524 	u64 stripe_end;
1525 	u64 extent_start;
1526 	u64 extent_len;
1527 	u64 extent_flags;
1528 	u64 extent_gen;
1529 	int ret;
1530 
1531 	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1532 				   stripe->nr_sectors);
1533 	scrub_stripe_reset_bitmaps(stripe);
1534 
1535 	/* The range must be inside the bg. */
1536 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1537 
1538 	ret = find_first_extent_item(extent_root, extent_path, logical_start,
1539 				     logical_len);
1540 	/* Either error or not found. */
1541 	if (ret)
1542 		goto out;
1543 	get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1544 			&extent_gen);
1545 	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1546 		stripe->nr_meta_extents++;
1547 	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1548 		stripe->nr_data_extents++;
1549 	cur_logical = max(extent_start, cur_logical);
1550 
1551 	/*
1552 	 * Round down to stripe boundary.
1553 	 *
1554 	 * The extra calculation against bg->start is to handle block groups
1555 	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1556 	 */
1557 	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1558 			  bg->start;
1559 	stripe->physical = physical + stripe->logical - logical_start;
1560 	stripe->dev = dev;
1561 	stripe->bg = bg;
1562 	stripe->mirror_num = mirror_num;
1563 	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1564 
1565 	/* Fill the first extent info into stripe->sectors[] array. */
1566 	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1567 			     extent_flags, extent_gen);
1568 	cur_logical = extent_start + extent_len;
1569 
1570 	/* Fill the extent info for the remaining sectors. */
1571 	while (cur_logical <= stripe_end) {
1572 		ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1573 					     stripe_end - cur_logical + 1);
1574 		if (ret < 0)
1575 			goto out;
1576 		if (ret > 0) {
1577 			ret = 0;
1578 			break;
1579 		}
1580 		get_extent_info(extent_path, &extent_start, &extent_len,
1581 				&extent_flags, &extent_gen);
1582 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1583 			stripe->nr_meta_extents++;
1584 		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1585 			stripe->nr_data_extents++;
1586 		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1587 				     extent_flags, extent_gen);
1588 		cur_logical = extent_start + extent_len;
1589 	}
1590 
1591 	/* Now fill the data csum. */
1592 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1593 		int sector_nr;
1594 		unsigned long csum_bitmap = 0;
1595 
1596 		/* Csum space should have already been allocated. */
1597 		ASSERT(stripe->csums);
1598 
1599 		/*
1600 		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1601 		 * should contain at most 16 sectors.
1602 		 */
1603 		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1604 
1605 		ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1606 						stripe->logical, stripe_end,
1607 						stripe->csums, &csum_bitmap);
1608 		if (ret < 0)
1609 			goto out;
1610 		if (ret > 0)
1611 			ret = 0;
1612 
1613 		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1614 			stripe->sectors[sector_nr].csum = stripe->csums +
1615 				sector_nr * fs_info->csum_size;
1616 		}
1617 	}
1618 	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1619 out:
1620 	return ret;
1621 }
1622 
1623 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1624 {
1625 	scrub_stripe_reset_bitmaps(stripe);
1626 
1627 	stripe->nr_meta_extents = 0;
1628 	stripe->nr_data_extents = 0;
1629 	stripe->state = 0;
1630 
1631 	for (int i = 0; i < stripe->nr_sectors; i++) {
1632 		stripe->sectors[i].is_metadata = false;
1633 		stripe->sectors[i].csum = NULL;
1634 		stripe->sectors[i].generation = 0;
1635 	}
1636 }
1637 
1638 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1639 				      struct scrub_stripe *stripe)
1640 {
1641 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1642 	struct btrfs_bio *bbio;
1643 	int mirror = stripe->mirror_num;
1644 
1645 	ASSERT(stripe->bg);
1646 	ASSERT(stripe->mirror_num > 0);
1647 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1648 
1649 	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1650 			       scrub_read_endio, stripe);
1651 
1652 	/* Read the whole stripe. */
1653 	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1654 	for (int i = 0; i < BTRFS_STRIPE_LEN >> PAGE_SHIFT; i++) {
1655 		int ret;
1656 
1657 		ret = bio_add_page(&bbio->bio, stripe->pages[i], PAGE_SIZE, 0);
1658 		/* We should have allocated enough bio vectors. */
1659 		ASSERT(ret == PAGE_SIZE);
1660 	}
1661 	atomic_inc(&stripe->pending_io);
1662 
1663 	/*
1664 	 * For dev-replace, either user asks to avoid the source dev, or
1665 	 * the device is missing, we try the next mirror instead.
1666 	 */
1667 	if (sctx->is_dev_replace &&
1668 	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1669 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1670 	     !stripe->dev->bdev)) {
1671 		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1672 						  stripe->bg->length);
1673 
1674 		mirror = calc_next_mirror(mirror, num_copies);
1675 	}
1676 	btrfs_submit_bio(bbio, mirror);
1677 }
1678 
1679 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1680 {
1681 	int i;
1682 
1683 	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1684 		if (stripe->sectors[i].is_metadata) {
1685 			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1686 
1687 			btrfs_err(fs_info,
1688 			"stripe %llu has unrepaired metadata sector at %llu",
1689 				  stripe->logical,
1690 				  stripe->logical + (i << fs_info->sectorsize_bits));
1691 			return true;
1692 		}
1693 	}
1694 	return false;
1695 }
1696 
1697 static void submit_initial_group_read(struct scrub_ctx *sctx,
1698 				      unsigned int first_slot,
1699 				      unsigned int nr_stripes)
1700 {
1701 	struct blk_plug plug;
1702 
1703 	ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1704 	ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1705 
1706 	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1707 			      btrfs_stripe_nr_to_offset(nr_stripes));
1708 	blk_start_plug(&plug);
1709 	for (int i = 0; i < nr_stripes; i++) {
1710 		struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1711 
1712 		/* Those stripes should be initialized. */
1713 		ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1714 		scrub_submit_initial_read(sctx, stripe);
1715 	}
1716 	blk_finish_plug(&plug);
1717 }
1718 
1719 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1720 {
1721 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1722 	struct scrub_stripe *stripe;
1723 	const int nr_stripes = sctx->cur_stripe;
1724 	int ret = 0;
1725 
1726 	if (!nr_stripes)
1727 		return 0;
1728 
1729 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1730 
1731 	/* Submit the stripes which are populated but not submitted. */
1732 	if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1733 		const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1734 
1735 		submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
1736 	}
1737 
1738 	for (int i = 0; i < nr_stripes; i++) {
1739 		stripe = &sctx->stripes[i];
1740 
1741 		wait_event(stripe->repair_wait,
1742 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1743 	}
1744 
1745 	/* Submit for dev-replace. */
1746 	if (sctx->is_dev_replace) {
1747 		/*
1748 		 * For dev-replace, if we know there is something wrong with
1749 		 * metadata, we should immedately abort.
1750 		 */
1751 		for (int i = 0; i < nr_stripes; i++) {
1752 			if (stripe_has_metadata_error(&sctx->stripes[i])) {
1753 				ret = -EIO;
1754 				goto out;
1755 			}
1756 		}
1757 		for (int i = 0; i < nr_stripes; i++) {
1758 			unsigned long good;
1759 
1760 			stripe = &sctx->stripes[i];
1761 
1762 			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1763 
1764 			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1765 				      &stripe->error_bitmap, stripe->nr_sectors);
1766 			scrub_write_sectors(sctx, stripe, good, true);
1767 		}
1768 	}
1769 
1770 	/* Wait for the above writebacks to finish. */
1771 	for (int i = 0; i < nr_stripes; i++) {
1772 		stripe = &sctx->stripes[i];
1773 
1774 		wait_scrub_stripe_io(stripe);
1775 		scrub_reset_stripe(stripe);
1776 	}
1777 out:
1778 	sctx->cur_stripe = 0;
1779 	return ret;
1780 }
1781 
1782 static void raid56_scrub_wait_endio(struct bio *bio)
1783 {
1784 	complete(bio->bi_private);
1785 }
1786 
1787 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1788 			      struct btrfs_device *dev, int mirror_num,
1789 			      u64 logical, u32 length, u64 physical,
1790 			      u64 *found_logical_ret)
1791 {
1792 	struct scrub_stripe *stripe;
1793 	int ret;
1794 
1795 	/*
1796 	 * There should always be one slot left, as caller filling the last
1797 	 * slot should flush them all.
1798 	 */
1799 	ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1800 
1801 	stripe = &sctx->stripes[sctx->cur_stripe];
1802 	scrub_reset_stripe(stripe);
1803 	ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1804 					   &sctx->csum_path, dev, physical,
1805 					   mirror_num, logical, length, stripe);
1806 	/* Either >0 as no more extents or <0 for error. */
1807 	if (ret)
1808 		return ret;
1809 	if (found_logical_ret)
1810 		*found_logical_ret = stripe->logical;
1811 	sctx->cur_stripe++;
1812 
1813 	/* We filled one group, submit it. */
1814 	if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1815 		const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1816 
1817 		submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
1818 	}
1819 
1820 	/* Last slot used, flush them all. */
1821 	if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1822 		return flush_scrub_stripes(sctx);
1823 	return 0;
1824 }
1825 
1826 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1827 				      struct btrfs_device *scrub_dev,
1828 				      struct btrfs_block_group *bg,
1829 				      struct map_lookup *map,
1830 				      u64 full_stripe_start)
1831 {
1832 	DECLARE_COMPLETION_ONSTACK(io_done);
1833 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1834 	struct btrfs_raid_bio *rbio;
1835 	struct btrfs_io_context *bioc = NULL;
1836 	struct btrfs_path extent_path = { 0 };
1837 	struct btrfs_path csum_path = { 0 };
1838 	struct bio *bio;
1839 	struct scrub_stripe *stripe;
1840 	bool all_empty = true;
1841 	const int data_stripes = nr_data_stripes(map);
1842 	unsigned long extent_bitmap = 0;
1843 	u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1844 	int ret;
1845 
1846 	ASSERT(sctx->raid56_data_stripes);
1847 
1848 	/*
1849 	 * For data stripe search, we cannot re-use the same extent/csum paths,
1850 	 * as the data stripe bytenr may be smaller than previous extent.  Thus
1851 	 * we have to use our own extent/csum paths.
1852 	 */
1853 	extent_path.search_commit_root = 1;
1854 	extent_path.skip_locking = 1;
1855 	csum_path.search_commit_root = 1;
1856 	csum_path.skip_locking = 1;
1857 
1858 	for (int i = 0; i < data_stripes; i++) {
1859 		int stripe_index;
1860 		int rot;
1861 		u64 physical;
1862 
1863 		stripe = &sctx->raid56_data_stripes[i];
1864 		rot = div_u64(full_stripe_start - bg->start,
1865 			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1866 		stripe_index = (i + rot) % map->num_stripes;
1867 		physical = map->stripes[stripe_index].physical +
1868 			   btrfs_stripe_nr_to_offset(rot);
1869 
1870 		scrub_reset_stripe(stripe);
1871 		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1872 		ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1873 				map->stripes[stripe_index].dev, physical, 1,
1874 				full_stripe_start + btrfs_stripe_nr_to_offset(i),
1875 				BTRFS_STRIPE_LEN, stripe);
1876 		if (ret < 0)
1877 			goto out;
1878 		/*
1879 		 * No extent in this data stripe, need to manually mark them
1880 		 * initialized to make later read submission happy.
1881 		 */
1882 		if (ret > 0) {
1883 			stripe->logical = full_stripe_start +
1884 					  btrfs_stripe_nr_to_offset(i);
1885 			stripe->dev = map->stripes[stripe_index].dev;
1886 			stripe->mirror_num = 1;
1887 			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1888 		}
1889 	}
1890 
1891 	/* Check if all data stripes are empty. */
1892 	for (int i = 0; i < data_stripes; i++) {
1893 		stripe = &sctx->raid56_data_stripes[i];
1894 		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1895 			all_empty = false;
1896 			break;
1897 		}
1898 	}
1899 	if (all_empty) {
1900 		ret = 0;
1901 		goto out;
1902 	}
1903 
1904 	for (int i = 0; i < data_stripes; i++) {
1905 		stripe = &sctx->raid56_data_stripes[i];
1906 		scrub_submit_initial_read(sctx, stripe);
1907 	}
1908 	for (int i = 0; i < data_stripes; i++) {
1909 		stripe = &sctx->raid56_data_stripes[i];
1910 
1911 		wait_event(stripe->repair_wait,
1912 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1913 	}
1914 	/* For now, no zoned support for RAID56. */
1915 	ASSERT(!btrfs_is_zoned(sctx->fs_info));
1916 
1917 	/*
1918 	 * Now all data stripes are properly verified. Check if we have any
1919 	 * unrepaired, if so abort immediately or we could further corrupt the
1920 	 * P/Q stripes.
1921 	 *
1922 	 * During the loop, also populate extent_bitmap.
1923 	 */
1924 	for (int i = 0; i < data_stripes; i++) {
1925 		unsigned long error;
1926 
1927 		stripe = &sctx->raid56_data_stripes[i];
1928 
1929 		/*
1930 		 * We should only check the errors where there is an extent.
1931 		 * As we may hit an empty data stripe while it's missing.
1932 		 */
1933 		bitmap_and(&error, &stripe->error_bitmap,
1934 			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
1935 		if (!bitmap_empty(&error, stripe->nr_sectors)) {
1936 			btrfs_err(fs_info,
1937 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
1938 				  full_stripe_start, i, stripe->nr_sectors,
1939 				  &error);
1940 			ret = -EIO;
1941 			goto out;
1942 		}
1943 		bitmap_or(&extent_bitmap, &extent_bitmap,
1944 			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
1945 	}
1946 
1947 	/* Now we can check and regenerate the P/Q stripe. */
1948 	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
1949 	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
1950 	bio->bi_private = &io_done;
1951 	bio->bi_end_io = raid56_scrub_wait_endio;
1952 
1953 	btrfs_bio_counter_inc_blocked(fs_info);
1954 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
1955 			      &length, &bioc, NULL, NULL, 1);
1956 	if (ret < 0) {
1957 		btrfs_put_bioc(bioc);
1958 		btrfs_bio_counter_dec(fs_info);
1959 		goto out;
1960 	}
1961 	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
1962 				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1963 	btrfs_put_bioc(bioc);
1964 	if (!rbio) {
1965 		ret = -ENOMEM;
1966 		btrfs_bio_counter_dec(fs_info);
1967 		goto out;
1968 	}
1969 	/* Use the recovered stripes as cache to avoid read them from disk again. */
1970 	for (int i = 0; i < data_stripes; i++) {
1971 		stripe = &sctx->raid56_data_stripes[i];
1972 
1973 		raid56_parity_cache_data_pages(rbio, stripe->pages,
1974 				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
1975 	}
1976 	raid56_parity_submit_scrub_rbio(rbio);
1977 	wait_for_completion_io(&io_done);
1978 	ret = blk_status_to_errno(bio->bi_status);
1979 	bio_put(bio);
1980 	btrfs_bio_counter_dec(fs_info);
1981 
1982 	btrfs_release_path(&extent_path);
1983 	btrfs_release_path(&csum_path);
1984 out:
1985 	return ret;
1986 }
1987 
1988 /*
1989  * Scrub one range which can only has simple mirror based profile.
1990  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
1991  *  RAID0/RAID10).
1992  *
1993  * Since we may need to handle a subset of block group, we need @logical_start
1994  * and @logical_length parameter.
1995  */
1996 static int scrub_simple_mirror(struct scrub_ctx *sctx,
1997 			       struct btrfs_block_group *bg,
1998 			       struct map_lookup *map,
1999 			       u64 logical_start, u64 logical_length,
2000 			       struct btrfs_device *device,
2001 			       u64 physical, int mirror_num)
2002 {
2003 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2004 	const u64 logical_end = logical_start + logical_length;
2005 	u64 cur_logical = logical_start;
2006 	int ret;
2007 
2008 	/* The range must be inside the bg */
2009 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2010 
2011 	/* Go through each extent items inside the logical range */
2012 	while (cur_logical < logical_end) {
2013 		u64 found_logical;
2014 		u64 cur_physical = physical + cur_logical - logical_start;
2015 
2016 		/* Canceled? */
2017 		if (atomic_read(&fs_info->scrub_cancel_req) ||
2018 		    atomic_read(&sctx->cancel_req)) {
2019 			ret = -ECANCELED;
2020 			break;
2021 		}
2022 		/* Paused? */
2023 		if (atomic_read(&fs_info->scrub_pause_req)) {
2024 			/* Push queued extents */
2025 			scrub_blocked_if_needed(fs_info);
2026 		}
2027 		/* Block group removed? */
2028 		spin_lock(&bg->lock);
2029 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2030 			spin_unlock(&bg->lock);
2031 			ret = 0;
2032 			break;
2033 		}
2034 		spin_unlock(&bg->lock);
2035 
2036 		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2037 					 cur_logical, logical_end - cur_logical,
2038 					 cur_physical, &found_logical);
2039 		if (ret > 0) {
2040 			/* No more extent, just update the accounting */
2041 			sctx->stat.last_physical = physical + logical_length;
2042 			ret = 0;
2043 			break;
2044 		}
2045 		if (ret < 0)
2046 			break;
2047 
2048 		cur_logical = found_logical + BTRFS_STRIPE_LEN;
2049 
2050 		/* Don't hold CPU for too long time */
2051 		cond_resched();
2052 	}
2053 	return ret;
2054 }
2055 
2056 /* Calculate the full stripe length for simple stripe based profiles */
2057 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
2058 {
2059 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2060 			    BTRFS_BLOCK_GROUP_RAID10));
2061 
2062 	return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2063 }
2064 
2065 /* Get the logical bytenr for the stripe */
2066 static u64 simple_stripe_get_logical(struct map_lookup *map,
2067 				     struct btrfs_block_group *bg,
2068 				     int stripe_index)
2069 {
2070 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2071 			    BTRFS_BLOCK_GROUP_RAID10));
2072 	ASSERT(stripe_index < map->num_stripes);
2073 
2074 	/*
2075 	 * (stripe_index / sub_stripes) gives how many data stripes we need to
2076 	 * skip.
2077 	 */
2078 	return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2079 	       bg->start;
2080 }
2081 
2082 /* Get the mirror number for the stripe */
2083 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
2084 {
2085 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2086 			    BTRFS_BLOCK_GROUP_RAID10));
2087 	ASSERT(stripe_index < map->num_stripes);
2088 
2089 	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2090 	return stripe_index % map->sub_stripes + 1;
2091 }
2092 
2093 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2094 			       struct btrfs_block_group *bg,
2095 			       struct map_lookup *map,
2096 			       struct btrfs_device *device,
2097 			       int stripe_index)
2098 {
2099 	const u64 logical_increment = simple_stripe_full_stripe_len(map);
2100 	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2101 	const u64 orig_physical = map->stripes[stripe_index].physical;
2102 	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2103 	u64 cur_logical = orig_logical;
2104 	u64 cur_physical = orig_physical;
2105 	int ret = 0;
2106 
2107 	while (cur_logical < bg->start + bg->length) {
2108 		/*
2109 		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2110 		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2111 		 * this stripe.
2112 		 */
2113 		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2114 					  BTRFS_STRIPE_LEN, device, cur_physical,
2115 					  mirror_num);
2116 		if (ret)
2117 			return ret;
2118 		/* Skip to next stripe which belongs to the target device */
2119 		cur_logical += logical_increment;
2120 		/* For physical offset, we just go to next stripe */
2121 		cur_physical += BTRFS_STRIPE_LEN;
2122 	}
2123 	return ret;
2124 }
2125 
2126 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2127 					   struct btrfs_block_group *bg,
2128 					   struct extent_map *em,
2129 					   struct btrfs_device *scrub_dev,
2130 					   int stripe_index)
2131 {
2132 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2133 	struct map_lookup *map = em->map_lookup;
2134 	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2135 	const u64 chunk_logical = bg->start;
2136 	int ret;
2137 	int ret2;
2138 	u64 physical = map->stripes[stripe_index].physical;
2139 	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
2140 	const u64 physical_end = physical + dev_stripe_len;
2141 	u64 logical;
2142 	u64 logic_end;
2143 	/* The logical increment after finishing one stripe */
2144 	u64 increment;
2145 	/* Offset inside the chunk */
2146 	u64 offset;
2147 	u64 stripe_logical;
2148 	int stop_loop = 0;
2149 
2150 	/* Extent_path should be released by now. */
2151 	ASSERT(sctx->extent_path.nodes[0] == NULL);
2152 
2153 	scrub_blocked_if_needed(fs_info);
2154 
2155 	if (sctx->is_dev_replace &&
2156 	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2157 		mutex_lock(&sctx->wr_lock);
2158 		sctx->write_pointer = physical;
2159 		mutex_unlock(&sctx->wr_lock);
2160 	}
2161 
2162 	/* Prepare the extra data stripes used by RAID56. */
2163 	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2164 		ASSERT(sctx->raid56_data_stripes == NULL);
2165 
2166 		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2167 						    sizeof(struct scrub_stripe),
2168 						    GFP_KERNEL);
2169 		if (!sctx->raid56_data_stripes) {
2170 			ret = -ENOMEM;
2171 			goto out;
2172 		}
2173 		for (int i = 0; i < nr_data_stripes(map); i++) {
2174 			ret = init_scrub_stripe(fs_info,
2175 						&sctx->raid56_data_stripes[i]);
2176 			if (ret < 0)
2177 				goto out;
2178 			sctx->raid56_data_stripes[i].bg = bg;
2179 			sctx->raid56_data_stripes[i].sctx = sctx;
2180 		}
2181 	}
2182 	/*
2183 	 * There used to be a big double loop to handle all profiles using the
2184 	 * same routine, which grows larger and more gross over time.
2185 	 *
2186 	 * So here we handle each profile differently, so simpler profiles
2187 	 * have simpler scrubbing function.
2188 	 */
2189 	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2190 			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2191 		/*
2192 		 * Above check rules out all complex profile, the remaining
2193 		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2194 		 * mirrored duplication without stripe.
2195 		 *
2196 		 * Only @physical and @mirror_num needs to calculated using
2197 		 * @stripe_index.
2198 		 */
2199 		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2200 				scrub_dev, map->stripes[stripe_index].physical,
2201 				stripe_index + 1);
2202 		offset = 0;
2203 		goto out;
2204 	}
2205 	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2206 		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2207 		offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2208 		goto out;
2209 	}
2210 
2211 	/* Only RAID56 goes through the old code */
2212 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2213 	ret = 0;
2214 
2215 	/* Calculate the logical end of the stripe */
2216 	get_raid56_logic_offset(physical_end, stripe_index,
2217 				map, &logic_end, NULL);
2218 	logic_end += chunk_logical;
2219 
2220 	/* Initialize @offset in case we need to go to out: label */
2221 	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2222 	increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2223 
2224 	/*
2225 	 * Due to the rotation, for RAID56 it's better to iterate each stripe
2226 	 * using their physical offset.
2227 	 */
2228 	while (physical < physical_end) {
2229 		ret = get_raid56_logic_offset(physical, stripe_index, map,
2230 					      &logical, &stripe_logical);
2231 		logical += chunk_logical;
2232 		if (ret) {
2233 			/* it is parity strip */
2234 			stripe_logical += chunk_logical;
2235 			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2236 							 map, stripe_logical);
2237 			if (ret)
2238 				goto out;
2239 			goto next;
2240 		}
2241 
2242 		/*
2243 		 * Now we're at a data stripe, scrub each extents in the range.
2244 		 *
2245 		 * At this stage, if we ignore the repair part, inside each data
2246 		 * stripe it is no different than SINGLE profile.
2247 		 * We can reuse scrub_simple_mirror() here, as the repair part
2248 		 * is still based on @mirror_num.
2249 		 */
2250 		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2251 					  scrub_dev, physical, 1);
2252 		if (ret < 0)
2253 			goto out;
2254 next:
2255 		logical += increment;
2256 		physical += BTRFS_STRIPE_LEN;
2257 		spin_lock(&sctx->stat_lock);
2258 		if (stop_loop)
2259 			sctx->stat.last_physical =
2260 				map->stripes[stripe_index].physical + dev_stripe_len;
2261 		else
2262 			sctx->stat.last_physical = physical;
2263 		spin_unlock(&sctx->stat_lock);
2264 		if (stop_loop)
2265 			break;
2266 	}
2267 out:
2268 	ret2 = flush_scrub_stripes(sctx);
2269 	if (!ret)
2270 		ret = ret2;
2271 	btrfs_release_path(&sctx->extent_path);
2272 	btrfs_release_path(&sctx->csum_path);
2273 
2274 	if (sctx->raid56_data_stripes) {
2275 		for (int i = 0; i < nr_data_stripes(map); i++)
2276 			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2277 		kfree(sctx->raid56_data_stripes);
2278 		sctx->raid56_data_stripes = NULL;
2279 	}
2280 
2281 	if (sctx->is_dev_replace && ret >= 0) {
2282 		int ret2;
2283 
2284 		ret2 = sync_write_pointer_for_zoned(sctx,
2285 				chunk_logical + offset,
2286 				map->stripes[stripe_index].physical,
2287 				physical_end);
2288 		if (ret2)
2289 			ret = ret2;
2290 	}
2291 
2292 	return ret < 0 ? ret : 0;
2293 }
2294 
2295 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2296 					  struct btrfs_block_group *bg,
2297 					  struct btrfs_device *scrub_dev,
2298 					  u64 dev_offset,
2299 					  u64 dev_extent_len)
2300 {
2301 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2302 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2303 	struct map_lookup *map;
2304 	struct extent_map *em;
2305 	int i;
2306 	int ret = 0;
2307 
2308 	read_lock(&map_tree->lock);
2309 	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
2310 	read_unlock(&map_tree->lock);
2311 
2312 	if (!em) {
2313 		/*
2314 		 * Might have been an unused block group deleted by the cleaner
2315 		 * kthread or relocation.
2316 		 */
2317 		spin_lock(&bg->lock);
2318 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2319 			ret = -EINVAL;
2320 		spin_unlock(&bg->lock);
2321 
2322 		return ret;
2323 	}
2324 	if (em->start != bg->start)
2325 		goto out;
2326 	if (em->len < dev_extent_len)
2327 		goto out;
2328 
2329 	map = em->map_lookup;
2330 	for (i = 0; i < map->num_stripes; ++i) {
2331 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2332 		    map->stripes[i].physical == dev_offset) {
2333 			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
2334 			if (ret)
2335 				goto out;
2336 		}
2337 	}
2338 out:
2339 	free_extent_map(em);
2340 
2341 	return ret;
2342 }
2343 
2344 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2345 					  struct btrfs_block_group *cache)
2346 {
2347 	struct btrfs_fs_info *fs_info = cache->fs_info;
2348 	struct btrfs_trans_handle *trans;
2349 
2350 	if (!btrfs_is_zoned(fs_info))
2351 		return 0;
2352 
2353 	btrfs_wait_block_group_reservations(cache);
2354 	btrfs_wait_nocow_writers(cache);
2355 	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2356 
2357 	trans = btrfs_join_transaction(root);
2358 	if (IS_ERR(trans))
2359 		return PTR_ERR(trans);
2360 	return btrfs_commit_transaction(trans);
2361 }
2362 
2363 static noinline_for_stack
2364 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2365 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
2366 {
2367 	struct btrfs_dev_extent *dev_extent = NULL;
2368 	struct btrfs_path *path;
2369 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2370 	struct btrfs_root *root = fs_info->dev_root;
2371 	u64 chunk_offset;
2372 	int ret = 0;
2373 	int ro_set;
2374 	int slot;
2375 	struct extent_buffer *l;
2376 	struct btrfs_key key;
2377 	struct btrfs_key found_key;
2378 	struct btrfs_block_group *cache;
2379 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2380 
2381 	path = btrfs_alloc_path();
2382 	if (!path)
2383 		return -ENOMEM;
2384 
2385 	path->reada = READA_FORWARD;
2386 	path->search_commit_root = 1;
2387 	path->skip_locking = 1;
2388 
2389 	key.objectid = scrub_dev->devid;
2390 	key.offset = 0ull;
2391 	key.type = BTRFS_DEV_EXTENT_KEY;
2392 
2393 	while (1) {
2394 		u64 dev_extent_len;
2395 
2396 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2397 		if (ret < 0)
2398 			break;
2399 		if (ret > 0) {
2400 			if (path->slots[0] >=
2401 			    btrfs_header_nritems(path->nodes[0])) {
2402 				ret = btrfs_next_leaf(root, path);
2403 				if (ret < 0)
2404 					break;
2405 				if (ret > 0) {
2406 					ret = 0;
2407 					break;
2408 				}
2409 			} else {
2410 				ret = 0;
2411 			}
2412 		}
2413 
2414 		l = path->nodes[0];
2415 		slot = path->slots[0];
2416 
2417 		btrfs_item_key_to_cpu(l, &found_key, slot);
2418 
2419 		if (found_key.objectid != scrub_dev->devid)
2420 			break;
2421 
2422 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2423 			break;
2424 
2425 		if (found_key.offset >= end)
2426 			break;
2427 
2428 		if (found_key.offset < key.offset)
2429 			break;
2430 
2431 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2432 		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2433 
2434 		if (found_key.offset + dev_extent_len <= start)
2435 			goto skip;
2436 
2437 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2438 
2439 		/*
2440 		 * get a reference on the corresponding block group to prevent
2441 		 * the chunk from going away while we scrub it
2442 		 */
2443 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2444 
2445 		/* some chunks are removed but not committed to disk yet,
2446 		 * continue scrubbing */
2447 		if (!cache)
2448 			goto skip;
2449 
2450 		ASSERT(cache->start <= chunk_offset);
2451 		/*
2452 		 * We are using the commit root to search for device extents, so
2453 		 * that means we could have found a device extent item from a
2454 		 * block group that was deleted in the current transaction. The
2455 		 * logical start offset of the deleted block group, stored at
2456 		 * @chunk_offset, might be part of the logical address range of
2457 		 * a new block group (which uses different physical extents).
2458 		 * In this case btrfs_lookup_block_group() has returned the new
2459 		 * block group, and its start address is less than @chunk_offset.
2460 		 *
2461 		 * We skip such new block groups, because it's pointless to
2462 		 * process them, as we won't find their extents because we search
2463 		 * for them using the commit root of the extent tree. For a device
2464 		 * replace it's also fine to skip it, we won't miss copying them
2465 		 * to the target device because we have the write duplication
2466 		 * setup through the regular write path (by btrfs_map_block()),
2467 		 * and we have committed a transaction when we started the device
2468 		 * replace, right after setting up the device replace state.
2469 		 */
2470 		if (cache->start < chunk_offset) {
2471 			btrfs_put_block_group(cache);
2472 			goto skip;
2473 		}
2474 
2475 		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2476 			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2477 				btrfs_put_block_group(cache);
2478 				goto skip;
2479 			}
2480 		}
2481 
2482 		/*
2483 		 * Make sure that while we are scrubbing the corresponding block
2484 		 * group doesn't get its logical address and its device extents
2485 		 * reused for another block group, which can possibly be of a
2486 		 * different type and different profile. We do this to prevent
2487 		 * false error detections and crashes due to bogus attempts to
2488 		 * repair extents.
2489 		 */
2490 		spin_lock(&cache->lock);
2491 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2492 			spin_unlock(&cache->lock);
2493 			btrfs_put_block_group(cache);
2494 			goto skip;
2495 		}
2496 		btrfs_freeze_block_group(cache);
2497 		spin_unlock(&cache->lock);
2498 
2499 		/*
2500 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2501 		 * to avoid deadlock caused by:
2502 		 * btrfs_inc_block_group_ro()
2503 		 * -> btrfs_wait_for_commit()
2504 		 * -> btrfs_commit_transaction()
2505 		 * -> btrfs_scrub_pause()
2506 		 */
2507 		scrub_pause_on(fs_info);
2508 
2509 		/*
2510 		 * Don't do chunk preallocation for scrub.
2511 		 *
2512 		 * This is especially important for SYSTEM bgs, or we can hit
2513 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
2514 		 * 1. The only SYSTEM bg is marked RO.
2515 		 *    Since SYSTEM bg is small, that's pretty common.
2516 		 * 2. New SYSTEM bg will be allocated
2517 		 *    Due to regular version will allocate new chunk.
2518 		 * 3. New SYSTEM bg is empty and will get cleaned up
2519 		 *    Before cleanup really happens, it's marked RO again.
2520 		 * 4. Empty SYSTEM bg get scrubbed
2521 		 *    We go back to 2.
2522 		 *
2523 		 * This can easily boost the amount of SYSTEM chunks if cleaner
2524 		 * thread can't be triggered fast enough, and use up all space
2525 		 * of btrfs_super_block::sys_chunk_array
2526 		 *
2527 		 * While for dev replace, we need to try our best to mark block
2528 		 * group RO, to prevent race between:
2529 		 * - Write duplication
2530 		 *   Contains latest data
2531 		 * - Scrub copy
2532 		 *   Contains data from commit tree
2533 		 *
2534 		 * If target block group is not marked RO, nocow writes can
2535 		 * be overwritten by scrub copy, causing data corruption.
2536 		 * So for dev-replace, it's not allowed to continue if a block
2537 		 * group is not RO.
2538 		 */
2539 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2540 		if (!ret && sctx->is_dev_replace) {
2541 			ret = finish_extent_writes_for_zoned(root, cache);
2542 			if (ret) {
2543 				btrfs_dec_block_group_ro(cache);
2544 				scrub_pause_off(fs_info);
2545 				btrfs_put_block_group(cache);
2546 				break;
2547 			}
2548 		}
2549 
2550 		if (ret == 0) {
2551 			ro_set = 1;
2552 		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2553 			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2554 			/*
2555 			 * btrfs_inc_block_group_ro return -ENOSPC when it
2556 			 * failed in creating new chunk for metadata.
2557 			 * It is not a problem for scrub, because
2558 			 * metadata are always cowed, and our scrub paused
2559 			 * commit_transactions.
2560 			 *
2561 			 * For RAID56 chunks, we have to mark them read-only
2562 			 * for scrub, as later we would use our own cache
2563 			 * out of RAID56 realm.
2564 			 * Thus we want the RAID56 bg to be marked RO to
2565 			 * prevent RMW from screwing up out cache.
2566 			 */
2567 			ro_set = 0;
2568 		} else if (ret == -ETXTBSY) {
2569 			btrfs_warn(fs_info,
2570 		   "skipping scrub of block group %llu due to active swapfile",
2571 				   cache->start);
2572 			scrub_pause_off(fs_info);
2573 			ret = 0;
2574 			goto skip_unfreeze;
2575 		} else {
2576 			btrfs_warn(fs_info,
2577 				   "failed setting block group ro: %d", ret);
2578 			btrfs_unfreeze_block_group(cache);
2579 			btrfs_put_block_group(cache);
2580 			scrub_pause_off(fs_info);
2581 			break;
2582 		}
2583 
2584 		/*
2585 		 * Now the target block is marked RO, wait for nocow writes to
2586 		 * finish before dev-replace.
2587 		 * COW is fine, as COW never overwrites extents in commit tree.
2588 		 */
2589 		if (sctx->is_dev_replace) {
2590 			btrfs_wait_nocow_writers(cache);
2591 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2592 					cache->length);
2593 		}
2594 
2595 		scrub_pause_off(fs_info);
2596 		down_write(&dev_replace->rwsem);
2597 		dev_replace->cursor_right = found_key.offset + dev_extent_len;
2598 		dev_replace->cursor_left = found_key.offset;
2599 		dev_replace->item_needs_writeback = 1;
2600 		up_write(&dev_replace->rwsem);
2601 
2602 		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2603 				  dev_extent_len);
2604 		if (sctx->is_dev_replace &&
2605 		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2606 						      cache, found_key.offset))
2607 			ro_set = 0;
2608 
2609 		down_write(&dev_replace->rwsem);
2610 		dev_replace->cursor_left = dev_replace->cursor_right;
2611 		dev_replace->item_needs_writeback = 1;
2612 		up_write(&dev_replace->rwsem);
2613 
2614 		if (ro_set)
2615 			btrfs_dec_block_group_ro(cache);
2616 
2617 		/*
2618 		 * We might have prevented the cleaner kthread from deleting
2619 		 * this block group if it was already unused because we raced
2620 		 * and set it to RO mode first. So add it back to the unused
2621 		 * list, otherwise it might not ever be deleted unless a manual
2622 		 * balance is triggered or it becomes used and unused again.
2623 		 */
2624 		spin_lock(&cache->lock);
2625 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2626 		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
2627 			spin_unlock(&cache->lock);
2628 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2629 				btrfs_discard_queue_work(&fs_info->discard_ctl,
2630 							 cache);
2631 			else
2632 				btrfs_mark_bg_unused(cache);
2633 		} else {
2634 			spin_unlock(&cache->lock);
2635 		}
2636 skip_unfreeze:
2637 		btrfs_unfreeze_block_group(cache);
2638 		btrfs_put_block_group(cache);
2639 		if (ret)
2640 			break;
2641 		if (sctx->is_dev_replace &&
2642 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2643 			ret = -EIO;
2644 			break;
2645 		}
2646 		if (sctx->stat.malloc_errors > 0) {
2647 			ret = -ENOMEM;
2648 			break;
2649 		}
2650 skip:
2651 		key.offset = found_key.offset + dev_extent_len;
2652 		btrfs_release_path(path);
2653 	}
2654 
2655 	btrfs_free_path(path);
2656 
2657 	return ret;
2658 }
2659 
2660 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2661 			   struct page *page, u64 physical, u64 generation)
2662 {
2663 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2664 	struct bio_vec bvec;
2665 	struct bio bio;
2666 	struct btrfs_super_block *sb = page_address(page);
2667 	int ret;
2668 
2669 	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2670 	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2671 	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2672 	ret = submit_bio_wait(&bio);
2673 	bio_uninit(&bio);
2674 
2675 	if (ret < 0)
2676 		return ret;
2677 	ret = btrfs_check_super_csum(fs_info, sb);
2678 	if (ret != 0) {
2679 		btrfs_err_rl(fs_info,
2680 			"super block at physical %llu devid %llu has bad csum",
2681 			physical, dev->devid);
2682 		return -EIO;
2683 	}
2684 	if (btrfs_super_generation(sb) != generation) {
2685 		btrfs_err_rl(fs_info,
2686 "super block at physical %llu devid %llu has bad generation %llu expect %llu",
2687 			     physical, dev->devid,
2688 			     btrfs_super_generation(sb), generation);
2689 		return -EUCLEAN;
2690 	}
2691 
2692 	return btrfs_validate_super(fs_info, sb, -1);
2693 }
2694 
2695 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2696 					   struct btrfs_device *scrub_dev)
2697 {
2698 	int	i;
2699 	u64	bytenr;
2700 	u64	gen;
2701 	int ret = 0;
2702 	struct page *page;
2703 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2704 
2705 	if (BTRFS_FS_ERROR(fs_info))
2706 		return -EROFS;
2707 
2708 	page = alloc_page(GFP_KERNEL);
2709 	if (!page) {
2710 		spin_lock(&sctx->stat_lock);
2711 		sctx->stat.malloc_errors++;
2712 		spin_unlock(&sctx->stat_lock);
2713 		return -ENOMEM;
2714 	}
2715 
2716 	/* Seed devices of a new filesystem has their own generation. */
2717 	if (scrub_dev->fs_devices != fs_info->fs_devices)
2718 		gen = scrub_dev->generation;
2719 	else
2720 		gen = fs_info->last_trans_committed;
2721 
2722 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2723 		bytenr = btrfs_sb_offset(i);
2724 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
2725 		    scrub_dev->commit_total_bytes)
2726 			break;
2727 		if (!btrfs_check_super_location(scrub_dev, bytenr))
2728 			continue;
2729 
2730 		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2731 		if (ret) {
2732 			spin_lock(&sctx->stat_lock);
2733 			sctx->stat.super_errors++;
2734 			spin_unlock(&sctx->stat_lock);
2735 		}
2736 	}
2737 	__free_page(page);
2738 	return 0;
2739 }
2740 
2741 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2742 {
2743 	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2744 					&fs_info->scrub_lock)) {
2745 		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2746 
2747 		fs_info->scrub_workers = NULL;
2748 		mutex_unlock(&fs_info->scrub_lock);
2749 
2750 		if (scrub_workers)
2751 			destroy_workqueue(scrub_workers);
2752 	}
2753 }
2754 
2755 /*
2756  * get a reference count on fs_info->scrub_workers. start worker if necessary
2757  */
2758 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
2759 {
2760 	struct workqueue_struct *scrub_workers = NULL;
2761 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2762 	int max_active = fs_info->thread_pool_size;
2763 	int ret = -ENOMEM;
2764 
2765 	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2766 		return 0;
2767 
2768 	scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2769 	if (!scrub_workers)
2770 		return -ENOMEM;
2771 
2772 	mutex_lock(&fs_info->scrub_lock);
2773 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2774 		ASSERT(fs_info->scrub_workers == NULL);
2775 		fs_info->scrub_workers = scrub_workers;
2776 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
2777 		mutex_unlock(&fs_info->scrub_lock);
2778 		return 0;
2779 	}
2780 	/* Other thread raced in and created the workers for us */
2781 	refcount_inc(&fs_info->scrub_workers_refcnt);
2782 	mutex_unlock(&fs_info->scrub_lock);
2783 
2784 	ret = 0;
2785 
2786 	destroy_workqueue(scrub_workers);
2787 	return ret;
2788 }
2789 
2790 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2791 		    u64 end, struct btrfs_scrub_progress *progress,
2792 		    int readonly, int is_dev_replace)
2793 {
2794 	struct btrfs_dev_lookup_args args = { .devid = devid };
2795 	struct scrub_ctx *sctx;
2796 	int ret;
2797 	struct btrfs_device *dev;
2798 	unsigned int nofs_flag;
2799 	bool need_commit = false;
2800 
2801 	if (btrfs_fs_closing(fs_info))
2802 		return -EAGAIN;
2803 
2804 	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2805 	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2806 
2807 	/*
2808 	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2809 	 * value (max nodesize / min sectorsize), thus nodesize should always
2810 	 * be fine.
2811 	 */
2812 	ASSERT(fs_info->nodesize <=
2813 	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2814 
2815 	/* Allocate outside of device_list_mutex */
2816 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2817 	if (IS_ERR(sctx))
2818 		return PTR_ERR(sctx);
2819 
2820 	ret = scrub_workers_get(fs_info);
2821 	if (ret)
2822 		goto out_free_ctx;
2823 
2824 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2825 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2826 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2827 		     !is_dev_replace)) {
2828 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2829 		ret = -ENODEV;
2830 		goto out;
2831 	}
2832 
2833 	if (!is_dev_replace && !readonly &&
2834 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2835 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2836 		btrfs_err_in_rcu(fs_info,
2837 			"scrub on devid %llu: filesystem on %s is not writable",
2838 				 devid, btrfs_dev_name(dev));
2839 		ret = -EROFS;
2840 		goto out;
2841 	}
2842 
2843 	mutex_lock(&fs_info->scrub_lock);
2844 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2845 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2846 		mutex_unlock(&fs_info->scrub_lock);
2847 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2848 		ret = -EIO;
2849 		goto out;
2850 	}
2851 
2852 	down_read(&fs_info->dev_replace.rwsem);
2853 	if (dev->scrub_ctx ||
2854 	    (!is_dev_replace &&
2855 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2856 		up_read(&fs_info->dev_replace.rwsem);
2857 		mutex_unlock(&fs_info->scrub_lock);
2858 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2859 		ret = -EINPROGRESS;
2860 		goto out;
2861 	}
2862 	up_read(&fs_info->dev_replace.rwsem);
2863 
2864 	sctx->readonly = readonly;
2865 	dev->scrub_ctx = sctx;
2866 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2867 
2868 	/*
2869 	 * checking @scrub_pause_req here, we can avoid
2870 	 * race between committing transaction and scrubbing.
2871 	 */
2872 	__scrub_blocked_if_needed(fs_info);
2873 	atomic_inc(&fs_info->scrubs_running);
2874 	mutex_unlock(&fs_info->scrub_lock);
2875 
2876 	/*
2877 	 * In order to avoid deadlock with reclaim when there is a transaction
2878 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
2879 	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2880 	 * invoked by our callees. The pausing request is done when the
2881 	 * transaction commit starts, and it blocks the transaction until scrub
2882 	 * is paused (done at specific points at scrub_stripe() or right above
2883 	 * before incrementing fs_info->scrubs_running).
2884 	 */
2885 	nofs_flag = memalloc_nofs_save();
2886 	if (!is_dev_replace) {
2887 		u64 old_super_errors;
2888 
2889 		spin_lock(&sctx->stat_lock);
2890 		old_super_errors = sctx->stat.super_errors;
2891 		spin_unlock(&sctx->stat_lock);
2892 
2893 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2894 		/*
2895 		 * by holding device list mutex, we can
2896 		 * kick off writing super in log tree sync.
2897 		 */
2898 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
2899 		ret = scrub_supers(sctx, dev);
2900 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2901 
2902 		spin_lock(&sctx->stat_lock);
2903 		/*
2904 		 * Super block errors found, but we can not commit transaction
2905 		 * at current context, since btrfs_commit_transaction() needs
2906 		 * to pause the current running scrub (hold by ourselves).
2907 		 */
2908 		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
2909 			need_commit = true;
2910 		spin_unlock(&sctx->stat_lock);
2911 	}
2912 
2913 	if (!ret)
2914 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
2915 	memalloc_nofs_restore(nofs_flag);
2916 
2917 	atomic_dec(&fs_info->scrubs_running);
2918 	wake_up(&fs_info->scrub_pause_wait);
2919 
2920 	if (progress)
2921 		memcpy(progress, &sctx->stat, sizeof(*progress));
2922 
2923 	if (!is_dev_replace)
2924 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
2925 			ret ? "not finished" : "finished", devid, ret);
2926 
2927 	mutex_lock(&fs_info->scrub_lock);
2928 	dev->scrub_ctx = NULL;
2929 	mutex_unlock(&fs_info->scrub_lock);
2930 
2931 	scrub_workers_put(fs_info);
2932 	scrub_put_ctx(sctx);
2933 
2934 	/*
2935 	 * We found some super block errors before, now try to force a
2936 	 * transaction commit, as scrub has finished.
2937 	 */
2938 	if (need_commit) {
2939 		struct btrfs_trans_handle *trans;
2940 
2941 		trans = btrfs_start_transaction(fs_info->tree_root, 0);
2942 		if (IS_ERR(trans)) {
2943 			ret = PTR_ERR(trans);
2944 			btrfs_err(fs_info,
2945 	"scrub: failed to start transaction to fix super block errors: %d", ret);
2946 			return ret;
2947 		}
2948 		ret = btrfs_commit_transaction(trans);
2949 		if (ret < 0)
2950 			btrfs_err(fs_info,
2951 	"scrub: failed to commit transaction to fix super block errors: %d", ret);
2952 	}
2953 	return ret;
2954 out:
2955 	scrub_workers_put(fs_info);
2956 out_free_ctx:
2957 	scrub_free_ctx(sctx);
2958 
2959 	return ret;
2960 }
2961 
2962 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
2963 {
2964 	mutex_lock(&fs_info->scrub_lock);
2965 	atomic_inc(&fs_info->scrub_pause_req);
2966 	while (atomic_read(&fs_info->scrubs_paused) !=
2967 	       atomic_read(&fs_info->scrubs_running)) {
2968 		mutex_unlock(&fs_info->scrub_lock);
2969 		wait_event(fs_info->scrub_pause_wait,
2970 			   atomic_read(&fs_info->scrubs_paused) ==
2971 			   atomic_read(&fs_info->scrubs_running));
2972 		mutex_lock(&fs_info->scrub_lock);
2973 	}
2974 	mutex_unlock(&fs_info->scrub_lock);
2975 }
2976 
2977 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
2978 {
2979 	atomic_dec(&fs_info->scrub_pause_req);
2980 	wake_up(&fs_info->scrub_pause_wait);
2981 }
2982 
2983 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2984 {
2985 	mutex_lock(&fs_info->scrub_lock);
2986 	if (!atomic_read(&fs_info->scrubs_running)) {
2987 		mutex_unlock(&fs_info->scrub_lock);
2988 		return -ENOTCONN;
2989 	}
2990 
2991 	atomic_inc(&fs_info->scrub_cancel_req);
2992 	while (atomic_read(&fs_info->scrubs_running)) {
2993 		mutex_unlock(&fs_info->scrub_lock);
2994 		wait_event(fs_info->scrub_pause_wait,
2995 			   atomic_read(&fs_info->scrubs_running) == 0);
2996 		mutex_lock(&fs_info->scrub_lock);
2997 	}
2998 	atomic_dec(&fs_info->scrub_cancel_req);
2999 	mutex_unlock(&fs_info->scrub_lock);
3000 
3001 	return 0;
3002 }
3003 
3004 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3005 {
3006 	struct btrfs_fs_info *fs_info = dev->fs_info;
3007 	struct scrub_ctx *sctx;
3008 
3009 	mutex_lock(&fs_info->scrub_lock);
3010 	sctx = dev->scrub_ctx;
3011 	if (!sctx) {
3012 		mutex_unlock(&fs_info->scrub_lock);
3013 		return -ENOTCONN;
3014 	}
3015 	atomic_inc(&sctx->cancel_req);
3016 	while (dev->scrub_ctx) {
3017 		mutex_unlock(&fs_info->scrub_lock);
3018 		wait_event(fs_info->scrub_pause_wait,
3019 			   dev->scrub_ctx == NULL);
3020 		mutex_lock(&fs_info->scrub_lock);
3021 	}
3022 	mutex_unlock(&fs_info->scrub_lock);
3023 
3024 	return 0;
3025 }
3026 
3027 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3028 			 struct btrfs_scrub_progress *progress)
3029 {
3030 	struct btrfs_dev_lookup_args args = { .devid = devid };
3031 	struct btrfs_device *dev;
3032 	struct scrub_ctx *sctx = NULL;
3033 
3034 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3035 	dev = btrfs_find_device(fs_info->fs_devices, &args);
3036 	if (dev)
3037 		sctx = dev->scrub_ctx;
3038 	if (sctx)
3039 		memcpy(progress, &sctx->stat, sizeof(*progress));
3040 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3041 
3042 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3043 }
3044