xref: /linux/fs/btrfs/scrub.c (revision 32786fdc9506aeba98278c1844d4bfb766863832)
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32 
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45 
46 struct scrub_block;
47 struct scrub_ctx;
48 
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
65 
66 struct scrub_recover {
67 	atomic_t		refs;
68 	struct btrfs_bio	*bbio;
69 	u64			map_length;
70 };
71 
72 struct scrub_page {
73 	struct scrub_block	*sblock;
74 	struct page		*page;
75 	struct btrfs_device	*dev;
76 	struct list_head	list;
77 	u64			flags;  /* extent flags */
78 	u64			generation;
79 	u64			logical;
80 	u64			physical;
81 	u64			physical_for_dev_replace;
82 	atomic_t		refs;
83 	struct {
84 		unsigned int	mirror_num:8;
85 		unsigned int	have_csum:1;
86 		unsigned int	io_error:1;
87 	};
88 	u8			csum[BTRFS_CSUM_SIZE];
89 
90 	struct scrub_recover	*recover;
91 };
92 
93 struct scrub_bio {
94 	int			index;
95 	struct scrub_ctx	*sctx;
96 	struct btrfs_device	*dev;
97 	struct bio		*bio;
98 	int			err;
99 	u64			logical;
100 	u64			physical;
101 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
103 #else
104 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
105 #endif
106 	int			page_count;
107 	int			next_free;
108 	struct btrfs_work	work;
109 };
110 
111 struct scrub_block {
112 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 	int			page_count;
114 	atomic_t		outstanding_pages;
115 	atomic_t		refs; /* free mem on transition to zero */
116 	struct scrub_ctx	*sctx;
117 	struct scrub_parity	*sparity;
118 	struct {
119 		unsigned int	header_error:1;
120 		unsigned int	checksum_error:1;
121 		unsigned int	no_io_error_seen:1;
122 		unsigned int	generation_error:1; /* also sets header_error */
123 
124 		/* The following is for the data used to check parity */
125 		/* It is for the data with checksum */
126 		unsigned int	data_corrected:1;
127 	};
128 	struct btrfs_work	work;
129 };
130 
131 /* Used for the chunks with parity stripe such RAID5/6 */
132 struct scrub_parity {
133 	struct scrub_ctx	*sctx;
134 
135 	struct btrfs_device	*scrub_dev;
136 
137 	u64			logic_start;
138 
139 	u64			logic_end;
140 
141 	int			nsectors;
142 
143 	int			stripe_len;
144 
145 	atomic_t		refs;
146 
147 	struct list_head	spages;
148 
149 	/* Work of parity check and repair */
150 	struct btrfs_work	work;
151 
152 	/* Mark the parity blocks which have data */
153 	unsigned long		*dbitmap;
154 
155 	/*
156 	 * Mark the parity blocks which have data, but errors happen when
157 	 * read data or check data
158 	 */
159 	unsigned long		*ebitmap;
160 
161 	unsigned long		bitmap[0];
162 };
163 
164 struct scrub_wr_ctx {
165 	struct scrub_bio *wr_curr_bio;
166 	struct btrfs_device *tgtdev;
167 	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
168 	atomic_t flush_all_writes;
169 	struct mutex wr_lock;
170 };
171 
172 struct scrub_ctx {
173 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
174 	struct btrfs_fs_info	*fs_info;
175 	int			first_free;
176 	int			curr;
177 	atomic_t		bios_in_flight;
178 	atomic_t		workers_pending;
179 	spinlock_t		list_lock;
180 	wait_queue_head_t	list_wait;
181 	u16			csum_size;
182 	struct list_head	csum_list;
183 	atomic_t		cancel_req;
184 	int			readonly;
185 	int			pages_per_rd_bio;
186 	u32			sectorsize;
187 	u32			nodesize;
188 
189 	int			is_dev_replace;
190 	struct scrub_wr_ctx	wr_ctx;
191 
192 	/*
193 	 * statistics
194 	 */
195 	struct btrfs_scrub_progress stat;
196 	spinlock_t		stat_lock;
197 
198 	/*
199 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
200 	 * decrement bios_in_flight and workers_pending and then do a wakeup
201 	 * on the list_wait wait queue. We must ensure the main scrub task
202 	 * doesn't free the scrub context before or while the workers are
203 	 * doing the wakeup() call.
204 	 */
205 	atomic_t                refs;
206 };
207 
208 struct scrub_fixup_nodatasum {
209 	struct scrub_ctx	*sctx;
210 	struct btrfs_device	*dev;
211 	u64			logical;
212 	struct btrfs_root	*root;
213 	struct btrfs_work	work;
214 	int			mirror_num;
215 };
216 
217 struct scrub_nocow_inode {
218 	u64			inum;
219 	u64			offset;
220 	u64			root;
221 	struct list_head	list;
222 };
223 
224 struct scrub_copy_nocow_ctx {
225 	struct scrub_ctx	*sctx;
226 	u64			logical;
227 	u64			len;
228 	int			mirror_num;
229 	u64			physical_for_dev_replace;
230 	struct list_head	inodes;
231 	struct btrfs_work	work;
232 };
233 
234 struct scrub_warning {
235 	struct btrfs_path	*path;
236 	u64			extent_item_size;
237 	const char		*errstr;
238 	sector_t		sector;
239 	u64			logical;
240 	struct btrfs_device	*dev;
241 };
242 
243 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
244 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
245 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
246 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
247 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
248 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
249 				     struct scrub_block *sblocks_for_recheck);
250 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
251 				struct scrub_block *sblock,
252 				int retry_failed_mirror);
253 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
254 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
255 					     struct scrub_block *sblock_good);
256 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
257 					    struct scrub_block *sblock_good,
258 					    int page_num, int force_write);
259 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
260 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
261 					   int page_num);
262 static int scrub_checksum_data(struct scrub_block *sblock);
263 static int scrub_checksum_tree_block(struct scrub_block *sblock);
264 static int scrub_checksum_super(struct scrub_block *sblock);
265 static void scrub_block_get(struct scrub_block *sblock);
266 static void scrub_block_put(struct scrub_block *sblock);
267 static void scrub_page_get(struct scrub_page *spage);
268 static void scrub_page_put(struct scrub_page *spage);
269 static void scrub_parity_get(struct scrub_parity *sparity);
270 static void scrub_parity_put(struct scrub_parity *sparity);
271 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
272 				    struct scrub_page *spage);
273 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
274 		       u64 physical, struct btrfs_device *dev, u64 flags,
275 		       u64 gen, int mirror_num, u8 *csum, int force,
276 		       u64 physical_for_dev_replace);
277 static void scrub_bio_end_io(struct bio *bio);
278 static void scrub_bio_end_io_worker(struct btrfs_work *work);
279 static void scrub_block_complete(struct scrub_block *sblock);
280 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
281 			       u64 extent_logical, u64 extent_len,
282 			       u64 *extent_physical,
283 			       struct btrfs_device **extent_dev,
284 			       int *extent_mirror_num);
285 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
286 			      struct scrub_wr_ctx *wr_ctx,
287 			      struct btrfs_fs_info *fs_info,
288 			      struct btrfs_device *dev,
289 			      int is_dev_replace);
290 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
291 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
292 				    struct scrub_page *spage);
293 static void scrub_wr_submit(struct scrub_ctx *sctx);
294 static void scrub_wr_bio_end_io(struct bio *bio);
295 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
296 static int write_page_nocow(struct scrub_ctx *sctx,
297 			    u64 physical_for_dev_replace, struct page *page);
298 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
299 				      struct scrub_copy_nocow_ctx *ctx);
300 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
301 			    int mirror_num, u64 physical_for_dev_replace);
302 static void copy_nocow_pages_worker(struct btrfs_work *work);
303 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
304 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
305 static void scrub_put_ctx(struct scrub_ctx *sctx);
306 
307 
308 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
309 {
310 	atomic_inc(&sctx->refs);
311 	atomic_inc(&sctx->bios_in_flight);
312 }
313 
314 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
315 {
316 	atomic_dec(&sctx->bios_in_flight);
317 	wake_up(&sctx->list_wait);
318 	scrub_put_ctx(sctx);
319 }
320 
321 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
322 {
323 	while (atomic_read(&fs_info->scrub_pause_req)) {
324 		mutex_unlock(&fs_info->scrub_lock);
325 		wait_event(fs_info->scrub_pause_wait,
326 		   atomic_read(&fs_info->scrub_pause_req) == 0);
327 		mutex_lock(&fs_info->scrub_lock);
328 	}
329 }
330 
331 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
332 {
333 	atomic_inc(&fs_info->scrubs_paused);
334 	wake_up(&fs_info->scrub_pause_wait);
335 }
336 
337 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
338 {
339 	mutex_lock(&fs_info->scrub_lock);
340 	__scrub_blocked_if_needed(fs_info);
341 	atomic_dec(&fs_info->scrubs_paused);
342 	mutex_unlock(&fs_info->scrub_lock);
343 
344 	wake_up(&fs_info->scrub_pause_wait);
345 }
346 
347 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
348 {
349 	scrub_pause_on(fs_info);
350 	scrub_pause_off(fs_info);
351 }
352 
353 /*
354  * used for workers that require transaction commits (i.e., for the
355  * NOCOW case)
356  */
357 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
358 {
359 	struct btrfs_fs_info *fs_info = sctx->fs_info;
360 
361 	atomic_inc(&sctx->refs);
362 	/*
363 	 * increment scrubs_running to prevent cancel requests from
364 	 * completing as long as a worker is running. we must also
365 	 * increment scrubs_paused to prevent deadlocking on pause
366 	 * requests used for transactions commits (as the worker uses a
367 	 * transaction context). it is safe to regard the worker
368 	 * as paused for all matters practical. effectively, we only
369 	 * avoid cancellation requests from completing.
370 	 */
371 	mutex_lock(&fs_info->scrub_lock);
372 	atomic_inc(&fs_info->scrubs_running);
373 	atomic_inc(&fs_info->scrubs_paused);
374 	mutex_unlock(&fs_info->scrub_lock);
375 
376 	/*
377 	 * check if @scrubs_running=@scrubs_paused condition
378 	 * inside wait_event() is not an atomic operation.
379 	 * which means we may inc/dec @scrub_running/paused
380 	 * at any time. Let's wake up @scrub_pause_wait as
381 	 * much as we can to let commit transaction blocked less.
382 	 */
383 	wake_up(&fs_info->scrub_pause_wait);
384 
385 	atomic_inc(&sctx->workers_pending);
386 }
387 
388 /* used for workers that require transaction commits */
389 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
390 {
391 	struct btrfs_fs_info *fs_info = sctx->fs_info;
392 
393 	/*
394 	 * see scrub_pending_trans_workers_inc() why we're pretending
395 	 * to be paused in the scrub counters
396 	 */
397 	mutex_lock(&fs_info->scrub_lock);
398 	atomic_dec(&fs_info->scrubs_running);
399 	atomic_dec(&fs_info->scrubs_paused);
400 	mutex_unlock(&fs_info->scrub_lock);
401 	atomic_dec(&sctx->workers_pending);
402 	wake_up(&fs_info->scrub_pause_wait);
403 	wake_up(&sctx->list_wait);
404 	scrub_put_ctx(sctx);
405 }
406 
407 static void scrub_free_csums(struct scrub_ctx *sctx)
408 {
409 	while (!list_empty(&sctx->csum_list)) {
410 		struct btrfs_ordered_sum *sum;
411 		sum = list_first_entry(&sctx->csum_list,
412 				       struct btrfs_ordered_sum, list);
413 		list_del(&sum->list);
414 		kfree(sum);
415 	}
416 }
417 
418 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
419 {
420 	int i;
421 
422 	if (!sctx)
423 		return;
424 
425 	scrub_free_wr_ctx(&sctx->wr_ctx);
426 
427 	/* this can happen when scrub is cancelled */
428 	if (sctx->curr != -1) {
429 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
430 
431 		for (i = 0; i < sbio->page_count; i++) {
432 			WARN_ON(!sbio->pagev[i]->page);
433 			scrub_block_put(sbio->pagev[i]->sblock);
434 		}
435 		bio_put(sbio->bio);
436 	}
437 
438 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
439 		struct scrub_bio *sbio = sctx->bios[i];
440 
441 		if (!sbio)
442 			break;
443 		kfree(sbio);
444 	}
445 
446 	scrub_free_csums(sctx);
447 	kfree(sctx);
448 }
449 
450 static void scrub_put_ctx(struct scrub_ctx *sctx)
451 {
452 	if (atomic_dec_and_test(&sctx->refs))
453 		scrub_free_ctx(sctx);
454 }
455 
456 static noinline_for_stack
457 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
458 {
459 	struct scrub_ctx *sctx;
460 	int		i;
461 	struct btrfs_fs_info *fs_info = dev->fs_info;
462 	int ret;
463 
464 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
465 	if (!sctx)
466 		goto nomem;
467 	atomic_set(&sctx->refs, 1);
468 	sctx->is_dev_replace = is_dev_replace;
469 	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
470 	sctx->curr = -1;
471 	sctx->fs_info = dev->fs_info;
472 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
473 		struct scrub_bio *sbio;
474 
475 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
476 		if (!sbio)
477 			goto nomem;
478 		sctx->bios[i] = sbio;
479 
480 		sbio->index = i;
481 		sbio->sctx = sctx;
482 		sbio->page_count = 0;
483 		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
484 				scrub_bio_end_io_worker, NULL, NULL);
485 
486 		if (i != SCRUB_BIOS_PER_SCTX - 1)
487 			sctx->bios[i]->next_free = i + 1;
488 		else
489 			sctx->bios[i]->next_free = -1;
490 	}
491 	sctx->first_free = 0;
492 	sctx->nodesize = fs_info->nodesize;
493 	sctx->sectorsize = fs_info->sectorsize;
494 	atomic_set(&sctx->bios_in_flight, 0);
495 	atomic_set(&sctx->workers_pending, 0);
496 	atomic_set(&sctx->cancel_req, 0);
497 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
498 	INIT_LIST_HEAD(&sctx->csum_list);
499 
500 	spin_lock_init(&sctx->list_lock);
501 	spin_lock_init(&sctx->stat_lock);
502 	init_waitqueue_head(&sctx->list_wait);
503 
504 	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
505 				 fs_info->dev_replace.tgtdev, is_dev_replace);
506 	if (ret) {
507 		scrub_free_ctx(sctx);
508 		return ERR_PTR(ret);
509 	}
510 	return sctx;
511 
512 nomem:
513 	scrub_free_ctx(sctx);
514 	return ERR_PTR(-ENOMEM);
515 }
516 
517 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
518 				     void *warn_ctx)
519 {
520 	u64 isize;
521 	u32 nlink;
522 	int ret;
523 	int i;
524 	struct extent_buffer *eb;
525 	struct btrfs_inode_item *inode_item;
526 	struct scrub_warning *swarn = warn_ctx;
527 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
528 	struct inode_fs_paths *ipath = NULL;
529 	struct btrfs_root *local_root;
530 	struct btrfs_key root_key;
531 	struct btrfs_key key;
532 
533 	root_key.objectid = root;
534 	root_key.type = BTRFS_ROOT_ITEM_KEY;
535 	root_key.offset = (u64)-1;
536 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
537 	if (IS_ERR(local_root)) {
538 		ret = PTR_ERR(local_root);
539 		goto err;
540 	}
541 
542 	/*
543 	 * this makes the path point to (inum INODE_ITEM ioff)
544 	 */
545 	key.objectid = inum;
546 	key.type = BTRFS_INODE_ITEM_KEY;
547 	key.offset = 0;
548 
549 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
550 	if (ret) {
551 		btrfs_release_path(swarn->path);
552 		goto err;
553 	}
554 
555 	eb = swarn->path->nodes[0];
556 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
557 					struct btrfs_inode_item);
558 	isize = btrfs_inode_size(eb, inode_item);
559 	nlink = btrfs_inode_nlink(eb, inode_item);
560 	btrfs_release_path(swarn->path);
561 
562 	ipath = init_ipath(4096, local_root, swarn->path);
563 	if (IS_ERR(ipath)) {
564 		ret = PTR_ERR(ipath);
565 		ipath = NULL;
566 		goto err;
567 	}
568 	ret = paths_from_inode(inum, ipath);
569 
570 	if (ret < 0)
571 		goto err;
572 
573 	/*
574 	 * we deliberately ignore the bit ipath might have been too small to
575 	 * hold all of the paths here
576 	 */
577 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
578 		btrfs_warn_in_rcu(fs_info,
579 				  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
580 				  swarn->errstr, swarn->logical,
581 				  rcu_str_deref(swarn->dev->name),
582 				  (unsigned long long)swarn->sector,
583 				  root, inum, offset,
584 				  min(isize - offset, (u64)PAGE_SIZE), nlink,
585 				  (char *)(unsigned long)ipath->fspath->val[i]);
586 
587 	free_ipath(ipath);
588 	return 0;
589 
590 err:
591 	btrfs_warn_in_rcu(fs_info,
592 			  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
593 			  swarn->errstr, swarn->logical,
594 			  rcu_str_deref(swarn->dev->name),
595 			  (unsigned long long)swarn->sector,
596 			  root, inum, offset, ret);
597 
598 	free_ipath(ipath);
599 	return 0;
600 }
601 
602 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
603 {
604 	struct btrfs_device *dev;
605 	struct btrfs_fs_info *fs_info;
606 	struct btrfs_path *path;
607 	struct btrfs_key found_key;
608 	struct extent_buffer *eb;
609 	struct btrfs_extent_item *ei;
610 	struct scrub_warning swarn;
611 	unsigned long ptr = 0;
612 	u64 extent_item_pos;
613 	u64 flags = 0;
614 	u64 ref_root;
615 	u32 item_size;
616 	u8 ref_level = 0;
617 	int ret;
618 
619 	WARN_ON(sblock->page_count < 1);
620 	dev = sblock->pagev[0]->dev;
621 	fs_info = sblock->sctx->fs_info;
622 
623 	path = btrfs_alloc_path();
624 	if (!path)
625 		return;
626 
627 	swarn.sector = (sblock->pagev[0]->physical) >> 9;
628 	swarn.logical = sblock->pagev[0]->logical;
629 	swarn.errstr = errstr;
630 	swarn.dev = NULL;
631 
632 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
633 				  &flags);
634 	if (ret < 0)
635 		goto out;
636 
637 	extent_item_pos = swarn.logical - found_key.objectid;
638 	swarn.extent_item_size = found_key.offset;
639 
640 	eb = path->nodes[0];
641 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
642 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
643 
644 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
645 		do {
646 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
647 						      item_size, &ref_root,
648 						      &ref_level);
649 			btrfs_warn_in_rcu(fs_info,
650 				"%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu",
651 				errstr, swarn.logical,
652 				rcu_str_deref(dev->name),
653 				(unsigned long long)swarn.sector,
654 				ref_level ? "node" : "leaf",
655 				ret < 0 ? -1 : ref_level,
656 				ret < 0 ? -1 : ref_root);
657 		} while (ret != 1);
658 		btrfs_release_path(path);
659 	} else {
660 		btrfs_release_path(path);
661 		swarn.path = path;
662 		swarn.dev = dev;
663 		iterate_extent_inodes(fs_info, found_key.objectid,
664 					extent_item_pos, 1,
665 					scrub_print_warning_inode, &swarn);
666 	}
667 
668 out:
669 	btrfs_free_path(path);
670 }
671 
672 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
673 {
674 	struct page *page = NULL;
675 	unsigned long index;
676 	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
677 	int ret;
678 	int corrected = 0;
679 	struct btrfs_key key;
680 	struct inode *inode = NULL;
681 	struct btrfs_fs_info *fs_info;
682 	u64 end = offset + PAGE_SIZE - 1;
683 	struct btrfs_root *local_root;
684 	int srcu_index;
685 
686 	key.objectid = root;
687 	key.type = BTRFS_ROOT_ITEM_KEY;
688 	key.offset = (u64)-1;
689 
690 	fs_info = fixup->root->fs_info;
691 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
692 
693 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
694 	if (IS_ERR(local_root)) {
695 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
696 		return PTR_ERR(local_root);
697 	}
698 
699 	key.type = BTRFS_INODE_ITEM_KEY;
700 	key.objectid = inum;
701 	key.offset = 0;
702 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
703 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
704 	if (IS_ERR(inode))
705 		return PTR_ERR(inode);
706 
707 	index = offset >> PAGE_SHIFT;
708 
709 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
710 	if (!page) {
711 		ret = -ENOMEM;
712 		goto out;
713 	}
714 
715 	if (PageUptodate(page)) {
716 		if (PageDirty(page)) {
717 			/*
718 			 * we need to write the data to the defect sector. the
719 			 * data that was in that sector is not in memory,
720 			 * because the page was modified. we must not write the
721 			 * modified page to that sector.
722 			 *
723 			 * TODO: what could be done here: wait for the delalloc
724 			 *       runner to write out that page (might involve
725 			 *       COW) and see whether the sector is still
726 			 *       referenced afterwards.
727 			 *
728 			 * For the meantime, we'll treat this error
729 			 * incorrectable, although there is a chance that a
730 			 * later scrub will find the bad sector again and that
731 			 * there's no dirty page in memory, then.
732 			 */
733 			ret = -EIO;
734 			goto out;
735 		}
736 		ret = repair_io_failure(inode, offset, PAGE_SIZE,
737 					fixup->logical, page,
738 					offset - page_offset(page),
739 					fixup->mirror_num);
740 		unlock_page(page);
741 		corrected = !ret;
742 	} else {
743 		/*
744 		 * we need to get good data first. the general readpage path
745 		 * will call repair_io_failure for us, we just have to make
746 		 * sure we read the bad mirror.
747 		 */
748 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
749 					EXTENT_DAMAGED);
750 		if (ret) {
751 			/* set_extent_bits should give proper error */
752 			WARN_ON(ret > 0);
753 			if (ret > 0)
754 				ret = -EFAULT;
755 			goto out;
756 		}
757 
758 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
759 						btrfs_get_extent,
760 						fixup->mirror_num);
761 		wait_on_page_locked(page);
762 
763 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
764 						end, EXTENT_DAMAGED, 0, NULL);
765 		if (!corrected)
766 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
767 						EXTENT_DAMAGED);
768 	}
769 
770 out:
771 	if (page)
772 		put_page(page);
773 
774 	iput(inode);
775 
776 	if (ret < 0)
777 		return ret;
778 
779 	if (ret == 0 && corrected) {
780 		/*
781 		 * we only need to call readpage for one of the inodes belonging
782 		 * to this extent. so make iterate_extent_inodes stop
783 		 */
784 		return 1;
785 	}
786 
787 	return -EIO;
788 }
789 
790 static void scrub_fixup_nodatasum(struct btrfs_work *work)
791 {
792 	struct btrfs_fs_info *fs_info;
793 	int ret;
794 	struct scrub_fixup_nodatasum *fixup;
795 	struct scrub_ctx *sctx;
796 	struct btrfs_trans_handle *trans = NULL;
797 	struct btrfs_path *path;
798 	int uncorrectable = 0;
799 
800 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
801 	sctx = fixup->sctx;
802 	fs_info = fixup->root->fs_info;
803 
804 	path = btrfs_alloc_path();
805 	if (!path) {
806 		spin_lock(&sctx->stat_lock);
807 		++sctx->stat.malloc_errors;
808 		spin_unlock(&sctx->stat_lock);
809 		uncorrectable = 1;
810 		goto out;
811 	}
812 
813 	trans = btrfs_join_transaction(fixup->root);
814 	if (IS_ERR(trans)) {
815 		uncorrectable = 1;
816 		goto out;
817 	}
818 
819 	/*
820 	 * the idea is to trigger a regular read through the standard path. we
821 	 * read a page from the (failed) logical address by specifying the
822 	 * corresponding copynum of the failed sector. thus, that readpage is
823 	 * expected to fail.
824 	 * that is the point where on-the-fly error correction will kick in
825 	 * (once it's finished) and rewrite the failed sector if a good copy
826 	 * can be found.
827 	 */
828 	ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
829 					  scrub_fixup_readpage, fixup);
830 	if (ret < 0) {
831 		uncorrectable = 1;
832 		goto out;
833 	}
834 	WARN_ON(ret != 1);
835 
836 	spin_lock(&sctx->stat_lock);
837 	++sctx->stat.corrected_errors;
838 	spin_unlock(&sctx->stat_lock);
839 
840 out:
841 	if (trans && !IS_ERR(trans))
842 		btrfs_end_transaction(trans);
843 	if (uncorrectable) {
844 		spin_lock(&sctx->stat_lock);
845 		++sctx->stat.uncorrectable_errors;
846 		spin_unlock(&sctx->stat_lock);
847 		btrfs_dev_replace_stats_inc(
848 			&fs_info->dev_replace.num_uncorrectable_read_errors);
849 		btrfs_err_rl_in_rcu(fs_info,
850 		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
851 			fixup->logical, rcu_str_deref(fixup->dev->name));
852 	}
853 
854 	btrfs_free_path(path);
855 	kfree(fixup);
856 
857 	scrub_pending_trans_workers_dec(sctx);
858 }
859 
860 static inline void scrub_get_recover(struct scrub_recover *recover)
861 {
862 	atomic_inc(&recover->refs);
863 }
864 
865 static inline void scrub_put_recover(struct scrub_recover *recover)
866 {
867 	if (atomic_dec_and_test(&recover->refs)) {
868 		btrfs_put_bbio(recover->bbio);
869 		kfree(recover);
870 	}
871 }
872 
873 /*
874  * scrub_handle_errored_block gets called when either verification of the
875  * pages failed or the bio failed to read, e.g. with EIO. In the latter
876  * case, this function handles all pages in the bio, even though only one
877  * may be bad.
878  * The goal of this function is to repair the errored block by using the
879  * contents of one of the mirrors.
880  */
881 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
882 {
883 	struct scrub_ctx *sctx = sblock_to_check->sctx;
884 	struct btrfs_device *dev;
885 	struct btrfs_fs_info *fs_info;
886 	u64 length;
887 	u64 logical;
888 	unsigned int failed_mirror_index;
889 	unsigned int is_metadata;
890 	unsigned int have_csum;
891 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
892 	struct scrub_block *sblock_bad;
893 	int ret;
894 	int mirror_index;
895 	int page_num;
896 	int success;
897 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
898 				      DEFAULT_RATELIMIT_BURST);
899 
900 	BUG_ON(sblock_to_check->page_count < 1);
901 	fs_info = sctx->fs_info;
902 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
903 		/*
904 		 * if we find an error in a super block, we just report it.
905 		 * They will get written with the next transaction commit
906 		 * anyway
907 		 */
908 		spin_lock(&sctx->stat_lock);
909 		++sctx->stat.super_errors;
910 		spin_unlock(&sctx->stat_lock);
911 		return 0;
912 	}
913 	length = sblock_to_check->page_count * PAGE_SIZE;
914 	logical = sblock_to_check->pagev[0]->logical;
915 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
916 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
917 	is_metadata = !(sblock_to_check->pagev[0]->flags &
918 			BTRFS_EXTENT_FLAG_DATA);
919 	have_csum = sblock_to_check->pagev[0]->have_csum;
920 	dev = sblock_to_check->pagev[0]->dev;
921 
922 	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
923 		sblocks_for_recheck = NULL;
924 		goto nodatasum_case;
925 	}
926 
927 	/*
928 	 * read all mirrors one after the other. This includes to
929 	 * re-read the extent or metadata block that failed (that was
930 	 * the cause that this fixup code is called) another time,
931 	 * page by page this time in order to know which pages
932 	 * caused I/O errors and which ones are good (for all mirrors).
933 	 * It is the goal to handle the situation when more than one
934 	 * mirror contains I/O errors, but the errors do not
935 	 * overlap, i.e. the data can be repaired by selecting the
936 	 * pages from those mirrors without I/O error on the
937 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
938 	 * would be that mirror #1 has an I/O error on the first page,
939 	 * the second page is good, and mirror #2 has an I/O error on
940 	 * the second page, but the first page is good.
941 	 * Then the first page of the first mirror can be repaired by
942 	 * taking the first page of the second mirror, and the
943 	 * second page of the second mirror can be repaired by
944 	 * copying the contents of the 2nd page of the 1st mirror.
945 	 * One more note: if the pages of one mirror contain I/O
946 	 * errors, the checksum cannot be verified. In order to get
947 	 * the best data for repairing, the first attempt is to find
948 	 * a mirror without I/O errors and with a validated checksum.
949 	 * Only if this is not possible, the pages are picked from
950 	 * mirrors with I/O errors without considering the checksum.
951 	 * If the latter is the case, at the end, the checksum of the
952 	 * repaired area is verified in order to correctly maintain
953 	 * the statistics.
954 	 */
955 
956 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
957 				      sizeof(*sblocks_for_recheck), GFP_NOFS);
958 	if (!sblocks_for_recheck) {
959 		spin_lock(&sctx->stat_lock);
960 		sctx->stat.malloc_errors++;
961 		sctx->stat.read_errors++;
962 		sctx->stat.uncorrectable_errors++;
963 		spin_unlock(&sctx->stat_lock);
964 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
965 		goto out;
966 	}
967 
968 	/* setup the context, map the logical blocks and alloc the pages */
969 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
970 	if (ret) {
971 		spin_lock(&sctx->stat_lock);
972 		sctx->stat.read_errors++;
973 		sctx->stat.uncorrectable_errors++;
974 		spin_unlock(&sctx->stat_lock);
975 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
976 		goto out;
977 	}
978 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
979 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
980 
981 	/* build and submit the bios for the failed mirror, check checksums */
982 	scrub_recheck_block(fs_info, sblock_bad, 1);
983 
984 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
985 	    sblock_bad->no_io_error_seen) {
986 		/*
987 		 * the error disappeared after reading page by page, or
988 		 * the area was part of a huge bio and other parts of the
989 		 * bio caused I/O errors, or the block layer merged several
990 		 * read requests into one and the error is caused by a
991 		 * different bio (usually one of the two latter cases is
992 		 * the cause)
993 		 */
994 		spin_lock(&sctx->stat_lock);
995 		sctx->stat.unverified_errors++;
996 		sblock_to_check->data_corrected = 1;
997 		spin_unlock(&sctx->stat_lock);
998 
999 		if (sctx->is_dev_replace)
1000 			scrub_write_block_to_dev_replace(sblock_bad);
1001 		goto out;
1002 	}
1003 
1004 	if (!sblock_bad->no_io_error_seen) {
1005 		spin_lock(&sctx->stat_lock);
1006 		sctx->stat.read_errors++;
1007 		spin_unlock(&sctx->stat_lock);
1008 		if (__ratelimit(&_rs))
1009 			scrub_print_warning("i/o error", sblock_to_check);
1010 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1011 	} else if (sblock_bad->checksum_error) {
1012 		spin_lock(&sctx->stat_lock);
1013 		sctx->stat.csum_errors++;
1014 		spin_unlock(&sctx->stat_lock);
1015 		if (__ratelimit(&_rs))
1016 			scrub_print_warning("checksum error", sblock_to_check);
1017 		btrfs_dev_stat_inc_and_print(dev,
1018 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1019 	} else if (sblock_bad->header_error) {
1020 		spin_lock(&sctx->stat_lock);
1021 		sctx->stat.verify_errors++;
1022 		spin_unlock(&sctx->stat_lock);
1023 		if (__ratelimit(&_rs))
1024 			scrub_print_warning("checksum/header error",
1025 					    sblock_to_check);
1026 		if (sblock_bad->generation_error)
1027 			btrfs_dev_stat_inc_and_print(dev,
1028 				BTRFS_DEV_STAT_GENERATION_ERRS);
1029 		else
1030 			btrfs_dev_stat_inc_and_print(dev,
1031 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1032 	}
1033 
1034 	if (sctx->readonly) {
1035 		ASSERT(!sctx->is_dev_replace);
1036 		goto out;
1037 	}
1038 
1039 	if (!is_metadata && !have_csum) {
1040 		struct scrub_fixup_nodatasum *fixup_nodatasum;
1041 
1042 		WARN_ON(sctx->is_dev_replace);
1043 
1044 nodatasum_case:
1045 
1046 		/*
1047 		 * !is_metadata and !have_csum, this means that the data
1048 		 * might not be COWed, that it might be modified
1049 		 * concurrently. The general strategy to work on the
1050 		 * commit root does not help in the case when COW is not
1051 		 * used.
1052 		 */
1053 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1054 		if (!fixup_nodatasum)
1055 			goto did_not_correct_error;
1056 		fixup_nodatasum->sctx = sctx;
1057 		fixup_nodatasum->dev = dev;
1058 		fixup_nodatasum->logical = logical;
1059 		fixup_nodatasum->root = fs_info->extent_root;
1060 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1061 		scrub_pending_trans_workers_inc(sctx);
1062 		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1063 				scrub_fixup_nodatasum, NULL, NULL);
1064 		btrfs_queue_work(fs_info->scrub_workers,
1065 				 &fixup_nodatasum->work);
1066 		goto out;
1067 	}
1068 
1069 	/*
1070 	 * now build and submit the bios for the other mirrors, check
1071 	 * checksums.
1072 	 * First try to pick the mirror which is completely without I/O
1073 	 * errors and also does not have a checksum error.
1074 	 * If one is found, and if a checksum is present, the full block
1075 	 * that is known to contain an error is rewritten. Afterwards
1076 	 * the block is known to be corrected.
1077 	 * If a mirror is found which is completely correct, and no
1078 	 * checksum is present, only those pages are rewritten that had
1079 	 * an I/O error in the block to be repaired, since it cannot be
1080 	 * determined, which copy of the other pages is better (and it
1081 	 * could happen otherwise that a correct page would be
1082 	 * overwritten by a bad one).
1083 	 */
1084 	for (mirror_index = 0;
1085 	     mirror_index < BTRFS_MAX_MIRRORS &&
1086 	     sblocks_for_recheck[mirror_index].page_count > 0;
1087 	     mirror_index++) {
1088 		struct scrub_block *sblock_other;
1089 
1090 		if (mirror_index == failed_mirror_index)
1091 			continue;
1092 		sblock_other = sblocks_for_recheck + mirror_index;
1093 
1094 		/* build and submit the bios, check checksums */
1095 		scrub_recheck_block(fs_info, sblock_other, 0);
1096 
1097 		if (!sblock_other->header_error &&
1098 		    !sblock_other->checksum_error &&
1099 		    sblock_other->no_io_error_seen) {
1100 			if (sctx->is_dev_replace) {
1101 				scrub_write_block_to_dev_replace(sblock_other);
1102 				goto corrected_error;
1103 			} else {
1104 				ret = scrub_repair_block_from_good_copy(
1105 						sblock_bad, sblock_other);
1106 				if (!ret)
1107 					goto corrected_error;
1108 			}
1109 		}
1110 	}
1111 
1112 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1113 		goto did_not_correct_error;
1114 
1115 	/*
1116 	 * In case of I/O errors in the area that is supposed to be
1117 	 * repaired, continue by picking good copies of those pages.
1118 	 * Select the good pages from mirrors to rewrite bad pages from
1119 	 * the area to fix. Afterwards verify the checksum of the block
1120 	 * that is supposed to be repaired. This verification step is
1121 	 * only done for the purpose of statistic counting and for the
1122 	 * final scrub report, whether errors remain.
1123 	 * A perfect algorithm could make use of the checksum and try
1124 	 * all possible combinations of pages from the different mirrors
1125 	 * until the checksum verification succeeds. For example, when
1126 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1127 	 * of mirror #2 is readable but the final checksum test fails,
1128 	 * then the 2nd page of mirror #3 could be tried, whether now
1129 	 * the final checksum succeeds. But this would be a rare
1130 	 * exception and is therefore not implemented. At least it is
1131 	 * avoided that the good copy is overwritten.
1132 	 * A more useful improvement would be to pick the sectors
1133 	 * without I/O error based on sector sizes (512 bytes on legacy
1134 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1135 	 * mirror could be repaired by taking 512 byte of a different
1136 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1137 	 * area are unreadable.
1138 	 */
1139 	success = 1;
1140 	for (page_num = 0; page_num < sblock_bad->page_count;
1141 	     page_num++) {
1142 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1143 		struct scrub_block *sblock_other = NULL;
1144 
1145 		/* skip no-io-error page in scrub */
1146 		if (!page_bad->io_error && !sctx->is_dev_replace)
1147 			continue;
1148 
1149 		/* try to find no-io-error page in mirrors */
1150 		if (page_bad->io_error) {
1151 			for (mirror_index = 0;
1152 			     mirror_index < BTRFS_MAX_MIRRORS &&
1153 			     sblocks_for_recheck[mirror_index].page_count > 0;
1154 			     mirror_index++) {
1155 				if (!sblocks_for_recheck[mirror_index].
1156 				    pagev[page_num]->io_error) {
1157 					sblock_other = sblocks_for_recheck +
1158 						       mirror_index;
1159 					break;
1160 				}
1161 			}
1162 			if (!sblock_other)
1163 				success = 0;
1164 		}
1165 
1166 		if (sctx->is_dev_replace) {
1167 			/*
1168 			 * did not find a mirror to fetch the page
1169 			 * from. scrub_write_page_to_dev_replace()
1170 			 * handles this case (page->io_error), by
1171 			 * filling the block with zeros before
1172 			 * submitting the write request
1173 			 */
1174 			if (!sblock_other)
1175 				sblock_other = sblock_bad;
1176 
1177 			if (scrub_write_page_to_dev_replace(sblock_other,
1178 							    page_num) != 0) {
1179 				btrfs_dev_replace_stats_inc(
1180 					&fs_info->dev_replace.num_write_errors);
1181 				success = 0;
1182 			}
1183 		} else if (sblock_other) {
1184 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1185 							       sblock_other,
1186 							       page_num, 0);
1187 			if (0 == ret)
1188 				page_bad->io_error = 0;
1189 			else
1190 				success = 0;
1191 		}
1192 	}
1193 
1194 	if (success && !sctx->is_dev_replace) {
1195 		if (is_metadata || have_csum) {
1196 			/*
1197 			 * need to verify the checksum now that all
1198 			 * sectors on disk are repaired (the write
1199 			 * request for data to be repaired is on its way).
1200 			 * Just be lazy and use scrub_recheck_block()
1201 			 * which re-reads the data before the checksum
1202 			 * is verified, but most likely the data comes out
1203 			 * of the page cache.
1204 			 */
1205 			scrub_recheck_block(fs_info, sblock_bad, 1);
1206 			if (!sblock_bad->header_error &&
1207 			    !sblock_bad->checksum_error &&
1208 			    sblock_bad->no_io_error_seen)
1209 				goto corrected_error;
1210 			else
1211 				goto did_not_correct_error;
1212 		} else {
1213 corrected_error:
1214 			spin_lock(&sctx->stat_lock);
1215 			sctx->stat.corrected_errors++;
1216 			sblock_to_check->data_corrected = 1;
1217 			spin_unlock(&sctx->stat_lock);
1218 			btrfs_err_rl_in_rcu(fs_info,
1219 				"fixed up error at logical %llu on dev %s",
1220 				logical, rcu_str_deref(dev->name));
1221 		}
1222 	} else {
1223 did_not_correct_error:
1224 		spin_lock(&sctx->stat_lock);
1225 		sctx->stat.uncorrectable_errors++;
1226 		spin_unlock(&sctx->stat_lock);
1227 		btrfs_err_rl_in_rcu(fs_info,
1228 			"unable to fixup (regular) error at logical %llu on dev %s",
1229 			logical, rcu_str_deref(dev->name));
1230 	}
1231 
1232 out:
1233 	if (sblocks_for_recheck) {
1234 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1235 		     mirror_index++) {
1236 			struct scrub_block *sblock = sblocks_for_recheck +
1237 						     mirror_index;
1238 			struct scrub_recover *recover;
1239 			int page_index;
1240 
1241 			for (page_index = 0; page_index < sblock->page_count;
1242 			     page_index++) {
1243 				sblock->pagev[page_index]->sblock = NULL;
1244 				recover = sblock->pagev[page_index]->recover;
1245 				if (recover) {
1246 					scrub_put_recover(recover);
1247 					sblock->pagev[page_index]->recover =
1248 									NULL;
1249 				}
1250 				scrub_page_put(sblock->pagev[page_index]);
1251 			}
1252 		}
1253 		kfree(sblocks_for_recheck);
1254 	}
1255 
1256 	return 0;
1257 }
1258 
1259 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1260 {
1261 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1262 		return 2;
1263 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1264 		return 3;
1265 	else
1266 		return (int)bbio->num_stripes;
1267 }
1268 
1269 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1270 						 u64 *raid_map,
1271 						 u64 mapped_length,
1272 						 int nstripes, int mirror,
1273 						 int *stripe_index,
1274 						 u64 *stripe_offset)
1275 {
1276 	int i;
1277 
1278 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1279 		/* RAID5/6 */
1280 		for (i = 0; i < nstripes; i++) {
1281 			if (raid_map[i] == RAID6_Q_STRIPE ||
1282 			    raid_map[i] == RAID5_P_STRIPE)
1283 				continue;
1284 
1285 			if (logical >= raid_map[i] &&
1286 			    logical < raid_map[i] + mapped_length)
1287 				break;
1288 		}
1289 
1290 		*stripe_index = i;
1291 		*stripe_offset = logical - raid_map[i];
1292 	} else {
1293 		/* The other RAID type */
1294 		*stripe_index = mirror;
1295 		*stripe_offset = 0;
1296 	}
1297 }
1298 
1299 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1300 				     struct scrub_block *sblocks_for_recheck)
1301 {
1302 	struct scrub_ctx *sctx = original_sblock->sctx;
1303 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1304 	u64 length = original_sblock->page_count * PAGE_SIZE;
1305 	u64 logical = original_sblock->pagev[0]->logical;
1306 	u64 generation = original_sblock->pagev[0]->generation;
1307 	u64 flags = original_sblock->pagev[0]->flags;
1308 	u64 have_csum = original_sblock->pagev[0]->have_csum;
1309 	struct scrub_recover *recover;
1310 	struct btrfs_bio *bbio;
1311 	u64 sublen;
1312 	u64 mapped_length;
1313 	u64 stripe_offset;
1314 	int stripe_index;
1315 	int page_index = 0;
1316 	int mirror_index;
1317 	int nmirrors;
1318 	int ret;
1319 
1320 	/*
1321 	 * note: the two members refs and outstanding_pages
1322 	 * are not used (and not set) in the blocks that are used for
1323 	 * the recheck procedure
1324 	 */
1325 
1326 	while (length > 0) {
1327 		sublen = min_t(u64, length, PAGE_SIZE);
1328 		mapped_length = sublen;
1329 		bbio = NULL;
1330 
1331 		/*
1332 		 * with a length of PAGE_SIZE, each returned stripe
1333 		 * represents one mirror
1334 		 */
1335 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1336 				logical, &mapped_length, &bbio, 0, 1);
1337 		if (ret || !bbio || mapped_length < sublen) {
1338 			btrfs_put_bbio(bbio);
1339 			return -EIO;
1340 		}
1341 
1342 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1343 		if (!recover) {
1344 			btrfs_put_bbio(bbio);
1345 			return -ENOMEM;
1346 		}
1347 
1348 		atomic_set(&recover->refs, 1);
1349 		recover->bbio = bbio;
1350 		recover->map_length = mapped_length;
1351 
1352 		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1353 
1354 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1355 
1356 		for (mirror_index = 0; mirror_index < nmirrors;
1357 		     mirror_index++) {
1358 			struct scrub_block *sblock;
1359 			struct scrub_page *page;
1360 
1361 			sblock = sblocks_for_recheck + mirror_index;
1362 			sblock->sctx = sctx;
1363 
1364 			page = kzalloc(sizeof(*page), GFP_NOFS);
1365 			if (!page) {
1366 leave_nomem:
1367 				spin_lock(&sctx->stat_lock);
1368 				sctx->stat.malloc_errors++;
1369 				spin_unlock(&sctx->stat_lock);
1370 				scrub_put_recover(recover);
1371 				return -ENOMEM;
1372 			}
1373 			scrub_page_get(page);
1374 			sblock->pagev[page_index] = page;
1375 			page->sblock = sblock;
1376 			page->flags = flags;
1377 			page->generation = generation;
1378 			page->logical = logical;
1379 			page->have_csum = have_csum;
1380 			if (have_csum)
1381 				memcpy(page->csum,
1382 				       original_sblock->pagev[0]->csum,
1383 				       sctx->csum_size);
1384 
1385 			scrub_stripe_index_and_offset(logical,
1386 						      bbio->map_type,
1387 						      bbio->raid_map,
1388 						      mapped_length,
1389 						      bbio->num_stripes -
1390 						      bbio->num_tgtdevs,
1391 						      mirror_index,
1392 						      &stripe_index,
1393 						      &stripe_offset);
1394 			page->physical = bbio->stripes[stripe_index].physical +
1395 					 stripe_offset;
1396 			page->dev = bbio->stripes[stripe_index].dev;
1397 
1398 			BUG_ON(page_index >= original_sblock->page_count);
1399 			page->physical_for_dev_replace =
1400 				original_sblock->pagev[page_index]->
1401 				physical_for_dev_replace;
1402 			/* for missing devices, dev->bdev is NULL */
1403 			page->mirror_num = mirror_index + 1;
1404 			sblock->page_count++;
1405 			page->page = alloc_page(GFP_NOFS);
1406 			if (!page->page)
1407 				goto leave_nomem;
1408 
1409 			scrub_get_recover(recover);
1410 			page->recover = recover;
1411 		}
1412 		scrub_put_recover(recover);
1413 		length -= sublen;
1414 		logical += sublen;
1415 		page_index++;
1416 	}
1417 
1418 	return 0;
1419 }
1420 
1421 struct scrub_bio_ret {
1422 	struct completion event;
1423 	int error;
1424 };
1425 
1426 static void scrub_bio_wait_endio(struct bio *bio)
1427 {
1428 	struct scrub_bio_ret *ret = bio->bi_private;
1429 
1430 	ret->error = bio->bi_error;
1431 	complete(&ret->event);
1432 }
1433 
1434 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1435 {
1436 	return page->recover &&
1437 	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1438 }
1439 
1440 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1441 					struct bio *bio,
1442 					struct scrub_page *page)
1443 {
1444 	struct scrub_bio_ret done;
1445 	int ret;
1446 
1447 	init_completion(&done.event);
1448 	done.error = 0;
1449 	bio->bi_iter.bi_sector = page->logical >> 9;
1450 	bio->bi_private = &done;
1451 	bio->bi_end_io = scrub_bio_wait_endio;
1452 
1453 	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1454 				    page->recover->map_length,
1455 				    page->mirror_num, 0);
1456 	if (ret)
1457 		return ret;
1458 
1459 	wait_for_completion(&done.event);
1460 	if (done.error)
1461 		return -EIO;
1462 
1463 	return 0;
1464 }
1465 
1466 /*
1467  * this function will check the on disk data for checksum errors, header
1468  * errors and read I/O errors. If any I/O errors happen, the exact pages
1469  * which are errored are marked as being bad. The goal is to enable scrub
1470  * to take those pages that are not errored from all the mirrors so that
1471  * the pages that are errored in the just handled mirror can be repaired.
1472  */
1473 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1474 				struct scrub_block *sblock,
1475 				int retry_failed_mirror)
1476 {
1477 	int page_num;
1478 
1479 	sblock->no_io_error_seen = 1;
1480 
1481 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1482 		struct bio *bio;
1483 		struct scrub_page *page = sblock->pagev[page_num];
1484 
1485 		if (page->dev->bdev == NULL) {
1486 			page->io_error = 1;
1487 			sblock->no_io_error_seen = 0;
1488 			continue;
1489 		}
1490 
1491 		WARN_ON(!page->page);
1492 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1493 		if (!bio) {
1494 			page->io_error = 1;
1495 			sblock->no_io_error_seen = 0;
1496 			continue;
1497 		}
1498 		bio->bi_bdev = page->dev->bdev;
1499 
1500 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1501 		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1502 			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
1503 				sblock->no_io_error_seen = 0;
1504 		} else {
1505 			bio->bi_iter.bi_sector = page->physical >> 9;
1506 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
1507 
1508 			if (btrfsic_submit_bio_wait(bio))
1509 				sblock->no_io_error_seen = 0;
1510 		}
1511 
1512 		bio_put(bio);
1513 	}
1514 
1515 	if (sblock->no_io_error_seen)
1516 		scrub_recheck_block_checksum(sblock);
1517 }
1518 
1519 static inline int scrub_check_fsid(u8 fsid[],
1520 				   struct scrub_page *spage)
1521 {
1522 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1523 	int ret;
1524 
1525 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1526 	return !ret;
1527 }
1528 
1529 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1530 {
1531 	sblock->header_error = 0;
1532 	sblock->checksum_error = 0;
1533 	sblock->generation_error = 0;
1534 
1535 	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1536 		scrub_checksum_data(sblock);
1537 	else
1538 		scrub_checksum_tree_block(sblock);
1539 }
1540 
1541 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1542 					     struct scrub_block *sblock_good)
1543 {
1544 	int page_num;
1545 	int ret = 0;
1546 
1547 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1548 		int ret_sub;
1549 
1550 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1551 							   sblock_good,
1552 							   page_num, 1);
1553 		if (ret_sub)
1554 			ret = ret_sub;
1555 	}
1556 
1557 	return ret;
1558 }
1559 
1560 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1561 					    struct scrub_block *sblock_good,
1562 					    int page_num, int force_write)
1563 {
1564 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1565 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1566 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1567 
1568 	BUG_ON(page_bad->page == NULL);
1569 	BUG_ON(page_good->page == NULL);
1570 	if (force_write || sblock_bad->header_error ||
1571 	    sblock_bad->checksum_error || page_bad->io_error) {
1572 		struct bio *bio;
1573 		int ret;
1574 
1575 		if (!page_bad->dev->bdev) {
1576 			btrfs_warn_rl(fs_info,
1577 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1578 			return -EIO;
1579 		}
1580 
1581 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1582 		if (!bio)
1583 			return -EIO;
1584 		bio->bi_bdev = page_bad->dev->bdev;
1585 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1586 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1587 
1588 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1589 		if (PAGE_SIZE != ret) {
1590 			bio_put(bio);
1591 			return -EIO;
1592 		}
1593 
1594 		if (btrfsic_submit_bio_wait(bio)) {
1595 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1596 				BTRFS_DEV_STAT_WRITE_ERRS);
1597 			btrfs_dev_replace_stats_inc(
1598 				&fs_info->dev_replace.num_write_errors);
1599 			bio_put(bio);
1600 			return -EIO;
1601 		}
1602 		bio_put(bio);
1603 	}
1604 
1605 	return 0;
1606 }
1607 
1608 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1609 {
1610 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1611 	int page_num;
1612 
1613 	/*
1614 	 * This block is used for the check of the parity on the source device,
1615 	 * so the data needn't be written into the destination device.
1616 	 */
1617 	if (sblock->sparity)
1618 		return;
1619 
1620 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1621 		int ret;
1622 
1623 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1624 		if (ret)
1625 			btrfs_dev_replace_stats_inc(
1626 				&fs_info->dev_replace.num_write_errors);
1627 	}
1628 }
1629 
1630 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1631 					   int page_num)
1632 {
1633 	struct scrub_page *spage = sblock->pagev[page_num];
1634 
1635 	BUG_ON(spage->page == NULL);
1636 	if (spage->io_error) {
1637 		void *mapped_buffer = kmap_atomic(spage->page);
1638 
1639 		memset(mapped_buffer, 0, PAGE_SIZE);
1640 		flush_dcache_page(spage->page);
1641 		kunmap_atomic(mapped_buffer);
1642 	}
1643 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1644 }
1645 
1646 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1647 				    struct scrub_page *spage)
1648 {
1649 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1650 	struct scrub_bio *sbio;
1651 	int ret;
1652 
1653 	mutex_lock(&wr_ctx->wr_lock);
1654 again:
1655 	if (!wr_ctx->wr_curr_bio) {
1656 		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1657 					      GFP_KERNEL);
1658 		if (!wr_ctx->wr_curr_bio) {
1659 			mutex_unlock(&wr_ctx->wr_lock);
1660 			return -ENOMEM;
1661 		}
1662 		wr_ctx->wr_curr_bio->sctx = sctx;
1663 		wr_ctx->wr_curr_bio->page_count = 0;
1664 	}
1665 	sbio = wr_ctx->wr_curr_bio;
1666 	if (sbio->page_count == 0) {
1667 		struct bio *bio;
1668 
1669 		sbio->physical = spage->physical_for_dev_replace;
1670 		sbio->logical = spage->logical;
1671 		sbio->dev = wr_ctx->tgtdev;
1672 		bio = sbio->bio;
1673 		if (!bio) {
1674 			bio = btrfs_io_bio_alloc(GFP_KERNEL,
1675 					wr_ctx->pages_per_wr_bio);
1676 			if (!bio) {
1677 				mutex_unlock(&wr_ctx->wr_lock);
1678 				return -ENOMEM;
1679 			}
1680 			sbio->bio = bio;
1681 		}
1682 
1683 		bio->bi_private = sbio;
1684 		bio->bi_end_io = scrub_wr_bio_end_io;
1685 		bio->bi_bdev = sbio->dev->bdev;
1686 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1687 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1688 		sbio->err = 0;
1689 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1690 		   spage->physical_for_dev_replace ||
1691 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1692 		   spage->logical) {
1693 		scrub_wr_submit(sctx);
1694 		goto again;
1695 	}
1696 
1697 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1698 	if (ret != PAGE_SIZE) {
1699 		if (sbio->page_count < 1) {
1700 			bio_put(sbio->bio);
1701 			sbio->bio = NULL;
1702 			mutex_unlock(&wr_ctx->wr_lock);
1703 			return -EIO;
1704 		}
1705 		scrub_wr_submit(sctx);
1706 		goto again;
1707 	}
1708 
1709 	sbio->pagev[sbio->page_count] = spage;
1710 	scrub_page_get(spage);
1711 	sbio->page_count++;
1712 	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1713 		scrub_wr_submit(sctx);
1714 	mutex_unlock(&wr_ctx->wr_lock);
1715 
1716 	return 0;
1717 }
1718 
1719 static void scrub_wr_submit(struct scrub_ctx *sctx)
1720 {
1721 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1722 	struct scrub_bio *sbio;
1723 
1724 	if (!wr_ctx->wr_curr_bio)
1725 		return;
1726 
1727 	sbio = wr_ctx->wr_curr_bio;
1728 	wr_ctx->wr_curr_bio = NULL;
1729 	WARN_ON(!sbio->bio->bi_bdev);
1730 	scrub_pending_bio_inc(sctx);
1731 	/* process all writes in a single worker thread. Then the block layer
1732 	 * orders the requests before sending them to the driver which
1733 	 * doubled the write performance on spinning disks when measured
1734 	 * with Linux 3.5 */
1735 	btrfsic_submit_bio(sbio->bio);
1736 }
1737 
1738 static void scrub_wr_bio_end_io(struct bio *bio)
1739 {
1740 	struct scrub_bio *sbio = bio->bi_private;
1741 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1742 
1743 	sbio->err = bio->bi_error;
1744 	sbio->bio = bio;
1745 
1746 	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1747 			 scrub_wr_bio_end_io_worker, NULL, NULL);
1748 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1749 }
1750 
1751 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1752 {
1753 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1754 	struct scrub_ctx *sctx = sbio->sctx;
1755 	int i;
1756 
1757 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1758 	if (sbio->err) {
1759 		struct btrfs_dev_replace *dev_replace =
1760 			&sbio->sctx->fs_info->dev_replace;
1761 
1762 		for (i = 0; i < sbio->page_count; i++) {
1763 			struct scrub_page *spage = sbio->pagev[i];
1764 
1765 			spage->io_error = 1;
1766 			btrfs_dev_replace_stats_inc(&dev_replace->
1767 						    num_write_errors);
1768 		}
1769 	}
1770 
1771 	for (i = 0; i < sbio->page_count; i++)
1772 		scrub_page_put(sbio->pagev[i]);
1773 
1774 	bio_put(sbio->bio);
1775 	kfree(sbio);
1776 	scrub_pending_bio_dec(sctx);
1777 }
1778 
1779 static int scrub_checksum(struct scrub_block *sblock)
1780 {
1781 	u64 flags;
1782 	int ret;
1783 
1784 	/*
1785 	 * No need to initialize these stats currently,
1786 	 * because this function only use return value
1787 	 * instead of these stats value.
1788 	 *
1789 	 * Todo:
1790 	 * always use stats
1791 	 */
1792 	sblock->header_error = 0;
1793 	sblock->generation_error = 0;
1794 	sblock->checksum_error = 0;
1795 
1796 	WARN_ON(sblock->page_count < 1);
1797 	flags = sblock->pagev[0]->flags;
1798 	ret = 0;
1799 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1800 		ret = scrub_checksum_data(sblock);
1801 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1802 		ret = scrub_checksum_tree_block(sblock);
1803 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1804 		(void)scrub_checksum_super(sblock);
1805 	else
1806 		WARN_ON(1);
1807 	if (ret)
1808 		scrub_handle_errored_block(sblock);
1809 
1810 	return ret;
1811 }
1812 
1813 static int scrub_checksum_data(struct scrub_block *sblock)
1814 {
1815 	struct scrub_ctx *sctx = sblock->sctx;
1816 	u8 csum[BTRFS_CSUM_SIZE];
1817 	u8 *on_disk_csum;
1818 	struct page *page;
1819 	void *buffer;
1820 	u32 crc = ~(u32)0;
1821 	u64 len;
1822 	int index;
1823 
1824 	BUG_ON(sblock->page_count < 1);
1825 	if (!sblock->pagev[0]->have_csum)
1826 		return 0;
1827 
1828 	on_disk_csum = sblock->pagev[0]->csum;
1829 	page = sblock->pagev[0]->page;
1830 	buffer = kmap_atomic(page);
1831 
1832 	len = sctx->sectorsize;
1833 	index = 0;
1834 	for (;;) {
1835 		u64 l = min_t(u64, len, PAGE_SIZE);
1836 
1837 		crc = btrfs_csum_data(buffer, crc, l);
1838 		kunmap_atomic(buffer);
1839 		len -= l;
1840 		if (len == 0)
1841 			break;
1842 		index++;
1843 		BUG_ON(index >= sblock->page_count);
1844 		BUG_ON(!sblock->pagev[index]->page);
1845 		page = sblock->pagev[index]->page;
1846 		buffer = kmap_atomic(page);
1847 	}
1848 
1849 	btrfs_csum_final(crc, csum);
1850 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1851 		sblock->checksum_error = 1;
1852 
1853 	return sblock->checksum_error;
1854 }
1855 
1856 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1857 {
1858 	struct scrub_ctx *sctx = sblock->sctx;
1859 	struct btrfs_header *h;
1860 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1861 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1862 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1863 	struct page *page;
1864 	void *mapped_buffer;
1865 	u64 mapped_size;
1866 	void *p;
1867 	u32 crc = ~(u32)0;
1868 	u64 len;
1869 	int index;
1870 
1871 	BUG_ON(sblock->page_count < 1);
1872 	page = sblock->pagev[0]->page;
1873 	mapped_buffer = kmap_atomic(page);
1874 	h = (struct btrfs_header *)mapped_buffer;
1875 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1876 
1877 	/*
1878 	 * we don't use the getter functions here, as we
1879 	 * a) don't have an extent buffer and
1880 	 * b) the page is already kmapped
1881 	 */
1882 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1883 		sblock->header_error = 1;
1884 
1885 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1886 		sblock->header_error = 1;
1887 		sblock->generation_error = 1;
1888 	}
1889 
1890 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1891 		sblock->header_error = 1;
1892 
1893 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1894 		   BTRFS_UUID_SIZE))
1895 		sblock->header_error = 1;
1896 
1897 	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1898 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1899 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1900 	index = 0;
1901 	for (;;) {
1902 		u64 l = min_t(u64, len, mapped_size);
1903 
1904 		crc = btrfs_csum_data(p, crc, l);
1905 		kunmap_atomic(mapped_buffer);
1906 		len -= l;
1907 		if (len == 0)
1908 			break;
1909 		index++;
1910 		BUG_ON(index >= sblock->page_count);
1911 		BUG_ON(!sblock->pagev[index]->page);
1912 		page = sblock->pagev[index]->page;
1913 		mapped_buffer = kmap_atomic(page);
1914 		mapped_size = PAGE_SIZE;
1915 		p = mapped_buffer;
1916 	}
1917 
1918 	btrfs_csum_final(crc, calculated_csum);
1919 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1920 		sblock->checksum_error = 1;
1921 
1922 	return sblock->header_error || sblock->checksum_error;
1923 }
1924 
1925 static int scrub_checksum_super(struct scrub_block *sblock)
1926 {
1927 	struct btrfs_super_block *s;
1928 	struct scrub_ctx *sctx = sblock->sctx;
1929 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1930 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1931 	struct page *page;
1932 	void *mapped_buffer;
1933 	u64 mapped_size;
1934 	void *p;
1935 	u32 crc = ~(u32)0;
1936 	int fail_gen = 0;
1937 	int fail_cor = 0;
1938 	u64 len;
1939 	int index;
1940 
1941 	BUG_ON(sblock->page_count < 1);
1942 	page = sblock->pagev[0]->page;
1943 	mapped_buffer = kmap_atomic(page);
1944 	s = (struct btrfs_super_block *)mapped_buffer;
1945 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1946 
1947 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1948 		++fail_cor;
1949 
1950 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1951 		++fail_gen;
1952 
1953 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1954 		++fail_cor;
1955 
1956 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1957 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1958 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1959 	index = 0;
1960 	for (;;) {
1961 		u64 l = min_t(u64, len, mapped_size);
1962 
1963 		crc = btrfs_csum_data(p, crc, l);
1964 		kunmap_atomic(mapped_buffer);
1965 		len -= l;
1966 		if (len == 0)
1967 			break;
1968 		index++;
1969 		BUG_ON(index >= sblock->page_count);
1970 		BUG_ON(!sblock->pagev[index]->page);
1971 		page = sblock->pagev[index]->page;
1972 		mapped_buffer = kmap_atomic(page);
1973 		mapped_size = PAGE_SIZE;
1974 		p = mapped_buffer;
1975 	}
1976 
1977 	btrfs_csum_final(crc, calculated_csum);
1978 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1979 		++fail_cor;
1980 
1981 	if (fail_cor + fail_gen) {
1982 		/*
1983 		 * if we find an error in a super block, we just report it.
1984 		 * They will get written with the next transaction commit
1985 		 * anyway
1986 		 */
1987 		spin_lock(&sctx->stat_lock);
1988 		++sctx->stat.super_errors;
1989 		spin_unlock(&sctx->stat_lock);
1990 		if (fail_cor)
1991 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1992 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1993 		else
1994 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1995 				BTRFS_DEV_STAT_GENERATION_ERRS);
1996 	}
1997 
1998 	return fail_cor + fail_gen;
1999 }
2000 
2001 static void scrub_block_get(struct scrub_block *sblock)
2002 {
2003 	atomic_inc(&sblock->refs);
2004 }
2005 
2006 static void scrub_block_put(struct scrub_block *sblock)
2007 {
2008 	if (atomic_dec_and_test(&sblock->refs)) {
2009 		int i;
2010 
2011 		if (sblock->sparity)
2012 			scrub_parity_put(sblock->sparity);
2013 
2014 		for (i = 0; i < sblock->page_count; i++)
2015 			scrub_page_put(sblock->pagev[i]);
2016 		kfree(sblock);
2017 	}
2018 }
2019 
2020 static void scrub_page_get(struct scrub_page *spage)
2021 {
2022 	atomic_inc(&spage->refs);
2023 }
2024 
2025 static void scrub_page_put(struct scrub_page *spage)
2026 {
2027 	if (atomic_dec_and_test(&spage->refs)) {
2028 		if (spage->page)
2029 			__free_page(spage->page);
2030 		kfree(spage);
2031 	}
2032 }
2033 
2034 static void scrub_submit(struct scrub_ctx *sctx)
2035 {
2036 	struct scrub_bio *sbio;
2037 
2038 	if (sctx->curr == -1)
2039 		return;
2040 
2041 	sbio = sctx->bios[sctx->curr];
2042 	sctx->curr = -1;
2043 	scrub_pending_bio_inc(sctx);
2044 	btrfsic_submit_bio(sbio->bio);
2045 }
2046 
2047 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2048 				    struct scrub_page *spage)
2049 {
2050 	struct scrub_block *sblock = spage->sblock;
2051 	struct scrub_bio *sbio;
2052 	int ret;
2053 
2054 again:
2055 	/*
2056 	 * grab a fresh bio or wait for one to become available
2057 	 */
2058 	while (sctx->curr == -1) {
2059 		spin_lock(&sctx->list_lock);
2060 		sctx->curr = sctx->first_free;
2061 		if (sctx->curr != -1) {
2062 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2063 			sctx->bios[sctx->curr]->next_free = -1;
2064 			sctx->bios[sctx->curr]->page_count = 0;
2065 			spin_unlock(&sctx->list_lock);
2066 		} else {
2067 			spin_unlock(&sctx->list_lock);
2068 			wait_event(sctx->list_wait, sctx->first_free != -1);
2069 		}
2070 	}
2071 	sbio = sctx->bios[sctx->curr];
2072 	if (sbio->page_count == 0) {
2073 		struct bio *bio;
2074 
2075 		sbio->physical = spage->physical;
2076 		sbio->logical = spage->logical;
2077 		sbio->dev = spage->dev;
2078 		bio = sbio->bio;
2079 		if (!bio) {
2080 			bio = btrfs_io_bio_alloc(GFP_KERNEL,
2081 					sctx->pages_per_rd_bio);
2082 			if (!bio)
2083 				return -ENOMEM;
2084 			sbio->bio = bio;
2085 		}
2086 
2087 		bio->bi_private = sbio;
2088 		bio->bi_end_io = scrub_bio_end_io;
2089 		bio->bi_bdev = sbio->dev->bdev;
2090 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2091 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2092 		sbio->err = 0;
2093 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2094 		   spage->physical ||
2095 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2096 		   spage->logical ||
2097 		   sbio->dev != spage->dev) {
2098 		scrub_submit(sctx);
2099 		goto again;
2100 	}
2101 
2102 	sbio->pagev[sbio->page_count] = spage;
2103 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2104 	if (ret != PAGE_SIZE) {
2105 		if (sbio->page_count < 1) {
2106 			bio_put(sbio->bio);
2107 			sbio->bio = NULL;
2108 			return -EIO;
2109 		}
2110 		scrub_submit(sctx);
2111 		goto again;
2112 	}
2113 
2114 	scrub_block_get(sblock); /* one for the page added to the bio */
2115 	atomic_inc(&sblock->outstanding_pages);
2116 	sbio->page_count++;
2117 	if (sbio->page_count == sctx->pages_per_rd_bio)
2118 		scrub_submit(sctx);
2119 
2120 	return 0;
2121 }
2122 
2123 static void scrub_missing_raid56_end_io(struct bio *bio)
2124 {
2125 	struct scrub_block *sblock = bio->bi_private;
2126 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2127 
2128 	if (bio->bi_error)
2129 		sblock->no_io_error_seen = 0;
2130 
2131 	bio_put(bio);
2132 
2133 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2134 }
2135 
2136 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2137 {
2138 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2139 	struct scrub_ctx *sctx = sblock->sctx;
2140 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2141 	u64 logical;
2142 	struct btrfs_device *dev;
2143 
2144 	logical = sblock->pagev[0]->logical;
2145 	dev = sblock->pagev[0]->dev;
2146 
2147 	if (sblock->no_io_error_seen)
2148 		scrub_recheck_block_checksum(sblock);
2149 
2150 	if (!sblock->no_io_error_seen) {
2151 		spin_lock(&sctx->stat_lock);
2152 		sctx->stat.read_errors++;
2153 		spin_unlock(&sctx->stat_lock);
2154 		btrfs_err_rl_in_rcu(fs_info,
2155 			"IO error rebuilding logical %llu for dev %s",
2156 			logical, rcu_str_deref(dev->name));
2157 	} else if (sblock->header_error || sblock->checksum_error) {
2158 		spin_lock(&sctx->stat_lock);
2159 		sctx->stat.uncorrectable_errors++;
2160 		spin_unlock(&sctx->stat_lock);
2161 		btrfs_err_rl_in_rcu(fs_info,
2162 			"failed to rebuild valid logical %llu for dev %s",
2163 			logical, rcu_str_deref(dev->name));
2164 	} else {
2165 		scrub_write_block_to_dev_replace(sblock);
2166 	}
2167 
2168 	scrub_block_put(sblock);
2169 
2170 	if (sctx->is_dev_replace &&
2171 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2172 		mutex_lock(&sctx->wr_ctx.wr_lock);
2173 		scrub_wr_submit(sctx);
2174 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2175 	}
2176 
2177 	scrub_pending_bio_dec(sctx);
2178 }
2179 
2180 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2181 {
2182 	struct scrub_ctx *sctx = sblock->sctx;
2183 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2184 	u64 length = sblock->page_count * PAGE_SIZE;
2185 	u64 logical = sblock->pagev[0]->logical;
2186 	struct btrfs_bio *bbio = NULL;
2187 	struct bio *bio;
2188 	struct btrfs_raid_bio *rbio;
2189 	int ret;
2190 	int i;
2191 
2192 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2193 			&length, &bbio, 0, 1);
2194 	if (ret || !bbio || !bbio->raid_map)
2195 		goto bbio_out;
2196 
2197 	if (WARN_ON(!sctx->is_dev_replace ||
2198 		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2199 		/*
2200 		 * We shouldn't be scrubbing a missing device. Even for dev
2201 		 * replace, we should only get here for RAID 5/6. We either
2202 		 * managed to mount something with no mirrors remaining or
2203 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2204 		 */
2205 		goto bbio_out;
2206 	}
2207 
2208 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2209 	if (!bio)
2210 		goto bbio_out;
2211 
2212 	bio->bi_iter.bi_sector = logical >> 9;
2213 	bio->bi_private = sblock;
2214 	bio->bi_end_io = scrub_missing_raid56_end_io;
2215 
2216 	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2217 	if (!rbio)
2218 		goto rbio_out;
2219 
2220 	for (i = 0; i < sblock->page_count; i++) {
2221 		struct scrub_page *spage = sblock->pagev[i];
2222 
2223 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2224 	}
2225 
2226 	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2227 			scrub_missing_raid56_worker, NULL, NULL);
2228 	scrub_block_get(sblock);
2229 	scrub_pending_bio_inc(sctx);
2230 	raid56_submit_missing_rbio(rbio);
2231 	return;
2232 
2233 rbio_out:
2234 	bio_put(bio);
2235 bbio_out:
2236 	btrfs_put_bbio(bbio);
2237 	spin_lock(&sctx->stat_lock);
2238 	sctx->stat.malloc_errors++;
2239 	spin_unlock(&sctx->stat_lock);
2240 }
2241 
2242 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2243 		       u64 physical, struct btrfs_device *dev, u64 flags,
2244 		       u64 gen, int mirror_num, u8 *csum, int force,
2245 		       u64 physical_for_dev_replace)
2246 {
2247 	struct scrub_block *sblock;
2248 	int index;
2249 
2250 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2251 	if (!sblock) {
2252 		spin_lock(&sctx->stat_lock);
2253 		sctx->stat.malloc_errors++;
2254 		spin_unlock(&sctx->stat_lock);
2255 		return -ENOMEM;
2256 	}
2257 
2258 	/* one ref inside this function, plus one for each page added to
2259 	 * a bio later on */
2260 	atomic_set(&sblock->refs, 1);
2261 	sblock->sctx = sctx;
2262 	sblock->no_io_error_seen = 1;
2263 
2264 	for (index = 0; len > 0; index++) {
2265 		struct scrub_page *spage;
2266 		u64 l = min_t(u64, len, PAGE_SIZE);
2267 
2268 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2269 		if (!spage) {
2270 leave_nomem:
2271 			spin_lock(&sctx->stat_lock);
2272 			sctx->stat.malloc_errors++;
2273 			spin_unlock(&sctx->stat_lock);
2274 			scrub_block_put(sblock);
2275 			return -ENOMEM;
2276 		}
2277 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2278 		scrub_page_get(spage);
2279 		sblock->pagev[index] = spage;
2280 		spage->sblock = sblock;
2281 		spage->dev = dev;
2282 		spage->flags = flags;
2283 		spage->generation = gen;
2284 		spage->logical = logical;
2285 		spage->physical = physical;
2286 		spage->physical_for_dev_replace = physical_for_dev_replace;
2287 		spage->mirror_num = mirror_num;
2288 		if (csum) {
2289 			spage->have_csum = 1;
2290 			memcpy(spage->csum, csum, sctx->csum_size);
2291 		} else {
2292 			spage->have_csum = 0;
2293 		}
2294 		sblock->page_count++;
2295 		spage->page = alloc_page(GFP_KERNEL);
2296 		if (!spage->page)
2297 			goto leave_nomem;
2298 		len -= l;
2299 		logical += l;
2300 		physical += l;
2301 		physical_for_dev_replace += l;
2302 	}
2303 
2304 	WARN_ON(sblock->page_count == 0);
2305 	if (dev->missing) {
2306 		/*
2307 		 * This case should only be hit for RAID 5/6 device replace. See
2308 		 * the comment in scrub_missing_raid56_pages() for details.
2309 		 */
2310 		scrub_missing_raid56_pages(sblock);
2311 	} else {
2312 		for (index = 0; index < sblock->page_count; index++) {
2313 			struct scrub_page *spage = sblock->pagev[index];
2314 			int ret;
2315 
2316 			ret = scrub_add_page_to_rd_bio(sctx, spage);
2317 			if (ret) {
2318 				scrub_block_put(sblock);
2319 				return ret;
2320 			}
2321 		}
2322 
2323 		if (force)
2324 			scrub_submit(sctx);
2325 	}
2326 
2327 	/* last one frees, either here or in bio completion for last page */
2328 	scrub_block_put(sblock);
2329 	return 0;
2330 }
2331 
2332 static void scrub_bio_end_io(struct bio *bio)
2333 {
2334 	struct scrub_bio *sbio = bio->bi_private;
2335 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2336 
2337 	sbio->err = bio->bi_error;
2338 	sbio->bio = bio;
2339 
2340 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2341 }
2342 
2343 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2344 {
2345 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2346 	struct scrub_ctx *sctx = sbio->sctx;
2347 	int i;
2348 
2349 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2350 	if (sbio->err) {
2351 		for (i = 0; i < sbio->page_count; i++) {
2352 			struct scrub_page *spage = sbio->pagev[i];
2353 
2354 			spage->io_error = 1;
2355 			spage->sblock->no_io_error_seen = 0;
2356 		}
2357 	}
2358 
2359 	/* now complete the scrub_block items that have all pages completed */
2360 	for (i = 0; i < sbio->page_count; i++) {
2361 		struct scrub_page *spage = sbio->pagev[i];
2362 		struct scrub_block *sblock = spage->sblock;
2363 
2364 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2365 			scrub_block_complete(sblock);
2366 		scrub_block_put(sblock);
2367 	}
2368 
2369 	bio_put(sbio->bio);
2370 	sbio->bio = NULL;
2371 	spin_lock(&sctx->list_lock);
2372 	sbio->next_free = sctx->first_free;
2373 	sctx->first_free = sbio->index;
2374 	spin_unlock(&sctx->list_lock);
2375 
2376 	if (sctx->is_dev_replace &&
2377 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2378 		mutex_lock(&sctx->wr_ctx.wr_lock);
2379 		scrub_wr_submit(sctx);
2380 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2381 	}
2382 
2383 	scrub_pending_bio_dec(sctx);
2384 }
2385 
2386 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2387 				       unsigned long *bitmap,
2388 				       u64 start, u64 len)
2389 {
2390 	u32 offset;
2391 	int nsectors;
2392 	int sectorsize = sparity->sctx->fs_info->sectorsize;
2393 
2394 	if (len >= sparity->stripe_len) {
2395 		bitmap_set(bitmap, 0, sparity->nsectors);
2396 		return;
2397 	}
2398 
2399 	start -= sparity->logic_start;
2400 	start = div_u64_rem(start, sparity->stripe_len, &offset);
2401 	offset /= sectorsize;
2402 	nsectors = (int)len / sectorsize;
2403 
2404 	if (offset + nsectors <= sparity->nsectors) {
2405 		bitmap_set(bitmap, offset, nsectors);
2406 		return;
2407 	}
2408 
2409 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2410 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2411 }
2412 
2413 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2414 						   u64 start, u64 len)
2415 {
2416 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2417 }
2418 
2419 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2420 						  u64 start, u64 len)
2421 {
2422 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2423 }
2424 
2425 static void scrub_block_complete(struct scrub_block *sblock)
2426 {
2427 	int corrupted = 0;
2428 
2429 	if (!sblock->no_io_error_seen) {
2430 		corrupted = 1;
2431 		scrub_handle_errored_block(sblock);
2432 	} else {
2433 		/*
2434 		 * if has checksum error, write via repair mechanism in
2435 		 * dev replace case, otherwise write here in dev replace
2436 		 * case.
2437 		 */
2438 		corrupted = scrub_checksum(sblock);
2439 		if (!corrupted && sblock->sctx->is_dev_replace)
2440 			scrub_write_block_to_dev_replace(sblock);
2441 	}
2442 
2443 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2444 		u64 start = sblock->pagev[0]->logical;
2445 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2446 			  PAGE_SIZE;
2447 
2448 		scrub_parity_mark_sectors_error(sblock->sparity,
2449 						start, end - start);
2450 	}
2451 }
2452 
2453 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2454 {
2455 	struct btrfs_ordered_sum *sum = NULL;
2456 	unsigned long index;
2457 	unsigned long num_sectors;
2458 
2459 	while (!list_empty(&sctx->csum_list)) {
2460 		sum = list_first_entry(&sctx->csum_list,
2461 				       struct btrfs_ordered_sum, list);
2462 		if (sum->bytenr > logical)
2463 			return 0;
2464 		if (sum->bytenr + sum->len > logical)
2465 			break;
2466 
2467 		++sctx->stat.csum_discards;
2468 		list_del(&sum->list);
2469 		kfree(sum);
2470 		sum = NULL;
2471 	}
2472 	if (!sum)
2473 		return 0;
2474 
2475 	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2476 	num_sectors = sum->len / sctx->sectorsize;
2477 	memcpy(csum, sum->sums + index, sctx->csum_size);
2478 	if (index == num_sectors - 1) {
2479 		list_del(&sum->list);
2480 		kfree(sum);
2481 	}
2482 	return 1;
2483 }
2484 
2485 /* scrub extent tries to collect up to 64 kB for each bio */
2486 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2487 			u64 physical, struct btrfs_device *dev, u64 flags,
2488 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2489 {
2490 	int ret;
2491 	u8 csum[BTRFS_CSUM_SIZE];
2492 	u32 blocksize;
2493 
2494 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2495 		blocksize = sctx->sectorsize;
2496 		spin_lock(&sctx->stat_lock);
2497 		sctx->stat.data_extents_scrubbed++;
2498 		sctx->stat.data_bytes_scrubbed += len;
2499 		spin_unlock(&sctx->stat_lock);
2500 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2501 		blocksize = sctx->nodesize;
2502 		spin_lock(&sctx->stat_lock);
2503 		sctx->stat.tree_extents_scrubbed++;
2504 		sctx->stat.tree_bytes_scrubbed += len;
2505 		spin_unlock(&sctx->stat_lock);
2506 	} else {
2507 		blocksize = sctx->sectorsize;
2508 		WARN_ON(1);
2509 	}
2510 
2511 	while (len) {
2512 		u64 l = min_t(u64, len, blocksize);
2513 		int have_csum = 0;
2514 
2515 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2516 			/* push csums to sbio */
2517 			have_csum = scrub_find_csum(sctx, logical, csum);
2518 			if (have_csum == 0)
2519 				++sctx->stat.no_csum;
2520 			if (sctx->is_dev_replace && !have_csum) {
2521 				ret = copy_nocow_pages(sctx, logical, l,
2522 						       mirror_num,
2523 						      physical_for_dev_replace);
2524 				goto behind_scrub_pages;
2525 			}
2526 		}
2527 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2528 				  mirror_num, have_csum ? csum : NULL, 0,
2529 				  physical_for_dev_replace);
2530 behind_scrub_pages:
2531 		if (ret)
2532 			return ret;
2533 		len -= l;
2534 		logical += l;
2535 		physical += l;
2536 		physical_for_dev_replace += l;
2537 	}
2538 	return 0;
2539 }
2540 
2541 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2542 				  u64 logical, u64 len,
2543 				  u64 physical, struct btrfs_device *dev,
2544 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2545 {
2546 	struct scrub_ctx *sctx = sparity->sctx;
2547 	struct scrub_block *sblock;
2548 	int index;
2549 
2550 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2551 	if (!sblock) {
2552 		spin_lock(&sctx->stat_lock);
2553 		sctx->stat.malloc_errors++;
2554 		spin_unlock(&sctx->stat_lock);
2555 		return -ENOMEM;
2556 	}
2557 
2558 	/* one ref inside this function, plus one for each page added to
2559 	 * a bio later on */
2560 	atomic_set(&sblock->refs, 1);
2561 	sblock->sctx = sctx;
2562 	sblock->no_io_error_seen = 1;
2563 	sblock->sparity = sparity;
2564 	scrub_parity_get(sparity);
2565 
2566 	for (index = 0; len > 0; index++) {
2567 		struct scrub_page *spage;
2568 		u64 l = min_t(u64, len, PAGE_SIZE);
2569 
2570 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2571 		if (!spage) {
2572 leave_nomem:
2573 			spin_lock(&sctx->stat_lock);
2574 			sctx->stat.malloc_errors++;
2575 			spin_unlock(&sctx->stat_lock);
2576 			scrub_block_put(sblock);
2577 			return -ENOMEM;
2578 		}
2579 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2580 		/* For scrub block */
2581 		scrub_page_get(spage);
2582 		sblock->pagev[index] = spage;
2583 		/* For scrub parity */
2584 		scrub_page_get(spage);
2585 		list_add_tail(&spage->list, &sparity->spages);
2586 		spage->sblock = sblock;
2587 		spage->dev = dev;
2588 		spage->flags = flags;
2589 		spage->generation = gen;
2590 		spage->logical = logical;
2591 		spage->physical = physical;
2592 		spage->mirror_num = mirror_num;
2593 		if (csum) {
2594 			spage->have_csum = 1;
2595 			memcpy(spage->csum, csum, sctx->csum_size);
2596 		} else {
2597 			spage->have_csum = 0;
2598 		}
2599 		sblock->page_count++;
2600 		spage->page = alloc_page(GFP_KERNEL);
2601 		if (!spage->page)
2602 			goto leave_nomem;
2603 		len -= l;
2604 		logical += l;
2605 		physical += l;
2606 	}
2607 
2608 	WARN_ON(sblock->page_count == 0);
2609 	for (index = 0; index < sblock->page_count; index++) {
2610 		struct scrub_page *spage = sblock->pagev[index];
2611 		int ret;
2612 
2613 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2614 		if (ret) {
2615 			scrub_block_put(sblock);
2616 			return ret;
2617 		}
2618 	}
2619 
2620 	/* last one frees, either here or in bio completion for last page */
2621 	scrub_block_put(sblock);
2622 	return 0;
2623 }
2624 
2625 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2626 				   u64 logical, u64 len,
2627 				   u64 physical, struct btrfs_device *dev,
2628 				   u64 flags, u64 gen, int mirror_num)
2629 {
2630 	struct scrub_ctx *sctx = sparity->sctx;
2631 	int ret;
2632 	u8 csum[BTRFS_CSUM_SIZE];
2633 	u32 blocksize;
2634 
2635 	if (dev->missing) {
2636 		scrub_parity_mark_sectors_error(sparity, logical, len);
2637 		return 0;
2638 	}
2639 
2640 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2641 		blocksize = sctx->sectorsize;
2642 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2643 		blocksize = sctx->nodesize;
2644 	} else {
2645 		blocksize = sctx->sectorsize;
2646 		WARN_ON(1);
2647 	}
2648 
2649 	while (len) {
2650 		u64 l = min_t(u64, len, blocksize);
2651 		int have_csum = 0;
2652 
2653 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2654 			/* push csums to sbio */
2655 			have_csum = scrub_find_csum(sctx, logical, csum);
2656 			if (have_csum == 0)
2657 				goto skip;
2658 		}
2659 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2660 					     flags, gen, mirror_num,
2661 					     have_csum ? csum : NULL);
2662 		if (ret)
2663 			return ret;
2664 skip:
2665 		len -= l;
2666 		logical += l;
2667 		physical += l;
2668 	}
2669 	return 0;
2670 }
2671 
2672 /*
2673  * Given a physical address, this will calculate it's
2674  * logical offset. if this is a parity stripe, it will return
2675  * the most left data stripe's logical offset.
2676  *
2677  * return 0 if it is a data stripe, 1 means parity stripe.
2678  */
2679 static int get_raid56_logic_offset(u64 physical, int num,
2680 				   struct map_lookup *map, u64 *offset,
2681 				   u64 *stripe_start)
2682 {
2683 	int i;
2684 	int j = 0;
2685 	u64 stripe_nr;
2686 	u64 last_offset;
2687 	u32 stripe_index;
2688 	u32 rot;
2689 
2690 	last_offset = (physical - map->stripes[num].physical) *
2691 		      nr_data_stripes(map);
2692 	if (stripe_start)
2693 		*stripe_start = last_offset;
2694 
2695 	*offset = last_offset;
2696 	for (i = 0; i < nr_data_stripes(map); i++) {
2697 		*offset = last_offset + i * map->stripe_len;
2698 
2699 		stripe_nr = div_u64(*offset, map->stripe_len);
2700 		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2701 
2702 		/* Work out the disk rotation on this stripe-set */
2703 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2704 		/* calculate which stripe this data locates */
2705 		rot += i;
2706 		stripe_index = rot % map->num_stripes;
2707 		if (stripe_index == num)
2708 			return 0;
2709 		if (stripe_index < num)
2710 			j++;
2711 	}
2712 	*offset = last_offset + j * map->stripe_len;
2713 	return 1;
2714 }
2715 
2716 static void scrub_free_parity(struct scrub_parity *sparity)
2717 {
2718 	struct scrub_ctx *sctx = sparity->sctx;
2719 	struct scrub_page *curr, *next;
2720 	int nbits;
2721 
2722 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2723 	if (nbits) {
2724 		spin_lock(&sctx->stat_lock);
2725 		sctx->stat.read_errors += nbits;
2726 		sctx->stat.uncorrectable_errors += nbits;
2727 		spin_unlock(&sctx->stat_lock);
2728 	}
2729 
2730 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2731 		list_del_init(&curr->list);
2732 		scrub_page_put(curr);
2733 	}
2734 
2735 	kfree(sparity);
2736 }
2737 
2738 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2739 {
2740 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2741 						    work);
2742 	struct scrub_ctx *sctx = sparity->sctx;
2743 
2744 	scrub_free_parity(sparity);
2745 	scrub_pending_bio_dec(sctx);
2746 }
2747 
2748 static void scrub_parity_bio_endio(struct bio *bio)
2749 {
2750 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2751 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2752 
2753 	if (bio->bi_error)
2754 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2755 			  sparity->nsectors);
2756 
2757 	bio_put(bio);
2758 
2759 	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2760 			scrub_parity_bio_endio_worker, NULL, NULL);
2761 	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2762 }
2763 
2764 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2765 {
2766 	struct scrub_ctx *sctx = sparity->sctx;
2767 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2768 	struct bio *bio;
2769 	struct btrfs_raid_bio *rbio;
2770 	struct scrub_page *spage;
2771 	struct btrfs_bio *bbio = NULL;
2772 	u64 length;
2773 	int ret;
2774 
2775 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2776 			   sparity->nsectors))
2777 		goto out;
2778 
2779 	length = sparity->logic_end - sparity->logic_start;
2780 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2781 			       &length, &bbio, 0, 1);
2782 	if (ret || !bbio || !bbio->raid_map)
2783 		goto bbio_out;
2784 
2785 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2786 	if (!bio)
2787 		goto bbio_out;
2788 
2789 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2790 	bio->bi_private = sparity;
2791 	bio->bi_end_io = scrub_parity_bio_endio;
2792 
2793 	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2794 					      length, sparity->scrub_dev,
2795 					      sparity->dbitmap,
2796 					      sparity->nsectors);
2797 	if (!rbio)
2798 		goto rbio_out;
2799 
2800 	list_for_each_entry(spage, &sparity->spages, list)
2801 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2802 
2803 	scrub_pending_bio_inc(sctx);
2804 	raid56_parity_submit_scrub_rbio(rbio);
2805 	return;
2806 
2807 rbio_out:
2808 	bio_put(bio);
2809 bbio_out:
2810 	btrfs_put_bbio(bbio);
2811 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2812 		  sparity->nsectors);
2813 	spin_lock(&sctx->stat_lock);
2814 	sctx->stat.malloc_errors++;
2815 	spin_unlock(&sctx->stat_lock);
2816 out:
2817 	scrub_free_parity(sparity);
2818 }
2819 
2820 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2821 {
2822 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2823 }
2824 
2825 static void scrub_parity_get(struct scrub_parity *sparity)
2826 {
2827 	atomic_inc(&sparity->refs);
2828 }
2829 
2830 static void scrub_parity_put(struct scrub_parity *sparity)
2831 {
2832 	if (!atomic_dec_and_test(&sparity->refs))
2833 		return;
2834 
2835 	scrub_parity_check_and_repair(sparity);
2836 }
2837 
2838 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2839 						  struct map_lookup *map,
2840 						  struct btrfs_device *sdev,
2841 						  struct btrfs_path *path,
2842 						  u64 logic_start,
2843 						  u64 logic_end)
2844 {
2845 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2846 	struct btrfs_root *root = fs_info->extent_root;
2847 	struct btrfs_root *csum_root = fs_info->csum_root;
2848 	struct btrfs_extent_item *extent;
2849 	struct btrfs_bio *bbio = NULL;
2850 	u64 flags;
2851 	int ret;
2852 	int slot;
2853 	struct extent_buffer *l;
2854 	struct btrfs_key key;
2855 	u64 generation;
2856 	u64 extent_logical;
2857 	u64 extent_physical;
2858 	u64 extent_len;
2859 	u64 mapped_length;
2860 	struct btrfs_device *extent_dev;
2861 	struct scrub_parity *sparity;
2862 	int nsectors;
2863 	int bitmap_len;
2864 	int extent_mirror_num;
2865 	int stop_loop = 0;
2866 
2867 	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2868 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2869 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2870 			  GFP_NOFS);
2871 	if (!sparity) {
2872 		spin_lock(&sctx->stat_lock);
2873 		sctx->stat.malloc_errors++;
2874 		spin_unlock(&sctx->stat_lock);
2875 		return -ENOMEM;
2876 	}
2877 
2878 	sparity->stripe_len = map->stripe_len;
2879 	sparity->nsectors = nsectors;
2880 	sparity->sctx = sctx;
2881 	sparity->scrub_dev = sdev;
2882 	sparity->logic_start = logic_start;
2883 	sparity->logic_end = logic_end;
2884 	atomic_set(&sparity->refs, 1);
2885 	INIT_LIST_HEAD(&sparity->spages);
2886 	sparity->dbitmap = sparity->bitmap;
2887 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2888 
2889 	ret = 0;
2890 	while (logic_start < logic_end) {
2891 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2892 			key.type = BTRFS_METADATA_ITEM_KEY;
2893 		else
2894 			key.type = BTRFS_EXTENT_ITEM_KEY;
2895 		key.objectid = logic_start;
2896 		key.offset = (u64)-1;
2897 
2898 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2899 		if (ret < 0)
2900 			goto out;
2901 
2902 		if (ret > 0) {
2903 			ret = btrfs_previous_extent_item(root, path, 0);
2904 			if (ret < 0)
2905 				goto out;
2906 			if (ret > 0) {
2907 				btrfs_release_path(path);
2908 				ret = btrfs_search_slot(NULL, root, &key,
2909 							path, 0, 0);
2910 				if (ret < 0)
2911 					goto out;
2912 			}
2913 		}
2914 
2915 		stop_loop = 0;
2916 		while (1) {
2917 			u64 bytes;
2918 
2919 			l = path->nodes[0];
2920 			slot = path->slots[0];
2921 			if (slot >= btrfs_header_nritems(l)) {
2922 				ret = btrfs_next_leaf(root, path);
2923 				if (ret == 0)
2924 					continue;
2925 				if (ret < 0)
2926 					goto out;
2927 
2928 				stop_loop = 1;
2929 				break;
2930 			}
2931 			btrfs_item_key_to_cpu(l, &key, slot);
2932 
2933 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2934 			    key.type != BTRFS_METADATA_ITEM_KEY)
2935 				goto next;
2936 
2937 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2938 				bytes = fs_info->nodesize;
2939 			else
2940 				bytes = key.offset;
2941 
2942 			if (key.objectid + bytes <= logic_start)
2943 				goto next;
2944 
2945 			if (key.objectid >= logic_end) {
2946 				stop_loop = 1;
2947 				break;
2948 			}
2949 
2950 			while (key.objectid >= logic_start + map->stripe_len)
2951 				logic_start += map->stripe_len;
2952 
2953 			extent = btrfs_item_ptr(l, slot,
2954 						struct btrfs_extent_item);
2955 			flags = btrfs_extent_flags(l, extent);
2956 			generation = btrfs_extent_generation(l, extent);
2957 
2958 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2959 			    (key.objectid < logic_start ||
2960 			     key.objectid + bytes >
2961 			     logic_start + map->stripe_len)) {
2962 				btrfs_err(fs_info,
2963 					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2964 					  key.objectid, logic_start);
2965 				spin_lock(&sctx->stat_lock);
2966 				sctx->stat.uncorrectable_errors++;
2967 				spin_unlock(&sctx->stat_lock);
2968 				goto next;
2969 			}
2970 again:
2971 			extent_logical = key.objectid;
2972 			extent_len = bytes;
2973 
2974 			if (extent_logical < logic_start) {
2975 				extent_len -= logic_start - extent_logical;
2976 				extent_logical = logic_start;
2977 			}
2978 
2979 			if (extent_logical + extent_len >
2980 			    logic_start + map->stripe_len)
2981 				extent_len = logic_start + map->stripe_len -
2982 					     extent_logical;
2983 
2984 			scrub_parity_mark_sectors_data(sparity, extent_logical,
2985 						       extent_len);
2986 
2987 			mapped_length = extent_len;
2988 			bbio = NULL;
2989 			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2990 					extent_logical, &mapped_length, &bbio,
2991 					0);
2992 			if (!ret) {
2993 				if (!bbio || mapped_length < extent_len)
2994 					ret = -EIO;
2995 			}
2996 			if (ret) {
2997 				btrfs_put_bbio(bbio);
2998 				goto out;
2999 			}
3000 			extent_physical = bbio->stripes[0].physical;
3001 			extent_mirror_num = bbio->mirror_num;
3002 			extent_dev = bbio->stripes[0].dev;
3003 			btrfs_put_bbio(bbio);
3004 
3005 			ret = btrfs_lookup_csums_range(csum_root,
3006 						extent_logical,
3007 						extent_logical + extent_len - 1,
3008 						&sctx->csum_list, 1);
3009 			if (ret)
3010 				goto out;
3011 
3012 			ret = scrub_extent_for_parity(sparity, extent_logical,
3013 						      extent_len,
3014 						      extent_physical,
3015 						      extent_dev, flags,
3016 						      generation,
3017 						      extent_mirror_num);
3018 
3019 			scrub_free_csums(sctx);
3020 
3021 			if (ret)
3022 				goto out;
3023 
3024 			if (extent_logical + extent_len <
3025 			    key.objectid + bytes) {
3026 				logic_start += map->stripe_len;
3027 
3028 				if (logic_start >= logic_end) {
3029 					stop_loop = 1;
3030 					break;
3031 				}
3032 
3033 				if (logic_start < key.objectid + bytes) {
3034 					cond_resched();
3035 					goto again;
3036 				}
3037 			}
3038 next:
3039 			path->slots[0]++;
3040 		}
3041 
3042 		btrfs_release_path(path);
3043 
3044 		if (stop_loop)
3045 			break;
3046 
3047 		logic_start += map->stripe_len;
3048 	}
3049 out:
3050 	if (ret < 0)
3051 		scrub_parity_mark_sectors_error(sparity, logic_start,
3052 						logic_end - logic_start);
3053 	scrub_parity_put(sparity);
3054 	scrub_submit(sctx);
3055 	mutex_lock(&sctx->wr_ctx.wr_lock);
3056 	scrub_wr_submit(sctx);
3057 	mutex_unlock(&sctx->wr_ctx.wr_lock);
3058 
3059 	btrfs_release_path(path);
3060 	return ret < 0 ? ret : 0;
3061 }
3062 
3063 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3064 					   struct map_lookup *map,
3065 					   struct btrfs_device *scrub_dev,
3066 					   int num, u64 base, u64 length,
3067 					   int is_dev_replace)
3068 {
3069 	struct btrfs_path *path, *ppath;
3070 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3071 	struct btrfs_root *root = fs_info->extent_root;
3072 	struct btrfs_root *csum_root = fs_info->csum_root;
3073 	struct btrfs_extent_item *extent;
3074 	struct blk_plug plug;
3075 	u64 flags;
3076 	int ret;
3077 	int slot;
3078 	u64 nstripes;
3079 	struct extent_buffer *l;
3080 	u64 physical;
3081 	u64 logical;
3082 	u64 logic_end;
3083 	u64 physical_end;
3084 	u64 generation;
3085 	int mirror_num;
3086 	struct reada_control *reada1;
3087 	struct reada_control *reada2;
3088 	struct btrfs_key key;
3089 	struct btrfs_key key_end;
3090 	u64 increment = map->stripe_len;
3091 	u64 offset;
3092 	u64 extent_logical;
3093 	u64 extent_physical;
3094 	u64 extent_len;
3095 	u64 stripe_logical;
3096 	u64 stripe_end;
3097 	struct btrfs_device *extent_dev;
3098 	int extent_mirror_num;
3099 	int stop_loop = 0;
3100 
3101 	physical = map->stripes[num].physical;
3102 	offset = 0;
3103 	nstripes = div_u64(length, map->stripe_len);
3104 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3105 		offset = map->stripe_len * num;
3106 		increment = map->stripe_len * map->num_stripes;
3107 		mirror_num = 1;
3108 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3109 		int factor = map->num_stripes / map->sub_stripes;
3110 		offset = map->stripe_len * (num / map->sub_stripes);
3111 		increment = map->stripe_len * factor;
3112 		mirror_num = num % map->sub_stripes + 1;
3113 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3114 		increment = map->stripe_len;
3115 		mirror_num = num % map->num_stripes + 1;
3116 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3117 		increment = map->stripe_len;
3118 		mirror_num = num % map->num_stripes + 1;
3119 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3120 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3121 		increment = map->stripe_len * nr_data_stripes(map);
3122 		mirror_num = 1;
3123 	} else {
3124 		increment = map->stripe_len;
3125 		mirror_num = 1;
3126 	}
3127 
3128 	path = btrfs_alloc_path();
3129 	if (!path)
3130 		return -ENOMEM;
3131 
3132 	ppath = btrfs_alloc_path();
3133 	if (!ppath) {
3134 		btrfs_free_path(path);
3135 		return -ENOMEM;
3136 	}
3137 
3138 	/*
3139 	 * work on commit root. The related disk blocks are static as
3140 	 * long as COW is applied. This means, it is save to rewrite
3141 	 * them to repair disk errors without any race conditions
3142 	 */
3143 	path->search_commit_root = 1;
3144 	path->skip_locking = 1;
3145 
3146 	ppath->search_commit_root = 1;
3147 	ppath->skip_locking = 1;
3148 	/*
3149 	 * trigger the readahead for extent tree csum tree and wait for
3150 	 * completion. During readahead, the scrub is officially paused
3151 	 * to not hold off transaction commits
3152 	 */
3153 	logical = base + offset;
3154 	physical_end = physical + nstripes * map->stripe_len;
3155 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3156 		get_raid56_logic_offset(physical_end, num,
3157 					map, &logic_end, NULL);
3158 		logic_end += base;
3159 	} else {
3160 		logic_end = logical + increment * nstripes;
3161 	}
3162 	wait_event(sctx->list_wait,
3163 		   atomic_read(&sctx->bios_in_flight) == 0);
3164 	scrub_blocked_if_needed(fs_info);
3165 
3166 	/* FIXME it might be better to start readahead at commit root */
3167 	key.objectid = logical;
3168 	key.type = BTRFS_EXTENT_ITEM_KEY;
3169 	key.offset = (u64)0;
3170 	key_end.objectid = logic_end;
3171 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3172 	key_end.offset = (u64)-1;
3173 	reada1 = btrfs_reada_add(root, &key, &key_end);
3174 
3175 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3176 	key.type = BTRFS_EXTENT_CSUM_KEY;
3177 	key.offset = logical;
3178 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3179 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3180 	key_end.offset = logic_end;
3181 	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3182 
3183 	if (!IS_ERR(reada1))
3184 		btrfs_reada_wait(reada1);
3185 	if (!IS_ERR(reada2))
3186 		btrfs_reada_wait(reada2);
3187 
3188 
3189 	/*
3190 	 * collect all data csums for the stripe to avoid seeking during
3191 	 * the scrub. This might currently (crc32) end up to be about 1MB
3192 	 */
3193 	blk_start_plug(&plug);
3194 
3195 	/*
3196 	 * now find all extents for each stripe and scrub them
3197 	 */
3198 	ret = 0;
3199 	while (physical < physical_end) {
3200 		/*
3201 		 * canceled?
3202 		 */
3203 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3204 		    atomic_read(&sctx->cancel_req)) {
3205 			ret = -ECANCELED;
3206 			goto out;
3207 		}
3208 		/*
3209 		 * check to see if we have to pause
3210 		 */
3211 		if (atomic_read(&fs_info->scrub_pause_req)) {
3212 			/* push queued extents */
3213 			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3214 			scrub_submit(sctx);
3215 			mutex_lock(&sctx->wr_ctx.wr_lock);
3216 			scrub_wr_submit(sctx);
3217 			mutex_unlock(&sctx->wr_ctx.wr_lock);
3218 			wait_event(sctx->list_wait,
3219 				   atomic_read(&sctx->bios_in_flight) == 0);
3220 			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3221 			scrub_blocked_if_needed(fs_info);
3222 		}
3223 
3224 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3225 			ret = get_raid56_logic_offset(physical, num, map,
3226 						      &logical,
3227 						      &stripe_logical);
3228 			logical += base;
3229 			if (ret) {
3230 				/* it is parity strip */
3231 				stripe_logical += base;
3232 				stripe_end = stripe_logical + increment;
3233 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3234 							  ppath, stripe_logical,
3235 							  stripe_end);
3236 				if (ret)
3237 					goto out;
3238 				goto skip;
3239 			}
3240 		}
3241 
3242 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3243 			key.type = BTRFS_METADATA_ITEM_KEY;
3244 		else
3245 			key.type = BTRFS_EXTENT_ITEM_KEY;
3246 		key.objectid = logical;
3247 		key.offset = (u64)-1;
3248 
3249 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3250 		if (ret < 0)
3251 			goto out;
3252 
3253 		if (ret > 0) {
3254 			ret = btrfs_previous_extent_item(root, path, 0);
3255 			if (ret < 0)
3256 				goto out;
3257 			if (ret > 0) {
3258 				/* there's no smaller item, so stick with the
3259 				 * larger one */
3260 				btrfs_release_path(path);
3261 				ret = btrfs_search_slot(NULL, root, &key,
3262 							path, 0, 0);
3263 				if (ret < 0)
3264 					goto out;
3265 			}
3266 		}
3267 
3268 		stop_loop = 0;
3269 		while (1) {
3270 			u64 bytes;
3271 
3272 			l = path->nodes[0];
3273 			slot = path->slots[0];
3274 			if (slot >= btrfs_header_nritems(l)) {
3275 				ret = btrfs_next_leaf(root, path);
3276 				if (ret == 0)
3277 					continue;
3278 				if (ret < 0)
3279 					goto out;
3280 
3281 				stop_loop = 1;
3282 				break;
3283 			}
3284 			btrfs_item_key_to_cpu(l, &key, slot);
3285 
3286 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3287 			    key.type != BTRFS_METADATA_ITEM_KEY)
3288 				goto next;
3289 
3290 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3291 				bytes = fs_info->nodesize;
3292 			else
3293 				bytes = key.offset;
3294 
3295 			if (key.objectid + bytes <= logical)
3296 				goto next;
3297 
3298 			if (key.objectid >= logical + map->stripe_len) {
3299 				/* out of this device extent */
3300 				if (key.objectid >= logic_end)
3301 					stop_loop = 1;
3302 				break;
3303 			}
3304 
3305 			extent = btrfs_item_ptr(l, slot,
3306 						struct btrfs_extent_item);
3307 			flags = btrfs_extent_flags(l, extent);
3308 			generation = btrfs_extent_generation(l, extent);
3309 
3310 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3311 			    (key.objectid < logical ||
3312 			     key.objectid + bytes >
3313 			     logical + map->stripe_len)) {
3314 				btrfs_err(fs_info,
3315 					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3316 				       key.objectid, logical);
3317 				spin_lock(&sctx->stat_lock);
3318 				sctx->stat.uncorrectable_errors++;
3319 				spin_unlock(&sctx->stat_lock);
3320 				goto next;
3321 			}
3322 
3323 again:
3324 			extent_logical = key.objectid;
3325 			extent_len = bytes;
3326 
3327 			/*
3328 			 * trim extent to this stripe
3329 			 */
3330 			if (extent_logical < logical) {
3331 				extent_len -= logical - extent_logical;
3332 				extent_logical = logical;
3333 			}
3334 			if (extent_logical + extent_len >
3335 			    logical + map->stripe_len) {
3336 				extent_len = logical + map->stripe_len -
3337 					     extent_logical;
3338 			}
3339 
3340 			extent_physical = extent_logical - logical + physical;
3341 			extent_dev = scrub_dev;
3342 			extent_mirror_num = mirror_num;
3343 			if (is_dev_replace)
3344 				scrub_remap_extent(fs_info, extent_logical,
3345 						   extent_len, &extent_physical,
3346 						   &extent_dev,
3347 						   &extent_mirror_num);
3348 
3349 			ret = btrfs_lookup_csums_range(csum_root,
3350 						       extent_logical,
3351 						       extent_logical +
3352 						       extent_len - 1,
3353 						       &sctx->csum_list, 1);
3354 			if (ret)
3355 				goto out;
3356 
3357 			ret = scrub_extent(sctx, extent_logical, extent_len,
3358 					   extent_physical, extent_dev, flags,
3359 					   generation, extent_mirror_num,
3360 					   extent_logical - logical + physical);
3361 
3362 			scrub_free_csums(sctx);
3363 
3364 			if (ret)
3365 				goto out;
3366 
3367 			if (extent_logical + extent_len <
3368 			    key.objectid + bytes) {
3369 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3370 					/*
3371 					 * loop until we find next data stripe
3372 					 * or we have finished all stripes.
3373 					 */
3374 loop:
3375 					physical += map->stripe_len;
3376 					ret = get_raid56_logic_offset(physical,
3377 							num, map, &logical,
3378 							&stripe_logical);
3379 					logical += base;
3380 
3381 					if (ret && physical < physical_end) {
3382 						stripe_logical += base;
3383 						stripe_end = stripe_logical +
3384 								increment;
3385 						ret = scrub_raid56_parity(sctx,
3386 							map, scrub_dev, ppath,
3387 							stripe_logical,
3388 							stripe_end);
3389 						if (ret)
3390 							goto out;
3391 						goto loop;
3392 					}
3393 				} else {
3394 					physical += map->stripe_len;
3395 					logical += increment;
3396 				}
3397 				if (logical < key.objectid + bytes) {
3398 					cond_resched();
3399 					goto again;
3400 				}
3401 
3402 				if (physical >= physical_end) {
3403 					stop_loop = 1;
3404 					break;
3405 				}
3406 			}
3407 next:
3408 			path->slots[0]++;
3409 		}
3410 		btrfs_release_path(path);
3411 skip:
3412 		logical += increment;
3413 		physical += map->stripe_len;
3414 		spin_lock(&sctx->stat_lock);
3415 		if (stop_loop)
3416 			sctx->stat.last_physical = map->stripes[num].physical +
3417 						   length;
3418 		else
3419 			sctx->stat.last_physical = physical;
3420 		spin_unlock(&sctx->stat_lock);
3421 		if (stop_loop)
3422 			break;
3423 	}
3424 out:
3425 	/* push queued extents */
3426 	scrub_submit(sctx);
3427 	mutex_lock(&sctx->wr_ctx.wr_lock);
3428 	scrub_wr_submit(sctx);
3429 	mutex_unlock(&sctx->wr_ctx.wr_lock);
3430 
3431 	blk_finish_plug(&plug);
3432 	btrfs_free_path(path);
3433 	btrfs_free_path(ppath);
3434 	return ret < 0 ? ret : 0;
3435 }
3436 
3437 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3438 					  struct btrfs_device *scrub_dev,
3439 					  u64 chunk_offset, u64 length,
3440 					  u64 dev_offset,
3441 					  struct btrfs_block_group_cache *cache,
3442 					  int is_dev_replace)
3443 {
3444 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3445 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3446 	struct map_lookup *map;
3447 	struct extent_map *em;
3448 	int i;
3449 	int ret = 0;
3450 
3451 	read_lock(&map_tree->map_tree.lock);
3452 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3453 	read_unlock(&map_tree->map_tree.lock);
3454 
3455 	if (!em) {
3456 		/*
3457 		 * Might have been an unused block group deleted by the cleaner
3458 		 * kthread or relocation.
3459 		 */
3460 		spin_lock(&cache->lock);
3461 		if (!cache->removed)
3462 			ret = -EINVAL;
3463 		spin_unlock(&cache->lock);
3464 
3465 		return ret;
3466 	}
3467 
3468 	map = em->map_lookup;
3469 	if (em->start != chunk_offset)
3470 		goto out;
3471 
3472 	if (em->len < length)
3473 		goto out;
3474 
3475 	for (i = 0; i < map->num_stripes; ++i) {
3476 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3477 		    map->stripes[i].physical == dev_offset) {
3478 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3479 					   chunk_offset, length,
3480 					   is_dev_replace);
3481 			if (ret)
3482 				goto out;
3483 		}
3484 	}
3485 out:
3486 	free_extent_map(em);
3487 
3488 	return ret;
3489 }
3490 
3491 static noinline_for_stack
3492 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3493 			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3494 			   int is_dev_replace)
3495 {
3496 	struct btrfs_dev_extent *dev_extent = NULL;
3497 	struct btrfs_path *path;
3498 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3499 	struct btrfs_root *root = fs_info->dev_root;
3500 	u64 length;
3501 	u64 chunk_offset;
3502 	int ret = 0;
3503 	int ro_set;
3504 	int slot;
3505 	struct extent_buffer *l;
3506 	struct btrfs_key key;
3507 	struct btrfs_key found_key;
3508 	struct btrfs_block_group_cache *cache;
3509 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3510 
3511 	path = btrfs_alloc_path();
3512 	if (!path)
3513 		return -ENOMEM;
3514 
3515 	path->reada = READA_FORWARD;
3516 	path->search_commit_root = 1;
3517 	path->skip_locking = 1;
3518 
3519 	key.objectid = scrub_dev->devid;
3520 	key.offset = 0ull;
3521 	key.type = BTRFS_DEV_EXTENT_KEY;
3522 
3523 	while (1) {
3524 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3525 		if (ret < 0)
3526 			break;
3527 		if (ret > 0) {
3528 			if (path->slots[0] >=
3529 			    btrfs_header_nritems(path->nodes[0])) {
3530 				ret = btrfs_next_leaf(root, path);
3531 				if (ret < 0)
3532 					break;
3533 				if (ret > 0) {
3534 					ret = 0;
3535 					break;
3536 				}
3537 			} else {
3538 				ret = 0;
3539 			}
3540 		}
3541 
3542 		l = path->nodes[0];
3543 		slot = path->slots[0];
3544 
3545 		btrfs_item_key_to_cpu(l, &found_key, slot);
3546 
3547 		if (found_key.objectid != scrub_dev->devid)
3548 			break;
3549 
3550 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3551 			break;
3552 
3553 		if (found_key.offset >= end)
3554 			break;
3555 
3556 		if (found_key.offset < key.offset)
3557 			break;
3558 
3559 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3560 		length = btrfs_dev_extent_length(l, dev_extent);
3561 
3562 		if (found_key.offset + length <= start)
3563 			goto skip;
3564 
3565 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3566 
3567 		/*
3568 		 * get a reference on the corresponding block group to prevent
3569 		 * the chunk from going away while we scrub it
3570 		 */
3571 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3572 
3573 		/* some chunks are removed but not committed to disk yet,
3574 		 * continue scrubbing */
3575 		if (!cache)
3576 			goto skip;
3577 
3578 		/*
3579 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3580 		 * to avoid deadlock caused by:
3581 		 * btrfs_inc_block_group_ro()
3582 		 * -> btrfs_wait_for_commit()
3583 		 * -> btrfs_commit_transaction()
3584 		 * -> btrfs_scrub_pause()
3585 		 */
3586 		scrub_pause_on(fs_info);
3587 		ret = btrfs_inc_block_group_ro(root, cache);
3588 		if (!ret && is_dev_replace) {
3589 			/*
3590 			 * If we are doing a device replace wait for any tasks
3591 			 * that started dellaloc right before we set the block
3592 			 * group to RO mode, as they might have just allocated
3593 			 * an extent from it or decided they could do a nocow
3594 			 * write. And if any such tasks did that, wait for their
3595 			 * ordered extents to complete and then commit the
3596 			 * current transaction, so that we can later see the new
3597 			 * extent items in the extent tree - the ordered extents
3598 			 * create delayed data references (for cow writes) when
3599 			 * they complete, which will be run and insert the
3600 			 * corresponding extent items into the extent tree when
3601 			 * we commit the transaction they used when running
3602 			 * inode.c:btrfs_finish_ordered_io(). We later use
3603 			 * the commit root of the extent tree to find extents
3604 			 * to copy from the srcdev into the tgtdev, and we don't
3605 			 * want to miss any new extents.
3606 			 */
3607 			btrfs_wait_block_group_reservations(cache);
3608 			btrfs_wait_nocow_writers(cache);
3609 			ret = btrfs_wait_ordered_roots(fs_info, -1,
3610 						       cache->key.objectid,
3611 						       cache->key.offset);
3612 			if (ret > 0) {
3613 				struct btrfs_trans_handle *trans;
3614 
3615 				trans = btrfs_join_transaction(root);
3616 				if (IS_ERR(trans))
3617 					ret = PTR_ERR(trans);
3618 				else
3619 					ret = btrfs_commit_transaction(trans);
3620 				if (ret) {
3621 					scrub_pause_off(fs_info);
3622 					btrfs_put_block_group(cache);
3623 					break;
3624 				}
3625 			}
3626 		}
3627 		scrub_pause_off(fs_info);
3628 
3629 		if (ret == 0) {
3630 			ro_set = 1;
3631 		} else if (ret == -ENOSPC) {
3632 			/*
3633 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3634 			 * failed in creating new chunk for metadata.
3635 			 * It is not a problem for scrub/replace, because
3636 			 * metadata are always cowed, and our scrub paused
3637 			 * commit_transactions.
3638 			 */
3639 			ro_set = 0;
3640 		} else {
3641 			btrfs_warn(fs_info,
3642 				   "failed setting block group ro, ret=%d\n",
3643 				   ret);
3644 			btrfs_put_block_group(cache);
3645 			break;
3646 		}
3647 
3648 		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3649 		dev_replace->cursor_right = found_key.offset + length;
3650 		dev_replace->cursor_left = found_key.offset;
3651 		dev_replace->item_needs_writeback = 1;
3652 		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3653 		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3654 				  found_key.offset, cache, is_dev_replace);
3655 
3656 		/*
3657 		 * flush, submit all pending read and write bios, afterwards
3658 		 * wait for them.
3659 		 * Note that in the dev replace case, a read request causes
3660 		 * write requests that are submitted in the read completion
3661 		 * worker. Therefore in the current situation, it is required
3662 		 * that all write requests are flushed, so that all read and
3663 		 * write requests are really completed when bios_in_flight
3664 		 * changes to 0.
3665 		 */
3666 		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3667 		scrub_submit(sctx);
3668 		mutex_lock(&sctx->wr_ctx.wr_lock);
3669 		scrub_wr_submit(sctx);
3670 		mutex_unlock(&sctx->wr_ctx.wr_lock);
3671 
3672 		wait_event(sctx->list_wait,
3673 			   atomic_read(&sctx->bios_in_flight) == 0);
3674 
3675 		scrub_pause_on(fs_info);
3676 
3677 		/*
3678 		 * must be called before we decrease @scrub_paused.
3679 		 * make sure we don't block transaction commit while
3680 		 * we are waiting pending workers finished.
3681 		 */
3682 		wait_event(sctx->list_wait,
3683 			   atomic_read(&sctx->workers_pending) == 0);
3684 		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3685 
3686 		scrub_pause_off(fs_info);
3687 
3688 		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3689 		dev_replace->cursor_left = dev_replace->cursor_right;
3690 		dev_replace->item_needs_writeback = 1;
3691 		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3692 
3693 		if (ro_set)
3694 			btrfs_dec_block_group_ro(cache);
3695 
3696 		/*
3697 		 * We might have prevented the cleaner kthread from deleting
3698 		 * this block group if it was already unused because we raced
3699 		 * and set it to RO mode first. So add it back to the unused
3700 		 * list, otherwise it might not ever be deleted unless a manual
3701 		 * balance is triggered or it becomes used and unused again.
3702 		 */
3703 		spin_lock(&cache->lock);
3704 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3705 		    btrfs_block_group_used(&cache->item) == 0) {
3706 			spin_unlock(&cache->lock);
3707 			spin_lock(&fs_info->unused_bgs_lock);
3708 			if (list_empty(&cache->bg_list)) {
3709 				btrfs_get_block_group(cache);
3710 				list_add_tail(&cache->bg_list,
3711 					      &fs_info->unused_bgs);
3712 			}
3713 			spin_unlock(&fs_info->unused_bgs_lock);
3714 		} else {
3715 			spin_unlock(&cache->lock);
3716 		}
3717 
3718 		btrfs_put_block_group(cache);
3719 		if (ret)
3720 			break;
3721 		if (is_dev_replace &&
3722 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3723 			ret = -EIO;
3724 			break;
3725 		}
3726 		if (sctx->stat.malloc_errors > 0) {
3727 			ret = -ENOMEM;
3728 			break;
3729 		}
3730 skip:
3731 		key.offset = found_key.offset + length;
3732 		btrfs_release_path(path);
3733 	}
3734 
3735 	btrfs_free_path(path);
3736 
3737 	return ret;
3738 }
3739 
3740 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3741 					   struct btrfs_device *scrub_dev)
3742 {
3743 	int	i;
3744 	u64	bytenr;
3745 	u64	gen;
3746 	int	ret;
3747 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3748 
3749 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3750 		return -EIO;
3751 
3752 	/* Seed devices of a new filesystem has their own generation. */
3753 	if (scrub_dev->fs_devices != fs_info->fs_devices)
3754 		gen = scrub_dev->generation;
3755 	else
3756 		gen = fs_info->last_trans_committed;
3757 
3758 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3759 		bytenr = btrfs_sb_offset(i);
3760 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3761 		    scrub_dev->commit_total_bytes)
3762 			break;
3763 
3764 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3765 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3766 				  NULL, 1, bytenr);
3767 		if (ret)
3768 			return ret;
3769 	}
3770 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3771 
3772 	return 0;
3773 }
3774 
3775 /*
3776  * get a reference count on fs_info->scrub_workers. start worker if necessary
3777  */
3778 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3779 						int is_dev_replace)
3780 {
3781 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3782 	int max_active = fs_info->thread_pool_size;
3783 
3784 	if (fs_info->scrub_workers_refcnt == 0) {
3785 		if (is_dev_replace)
3786 			fs_info->scrub_workers =
3787 				btrfs_alloc_workqueue(fs_info, "scrub", flags,
3788 						      1, 4);
3789 		else
3790 			fs_info->scrub_workers =
3791 				btrfs_alloc_workqueue(fs_info, "scrub", flags,
3792 						      max_active, 4);
3793 		if (!fs_info->scrub_workers)
3794 			goto fail_scrub_workers;
3795 
3796 		fs_info->scrub_wr_completion_workers =
3797 			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3798 					      max_active, 2);
3799 		if (!fs_info->scrub_wr_completion_workers)
3800 			goto fail_scrub_wr_completion_workers;
3801 
3802 		fs_info->scrub_nocow_workers =
3803 			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
3804 		if (!fs_info->scrub_nocow_workers)
3805 			goto fail_scrub_nocow_workers;
3806 		fs_info->scrub_parity_workers =
3807 			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3808 					      max_active, 2);
3809 		if (!fs_info->scrub_parity_workers)
3810 			goto fail_scrub_parity_workers;
3811 	}
3812 	++fs_info->scrub_workers_refcnt;
3813 	return 0;
3814 
3815 fail_scrub_parity_workers:
3816 	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3817 fail_scrub_nocow_workers:
3818 	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3819 fail_scrub_wr_completion_workers:
3820 	btrfs_destroy_workqueue(fs_info->scrub_workers);
3821 fail_scrub_workers:
3822 	return -ENOMEM;
3823 }
3824 
3825 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
3826 {
3827 	if (--fs_info->scrub_workers_refcnt == 0) {
3828 		btrfs_destroy_workqueue(fs_info->scrub_workers);
3829 		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3830 		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3831 		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3832 	}
3833 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
3834 }
3835 
3836 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3837 		    u64 end, struct btrfs_scrub_progress *progress,
3838 		    int readonly, int is_dev_replace)
3839 {
3840 	struct scrub_ctx *sctx;
3841 	int ret;
3842 	struct btrfs_device *dev;
3843 	struct rcu_string *name;
3844 
3845 	if (btrfs_fs_closing(fs_info))
3846 		return -EINVAL;
3847 
3848 	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3849 		/*
3850 		 * in this case scrub is unable to calculate the checksum
3851 		 * the way scrub is implemented. Do not handle this
3852 		 * situation at all because it won't ever happen.
3853 		 */
3854 		btrfs_err(fs_info,
3855 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3856 		       fs_info->nodesize,
3857 		       BTRFS_STRIPE_LEN);
3858 		return -EINVAL;
3859 	}
3860 
3861 	if (fs_info->sectorsize != PAGE_SIZE) {
3862 		/* not supported for data w/o checksums */
3863 		btrfs_err_rl(fs_info,
3864 			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3865 		       fs_info->sectorsize, PAGE_SIZE);
3866 		return -EINVAL;
3867 	}
3868 
3869 	if (fs_info->nodesize >
3870 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3871 	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3872 		/*
3873 		 * would exhaust the array bounds of pagev member in
3874 		 * struct scrub_block
3875 		 */
3876 		btrfs_err(fs_info,
3877 			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3878 		       fs_info->nodesize,
3879 		       SCRUB_MAX_PAGES_PER_BLOCK,
3880 		       fs_info->sectorsize,
3881 		       SCRUB_MAX_PAGES_PER_BLOCK);
3882 		return -EINVAL;
3883 	}
3884 
3885 
3886 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3887 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3888 	if (!dev || (dev->missing && !is_dev_replace)) {
3889 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3890 		return -ENODEV;
3891 	}
3892 
3893 	if (!is_dev_replace && !readonly && !dev->writeable) {
3894 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3895 		rcu_read_lock();
3896 		name = rcu_dereference(dev->name);
3897 		btrfs_err(fs_info, "scrub: device %s is not writable",
3898 			  name->str);
3899 		rcu_read_unlock();
3900 		return -EROFS;
3901 	}
3902 
3903 	mutex_lock(&fs_info->scrub_lock);
3904 	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
3905 		mutex_unlock(&fs_info->scrub_lock);
3906 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3907 		return -EIO;
3908 	}
3909 
3910 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3911 	if (dev->scrub_device ||
3912 	    (!is_dev_replace &&
3913 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3914 		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3915 		mutex_unlock(&fs_info->scrub_lock);
3916 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3917 		return -EINPROGRESS;
3918 	}
3919 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3920 
3921 	ret = scrub_workers_get(fs_info, is_dev_replace);
3922 	if (ret) {
3923 		mutex_unlock(&fs_info->scrub_lock);
3924 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3925 		return ret;
3926 	}
3927 
3928 	sctx = scrub_setup_ctx(dev, is_dev_replace);
3929 	if (IS_ERR(sctx)) {
3930 		mutex_unlock(&fs_info->scrub_lock);
3931 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3932 		scrub_workers_put(fs_info);
3933 		return PTR_ERR(sctx);
3934 	}
3935 	sctx->readonly = readonly;
3936 	dev->scrub_device = sctx;
3937 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3938 
3939 	/*
3940 	 * checking @scrub_pause_req here, we can avoid
3941 	 * race between committing transaction and scrubbing.
3942 	 */
3943 	__scrub_blocked_if_needed(fs_info);
3944 	atomic_inc(&fs_info->scrubs_running);
3945 	mutex_unlock(&fs_info->scrub_lock);
3946 
3947 	if (!is_dev_replace) {
3948 		/*
3949 		 * by holding device list mutex, we can
3950 		 * kick off writing super in log tree sync.
3951 		 */
3952 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3953 		ret = scrub_supers(sctx, dev);
3954 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3955 	}
3956 
3957 	if (!ret)
3958 		ret = scrub_enumerate_chunks(sctx, dev, start, end,
3959 					     is_dev_replace);
3960 
3961 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3962 	atomic_dec(&fs_info->scrubs_running);
3963 	wake_up(&fs_info->scrub_pause_wait);
3964 
3965 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3966 
3967 	if (progress)
3968 		memcpy(progress, &sctx->stat, sizeof(*progress));
3969 
3970 	mutex_lock(&fs_info->scrub_lock);
3971 	dev->scrub_device = NULL;
3972 	scrub_workers_put(fs_info);
3973 	mutex_unlock(&fs_info->scrub_lock);
3974 
3975 	scrub_put_ctx(sctx);
3976 
3977 	return ret;
3978 }
3979 
3980 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3981 {
3982 	mutex_lock(&fs_info->scrub_lock);
3983 	atomic_inc(&fs_info->scrub_pause_req);
3984 	while (atomic_read(&fs_info->scrubs_paused) !=
3985 	       atomic_read(&fs_info->scrubs_running)) {
3986 		mutex_unlock(&fs_info->scrub_lock);
3987 		wait_event(fs_info->scrub_pause_wait,
3988 			   atomic_read(&fs_info->scrubs_paused) ==
3989 			   atomic_read(&fs_info->scrubs_running));
3990 		mutex_lock(&fs_info->scrub_lock);
3991 	}
3992 	mutex_unlock(&fs_info->scrub_lock);
3993 }
3994 
3995 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3996 {
3997 	atomic_dec(&fs_info->scrub_pause_req);
3998 	wake_up(&fs_info->scrub_pause_wait);
3999 }
4000 
4001 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4002 {
4003 	mutex_lock(&fs_info->scrub_lock);
4004 	if (!atomic_read(&fs_info->scrubs_running)) {
4005 		mutex_unlock(&fs_info->scrub_lock);
4006 		return -ENOTCONN;
4007 	}
4008 
4009 	atomic_inc(&fs_info->scrub_cancel_req);
4010 	while (atomic_read(&fs_info->scrubs_running)) {
4011 		mutex_unlock(&fs_info->scrub_lock);
4012 		wait_event(fs_info->scrub_pause_wait,
4013 			   atomic_read(&fs_info->scrubs_running) == 0);
4014 		mutex_lock(&fs_info->scrub_lock);
4015 	}
4016 	atomic_dec(&fs_info->scrub_cancel_req);
4017 	mutex_unlock(&fs_info->scrub_lock);
4018 
4019 	return 0;
4020 }
4021 
4022 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4023 			   struct btrfs_device *dev)
4024 {
4025 	struct scrub_ctx *sctx;
4026 
4027 	mutex_lock(&fs_info->scrub_lock);
4028 	sctx = dev->scrub_device;
4029 	if (!sctx) {
4030 		mutex_unlock(&fs_info->scrub_lock);
4031 		return -ENOTCONN;
4032 	}
4033 	atomic_inc(&sctx->cancel_req);
4034 	while (dev->scrub_device) {
4035 		mutex_unlock(&fs_info->scrub_lock);
4036 		wait_event(fs_info->scrub_pause_wait,
4037 			   dev->scrub_device == NULL);
4038 		mutex_lock(&fs_info->scrub_lock);
4039 	}
4040 	mutex_unlock(&fs_info->scrub_lock);
4041 
4042 	return 0;
4043 }
4044 
4045 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4046 			 struct btrfs_scrub_progress *progress)
4047 {
4048 	struct btrfs_device *dev;
4049 	struct scrub_ctx *sctx = NULL;
4050 
4051 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4052 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4053 	if (dev)
4054 		sctx = dev->scrub_device;
4055 	if (sctx)
4056 		memcpy(progress, &sctx->stat, sizeof(*progress));
4057 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4058 
4059 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4060 }
4061 
4062 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4063 			       u64 extent_logical, u64 extent_len,
4064 			       u64 *extent_physical,
4065 			       struct btrfs_device **extent_dev,
4066 			       int *extent_mirror_num)
4067 {
4068 	u64 mapped_length;
4069 	struct btrfs_bio *bbio = NULL;
4070 	int ret;
4071 
4072 	mapped_length = extent_len;
4073 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4074 			      &mapped_length, &bbio, 0);
4075 	if (ret || !bbio || mapped_length < extent_len ||
4076 	    !bbio->stripes[0].dev->bdev) {
4077 		btrfs_put_bbio(bbio);
4078 		return;
4079 	}
4080 
4081 	*extent_physical = bbio->stripes[0].physical;
4082 	*extent_mirror_num = bbio->mirror_num;
4083 	*extent_dev = bbio->stripes[0].dev;
4084 	btrfs_put_bbio(bbio);
4085 }
4086 
4087 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
4088 			      struct scrub_wr_ctx *wr_ctx,
4089 			      struct btrfs_fs_info *fs_info,
4090 			      struct btrfs_device *dev,
4091 			      int is_dev_replace)
4092 {
4093 	WARN_ON(wr_ctx->wr_curr_bio != NULL);
4094 
4095 	mutex_init(&wr_ctx->wr_lock);
4096 	wr_ctx->wr_curr_bio = NULL;
4097 	if (!is_dev_replace)
4098 		return 0;
4099 
4100 	WARN_ON(!dev->bdev);
4101 	wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
4102 	wr_ctx->tgtdev = dev;
4103 	atomic_set(&wr_ctx->flush_all_writes, 0);
4104 	return 0;
4105 }
4106 
4107 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
4108 {
4109 	mutex_lock(&wr_ctx->wr_lock);
4110 	kfree(wr_ctx->wr_curr_bio);
4111 	wr_ctx->wr_curr_bio = NULL;
4112 	mutex_unlock(&wr_ctx->wr_lock);
4113 }
4114 
4115 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4116 			    int mirror_num, u64 physical_for_dev_replace)
4117 {
4118 	struct scrub_copy_nocow_ctx *nocow_ctx;
4119 	struct btrfs_fs_info *fs_info = sctx->fs_info;
4120 
4121 	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4122 	if (!nocow_ctx) {
4123 		spin_lock(&sctx->stat_lock);
4124 		sctx->stat.malloc_errors++;
4125 		spin_unlock(&sctx->stat_lock);
4126 		return -ENOMEM;
4127 	}
4128 
4129 	scrub_pending_trans_workers_inc(sctx);
4130 
4131 	nocow_ctx->sctx = sctx;
4132 	nocow_ctx->logical = logical;
4133 	nocow_ctx->len = len;
4134 	nocow_ctx->mirror_num = mirror_num;
4135 	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4136 	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4137 			copy_nocow_pages_worker, NULL, NULL);
4138 	INIT_LIST_HEAD(&nocow_ctx->inodes);
4139 	btrfs_queue_work(fs_info->scrub_nocow_workers,
4140 			 &nocow_ctx->work);
4141 
4142 	return 0;
4143 }
4144 
4145 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4146 {
4147 	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4148 	struct scrub_nocow_inode *nocow_inode;
4149 
4150 	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4151 	if (!nocow_inode)
4152 		return -ENOMEM;
4153 	nocow_inode->inum = inum;
4154 	nocow_inode->offset = offset;
4155 	nocow_inode->root = root;
4156 	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4157 	return 0;
4158 }
4159 
4160 #define COPY_COMPLETE 1
4161 
4162 static void copy_nocow_pages_worker(struct btrfs_work *work)
4163 {
4164 	struct scrub_copy_nocow_ctx *nocow_ctx =
4165 		container_of(work, struct scrub_copy_nocow_ctx, work);
4166 	struct scrub_ctx *sctx = nocow_ctx->sctx;
4167 	struct btrfs_fs_info *fs_info = sctx->fs_info;
4168 	struct btrfs_root *root = fs_info->extent_root;
4169 	u64 logical = nocow_ctx->logical;
4170 	u64 len = nocow_ctx->len;
4171 	int mirror_num = nocow_ctx->mirror_num;
4172 	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4173 	int ret;
4174 	struct btrfs_trans_handle *trans = NULL;
4175 	struct btrfs_path *path;
4176 	int not_written = 0;
4177 
4178 	path = btrfs_alloc_path();
4179 	if (!path) {
4180 		spin_lock(&sctx->stat_lock);
4181 		sctx->stat.malloc_errors++;
4182 		spin_unlock(&sctx->stat_lock);
4183 		not_written = 1;
4184 		goto out;
4185 	}
4186 
4187 	trans = btrfs_join_transaction(root);
4188 	if (IS_ERR(trans)) {
4189 		not_written = 1;
4190 		goto out;
4191 	}
4192 
4193 	ret = iterate_inodes_from_logical(logical, fs_info, path,
4194 					  record_inode_for_nocow, nocow_ctx);
4195 	if (ret != 0 && ret != -ENOENT) {
4196 		btrfs_warn(fs_info,
4197 			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4198 			   logical, physical_for_dev_replace, len, mirror_num,
4199 			   ret);
4200 		not_written = 1;
4201 		goto out;
4202 	}
4203 
4204 	btrfs_end_transaction(trans);
4205 	trans = NULL;
4206 	while (!list_empty(&nocow_ctx->inodes)) {
4207 		struct scrub_nocow_inode *entry;
4208 		entry = list_first_entry(&nocow_ctx->inodes,
4209 					 struct scrub_nocow_inode,
4210 					 list);
4211 		list_del_init(&entry->list);
4212 		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4213 						 entry->root, nocow_ctx);
4214 		kfree(entry);
4215 		if (ret == COPY_COMPLETE) {
4216 			ret = 0;
4217 			break;
4218 		} else if (ret) {
4219 			break;
4220 		}
4221 	}
4222 out:
4223 	while (!list_empty(&nocow_ctx->inodes)) {
4224 		struct scrub_nocow_inode *entry;
4225 		entry = list_first_entry(&nocow_ctx->inodes,
4226 					 struct scrub_nocow_inode,
4227 					 list);
4228 		list_del_init(&entry->list);
4229 		kfree(entry);
4230 	}
4231 	if (trans && !IS_ERR(trans))
4232 		btrfs_end_transaction(trans);
4233 	if (not_written)
4234 		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4235 					    num_uncorrectable_read_errors);
4236 
4237 	btrfs_free_path(path);
4238 	kfree(nocow_ctx);
4239 
4240 	scrub_pending_trans_workers_dec(sctx);
4241 }
4242 
4243 static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
4244 				 u64 logical)
4245 {
4246 	struct extent_state *cached_state = NULL;
4247 	struct btrfs_ordered_extent *ordered;
4248 	struct extent_io_tree *io_tree;
4249 	struct extent_map *em;
4250 	u64 lockstart = start, lockend = start + len - 1;
4251 	int ret = 0;
4252 
4253 	io_tree = &BTRFS_I(inode)->io_tree;
4254 
4255 	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4256 	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4257 	if (ordered) {
4258 		btrfs_put_ordered_extent(ordered);
4259 		ret = 1;
4260 		goto out_unlock;
4261 	}
4262 
4263 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4264 	if (IS_ERR(em)) {
4265 		ret = PTR_ERR(em);
4266 		goto out_unlock;
4267 	}
4268 
4269 	/*
4270 	 * This extent does not actually cover the logical extent anymore,
4271 	 * move on to the next inode.
4272 	 */
4273 	if (em->block_start > logical ||
4274 	    em->block_start + em->block_len < logical + len) {
4275 		free_extent_map(em);
4276 		ret = 1;
4277 		goto out_unlock;
4278 	}
4279 	free_extent_map(em);
4280 
4281 out_unlock:
4282 	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4283 			     GFP_NOFS);
4284 	return ret;
4285 }
4286 
4287 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4288 				      struct scrub_copy_nocow_ctx *nocow_ctx)
4289 {
4290 	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4291 	struct btrfs_key key;
4292 	struct inode *inode;
4293 	struct page *page;
4294 	struct btrfs_root *local_root;
4295 	struct extent_io_tree *io_tree;
4296 	u64 physical_for_dev_replace;
4297 	u64 nocow_ctx_logical;
4298 	u64 len = nocow_ctx->len;
4299 	unsigned long index;
4300 	int srcu_index;
4301 	int ret = 0;
4302 	int err = 0;
4303 
4304 	key.objectid = root;
4305 	key.type = BTRFS_ROOT_ITEM_KEY;
4306 	key.offset = (u64)-1;
4307 
4308 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4309 
4310 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4311 	if (IS_ERR(local_root)) {
4312 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4313 		return PTR_ERR(local_root);
4314 	}
4315 
4316 	key.type = BTRFS_INODE_ITEM_KEY;
4317 	key.objectid = inum;
4318 	key.offset = 0;
4319 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4320 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4321 	if (IS_ERR(inode))
4322 		return PTR_ERR(inode);
4323 
4324 	/* Avoid truncate/dio/punch hole.. */
4325 	inode_lock(inode);
4326 	inode_dio_wait(inode);
4327 
4328 	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4329 	io_tree = &BTRFS_I(inode)->io_tree;
4330 	nocow_ctx_logical = nocow_ctx->logical;
4331 
4332 	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
4333 	if (ret) {
4334 		ret = ret > 0 ? 0 : ret;
4335 		goto out;
4336 	}
4337 
4338 	while (len >= PAGE_SIZE) {
4339 		index = offset >> PAGE_SHIFT;
4340 again:
4341 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4342 		if (!page) {
4343 			btrfs_err(fs_info, "find_or_create_page() failed");
4344 			ret = -ENOMEM;
4345 			goto out;
4346 		}
4347 
4348 		if (PageUptodate(page)) {
4349 			if (PageDirty(page))
4350 				goto next_page;
4351 		} else {
4352 			ClearPageError(page);
4353 			err = extent_read_full_page(io_tree, page,
4354 							   btrfs_get_extent,
4355 							   nocow_ctx->mirror_num);
4356 			if (err) {
4357 				ret = err;
4358 				goto next_page;
4359 			}
4360 
4361 			lock_page(page);
4362 			/*
4363 			 * If the page has been remove from the page cache,
4364 			 * the data on it is meaningless, because it may be
4365 			 * old one, the new data may be written into the new
4366 			 * page in the page cache.
4367 			 */
4368 			if (page->mapping != inode->i_mapping) {
4369 				unlock_page(page);
4370 				put_page(page);
4371 				goto again;
4372 			}
4373 			if (!PageUptodate(page)) {
4374 				ret = -EIO;
4375 				goto next_page;
4376 			}
4377 		}
4378 
4379 		ret = check_extent_to_block(inode, offset, len,
4380 					    nocow_ctx_logical);
4381 		if (ret) {
4382 			ret = ret > 0 ? 0 : ret;
4383 			goto next_page;
4384 		}
4385 
4386 		err = write_page_nocow(nocow_ctx->sctx,
4387 				       physical_for_dev_replace, page);
4388 		if (err)
4389 			ret = err;
4390 next_page:
4391 		unlock_page(page);
4392 		put_page(page);
4393 
4394 		if (ret)
4395 			break;
4396 
4397 		offset += PAGE_SIZE;
4398 		physical_for_dev_replace += PAGE_SIZE;
4399 		nocow_ctx_logical += PAGE_SIZE;
4400 		len -= PAGE_SIZE;
4401 	}
4402 	ret = COPY_COMPLETE;
4403 out:
4404 	inode_unlock(inode);
4405 	iput(inode);
4406 	return ret;
4407 }
4408 
4409 static int write_page_nocow(struct scrub_ctx *sctx,
4410 			    u64 physical_for_dev_replace, struct page *page)
4411 {
4412 	struct bio *bio;
4413 	struct btrfs_device *dev;
4414 	int ret;
4415 
4416 	dev = sctx->wr_ctx.tgtdev;
4417 	if (!dev)
4418 		return -EIO;
4419 	if (!dev->bdev) {
4420 		btrfs_warn_rl(dev->fs_info,
4421 			"scrub write_page_nocow(bdev == NULL) is unexpected");
4422 		return -EIO;
4423 	}
4424 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4425 	if (!bio) {
4426 		spin_lock(&sctx->stat_lock);
4427 		sctx->stat.malloc_errors++;
4428 		spin_unlock(&sctx->stat_lock);
4429 		return -ENOMEM;
4430 	}
4431 	bio->bi_iter.bi_size = 0;
4432 	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4433 	bio->bi_bdev = dev->bdev;
4434 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4435 	ret = bio_add_page(bio, page, PAGE_SIZE, 0);
4436 	if (ret != PAGE_SIZE) {
4437 leave_with_eio:
4438 		bio_put(bio);
4439 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4440 		return -EIO;
4441 	}
4442 
4443 	if (btrfsic_submit_bio_wait(bio))
4444 		goto leave_with_eio;
4445 
4446 	bio_put(bio);
4447 	return 0;
4448 }
4449