xref: /linux/fs/btrfs/scrub.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include <linux/sched/mm.h>
22 #include "ctree.h"
23 #include "volumes.h"
24 #include "disk-io.h"
25 #include "ordered-data.h"
26 #include "transaction.h"
27 #include "backref.h"
28 #include "extent_io.h"
29 #include "dev-replace.h"
30 #include "check-integrity.h"
31 #include "rcu-string.h"
32 #include "raid56.h"
33 
34 /*
35  * This is only the first step towards a full-features scrub. It reads all
36  * extent and super block and verifies the checksums. In case a bad checksum
37  * is found or the extent cannot be read, good data will be written back if
38  * any can be found.
39  *
40  * Future enhancements:
41  *  - In case an unrepairable extent is encountered, track which files are
42  *    affected and report them
43  *  - track and record media errors, throw out bad devices
44  *  - add a mode to also read unallocated space
45  */
46 
47 struct scrub_block;
48 struct scrub_ctx;
49 
50 /*
51  * the following three values only influence the performance.
52  * The last one configures the number of parallel and outstanding I/O
53  * operations. The first two values configure an upper limit for the number
54  * of (dynamically allocated) pages that are added to a bio.
55  */
56 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
57 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
58 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
59 
60 /*
61  * the following value times PAGE_SIZE needs to be large enough to match the
62  * largest node/leaf/sector size that shall be supported.
63  * Values larger than BTRFS_STRIPE_LEN are not supported.
64  */
65 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
66 
67 struct scrub_recover {
68 	refcount_t		refs;
69 	struct btrfs_bio	*bbio;
70 	u64			map_length;
71 };
72 
73 struct scrub_page {
74 	struct scrub_block	*sblock;
75 	struct page		*page;
76 	struct btrfs_device	*dev;
77 	struct list_head	list;
78 	u64			flags;  /* extent flags */
79 	u64			generation;
80 	u64			logical;
81 	u64			physical;
82 	u64			physical_for_dev_replace;
83 	atomic_t		refs;
84 	struct {
85 		unsigned int	mirror_num:8;
86 		unsigned int	have_csum:1;
87 		unsigned int	io_error:1;
88 	};
89 	u8			csum[BTRFS_CSUM_SIZE];
90 
91 	struct scrub_recover	*recover;
92 };
93 
94 struct scrub_bio {
95 	int			index;
96 	struct scrub_ctx	*sctx;
97 	struct btrfs_device	*dev;
98 	struct bio		*bio;
99 	blk_status_t		status;
100 	u64			logical;
101 	u64			physical;
102 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
103 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
104 #else
105 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
106 #endif
107 	int			page_count;
108 	int			next_free;
109 	struct btrfs_work	work;
110 };
111 
112 struct scrub_block {
113 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
114 	int			page_count;
115 	atomic_t		outstanding_pages;
116 	refcount_t		refs; /* free mem on transition to zero */
117 	struct scrub_ctx	*sctx;
118 	struct scrub_parity	*sparity;
119 	struct {
120 		unsigned int	header_error:1;
121 		unsigned int	checksum_error:1;
122 		unsigned int	no_io_error_seen:1;
123 		unsigned int	generation_error:1; /* also sets header_error */
124 
125 		/* The following is for the data used to check parity */
126 		/* It is for the data with checksum */
127 		unsigned int	data_corrected:1;
128 	};
129 	struct btrfs_work	work;
130 };
131 
132 /* Used for the chunks with parity stripe such RAID5/6 */
133 struct scrub_parity {
134 	struct scrub_ctx	*sctx;
135 
136 	struct btrfs_device	*scrub_dev;
137 
138 	u64			logic_start;
139 
140 	u64			logic_end;
141 
142 	int			nsectors;
143 
144 	u64			stripe_len;
145 
146 	refcount_t		refs;
147 
148 	struct list_head	spages;
149 
150 	/* Work of parity check and repair */
151 	struct btrfs_work	work;
152 
153 	/* Mark the parity blocks which have data */
154 	unsigned long		*dbitmap;
155 
156 	/*
157 	 * Mark the parity blocks which have data, but errors happen when
158 	 * read data or check data
159 	 */
160 	unsigned long		*ebitmap;
161 
162 	unsigned long		bitmap[0];
163 };
164 
165 struct scrub_ctx {
166 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
167 	struct btrfs_fs_info	*fs_info;
168 	int			first_free;
169 	int			curr;
170 	atomic_t		bios_in_flight;
171 	atomic_t		workers_pending;
172 	spinlock_t		list_lock;
173 	wait_queue_head_t	list_wait;
174 	u16			csum_size;
175 	struct list_head	csum_list;
176 	atomic_t		cancel_req;
177 	int			readonly;
178 	int			pages_per_rd_bio;
179 
180 	int			is_dev_replace;
181 
182 	struct scrub_bio        *wr_curr_bio;
183 	struct mutex            wr_lock;
184 	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
185 	struct btrfs_device     *wr_tgtdev;
186 	bool                    flush_all_writes;
187 
188 	/*
189 	 * statistics
190 	 */
191 	struct btrfs_scrub_progress stat;
192 	spinlock_t		stat_lock;
193 
194 	/*
195 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
196 	 * decrement bios_in_flight and workers_pending and then do a wakeup
197 	 * on the list_wait wait queue. We must ensure the main scrub task
198 	 * doesn't free the scrub context before or while the workers are
199 	 * doing the wakeup() call.
200 	 */
201 	refcount_t              refs;
202 };
203 
204 struct scrub_fixup_nodatasum {
205 	struct scrub_ctx	*sctx;
206 	struct btrfs_device	*dev;
207 	u64			logical;
208 	struct btrfs_root	*root;
209 	struct btrfs_work	work;
210 	int			mirror_num;
211 };
212 
213 struct scrub_nocow_inode {
214 	u64			inum;
215 	u64			offset;
216 	u64			root;
217 	struct list_head	list;
218 };
219 
220 struct scrub_copy_nocow_ctx {
221 	struct scrub_ctx	*sctx;
222 	u64			logical;
223 	u64			len;
224 	int			mirror_num;
225 	u64			physical_for_dev_replace;
226 	struct list_head	inodes;
227 	struct btrfs_work	work;
228 };
229 
230 struct scrub_warning {
231 	struct btrfs_path	*path;
232 	u64			extent_item_size;
233 	const char		*errstr;
234 	u64			physical;
235 	u64			logical;
236 	struct btrfs_device	*dev;
237 };
238 
239 struct full_stripe_lock {
240 	struct rb_node node;
241 	u64 logical;
242 	u64 refs;
243 	struct mutex mutex;
244 };
245 
246 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
247 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
248 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
249 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
250 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
251 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
252 				     struct scrub_block *sblocks_for_recheck);
253 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
254 				struct scrub_block *sblock,
255 				int retry_failed_mirror);
256 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
257 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
258 					     struct scrub_block *sblock_good);
259 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
260 					    struct scrub_block *sblock_good,
261 					    int page_num, int force_write);
262 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
263 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
264 					   int page_num);
265 static int scrub_checksum_data(struct scrub_block *sblock);
266 static int scrub_checksum_tree_block(struct scrub_block *sblock);
267 static int scrub_checksum_super(struct scrub_block *sblock);
268 static void scrub_block_get(struct scrub_block *sblock);
269 static void scrub_block_put(struct scrub_block *sblock);
270 static void scrub_page_get(struct scrub_page *spage);
271 static void scrub_page_put(struct scrub_page *spage);
272 static void scrub_parity_get(struct scrub_parity *sparity);
273 static void scrub_parity_put(struct scrub_parity *sparity);
274 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
275 				    struct scrub_page *spage);
276 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
277 		       u64 physical, struct btrfs_device *dev, u64 flags,
278 		       u64 gen, int mirror_num, u8 *csum, int force,
279 		       u64 physical_for_dev_replace);
280 static void scrub_bio_end_io(struct bio *bio);
281 static void scrub_bio_end_io_worker(struct btrfs_work *work);
282 static void scrub_block_complete(struct scrub_block *sblock);
283 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
284 			       u64 extent_logical, u64 extent_len,
285 			       u64 *extent_physical,
286 			       struct btrfs_device **extent_dev,
287 			       int *extent_mirror_num);
288 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
289 				    struct scrub_page *spage);
290 static void scrub_wr_submit(struct scrub_ctx *sctx);
291 static void scrub_wr_bio_end_io(struct bio *bio);
292 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
293 static int write_page_nocow(struct scrub_ctx *sctx,
294 			    u64 physical_for_dev_replace, struct page *page);
295 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
296 				      struct scrub_copy_nocow_ctx *ctx);
297 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
298 			    int mirror_num, u64 physical_for_dev_replace);
299 static void copy_nocow_pages_worker(struct btrfs_work *work);
300 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
301 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
302 static void scrub_put_ctx(struct scrub_ctx *sctx);
303 
304 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
305 {
306 	return page->recover &&
307 	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
308 }
309 
310 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
311 {
312 	refcount_inc(&sctx->refs);
313 	atomic_inc(&sctx->bios_in_flight);
314 }
315 
316 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
317 {
318 	atomic_dec(&sctx->bios_in_flight);
319 	wake_up(&sctx->list_wait);
320 	scrub_put_ctx(sctx);
321 }
322 
323 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
324 {
325 	while (atomic_read(&fs_info->scrub_pause_req)) {
326 		mutex_unlock(&fs_info->scrub_lock);
327 		wait_event(fs_info->scrub_pause_wait,
328 		   atomic_read(&fs_info->scrub_pause_req) == 0);
329 		mutex_lock(&fs_info->scrub_lock);
330 	}
331 }
332 
333 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
334 {
335 	atomic_inc(&fs_info->scrubs_paused);
336 	wake_up(&fs_info->scrub_pause_wait);
337 }
338 
339 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
340 {
341 	mutex_lock(&fs_info->scrub_lock);
342 	__scrub_blocked_if_needed(fs_info);
343 	atomic_dec(&fs_info->scrubs_paused);
344 	mutex_unlock(&fs_info->scrub_lock);
345 
346 	wake_up(&fs_info->scrub_pause_wait);
347 }
348 
349 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
350 {
351 	scrub_pause_on(fs_info);
352 	scrub_pause_off(fs_info);
353 }
354 
355 /*
356  * Insert new full stripe lock into full stripe locks tree
357  *
358  * Return pointer to existing or newly inserted full_stripe_lock structure if
359  * everything works well.
360  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
361  *
362  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
363  * function
364  */
365 static struct full_stripe_lock *insert_full_stripe_lock(
366 		struct btrfs_full_stripe_locks_tree *locks_root,
367 		u64 fstripe_logical)
368 {
369 	struct rb_node **p;
370 	struct rb_node *parent = NULL;
371 	struct full_stripe_lock *entry;
372 	struct full_stripe_lock *ret;
373 
374 	WARN_ON(!mutex_is_locked(&locks_root->lock));
375 
376 	p = &locks_root->root.rb_node;
377 	while (*p) {
378 		parent = *p;
379 		entry = rb_entry(parent, struct full_stripe_lock, node);
380 		if (fstripe_logical < entry->logical) {
381 			p = &(*p)->rb_left;
382 		} else if (fstripe_logical > entry->logical) {
383 			p = &(*p)->rb_right;
384 		} else {
385 			entry->refs++;
386 			return entry;
387 		}
388 	}
389 
390 	/* Insert new lock */
391 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
392 	if (!ret)
393 		return ERR_PTR(-ENOMEM);
394 	ret->logical = fstripe_logical;
395 	ret->refs = 1;
396 	mutex_init(&ret->mutex);
397 
398 	rb_link_node(&ret->node, parent, p);
399 	rb_insert_color(&ret->node, &locks_root->root);
400 	return ret;
401 }
402 
403 /*
404  * Search for a full stripe lock of a block group
405  *
406  * Return pointer to existing full stripe lock if found
407  * Return NULL if not found
408  */
409 static struct full_stripe_lock *search_full_stripe_lock(
410 		struct btrfs_full_stripe_locks_tree *locks_root,
411 		u64 fstripe_logical)
412 {
413 	struct rb_node *node;
414 	struct full_stripe_lock *entry;
415 
416 	WARN_ON(!mutex_is_locked(&locks_root->lock));
417 
418 	node = locks_root->root.rb_node;
419 	while (node) {
420 		entry = rb_entry(node, struct full_stripe_lock, node);
421 		if (fstripe_logical < entry->logical)
422 			node = node->rb_left;
423 		else if (fstripe_logical > entry->logical)
424 			node = node->rb_right;
425 		else
426 			return entry;
427 	}
428 	return NULL;
429 }
430 
431 /*
432  * Helper to get full stripe logical from a normal bytenr.
433  *
434  * Caller must ensure @cache is a RAID56 block group.
435  */
436 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
437 				   u64 bytenr)
438 {
439 	u64 ret;
440 
441 	/*
442 	 * Due to chunk item size limit, full stripe length should not be
443 	 * larger than U32_MAX. Just a sanity check here.
444 	 */
445 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
446 
447 	/*
448 	 * round_down() can only handle power of 2, while RAID56 full
449 	 * stripe length can be 64KiB * n, so we need to manually round down.
450 	 */
451 	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
452 		cache->full_stripe_len + cache->key.objectid;
453 	return ret;
454 }
455 
456 /*
457  * Lock a full stripe to avoid concurrency of recovery and read
458  *
459  * It's only used for profiles with parities (RAID5/6), for other profiles it
460  * does nothing.
461  *
462  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
463  * So caller must call unlock_full_stripe() at the same context.
464  *
465  * Return <0 if encounters error.
466  */
467 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
468 			    bool *locked_ret)
469 {
470 	struct btrfs_block_group_cache *bg_cache;
471 	struct btrfs_full_stripe_locks_tree *locks_root;
472 	struct full_stripe_lock *existing;
473 	u64 fstripe_start;
474 	int ret = 0;
475 
476 	*locked_ret = false;
477 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
478 	if (!bg_cache) {
479 		ASSERT(0);
480 		return -ENOENT;
481 	}
482 
483 	/* Profiles not based on parity don't need full stripe lock */
484 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
485 		goto out;
486 	locks_root = &bg_cache->full_stripe_locks_root;
487 
488 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
489 
490 	/* Now insert the full stripe lock */
491 	mutex_lock(&locks_root->lock);
492 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
493 	mutex_unlock(&locks_root->lock);
494 	if (IS_ERR(existing)) {
495 		ret = PTR_ERR(existing);
496 		goto out;
497 	}
498 	mutex_lock(&existing->mutex);
499 	*locked_ret = true;
500 out:
501 	btrfs_put_block_group(bg_cache);
502 	return ret;
503 }
504 
505 /*
506  * Unlock a full stripe.
507  *
508  * NOTE: Caller must ensure it's the same context calling corresponding
509  * lock_full_stripe().
510  *
511  * Return 0 if we unlock full stripe without problem.
512  * Return <0 for error
513  */
514 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
515 			      bool locked)
516 {
517 	struct btrfs_block_group_cache *bg_cache;
518 	struct btrfs_full_stripe_locks_tree *locks_root;
519 	struct full_stripe_lock *fstripe_lock;
520 	u64 fstripe_start;
521 	bool freeit = false;
522 	int ret = 0;
523 
524 	/* If we didn't acquire full stripe lock, no need to continue */
525 	if (!locked)
526 		return 0;
527 
528 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
529 	if (!bg_cache) {
530 		ASSERT(0);
531 		return -ENOENT;
532 	}
533 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
534 		goto out;
535 
536 	locks_root = &bg_cache->full_stripe_locks_root;
537 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
538 
539 	mutex_lock(&locks_root->lock);
540 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
541 	/* Unpaired unlock_full_stripe() detected */
542 	if (!fstripe_lock) {
543 		WARN_ON(1);
544 		ret = -ENOENT;
545 		mutex_unlock(&locks_root->lock);
546 		goto out;
547 	}
548 
549 	if (fstripe_lock->refs == 0) {
550 		WARN_ON(1);
551 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
552 			fstripe_lock->logical);
553 	} else {
554 		fstripe_lock->refs--;
555 	}
556 
557 	if (fstripe_lock->refs == 0) {
558 		rb_erase(&fstripe_lock->node, &locks_root->root);
559 		freeit = true;
560 	}
561 	mutex_unlock(&locks_root->lock);
562 
563 	mutex_unlock(&fstripe_lock->mutex);
564 	if (freeit)
565 		kfree(fstripe_lock);
566 out:
567 	btrfs_put_block_group(bg_cache);
568 	return ret;
569 }
570 
571 /*
572  * used for workers that require transaction commits (i.e., for the
573  * NOCOW case)
574  */
575 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
576 {
577 	struct btrfs_fs_info *fs_info = sctx->fs_info;
578 
579 	refcount_inc(&sctx->refs);
580 	/*
581 	 * increment scrubs_running to prevent cancel requests from
582 	 * completing as long as a worker is running. we must also
583 	 * increment scrubs_paused to prevent deadlocking on pause
584 	 * requests used for transactions commits (as the worker uses a
585 	 * transaction context). it is safe to regard the worker
586 	 * as paused for all matters practical. effectively, we only
587 	 * avoid cancellation requests from completing.
588 	 */
589 	mutex_lock(&fs_info->scrub_lock);
590 	atomic_inc(&fs_info->scrubs_running);
591 	atomic_inc(&fs_info->scrubs_paused);
592 	mutex_unlock(&fs_info->scrub_lock);
593 
594 	/*
595 	 * check if @scrubs_running=@scrubs_paused condition
596 	 * inside wait_event() is not an atomic operation.
597 	 * which means we may inc/dec @scrub_running/paused
598 	 * at any time. Let's wake up @scrub_pause_wait as
599 	 * much as we can to let commit transaction blocked less.
600 	 */
601 	wake_up(&fs_info->scrub_pause_wait);
602 
603 	atomic_inc(&sctx->workers_pending);
604 }
605 
606 /* used for workers that require transaction commits */
607 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
608 {
609 	struct btrfs_fs_info *fs_info = sctx->fs_info;
610 
611 	/*
612 	 * see scrub_pending_trans_workers_inc() why we're pretending
613 	 * to be paused in the scrub counters
614 	 */
615 	mutex_lock(&fs_info->scrub_lock);
616 	atomic_dec(&fs_info->scrubs_running);
617 	atomic_dec(&fs_info->scrubs_paused);
618 	mutex_unlock(&fs_info->scrub_lock);
619 	atomic_dec(&sctx->workers_pending);
620 	wake_up(&fs_info->scrub_pause_wait);
621 	wake_up(&sctx->list_wait);
622 	scrub_put_ctx(sctx);
623 }
624 
625 static void scrub_free_csums(struct scrub_ctx *sctx)
626 {
627 	while (!list_empty(&sctx->csum_list)) {
628 		struct btrfs_ordered_sum *sum;
629 		sum = list_first_entry(&sctx->csum_list,
630 				       struct btrfs_ordered_sum, list);
631 		list_del(&sum->list);
632 		kfree(sum);
633 	}
634 }
635 
636 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
637 {
638 	int i;
639 
640 	if (!sctx)
641 		return;
642 
643 	/* this can happen when scrub is cancelled */
644 	if (sctx->curr != -1) {
645 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
646 
647 		for (i = 0; i < sbio->page_count; i++) {
648 			WARN_ON(!sbio->pagev[i]->page);
649 			scrub_block_put(sbio->pagev[i]->sblock);
650 		}
651 		bio_put(sbio->bio);
652 	}
653 
654 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
655 		struct scrub_bio *sbio = sctx->bios[i];
656 
657 		if (!sbio)
658 			break;
659 		kfree(sbio);
660 	}
661 
662 	kfree(sctx->wr_curr_bio);
663 	scrub_free_csums(sctx);
664 	kfree(sctx);
665 }
666 
667 static void scrub_put_ctx(struct scrub_ctx *sctx)
668 {
669 	if (refcount_dec_and_test(&sctx->refs))
670 		scrub_free_ctx(sctx);
671 }
672 
673 static noinline_for_stack
674 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
675 {
676 	struct scrub_ctx *sctx;
677 	int		i;
678 	struct btrfs_fs_info *fs_info = dev->fs_info;
679 
680 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
681 	if (!sctx)
682 		goto nomem;
683 	refcount_set(&sctx->refs, 1);
684 	sctx->is_dev_replace = is_dev_replace;
685 	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
686 	sctx->curr = -1;
687 	sctx->fs_info = dev->fs_info;
688 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
689 		struct scrub_bio *sbio;
690 
691 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
692 		if (!sbio)
693 			goto nomem;
694 		sctx->bios[i] = sbio;
695 
696 		sbio->index = i;
697 		sbio->sctx = sctx;
698 		sbio->page_count = 0;
699 		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
700 				scrub_bio_end_io_worker, NULL, NULL);
701 
702 		if (i != SCRUB_BIOS_PER_SCTX - 1)
703 			sctx->bios[i]->next_free = i + 1;
704 		else
705 			sctx->bios[i]->next_free = -1;
706 	}
707 	sctx->first_free = 0;
708 	atomic_set(&sctx->bios_in_flight, 0);
709 	atomic_set(&sctx->workers_pending, 0);
710 	atomic_set(&sctx->cancel_req, 0);
711 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
712 	INIT_LIST_HEAD(&sctx->csum_list);
713 
714 	spin_lock_init(&sctx->list_lock);
715 	spin_lock_init(&sctx->stat_lock);
716 	init_waitqueue_head(&sctx->list_wait);
717 
718 	WARN_ON(sctx->wr_curr_bio != NULL);
719 	mutex_init(&sctx->wr_lock);
720 	sctx->wr_curr_bio = NULL;
721 	if (is_dev_replace) {
722 		WARN_ON(!fs_info->dev_replace.tgtdev);
723 		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
724 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
725 		sctx->flush_all_writes = false;
726 	}
727 
728 	return sctx;
729 
730 nomem:
731 	scrub_free_ctx(sctx);
732 	return ERR_PTR(-ENOMEM);
733 }
734 
735 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
736 				     void *warn_ctx)
737 {
738 	u64 isize;
739 	u32 nlink;
740 	int ret;
741 	int i;
742 	unsigned nofs_flag;
743 	struct extent_buffer *eb;
744 	struct btrfs_inode_item *inode_item;
745 	struct scrub_warning *swarn = warn_ctx;
746 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
747 	struct inode_fs_paths *ipath = NULL;
748 	struct btrfs_root *local_root;
749 	struct btrfs_key root_key;
750 	struct btrfs_key key;
751 
752 	root_key.objectid = root;
753 	root_key.type = BTRFS_ROOT_ITEM_KEY;
754 	root_key.offset = (u64)-1;
755 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
756 	if (IS_ERR(local_root)) {
757 		ret = PTR_ERR(local_root);
758 		goto err;
759 	}
760 
761 	/*
762 	 * this makes the path point to (inum INODE_ITEM ioff)
763 	 */
764 	key.objectid = inum;
765 	key.type = BTRFS_INODE_ITEM_KEY;
766 	key.offset = 0;
767 
768 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
769 	if (ret) {
770 		btrfs_release_path(swarn->path);
771 		goto err;
772 	}
773 
774 	eb = swarn->path->nodes[0];
775 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
776 					struct btrfs_inode_item);
777 	isize = btrfs_inode_size(eb, inode_item);
778 	nlink = btrfs_inode_nlink(eb, inode_item);
779 	btrfs_release_path(swarn->path);
780 
781 	/*
782 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
783 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
784 	 * not seem to be strictly necessary.
785 	 */
786 	nofs_flag = memalloc_nofs_save();
787 	ipath = init_ipath(4096, local_root, swarn->path);
788 	memalloc_nofs_restore(nofs_flag);
789 	if (IS_ERR(ipath)) {
790 		ret = PTR_ERR(ipath);
791 		ipath = NULL;
792 		goto err;
793 	}
794 	ret = paths_from_inode(inum, ipath);
795 
796 	if (ret < 0)
797 		goto err;
798 
799 	/*
800 	 * we deliberately ignore the bit ipath might have been too small to
801 	 * hold all of the paths here
802 	 */
803 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
804 		btrfs_warn_in_rcu(fs_info,
805 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
806 				  swarn->errstr, swarn->logical,
807 				  rcu_str_deref(swarn->dev->name),
808 				  swarn->physical,
809 				  root, inum, offset,
810 				  min(isize - offset, (u64)PAGE_SIZE), nlink,
811 				  (char *)(unsigned long)ipath->fspath->val[i]);
812 
813 	free_ipath(ipath);
814 	return 0;
815 
816 err:
817 	btrfs_warn_in_rcu(fs_info,
818 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
819 			  swarn->errstr, swarn->logical,
820 			  rcu_str_deref(swarn->dev->name),
821 			  swarn->physical,
822 			  root, inum, offset, ret);
823 
824 	free_ipath(ipath);
825 	return 0;
826 }
827 
828 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
829 {
830 	struct btrfs_device *dev;
831 	struct btrfs_fs_info *fs_info;
832 	struct btrfs_path *path;
833 	struct btrfs_key found_key;
834 	struct extent_buffer *eb;
835 	struct btrfs_extent_item *ei;
836 	struct scrub_warning swarn;
837 	unsigned long ptr = 0;
838 	u64 extent_item_pos;
839 	u64 flags = 0;
840 	u64 ref_root;
841 	u32 item_size;
842 	u8 ref_level = 0;
843 	int ret;
844 
845 	WARN_ON(sblock->page_count < 1);
846 	dev = sblock->pagev[0]->dev;
847 	fs_info = sblock->sctx->fs_info;
848 
849 	path = btrfs_alloc_path();
850 	if (!path)
851 		return;
852 
853 	swarn.physical = sblock->pagev[0]->physical;
854 	swarn.logical = sblock->pagev[0]->logical;
855 	swarn.errstr = errstr;
856 	swarn.dev = NULL;
857 
858 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
859 				  &flags);
860 	if (ret < 0)
861 		goto out;
862 
863 	extent_item_pos = swarn.logical - found_key.objectid;
864 	swarn.extent_item_size = found_key.offset;
865 
866 	eb = path->nodes[0];
867 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
868 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
869 
870 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
871 		do {
872 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
873 						      item_size, &ref_root,
874 						      &ref_level);
875 			btrfs_warn_in_rcu(fs_info,
876 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
877 				errstr, swarn.logical,
878 				rcu_str_deref(dev->name),
879 				swarn.physical,
880 				ref_level ? "node" : "leaf",
881 				ret < 0 ? -1 : ref_level,
882 				ret < 0 ? -1 : ref_root);
883 		} while (ret != 1);
884 		btrfs_release_path(path);
885 	} else {
886 		btrfs_release_path(path);
887 		swarn.path = path;
888 		swarn.dev = dev;
889 		iterate_extent_inodes(fs_info, found_key.objectid,
890 					extent_item_pos, 1,
891 					scrub_print_warning_inode, &swarn, false);
892 	}
893 
894 out:
895 	btrfs_free_path(path);
896 }
897 
898 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
899 {
900 	struct page *page = NULL;
901 	unsigned long index;
902 	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
903 	int ret;
904 	int corrected = 0;
905 	struct btrfs_key key;
906 	struct inode *inode = NULL;
907 	struct btrfs_fs_info *fs_info;
908 	u64 end = offset + PAGE_SIZE - 1;
909 	struct btrfs_root *local_root;
910 	int srcu_index;
911 
912 	key.objectid = root;
913 	key.type = BTRFS_ROOT_ITEM_KEY;
914 	key.offset = (u64)-1;
915 
916 	fs_info = fixup->root->fs_info;
917 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
918 
919 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
920 	if (IS_ERR(local_root)) {
921 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
922 		return PTR_ERR(local_root);
923 	}
924 
925 	key.type = BTRFS_INODE_ITEM_KEY;
926 	key.objectid = inum;
927 	key.offset = 0;
928 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
929 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
930 	if (IS_ERR(inode))
931 		return PTR_ERR(inode);
932 
933 	index = offset >> PAGE_SHIFT;
934 
935 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
936 	if (!page) {
937 		ret = -ENOMEM;
938 		goto out;
939 	}
940 
941 	if (PageUptodate(page)) {
942 		if (PageDirty(page)) {
943 			/*
944 			 * we need to write the data to the defect sector. the
945 			 * data that was in that sector is not in memory,
946 			 * because the page was modified. we must not write the
947 			 * modified page to that sector.
948 			 *
949 			 * TODO: what could be done here: wait for the delalloc
950 			 *       runner to write out that page (might involve
951 			 *       COW) and see whether the sector is still
952 			 *       referenced afterwards.
953 			 *
954 			 * For the meantime, we'll treat this error
955 			 * incorrectable, although there is a chance that a
956 			 * later scrub will find the bad sector again and that
957 			 * there's no dirty page in memory, then.
958 			 */
959 			ret = -EIO;
960 			goto out;
961 		}
962 		ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE,
963 					fixup->logical, page,
964 					offset - page_offset(page),
965 					fixup->mirror_num);
966 		unlock_page(page);
967 		corrected = !ret;
968 	} else {
969 		/*
970 		 * we need to get good data first. the general readpage path
971 		 * will call repair_io_failure for us, we just have to make
972 		 * sure we read the bad mirror.
973 		 */
974 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
975 					EXTENT_DAMAGED);
976 		if (ret) {
977 			/* set_extent_bits should give proper error */
978 			WARN_ON(ret > 0);
979 			if (ret > 0)
980 				ret = -EFAULT;
981 			goto out;
982 		}
983 
984 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
985 						btrfs_get_extent,
986 						fixup->mirror_num);
987 		wait_on_page_locked(page);
988 
989 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
990 						end, EXTENT_DAMAGED, 0, NULL);
991 		if (!corrected)
992 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
993 						EXTENT_DAMAGED);
994 	}
995 
996 out:
997 	if (page)
998 		put_page(page);
999 
1000 	iput(inode);
1001 
1002 	if (ret < 0)
1003 		return ret;
1004 
1005 	if (ret == 0 && corrected) {
1006 		/*
1007 		 * we only need to call readpage for one of the inodes belonging
1008 		 * to this extent. so make iterate_extent_inodes stop
1009 		 */
1010 		return 1;
1011 	}
1012 
1013 	return -EIO;
1014 }
1015 
1016 static void scrub_fixup_nodatasum(struct btrfs_work *work)
1017 {
1018 	struct btrfs_fs_info *fs_info;
1019 	int ret;
1020 	struct scrub_fixup_nodatasum *fixup;
1021 	struct scrub_ctx *sctx;
1022 	struct btrfs_trans_handle *trans = NULL;
1023 	struct btrfs_path *path;
1024 	int uncorrectable = 0;
1025 
1026 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
1027 	sctx = fixup->sctx;
1028 	fs_info = fixup->root->fs_info;
1029 
1030 	path = btrfs_alloc_path();
1031 	if (!path) {
1032 		spin_lock(&sctx->stat_lock);
1033 		++sctx->stat.malloc_errors;
1034 		spin_unlock(&sctx->stat_lock);
1035 		uncorrectable = 1;
1036 		goto out;
1037 	}
1038 
1039 	trans = btrfs_join_transaction(fixup->root);
1040 	if (IS_ERR(trans)) {
1041 		uncorrectable = 1;
1042 		goto out;
1043 	}
1044 
1045 	/*
1046 	 * the idea is to trigger a regular read through the standard path. we
1047 	 * read a page from the (failed) logical address by specifying the
1048 	 * corresponding copynum of the failed sector. thus, that readpage is
1049 	 * expected to fail.
1050 	 * that is the point where on-the-fly error correction will kick in
1051 	 * (once it's finished) and rewrite the failed sector if a good copy
1052 	 * can be found.
1053 	 */
1054 	ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
1055 					  scrub_fixup_readpage, fixup, false);
1056 	if (ret < 0) {
1057 		uncorrectable = 1;
1058 		goto out;
1059 	}
1060 	WARN_ON(ret != 1);
1061 
1062 	spin_lock(&sctx->stat_lock);
1063 	++sctx->stat.corrected_errors;
1064 	spin_unlock(&sctx->stat_lock);
1065 
1066 out:
1067 	if (trans && !IS_ERR(trans))
1068 		btrfs_end_transaction(trans);
1069 	if (uncorrectable) {
1070 		spin_lock(&sctx->stat_lock);
1071 		++sctx->stat.uncorrectable_errors;
1072 		spin_unlock(&sctx->stat_lock);
1073 		btrfs_dev_replace_stats_inc(
1074 			&fs_info->dev_replace.num_uncorrectable_read_errors);
1075 		btrfs_err_rl_in_rcu(fs_info,
1076 		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
1077 			fixup->logical, rcu_str_deref(fixup->dev->name));
1078 	}
1079 
1080 	btrfs_free_path(path);
1081 	kfree(fixup);
1082 
1083 	scrub_pending_trans_workers_dec(sctx);
1084 }
1085 
1086 static inline void scrub_get_recover(struct scrub_recover *recover)
1087 {
1088 	refcount_inc(&recover->refs);
1089 }
1090 
1091 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
1092 				     struct scrub_recover *recover)
1093 {
1094 	if (refcount_dec_and_test(&recover->refs)) {
1095 		btrfs_bio_counter_dec(fs_info);
1096 		btrfs_put_bbio(recover->bbio);
1097 		kfree(recover);
1098 	}
1099 }
1100 
1101 /*
1102  * scrub_handle_errored_block gets called when either verification of the
1103  * pages failed or the bio failed to read, e.g. with EIO. In the latter
1104  * case, this function handles all pages in the bio, even though only one
1105  * may be bad.
1106  * The goal of this function is to repair the errored block by using the
1107  * contents of one of the mirrors.
1108  */
1109 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
1110 {
1111 	struct scrub_ctx *sctx = sblock_to_check->sctx;
1112 	struct btrfs_device *dev;
1113 	struct btrfs_fs_info *fs_info;
1114 	u64 length;
1115 	u64 logical;
1116 	unsigned int failed_mirror_index;
1117 	unsigned int is_metadata;
1118 	unsigned int have_csum;
1119 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
1120 	struct scrub_block *sblock_bad;
1121 	int ret;
1122 	int mirror_index;
1123 	int page_num;
1124 	int success;
1125 	bool full_stripe_locked;
1126 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1127 				      DEFAULT_RATELIMIT_BURST);
1128 
1129 	BUG_ON(sblock_to_check->page_count < 1);
1130 	fs_info = sctx->fs_info;
1131 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1132 		/*
1133 		 * if we find an error in a super block, we just report it.
1134 		 * They will get written with the next transaction commit
1135 		 * anyway
1136 		 */
1137 		spin_lock(&sctx->stat_lock);
1138 		++sctx->stat.super_errors;
1139 		spin_unlock(&sctx->stat_lock);
1140 		return 0;
1141 	}
1142 	length = sblock_to_check->page_count * PAGE_SIZE;
1143 	logical = sblock_to_check->pagev[0]->logical;
1144 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
1145 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
1146 	is_metadata = !(sblock_to_check->pagev[0]->flags &
1147 			BTRFS_EXTENT_FLAG_DATA);
1148 	have_csum = sblock_to_check->pagev[0]->have_csum;
1149 	dev = sblock_to_check->pagev[0]->dev;
1150 
1151 	/*
1152 	 * For RAID5/6, race can happen for a different device scrub thread.
1153 	 * For data corruption, Parity and Data threads will both try
1154 	 * to recovery the data.
1155 	 * Race can lead to doubly added csum error, or even unrecoverable
1156 	 * error.
1157 	 */
1158 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1159 	if (ret < 0) {
1160 		spin_lock(&sctx->stat_lock);
1161 		if (ret == -ENOMEM)
1162 			sctx->stat.malloc_errors++;
1163 		sctx->stat.read_errors++;
1164 		sctx->stat.uncorrectable_errors++;
1165 		spin_unlock(&sctx->stat_lock);
1166 		return ret;
1167 	}
1168 
1169 	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
1170 		sblocks_for_recheck = NULL;
1171 		goto nodatasum_case;
1172 	}
1173 
1174 	/*
1175 	 * read all mirrors one after the other. This includes to
1176 	 * re-read the extent or metadata block that failed (that was
1177 	 * the cause that this fixup code is called) another time,
1178 	 * page by page this time in order to know which pages
1179 	 * caused I/O errors and which ones are good (for all mirrors).
1180 	 * It is the goal to handle the situation when more than one
1181 	 * mirror contains I/O errors, but the errors do not
1182 	 * overlap, i.e. the data can be repaired by selecting the
1183 	 * pages from those mirrors without I/O error on the
1184 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
1185 	 * would be that mirror #1 has an I/O error on the first page,
1186 	 * the second page is good, and mirror #2 has an I/O error on
1187 	 * the second page, but the first page is good.
1188 	 * Then the first page of the first mirror can be repaired by
1189 	 * taking the first page of the second mirror, and the
1190 	 * second page of the second mirror can be repaired by
1191 	 * copying the contents of the 2nd page of the 1st mirror.
1192 	 * One more note: if the pages of one mirror contain I/O
1193 	 * errors, the checksum cannot be verified. In order to get
1194 	 * the best data for repairing, the first attempt is to find
1195 	 * a mirror without I/O errors and with a validated checksum.
1196 	 * Only if this is not possible, the pages are picked from
1197 	 * mirrors with I/O errors without considering the checksum.
1198 	 * If the latter is the case, at the end, the checksum of the
1199 	 * repaired area is verified in order to correctly maintain
1200 	 * the statistics.
1201 	 */
1202 
1203 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
1204 				      sizeof(*sblocks_for_recheck), GFP_NOFS);
1205 	if (!sblocks_for_recheck) {
1206 		spin_lock(&sctx->stat_lock);
1207 		sctx->stat.malloc_errors++;
1208 		sctx->stat.read_errors++;
1209 		sctx->stat.uncorrectable_errors++;
1210 		spin_unlock(&sctx->stat_lock);
1211 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1212 		goto out;
1213 	}
1214 
1215 	/* setup the context, map the logical blocks and alloc the pages */
1216 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1217 	if (ret) {
1218 		spin_lock(&sctx->stat_lock);
1219 		sctx->stat.read_errors++;
1220 		sctx->stat.uncorrectable_errors++;
1221 		spin_unlock(&sctx->stat_lock);
1222 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1223 		goto out;
1224 	}
1225 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1226 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
1227 
1228 	/* build and submit the bios for the failed mirror, check checksums */
1229 	scrub_recheck_block(fs_info, sblock_bad, 1);
1230 
1231 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1232 	    sblock_bad->no_io_error_seen) {
1233 		/*
1234 		 * the error disappeared after reading page by page, or
1235 		 * the area was part of a huge bio and other parts of the
1236 		 * bio caused I/O errors, or the block layer merged several
1237 		 * read requests into one and the error is caused by a
1238 		 * different bio (usually one of the two latter cases is
1239 		 * the cause)
1240 		 */
1241 		spin_lock(&sctx->stat_lock);
1242 		sctx->stat.unverified_errors++;
1243 		sblock_to_check->data_corrected = 1;
1244 		spin_unlock(&sctx->stat_lock);
1245 
1246 		if (sctx->is_dev_replace)
1247 			scrub_write_block_to_dev_replace(sblock_bad);
1248 		goto out;
1249 	}
1250 
1251 	if (!sblock_bad->no_io_error_seen) {
1252 		spin_lock(&sctx->stat_lock);
1253 		sctx->stat.read_errors++;
1254 		spin_unlock(&sctx->stat_lock);
1255 		if (__ratelimit(&_rs))
1256 			scrub_print_warning("i/o error", sblock_to_check);
1257 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1258 	} else if (sblock_bad->checksum_error) {
1259 		spin_lock(&sctx->stat_lock);
1260 		sctx->stat.csum_errors++;
1261 		spin_unlock(&sctx->stat_lock);
1262 		if (__ratelimit(&_rs))
1263 			scrub_print_warning("checksum error", sblock_to_check);
1264 		btrfs_dev_stat_inc_and_print(dev,
1265 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1266 	} else if (sblock_bad->header_error) {
1267 		spin_lock(&sctx->stat_lock);
1268 		sctx->stat.verify_errors++;
1269 		spin_unlock(&sctx->stat_lock);
1270 		if (__ratelimit(&_rs))
1271 			scrub_print_warning("checksum/header error",
1272 					    sblock_to_check);
1273 		if (sblock_bad->generation_error)
1274 			btrfs_dev_stat_inc_and_print(dev,
1275 				BTRFS_DEV_STAT_GENERATION_ERRS);
1276 		else
1277 			btrfs_dev_stat_inc_and_print(dev,
1278 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1279 	}
1280 
1281 	if (sctx->readonly) {
1282 		ASSERT(!sctx->is_dev_replace);
1283 		goto out;
1284 	}
1285 
1286 	if (!is_metadata && !have_csum) {
1287 		struct scrub_fixup_nodatasum *fixup_nodatasum;
1288 
1289 		WARN_ON(sctx->is_dev_replace);
1290 
1291 nodatasum_case:
1292 
1293 		/*
1294 		 * !is_metadata and !have_csum, this means that the data
1295 		 * might not be COWed, that it might be modified
1296 		 * concurrently. The general strategy to work on the
1297 		 * commit root does not help in the case when COW is not
1298 		 * used.
1299 		 */
1300 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1301 		if (!fixup_nodatasum)
1302 			goto did_not_correct_error;
1303 		fixup_nodatasum->sctx = sctx;
1304 		fixup_nodatasum->dev = dev;
1305 		fixup_nodatasum->logical = logical;
1306 		fixup_nodatasum->root = fs_info->extent_root;
1307 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1308 		scrub_pending_trans_workers_inc(sctx);
1309 		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1310 				scrub_fixup_nodatasum, NULL, NULL);
1311 		btrfs_queue_work(fs_info->scrub_workers,
1312 				 &fixup_nodatasum->work);
1313 		goto out;
1314 	}
1315 
1316 	/*
1317 	 * now build and submit the bios for the other mirrors, check
1318 	 * checksums.
1319 	 * First try to pick the mirror which is completely without I/O
1320 	 * errors and also does not have a checksum error.
1321 	 * If one is found, and if a checksum is present, the full block
1322 	 * that is known to contain an error is rewritten. Afterwards
1323 	 * the block is known to be corrected.
1324 	 * If a mirror is found which is completely correct, and no
1325 	 * checksum is present, only those pages are rewritten that had
1326 	 * an I/O error in the block to be repaired, since it cannot be
1327 	 * determined, which copy of the other pages is better (and it
1328 	 * could happen otherwise that a correct page would be
1329 	 * overwritten by a bad one).
1330 	 */
1331 	for (mirror_index = 0; ;mirror_index++) {
1332 		struct scrub_block *sblock_other;
1333 
1334 		if (mirror_index == failed_mirror_index)
1335 			continue;
1336 
1337 		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1338 		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1339 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1340 				break;
1341 			if (!sblocks_for_recheck[mirror_index].page_count)
1342 				break;
1343 
1344 			sblock_other = sblocks_for_recheck + mirror_index;
1345 		} else {
1346 			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1347 			int max_allowed = r->bbio->num_stripes -
1348 						r->bbio->num_tgtdevs;
1349 
1350 			if (mirror_index >= max_allowed)
1351 				break;
1352 			if (!sblocks_for_recheck[1].page_count)
1353 				break;
1354 
1355 			ASSERT(failed_mirror_index == 0);
1356 			sblock_other = sblocks_for_recheck + 1;
1357 			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1358 		}
1359 
1360 		/* build and submit the bios, check checksums */
1361 		scrub_recheck_block(fs_info, sblock_other, 0);
1362 
1363 		if (!sblock_other->header_error &&
1364 		    !sblock_other->checksum_error &&
1365 		    sblock_other->no_io_error_seen) {
1366 			if (sctx->is_dev_replace) {
1367 				scrub_write_block_to_dev_replace(sblock_other);
1368 				goto corrected_error;
1369 			} else {
1370 				ret = scrub_repair_block_from_good_copy(
1371 						sblock_bad, sblock_other);
1372 				if (!ret)
1373 					goto corrected_error;
1374 			}
1375 		}
1376 	}
1377 
1378 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1379 		goto did_not_correct_error;
1380 
1381 	/*
1382 	 * In case of I/O errors in the area that is supposed to be
1383 	 * repaired, continue by picking good copies of those pages.
1384 	 * Select the good pages from mirrors to rewrite bad pages from
1385 	 * the area to fix. Afterwards verify the checksum of the block
1386 	 * that is supposed to be repaired. This verification step is
1387 	 * only done for the purpose of statistic counting and for the
1388 	 * final scrub report, whether errors remain.
1389 	 * A perfect algorithm could make use of the checksum and try
1390 	 * all possible combinations of pages from the different mirrors
1391 	 * until the checksum verification succeeds. For example, when
1392 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1393 	 * of mirror #2 is readable but the final checksum test fails,
1394 	 * then the 2nd page of mirror #3 could be tried, whether now
1395 	 * the final checksum succeeds. But this would be a rare
1396 	 * exception and is therefore not implemented. At least it is
1397 	 * avoided that the good copy is overwritten.
1398 	 * A more useful improvement would be to pick the sectors
1399 	 * without I/O error based on sector sizes (512 bytes on legacy
1400 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1401 	 * mirror could be repaired by taking 512 byte of a different
1402 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1403 	 * area are unreadable.
1404 	 */
1405 	success = 1;
1406 	for (page_num = 0; page_num < sblock_bad->page_count;
1407 	     page_num++) {
1408 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1409 		struct scrub_block *sblock_other = NULL;
1410 
1411 		/* skip no-io-error page in scrub */
1412 		if (!page_bad->io_error && !sctx->is_dev_replace)
1413 			continue;
1414 
1415 		/* try to find no-io-error page in mirrors */
1416 		if (page_bad->io_error) {
1417 			for (mirror_index = 0;
1418 			     mirror_index < BTRFS_MAX_MIRRORS &&
1419 			     sblocks_for_recheck[mirror_index].page_count > 0;
1420 			     mirror_index++) {
1421 				if (!sblocks_for_recheck[mirror_index].
1422 				    pagev[page_num]->io_error) {
1423 					sblock_other = sblocks_for_recheck +
1424 						       mirror_index;
1425 					break;
1426 				}
1427 			}
1428 			if (!sblock_other)
1429 				success = 0;
1430 		}
1431 
1432 		if (sctx->is_dev_replace) {
1433 			/*
1434 			 * did not find a mirror to fetch the page
1435 			 * from. scrub_write_page_to_dev_replace()
1436 			 * handles this case (page->io_error), by
1437 			 * filling the block with zeros before
1438 			 * submitting the write request
1439 			 */
1440 			if (!sblock_other)
1441 				sblock_other = sblock_bad;
1442 
1443 			if (scrub_write_page_to_dev_replace(sblock_other,
1444 							    page_num) != 0) {
1445 				btrfs_dev_replace_stats_inc(
1446 					&fs_info->dev_replace.num_write_errors);
1447 				success = 0;
1448 			}
1449 		} else if (sblock_other) {
1450 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1451 							       sblock_other,
1452 							       page_num, 0);
1453 			if (0 == ret)
1454 				page_bad->io_error = 0;
1455 			else
1456 				success = 0;
1457 		}
1458 	}
1459 
1460 	if (success && !sctx->is_dev_replace) {
1461 		if (is_metadata || have_csum) {
1462 			/*
1463 			 * need to verify the checksum now that all
1464 			 * sectors on disk are repaired (the write
1465 			 * request for data to be repaired is on its way).
1466 			 * Just be lazy and use scrub_recheck_block()
1467 			 * which re-reads the data before the checksum
1468 			 * is verified, but most likely the data comes out
1469 			 * of the page cache.
1470 			 */
1471 			scrub_recheck_block(fs_info, sblock_bad, 1);
1472 			if (!sblock_bad->header_error &&
1473 			    !sblock_bad->checksum_error &&
1474 			    sblock_bad->no_io_error_seen)
1475 				goto corrected_error;
1476 			else
1477 				goto did_not_correct_error;
1478 		} else {
1479 corrected_error:
1480 			spin_lock(&sctx->stat_lock);
1481 			sctx->stat.corrected_errors++;
1482 			sblock_to_check->data_corrected = 1;
1483 			spin_unlock(&sctx->stat_lock);
1484 			btrfs_err_rl_in_rcu(fs_info,
1485 				"fixed up error at logical %llu on dev %s",
1486 				logical, rcu_str_deref(dev->name));
1487 		}
1488 	} else {
1489 did_not_correct_error:
1490 		spin_lock(&sctx->stat_lock);
1491 		sctx->stat.uncorrectable_errors++;
1492 		spin_unlock(&sctx->stat_lock);
1493 		btrfs_err_rl_in_rcu(fs_info,
1494 			"unable to fixup (regular) error at logical %llu on dev %s",
1495 			logical, rcu_str_deref(dev->name));
1496 	}
1497 
1498 out:
1499 	if (sblocks_for_recheck) {
1500 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1501 		     mirror_index++) {
1502 			struct scrub_block *sblock = sblocks_for_recheck +
1503 						     mirror_index;
1504 			struct scrub_recover *recover;
1505 			int page_index;
1506 
1507 			for (page_index = 0; page_index < sblock->page_count;
1508 			     page_index++) {
1509 				sblock->pagev[page_index]->sblock = NULL;
1510 				recover = sblock->pagev[page_index]->recover;
1511 				if (recover) {
1512 					scrub_put_recover(fs_info, recover);
1513 					sblock->pagev[page_index]->recover =
1514 									NULL;
1515 				}
1516 				scrub_page_put(sblock->pagev[page_index]);
1517 			}
1518 		}
1519 		kfree(sblocks_for_recheck);
1520 	}
1521 
1522 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1523 	if (ret < 0)
1524 		return ret;
1525 	return 0;
1526 }
1527 
1528 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1529 {
1530 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1531 		return 2;
1532 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1533 		return 3;
1534 	else
1535 		return (int)bbio->num_stripes;
1536 }
1537 
1538 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1539 						 u64 *raid_map,
1540 						 u64 mapped_length,
1541 						 int nstripes, int mirror,
1542 						 int *stripe_index,
1543 						 u64 *stripe_offset)
1544 {
1545 	int i;
1546 
1547 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1548 		/* RAID5/6 */
1549 		for (i = 0; i < nstripes; i++) {
1550 			if (raid_map[i] == RAID6_Q_STRIPE ||
1551 			    raid_map[i] == RAID5_P_STRIPE)
1552 				continue;
1553 
1554 			if (logical >= raid_map[i] &&
1555 			    logical < raid_map[i] + mapped_length)
1556 				break;
1557 		}
1558 
1559 		*stripe_index = i;
1560 		*stripe_offset = logical - raid_map[i];
1561 	} else {
1562 		/* The other RAID type */
1563 		*stripe_index = mirror;
1564 		*stripe_offset = 0;
1565 	}
1566 }
1567 
1568 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1569 				     struct scrub_block *sblocks_for_recheck)
1570 {
1571 	struct scrub_ctx *sctx = original_sblock->sctx;
1572 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1573 	u64 length = original_sblock->page_count * PAGE_SIZE;
1574 	u64 logical = original_sblock->pagev[0]->logical;
1575 	u64 generation = original_sblock->pagev[0]->generation;
1576 	u64 flags = original_sblock->pagev[0]->flags;
1577 	u64 have_csum = original_sblock->pagev[0]->have_csum;
1578 	struct scrub_recover *recover;
1579 	struct btrfs_bio *bbio;
1580 	u64 sublen;
1581 	u64 mapped_length;
1582 	u64 stripe_offset;
1583 	int stripe_index;
1584 	int page_index = 0;
1585 	int mirror_index;
1586 	int nmirrors;
1587 	int ret;
1588 
1589 	/*
1590 	 * note: the two members refs and outstanding_pages
1591 	 * are not used (and not set) in the blocks that are used for
1592 	 * the recheck procedure
1593 	 */
1594 
1595 	while (length > 0) {
1596 		sublen = min_t(u64, length, PAGE_SIZE);
1597 		mapped_length = sublen;
1598 		bbio = NULL;
1599 
1600 		/*
1601 		 * with a length of PAGE_SIZE, each returned stripe
1602 		 * represents one mirror
1603 		 */
1604 		btrfs_bio_counter_inc_blocked(fs_info);
1605 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1606 				logical, &mapped_length, &bbio);
1607 		if (ret || !bbio || mapped_length < sublen) {
1608 			btrfs_put_bbio(bbio);
1609 			btrfs_bio_counter_dec(fs_info);
1610 			return -EIO;
1611 		}
1612 
1613 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1614 		if (!recover) {
1615 			btrfs_put_bbio(bbio);
1616 			btrfs_bio_counter_dec(fs_info);
1617 			return -ENOMEM;
1618 		}
1619 
1620 		refcount_set(&recover->refs, 1);
1621 		recover->bbio = bbio;
1622 		recover->map_length = mapped_length;
1623 
1624 		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1625 
1626 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1627 
1628 		for (mirror_index = 0; mirror_index < nmirrors;
1629 		     mirror_index++) {
1630 			struct scrub_block *sblock;
1631 			struct scrub_page *page;
1632 
1633 			sblock = sblocks_for_recheck + mirror_index;
1634 			sblock->sctx = sctx;
1635 
1636 			page = kzalloc(sizeof(*page), GFP_NOFS);
1637 			if (!page) {
1638 leave_nomem:
1639 				spin_lock(&sctx->stat_lock);
1640 				sctx->stat.malloc_errors++;
1641 				spin_unlock(&sctx->stat_lock);
1642 				scrub_put_recover(fs_info, recover);
1643 				return -ENOMEM;
1644 			}
1645 			scrub_page_get(page);
1646 			sblock->pagev[page_index] = page;
1647 			page->sblock = sblock;
1648 			page->flags = flags;
1649 			page->generation = generation;
1650 			page->logical = logical;
1651 			page->have_csum = have_csum;
1652 			if (have_csum)
1653 				memcpy(page->csum,
1654 				       original_sblock->pagev[0]->csum,
1655 				       sctx->csum_size);
1656 
1657 			scrub_stripe_index_and_offset(logical,
1658 						      bbio->map_type,
1659 						      bbio->raid_map,
1660 						      mapped_length,
1661 						      bbio->num_stripes -
1662 						      bbio->num_tgtdevs,
1663 						      mirror_index,
1664 						      &stripe_index,
1665 						      &stripe_offset);
1666 			page->physical = bbio->stripes[stripe_index].physical +
1667 					 stripe_offset;
1668 			page->dev = bbio->stripes[stripe_index].dev;
1669 
1670 			BUG_ON(page_index >= original_sblock->page_count);
1671 			page->physical_for_dev_replace =
1672 				original_sblock->pagev[page_index]->
1673 				physical_for_dev_replace;
1674 			/* for missing devices, dev->bdev is NULL */
1675 			page->mirror_num = mirror_index + 1;
1676 			sblock->page_count++;
1677 			page->page = alloc_page(GFP_NOFS);
1678 			if (!page->page)
1679 				goto leave_nomem;
1680 
1681 			scrub_get_recover(recover);
1682 			page->recover = recover;
1683 		}
1684 		scrub_put_recover(fs_info, recover);
1685 		length -= sublen;
1686 		logical += sublen;
1687 		page_index++;
1688 	}
1689 
1690 	return 0;
1691 }
1692 
1693 static void scrub_bio_wait_endio(struct bio *bio)
1694 {
1695 	complete(bio->bi_private);
1696 }
1697 
1698 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1699 					struct bio *bio,
1700 					struct scrub_page *page)
1701 {
1702 	DECLARE_COMPLETION_ONSTACK(done);
1703 	int ret;
1704 	int mirror_num;
1705 
1706 	bio->bi_iter.bi_sector = page->logical >> 9;
1707 	bio->bi_private = &done;
1708 	bio->bi_end_io = scrub_bio_wait_endio;
1709 
1710 	mirror_num = page->sblock->pagev[0]->mirror_num;
1711 	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1712 				    page->recover->map_length,
1713 				    mirror_num, 0);
1714 	if (ret)
1715 		return ret;
1716 
1717 	wait_for_completion_io(&done);
1718 	return blk_status_to_errno(bio->bi_status);
1719 }
1720 
1721 /*
1722  * this function will check the on disk data for checksum errors, header
1723  * errors and read I/O errors. If any I/O errors happen, the exact pages
1724  * which are errored are marked as being bad. The goal is to enable scrub
1725  * to take those pages that are not errored from all the mirrors so that
1726  * the pages that are errored in the just handled mirror can be repaired.
1727  */
1728 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1729 				struct scrub_block *sblock,
1730 				int retry_failed_mirror)
1731 {
1732 	int page_num;
1733 
1734 	sblock->no_io_error_seen = 1;
1735 
1736 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1737 		struct bio *bio;
1738 		struct scrub_page *page = sblock->pagev[page_num];
1739 
1740 		if (page->dev->bdev == NULL) {
1741 			page->io_error = 1;
1742 			sblock->no_io_error_seen = 0;
1743 			continue;
1744 		}
1745 
1746 		WARN_ON(!page->page);
1747 		bio = btrfs_io_bio_alloc(1);
1748 		bio_set_dev(bio, page->dev->bdev);
1749 
1750 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1751 		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1752 			if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) {
1753 				page->io_error = 1;
1754 				sblock->no_io_error_seen = 0;
1755 			}
1756 		} else {
1757 			bio->bi_iter.bi_sector = page->physical >> 9;
1758 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
1759 
1760 			if (btrfsic_submit_bio_wait(bio)) {
1761 				page->io_error = 1;
1762 				sblock->no_io_error_seen = 0;
1763 			}
1764 		}
1765 
1766 		bio_put(bio);
1767 	}
1768 
1769 	if (sblock->no_io_error_seen)
1770 		scrub_recheck_block_checksum(sblock);
1771 }
1772 
1773 static inline int scrub_check_fsid(u8 fsid[],
1774 				   struct scrub_page *spage)
1775 {
1776 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1777 	int ret;
1778 
1779 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1780 	return !ret;
1781 }
1782 
1783 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1784 {
1785 	sblock->header_error = 0;
1786 	sblock->checksum_error = 0;
1787 	sblock->generation_error = 0;
1788 
1789 	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1790 		scrub_checksum_data(sblock);
1791 	else
1792 		scrub_checksum_tree_block(sblock);
1793 }
1794 
1795 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1796 					     struct scrub_block *sblock_good)
1797 {
1798 	int page_num;
1799 	int ret = 0;
1800 
1801 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1802 		int ret_sub;
1803 
1804 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1805 							   sblock_good,
1806 							   page_num, 1);
1807 		if (ret_sub)
1808 			ret = ret_sub;
1809 	}
1810 
1811 	return ret;
1812 }
1813 
1814 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1815 					    struct scrub_block *sblock_good,
1816 					    int page_num, int force_write)
1817 {
1818 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1819 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1820 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1821 
1822 	BUG_ON(page_bad->page == NULL);
1823 	BUG_ON(page_good->page == NULL);
1824 	if (force_write || sblock_bad->header_error ||
1825 	    sblock_bad->checksum_error || page_bad->io_error) {
1826 		struct bio *bio;
1827 		int ret;
1828 
1829 		if (!page_bad->dev->bdev) {
1830 			btrfs_warn_rl(fs_info,
1831 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1832 			return -EIO;
1833 		}
1834 
1835 		bio = btrfs_io_bio_alloc(1);
1836 		bio_set_dev(bio, page_bad->dev->bdev);
1837 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1838 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1839 
1840 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1841 		if (PAGE_SIZE != ret) {
1842 			bio_put(bio);
1843 			return -EIO;
1844 		}
1845 
1846 		if (btrfsic_submit_bio_wait(bio)) {
1847 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1848 				BTRFS_DEV_STAT_WRITE_ERRS);
1849 			btrfs_dev_replace_stats_inc(
1850 				&fs_info->dev_replace.num_write_errors);
1851 			bio_put(bio);
1852 			return -EIO;
1853 		}
1854 		bio_put(bio);
1855 	}
1856 
1857 	return 0;
1858 }
1859 
1860 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1861 {
1862 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1863 	int page_num;
1864 
1865 	/*
1866 	 * This block is used for the check of the parity on the source device,
1867 	 * so the data needn't be written into the destination device.
1868 	 */
1869 	if (sblock->sparity)
1870 		return;
1871 
1872 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1873 		int ret;
1874 
1875 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1876 		if (ret)
1877 			btrfs_dev_replace_stats_inc(
1878 				&fs_info->dev_replace.num_write_errors);
1879 	}
1880 }
1881 
1882 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1883 					   int page_num)
1884 {
1885 	struct scrub_page *spage = sblock->pagev[page_num];
1886 
1887 	BUG_ON(spage->page == NULL);
1888 	if (spage->io_error) {
1889 		void *mapped_buffer = kmap_atomic(spage->page);
1890 
1891 		clear_page(mapped_buffer);
1892 		flush_dcache_page(spage->page);
1893 		kunmap_atomic(mapped_buffer);
1894 	}
1895 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1896 }
1897 
1898 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1899 				    struct scrub_page *spage)
1900 {
1901 	struct scrub_bio *sbio;
1902 	int ret;
1903 
1904 	mutex_lock(&sctx->wr_lock);
1905 again:
1906 	if (!sctx->wr_curr_bio) {
1907 		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1908 					      GFP_KERNEL);
1909 		if (!sctx->wr_curr_bio) {
1910 			mutex_unlock(&sctx->wr_lock);
1911 			return -ENOMEM;
1912 		}
1913 		sctx->wr_curr_bio->sctx = sctx;
1914 		sctx->wr_curr_bio->page_count = 0;
1915 	}
1916 	sbio = sctx->wr_curr_bio;
1917 	if (sbio->page_count == 0) {
1918 		struct bio *bio;
1919 
1920 		sbio->physical = spage->physical_for_dev_replace;
1921 		sbio->logical = spage->logical;
1922 		sbio->dev = sctx->wr_tgtdev;
1923 		bio = sbio->bio;
1924 		if (!bio) {
1925 			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1926 			sbio->bio = bio;
1927 		}
1928 
1929 		bio->bi_private = sbio;
1930 		bio->bi_end_io = scrub_wr_bio_end_io;
1931 		bio_set_dev(bio, sbio->dev->bdev);
1932 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1933 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1934 		sbio->status = 0;
1935 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1936 		   spage->physical_for_dev_replace ||
1937 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1938 		   spage->logical) {
1939 		scrub_wr_submit(sctx);
1940 		goto again;
1941 	}
1942 
1943 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1944 	if (ret != PAGE_SIZE) {
1945 		if (sbio->page_count < 1) {
1946 			bio_put(sbio->bio);
1947 			sbio->bio = NULL;
1948 			mutex_unlock(&sctx->wr_lock);
1949 			return -EIO;
1950 		}
1951 		scrub_wr_submit(sctx);
1952 		goto again;
1953 	}
1954 
1955 	sbio->pagev[sbio->page_count] = spage;
1956 	scrub_page_get(spage);
1957 	sbio->page_count++;
1958 	if (sbio->page_count == sctx->pages_per_wr_bio)
1959 		scrub_wr_submit(sctx);
1960 	mutex_unlock(&sctx->wr_lock);
1961 
1962 	return 0;
1963 }
1964 
1965 static void scrub_wr_submit(struct scrub_ctx *sctx)
1966 {
1967 	struct scrub_bio *sbio;
1968 
1969 	if (!sctx->wr_curr_bio)
1970 		return;
1971 
1972 	sbio = sctx->wr_curr_bio;
1973 	sctx->wr_curr_bio = NULL;
1974 	WARN_ON(!sbio->bio->bi_disk);
1975 	scrub_pending_bio_inc(sctx);
1976 	/* process all writes in a single worker thread. Then the block layer
1977 	 * orders the requests before sending them to the driver which
1978 	 * doubled the write performance on spinning disks when measured
1979 	 * with Linux 3.5 */
1980 	btrfsic_submit_bio(sbio->bio);
1981 }
1982 
1983 static void scrub_wr_bio_end_io(struct bio *bio)
1984 {
1985 	struct scrub_bio *sbio = bio->bi_private;
1986 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1987 
1988 	sbio->status = bio->bi_status;
1989 	sbio->bio = bio;
1990 
1991 	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1992 			 scrub_wr_bio_end_io_worker, NULL, NULL);
1993 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1994 }
1995 
1996 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1997 {
1998 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1999 	struct scrub_ctx *sctx = sbio->sctx;
2000 	int i;
2001 
2002 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
2003 	if (sbio->status) {
2004 		struct btrfs_dev_replace *dev_replace =
2005 			&sbio->sctx->fs_info->dev_replace;
2006 
2007 		for (i = 0; i < sbio->page_count; i++) {
2008 			struct scrub_page *spage = sbio->pagev[i];
2009 
2010 			spage->io_error = 1;
2011 			btrfs_dev_replace_stats_inc(&dev_replace->
2012 						    num_write_errors);
2013 		}
2014 	}
2015 
2016 	for (i = 0; i < sbio->page_count; i++)
2017 		scrub_page_put(sbio->pagev[i]);
2018 
2019 	bio_put(sbio->bio);
2020 	kfree(sbio);
2021 	scrub_pending_bio_dec(sctx);
2022 }
2023 
2024 static int scrub_checksum(struct scrub_block *sblock)
2025 {
2026 	u64 flags;
2027 	int ret;
2028 
2029 	/*
2030 	 * No need to initialize these stats currently,
2031 	 * because this function only use return value
2032 	 * instead of these stats value.
2033 	 *
2034 	 * Todo:
2035 	 * always use stats
2036 	 */
2037 	sblock->header_error = 0;
2038 	sblock->generation_error = 0;
2039 	sblock->checksum_error = 0;
2040 
2041 	WARN_ON(sblock->page_count < 1);
2042 	flags = sblock->pagev[0]->flags;
2043 	ret = 0;
2044 	if (flags & BTRFS_EXTENT_FLAG_DATA)
2045 		ret = scrub_checksum_data(sblock);
2046 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2047 		ret = scrub_checksum_tree_block(sblock);
2048 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
2049 		(void)scrub_checksum_super(sblock);
2050 	else
2051 		WARN_ON(1);
2052 	if (ret)
2053 		scrub_handle_errored_block(sblock);
2054 
2055 	return ret;
2056 }
2057 
2058 static int scrub_checksum_data(struct scrub_block *sblock)
2059 {
2060 	struct scrub_ctx *sctx = sblock->sctx;
2061 	u8 csum[BTRFS_CSUM_SIZE];
2062 	u8 *on_disk_csum;
2063 	struct page *page;
2064 	void *buffer;
2065 	u32 crc = ~(u32)0;
2066 	u64 len;
2067 	int index;
2068 
2069 	BUG_ON(sblock->page_count < 1);
2070 	if (!sblock->pagev[0]->have_csum)
2071 		return 0;
2072 
2073 	on_disk_csum = sblock->pagev[0]->csum;
2074 	page = sblock->pagev[0]->page;
2075 	buffer = kmap_atomic(page);
2076 
2077 	len = sctx->fs_info->sectorsize;
2078 	index = 0;
2079 	for (;;) {
2080 		u64 l = min_t(u64, len, PAGE_SIZE);
2081 
2082 		crc = btrfs_csum_data(buffer, crc, l);
2083 		kunmap_atomic(buffer);
2084 		len -= l;
2085 		if (len == 0)
2086 			break;
2087 		index++;
2088 		BUG_ON(index >= sblock->page_count);
2089 		BUG_ON(!sblock->pagev[index]->page);
2090 		page = sblock->pagev[index]->page;
2091 		buffer = kmap_atomic(page);
2092 	}
2093 
2094 	btrfs_csum_final(crc, csum);
2095 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
2096 		sblock->checksum_error = 1;
2097 
2098 	return sblock->checksum_error;
2099 }
2100 
2101 static int scrub_checksum_tree_block(struct scrub_block *sblock)
2102 {
2103 	struct scrub_ctx *sctx = sblock->sctx;
2104 	struct btrfs_header *h;
2105 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2106 	u8 calculated_csum[BTRFS_CSUM_SIZE];
2107 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2108 	struct page *page;
2109 	void *mapped_buffer;
2110 	u64 mapped_size;
2111 	void *p;
2112 	u32 crc = ~(u32)0;
2113 	u64 len;
2114 	int index;
2115 
2116 	BUG_ON(sblock->page_count < 1);
2117 	page = sblock->pagev[0]->page;
2118 	mapped_buffer = kmap_atomic(page);
2119 	h = (struct btrfs_header *)mapped_buffer;
2120 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
2121 
2122 	/*
2123 	 * we don't use the getter functions here, as we
2124 	 * a) don't have an extent buffer and
2125 	 * b) the page is already kmapped
2126 	 */
2127 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
2128 		sblock->header_error = 1;
2129 
2130 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
2131 		sblock->header_error = 1;
2132 		sblock->generation_error = 1;
2133 	}
2134 
2135 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
2136 		sblock->header_error = 1;
2137 
2138 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
2139 		   BTRFS_UUID_SIZE))
2140 		sblock->header_error = 1;
2141 
2142 	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
2143 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2144 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2145 	index = 0;
2146 	for (;;) {
2147 		u64 l = min_t(u64, len, mapped_size);
2148 
2149 		crc = btrfs_csum_data(p, crc, l);
2150 		kunmap_atomic(mapped_buffer);
2151 		len -= l;
2152 		if (len == 0)
2153 			break;
2154 		index++;
2155 		BUG_ON(index >= sblock->page_count);
2156 		BUG_ON(!sblock->pagev[index]->page);
2157 		page = sblock->pagev[index]->page;
2158 		mapped_buffer = kmap_atomic(page);
2159 		mapped_size = PAGE_SIZE;
2160 		p = mapped_buffer;
2161 	}
2162 
2163 	btrfs_csum_final(crc, calculated_csum);
2164 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2165 		sblock->checksum_error = 1;
2166 
2167 	return sblock->header_error || sblock->checksum_error;
2168 }
2169 
2170 static int scrub_checksum_super(struct scrub_block *sblock)
2171 {
2172 	struct btrfs_super_block *s;
2173 	struct scrub_ctx *sctx = sblock->sctx;
2174 	u8 calculated_csum[BTRFS_CSUM_SIZE];
2175 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2176 	struct page *page;
2177 	void *mapped_buffer;
2178 	u64 mapped_size;
2179 	void *p;
2180 	u32 crc = ~(u32)0;
2181 	int fail_gen = 0;
2182 	int fail_cor = 0;
2183 	u64 len;
2184 	int index;
2185 
2186 	BUG_ON(sblock->page_count < 1);
2187 	page = sblock->pagev[0]->page;
2188 	mapped_buffer = kmap_atomic(page);
2189 	s = (struct btrfs_super_block *)mapped_buffer;
2190 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
2191 
2192 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2193 		++fail_cor;
2194 
2195 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2196 		++fail_gen;
2197 
2198 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2199 		++fail_cor;
2200 
2201 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2202 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2203 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2204 	index = 0;
2205 	for (;;) {
2206 		u64 l = min_t(u64, len, mapped_size);
2207 
2208 		crc = btrfs_csum_data(p, crc, l);
2209 		kunmap_atomic(mapped_buffer);
2210 		len -= l;
2211 		if (len == 0)
2212 			break;
2213 		index++;
2214 		BUG_ON(index >= sblock->page_count);
2215 		BUG_ON(!sblock->pagev[index]->page);
2216 		page = sblock->pagev[index]->page;
2217 		mapped_buffer = kmap_atomic(page);
2218 		mapped_size = PAGE_SIZE;
2219 		p = mapped_buffer;
2220 	}
2221 
2222 	btrfs_csum_final(crc, calculated_csum);
2223 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2224 		++fail_cor;
2225 
2226 	if (fail_cor + fail_gen) {
2227 		/*
2228 		 * if we find an error in a super block, we just report it.
2229 		 * They will get written with the next transaction commit
2230 		 * anyway
2231 		 */
2232 		spin_lock(&sctx->stat_lock);
2233 		++sctx->stat.super_errors;
2234 		spin_unlock(&sctx->stat_lock);
2235 		if (fail_cor)
2236 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2237 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
2238 		else
2239 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2240 				BTRFS_DEV_STAT_GENERATION_ERRS);
2241 	}
2242 
2243 	return fail_cor + fail_gen;
2244 }
2245 
2246 static void scrub_block_get(struct scrub_block *sblock)
2247 {
2248 	refcount_inc(&sblock->refs);
2249 }
2250 
2251 static void scrub_block_put(struct scrub_block *sblock)
2252 {
2253 	if (refcount_dec_and_test(&sblock->refs)) {
2254 		int i;
2255 
2256 		if (sblock->sparity)
2257 			scrub_parity_put(sblock->sparity);
2258 
2259 		for (i = 0; i < sblock->page_count; i++)
2260 			scrub_page_put(sblock->pagev[i]);
2261 		kfree(sblock);
2262 	}
2263 }
2264 
2265 static void scrub_page_get(struct scrub_page *spage)
2266 {
2267 	atomic_inc(&spage->refs);
2268 }
2269 
2270 static void scrub_page_put(struct scrub_page *spage)
2271 {
2272 	if (atomic_dec_and_test(&spage->refs)) {
2273 		if (spage->page)
2274 			__free_page(spage->page);
2275 		kfree(spage);
2276 	}
2277 }
2278 
2279 static void scrub_submit(struct scrub_ctx *sctx)
2280 {
2281 	struct scrub_bio *sbio;
2282 
2283 	if (sctx->curr == -1)
2284 		return;
2285 
2286 	sbio = sctx->bios[sctx->curr];
2287 	sctx->curr = -1;
2288 	scrub_pending_bio_inc(sctx);
2289 	btrfsic_submit_bio(sbio->bio);
2290 }
2291 
2292 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2293 				    struct scrub_page *spage)
2294 {
2295 	struct scrub_block *sblock = spage->sblock;
2296 	struct scrub_bio *sbio;
2297 	int ret;
2298 
2299 again:
2300 	/*
2301 	 * grab a fresh bio or wait for one to become available
2302 	 */
2303 	while (sctx->curr == -1) {
2304 		spin_lock(&sctx->list_lock);
2305 		sctx->curr = sctx->first_free;
2306 		if (sctx->curr != -1) {
2307 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2308 			sctx->bios[sctx->curr]->next_free = -1;
2309 			sctx->bios[sctx->curr]->page_count = 0;
2310 			spin_unlock(&sctx->list_lock);
2311 		} else {
2312 			spin_unlock(&sctx->list_lock);
2313 			wait_event(sctx->list_wait, sctx->first_free != -1);
2314 		}
2315 	}
2316 	sbio = sctx->bios[sctx->curr];
2317 	if (sbio->page_count == 0) {
2318 		struct bio *bio;
2319 
2320 		sbio->physical = spage->physical;
2321 		sbio->logical = spage->logical;
2322 		sbio->dev = spage->dev;
2323 		bio = sbio->bio;
2324 		if (!bio) {
2325 			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2326 			sbio->bio = bio;
2327 		}
2328 
2329 		bio->bi_private = sbio;
2330 		bio->bi_end_io = scrub_bio_end_io;
2331 		bio_set_dev(bio, sbio->dev->bdev);
2332 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2333 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2334 		sbio->status = 0;
2335 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2336 		   spage->physical ||
2337 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2338 		   spage->logical ||
2339 		   sbio->dev != spage->dev) {
2340 		scrub_submit(sctx);
2341 		goto again;
2342 	}
2343 
2344 	sbio->pagev[sbio->page_count] = spage;
2345 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2346 	if (ret != PAGE_SIZE) {
2347 		if (sbio->page_count < 1) {
2348 			bio_put(sbio->bio);
2349 			sbio->bio = NULL;
2350 			return -EIO;
2351 		}
2352 		scrub_submit(sctx);
2353 		goto again;
2354 	}
2355 
2356 	scrub_block_get(sblock); /* one for the page added to the bio */
2357 	atomic_inc(&sblock->outstanding_pages);
2358 	sbio->page_count++;
2359 	if (sbio->page_count == sctx->pages_per_rd_bio)
2360 		scrub_submit(sctx);
2361 
2362 	return 0;
2363 }
2364 
2365 static void scrub_missing_raid56_end_io(struct bio *bio)
2366 {
2367 	struct scrub_block *sblock = bio->bi_private;
2368 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2369 
2370 	if (bio->bi_status)
2371 		sblock->no_io_error_seen = 0;
2372 
2373 	bio_put(bio);
2374 
2375 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2376 }
2377 
2378 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2379 {
2380 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2381 	struct scrub_ctx *sctx = sblock->sctx;
2382 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2383 	u64 logical;
2384 	struct btrfs_device *dev;
2385 
2386 	logical = sblock->pagev[0]->logical;
2387 	dev = sblock->pagev[0]->dev;
2388 
2389 	if (sblock->no_io_error_seen)
2390 		scrub_recheck_block_checksum(sblock);
2391 
2392 	if (!sblock->no_io_error_seen) {
2393 		spin_lock(&sctx->stat_lock);
2394 		sctx->stat.read_errors++;
2395 		spin_unlock(&sctx->stat_lock);
2396 		btrfs_err_rl_in_rcu(fs_info,
2397 			"IO error rebuilding logical %llu for dev %s",
2398 			logical, rcu_str_deref(dev->name));
2399 	} else if (sblock->header_error || sblock->checksum_error) {
2400 		spin_lock(&sctx->stat_lock);
2401 		sctx->stat.uncorrectable_errors++;
2402 		spin_unlock(&sctx->stat_lock);
2403 		btrfs_err_rl_in_rcu(fs_info,
2404 			"failed to rebuild valid logical %llu for dev %s",
2405 			logical, rcu_str_deref(dev->name));
2406 	} else {
2407 		scrub_write_block_to_dev_replace(sblock);
2408 	}
2409 
2410 	scrub_block_put(sblock);
2411 
2412 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2413 		mutex_lock(&sctx->wr_lock);
2414 		scrub_wr_submit(sctx);
2415 		mutex_unlock(&sctx->wr_lock);
2416 	}
2417 
2418 	scrub_pending_bio_dec(sctx);
2419 }
2420 
2421 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2422 {
2423 	struct scrub_ctx *sctx = sblock->sctx;
2424 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2425 	u64 length = sblock->page_count * PAGE_SIZE;
2426 	u64 logical = sblock->pagev[0]->logical;
2427 	struct btrfs_bio *bbio = NULL;
2428 	struct bio *bio;
2429 	struct btrfs_raid_bio *rbio;
2430 	int ret;
2431 	int i;
2432 
2433 	btrfs_bio_counter_inc_blocked(fs_info);
2434 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2435 			&length, &bbio);
2436 	if (ret || !bbio || !bbio->raid_map)
2437 		goto bbio_out;
2438 
2439 	if (WARN_ON(!sctx->is_dev_replace ||
2440 		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2441 		/*
2442 		 * We shouldn't be scrubbing a missing device. Even for dev
2443 		 * replace, we should only get here for RAID 5/6. We either
2444 		 * managed to mount something with no mirrors remaining or
2445 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2446 		 */
2447 		goto bbio_out;
2448 	}
2449 
2450 	bio = btrfs_io_bio_alloc(0);
2451 	bio->bi_iter.bi_sector = logical >> 9;
2452 	bio->bi_private = sblock;
2453 	bio->bi_end_io = scrub_missing_raid56_end_io;
2454 
2455 	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2456 	if (!rbio)
2457 		goto rbio_out;
2458 
2459 	for (i = 0; i < sblock->page_count; i++) {
2460 		struct scrub_page *spage = sblock->pagev[i];
2461 
2462 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2463 	}
2464 
2465 	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2466 			scrub_missing_raid56_worker, NULL, NULL);
2467 	scrub_block_get(sblock);
2468 	scrub_pending_bio_inc(sctx);
2469 	raid56_submit_missing_rbio(rbio);
2470 	return;
2471 
2472 rbio_out:
2473 	bio_put(bio);
2474 bbio_out:
2475 	btrfs_bio_counter_dec(fs_info);
2476 	btrfs_put_bbio(bbio);
2477 	spin_lock(&sctx->stat_lock);
2478 	sctx->stat.malloc_errors++;
2479 	spin_unlock(&sctx->stat_lock);
2480 }
2481 
2482 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2483 		       u64 physical, struct btrfs_device *dev, u64 flags,
2484 		       u64 gen, int mirror_num, u8 *csum, int force,
2485 		       u64 physical_for_dev_replace)
2486 {
2487 	struct scrub_block *sblock;
2488 	int index;
2489 
2490 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2491 	if (!sblock) {
2492 		spin_lock(&sctx->stat_lock);
2493 		sctx->stat.malloc_errors++;
2494 		spin_unlock(&sctx->stat_lock);
2495 		return -ENOMEM;
2496 	}
2497 
2498 	/* one ref inside this function, plus one for each page added to
2499 	 * a bio later on */
2500 	refcount_set(&sblock->refs, 1);
2501 	sblock->sctx = sctx;
2502 	sblock->no_io_error_seen = 1;
2503 
2504 	for (index = 0; len > 0; index++) {
2505 		struct scrub_page *spage;
2506 		u64 l = min_t(u64, len, PAGE_SIZE);
2507 
2508 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2509 		if (!spage) {
2510 leave_nomem:
2511 			spin_lock(&sctx->stat_lock);
2512 			sctx->stat.malloc_errors++;
2513 			spin_unlock(&sctx->stat_lock);
2514 			scrub_block_put(sblock);
2515 			return -ENOMEM;
2516 		}
2517 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2518 		scrub_page_get(spage);
2519 		sblock->pagev[index] = spage;
2520 		spage->sblock = sblock;
2521 		spage->dev = dev;
2522 		spage->flags = flags;
2523 		spage->generation = gen;
2524 		spage->logical = logical;
2525 		spage->physical = physical;
2526 		spage->physical_for_dev_replace = physical_for_dev_replace;
2527 		spage->mirror_num = mirror_num;
2528 		if (csum) {
2529 			spage->have_csum = 1;
2530 			memcpy(spage->csum, csum, sctx->csum_size);
2531 		} else {
2532 			spage->have_csum = 0;
2533 		}
2534 		sblock->page_count++;
2535 		spage->page = alloc_page(GFP_KERNEL);
2536 		if (!spage->page)
2537 			goto leave_nomem;
2538 		len -= l;
2539 		logical += l;
2540 		physical += l;
2541 		physical_for_dev_replace += l;
2542 	}
2543 
2544 	WARN_ON(sblock->page_count == 0);
2545 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2546 		/*
2547 		 * This case should only be hit for RAID 5/6 device replace. See
2548 		 * the comment in scrub_missing_raid56_pages() for details.
2549 		 */
2550 		scrub_missing_raid56_pages(sblock);
2551 	} else {
2552 		for (index = 0; index < sblock->page_count; index++) {
2553 			struct scrub_page *spage = sblock->pagev[index];
2554 			int ret;
2555 
2556 			ret = scrub_add_page_to_rd_bio(sctx, spage);
2557 			if (ret) {
2558 				scrub_block_put(sblock);
2559 				return ret;
2560 			}
2561 		}
2562 
2563 		if (force)
2564 			scrub_submit(sctx);
2565 	}
2566 
2567 	/* last one frees, either here or in bio completion for last page */
2568 	scrub_block_put(sblock);
2569 	return 0;
2570 }
2571 
2572 static void scrub_bio_end_io(struct bio *bio)
2573 {
2574 	struct scrub_bio *sbio = bio->bi_private;
2575 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2576 
2577 	sbio->status = bio->bi_status;
2578 	sbio->bio = bio;
2579 
2580 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2581 }
2582 
2583 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2584 {
2585 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2586 	struct scrub_ctx *sctx = sbio->sctx;
2587 	int i;
2588 
2589 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2590 	if (sbio->status) {
2591 		for (i = 0; i < sbio->page_count; i++) {
2592 			struct scrub_page *spage = sbio->pagev[i];
2593 
2594 			spage->io_error = 1;
2595 			spage->sblock->no_io_error_seen = 0;
2596 		}
2597 	}
2598 
2599 	/* now complete the scrub_block items that have all pages completed */
2600 	for (i = 0; i < sbio->page_count; i++) {
2601 		struct scrub_page *spage = sbio->pagev[i];
2602 		struct scrub_block *sblock = spage->sblock;
2603 
2604 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2605 			scrub_block_complete(sblock);
2606 		scrub_block_put(sblock);
2607 	}
2608 
2609 	bio_put(sbio->bio);
2610 	sbio->bio = NULL;
2611 	spin_lock(&sctx->list_lock);
2612 	sbio->next_free = sctx->first_free;
2613 	sctx->first_free = sbio->index;
2614 	spin_unlock(&sctx->list_lock);
2615 
2616 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2617 		mutex_lock(&sctx->wr_lock);
2618 		scrub_wr_submit(sctx);
2619 		mutex_unlock(&sctx->wr_lock);
2620 	}
2621 
2622 	scrub_pending_bio_dec(sctx);
2623 }
2624 
2625 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2626 				       unsigned long *bitmap,
2627 				       u64 start, u64 len)
2628 {
2629 	u64 offset;
2630 	u64 nsectors64;
2631 	u32 nsectors;
2632 	int sectorsize = sparity->sctx->fs_info->sectorsize;
2633 
2634 	if (len >= sparity->stripe_len) {
2635 		bitmap_set(bitmap, 0, sparity->nsectors);
2636 		return;
2637 	}
2638 
2639 	start -= sparity->logic_start;
2640 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2641 	offset = div_u64(offset, sectorsize);
2642 	nsectors64 = div_u64(len, sectorsize);
2643 
2644 	ASSERT(nsectors64 < UINT_MAX);
2645 	nsectors = (u32)nsectors64;
2646 
2647 	if (offset + nsectors <= sparity->nsectors) {
2648 		bitmap_set(bitmap, offset, nsectors);
2649 		return;
2650 	}
2651 
2652 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2653 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2654 }
2655 
2656 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2657 						   u64 start, u64 len)
2658 {
2659 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2660 }
2661 
2662 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2663 						  u64 start, u64 len)
2664 {
2665 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2666 }
2667 
2668 static void scrub_block_complete(struct scrub_block *sblock)
2669 {
2670 	int corrupted = 0;
2671 
2672 	if (!sblock->no_io_error_seen) {
2673 		corrupted = 1;
2674 		scrub_handle_errored_block(sblock);
2675 	} else {
2676 		/*
2677 		 * if has checksum error, write via repair mechanism in
2678 		 * dev replace case, otherwise write here in dev replace
2679 		 * case.
2680 		 */
2681 		corrupted = scrub_checksum(sblock);
2682 		if (!corrupted && sblock->sctx->is_dev_replace)
2683 			scrub_write_block_to_dev_replace(sblock);
2684 	}
2685 
2686 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2687 		u64 start = sblock->pagev[0]->logical;
2688 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2689 			  PAGE_SIZE;
2690 
2691 		scrub_parity_mark_sectors_error(sblock->sparity,
2692 						start, end - start);
2693 	}
2694 }
2695 
2696 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2697 {
2698 	struct btrfs_ordered_sum *sum = NULL;
2699 	unsigned long index;
2700 	unsigned long num_sectors;
2701 
2702 	while (!list_empty(&sctx->csum_list)) {
2703 		sum = list_first_entry(&sctx->csum_list,
2704 				       struct btrfs_ordered_sum, list);
2705 		if (sum->bytenr > logical)
2706 			return 0;
2707 		if (sum->bytenr + sum->len > logical)
2708 			break;
2709 
2710 		++sctx->stat.csum_discards;
2711 		list_del(&sum->list);
2712 		kfree(sum);
2713 		sum = NULL;
2714 	}
2715 	if (!sum)
2716 		return 0;
2717 
2718 	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2719 	ASSERT(index < UINT_MAX);
2720 
2721 	num_sectors = sum->len / sctx->fs_info->sectorsize;
2722 	memcpy(csum, sum->sums + index, sctx->csum_size);
2723 	if (index == num_sectors - 1) {
2724 		list_del(&sum->list);
2725 		kfree(sum);
2726 	}
2727 	return 1;
2728 }
2729 
2730 /* scrub extent tries to collect up to 64 kB for each bio */
2731 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2732 			u64 physical, struct btrfs_device *dev, u64 flags,
2733 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2734 {
2735 	int ret;
2736 	u8 csum[BTRFS_CSUM_SIZE];
2737 	u32 blocksize;
2738 
2739 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2740 		blocksize = sctx->fs_info->sectorsize;
2741 		spin_lock(&sctx->stat_lock);
2742 		sctx->stat.data_extents_scrubbed++;
2743 		sctx->stat.data_bytes_scrubbed += len;
2744 		spin_unlock(&sctx->stat_lock);
2745 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2746 		blocksize = sctx->fs_info->nodesize;
2747 		spin_lock(&sctx->stat_lock);
2748 		sctx->stat.tree_extents_scrubbed++;
2749 		sctx->stat.tree_bytes_scrubbed += len;
2750 		spin_unlock(&sctx->stat_lock);
2751 	} else {
2752 		blocksize = sctx->fs_info->sectorsize;
2753 		WARN_ON(1);
2754 	}
2755 
2756 	while (len) {
2757 		u64 l = min_t(u64, len, blocksize);
2758 		int have_csum = 0;
2759 
2760 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2761 			/* push csums to sbio */
2762 			have_csum = scrub_find_csum(sctx, logical, csum);
2763 			if (have_csum == 0)
2764 				++sctx->stat.no_csum;
2765 			if (sctx->is_dev_replace && !have_csum) {
2766 				ret = copy_nocow_pages(sctx, logical, l,
2767 						       mirror_num,
2768 						      physical_for_dev_replace);
2769 				goto behind_scrub_pages;
2770 			}
2771 		}
2772 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2773 				  mirror_num, have_csum ? csum : NULL, 0,
2774 				  physical_for_dev_replace);
2775 behind_scrub_pages:
2776 		if (ret)
2777 			return ret;
2778 		len -= l;
2779 		logical += l;
2780 		physical += l;
2781 		physical_for_dev_replace += l;
2782 	}
2783 	return 0;
2784 }
2785 
2786 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2787 				  u64 logical, u64 len,
2788 				  u64 physical, struct btrfs_device *dev,
2789 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2790 {
2791 	struct scrub_ctx *sctx = sparity->sctx;
2792 	struct scrub_block *sblock;
2793 	int index;
2794 
2795 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2796 	if (!sblock) {
2797 		spin_lock(&sctx->stat_lock);
2798 		sctx->stat.malloc_errors++;
2799 		spin_unlock(&sctx->stat_lock);
2800 		return -ENOMEM;
2801 	}
2802 
2803 	/* one ref inside this function, plus one for each page added to
2804 	 * a bio later on */
2805 	refcount_set(&sblock->refs, 1);
2806 	sblock->sctx = sctx;
2807 	sblock->no_io_error_seen = 1;
2808 	sblock->sparity = sparity;
2809 	scrub_parity_get(sparity);
2810 
2811 	for (index = 0; len > 0; index++) {
2812 		struct scrub_page *spage;
2813 		u64 l = min_t(u64, len, PAGE_SIZE);
2814 
2815 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2816 		if (!spage) {
2817 leave_nomem:
2818 			spin_lock(&sctx->stat_lock);
2819 			sctx->stat.malloc_errors++;
2820 			spin_unlock(&sctx->stat_lock);
2821 			scrub_block_put(sblock);
2822 			return -ENOMEM;
2823 		}
2824 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2825 		/* For scrub block */
2826 		scrub_page_get(spage);
2827 		sblock->pagev[index] = spage;
2828 		/* For scrub parity */
2829 		scrub_page_get(spage);
2830 		list_add_tail(&spage->list, &sparity->spages);
2831 		spage->sblock = sblock;
2832 		spage->dev = dev;
2833 		spage->flags = flags;
2834 		spage->generation = gen;
2835 		spage->logical = logical;
2836 		spage->physical = physical;
2837 		spage->mirror_num = mirror_num;
2838 		if (csum) {
2839 			spage->have_csum = 1;
2840 			memcpy(spage->csum, csum, sctx->csum_size);
2841 		} else {
2842 			spage->have_csum = 0;
2843 		}
2844 		sblock->page_count++;
2845 		spage->page = alloc_page(GFP_KERNEL);
2846 		if (!spage->page)
2847 			goto leave_nomem;
2848 		len -= l;
2849 		logical += l;
2850 		physical += l;
2851 	}
2852 
2853 	WARN_ON(sblock->page_count == 0);
2854 	for (index = 0; index < sblock->page_count; index++) {
2855 		struct scrub_page *spage = sblock->pagev[index];
2856 		int ret;
2857 
2858 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2859 		if (ret) {
2860 			scrub_block_put(sblock);
2861 			return ret;
2862 		}
2863 	}
2864 
2865 	/* last one frees, either here or in bio completion for last page */
2866 	scrub_block_put(sblock);
2867 	return 0;
2868 }
2869 
2870 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2871 				   u64 logical, u64 len,
2872 				   u64 physical, struct btrfs_device *dev,
2873 				   u64 flags, u64 gen, int mirror_num)
2874 {
2875 	struct scrub_ctx *sctx = sparity->sctx;
2876 	int ret;
2877 	u8 csum[BTRFS_CSUM_SIZE];
2878 	u32 blocksize;
2879 
2880 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2881 		scrub_parity_mark_sectors_error(sparity, logical, len);
2882 		return 0;
2883 	}
2884 
2885 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2886 		blocksize = sctx->fs_info->sectorsize;
2887 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2888 		blocksize = sctx->fs_info->nodesize;
2889 	} else {
2890 		blocksize = sctx->fs_info->sectorsize;
2891 		WARN_ON(1);
2892 	}
2893 
2894 	while (len) {
2895 		u64 l = min_t(u64, len, blocksize);
2896 		int have_csum = 0;
2897 
2898 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2899 			/* push csums to sbio */
2900 			have_csum = scrub_find_csum(sctx, logical, csum);
2901 			if (have_csum == 0)
2902 				goto skip;
2903 		}
2904 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2905 					     flags, gen, mirror_num,
2906 					     have_csum ? csum : NULL);
2907 		if (ret)
2908 			return ret;
2909 skip:
2910 		len -= l;
2911 		logical += l;
2912 		physical += l;
2913 	}
2914 	return 0;
2915 }
2916 
2917 /*
2918  * Given a physical address, this will calculate it's
2919  * logical offset. if this is a parity stripe, it will return
2920  * the most left data stripe's logical offset.
2921  *
2922  * return 0 if it is a data stripe, 1 means parity stripe.
2923  */
2924 static int get_raid56_logic_offset(u64 physical, int num,
2925 				   struct map_lookup *map, u64 *offset,
2926 				   u64 *stripe_start)
2927 {
2928 	int i;
2929 	int j = 0;
2930 	u64 stripe_nr;
2931 	u64 last_offset;
2932 	u32 stripe_index;
2933 	u32 rot;
2934 
2935 	last_offset = (physical - map->stripes[num].physical) *
2936 		      nr_data_stripes(map);
2937 	if (stripe_start)
2938 		*stripe_start = last_offset;
2939 
2940 	*offset = last_offset;
2941 	for (i = 0; i < nr_data_stripes(map); i++) {
2942 		*offset = last_offset + i * map->stripe_len;
2943 
2944 		stripe_nr = div64_u64(*offset, map->stripe_len);
2945 		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2946 
2947 		/* Work out the disk rotation on this stripe-set */
2948 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2949 		/* calculate which stripe this data locates */
2950 		rot += i;
2951 		stripe_index = rot % map->num_stripes;
2952 		if (stripe_index == num)
2953 			return 0;
2954 		if (stripe_index < num)
2955 			j++;
2956 	}
2957 	*offset = last_offset + j * map->stripe_len;
2958 	return 1;
2959 }
2960 
2961 static void scrub_free_parity(struct scrub_parity *sparity)
2962 {
2963 	struct scrub_ctx *sctx = sparity->sctx;
2964 	struct scrub_page *curr, *next;
2965 	int nbits;
2966 
2967 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2968 	if (nbits) {
2969 		spin_lock(&sctx->stat_lock);
2970 		sctx->stat.read_errors += nbits;
2971 		sctx->stat.uncorrectable_errors += nbits;
2972 		spin_unlock(&sctx->stat_lock);
2973 	}
2974 
2975 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2976 		list_del_init(&curr->list);
2977 		scrub_page_put(curr);
2978 	}
2979 
2980 	kfree(sparity);
2981 }
2982 
2983 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2984 {
2985 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2986 						    work);
2987 	struct scrub_ctx *sctx = sparity->sctx;
2988 
2989 	scrub_free_parity(sparity);
2990 	scrub_pending_bio_dec(sctx);
2991 }
2992 
2993 static void scrub_parity_bio_endio(struct bio *bio)
2994 {
2995 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2996 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2997 
2998 	if (bio->bi_status)
2999 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3000 			  sparity->nsectors);
3001 
3002 	bio_put(bio);
3003 
3004 	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
3005 			scrub_parity_bio_endio_worker, NULL, NULL);
3006 	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
3007 }
3008 
3009 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
3010 {
3011 	struct scrub_ctx *sctx = sparity->sctx;
3012 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3013 	struct bio *bio;
3014 	struct btrfs_raid_bio *rbio;
3015 	struct btrfs_bio *bbio = NULL;
3016 	u64 length;
3017 	int ret;
3018 
3019 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
3020 			   sparity->nsectors))
3021 		goto out;
3022 
3023 	length = sparity->logic_end - sparity->logic_start;
3024 
3025 	btrfs_bio_counter_inc_blocked(fs_info);
3026 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3027 			       &length, &bbio);
3028 	if (ret || !bbio || !bbio->raid_map)
3029 		goto bbio_out;
3030 
3031 	bio = btrfs_io_bio_alloc(0);
3032 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
3033 	bio->bi_private = sparity;
3034 	bio->bi_end_io = scrub_parity_bio_endio;
3035 
3036 	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
3037 					      length, sparity->scrub_dev,
3038 					      sparity->dbitmap,
3039 					      sparity->nsectors);
3040 	if (!rbio)
3041 		goto rbio_out;
3042 
3043 	scrub_pending_bio_inc(sctx);
3044 	raid56_parity_submit_scrub_rbio(rbio);
3045 	return;
3046 
3047 rbio_out:
3048 	bio_put(bio);
3049 bbio_out:
3050 	btrfs_bio_counter_dec(fs_info);
3051 	btrfs_put_bbio(bbio);
3052 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3053 		  sparity->nsectors);
3054 	spin_lock(&sctx->stat_lock);
3055 	sctx->stat.malloc_errors++;
3056 	spin_unlock(&sctx->stat_lock);
3057 out:
3058 	scrub_free_parity(sparity);
3059 }
3060 
3061 static inline int scrub_calc_parity_bitmap_len(int nsectors)
3062 {
3063 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
3064 }
3065 
3066 static void scrub_parity_get(struct scrub_parity *sparity)
3067 {
3068 	refcount_inc(&sparity->refs);
3069 }
3070 
3071 static void scrub_parity_put(struct scrub_parity *sparity)
3072 {
3073 	if (!refcount_dec_and_test(&sparity->refs))
3074 		return;
3075 
3076 	scrub_parity_check_and_repair(sparity);
3077 }
3078 
3079 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3080 						  struct map_lookup *map,
3081 						  struct btrfs_device *sdev,
3082 						  struct btrfs_path *path,
3083 						  u64 logic_start,
3084 						  u64 logic_end)
3085 {
3086 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3087 	struct btrfs_root *root = fs_info->extent_root;
3088 	struct btrfs_root *csum_root = fs_info->csum_root;
3089 	struct btrfs_extent_item *extent;
3090 	struct btrfs_bio *bbio = NULL;
3091 	u64 flags;
3092 	int ret;
3093 	int slot;
3094 	struct extent_buffer *l;
3095 	struct btrfs_key key;
3096 	u64 generation;
3097 	u64 extent_logical;
3098 	u64 extent_physical;
3099 	u64 extent_len;
3100 	u64 mapped_length;
3101 	struct btrfs_device *extent_dev;
3102 	struct scrub_parity *sparity;
3103 	int nsectors;
3104 	int bitmap_len;
3105 	int extent_mirror_num;
3106 	int stop_loop = 0;
3107 
3108 	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
3109 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
3110 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
3111 			  GFP_NOFS);
3112 	if (!sparity) {
3113 		spin_lock(&sctx->stat_lock);
3114 		sctx->stat.malloc_errors++;
3115 		spin_unlock(&sctx->stat_lock);
3116 		return -ENOMEM;
3117 	}
3118 
3119 	sparity->stripe_len = map->stripe_len;
3120 	sparity->nsectors = nsectors;
3121 	sparity->sctx = sctx;
3122 	sparity->scrub_dev = sdev;
3123 	sparity->logic_start = logic_start;
3124 	sparity->logic_end = logic_end;
3125 	refcount_set(&sparity->refs, 1);
3126 	INIT_LIST_HEAD(&sparity->spages);
3127 	sparity->dbitmap = sparity->bitmap;
3128 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
3129 
3130 	ret = 0;
3131 	while (logic_start < logic_end) {
3132 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3133 			key.type = BTRFS_METADATA_ITEM_KEY;
3134 		else
3135 			key.type = BTRFS_EXTENT_ITEM_KEY;
3136 		key.objectid = logic_start;
3137 		key.offset = (u64)-1;
3138 
3139 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3140 		if (ret < 0)
3141 			goto out;
3142 
3143 		if (ret > 0) {
3144 			ret = btrfs_previous_extent_item(root, path, 0);
3145 			if (ret < 0)
3146 				goto out;
3147 			if (ret > 0) {
3148 				btrfs_release_path(path);
3149 				ret = btrfs_search_slot(NULL, root, &key,
3150 							path, 0, 0);
3151 				if (ret < 0)
3152 					goto out;
3153 			}
3154 		}
3155 
3156 		stop_loop = 0;
3157 		while (1) {
3158 			u64 bytes;
3159 
3160 			l = path->nodes[0];
3161 			slot = path->slots[0];
3162 			if (slot >= btrfs_header_nritems(l)) {
3163 				ret = btrfs_next_leaf(root, path);
3164 				if (ret == 0)
3165 					continue;
3166 				if (ret < 0)
3167 					goto out;
3168 
3169 				stop_loop = 1;
3170 				break;
3171 			}
3172 			btrfs_item_key_to_cpu(l, &key, slot);
3173 
3174 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3175 			    key.type != BTRFS_METADATA_ITEM_KEY)
3176 				goto next;
3177 
3178 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3179 				bytes = fs_info->nodesize;
3180 			else
3181 				bytes = key.offset;
3182 
3183 			if (key.objectid + bytes <= logic_start)
3184 				goto next;
3185 
3186 			if (key.objectid >= logic_end) {
3187 				stop_loop = 1;
3188 				break;
3189 			}
3190 
3191 			while (key.objectid >= logic_start + map->stripe_len)
3192 				logic_start += map->stripe_len;
3193 
3194 			extent = btrfs_item_ptr(l, slot,
3195 						struct btrfs_extent_item);
3196 			flags = btrfs_extent_flags(l, extent);
3197 			generation = btrfs_extent_generation(l, extent);
3198 
3199 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3200 			    (key.objectid < logic_start ||
3201 			     key.objectid + bytes >
3202 			     logic_start + map->stripe_len)) {
3203 				btrfs_err(fs_info,
3204 					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3205 					  key.objectid, logic_start);
3206 				spin_lock(&sctx->stat_lock);
3207 				sctx->stat.uncorrectable_errors++;
3208 				spin_unlock(&sctx->stat_lock);
3209 				goto next;
3210 			}
3211 again:
3212 			extent_logical = key.objectid;
3213 			extent_len = bytes;
3214 
3215 			if (extent_logical < logic_start) {
3216 				extent_len -= logic_start - extent_logical;
3217 				extent_logical = logic_start;
3218 			}
3219 
3220 			if (extent_logical + extent_len >
3221 			    logic_start + map->stripe_len)
3222 				extent_len = logic_start + map->stripe_len -
3223 					     extent_logical;
3224 
3225 			scrub_parity_mark_sectors_data(sparity, extent_logical,
3226 						       extent_len);
3227 
3228 			mapped_length = extent_len;
3229 			bbio = NULL;
3230 			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3231 					extent_logical, &mapped_length, &bbio,
3232 					0);
3233 			if (!ret) {
3234 				if (!bbio || mapped_length < extent_len)
3235 					ret = -EIO;
3236 			}
3237 			if (ret) {
3238 				btrfs_put_bbio(bbio);
3239 				goto out;
3240 			}
3241 			extent_physical = bbio->stripes[0].physical;
3242 			extent_mirror_num = bbio->mirror_num;
3243 			extent_dev = bbio->stripes[0].dev;
3244 			btrfs_put_bbio(bbio);
3245 
3246 			ret = btrfs_lookup_csums_range(csum_root,
3247 						extent_logical,
3248 						extent_logical + extent_len - 1,
3249 						&sctx->csum_list, 1);
3250 			if (ret)
3251 				goto out;
3252 
3253 			ret = scrub_extent_for_parity(sparity, extent_logical,
3254 						      extent_len,
3255 						      extent_physical,
3256 						      extent_dev, flags,
3257 						      generation,
3258 						      extent_mirror_num);
3259 
3260 			scrub_free_csums(sctx);
3261 
3262 			if (ret)
3263 				goto out;
3264 
3265 			if (extent_logical + extent_len <
3266 			    key.objectid + bytes) {
3267 				logic_start += map->stripe_len;
3268 
3269 				if (logic_start >= logic_end) {
3270 					stop_loop = 1;
3271 					break;
3272 				}
3273 
3274 				if (logic_start < key.objectid + bytes) {
3275 					cond_resched();
3276 					goto again;
3277 				}
3278 			}
3279 next:
3280 			path->slots[0]++;
3281 		}
3282 
3283 		btrfs_release_path(path);
3284 
3285 		if (stop_loop)
3286 			break;
3287 
3288 		logic_start += map->stripe_len;
3289 	}
3290 out:
3291 	if (ret < 0)
3292 		scrub_parity_mark_sectors_error(sparity, logic_start,
3293 						logic_end - logic_start);
3294 	scrub_parity_put(sparity);
3295 	scrub_submit(sctx);
3296 	mutex_lock(&sctx->wr_lock);
3297 	scrub_wr_submit(sctx);
3298 	mutex_unlock(&sctx->wr_lock);
3299 
3300 	btrfs_release_path(path);
3301 	return ret < 0 ? ret : 0;
3302 }
3303 
3304 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3305 					   struct map_lookup *map,
3306 					   struct btrfs_device *scrub_dev,
3307 					   int num, u64 base, u64 length,
3308 					   int is_dev_replace)
3309 {
3310 	struct btrfs_path *path, *ppath;
3311 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3312 	struct btrfs_root *root = fs_info->extent_root;
3313 	struct btrfs_root *csum_root = fs_info->csum_root;
3314 	struct btrfs_extent_item *extent;
3315 	struct blk_plug plug;
3316 	u64 flags;
3317 	int ret;
3318 	int slot;
3319 	u64 nstripes;
3320 	struct extent_buffer *l;
3321 	u64 physical;
3322 	u64 logical;
3323 	u64 logic_end;
3324 	u64 physical_end;
3325 	u64 generation;
3326 	int mirror_num;
3327 	struct reada_control *reada1;
3328 	struct reada_control *reada2;
3329 	struct btrfs_key key;
3330 	struct btrfs_key key_end;
3331 	u64 increment = map->stripe_len;
3332 	u64 offset;
3333 	u64 extent_logical;
3334 	u64 extent_physical;
3335 	u64 extent_len;
3336 	u64 stripe_logical;
3337 	u64 stripe_end;
3338 	struct btrfs_device *extent_dev;
3339 	int extent_mirror_num;
3340 	int stop_loop = 0;
3341 
3342 	physical = map->stripes[num].physical;
3343 	offset = 0;
3344 	nstripes = div64_u64(length, map->stripe_len);
3345 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3346 		offset = map->stripe_len * num;
3347 		increment = map->stripe_len * map->num_stripes;
3348 		mirror_num = 1;
3349 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3350 		int factor = map->num_stripes / map->sub_stripes;
3351 		offset = map->stripe_len * (num / map->sub_stripes);
3352 		increment = map->stripe_len * factor;
3353 		mirror_num = num % map->sub_stripes + 1;
3354 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3355 		increment = map->stripe_len;
3356 		mirror_num = num % map->num_stripes + 1;
3357 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3358 		increment = map->stripe_len;
3359 		mirror_num = num % map->num_stripes + 1;
3360 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3361 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3362 		increment = map->stripe_len * nr_data_stripes(map);
3363 		mirror_num = 1;
3364 	} else {
3365 		increment = map->stripe_len;
3366 		mirror_num = 1;
3367 	}
3368 
3369 	path = btrfs_alloc_path();
3370 	if (!path)
3371 		return -ENOMEM;
3372 
3373 	ppath = btrfs_alloc_path();
3374 	if (!ppath) {
3375 		btrfs_free_path(path);
3376 		return -ENOMEM;
3377 	}
3378 
3379 	/*
3380 	 * work on commit root. The related disk blocks are static as
3381 	 * long as COW is applied. This means, it is save to rewrite
3382 	 * them to repair disk errors without any race conditions
3383 	 */
3384 	path->search_commit_root = 1;
3385 	path->skip_locking = 1;
3386 
3387 	ppath->search_commit_root = 1;
3388 	ppath->skip_locking = 1;
3389 	/*
3390 	 * trigger the readahead for extent tree csum tree and wait for
3391 	 * completion. During readahead, the scrub is officially paused
3392 	 * to not hold off transaction commits
3393 	 */
3394 	logical = base + offset;
3395 	physical_end = physical + nstripes * map->stripe_len;
3396 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3397 		get_raid56_logic_offset(physical_end, num,
3398 					map, &logic_end, NULL);
3399 		logic_end += base;
3400 	} else {
3401 		logic_end = logical + increment * nstripes;
3402 	}
3403 	wait_event(sctx->list_wait,
3404 		   atomic_read(&sctx->bios_in_flight) == 0);
3405 	scrub_blocked_if_needed(fs_info);
3406 
3407 	/* FIXME it might be better to start readahead at commit root */
3408 	key.objectid = logical;
3409 	key.type = BTRFS_EXTENT_ITEM_KEY;
3410 	key.offset = (u64)0;
3411 	key_end.objectid = logic_end;
3412 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3413 	key_end.offset = (u64)-1;
3414 	reada1 = btrfs_reada_add(root, &key, &key_end);
3415 
3416 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3417 	key.type = BTRFS_EXTENT_CSUM_KEY;
3418 	key.offset = logical;
3419 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3420 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3421 	key_end.offset = logic_end;
3422 	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3423 
3424 	if (!IS_ERR(reada1))
3425 		btrfs_reada_wait(reada1);
3426 	if (!IS_ERR(reada2))
3427 		btrfs_reada_wait(reada2);
3428 
3429 
3430 	/*
3431 	 * collect all data csums for the stripe to avoid seeking during
3432 	 * the scrub. This might currently (crc32) end up to be about 1MB
3433 	 */
3434 	blk_start_plug(&plug);
3435 
3436 	/*
3437 	 * now find all extents for each stripe and scrub them
3438 	 */
3439 	ret = 0;
3440 	while (physical < physical_end) {
3441 		/*
3442 		 * canceled?
3443 		 */
3444 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3445 		    atomic_read(&sctx->cancel_req)) {
3446 			ret = -ECANCELED;
3447 			goto out;
3448 		}
3449 		/*
3450 		 * check to see if we have to pause
3451 		 */
3452 		if (atomic_read(&fs_info->scrub_pause_req)) {
3453 			/* push queued extents */
3454 			sctx->flush_all_writes = true;
3455 			scrub_submit(sctx);
3456 			mutex_lock(&sctx->wr_lock);
3457 			scrub_wr_submit(sctx);
3458 			mutex_unlock(&sctx->wr_lock);
3459 			wait_event(sctx->list_wait,
3460 				   atomic_read(&sctx->bios_in_flight) == 0);
3461 			sctx->flush_all_writes = false;
3462 			scrub_blocked_if_needed(fs_info);
3463 		}
3464 
3465 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3466 			ret = get_raid56_logic_offset(physical, num, map,
3467 						      &logical,
3468 						      &stripe_logical);
3469 			logical += base;
3470 			if (ret) {
3471 				/* it is parity strip */
3472 				stripe_logical += base;
3473 				stripe_end = stripe_logical + increment;
3474 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3475 							  ppath, stripe_logical,
3476 							  stripe_end);
3477 				if (ret)
3478 					goto out;
3479 				goto skip;
3480 			}
3481 		}
3482 
3483 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3484 			key.type = BTRFS_METADATA_ITEM_KEY;
3485 		else
3486 			key.type = BTRFS_EXTENT_ITEM_KEY;
3487 		key.objectid = logical;
3488 		key.offset = (u64)-1;
3489 
3490 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3491 		if (ret < 0)
3492 			goto out;
3493 
3494 		if (ret > 0) {
3495 			ret = btrfs_previous_extent_item(root, path, 0);
3496 			if (ret < 0)
3497 				goto out;
3498 			if (ret > 0) {
3499 				/* there's no smaller item, so stick with the
3500 				 * larger one */
3501 				btrfs_release_path(path);
3502 				ret = btrfs_search_slot(NULL, root, &key,
3503 							path, 0, 0);
3504 				if (ret < 0)
3505 					goto out;
3506 			}
3507 		}
3508 
3509 		stop_loop = 0;
3510 		while (1) {
3511 			u64 bytes;
3512 
3513 			l = path->nodes[0];
3514 			slot = path->slots[0];
3515 			if (slot >= btrfs_header_nritems(l)) {
3516 				ret = btrfs_next_leaf(root, path);
3517 				if (ret == 0)
3518 					continue;
3519 				if (ret < 0)
3520 					goto out;
3521 
3522 				stop_loop = 1;
3523 				break;
3524 			}
3525 			btrfs_item_key_to_cpu(l, &key, slot);
3526 
3527 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3528 			    key.type != BTRFS_METADATA_ITEM_KEY)
3529 				goto next;
3530 
3531 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3532 				bytes = fs_info->nodesize;
3533 			else
3534 				bytes = key.offset;
3535 
3536 			if (key.objectid + bytes <= logical)
3537 				goto next;
3538 
3539 			if (key.objectid >= logical + map->stripe_len) {
3540 				/* out of this device extent */
3541 				if (key.objectid >= logic_end)
3542 					stop_loop = 1;
3543 				break;
3544 			}
3545 
3546 			extent = btrfs_item_ptr(l, slot,
3547 						struct btrfs_extent_item);
3548 			flags = btrfs_extent_flags(l, extent);
3549 			generation = btrfs_extent_generation(l, extent);
3550 
3551 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3552 			    (key.objectid < logical ||
3553 			     key.objectid + bytes >
3554 			     logical + map->stripe_len)) {
3555 				btrfs_err(fs_info,
3556 					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3557 				       key.objectid, logical);
3558 				spin_lock(&sctx->stat_lock);
3559 				sctx->stat.uncorrectable_errors++;
3560 				spin_unlock(&sctx->stat_lock);
3561 				goto next;
3562 			}
3563 
3564 again:
3565 			extent_logical = key.objectid;
3566 			extent_len = bytes;
3567 
3568 			/*
3569 			 * trim extent to this stripe
3570 			 */
3571 			if (extent_logical < logical) {
3572 				extent_len -= logical - extent_logical;
3573 				extent_logical = logical;
3574 			}
3575 			if (extent_logical + extent_len >
3576 			    logical + map->stripe_len) {
3577 				extent_len = logical + map->stripe_len -
3578 					     extent_logical;
3579 			}
3580 
3581 			extent_physical = extent_logical - logical + physical;
3582 			extent_dev = scrub_dev;
3583 			extent_mirror_num = mirror_num;
3584 			if (is_dev_replace)
3585 				scrub_remap_extent(fs_info, extent_logical,
3586 						   extent_len, &extent_physical,
3587 						   &extent_dev,
3588 						   &extent_mirror_num);
3589 
3590 			ret = btrfs_lookup_csums_range(csum_root,
3591 						       extent_logical,
3592 						       extent_logical +
3593 						       extent_len - 1,
3594 						       &sctx->csum_list, 1);
3595 			if (ret)
3596 				goto out;
3597 
3598 			ret = scrub_extent(sctx, extent_logical, extent_len,
3599 					   extent_physical, extent_dev, flags,
3600 					   generation, extent_mirror_num,
3601 					   extent_logical - logical + physical);
3602 
3603 			scrub_free_csums(sctx);
3604 
3605 			if (ret)
3606 				goto out;
3607 
3608 			if (extent_logical + extent_len <
3609 			    key.objectid + bytes) {
3610 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3611 					/*
3612 					 * loop until we find next data stripe
3613 					 * or we have finished all stripes.
3614 					 */
3615 loop:
3616 					physical += map->stripe_len;
3617 					ret = get_raid56_logic_offset(physical,
3618 							num, map, &logical,
3619 							&stripe_logical);
3620 					logical += base;
3621 
3622 					if (ret && physical < physical_end) {
3623 						stripe_logical += base;
3624 						stripe_end = stripe_logical +
3625 								increment;
3626 						ret = scrub_raid56_parity(sctx,
3627 							map, scrub_dev, ppath,
3628 							stripe_logical,
3629 							stripe_end);
3630 						if (ret)
3631 							goto out;
3632 						goto loop;
3633 					}
3634 				} else {
3635 					physical += map->stripe_len;
3636 					logical += increment;
3637 				}
3638 				if (logical < key.objectid + bytes) {
3639 					cond_resched();
3640 					goto again;
3641 				}
3642 
3643 				if (physical >= physical_end) {
3644 					stop_loop = 1;
3645 					break;
3646 				}
3647 			}
3648 next:
3649 			path->slots[0]++;
3650 		}
3651 		btrfs_release_path(path);
3652 skip:
3653 		logical += increment;
3654 		physical += map->stripe_len;
3655 		spin_lock(&sctx->stat_lock);
3656 		if (stop_loop)
3657 			sctx->stat.last_physical = map->stripes[num].physical +
3658 						   length;
3659 		else
3660 			sctx->stat.last_physical = physical;
3661 		spin_unlock(&sctx->stat_lock);
3662 		if (stop_loop)
3663 			break;
3664 	}
3665 out:
3666 	/* push queued extents */
3667 	scrub_submit(sctx);
3668 	mutex_lock(&sctx->wr_lock);
3669 	scrub_wr_submit(sctx);
3670 	mutex_unlock(&sctx->wr_lock);
3671 
3672 	blk_finish_plug(&plug);
3673 	btrfs_free_path(path);
3674 	btrfs_free_path(ppath);
3675 	return ret < 0 ? ret : 0;
3676 }
3677 
3678 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3679 					  struct btrfs_device *scrub_dev,
3680 					  u64 chunk_offset, u64 length,
3681 					  u64 dev_offset,
3682 					  struct btrfs_block_group_cache *cache,
3683 					  int is_dev_replace)
3684 {
3685 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3686 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3687 	struct map_lookup *map;
3688 	struct extent_map *em;
3689 	int i;
3690 	int ret = 0;
3691 
3692 	read_lock(&map_tree->map_tree.lock);
3693 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3694 	read_unlock(&map_tree->map_tree.lock);
3695 
3696 	if (!em) {
3697 		/*
3698 		 * Might have been an unused block group deleted by the cleaner
3699 		 * kthread or relocation.
3700 		 */
3701 		spin_lock(&cache->lock);
3702 		if (!cache->removed)
3703 			ret = -EINVAL;
3704 		spin_unlock(&cache->lock);
3705 
3706 		return ret;
3707 	}
3708 
3709 	map = em->map_lookup;
3710 	if (em->start != chunk_offset)
3711 		goto out;
3712 
3713 	if (em->len < length)
3714 		goto out;
3715 
3716 	for (i = 0; i < map->num_stripes; ++i) {
3717 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3718 		    map->stripes[i].physical == dev_offset) {
3719 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3720 					   chunk_offset, length,
3721 					   is_dev_replace);
3722 			if (ret)
3723 				goto out;
3724 		}
3725 	}
3726 out:
3727 	free_extent_map(em);
3728 
3729 	return ret;
3730 }
3731 
3732 static noinline_for_stack
3733 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3734 			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3735 			   int is_dev_replace)
3736 {
3737 	struct btrfs_dev_extent *dev_extent = NULL;
3738 	struct btrfs_path *path;
3739 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3740 	struct btrfs_root *root = fs_info->dev_root;
3741 	u64 length;
3742 	u64 chunk_offset;
3743 	int ret = 0;
3744 	int ro_set;
3745 	int slot;
3746 	struct extent_buffer *l;
3747 	struct btrfs_key key;
3748 	struct btrfs_key found_key;
3749 	struct btrfs_block_group_cache *cache;
3750 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3751 
3752 	path = btrfs_alloc_path();
3753 	if (!path)
3754 		return -ENOMEM;
3755 
3756 	path->reada = READA_FORWARD;
3757 	path->search_commit_root = 1;
3758 	path->skip_locking = 1;
3759 
3760 	key.objectid = scrub_dev->devid;
3761 	key.offset = 0ull;
3762 	key.type = BTRFS_DEV_EXTENT_KEY;
3763 
3764 	while (1) {
3765 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3766 		if (ret < 0)
3767 			break;
3768 		if (ret > 0) {
3769 			if (path->slots[0] >=
3770 			    btrfs_header_nritems(path->nodes[0])) {
3771 				ret = btrfs_next_leaf(root, path);
3772 				if (ret < 0)
3773 					break;
3774 				if (ret > 0) {
3775 					ret = 0;
3776 					break;
3777 				}
3778 			} else {
3779 				ret = 0;
3780 			}
3781 		}
3782 
3783 		l = path->nodes[0];
3784 		slot = path->slots[0];
3785 
3786 		btrfs_item_key_to_cpu(l, &found_key, slot);
3787 
3788 		if (found_key.objectid != scrub_dev->devid)
3789 			break;
3790 
3791 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3792 			break;
3793 
3794 		if (found_key.offset >= end)
3795 			break;
3796 
3797 		if (found_key.offset < key.offset)
3798 			break;
3799 
3800 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3801 		length = btrfs_dev_extent_length(l, dev_extent);
3802 
3803 		if (found_key.offset + length <= start)
3804 			goto skip;
3805 
3806 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3807 
3808 		/*
3809 		 * get a reference on the corresponding block group to prevent
3810 		 * the chunk from going away while we scrub it
3811 		 */
3812 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3813 
3814 		/* some chunks are removed but not committed to disk yet,
3815 		 * continue scrubbing */
3816 		if (!cache)
3817 			goto skip;
3818 
3819 		/*
3820 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3821 		 * to avoid deadlock caused by:
3822 		 * btrfs_inc_block_group_ro()
3823 		 * -> btrfs_wait_for_commit()
3824 		 * -> btrfs_commit_transaction()
3825 		 * -> btrfs_scrub_pause()
3826 		 */
3827 		scrub_pause_on(fs_info);
3828 		ret = btrfs_inc_block_group_ro(fs_info, cache);
3829 		if (!ret && is_dev_replace) {
3830 			/*
3831 			 * If we are doing a device replace wait for any tasks
3832 			 * that started dellaloc right before we set the block
3833 			 * group to RO mode, as they might have just allocated
3834 			 * an extent from it or decided they could do a nocow
3835 			 * write. And if any such tasks did that, wait for their
3836 			 * ordered extents to complete and then commit the
3837 			 * current transaction, so that we can later see the new
3838 			 * extent items in the extent tree - the ordered extents
3839 			 * create delayed data references (for cow writes) when
3840 			 * they complete, which will be run and insert the
3841 			 * corresponding extent items into the extent tree when
3842 			 * we commit the transaction they used when running
3843 			 * inode.c:btrfs_finish_ordered_io(). We later use
3844 			 * the commit root of the extent tree to find extents
3845 			 * to copy from the srcdev into the tgtdev, and we don't
3846 			 * want to miss any new extents.
3847 			 */
3848 			btrfs_wait_block_group_reservations(cache);
3849 			btrfs_wait_nocow_writers(cache);
3850 			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3851 						       cache->key.objectid,
3852 						       cache->key.offset);
3853 			if (ret > 0) {
3854 				struct btrfs_trans_handle *trans;
3855 
3856 				trans = btrfs_join_transaction(root);
3857 				if (IS_ERR(trans))
3858 					ret = PTR_ERR(trans);
3859 				else
3860 					ret = btrfs_commit_transaction(trans);
3861 				if (ret) {
3862 					scrub_pause_off(fs_info);
3863 					btrfs_put_block_group(cache);
3864 					break;
3865 				}
3866 			}
3867 		}
3868 		scrub_pause_off(fs_info);
3869 
3870 		if (ret == 0) {
3871 			ro_set = 1;
3872 		} else if (ret == -ENOSPC) {
3873 			/*
3874 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3875 			 * failed in creating new chunk for metadata.
3876 			 * It is not a problem for scrub/replace, because
3877 			 * metadata are always cowed, and our scrub paused
3878 			 * commit_transactions.
3879 			 */
3880 			ro_set = 0;
3881 		} else {
3882 			btrfs_warn(fs_info,
3883 				   "failed setting block group ro: %d", ret);
3884 			btrfs_put_block_group(cache);
3885 			break;
3886 		}
3887 
3888 		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3889 		dev_replace->cursor_right = found_key.offset + length;
3890 		dev_replace->cursor_left = found_key.offset;
3891 		dev_replace->item_needs_writeback = 1;
3892 		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3893 		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3894 				  found_key.offset, cache, is_dev_replace);
3895 
3896 		/*
3897 		 * flush, submit all pending read and write bios, afterwards
3898 		 * wait for them.
3899 		 * Note that in the dev replace case, a read request causes
3900 		 * write requests that are submitted in the read completion
3901 		 * worker. Therefore in the current situation, it is required
3902 		 * that all write requests are flushed, so that all read and
3903 		 * write requests are really completed when bios_in_flight
3904 		 * changes to 0.
3905 		 */
3906 		sctx->flush_all_writes = true;
3907 		scrub_submit(sctx);
3908 		mutex_lock(&sctx->wr_lock);
3909 		scrub_wr_submit(sctx);
3910 		mutex_unlock(&sctx->wr_lock);
3911 
3912 		wait_event(sctx->list_wait,
3913 			   atomic_read(&sctx->bios_in_flight) == 0);
3914 
3915 		scrub_pause_on(fs_info);
3916 
3917 		/*
3918 		 * must be called before we decrease @scrub_paused.
3919 		 * make sure we don't block transaction commit while
3920 		 * we are waiting pending workers finished.
3921 		 */
3922 		wait_event(sctx->list_wait,
3923 			   atomic_read(&sctx->workers_pending) == 0);
3924 		sctx->flush_all_writes = false;
3925 
3926 		scrub_pause_off(fs_info);
3927 
3928 		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3929 		dev_replace->cursor_left = dev_replace->cursor_right;
3930 		dev_replace->item_needs_writeback = 1;
3931 		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3932 
3933 		if (ro_set)
3934 			btrfs_dec_block_group_ro(cache);
3935 
3936 		/*
3937 		 * We might have prevented the cleaner kthread from deleting
3938 		 * this block group if it was already unused because we raced
3939 		 * and set it to RO mode first. So add it back to the unused
3940 		 * list, otherwise it might not ever be deleted unless a manual
3941 		 * balance is triggered or it becomes used and unused again.
3942 		 */
3943 		spin_lock(&cache->lock);
3944 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3945 		    btrfs_block_group_used(&cache->item) == 0) {
3946 			spin_unlock(&cache->lock);
3947 			spin_lock(&fs_info->unused_bgs_lock);
3948 			if (list_empty(&cache->bg_list)) {
3949 				btrfs_get_block_group(cache);
3950 				list_add_tail(&cache->bg_list,
3951 					      &fs_info->unused_bgs);
3952 			}
3953 			spin_unlock(&fs_info->unused_bgs_lock);
3954 		} else {
3955 			spin_unlock(&cache->lock);
3956 		}
3957 
3958 		btrfs_put_block_group(cache);
3959 		if (ret)
3960 			break;
3961 		if (is_dev_replace &&
3962 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3963 			ret = -EIO;
3964 			break;
3965 		}
3966 		if (sctx->stat.malloc_errors > 0) {
3967 			ret = -ENOMEM;
3968 			break;
3969 		}
3970 skip:
3971 		key.offset = found_key.offset + length;
3972 		btrfs_release_path(path);
3973 	}
3974 
3975 	btrfs_free_path(path);
3976 
3977 	return ret;
3978 }
3979 
3980 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3981 					   struct btrfs_device *scrub_dev)
3982 {
3983 	int	i;
3984 	u64	bytenr;
3985 	u64	gen;
3986 	int	ret;
3987 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3988 
3989 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3990 		return -EIO;
3991 
3992 	/* Seed devices of a new filesystem has their own generation. */
3993 	if (scrub_dev->fs_devices != fs_info->fs_devices)
3994 		gen = scrub_dev->generation;
3995 	else
3996 		gen = fs_info->last_trans_committed;
3997 
3998 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3999 		bytenr = btrfs_sb_offset(i);
4000 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
4001 		    scrub_dev->commit_total_bytes)
4002 			break;
4003 
4004 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4005 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4006 				  NULL, 1, bytenr);
4007 		if (ret)
4008 			return ret;
4009 	}
4010 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4011 
4012 	return 0;
4013 }
4014 
4015 /*
4016  * get a reference count on fs_info->scrub_workers. start worker if necessary
4017  */
4018 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4019 						int is_dev_replace)
4020 {
4021 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4022 	int max_active = fs_info->thread_pool_size;
4023 
4024 	if (fs_info->scrub_workers_refcnt == 0) {
4025 		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
4026 				flags, is_dev_replace ? 1 : max_active, 4);
4027 		if (!fs_info->scrub_workers)
4028 			goto fail_scrub_workers;
4029 
4030 		fs_info->scrub_wr_completion_workers =
4031 			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4032 					      max_active, 2);
4033 		if (!fs_info->scrub_wr_completion_workers)
4034 			goto fail_scrub_wr_completion_workers;
4035 
4036 		fs_info->scrub_nocow_workers =
4037 			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
4038 		if (!fs_info->scrub_nocow_workers)
4039 			goto fail_scrub_nocow_workers;
4040 		fs_info->scrub_parity_workers =
4041 			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4042 					      max_active, 2);
4043 		if (!fs_info->scrub_parity_workers)
4044 			goto fail_scrub_parity_workers;
4045 	}
4046 	++fs_info->scrub_workers_refcnt;
4047 	return 0;
4048 
4049 fail_scrub_parity_workers:
4050 	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4051 fail_scrub_nocow_workers:
4052 	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4053 fail_scrub_wr_completion_workers:
4054 	btrfs_destroy_workqueue(fs_info->scrub_workers);
4055 fail_scrub_workers:
4056 	return -ENOMEM;
4057 }
4058 
4059 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
4060 {
4061 	if (--fs_info->scrub_workers_refcnt == 0) {
4062 		btrfs_destroy_workqueue(fs_info->scrub_workers);
4063 		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4064 		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4065 		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
4066 	}
4067 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
4068 }
4069 
4070 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4071 		    u64 end, struct btrfs_scrub_progress *progress,
4072 		    int readonly, int is_dev_replace)
4073 {
4074 	struct scrub_ctx *sctx;
4075 	int ret;
4076 	struct btrfs_device *dev;
4077 	struct rcu_string *name;
4078 
4079 	if (btrfs_fs_closing(fs_info))
4080 		return -EINVAL;
4081 
4082 	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4083 		/*
4084 		 * in this case scrub is unable to calculate the checksum
4085 		 * the way scrub is implemented. Do not handle this
4086 		 * situation at all because it won't ever happen.
4087 		 */
4088 		btrfs_err(fs_info,
4089 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4090 		       fs_info->nodesize,
4091 		       BTRFS_STRIPE_LEN);
4092 		return -EINVAL;
4093 	}
4094 
4095 	if (fs_info->sectorsize != PAGE_SIZE) {
4096 		/* not supported for data w/o checksums */
4097 		btrfs_err_rl(fs_info,
4098 			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4099 		       fs_info->sectorsize, PAGE_SIZE);
4100 		return -EINVAL;
4101 	}
4102 
4103 	if (fs_info->nodesize >
4104 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4105 	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4106 		/*
4107 		 * would exhaust the array bounds of pagev member in
4108 		 * struct scrub_block
4109 		 */
4110 		btrfs_err(fs_info,
4111 			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4112 		       fs_info->nodesize,
4113 		       SCRUB_MAX_PAGES_PER_BLOCK,
4114 		       fs_info->sectorsize,
4115 		       SCRUB_MAX_PAGES_PER_BLOCK);
4116 		return -EINVAL;
4117 	}
4118 
4119 
4120 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4121 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4122 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4123 		     !is_dev_replace)) {
4124 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4125 		return -ENODEV;
4126 	}
4127 
4128 	if (!is_dev_replace && !readonly &&
4129 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4130 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4131 		rcu_read_lock();
4132 		name = rcu_dereference(dev->name);
4133 		btrfs_err(fs_info, "scrub: device %s is not writable",
4134 			  name->str);
4135 		rcu_read_unlock();
4136 		return -EROFS;
4137 	}
4138 
4139 	mutex_lock(&fs_info->scrub_lock);
4140 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4141 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4142 		mutex_unlock(&fs_info->scrub_lock);
4143 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4144 		return -EIO;
4145 	}
4146 
4147 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
4148 	if (dev->scrub_ctx ||
4149 	    (!is_dev_replace &&
4150 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4151 		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
4152 		mutex_unlock(&fs_info->scrub_lock);
4153 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4154 		return -EINPROGRESS;
4155 	}
4156 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
4157 
4158 	ret = scrub_workers_get(fs_info, is_dev_replace);
4159 	if (ret) {
4160 		mutex_unlock(&fs_info->scrub_lock);
4161 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4162 		return ret;
4163 	}
4164 
4165 	sctx = scrub_setup_ctx(dev, is_dev_replace);
4166 	if (IS_ERR(sctx)) {
4167 		mutex_unlock(&fs_info->scrub_lock);
4168 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4169 		scrub_workers_put(fs_info);
4170 		return PTR_ERR(sctx);
4171 	}
4172 	sctx->readonly = readonly;
4173 	dev->scrub_ctx = sctx;
4174 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4175 
4176 	/*
4177 	 * checking @scrub_pause_req here, we can avoid
4178 	 * race between committing transaction and scrubbing.
4179 	 */
4180 	__scrub_blocked_if_needed(fs_info);
4181 	atomic_inc(&fs_info->scrubs_running);
4182 	mutex_unlock(&fs_info->scrub_lock);
4183 
4184 	if (!is_dev_replace) {
4185 		/*
4186 		 * by holding device list mutex, we can
4187 		 * kick off writing super in log tree sync.
4188 		 */
4189 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4190 		ret = scrub_supers(sctx, dev);
4191 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4192 	}
4193 
4194 	if (!ret)
4195 		ret = scrub_enumerate_chunks(sctx, dev, start, end,
4196 					     is_dev_replace);
4197 
4198 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4199 	atomic_dec(&fs_info->scrubs_running);
4200 	wake_up(&fs_info->scrub_pause_wait);
4201 
4202 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4203 
4204 	if (progress)
4205 		memcpy(progress, &sctx->stat, sizeof(*progress));
4206 
4207 	mutex_lock(&fs_info->scrub_lock);
4208 	dev->scrub_ctx = NULL;
4209 	scrub_workers_put(fs_info);
4210 	mutex_unlock(&fs_info->scrub_lock);
4211 
4212 	scrub_put_ctx(sctx);
4213 
4214 	return ret;
4215 }
4216 
4217 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4218 {
4219 	mutex_lock(&fs_info->scrub_lock);
4220 	atomic_inc(&fs_info->scrub_pause_req);
4221 	while (atomic_read(&fs_info->scrubs_paused) !=
4222 	       atomic_read(&fs_info->scrubs_running)) {
4223 		mutex_unlock(&fs_info->scrub_lock);
4224 		wait_event(fs_info->scrub_pause_wait,
4225 			   atomic_read(&fs_info->scrubs_paused) ==
4226 			   atomic_read(&fs_info->scrubs_running));
4227 		mutex_lock(&fs_info->scrub_lock);
4228 	}
4229 	mutex_unlock(&fs_info->scrub_lock);
4230 }
4231 
4232 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4233 {
4234 	atomic_dec(&fs_info->scrub_pause_req);
4235 	wake_up(&fs_info->scrub_pause_wait);
4236 }
4237 
4238 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4239 {
4240 	mutex_lock(&fs_info->scrub_lock);
4241 	if (!atomic_read(&fs_info->scrubs_running)) {
4242 		mutex_unlock(&fs_info->scrub_lock);
4243 		return -ENOTCONN;
4244 	}
4245 
4246 	atomic_inc(&fs_info->scrub_cancel_req);
4247 	while (atomic_read(&fs_info->scrubs_running)) {
4248 		mutex_unlock(&fs_info->scrub_lock);
4249 		wait_event(fs_info->scrub_pause_wait,
4250 			   atomic_read(&fs_info->scrubs_running) == 0);
4251 		mutex_lock(&fs_info->scrub_lock);
4252 	}
4253 	atomic_dec(&fs_info->scrub_cancel_req);
4254 	mutex_unlock(&fs_info->scrub_lock);
4255 
4256 	return 0;
4257 }
4258 
4259 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4260 			   struct btrfs_device *dev)
4261 {
4262 	struct scrub_ctx *sctx;
4263 
4264 	mutex_lock(&fs_info->scrub_lock);
4265 	sctx = dev->scrub_ctx;
4266 	if (!sctx) {
4267 		mutex_unlock(&fs_info->scrub_lock);
4268 		return -ENOTCONN;
4269 	}
4270 	atomic_inc(&sctx->cancel_req);
4271 	while (dev->scrub_ctx) {
4272 		mutex_unlock(&fs_info->scrub_lock);
4273 		wait_event(fs_info->scrub_pause_wait,
4274 			   dev->scrub_ctx == NULL);
4275 		mutex_lock(&fs_info->scrub_lock);
4276 	}
4277 	mutex_unlock(&fs_info->scrub_lock);
4278 
4279 	return 0;
4280 }
4281 
4282 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4283 			 struct btrfs_scrub_progress *progress)
4284 {
4285 	struct btrfs_device *dev;
4286 	struct scrub_ctx *sctx = NULL;
4287 
4288 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4289 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4290 	if (dev)
4291 		sctx = dev->scrub_ctx;
4292 	if (sctx)
4293 		memcpy(progress, &sctx->stat, sizeof(*progress));
4294 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4295 
4296 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4297 }
4298 
4299 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4300 			       u64 extent_logical, u64 extent_len,
4301 			       u64 *extent_physical,
4302 			       struct btrfs_device **extent_dev,
4303 			       int *extent_mirror_num)
4304 {
4305 	u64 mapped_length;
4306 	struct btrfs_bio *bbio = NULL;
4307 	int ret;
4308 
4309 	mapped_length = extent_len;
4310 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4311 			      &mapped_length, &bbio, 0);
4312 	if (ret || !bbio || mapped_length < extent_len ||
4313 	    !bbio->stripes[0].dev->bdev) {
4314 		btrfs_put_bbio(bbio);
4315 		return;
4316 	}
4317 
4318 	*extent_physical = bbio->stripes[0].physical;
4319 	*extent_mirror_num = bbio->mirror_num;
4320 	*extent_dev = bbio->stripes[0].dev;
4321 	btrfs_put_bbio(bbio);
4322 }
4323 
4324 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4325 			    int mirror_num, u64 physical_for_dev_replace)
4326 {
4327 	struct scrub_copy_nocow_ctx *nocow_ctx;
4328 	struct btrfs_fs_info *fs_info = sctx->fs_info;
4329 
4330 	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4331 	if (!nocow_ctx) {
4332 		spin_lock(&sctx->stat_lock);
4333 		sctx->stat.malloc_errors++;
4334 		spin_unlock(&sctx->stat_lock);
4335 		return -ENOMEM;
4336 	}
4337 
4338 	scrub_pending_trans_workers_inc(sctx);
4339 
4340 	nocow_ctx->sctx = sctx;
4341 	nocow_ctx->logical = logical;
4342 	nocow_ctx->len = len;
4343 	nocow_ctx->mirror_num = mirror_num;
4344 	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4345 	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4346 			copy_nocow_pages_worker, NULL, NULL);
4347 	INIT_LIST_HEAD(&nocow_ctx->inodes);
4348 	btrfs_queue_work(fs_info->scrub_nocow_workers,
4349 			 &nocow_ctx->work);
4350 
4351 	return 0;
4352 }
4353 
4354 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4355 {
4356 	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4357 	struct scrub_nocow_inode *nocow_inode;
4358 
4359 	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4360 	if (!nocow_inode)
4361 		return -ENOMEM;
4362 	nocow_inode->inum = inum;
4363 	nocow_inode->offset = offset;
4364 	nocow_inode->root = root;
4365 	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4366 	return 0;
4367 }
4368 
4369 #define COPY_COMPLETE 1
4370 
4371 static void copy_nocow_pages_worker(struct btrfs_work *work)
4372 {
4373 	struct scrub_copy_nocow_ctx *nocow_ctx =
4374 		container_of(work, struct scrub_copy_nocow_ctx, work);
4375 	struct scrub_ctx *sctx = nocow_ctx->sctx;
4376 	struct btrfs_fs_info *fs_info = sctx->fs_info;
4377 	struct btrfs_root *root = fs_info->extent_root;
4378 	u64 logical = nocow_ctx->logical;
4379 	u64 len = nocow_ctx->len;
4380 	int mirror_num = nocow_ctx->mirror_num;
4381 	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4382 	int ret;
4383 	struct btrfs_trans_handle *trans = NULL;
4384 	struct btrfs_path *path;
4385 	int not_written = 0;
4386 
4387 	path = btrfs_alloc_path();
4388 	if (!path) {
4389 		spin_lock(&sctx->stat_lock);
4390 		sctx->stat.malloc_errors++;
4391 		spin_unlock(&sctx->stat_lock);
4392 		not_written = 1;
4393 		goto out;
4394 	}
4395 
4396 	trans = btrfs_join_transaction(root);
4397 	if (IS_ERR(trans)) {
4398 		not_written = 1;
4399 		goto out;
4400 	}
4401 
4402 	ret = iterate_inodes_from_logical(logical, fs_info, path,
4403 			record_inode_for_nocow, nocow_ctx, false);
4404 	if (ret != 0 && ret != -ENOENT) {
4405 		btrfs_warn(fs_info,
4406 			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4407 			   logical, physical_for_dev_replace, len, mirror_num,
4408 			   ret);
4409 		not_written = 1;
4410 		goto out;
4411 	}
4412 
4413 	btrfs_end_transaction(trans);
4414 	trans = NULL;
4415 	while (!list_empty(&nocow_ctx->inodes)) {
4416 		struct scrub_nocow_inode *entry;
4417 		entry = list_first_entry(&nocow_ctx->inodes,
4418 					 struct scrub_nocow_inode,
4419 					 list);
4420 		list_del_init(&entry->list);
4421 		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4422 						 entry->root, nocow_ctx);
4423 		kfree(entry);
4424 		if (ret == COPY_COMPLETE) {
4425 			ret = 0;
4426 			break;
4427 		} else if (ret) {
4428 			break;
4429 		}
4430 	}
4431 out:
4432 	while (!list_empty(&nocow_ctx->inodes)) {
4433 		struct scrub_nocow_inode *entry;
4434 		entry = list_first_entry(&nocow_ctx->inodes,
4435 					 struct scrub_nocow_inode,
4436 					 list);
4437 		list_del_init(&entry->list);
4438 		kfree(entry);
4439 	}
4440 	if (trans && !IS_ERR(trans))
4441 		btrfs_end_transaction(trans);
4442 	if (not_written)
4443 		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4444 					    num_uncorrectable_read_errors);
4445 
4446 	btrfs_free_path(path);
4447 	kfree(nocow_ctx);
4448 
4449 	scrub_pending_trans_workers_dec(sctx);
4450 }
4451 
4452 static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
4453 				 u64 logical)
4454 {
4455 	struct extent_state *cached_state = NULL;
4456 	struct btrfs_ordered_extent *ordered;
4457 	struct extent_io_tree *io_tree;
4458 	struct extent_map *em;
4459 	u64 lockstart = start, lockend = start + len - 1;
4460 	int ret = 0;
4461 
4462 	io_tree = &inode->io_tree;
4463 
4464 	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4465 	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4466 	if (ordered) {
4467 		btrfs_put_ordered_extent(ordered);
4468 		ret = 1;
4469 		goto out_unlock;
4470 	}
4471 
4472 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4473 	if (IS_ERR(em)) {
4474 		ret = PTR_ERR(em);
4475 		goto out_unlock;
4476 	}
4477 
4478 	/*
4479 	 * This extent does not actually cover the logical extent anymore,
4480 	 * move on to the next inode.
4481 	 */
4482 	if (em->block_start > logical ||
4483 	    em->block_start + em->block_len < logical + len) {
4484 		free_extent_map(em);
4485 		ret = 1;
4486 		goto out_unlock;
4487 	}
4488 	free_extent_map(em);
4489 
4490 out_unlock:
4491 	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state);
4492 	return ret;
4493 }
4494 
4495 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4496 				      struct scrub_copy_nocow_ctx *nocow_ctx)
4497 {
4498 	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4499 	struct btrfs_key key;
4500 	struct inode *inode;
4501 	struct page *page;
4502 	struct btrfs_root *local_root;
4503 	struct extent_io_tree *io_tree;
4504 	u64 physical_for_dev_replace;
4505 	u64 nocow_ctx_logical;
4506 	u64 len = nocow_ctx->len;
4507 	unsigned long index;
4508 	int srcu_index;
4509 	int ret = 0;
4510 	int err = 0;
4511 
4512 	key.objectid = root;
4513 	key.type = BTRFS_ROOT_ITEM_KEY;
4514 	key.offset = (u64)-1;
4515 
4516 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4517 
4518 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4519 	if (IS_ERR(local_root)) {
4520 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4521 		return PTR_ERR(local_root);
4522 	}
4523 
4524 	key.type = BTRFS_INODE_ITEM_KEY;
4525 	key.objectid = inum;
4526 	key.offset = 0;
4527 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4528 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4529 	if (IS_ERR(inode))
4530 		return PTR_ERR(inode);
4531 
4532 	/* Avoid truncate/dio/punch hole.. */
4533 	inode_lock(inode);
4534 	inode_dio_wait(inode);
4535 
4536 	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4537 	io_tree = &BTRFS_I(inode)->io_tree;
4538 	nocow_ctx_logical = nocow_ctx->logical;
4539 
4540 	ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4541 			nocow_ctx_logical);
4542 	if (ret) {
4543 		ret = ret > 0 ? 0 : ret;
4544 		goto out;
4545 	}
4546 
4547 	while (len >= PAGE_SIZE) {
4548 		index = offset >> PAGE_SHIFT;
4549 again:
4550 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4551 		if (!page) {
4552 			btrfs_err(fs_info, "find_or_create_page() failed");
4553 			ret = -ENOMEM;
4554 			goto out;
4555 		}
4556 
4557 		if (PageUptodate(page)) {
4558 			if (PageDirty(page))
4559 				goto next_page;
4560 		} else {
4561 			ClearPageError(page);
4562 			err = extent_read_full_page(io_tree, page,
4563 							   btrfs_get_extent,
4564 							   nocow_ctx->mirror_num);
4565 			if (err) {
4566 				ret = err;
4567 				goto next_page;
4568 			}
4569 
4570 			lock_page(page);
4571 			/*
4572 			 * If the page has been remove from the page cache,
4573 			 * the data on it is meaningless, because it may be
4574 			 * old one, the new data may be written into the new
4575 			 * page in the page cache.
4576 			 */
4577 			if (page->mapping != inode->i_mapping) {
4578 				unlock_page(page);
4579 				put_page(page);
4580 				goto again;
4581 			}
4582 			if (!PageUptodate(page)) {
4583 				ret = -EIO;
4584 				goto next_page;
4585 			}
4586 		}
4587 
4588 		ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4589 					    nocow_ctx_logical);
4590 		if (ret) {
4591 			ret = ret > 0 ? 0 : ret;
4592 			goto next_page;
4593 		}
4594 
4595 		err = write_page_nocow(nocow_ctx->sctx,
4596 				       physical_for_dev_replace, page);
4597 		if (err)
4598 			ret = err;
4599 next_page:
4600 		unlock_page(page);
4601 		put_page(page);
4602 
4603 		if (ret)
4604 			break;
4605 
4606 		offset += PAGE_SIZE;
4607 		physical_for_dev_replace += PAGE_SIZE;
4608 		nocow_ctx_logical += PAGE_SIZE;
4609 		len -= PAGE_SIZE;
4610 	}
4611 	ret = COPY_COMPLETE;
4612 out:
4613 	inode_unlock(inode);
4614 	iput(inode);
4615 	return ret;
4616 }
4617 
4618 static int write_page_nocow(struct scrub_ctx *sctx,
4619 			    u64 physical_for_dev_replace, struct page *page)
4620 {
4621 	struct bio *bio;
4622 	struct btrfs_device *dev;
4623 	int ret;
4624 
4625 	dev = sctx->wr_tgtdev;
4626 	if (!dev)
4627 		return -EIO;
4628 	if (!dev->bdev) {
4629 		btrfs_warn_rl(dev->fs_info,
4630 			"scrub write_page_nocow(bdev == NULL) is unexpected");
4631 		return -EIO;
4632 	}
4633 	bio = btrfs_io_bio_alloc(1);
4634 	bio->bi_iter.bi_size = 0;
4635 	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4636 	bio_set_dev(bio, dev->bdev);
4637 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4638 	ret = bio_add_page(bio, page, PAGE_SIZE, 0);
4639 	if (ret != PAGE_SIZE) {
4640 leave_with_eio:
4641 		bio_put(bio);
4642 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4643 		return -EIO;
4644 	}
4645 
4646 	if (btrfsic_submit_bio_wait(bio))
4647 		goto leave_with_eio;
4648 
4649 	bio_put(bio);
4650 	return 0;
4651 }
4652