1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/ratelimit.h> 8 #include <linux/sched/mm.h> 9 #include <crypto/hash.h> 10 #include "ctree.h" 11 #include "discard.h" 12 #include "volumes.h" 13 #include "disk-io.h" 14 #include "ordered-data.h" 15 #include "transaction.h" 16 #include "backref.h" 17 #include "extent_io.h" 18 #include "dev-replace.h" 19 #include "raid56.h" 20 #include "block-group.h" 21 #include "zoned.h" 22 #include "fs.h" 23 #include "accessors.h" 24 #include "file-item.h" 25 #include "scrub.h" 26 #include "raid-stripe-tree.h" 27 28 /* 29 * This is only the first step towards a full-features scrub. It reads all 30 * extent and super block and verifies the checksums. In case a bad checksum 31 * is found or the extent cannot be read, good data will be written back if 32 * any can be found. 33 * 34 * Future enhancements: 35 * - In case an unrepairable extent is encountered, track which files are 36 * affected and report them 37 * - track and record media errors, throw out bad devices 38 * - add a mode to also read unallocated space 39 */ 40 41 struct scrub_ctx; 42 43 /* 44 * The following value only influences the performance. 45 * 46 * This determines how many stripes would be submitted in one go, 47 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP). 48 */ 49 #define SCRUB_STRIPES_PER_GROUP 8 50 51 /* 52 * How many groups we have for each sctx. 53 * 54 * This would be 8M per device, the same value as the old scrub in-flight bios 55 * size limit. 56 */ 57 #define SCRUB_GROUPS_PER_SCTX 16 58 59 #define SCRUB_TOTAL_STRIPES (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP) 60 61 /* 62 * The following value times PAGE_SIZE needs to be large enough to match the 63 * largest node/leaf/sector size that shall be supported. 64 */ 65 #define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K) 66 67 /* Represent one sector and its needed info to verify the content. */ 68 struct scrub_sector_verification { 69 bool is_metadata; 70 71 union { 72 /* 73 * Csum pointer for data csum verification. Should point to a 74 * sector csum inside scrub_stripe::csums. 75 * 76 * NULL if this data sector has no csum. 77 */ 78 u8 *csum; 79 80 /* 81 * Extra info for metadata verification. All sectors inside a 82 * tree block share the same generation. 83 */ 84 u64 generation; 85 }; 86 }; 87 88 enum scrub_stripe_flags { 89 /* Set when @mirror_num, @dev, @physical and @logical are set. */ 90 SCRUB_STRIPE_FLAG_INITIALIZED, 91 92 /* Set when the read-repair is finished. */ 93 SCRUB_STRIPE_FLAG_REPAIR_DONE, 94 95 /* 96 * Set for data stripes if it's triggered from P/Q stripe. 97 * During such scrub, we should not report errors in data stripes, nor 98 * update the accounting. 99 */ 100 SCRUB_STRIPE_FLAG_NO_REPORT, 101 }; 102 103 #define SCRUB_STRIPE_PAGES (BTRFS_STRIPE_LEN / PAGE_SIZE) 104 105 /* 106 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN. 107 */ 108 struct scrub_stripe { 109 struct scrub_ctx *sctx; 110 struct btrfs_block_group *bg; 111 112 struct page *pages[SCRUB_STRIPE_PAGES]; 113 struct scrub_sector_verification *sectors; 114 115 struct btrfs_device *dev; 116 u64 logical; 117 u64 physical; 118 119 u16 mirror_num; 120 121 /* Should be BTRFS_STRIPE_LEN / sectorsize. */ 122 u16 nr_sectors; 123 124 /* 125 * How many data/meta extents are in this stripe. Only for scrub status 126 * reporting purposes. 127 */ 128 u16 nr_data_extents; 129 u16 nr_meta_extents; 130 131 atomic_t pending_io; 132 wait_queue_head_t io_wait; 133 wait_queue_head_t repair_wait; 134 135 /* 136 * Indicate the states of the stripe. Bits are defined in 137 * scrub_stripe_flags enum. 138 */ 139 unsigned long state; 140 141 /* Indicate which sectors are covered by extent items. */ 142 unsigned long extent_sector_bitmap; 143 144 /* 145 * The errors hit during the initial read of the stripe. 146 * 147 * Would be utilized for error reporting and repair. 148 * 149 * The remaining init_nr_* records the number of errors hit, only used 150 * by error reporting. 151 */ 152 unsigned long init_error_bitmap; 153 unsigned int init_nr_io_errors; 154 unsigned int init_nr_csum_errors; 155 unsigned int init_nr_meta_errors; 156 157 /* 158 * The following error bitmaps are all for the current status. 159 * Every time we submit a new read, these bitmaps may be updated. 160 * 161 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap; 162 * 163 * IO and csum errors can happen for both metadata and data. 164 */ 165 unsigned long error_bitmap; 166 unsigned long io_error_bitmap; 167 unsigned long csum_error_bitmap; 168 unsigned long meta_error_bitmap; 169 170 /* For writeback (repair or replace) error reporting. */ 171 unsigned long write_error_bitmap; 172 173 /* Writeback can be concurrent, thus we need to protect the bitmap. */ 174 spinlock_t write_error_lock; 175 176 /* 177 * Checksum for the whole stripe if this stripe is inside a data block 178 * group. 179 */ 180 u8 *csums; 181 182 struct work_struct work; 183 }; 184 185 struct scrub_ctx { 186 struct scrub_stripe stripes[SCRUB_TOTAL_STRIPES]; 187 struct scrub_stripe *raid56_data_stripes; 188 struct btrfs_fs_info *fs_info; 189 struct btrfs_path extent_path; 190 struct btrfs_path csum_path; 191 int first_free; 192 int cur_stripe; 193 atomic_t cancel_req; 194 int readonly; 195 196 /* State of IO submission throttling affecting the associated device */ 197 ktime_t throttle_deadline; 198 u64 throttle_sent; 199 200 int is_dev_replace; 201 u64 write_pointer; 202 203 struct mutex wr_lock; 204 struct btrfs_device *wr_tgtdev; 205 206 /* 207 * statistics 208 */ 209 struct btrfs_scrub_progress stat; 210 spinlock_t stat_lock; 211 212 /* 213 * Use a ref counter to avoid use-after-free issues. Scrub workers 214 * decrement bios_in_flight and workers_pending and then do a wakeup 215 * on the list_wait wait queue. We must ensure the main scrub task 216 * doesn't free the scrub context before or while the workers are 217 * doing the wakeup() call. 218 */ 219 refcount_t refs; 220 }; 221 222 struct scrub_warning { 223 struct btrfs_path *path; 224 u64 extent_item_size; 225 const char *errstr; 226 u64 physical; 227 u64 logical; 228 struct btrfs_device *dev; 229 }; 230 231 static void release_scrub_stripe(struct scrub_stripe *stripe) 232 { 233 if (!stripe) 234 return; 235 236 for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) { 237 if (stripe->pages[i]) 238 __free_page(stripe->pages[i]); 239 stripe->pages[i] = NULL; 240 } 241 kfree(stripe->sectors); 242 kfree(stripe->csums); 243 stripe->sectors = NULL; 244 stripe->csums = NULL; 245 stripe->sctx = NULL; 246 stripe->state = 0; 247 } 248 249 static int init_scrub_stripe(struct btrfs_fs_info *fs_info, 250 struct scrub_stripe *stripe) 251 { 252 int ret; 253 254 memset(stripe, 0, sizeof(*stripe)); 255 256 stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; 257 stripe->state = 0; 258 259 init_waitqueue_head(&stripe->io_wait); 260 init_waitqueue_head(&stripe->repair_wait); 261 atomic_set(&stripe->pending_io, 0); 262 spin_lock_init(&stripe->write_error_lock); 263 264 ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, 0); 265 if (ret < 0) 266 goto error; 267 268 stripe->sectors = kcalloc(stripe->nr_sectors, 269 sizeof(struct scrub_sector_verification), 270 GFP_KERNEL); 271 if (!stripe->sectors) 272 goto error; 273 274 stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits, 275 fs_info->csum_size, GFP_KERNEL); 276 if (!stripe->csums) 277 goto error; 278 return 0; 279 error: 280 release_scrub_stripe(stripe); 281 return -ENOMEM; 282 } 283 284 static void wait_scrub_stripe_io(struct scrub_stripe *stripe) 285 { 286 wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0); 287 } 288 289 static void scrub_put_ctx(struct scrub_ctx *sctx); 290 291 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 292 { 293 while (atomic_read(&fs_info->scrub_pause_req)) { 294 mutex_unlock(&fs_info->scrub_lock); 295 wait_event(fs_info->scrub_pause_wait, 296 atomic_read(&fs_info->scrub_pause_req) == 0); 297 mutex_lock(&fs_info->scrub_lock); 298 } 299 } 300 301 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 302 { 303 atomic_inc(&fs_info->scrubs_paused); 304 wake_up(&fs_info->scrub_pause_wait); 305 } 306 307 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 308 { 309 mutex_lock(&fs_info->scrub_lock); 310 __scrub_blocked_if_needed(fs_info); 311 atomic_dec(&fs_info->scrubs_paused); 312 mutex_unlock(&fs_info->scrub_lock); 313 314 wake_up(&fs_info->scrub_pause_wait); 315 } 316 317 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 318 { 319 scrub_pause_on(fs_info); 320 scrub_pause_off(fs_info); 321 } 322 323 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 324 { 325 int i; 326 327 if (!sctx) 328 return; 329 330 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) 331 release_scrub_stripe(&sctx->stripes[i]); 332 333 kvfree(sctx); 334 } 335 336 static void scrub_put_ctx(struct scrub_ctx *sctx) 337 { 338 if (refcount_dec_and_test(&sctx->refs)) 339 scrub_free_ctx(sctx); 340 } 341 342 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( 343 struct btrfs_fs_info *fs_info, int is_dev_replace) 344 { 345 struct scrub_ctx *sctx; 346 int i; 347 348 /* Since sctx has inline 128 stripes, it can go beyond 64K easily. Use 349 * kvzalloc(). 350 */ 351 sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL); 352 if (!sctx) 353 goto nomem; 354 refcount_set(&sctx->refs, 1); 355 sctx->is_dev_replace = is_dev_replace; 356 sctx->fs_info = fs_info; 357 sctx->extent_path.search_commit_root = 1; 358 sctx->extent_path.skip_locking = 1; 359 sctx->csum_path.search_commit_root = 1; 360 sctx->csum_path.skip_locking = 1; 361 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) { 362 int ret; 363 364 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]); 365 if (ret < 0) 366 goto nomem; 367 sctx->stripes[i].sctx = sctx; 368 } 369 sctx->first_free = 0; 370 atomic_set(&sctx->cancel_req, 0); 371 372 spin_lock_init(&sctx->stat_lock); 373 sctx->throttle_deadline = 0; 374 375 mutex_init(&sctx->wr_lock); 376 if (is_dev_replace) { 377 WARN_ON(!fs_info->dev_replace.tgtdev); 378 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 379 } 380 381 return sctx; 382 383 nomem: 384 scrub_free_ctx(sctx); 385 return ERR_PTR(-ENOMEM); 386 } 387 388 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 389 u64 root, void *warn_ctx) 390 { 391 u32 nlink; 392 int ret; 393 int i; 394 unsigned nofs_flag; 395 struct extent_buffer *eb; 396 struct btrfs_inode_item *inode_item; 397 struct scrub_warning *swarn = warn_ctx; 398 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 399 struct inode_fs_paths *ipath = NULL; 400 struct btrfs_root *local_root; 401 struct btrfs_key key; 402 403 local_root = btrfs_get_fs_root(fs_info, root, true); 404 if (IS_ERR(local_root)) { 405 ret = PTR_ERR(local_root); 406 goto err; 407 } 408 409 /* 410 * this makes the path point to (inum INODE_ITEM ioff) 411 */ 412 key.objectid = inum; 413 key.type = BTRFS_INODE_ITEM_KEY; 414 key.offset = 0; 415 416 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 417 if (ret) { 418 btrfs_put_root(local_root); 419 btrfs_release_path(swarn->path); 420 goto err; 421 } 422 423 eb = swarn->path->nodes[0]; 424 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 425 struct btrfs_inode_item); 426 nlink = btrfs_inode_nlink(eb, inode_item); 427 btrfs_release_path(swarn->path); 428 429 /* 430 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 431 * uses GFP_NOFS in this context, so we keep it consistent but it does 432 * not seem to be strictly necessary. 433 */ 434 nofs_flag = memalloc_nofs_save(); 435 ipath = init_ipath(4096, local_root, swarn->path); 436 memalloc_nofs_restore(nofs_flag); 437 if (IS_ERR(ipath)) { 438 btrfs_put_root(local_root); 439 ret = PTR_ERR(ipath); 440 ipath = NULL; 441 goto err; 442 } 443 ret = paths_from_inode(inum, ipath); 444 445 if (ret < 0) 446 goto err; 447 448 /* 449 * we deliberately ignore the bit ipath might have been too small to 450 * hold all of the paths here 451 */ 452 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 453 btrfs_warn_in_rcu(fs_info, 454 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)", 455 swarn->errstr, swarn->logical, 456 btrfs_dev_name(swarn->dev), 457 swarn->physical, 458 root, inum, offset, 459 fs_info->sectorsize, nlink, 460 (char *)(unsigned long)ipath->fspath->val[i]); 461 462 btrfs_put_root(local_root); 463 free_ipath(ipath); 464 return 0; 465 466 err: 467 btrfs_warn_in_rcu(fs_info, 468 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 469 swarn->errstr, swarn->logical, 470 btrfs_dev_name(swarn->dev), 471 swarn->physical, 472 root, inum, offset, ret); 473 474 free_ipath(ipath); 475 return 0; 476 } 477 478 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev, 479 bool is_super, u64 logical, u64 physical) 480 { 481 struct btrfs_fs_info *fs_info = dev->fs_info; 482 struct btrfs_path *path; 483 struct btrfs_key found_key; 484 struct extent_buffer *eb; 485 struct btrfs_extent_item *ei; 486 struct scrub_warning swarn; 487 u64 flags = 0; 488 u32 item_size; 489 int ret; 490 491 /* Super block error, no need to search extent tree. */ 492 if (is_super) { 493 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu", 494 errstr, btrfs_dev_name(dev), physical); 495 return; 496 } 497 path = btrfs_alloc_path(); 498 if (!path) 499 return; 500 501 swarn.physical = physical; 502 swarn.logical = logical; 503 swarn.errstr = errstr; 504 swarn.dev = NULL; 505 506 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 507 &flags); 508 if (ret < 0) 509 goto out; 510 511 swarn.extent_item_size = found_key.offset; 512 513 eb = path->nodes[0]; 514 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 515 item_size = btrfs_item_size(eb, path->slots[0]); 516 517 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 518 unsigned long ptr = 0; 519 u8 ref_level; 520 u64 ref_root; 521 522 while (true) { 523 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 524 item_size, &ref_root, 525 &ref_level); 526 if (ret < 0) { 527 btrfs_warn(fs_info, 528 "failed to resolve tree backref for logical %llu: %d", 529 swarn.logical, ret); 530 break; 531 } 532 if (ret > 0) 533 break; 534 btrfs_warn_in_rcu(fs_info, 535 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 536 errstr, swarn.logical, btrfs_dev_name(dev), 537 swarn.physical, (ref_level ? "node" : "leaf"), 538 ref_level, ref_root); 539 } 540 btrfs_release_path(path); 541 } else { 542 struct btrfs_backref_walk_ctx ctx = { 0 }; 543 544 btrfs_release_path(path); 545 546 ctx.bytenr = found_key.objectid; 547 ctx.extent_item_pos = swarn.logical - found_key.objectid; 548 ctx.fs_info = fs_info; 549 550 swarn.path = path; 551 swarn.dev = dev; 552 553 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn); 554 } 555 556 out: 557 btrfs_free_path(path); 558 } 559 560 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) 561 { 562 int ret = 0; 563 u64 length; 564 565 if (!btrfs_is_zoned(sctx->fs_info)) 566 return 0; 567 568 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) 569 return 0; 570 571 if (sctx->write_pointer < physical) { 572 length = physical - sctx->write_pointer; 573 574 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev, 575 sctx->write_pointer, length); 576 if (!ret) 577 sctx->write_pointer = physical; 578 } 579 return ret; 580 } 581 582 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr) 583 { 584 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 585 int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT; 586 587 return stripe->pages[page_index]; 588 } 589 590 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe, 591 int sector_nr) 592 { 593 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 594 595 return offset_in_page(sector_nr << fs_info->sectorsize_bits); 596 } 597 598 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr) 599 { 600 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 601 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 602 const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits); 603 const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr); 604 const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr); 605 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 606 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 607 u8 calculated_csum[BTRFS_CSUM_SIZE]; 608 struct btrfs_header *header; 609 610 /* 611 * Here we don't have a good way to attach the pages (and subpages) 612 * to a dummy extent buffer, thus we have to directly grab the members 613 * from pages. 614 */ 615 header = (struct btrfs_header *)(page_address(first_page) + first_off); 616 memcpy(on_disk_csum, header->csum, fs_info->csum_size); 617 618 if (logical != btrfs_stack_header_bytenr(header)) { 619 bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree); 620 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 621 btrfs_warn_rl(fs_info, 622 "tree block %llu mirror %u has bad bytenr, has %llu want %llu", 623 logical, stripe->mirror_num, 624 btrfs_stack_header_bytenr(header), logical); 625 return; 626 } 627 if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid, 628 BTRFS_FSID_SIZE) != 0) { 629 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 630 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 631 btrfs_warn_rl(fs_info, 632 "tree block %llu mirror %u has bad fsid, has %pU want %pU", 633 logical, stripe->mirror_num, 634 header->fsid, fs_info->fs_devices->fsid); 635 return; 636 } 637 if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid, 638 BTRFS_UUID_SIZE) != 0) { 639 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 640 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 641 btrfs_warn_rl(fs_info, 642 "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU", 643 logical, stripe->mirror_num, 644 header->chunk_tree_uuid, fs_info->chunk_tree_uuid); 645 return; 646 } 647 648 /* Now check tree block csum. */ 649 shash->tfm = fs_info->csum_shash; 650 crypto_shash_init(shash); 651 crypto_shash_update(shash, page_address(first_page) + first_off + 652 BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE); 653 654 for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) { 655 struct page *page = scrub_stripe_get_page(stripe, i); 656 unsigned int page_off = scrub_stripe_get_page_offset(stripe, i); 657 658 crypto_shash_update(shash, page_address(page) + page_off, 659 fs_info->sectorsize); 660 } 661 662 crypto_shash_final(shash, calculated_csum); 663 if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) { 664 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 665 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 666 btrfs_warn_rl(fs_info, 667 "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT, 668 logical, stripe->mirror_num, 669 CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum), 670 CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum)); 671 return; 672 } 673 if (stripe->sectors[sector_nr].generation != 674 btrfs_stack_header_generation(header)) { 675 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 676 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 677 btrfs_warn_rl(fs_info, 678 "tree block %llu mirror %u has bad generation, has %llu want %llu", 679 logical, stripe->mirror_num, 680 btrfs_stack_header_generation(header), 681 stripe->sectors[sector_nr].generation); 682 return; 683 } 684 bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree); 685 bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree); 686 bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 687 } 688 689 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr) 690 { 691 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 692 struct scrub_sector_verification *sector = &stripe->sectors[sector_nr]; 693 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 694 struct page *page = scrub_stripe_get_page(stripe, sector_nr); 695 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr); 696 u8 csum_buf[BTRFS_CSUM_SIZE]; 697 int ret; 698 699 ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors); 700 701 /* Sector not utilized, skip it. */ 702 if (!test_bit(sector_nr, &stripe->extent_sector_bitmap)) 703 return; 704 705 /* IO error, no need to check. */ 706 if (test_bit(sector_nr, &stripe->io_error_bitmap)) 707 return; 708 709 /* Metadata, verify the full tree block. */ 710 if (sector->is_metadata) { 711 /* 712 * Check if the tree block crosses the stripe boundary. If 713 * crossed the boundary, we cannot verify it but only give a 714 * warning. 715 * 716 * This can only happen on a very old filesystem where chunks 717 * are not ensured to be stripe aligned. 718 */ 719 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) { 720 btrfs_warn_rl(fs_info, 721 "tree block at %llu crosses stripe boundary %llu", 722 stripe->logical + 723 (sector_nr << fs_info->sectorsize_bits), 724 stripe->logical); 725 return; 726 } 727 scrub_verify_one_metadata(stripe, sector_nr); 728 return; 729 } 730 731 /* 732 * Data is easier, we just verify the data csum (if we have it). For 733 * cases without csum, we have no other choice but to trust it. 734 */ 735 if (!sector->csum) { 736 clear_bit(sector_nr, &stripe->error_bitmap); 737 return; 738 } 739 740 ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum); 741 if (ret < 0) { 742 set_bit(sector_nr, &stripe->csum_error_bitmap); 743 set_bit(sector_nr, &stripe->error_bitmap); 744 } else { 745 clear_bit(sector_nr, &stripe->csum_error_bitmap); 746 clear_bit(sector_nr, &stripe->error_bitmap); 747 } 748 } 749 750 /* Verify specified sectors of a stripe. */ 751 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap) 752 { 753 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 754 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 755 int sector_nr; 756 757 for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) { 758 scrub_verify_one_sector(stripe, sector_nr); 759 if (stripe->sectors[sector_nr].is_metadata) 760 sector_nr += sectors_per_tree - 1; 761 } 762 } 763 764 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec) 765 { 766 int i; 767 768 for (i = 0; i < stripe->nr_sectors; i++) { 769 if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page && 770 scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset) 771 break; 772 } 773 ASSERT(i < stripe->nr_sectors); 774 return i; 775 } 776 777 /* 778 * Repair read is different to the regular read: 779 * 780 * - Only reads the failed sectors 781 * - May have extra blocksize limits 782 */ 783 static void scrub_repair_read_endio(struct btrfs_bio *bbio) 784 { 785 struct scrub_stripe *stripe = bbio->private; 786 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 787 struct bio_vec *bvec; 788 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); 789 u32 bio_size = 0; 790 int i; 791 792 ASSERT(sector_nr < stripe->nr_sectors); 793 794 bio_for_each_bvec_all(bvec, &bbio->bio, i) 795 bio_size += bvec->bv_len; 796 797 if (bbio->bio.bi_status) { 798 bitmap_set(&stripe->io_error_bitmap, sector_nr, 799 bio_size >> fs_info->sectorsize_bits); 800 bitmap_set(&stripe->error_bitmap, sector_nr, 801 bio_size >> fs_info->sectorsize_bits); 802 } else { 803 bitmap_clear(&stripe->io_error_bitmap, sector_nr, 804 bio_size >> fs_info->sectorsize_bits); 805 } 806 bio_put(&bbio->bio); 807 if (atomic_dec_and_test(&stripe->pending_io)) 808 wake_up(&stripe->io_wait); 809 } 810 811 static int calc_next_mirror(int mirror, int num_copies) 812 { 813 ASSERT(mirror <= num_copies); 814 return (mirror + 1 > num_copies) ? 1 : mirror + 1; 815 } 816 817 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe, 818 int mirror, int blocksize, bool wait) 819 { 820 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 821 struct btrfs_bio *bbio = NULL; 822 const unsigned long old_error_bitmap = stripe->error_bitmap; 823 int i; 824 825 ASSERT(stripe->mirror_num >= 1); 826 ASSERT(atomic_read(&stripe->pending_io) == 0); 827 828 for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) { 829 struct page *page; 830 int pgoff; 831 int ret; 832 833 page = scrub_stripe_get_page(stripe, i); 834 pgoff = scrub_stripe_get_page_offset(stripe, i); 835 836 /* The current sector cannot be merged, submit the bio. */ 837 if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) || 838 bbio->bio.bi_iter.bi_size >= blocksize)) { 839 ASSERT(bbio->bio.bi_iter.bi_size); 840 atomic_inc(&stripe->pending_io); 841 btrfs_submit_bio(bbio, mirror); 842 if (wait) 843 wait_scrub_stripe_io(stripe); 844 bbio = NULL; 845 } 846 847 if (!bbio) { 848 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ, 849 fs_info, scrub_repair_read_endio, stripe); 850 bbio->bio.bi_iter.bi_sector = (stripe->logical + 851 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT; 852 } 853 854 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); 855 ASSERT(ret == fs_info->sectorsize); 856 } 857 if (bbio) { 858 ASSERT(bbio->bio.bi_iter.bi_size); 859 atomic_inc(&stripe->pending_io); 860 btrfs_submit_bio(bbio, mirror); 861 if (wait) 862 wait_scrub_stripe_io(stripe); 863 } 864 } 865 866 static void scrub_stripe_report_errors(struct scrub_ctx *sctx, 867 struct scrub_stripe *stripe) 868 { 869 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 870 DEFAULT_RATELIMIT_BURST); 871 struct btrfs_fs_info *fs_info = sctx->fs_info; 872 struct btrfs_device *dev = NULL; 873 u64 physical = 0; 874 int nr_data_sectors = 0; 875 int nr_meta_sectors = 0; 876 int nr_nodatacsum_sectors = 0; 877 int nr_repaired_sectors = 0; 878 int sector_nr; 879 880 if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state)) 881 return; 882 883 /* 884 * Init needed infos for error reporting. 885 * 886 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio() 887 * thus no need for dev/physical, error reporting still needs dev and physical. 888 */ 889 if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) { 890 u64 mapped_len = fs_info->sectorsize; 891 struct btrfs_io_context *bioc = NULL; 892 int stripe_index = stripe->mirror_num - 1; 893 int ret; 894 895 /* For scrub, our mirror_num should always start at 1. */ 896 ASSERT(stripe->mirror_num >= 1); 897 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 898 stripe->logical, &mapped_len, &bioc, 899 NULL, NULL); 900 /* 901 * If we failed, dev will be NULL, and later detailed reports 902 * will just be skipped. 903 */ 904 if (ret < 0) 905 goto skip; 906 physical = bioc->stripes[stripe_index].physical; 907 dev = bioc->stripes[stripe_index].dev; 908 btrfs_put_bioc(bioc); 909 } 910 911 skip: 912 for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) { 913 bool repaired = false; 914 915 if (stripe->sectors[sector_nr].is_metadata) { 916 nr_meta_sectors++; 917 } else { 918 nr_data_sectors++; 919 if (!stripe->sectors[sector_nr].csum) 920 nr_nodatacsum_sectors++; 921 } 922 923 if (test_bit(sector_nr, &stripe->init_error_bitmap) && 924 !test_bit(sector_nr, &stripe->error_bitmap)) { 925 nr_repaired_sectors++; 926 repaired = true; 927 } 928 929 /* Good sector from the beginning, nothing need to be done. */ 930 if (!test_bit(sector_nr, &stripe->init_error_bitmap)) 931 continue; 932 933 /* 934 * Report error for the corrupted sectors. If repaired, just 935 * output the message of repaired message. 936 */ 937 if (repaired) { 938 if (dev) { 939 btrfs_err_rl_in_rcu(fs_info, 940 "fixed up error at logical %llu on dev %s physical %llu", 941 stripe->logical, btrfs_dev_name(dev), 942 physical); 943 } else { 944 btrfs_err_rl_in_rcu(fs_info, 945 "fixed up error at logical %llu on mirror %u", 946 stripe->logical, stripe->mirror_num); 947 } 948 continue; 949 } 950 951 /* The remaining are all for unrepaired. */ 952 if (dev) { 953 btrfs_err_rl_in_rcu(fs_info, 954 "unable to fixup (regular) error at logical %llu on dev %s physical %llu", 955 stripe->logical, btrfs_dev_name(dev), 956 physical); 957 } else { 958 btrfs_err_rl_in_rcu(fs_info, 959 "unable to fixup (regular) error at logical %llu on mirror %u", 960 stripe->logical, stripe->mirror_num); 961 } 962 963 if (test_bit(sector_nr, &stripe->io_error_bitmap)) 964 if (__ratelimit(&rs) && dev) 965 scrub_print_common_warning("i/o error", dev, false, 966 stripe->logical, physical); 967 if (test_bit(sector_nr, &stripe->csum_error_bitmap)) 968 if (__ratelimit(&rs) && dev) 969 scrub_print_common_warning("checksum error", dev, false, 970 stripe->logical, physical); 971 if (test_bit(sector_nr, &stripe->meta_error_bitmap)) 972 if (__ratelimit(&rs) && dev) 973 scrub_print_common_warning("header error", dev, false, 974 stripe->logical, physical); 975 } 976 977 spin_lock(&sctx->stat_lock); 978 sctx->stat.data_extents_scrubbed += stripe->nr_data_extents; 979 sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents; 980 sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits; 981 sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits; 982 sctx->stat.no_csum += nr_nodatacsum_sectors; 983 sctx->stat.read_errors += stripe->init_nr_io_errors; 984 sctx->stat.csum_errors += stripe->init_nr_csum_errors; 985 sctx->stat.verify_errors += stripe->init_nr_meta_errors; 986 sctx->stat.uncorrectable_errors += 987 bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors); 988 sctx->stat.corrected_errors += nr_repaired_sectors; 989 spin_unlock(&sctx->stat_lock); 990 } 991 992 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe, 993 unsigned long write_bitmap, bool dev_replace); 994 995 /* 996 * The main entrance for all read related scrub work, including: 997 * 998 * - Wait for the initial read to finish 999 * - Verify and locate any bad sectors 1000 * - Go through the remaining mirrors and try to read as large blocksize as 1001 * possible 1002 * - Go through all mirrors (including the failed mirror) sector-by-sector 1003 * - Submit writeback for repaired sectors 1004 * 1005 * Writeback for dev-replace does not happen here, it needs extra 1006 * synchronization for zoned devices. 1007 */ 1008 static void scrub_stripe_read_repair_worker(struct work_struct *work) 1009 { 1010 struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work); 1011 struct scrub_ctx *sctx = stripe->sctx; 1012 struct btrfs_fs_info *fs_info = sctx->fs_info; 1013 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, 1014 stripe->bg->length); 1015 int mirror; 1016 int i; 1017 1018 ASSERT(stripe->mirror_num > 0); 1019 1020 wait_scrub_stripe_io(stripe); 1021 scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap); 1022 /* Save the initial failed bitmap for later repair and report usage. */ 1023 stripe->init_error_bitmap = stripe->error_bitmap; 1024 stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap, 1025 stripe->nr_sectors); 1026 stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap, 1027 stripe->nr_sectors); 1028 stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap, 1029 stripe->nr_sectors); 1030 1031 if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) 1032 goto out; 1033 1034 /* 1035 * Try all remaining mirrors. 1036 * 1037 * Here we still try to read as large block as possible, as this is 1038 * faster and we have extra safety nets to rely on. 1039 */ 1040 for (mirror = calc_next_mirror(stripe->mirror_num, num_copies); 1041 mirror != stripe->mirror_num; 1042 mirror = calc_next_mirror(mirror, num_copies)) { 1043 const unsigned long old_error_bitmap = stripe->error_bitmap; 1044 1045 scrub_stripe_submit_repair_read(stripe, mirror, 1046 BTRFS_STRIPE_LEN, false); 1047 wait_scrub_stripe_io(stripe); 1048 scrub_verify_one_stripe(stripe, old_error_bitmap); 1049 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) 1050 goto out; 1051 } 1052 1053 /* 1054 * Last safety net, try re-checking all mirrors, including the failed 1055 * one, sector-by-sector. 1056 * 1057 * As if one sector failed the drive's internal csum, the whole read 1058 * containing the offending sector would be marked as error. 1059 * Thus here we do sector-by-sector read. 1060 * 1061 * This can be slow, thus we only try it as the last resort. 1062 */ 1063 1064 for (i = 0, mirror = stripe->mirror_num; 1065 i < num_copies; 1066 i++, mirror = calc_next_mirror(mirror, num_copies)) { 1067 const unsigned long old_error_bitmap = stripe->error_bitmap; 1068 1069 scrub_stripe_submit_repair_read(stripe, mirror, 1070 fs_info->sectorsize, true); 1071 wait_scrub_stripe_io(stripe); 1072 scrub_verify_one_stripe(stripe, old_error_bitmap); 1073 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) 1074 goto out; 1075 } 1076 out: 1077 /* 1078 * Submit the repaired sectors. For zoned case, we cannot do repair 1079 * in-place, but queue the bg to be relocated. 1080 */ 1081 if (btrfs_is_zoned(fs_info)) { 1082 if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) 1083 btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start); 1084 } else if (!sctx->readonly) { 1085 unsigned long repaired; 1086 1087 bitmap_andnot(&repaired, &stripe->init_error_bitmap, 1088 &stripe->error_bitmap, stripe->nr_sectors); 1089 scrub_write_sectors(sctx, stripe, repaired, false); 1090 wait_scrub_stripe_io(stripe); 1091 } 1092 1093 scrub_stripe_report_errors(sctx, stripe); 1094 set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state); 1095 wake_up(&stripe->repair_wait); 1096 } 1097 1098 static void scrub_read_endio(struct btrfs_bio *bbio) 1099 { 1100 struct scrub_stripe *stripe = bbio->private; 1101 struct bio_vec *bvec; 1102 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); 1103 int num_sectors; 1104 u32 bio_size = 0; 1105 int i; 1106 1107 ASSERT(sector_nr < stripe->nr_sectors); 1108 bio_for_each_bvec_all(bvec, &bbio->bio, i) 1109 bio_size += bvec->bv_len; 1110 num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits; 1111 1112 if (bbio->bio.bi_status) { 1113 bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors); 1114 bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors); 1115 } else { 1116 bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors); 1117 } 1118 bio_put(&bbio->bio); 1119 if (atomic_dec_and_test(&stripe->pending_io)) { 1120 wake_up(&stripe->io_wait); 1121 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker); 1122 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work); 1123 } 1124 } 1125 1126 static void scrub_write_endio(struct btrfs_bio *bbio) 1127 { 1128 struct scrub_stripe *stripe = bbio->private; 1129 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1130 struct bio_vec *bvec; 1131 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); 1132 u32 bio_size = 0; 1133 int i; 1134 1135 bio_for_each_bvec_all(bvec, &bbio->bio, i) 1136 bio_size += bvec->bv_len; 1137 1138 if (bbio->bio.bi_status) { 1139 unsigned long flags; 1140 1141 spin_lock_irqsave(&stripe->write_error_lock, flags); 1142 bitmap_set(&stripe->write_error_bitmap, sector_nr, 1143 bio_size >> fs_info->sectorsize_bits); 1144 spin_unlock_irqrestore(&stripe->write_error_lock, flags); 1145 } 1146 bio_put(&bbio->bio); 1147 1148 if (atomic_dec_and_test(&stripe->pending_io)) 1149 wake_up(&stripe->io_wait); 1150 } 1151 1152 static void scrub_submit_write_bio(struct scrub_ctx *sctx, 1153 struct scrub_stripe *stripe, 1154 struct btrfs_bio *bbio, bool dev_replace) 1155 { 1156 struct btrfs_fs_info *fs_info = sctx->fs_info; 1157 u32 bio_len = bbio->bio.bi_iter.bi_size; 1158 u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) - 1159 stripe->logical; 1160 1161 fill_writer_pointer_gap(sctx, stripe->physical + bio_off); 1162 atomic_inc(&stripe->pending_io); 1163 btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace); 1164 if (!btrfs_is_zoned(fs_info)) 1165 return; 1166 /* 1167 * For zoned writeback, queue depth must be 1, thus we must wait for 1168 * the write to finish before the next write. 1169 */ 1170 wait_scrub_stripe_io(stripe); 1171 1172 /* 1173 * And also need to update the write pointer if write finished 1174 * successfully. 1175 */ 1176 if (!test_bit(bio_off >> fs_info->sectorsize_bits, 1177 &stripe->write_error_bitmap)) 1178 sctx->write_pointer += bio_len; 1179 } 1180 1181 /* 1182 * Submit the write bio(s) for the sectors specified by @write_bitmap. 1183 * 1184 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits: 1185 * 1186 * - Only needs logical bytenr and mirror_num 1187 * Just like the scrub read path 1188 * 1189 * - Would only result in writes to the specified mirror 1190 * Unlike the regular writeback path, which would write back to all stripes 1191 * 1192 * - Handle dev-replace and read-repair writeback differently 1193 */ 1194 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe, 1195 unsigned long write_bitmap, bool dev_replace) 1196 { 1197 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1198 struct btrfs_bio *bbio = NULL; 1199 int sector_nr; 1200 1201 for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) { 1202 struct page *page = scrub_stripe_get_page(stripe, sector_nr); 1203 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr); 1204 int ret; 1205 1206 /* We should only writeback sectors covered by an extent. */ 1207 ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap)); 1208 1209 /* Cannot merge with previous sector, submit the current one. */ 1210 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) { 1211 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace); 1212 bbio = NULL; 1213 } 1214 if (!bbio) { 1215 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE, 1216 fs_info, scrub_write_endio, stripe); 1217 bbio->bio.bi_iter.bi_sector = (stripe->logical + 1218 (sector_nr << fs_info->sectorsize_bits)) >> 1219 SECTOR_SHIFT; 1220 } 1221 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); 1222 ASSERT(ret == fs_info->sectorsize); 1223 } 1224 if (bbio) 1225 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace); 1226 } 1227 1228 /* 1229 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1 1230 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max. 1231 */ 1232 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device, 1233 unsigned int bio_size) 1234 { 1235 const int time_slice = 1000; 1236 s64 delta; 1237 ktime_t now; 1238 u32 div; 1239 u64 bwlimit; 1240 1241 bwlimit = READ_ONCE(device->scrub_speed_max); 1242 if (bwlimit == 0) 1243 return; 1244 1245 /* 1246 * Slice is divided into intervals when the IO is submitted, adjust by 1247 * bwlimit and maximum of 64 intervals. 1248 */ 1249 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024))); 1250 div = min_t(u32, 64, div); 1251 1252 /* Start new epoch, set deadline */ 1253 now = ktime_get(); 1254 if (sctx->throttle_deadline == 0) { 1255 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div); 1256 sctx->throttle_sent = 0; 1257 } 1258 1259 /* Still in the time to send? */ 1260 if (ktime_before(now, sctx->throttle_deadline)) { 1261 /* If current bio is within the limit, send it */ 1262 sctx->throttle_sent += bio_size; 1263 if (sctx->throttle_sent <= div_u64(bwlimit, div)) 1264 return; 1265 1266 /* We're over the limit, sleep until the rest of the slice */ 1267 delta = ktime_ms_delta(sctx->throttle_deadline, now); 1268 } else { 1269 /* New request after deadline, start new epoch */ 1270 delta = 0; 1271 } 1272 1273 if (delta) { 1274 long timeout; 1275 1276 timeout = div_u64(delta * HZ, 1000); 1277 schedule_timeout_interruptible(timeout); 1278 } 1279 1280 /* Next call will start the deadline period */ 1281 sctx->throttle_deadline = 0; 1282 } 1283 1284 /* 1285 * Given a physical address, this will calculate it's 1286 * logical offset. if this is a parity stripe, it will return 1287 * the most left data stripe's logical offset. 1288 * 1289 * return 0 if it is a data stripe, 1 means parity stripe. 1290 */ 1291 static int get_raid56_logic_offset(u64 physical, int num, 1292 struct btrfs_chunk_map *map, u64 *offset, 1293 u64 *stripe_start) 1294 { 1295 int i; 1296 int j = 0; 1297 u64 last_offset; 1298 const int data_stripes = nr_data_stripes(map); 1299 1300 last_offset = (physical - map->stripes[num].physical) * data_stripes; 1301 if (stripe_start) 1302 *stripe_start = last_offset; 1303 1304 *offset = last_offset; 1305 for (i = 0; i < data_stripes; i++) { 1306 u32 stripe_nr; 1307 u32 stripe_index; 1308 u32 rot; 1309 1310 *offset = last_offset + btrfs_stripe_nr_to_offset(i); 1311 1312 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes; 1313 1314 /* Work out the disk rotation on this stripe-set */ 1315 rot = stripe_nr % map->num_stripes; 1316 /* calculate which stripe this data locates */ 1317 rot += i; 1318 stripe_index = rot % map->num_stripes; 1319 if (stripe_index == num) 1320 return 0; 1321 if (stripe_index < num) 1322 j++; 1323 } 1324 *offset = last_offset + btrfs_stripe_nr_to_offset(j); 1325 return 1; 1326 } 1327 1328 /* 1329 * Return 0 if the extent item range covers any byte of the range. 1330 * Return <0 if the extent item is before @search_start. 1331 * Return >0 if the extent item is after @start_start + @search_len. 1332 */ 1333 static int compare_extent_item_range(struct btrfs_path *path, 1334 u64 search_start, u64 search_len) 1335 { 1336 struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info; 1337 u64 len; 1338 struct btrfs_key key; 1339 1340 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1341 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY || 1342 key.type == BTRFS_METADATA_ITEM_KEY); 1343 if (key.type == BTRFS_METADATA_ITEM_KEY) 1344 len = fs_info->nodesize; 1345 else 1346 len = key.offset; 1347 1348 if (key.objectid + len <= search_start) 1349 return -1; 1350 if (key.objectid >= search_start + search_len) 1351 return 1; 1352 return 0; 1353 } 1354 1355 /* 1356 * Locate one extent item which covers any byte in range 1357 * [@search_start, @search_start + @search_length) 1358 * 1359 * If the path is not initialized, we will initialize the search by doing 1360 * a btrfs_search_slot(). 1361 * If the path is already initialized, we will use the path as the initial 1362 * slot, to avoid duplicated btrfs_search_slot() calls. 1363 * 1364 * NOTE: If an extent item starts before @search_start, we will still 1365 * return the extent item. This is for data extent crossing stripe boundary. 1366 * 1367 * Return 0 if we found such extent item, and @path will point to the extent item. 1368 * Return >0 if no such extent item can be found, and @path will be released. 1369 * Return <0 if hit fatal error, and @path will be released. 1370 */ 1371 static int find_first_extent_item(struct btrfs_root *extent_root, 1372 struct btrfs_path *path, 1373 u64 search_start, u64 search_len) 1374 { 1375 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1376 struct btrfs_key key; 1377 int ret; 1378 1379 /* Continue using the existing path */ 1380 if (path->nodes[0]) 1381 goto search_forward; 1382 1383 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1384 key.type = BTRFS_METADATA_ITEM_KEY; 1385 else 1386 key.type = BTRFS_EXTENT_ITEM_KEY; 1387 key.objectid = search_start; 1388 key.offset = (u64)-1; 1389 1390 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 1391 if (ret < 0) 1392 return ret; 1393 if (ret == 0) { 1394 /* 1395 * Key with offset -1 found, there would have to exist an extent 1396 * item with such offset, but this is out of the valid range. 1397 */ 1398 btrfs_release_path(path); 1399 return -EUCLEAN; 1400 } 1401 1402 /* 1403 * Here we intentionally pass 0 as @min_objectid, as there could be 1404 * an extent item starting before @search_start. 1405 */ 1406 ret = btrfs_previous_extent_item(extent_root, path, 0); 1407 if (ret < 0) 1408 return ret; 1409 /* 1410 * No matter whether we have found an extent item, the next loop will 1411 * properly do every check on the key. 1412 */ 1413 search_forward: 1414 while (true) { 1415 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1416 if (key.objectid >= search_start + search_len) 1417 break; 1418 if (key.type != BTRFS_METADATA_ITEM_KEY && 1419 key.type != BTRFS_EXTENT_ITEM_KEY) 1420 goto next; 1421 1422 ret = compare_extent_item_range(path, search_start, search_len); 1423 if (ret == 0) 1424 return ret; 1425 if (ret > 0) 1426 break; 1427 next: 1428 ret = btrfs_next_item(extent_root, path); 1429 if (ret) { 1430 /* Either no more items or a fatal error. */ 1431 btrfs_release_path(path); 1432 return ret; 1433 } 1434 } 1435 btrfs_release_path(path); 1436 return 1; 1437 } 1438 1439 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret, 1440 u64 *size_ret, u64 *flags_ret, u64 *generation_ret) 1441 { 1442 struct btrfs_key key; 1443 struct btrfs_extent_item *ei; 1444 1445 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1446 ASSERT(key.type == BTRFS_METADATA_ITEM_KEY || 1447 key.type == BTRFS_EXTENT_ITEM_KEY); 1448 *extent_start_ret = key.objectid; 1449 if (key.type == BTRFS_METADATA_ITEM_KEY) 1450 *size_ret = path->nodes[0]->fs_info->nodesize; 1451 else 1452 *size_ret = key.offset; 1453 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item); 1454 *flags_ret = btrfs_extent_flags(path->nodes[0], ei); 1455 *generation_ret = btrfs_extent_generation(path->nodes[0], ei); 1456 } 1457 1458 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical, 1459 u64 physical, u64 physical_end) 1460 { 1461 struct btrfs_fs_info *fs_info = sctx->fs_info; 1462 int ret = 0; 1463 1464 if (!btrfs_is_zoned(fs_info)) 1465 return 0; 1466 1467 mutex_lock(&sctx->wr_lock); 1468 if (sctx->write_pointer < physical_end) { 1469 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical, 1470 physical, 1471 sctx->write_pointer); 1472 if (ret) 1473 btrfs_err(fs_info, 1474 "zoned: failed to recover write pointer"); 1475 } 1476 mutex_unlock(&sctx->wr_lock); 1477 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical); 1478 1479 return ret; 1480 } 1481 1482 static void fill_one_extent_info(struct btrfs_fs_info *fs_info, 1483 struct scrub_stripe *stripe, 1484 u64 extent_start, u64 extent_len, 1485 u64 extent_flags, u64 extent_gen) 1486 { 1487 for (u64 cur_logical = max(stripe->logical, extent_start); 1488 cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN, 1489 extent_start + extent_len); 1490 cur_logical += fs_info->sectorsize) { 1491 const int nr_sector = (cur_logical - stripe->logical) >> 1492 fs_info->sectorsize_bits; 1493 struct scrub_sector_verification *sector = 1494 &stripe->sectors[nr_sector]; 1495 1496 set_bit(nr_sector, &stripe->extent_sector_bitmap); 1497 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1498 sector->is_metadata = true; 1499 sector->generation = extent_gen; 1500 } 1501 } 1502 } 1503 1504 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe) 1505 { 1506 stripe->extent_sector_bitmap = 0; 1507 stripe->init_error_bitmap = 0; 1508 stripe->init_nr_io_errors = 0; 1509 stripe->init_nr_csum_errors = 0; 1510 stripe->init_nr_meta_errors = 0; 1511 stripe->error_bitmap = 0; 1512 stripe->io_error_bitmap = 0; 1513 stripe->csum_error_bitmap = 0; 1514 stripe->meta_error_bitmap = 0; 1515 } 1516 1517 /* 1518 * Locate one stripe which has at least one extent in its range. 1519 * 1520 * Return 0 if found such stripe, and store its info into @stripe. 1521 * Return >0 if there is no such stripe in the specified range. 1522 * Return <0 for error. 1523 */ 1524 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg, 1525 struct btrfs_path *extent_path, 1526 struct btrfs_path *csum_path, 1527 struct btrfs_device *dev, u64 physical, 1528 int mirror_num, u64 logical_start, 1529 u32 logical_len, 1530 struct scrub_stripe *stripe) 1531 { 1532 struct btrfs_fs_info *fs_info = bg->fs_info; 1533 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start); 1534 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start); 1535 const u64 logical_end = logical_start + logical_len; 1536 u64 cur_logical = logical_start; 1537 u64 stripe_end; 1538 u64 extent_start; 1539 u64 extent_len; 1540 u64 extent_flags; 1541 u64 extent_gen; 1542 int ret; 1543 1544 memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) * 1545 stripe->nr_sectors); 1546 scrub_stripe_reset_bitmaps(stripe); 1547 1548 /* The range must be inside the bg. */ 1549 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); 1550 1551 ret = find_first_extent_item(extent_root, extent_path, logical_start, 1552 logical_len); 1553 /* Either error or not found. */ 1554 if (ret) 1555 goto out; 1556 get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags, 1557 &extent_gen); 1558 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1559 stripe->nr_meta_extents++; 1560 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) 1561 stripe->nr_data_extents++; 1562 cur_logical = max(extent_start, cur_logical); 1563 1564 /* 1565 * Round down to stripe boundary. 1566 * 1567 * The extra calculation against bg->start is to handle block groups 1568 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned. 1569 */ 1570 stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) + 1571 bg->start; 1572 stripe->physical = physical + stripe->logical - logical_start; 1573 stripe->dev = dev; 1574 stripe->bg = bg; 1575 stripe->mirror_num = mirror_num; 1576 stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1; 1577 1578 /* Fill the first extent info into stripe->sectors[] array. */ 1579 fill_one_extent_info(fs_info, stripe, extent_start, extent_len, 1580 extent_flags, extent_gen); 1581 cur_logical = extent_start + extent_len; 1582 1583 /* Fill the extent info for the remaining sectors. */ 1584 while (cur_logical <= stripe_end) { 1585 ret = find_first_extent_item(extent_root, extent_path, cur_logical, 1586 stripe_end - cur_logical + 1); 1587 if (ret < 0) 1588 goto out; 1589 if (ret > 0) { 1590 ret = 0; 1591 break; 1592 } 1593 get_extent_info(extent_path, &extent_start, &extent_len, 1594 &extent_flags, &extent_gen); 1595 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1596 stripe->nr_meta_extents++; 1597 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) 1598 stripe->nr_data_extents++; 1599 fill_one_extent_info(fs_info, stripe, extent_start, extent_len, 1600 extent_flags, extent_gen); 1601 cur_logical = extent_start + extent_len; 1602 } 1603 1604 /* Now fill the data csum. */ 1605 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) { 1606 int sector_nr; 1607 unsigned long csum_bitmap = 0; 1608 1609 /* Csum space should have already been allocated. */ 1610 ASSERT(stripe->csums); 1611 1612 /* 1613 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN 1614 * should contain at most 16 sectors. 1615 */ 1616 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); 1617 1618 ret = btrfs_lookup_csums_bitmap(csum_root, csum_path, 1619 stripe->logical, stripe_end, 1620 stripe->csums, &csum_bitmap); 1621 if (ret < 0) 1622 goto out; 1623 if (ret > 0) 1624 ret = 0; 1625 1626 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) { 1627 stripe->sectors[sector_nr].csum = stripe->csums + 1628 sector_nr * fs_info->csum_size; 1629 } 1630 } 1631 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); 1632 out: 1633 return ret; 1634 } 1635 1636 static void scrub_reset_stripe(struct scrub_stripe *stripe) 1637 { 1638 scrub_stripe_reset_bitmaps(stripe); 1639 1640 stripe->nr_meta_extents = 0; 1641 stripe->nr_data_extents = 0; 1642 stripe->state = 0; 1643 1644 for (int i = 0; i < stripe->nr_sectors; i++) { 1645 stripe->sectors[i].is_metadata = false; 1646 stripe->sectors[i].csum = NULL; 1647 stripe->sectors[i].generation = 0; 1648 } 1649 } 1650 1651 static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx, 1652 struct scrub_stripe *stripe) 1653 { 1654 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1655 struct btrfs_bio *bbio = NULL; 1656 unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start + 1657 stripe->bg->length - stripe->logical) >> 1658 fs_info->sectorsize_bits; 1659 u64 stripe_len = BTRFS_STRIPE_LEN; 1660 int mirror = stripe->mirror_num; 1661 int i; 1662 1663 atomic_inc(&stripe->pending_io); 1664 1665 for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) { 1666 struct page *page = scrub_stripe_get_page(stripe, i); 1667 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i); 1668 1669 /* We're beyond the chunk boundary, no need to read anymore. */ 1670 if (i >= nr_sectors) 1671 break; 1672 1673 /* The current sector cannot be merged, submit the bio. */ 1674 if (bbio && 1675 ((i > 0 && 1676 !test_bit(i - 1, &stripe->extent_sector_bitmap)) || 1677 bbio->bio.bi_iter.bi_size >= stripe_len)) { 1678 ASSERT(bbio->bio.bi_iter.bi_size); 1679 atomic_inc(&stripe->pending_io); 1680 btrfs_submit_bio(bbio, mirror); 1681 bbio = NULL; 1682 } 1683 1684 if (!bbio) { 1685 struct btrfs_io_stripe io_stripe = {}; 1686 struct btrfs_io_context *bioc = NULL; 1687 const u64 logical = stripe->logical + 1688 (i << fs_info->sectorsize_bits); 1689 int err; 1690 1691 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ, 1692 fs_info, scrub_read_endio, stripe); 1693 bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT; 1694 1695 io_stripe.is_scrub = true; 1696 err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 1697 &stripe_len, &bioc, &io_stripe, 1698 &mirror); 1699 btrfs_put_bioc(bioc); 1700 if (err) { 1701 btrfs_bio_end_io(bbio, 1702 errno_to_blk_status(err)); 1703 return; 1704 } 1705 } 1706 1707 __bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); 1708 } 1709 1710 if (bbio) { 1711 ASSERT(bbio->bio.bi_iter.bi_size); 1712 atomic_inc(&stripe->pending_io); 1713 btrfs_submit_bio(bbio, mirror); 1714 } 1715 1716 if (atomic_dec_and_test(&stripe->pending_io)) { 1717 wake_up(&stripe->io_wait); 1718 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker); 1719 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work); 1720 } 1721 } 1722 1723 static void scrub_submit_initial_read(struct scrub_ctx *sctx, 1724 struct scrub_stripe *stripe) 1725 { 1726 struct btrfs_fs_info *fs_info = sctx->fs_info; 1727 struct btrfs_bio *bbio; 1728 unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start + 1729 stripe->bg->length - stripe->logical) >> 1730 fs_info->sectorsize_bits; 1731 int mirror = stripe->mirror_num; 1732 1733 ASSERT(stripe->bg); 1734 ASSERT(stripe->mirror_num > 0); 1735 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state)); 1736 1737 if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) { 1738 scrub_submit_extent_sector_read(sctx, stripe); 1739 return; 1740 } 1741 1742 bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info, 1743 scrub_read_endio, stripe); 1744 1745 bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT; 1746 /* Read the whole range inside the chunk boundary. */ 1747 for (unsigned int cur = 0; cur < nr_sectors; cur++) { 1748 struct page *page = scrub_stripe_get_page(stripe, cur); 1749 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur); 1750 int ret; 1751 1752 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); 1753 /* We should have allocated enough bio vectors. */ 1754 ASSERT(ret == fs_info->sectorsize); 1755 } 1756 atomic_inc(&stripe->pending_io); 1757 1758 /* 1759 * For dev-replace, either user asks to avoid the source dev, or 1760 * the device is missing, we try the next mirror instead. 1761 */ 1762 if (sctx->is_dev_replace && 1763 (fs_info->dev_replace.cont_reading_from_srcdev_mode == 1764 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID || 1765 !stripe->dev->bdev)) { 1766 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, 1767 stripe->bg->length); 1768 1769 mirror = calc_next_mirror(mirror, num_copies); 1770 } 1771 btrfs_submit_bio(bbio, mirror); 1772 } 1773 1774 static bool stripe_has_metadata_error(struct scrub_stripe *stripe) 1775 { 1776 int i; 1777 1778 for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) { 1779 if (stripe->sectors[i].is_metadata) { 1780 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1781 1782 btrfs_err(fs_info, 1783 "stripe %llu has unrepaired metadata sector at %llu", 1784 stripe->logical, 1785 stripe->logical + (i << fs_info->sectorsize_bits)); 1786 return true; 1787 } 1788 } 1789 return false; 1790 } 1791 1792 static void submit_initial_group_read(struct scrub_ctx *sctx, 1793 unsigned int first_slot, 1794 unsigned int nr_stripes) 1795 { 1796 struct blk_plug plug; 1797 1798 ASSERT(first_slot < SCRUB_TOTAL_STRIPES); 1799 ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES); 1800 1801 scrub_throttle_dev_io(sctx, sctx->stripes[0].dev, 1802 btrfs_stripe_nr_to_offset(nr_stripes)); 1803 blk_start_plug(&plug); 1804 for (int i = 0; i < nr_stripes; i++) { 1805 struct scrub_stripe *stripe = &sctx->stripes[first_slot + i]; 1806 1807 /* Those stripes should be initialized. */ 1808 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state)); 1809 scrub_submit_initial_read(sctx, stripe); 1810 } 1811 blk_finish_plug(&plug); 1812 } 1813 1814 static int flush_scrub_stripes(struct scrub_ctx *sctx) 1815 { 1816 struct btrfs_fs_info *fs_info = sctx->fs_info; 1817 struct scrub_stripe *stripe; 1818 const int nr_stripes = sctx->cur_stripe; 1819 int ret = 0; 1820 1821 if (!nr_stripes) 1822 return 0; 1823 1824 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state)); 1825 1826 /* Submit the stripes which are populated but not submitted. */ 1827 if (nr_stripes % SCRUB_STRIPES_PER_GROUP) { 1828 const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP); 1829 1830 submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot); 1831 } 1832 1833 for (int i = 0; i < nr_stripes; i++) { 1834 stripe = &sctx->stripes[i]; 1835 1836 wait_event(stripe->repair_wait, 1837 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); 1838 } 1839 1840 /* Submit for dev-replace. */ 1841 if (sctx->is_dev_replace) { 1842 /* 1843 * For dev-replace, if we know there is something wrong with 1844 * metadata, we should immediately abort. 1845 */ 1846 for (int i = 0; i < nr_stripes; i++) { 1847 if (stripe_has_metadata_error(&sctx->stripes[i])) { 1848 ret = -EIO; 1849 goto out; 1850 } 1851 } 1852 for (int i = 0; i < nr_stripes; i++) { 1853 unsigned long good; 1854 1855 stripe = &sctx->stripes[i]; 1856 1857 ASSERT(stripe->dev == fs_info->dev_replace.srcdev); 1858 1859 bitmap_andnot(&good, &stripe->extent_sector_bitmap, 1860 &stripe->error_bitmap, stripe->nr_sectors); 1861 scrub_write_sectors(sctx, stripe, good, true); 1862 } 1863 } 1864 1865 /* Wait for the above writebacks to finish. */ 1866 for (int i = 0; i < nr_stripes; i++) { 1867 stripe = &sctx->stripes[i]; 1868 1869 wait_scrub_stripe_io(stripe); 1870 scrub_reset_stripe(stripe); 1871 } 1872 out: 1873 sctx->cur_stripe = 0; 1874 return ret; 1875 } 1876 1877 static void raid56_scrub_wait_endio(struct bio *bio) 1878 { 1879 complete(bio->bi_private); 1880 } 1881 1882 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg, 1883 struct btrfs_device *dev, int mirror_num, 1884 u64 logical, u32 length, u64 physical, 1885 u64 *found_logical_ret) 1886 { 1887 struct scrub_stripe *stripe; 1888 int ret; 1889 1890 /* 1891 * There should always be one slot left, as caller filling the last 1892 * slot should flush them all. 1893 */ 1894 ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES); 1895 1896 /* @found_logical_ret must be specified. */ 1897 ASSERT(found_logical_ret); 1898 1899 stripe = &sctx->stripes[sctx->cur_stripe]; 1900 scrub_reset_stripe(stripe); 1901 ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path, 1902 &sctx->csum_path, dev, physical, 1903 mirror_num, logical, length, stripe); 1904 /* Either >0 as no more extents or <0 for error. */ 1905 if (ret) 1906 return ret; 1907 *found_logical_ret = stripe->logical; 1908 sctx->cur_stripe++; 1909 1910 /* We filled one group, submit it. */ 1911 if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) { 1912 const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP; 1913 1914 submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP); 1915 } 1916 1917 /* Last slot used, flush them all. */ 1918 if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES) 1919 return flush_scrub_stripes(sctx); 1920 return 0; 1921 } 1922 1923 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx, 1924 struct btrfs_device *scrub_dev, 1925 struct btrfs_block_group *bg, 1926 struct btrfs_chunk_map *map, 1927 u64 full_stripe_start) 1928 { 1929 DECLARE_COMPLETION_ONSTACK(io_done); 1930 struct btrfs_fs_info *fs_info = sctx->fs_info; 1931 struct btrfs_raid_bio *rbio; 1932 struct btrfs_io_context *bioc = NULL; 1933 struct btrfs_path extent_path = { 0 }; 1934 struct btrfs_path csum_path = { 0 }; 1935 struct bio *bio; 1936 struct scrub_stripe *stripe; 1937 bool all_empty = true; 1938 const int data_stripes = nr_data_stripes(map); 1939 unsigned long extent_bitmap = 0; 1940 u64 length = btrfs_stripe_nr_to_offset(data_stripes); 1941 int ret; 1942 1943 ASSERT(sctx->raid56_data_stripes); 1944 1945 /* 1946 * For data stripe search, we cannot re-use the same extent/csum paths, 1947 * as the data stripe bytenr may be smaller than previous extent. Thus 1948 * we have to use our own extent/csum paths. 1949 */ 1950 extent_path.search_commit_root = 1; 1951 extent_path.skip_locking = 1; 1952 csum_path.search_commit_root = 1; 1953 csum_path.skip_locking = 1; 1954 1955 for (int i = 0; i < data_stripes; i++) { 1956 int stripe_index; 1957 int rot; 1958 u64 physical; 1959 1960 stripe = &sctx->raid56_data_stripes[i]; 1961 rot = div_u64(full_stripe_start - bg->start, 1962 data_stripes) >> BTRFS_STRIPE_LEN_SHIFT; 1963 stripe_index = (i + rot) % map->num_stripes; 1964 physical = map->stripes[stripe_index].physical + 1965 btrfs_stripe_nr_to_offset(rot); 1966 1967 scrub_reset_stripe(stripe); 1968 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state); 1969 ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path, 1970 map->stripes[stripe_index].dev, physical, 1, 1971 full_stripe_start + btrfs_stripe_nr_to_offset(i), 1972 BTRFS_STRIPE_LEN, stripe); 1973 if (ret < 0) 1974 goto out; 1975 /* 1976 * No extent in this data stripe, need to manually mark them 1977 * initialized to make later read submission happy. 1978 */ 1979 if (ret > 0) { 1980 stripe->logical = full_stripe_start + 1981 btrfs_stripe_nr_to_offset(i); 1982 stripe->dev = map->stripes[stripe_index].dev; 1983 stripe->mirror_num = 1; 1984 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); 1985 } 1986 } 1987 1988 /* Check if all data stripes are empty. */ 1989 for (int i = 0; i < data_stripes; i++) { 1990 stripe = &sctx->raid56_data_stripes[i]; 1991 if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) { 1992 all_empty = false; 1993 break; 1994 } 1995 } 1996 if (all_empty) { 1997 ret = 0; 1998 goto out; 1999 } 2000 2001 for (int i = 0; i < data_stripes; i++) { 2002 stripe = &sctx->raid56_data_stripes[i]; 2003 scrub_submit_initial_read(sctx, stripe); 2004 } 2005 for (int i = 0; i < data_stripes; i++) { 2006 stripe = &sctx->raid56_data_stripes[i]; 2007 2008 wait_event(stripe->repair_wait, 2009 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); 2010 } 2011 /* For now, no zoned support for RAID56. */ 2012 ASSERT(!btrfs_is_zoned(sctx->fs_info)); 2013 2014 /* 2015 * Now all data stripes are properly verified. Check if we have any 2016 * unrepaired, if so abort immediately or we could further corrupt the 2017 * P/Q stripes. 2018 * 2019 * During the loop, also populate extent_bitmap. 2020 */ 2021 for (int i = 0; i < data_stripes; i++) { 2022 unsigned long error; 2023 2024 stripe = &sctx->raid56_data_stripes[i]; 2025 2026 /* 2027 * We should only check the errors where there is an extent. 2028 * As we may hit an empty data stripe while it's missing. 2029 */ 2030 bitmap_and(&error, &stripe->error_bitmap, 2031 &stripe->extent_sector_bitmap, stripe->nr_sectors); 2032 if (!bitmap_empty(&error, stripe->nr_sectors)) { 2033 btrfs_err(fs_info, 2034 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl", 2035 full_stripe_start, i, stripe->nr_sectors, 2036 &error); 2037 ret = -EIO; 2038 goto out; 2039 } 2040 bitmap_or(&extent_bitmap, &extent_bitmap, 2041 &stripe->extent_sector_bitmap, stripe->nr_sectors); 2042 } 2043 2044 /* Now we can check and regenerate the P/Q stripe. */ 2045 bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS); 2046 bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT; 2047 bio->bi_private = &io_done; 2048 bio->bi_end_io = raid56_scrub_wait_endio; 2049 2050 btrfs_bio_counter_inc_blocked(fs_info); 2051 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start, 2052 &length, &bioc, NULL, NULL); 2053 if (ret < 0) { 2054 btrfs_put_bioc(bioc); 2055 btrfs_bio_counter_dec(fs_info); 2056 goto out; 2057 } 2058 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap, 2059 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); 2060 btrfs_put_bioc(bioc); 2061 if (!rbio) { 2062 ret = -ENOMEM; 2063 btrfs_bio_counter_dec(fs_info); 2064 goto out; 2065 } 2066 /* Use the recovered stripes as cache to avoid read them from disk again. */ 2067 for (int i = 0; i < data_stripes; i++) { 2068 stripe = &sctx->raid56_data_stripes[i]; 2069 2070 raid56_parity_cache_data_pages(rbio, stripe->pages, 2071 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT)); 2072 } 2073 raid56_parity_submit_scrub_rbio(rbio); 2074 wait_for_completion_io(&io_done); 2075 ret = blk_status_to_errno(bio->bi_status); 2076 bio_put(bio); 2077 btrfs_bio_counter_dec(fs_info); 2078 2079 btrfs_release_path(&extent_path); 2080 btrfs_release_path(&csum_path); 2081 out: 2082 return ret; 2083 } 2084 2085 /* 2086 * Scrub one range which can only has simple mirror based profile. 2087 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in 2088 * RAID0/RAID10). 2089 * 2090 * Since we may need to handle a subset of block group, we need @logical_start 2091 * and @logical_length parameter. 2092 */ 2093 static int scrub_simple_mirror(struct scrub_ctx *sctx, 2094 struct btrfs_block_group *bg, 2095 struct btrfs_chunk_map *map, 2096 u64 logical_start, u64 logical_length, 2097 struct btrfs_device *device, 2098 u64 physical, int mirror_num) 2099 { 2100 struct btrfs_fs_info *fs_info = sctx->fs_info; 2101 const u64 logical_end = logical_start + logical_length; 2102 u64 cur_logical = logical_start; 2103 int ret; 2104 2105 /* The range must be inside the bg */ 2106 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); 2107 2108 /* Go through each extent items inside the logical range */ 2109 while (cur_logical < logical_end) { 2110 u64 found_logical = U64_MAX; 2111 u64 cur_physical = physical + cur_logical - logical_start; 2112 2113 /* Canceled? */ 2114 if (atomic_read(&fs_info->scrub_cancel_req) || 2115 atomic_read(&sctx->cancel_req)) { 2116 ret = -ECANCELED; 2117 break; 2118 } 2119 /* Paused? */ 2120 if (atomic_read(&fs_info->scrub_pause_req)) { 2121 /* Push queued extents */ 2122 scrub_blocked_if_needed(fs_info); 2123 } 2124 /* Block group removed? */ 2125 spin_lock(&bg->lock); 2126 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) { 2127 spin_unlock(&bg->lock); 2128 ret = 0; 2129 break; 2130 } 2131 spin_unlock(&bg->lock); 2132 2133 ret = queue_scrub_stripe(sctx, bg, device, mirror_num, 2134 cur_logical, logical_end - cur_logical, 2135 cur_physical, &found_logical); 2136 if (ret > 0) { 2137 /* No more extent, just update the accounting */ 2138 sctx->stat.last_physical = physical + logical_length; 2139 ret = 0; 2140 break; 2141 } 2142 if (ret < 0) 2143 break; 2144 2145 /* queue_scrub_stripe() returned 0, @found_logical must be updated. */ 2146 ASSERT(found_logical != U64_MAX); 2147 cur_logical = found_logical + BTRFS_STRIPE_LEN; 2148 2149 /* Don't hold CPU for too long time */ 2150 cond_resched(); 2151 } 2152 return ret; 2153 } 2154 2155 /* Calculate the full stripe length for simple stripe based profiles */ 2156 static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map) 2157 { 2158 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2159 BTRFS_BLOCK_GROUP_RAID10)); 2160 2161 return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes); 2162 } 2163 2164 /* Get the logical bytenr for the stripe */ 2165 static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map, 2166 struct btrfs_block_group *bg, 2167 int stripe_index) 2168 { 2169 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2170 BTRFS_BLOCK_GROUP_RAID10)); 2171 ASSERT(stripe_index < map->num_stripes); 2172 2173 /* 2174 * (stripe_index / sub_stripes) gives how many data stripes we need to 2175 * skip. 2176 */ 2177 return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) + 2178 bg->start; 2179 } 2180 2181 /* Get the mirror number for the stripe */ 2182 static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index) 2183 { 2184 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2185 BTRFS_BLOCK_GROUP_RAID10)); 2186 ASSERT(stripe_index < map->num_stripes); 2187 2188 /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */ 2189 return stripe_index % map->sub_stripes + 1; 2190 } 2191 2192 static int scrub_simple_stripe(struct scrub_ctx *sctx, 2193 struct btrfs_block_group *bg, 2194 struct btrfs_chunk_map *map, 2195 struct btrfs_device *device, 2196 int stripe_index) 2197 { 2198 const u64 logical_increment = simple_stripe_full_stripe_len(map); 2199 const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index); 2200 const u64 orig_physical = map->stripes[stripe_index].physical; 2201 const int mirror_num = simple_stripe_mirror_num(map, stripe_index); 2202 u64 cur_logical = orig_logical; 2203 u64 cur_physical = orig_physical; 2204 int ret = 0; 2205 2206 while (cur_logical < bg->start + bg->length) { 2207 /* 2208 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is 2209 * just RAID1, so we can reuse scrub_simple_mirror() to scrub 2210 * this stripe. 2211 */ 2212 ret = scrub_simple_mirror(sctx, bg, map, cur_logical, 2213 BTRFS_STRIPE_LEN, device, cur_physical, 2214 mirror_num); 2215 if (ret) 2216 return ret; 2217 /* Skip to next stripe which belongs to the target device */ 2218 cur_logical += logical_increment; 2219 /* For physical offset, we just go to next stripe */ 2220 cur_physical += BTRFS_STRIPE_LEN; 2221 } 2222 return ret; 2223 } 2224 2225 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 2226 struct btrfs_block_group *bg, 2227 struct btrfs_chunk_map *map, 2228 struct btrfs_device *scrub_dev, 2229 int stripe_index) 2230 { 2231 struct btrfs_fs_info *fs_info = sctx->fs_info; 2232 const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; 2233 const u64 chunk_logical = bg->start; 2234 int ret; 2235 int ret2; 2236 u64 physical = map->stripes[stripe_index].physical; 2237 const u64 dev_stripe_len = btrfs_calc_stripe_length(map); 2238 const u64 physical_end = physical + dev_stripe_len; 2239 u64 logical; 2240 u64 logic_end; 2241 /* The logical increment after finishing one stripe */ 2242 u64 increment; 2243 /* Offset inside the chunk */ 2244 u64 offset; 2245 u64 stripe_logical; 2246 int stop_loop = 0; 2247 2248 /* Extent_path should be released by now. */ 2249 ASSERT(sctx->extent_path.nodes[0] == NULL); 2250 2251 scrub_blocked_if_needed(fs_info); 2252 2253 if (sctx->is_dev_replace && 2254 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) { 2255 mutex_lock(&sctx->wr_lock); 2256 sctx->write_pointer = physical; 2257 mutex_unlock(&sctx->wr_lock); 2258 } 2259 2260 /* Prepare the extra data stripes used by RAID56. */ 2261 if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) { 2262 ASSERT(sctx->raid56_data_stripes == NULL); 2263 2264 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map), 2265 sizeof(struct scrub_stripe), 2266 GFP_KERNEL); 2267 if (!sctx->raid56_data_stripes) { 2268 ret = -ENOMEM; 2269 goto out; 2270 } 2271 for (int i = 0; i < nr_data_stripes(map); i++) { 2272 ret = init_scrub_stripe(fs_info, 2273 &sctx->raid56_data_stripes[i]); 2274 if (ret < 0) 2275 goto out; 2276 sctx->raid56_data_stripes[i].bg = bg; 2277 sctx->raid56_data_stripes[i].sctx = sctx; 2278 } 2279 } 2280 /* 2281 * There used to be a big double loop to handle all profiles using the 2282 * same routine, which grows larger and more gross over time. 2283 * 2284 * So here we handle each profile differently, so simpler profiles 2285 * have simpler scrubbing function. 2286 */ 2287 if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 | 2288 BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2289 /* 2290 * Above check rules out all complex profile, the remaining 2291 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple 2292 * mirrored duplication without stripe. 2293 * 2294 * Only @physical and @mirror_num needs to calculated using 2295 * @stripe_index. 2296 */ 2297 ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length, 2298 scrub_dev, map->stripes[stripe_index].physical, 2299 stripe_index + 1); 2300 offset = 0; 2301 goto out; 2302 } 2303 if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 2304 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index); 2305 offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes); 2306 goto out; 2307 } 2308 2309 /* Only RAID56 goes through the old code */ 2310 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK); 2311 ret = 0; 2312 2313 /* Calculate the logical end of the stripe */ 2314 get_raid56_logic_offset(physical_end, stripe_index, 2315 map, &logic_end, NULL); 2316 logic_end += chunk_logical; 2317 2318 /* Initialize @offset in case we need to go to out: label */ 2319 get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL); 2320 increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 2321 2322 /* 2323 * Due to the rotation, for RAID56 it's better to iterate each stripe 2324 * using their physical offset. 2325 */ 2326 while (physical < physical_end) { 2327 ret = get_raid56_logic_offset(physical, stripe_index, map, 2328 &logical, &stripe_logical); 2329 logical += chunk_logical; 2330 if (ret) { 2331 /* it is parity strip */ 2332 stripe_logical += chunk_logical; 2333 ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg, 2334 map, stripe_logical); 2335 if (ret) 2336 goto out; 2337 goto next; 2338 } 2339 2340 /* 2341 * Now we're at a data stripe, scrub each extents in the range. 2342 * 2343 * At this stage, if we ignore the repair part, inside each data 2344 * stripe it is no different than SINGLE profile. 2345 * We can reuse scrub_simple_mirror() here, as the repair part 2346 * is still based on @mirror_num. 2347 */ 2348 ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN, 2349 scrub_dev, physical, 1); 2350 if (ret < 0) 2351 goto out; 2352 next: 2353 logical += increment; 2354 physical += BTRFS_STRIPE_LEN; 2355 spin_lock(&sctx->stat_lock); 2356 if (stop_loop) 2357 sctx->stat.last_physical = 2358 map->stripes[stripe_index].physical + dev_stripe_len; 2359 else 2360 sctx->stat.last_physical = physical; 2361 spin_unlock(&sctx->stat_lock); 2362 if (stop_loop) 2363 break; 2364 } 2365 out: 2366 ret2 = flush_scrub_stripes(sctx); 2367 if (!ret) 2368 ret = ret2; 2369 btrfs_release_path(&sctx->extent_path); 2370 btrfs_release_path(&sctx->csum_path); 2371 2372 if (sctx->raid56_data_stripes) { 2373 for (int i = 0; i < nr_data_stripes(map); i++) 2374 release_scrub_stripe(&sctx->raid56_data_stripes[i]); 2375 kfree(sctx->raid56_data_stripes); 2376 sctx->raid56_data_stripes = NULL; 2377 } 2378 2379 if (sctx->is_dev_replace && ret >= 0) { 2380 int ret2; 2381 2382 ret2 = sync_write_pointer_for_zoned(sctx, 2383 chunk_logical + offset, 2384 map->stripes[stripe_index].physical, 2385 physical_end); 2386 if (ret2) 2387 ret = ret2; 2388 } 2389 2390 return ret < 0 ? ret : 0; 2391 } 2392 2393 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 2394 struct btrfs_block_group *bg, 2395 struct btrfs_device *scrub_dev, 2396 u64 dev_offset, 2397 u64 dev_extent_len) 2398 { 2399 struct btrfs_fs_info *fs_info = sctx->fs_info; 2400 struct btrfs_chunk_map *map; 2401 int i; 2402 int ret = 0; 2403 2404 map = btrfs_find_chunk_map(fs_info, bg->start, bg->length); 2405 if (!map) { 2406 /* 2407 * Might have been an unused block group deleted by the cleaner 2408 * kthread or relocation. 2409 */ 2410 spin_lock(&bg->lock); 2411 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) 2412 ret = -EINVAL; 2413 spin_unlock(&bg->lock); 2414 2415 return ret; 2416 } 2417 if (map->start != bg->start) 2418 goto out; 2419 if (map->chunk_len < dev_extent_len) 2420 goto out; 2421 2422 for (i = 0; i < map->num_stripes; ++i) { 2423 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 2424 map->stripes[i].physical == dev_offset) { 2425 ret = scrub_stripe(sctx, bg, map, scrub_dev, i); 2426 if (ret) 2427 goto out; 2428 } 2429 } 2430 out: 2431 btrfs_free_chunk_map(map); 2432 2433 return ret; 2434 } 2435 2436 static int finish_extent_writes_for_zoned(struct btrfs_root *root, 2437 struct btrfs_block_group *cache) 2438 { 2439 struct btrfs_fs_info *fs_info = cache->fs_info; 2440 struct btrfs_trans_handle *trans; 2441 2442 if (!btrfs_is_zoned(fs_info)) 2443 return 0; 2444 2445 btrfs_wait_block_group_reservations(cache); 2446 btrfs_wait_nocow_writers(cache); 2447 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length); 2448 2449 trans = btrfs_join_transaction(root); 2450 if (IS_ERR(trans)) 2451 return PTR_ERR(trans); 2452 return btrfs_commit_transaction(trans); 2453 } 2454 2455 static noinline_for_stack 2456 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 2457 struct btrfs_device *scrub_dev, u64 start, u64 end) 2458 { 2459 struct btrfs_dev_extent *dev_extent = NULL; 2460 struct btrfs_path *path; 2461 struct btrfs_fs_info *fs_info = sctx->fs_info; 2462 struct btrfs_root *root = fs_info->dev_root; 2463 u64 chunk_offset; 2464 int ret = 0; 2465 int ro_set; 2466 int slot; 2467 struct extent_buffer *l; 2468 struct btrfs_key key; 2469 struct btrfs_key found_key; 2470 struct btrfs_block_group *cache; 2471 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 2472 2473 path = btrfs_alloc_path(); 2474 if (!path) 2475 return -ENOMEM; 2476 2477 path->reada = READA_FORWARD; 2478 path->search_commit_root = 1; 2479 path->skip_locking = 1; 2480 2481 key.objectid = scrub_dev->devid; 2482 key.offset = 0ull; 2483 key.type = BTRFS_DEV_EXTENT_KEY; 2484 2485 while (1) { 2486 u64 dev_extent_len; 2487 2488 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2489 if (ret < 0) 2490 break; 2491 if (ret > 0) { 2492 if (path->slots[0] >= 2493 btrfs_header_nritems(path->nodes[0])) { 2494 ret = btrfs_next_leaf(root, path); 2495 if (ret < 0) 2496 break; 2497 if (ret > 0) { 2498 ret = 0; 2499 break; 2500 } 2501 } else { 2502 ret = 0; 2503 } 2504 } 2505 2506 l = path->nodes[0]; 2507 slot = path->slots[0]; 2508 2509 btrfs_item_key_to_cpu(l, &found_key, slot); 2510 2511 if (found_key.objectid != scrub_dev->devid) 2512 break; 2513 2514 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 2515 break; 2516 2517 if (found_key.offset >= end) 2518 break; 2519 2520 if (found_key.offset < key.offset) 2521 break; 2522 2523 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 2524 dev_extent_len = btrfs_dev_extent_length(l, dev_extent); 2525 2526 if (found_key.offset + dev_extent_len <= start) 2527 goto skip; 2528 2529 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 2530 2531 /* 2532 * get a reference on the corresponding block group to prevent 2533 * the chunk from going away while we scrub it 2534 */ 2535 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2536 2537 /* some chunks are removed but not committed to disk yet, 2538 * continue scrubbing */ 2539 if (!cache) 2540 goto skip; 2541 2542 ASSERT(cache->start <= chunk_offset); 2543 /* 2544 * We are using the commit root to search for device extents, so 2545 * that means we could have found a device extent item from a 2546 * block group that was deleted in the current transaction. The 2547 * logical start offset of the deleted block group, stored at 2548 * @chunk_offset, might be part of the logical address range of 2549 * a new block group (which uses different physical extents). 2550 * In this case btrfs_lookup_block_group() has returned the new 2551 * block group, and its start address is less than @chunk_offset. 2552 * 2553 * We skip such new block groups, because it's pointless to 2554 * process them, as we won't find their extents because we search 2555 * for them using the commit root of the extent tree. For a device 2556 * replace it's also fine to skip it, we won't miss copying them 2557 * to the target device because we have the write duplication 2558 * setup through the regular write path (by btrfs_map_block()), 2559 * and we have committed a transaction when we started the device 2560 * replace, right after setting up the device replace state. 2561 */ 2562 if (cache->start < chunk_offset) { 2563 btrfs_put_block_group(cache); 2564 goto skip; 2565 } 2566 2567 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) { 2568 if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) { 2569 btrfs_put_block_group(cache); 2570 goto skip; 2571 } 2572 } 2573 2574 /* 2575 * Make sure that while we are scrubbing the corresponding block 2576 * group doesn't get its logical address and its device extents 2577 * reused for another block group, which can possibly be of a 2578 * different type and different profile. We do this to prevent 2579 * false error detections and crashes due to bogus attempts to 2580 * repair extents. 2581 */ 2582 spin_lock(&cache->lock); 2583 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) { 2584 spin_unlock(&cache->lock); 2585 btrfs_put_block_group(cache); 2586 goto skip; 2587 } 2588 btrfs_freeze_block_group(cache); 2589 spin_unlock(&cache->lock); 2590 2591 /* 2592 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 2593 * to avoid deadlock caused by: 2594 * btrfs_inc_block_group_ro() 2595 * -> btrfs_wait_for_commit() 2596 * -> btrfs_commit_transaction() 2597 * -> btrfs_scrub_pause() 2598 */ 2599 scrub_pause_on(fs_info); 2600 2601 /* 2602 * Don't do chunk preallocation for scrub. 2603 * 2604 * This is especially important for SYSTEM bgs, or we can hit 2605 * -EFBIG from btrfs_finish_chunk_alloc() like: 2606 * 1. The only SYSTEM bg is marked RO. 2607 * Since SYSTEM bg is small, that's pretty common. 2608 * 2. New SYSTEM bg will be allocated 2609 * Due to regular version will allocate new chunk. 2610 * 3. New SYSTEM bg is empty and will get cleaned up 2611 * Before cleanup really happens, it's marked RO again. 2612 * 4. Empty SYSTEM bg get scrubbed 2613 * We go back to 2. 2614 * 2615 * This can easily boost the amount of SYSTEM chunks if cleaner 2616 * thread can't be triggered fast enough, and use up all space 2617 * of btrfs_super_block::sys_chunk_array 2618 * 2619 * While for dev replace, we need to try our best to mark block 2620 * group RO, to prevent race between: 2621 * - Write duplication 2622 * Contains latest data 2623 * - Scrub copy 2624 * Contains data from commit tree 2625 * 2626 * If target block group is not marked RO, nocow writes can 2627 * be overwritten by scrub copy, causing data corruption. 2628 * So for dev-replace, it's not allowed to continue if a block 2629 * group is not RO. 2630 */ 2631 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); 2632 if (!ret && sctx->is_dev_replace) { 2633 ret = finish_extent_writes_for_zoned(root, cache); 2634 if (ret) { 2635 btrfs_dec_block_group_ro(cache); 2636 scrub_pause_off(fs_info); 2637 btrfs_put_block_group(cache); 2638 break; 2639 } 2640 } 2641 2642 if (ret == 0) { 2643 ro_set = 1; 2644 } else if (ret == -ENOSPC && !sctx->is_dev_replace && 2645 !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) { 2646 /* 2647 * btrfs_inc_block_group_ro return -ENOSPC when it 2648 * failed in creating new chunk for metadata. 2649 * It is not a problem for scrub, because 2650 * metadata are always cowed, and our scrub paused 2651 * commit_transactions. 2652 * 2653 * For RAID56 chunks, we have to mark them read-only 2654 * for scrub, as later we would use our own cache 2655 * out of RAID56 realm. 2656 * Thus we want the RAID56 bg to be marked RO to 2657 * prevent RMW from screwing up out cache. 2658 */ 2659 ro_set = 0; 2660 } else if (ret == -ETXTBSY) { 2661 btrfs_warn(fs_info, 2662 "skipping scrub of block group %llu due to active swapfile", 2663 cache->start); 2664 scrub_pause_off(fs_info); 2665 ret = 0; 2666 goto skip_unfreeze; 2667 } else { 2668 btrfs_warn(fs_info, 2669 "failed setting block group ro: %d", ret); 2670 btrfs_unfreeze_block_group(cache); 2671 btrfs_put_block_group(cache); 2672 scrub_pause_off(fs_info); 2673 break; 2674 } 2675 2676 /* 2677 * Now the target block is marked RO, wait for nocow writes to 2678 * finish before dev-replace. 2679 * COW is fine, as COW never overwrites extents in commit tree. 2680 */ 2681 if (sctx->is_dev_replace) { 2682 btrfs_wait_nocow_writers(cache); 2683 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, 2684 cache->length); 2685 } 2686 2687 scrub_pause_off(fs_info); 2688 down_write(&dev_replace->rwsem); 2689 dev_replace->cursor_right = found_key.offset + dev_extent_len; 2690 dev_replace->cursor_left = found_key.offset; 2691 dev_replace->item_needs_writeback = 1; 2692 up_write(&dev_replace->rwsem); 2693 2694 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset, 2695 dev_extent_len); 2696 if (sctx->is_dev_replace && 2697 !btrfs_finish_block_group_to_copy(dev_replace->srcdev, 2698 cache, found_key.offset)) 2699 ro_set = 0; 2700 2701 down_write(&dev_replace->rwsem); 2702 dev_replace->cursor_left = dev_replace->cursor_right; 2703 dev_replace->item_needs_writeback = 1; 2704 up_write(&dev_replace->rwsem); 2705 2706 if (ro_set) 2707 btrfs_dec_block_group_ro(cache); 2708 2709 /* 2710 * We might have prevented the cleaner kthread from deleting 2711 * this block group if it was already unused because we raced 2712 * and set it to RO mode first. So add it back to the unused 2713 * list, otherwise it might not ever be deleted unless a manual 2714 * balance is triggered or it becomes used and unused again. 2715 */ 2716 spin_lock(&cache->lock); 2717 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) && 2718 !cache->ro && cache->reserved == 0 && cache->used == 0) { 2719 spin_unlock(&cache->lock); 2720 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) 2721 btrfs_discard_queue_work(&fs_info->discard_ctl, 2722 cache); 2723 else 2724 btrfs_mark_bg_unused(cache); 2725 } else { 2726 spin_unlock(&cache->lock); 2727 } 2728 skip_unfreeze: 2729 btrfs_unfreeze_block_group(cache); 2730 btrfs_put_block_group(cache); 2731 if (ret) 2732 break; 2733 if (sctx->is_dev_replace && 2734 atomic64_read(&dev_replace->num_write_errors) > 0) { 2735 ret = -EIO; 2736 break; 2737 } 2738 if (sctx->stat.malloc_errors > 0) { 2739 ret = -ENOMEM; 2740 break; 2741 } 2742 skip: 2743 key.offset = found_key.offset + dev_extent_len; 2744 btrfs_release_path(path); 2745 } 2746 2747 btrfs_free_path(path); 2748 2749 return ret; 2750 } 2751 2752 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev, 2753 struct page *page, u64 physical, u64 generation) 2754 { 2755 struct btrfs_fs_info *fs_info = sctx->fs_info; 2756 struct bio_vec bvec; 2757 struct bio bio; 2758 struct btrfs_super_block *sb = page_address(page); 2759 int ret; 2760 2761 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ); 2762 bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT; 2763 __bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0); 2764 ret = submit_bio_wait(&bio); 2765 bio_uninit(&bio); 2766 2767 if (ret < 0) 2768 return ret; 2769 ret = btrfs_check_super_csum(fs_info, sb); 2770 if (ret != 0) { 2771 btrfs_err_rl(fs_info, 2772 "super block at physical %llu devid %llu has bad csum", 2773 physical, dev->devid); 2774 return -EIO; 2775 } 2776 if (btrfs_super_generation(sb) != generation) { 2777 btrfs_err_rl(fs_info, 2778 "super block at physical %llu devid %llu has bad generation %llu expect %llu", 2779 physical, dev->devid, 2780 btrfs_super_generation(sb), generation); 2781 return -EUCLEAN; 2782 } 2783 2784 return btrfs_validate_super(fs_info, sb, -1); 2785 } 2786 2787 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 2788 struct btrfs_device *scrub_dev) 2789 { 2790 int i; 2791 u64 bytenr; 2792 u64 gen; 2793 int ret = 0; 2794 struct page *page; 2795 struct btrfs_fs_info *fs_info = sctx->fs_info; 2796 2797 if (BTRFS_FS_ERROR(fs_info)) 2798 return -EROFS; 2799 2800 page = alloc_page(GFP_KERNEL); 2801 if (!page) { 2802 spin_lock(&sctx->stat_lock); 2803 sctx->stat.malloc_errors++; 2804 spin_unlock(&sctx->stat_lock); 2805 return -ENOMEM; 2806 } 2807 2808 /* Seed devices of a new filesystem has their own generation. */ 2809 if (scrub_dev->fs_devices != fs_info->fs_devices) 2810 gen = scrub_dev->generation; 2811 else 2812 gen = btrfs_get_last_trans_committed(fs_info); 2813 2814 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2815 bytenr = btrfs_sb_offset(i); 2816 if (bytenr + BTRFS_SUPER_INFO_SIZE > 2817 scrub_dev->commit_total_bytes) 2818 break; 2819 if (!btrfs_check_super_location(scrub_dev, bytenr)) 2820 continue; 2821 2822 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen); 2823 if (ret) { 2824 spin_lock(&sctx->stat_lock); 2825 sctx->stat.super_errors++; 2826 spin_unlock(&sctx->stat_lock); 2827 } 2828 } 2829 __free_page(page); 2830 return 0; 2831 } 2832 2833 static void scrub_workers_put(struct btrfs_fs_info *fs_info) 2834 { 2835 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, 2836 &fs_info->scrub_lock)) { 2837 struct workqueue_struct *scrub_workers = fs_info->scrub_workers; 2838 2839 fs_info->scrub_workers = NULL; 2840 mutex_unlock(&fs_info->scrub_lock); 2841 2842 if (scrub_workers) 2843 destroy_workqueue(scrub_workers); 2844 } 2845 } 2846 2847 /* 2848 * get a reference count on fs_info->scrub_workers. start worker if necessary 2849 */ 2850 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info) 2851 { 2852 struct workqueue_struct *scrub_workers = NULL; 2853 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 2854 int max_active = fs_info->thread_pool_size; 2855 int ret = -ENOMEM; 2856 2857 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) 2858 return 0; 2859 2860 scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active); 2861 if (!scrub_workers) 2862 return -ENOMEM; 2863 2864 mutex_lock(&fs_info->scrub_lock); 2865 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { 2866 ASSERT(fs_info->scrub_workers == NULL); 2867 fs_info->scrub_workers = scrub_workers; 2868 refcount_set(&fs_info->scrub_workers_refcnt, 1); 2869 mutex_unlock(&fs_info->scrub_lock); 2870 return 0; 2871 } 2872 /* Other thread raced in and created the workers for us */ 2873 refcount_inc(&fs_info->scrub_workers_refcnt); 2874 mutex_unlock(&fs_info->scrub_lock); 2875 2876 ret = 0; 2877 2878 destroy_workqueue(scrub_workers); 2879 return ret; 2880 } 2881 2882 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 2883 u64 end, struct btrfs_scrub_progress *progress, 2884 int readonly, int is_dev_replace) 2885 { 2886 struct btrfs_dev_lookup_args args = { .devid = devid }; 2887 struct scrub_ctx *sctx; 2888 int ret; 2889 struct btrfs_device *dev; 2890 unsigned int nofs_flag; 2891 bool need_commit = false; 2892 2893 if (btrfs_fs_closing(fs_info)) 2894 return -EAGAIN; 2895 2896 /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */ 2897 ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN); 2898 2899 /* 2900 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible 2901 * value (max nodesize / min sectorsize), thus nodesize should always 2902 * be fine. 2903 */ 2904 ASSERT(fs_info->nodesize <= 2905 SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits); 2906 2907 /* Allocate outside of device_list_mutex */ 2908 sctx = scrub_setup_ctx(fs_info, is_dev_replace); 2909 if (IS_ERR(sctx)) 2910 return PTR_ERR(sctx); 2911 2912 ret = scrub_workers_get(fs_info); 2913 if (ret) 2914 goto out_free_ctx; 2915 2916 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2917 dev = btrfs_find_device(fs_info->fs_devices, &args); 2918 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 2919 !is_dev_replace)) { 2920 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2921 ret = -ENODEV; 2922 goto out; 2923 } 2924 2925 if (!is_dev_replace && !readonly && 2926 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2927 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2928 btrfs_err_in_rcu(fs_info, 2929 "scrub on devid %llu: filesystem on %s is not writable", 2930 devid, btrfs_dev_name(dev)); 2931 ret = -EROFS; 2932 goto out; 2933 } 2934 2935 mutex_lock(&fs_info->scrub_lock); 2936 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 2937 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { 2938 mutex_unlock(&fs_info->scrub_lock); 2939 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2940 ret = -EIO; 2941 goto out; 2942 } 2943 2944 down_read(&fs_info->dev_replace.rwsem); 2945 if (dev->scrub_ctx || 2946 (!is_dev_replace && 2947 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 2948 up_read(&fs_info->dev_replace.rwsem); 2949 mutex_unlock(&fs_info->scrub_lock); 2950 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2951 ret = -EINPROGRESS; 2952 goto out; 2953 } 2954 up_read(&fs_info->dev_replace.rwsem); 2955 2956 sctx->readonly = readonly; 2957 dev->scrub_ctx = sctx; 2958 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2959 2960 /* 2961 * checking @scrub_pause_req here, we can avoid 2962 * race between committing transaction and scrubbing. 2963 */ 2964 __scrub_blocked_if_needed(fs_info); 2965 atomic_inc(&fs_info->scrubs_running); 2966 mutex_unlock(&fs_info->scrub_lock); 2967 2968 /* 2969 * In order to avoid deadlock with reclaim when there is a transaction 2970 * trying to pause scrub, make sure we use GFP_NOFS for all the 2971 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity() 2972 * invoked by our callees. The pausing request is done when the 2973 * transaction commit starts, and it blocks the transaction until scrub 2974 * is paused (done at specific points at scrub_stripe() or right above 2975 * before incrementing fs_info->scrubs_running). 2976 */ 2977 nofs_flag = memalloc_nofs_save(); 2978 if (!is_dev_replace) { 2979 u64 old_super_errors; 2980 2981 spin_lock(&sctx->stat_lock); 2982 old_super_errors = sctx->stat.super_errors; 2983 spin_unlock(&sctx->stat_lock); 2984 2985 btrfs_info(fs_info, "scrub: started on devid %llu", devid); 2986 /* 2987 * by holding device list mutex, we can 2988 * kick off writing super in log tree sync. 2989 */ 2990 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2991 ret = scrub_supers(sctx, dev); 2992 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2993 2994 spin_lock(&sctx->stat_lock); 2995 /* 2996 * Super block errors found, but we can not commit transaction 2997 * at current context, since btrfs_commit_transaction() needs 2998 * to pause the current running scrub (hold by ourselves). 2999 */ 3000 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly) 3001 need_commit = true; 3002 spin_unlock(&sctx->stat_lock); 3003 } 3004 3005 if (!ret) 3006 ret = scrub_enumerate_chunks(sctx, dev, start, end); 3007 memalloc_nofs_restore(nofs_flag); 3008 3009 atomic_dec(&fs_info->scrubs_running); 3010 wake_up(&fs_info->scrub_pause_wait); 3011 3012 if (progress) 3013 memcpy(progress, &sctx->stat, sizeof(*progress)); 3014 3015 if (!is_dev_replace) 3016 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", 3017 ret ? "not finished" : "finished", devid, ret); 3018 3019 mutex_lock(&fs_info->scrub_lock); 3020 dev->scrub_ctx = NULL; 3021 mutex_unlock(&fs_info->scrub_lock); 3022 3023 scrub_workers_put(fs_info); 3024 scrub_put_ctx(sctx); 3025 3026 /* 3027 * We found some super block errors before, now try to force a 3028 * transaction commit, as scrub has finished. 3029 */ 3030 if (need_commit) { 3031 struct btrfs_trans_handle *trans; 3032 3033 trans = btrfs_start_transaction(fs_info->tree_root, 0); 3034 if (IS_ERR(trans)) { 3035 ret = PTR_ERR(trans); 3036 btrfs_err(fs_info, 3037 "scrub: failed to start transaction to fix super block errors: %d", ret); 3038 return ret; 3039 } 3040 ret = btrfs_commit_transaction(trans); 3041 if (ret < 0) 3042 btrfs_err(fs_info, 3043 "scrub: failed to commit transaction to fix super block errors: %d", ret); 3044 } 3045 return ret; 3046 out: 3047 scrub_workers_put(fs_info); 3048 out_free_ctx: 3049 scrub_free_ctx(sctx); 3050 3051 return ret; 3052 } 3053 3054 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 3055 { 3056 mutex_lock(&fs_info->scrub_lock); 3057 atomic_inc(&fs_info->scrub_pause_req); 3058 while (atomic_read(&fs_info->scrubs_paused) != 3059 atomic_read(&fs_info->scrubs_running)) { 3060 mutex_unlock(&fs_info->scrub_lock); 3061 wait_event(fs_info->scrub_pause_wait, 3062 atomic_read(&fs_info->scrubs_paused) == 3063 atomic_read(&fs_info->scrubs_running)); 3064 mutex_lock(&fs_info->scrub_lock); 3065 } 3066 mutex_unlock(&fs_info->scrub_lock); 3067 } 3068 3069 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 3070 { 3071 atomic_dec(&fs_info->scrub_pause_req); 3072 wake_up(&fs_info->scrub_pause_wait); 3073 } 3074 3075 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 3076 { 3077 mutex_lock(&fs_info->scrub_lock); 3078 if (!atomic_read(&fs_info->scrubs_running)) { 3079 mutex_unlock(&fs_info->scrub_lock); 3080 return -ENOTCONN; 3081 } 3082 3083 atomic_inc(&fs_info->scrub_cancel_req); 3084 while (atomic_read(&fs_info->scrubs_running)) { 3085 mutex_unlock(&fs_info->scrub_lock); 3086 wait_event(fs_info->scrub_pause_wait, 3087 atomic_read(&fs_info->scrubs_running) == 0); 3088 mutex_lock(&fs_info->scrub_lock); 3089 } 3090 atomic_dec(&fs_info->scrub_cancel_req); 3091 mutex_unlock(&fs_info->scrub_lock); 3092 3093 return 0; 3094 } 3095 3096 int btrfs_scrub_cancel_dev(struct btrfs_device *dev) 3097 { 3098 struct btrfs_fs_info *fs_info = dev->fs_info; 3099 struct scrub_ctx *sctx; 3100 3101 mutex_lock(&fs_info->scrub_lock); 3102 sctx = dev->scrub_ctx; 3103 if (!sctx) { 3104 mutex_unlock(&fs_info->scrub_lock); 3105 return -ENOTCONN; 3106 } 3107 atomic_inc(&sctx->cancel_req); 3108 while (dev->scrub_ctx) { 3109 mutex_unlock(&fs_info->scrub_lock); 3110 wait_event(fs_info->scrub_pause_wait, 3111 dev->scrub_ctx == NULL); 3112 mutex_lock(&fs_info->scrub_lock); 3113 } 3114 mutex_unlock(&fs_info->scrub_lock); 3115 3116 return 0; 3117 } 3118 3119 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3120 struct btrfs_scrub_progress *progress) 3121 { 3122 struct btrfs_dev_lookup_args args = { .devid = devid }; 3123 struct btrfs_device *dev; 3124 struct scrub_ctx *sctx = NULL; 3125 3126 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3127 dev = btrfs_find_device(fs_info->fs_devices, &args); 3128 if (dev) 3129 sctx = dev->scrub_ctx; 3130 if (sctx) 3131 memcpy(progress, &sctx->stat, sizeof(*progress)); 3132 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3133 3134 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 3135 } 3136