xref: /linux/fs/btrfs/scrub.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
26 #include "ctree.h"
27 #include "volumes.h"
28 #include "disk-io.h"
29 #include "ordered-data.h"
30 
31 /*
32  * This is only the first step towards a full-features scrub. It reads all
33  * extent and super block and verifies the checksums. In case a bad checksum
34  * is found or the extent cannot be read, good data will be written back if
35  * any can be found.
36  *
37  * Future enhancements:
38  *  - To enhance the performance, better read-ahead strategies for the
39  *    extent-tree can be employed.
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - In case of a read error on files with nodatasum, map the file and read
43  *    the extent to trigger a writeback of the good copy
44  *  - track and record media errors, throw out bad devices
45  *  - add a mode to also read unallocated space
46  *  - make the prefetch cancellable
47  */
48 
49 struct scrub_bio;
50 struct scrub_page;
51 struct scrub_dev;
52 static void scrub_bio_end_io(struct bio *bio, int err);
53 static void scrub_checksum(struct btrfs_work *work);
54 static int scrub_checksum_data(struct scrub_dev *sdev,
55 			       struct scrub_page *spag, void *buffer);
56 static int scrub_checksum_tree_block(struct scrub_dev *sdev,
57 				     struct scrub_page *spag, u64 logical,
58 				     void *buffer);
59 static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer);
60 static int scrub_fixup_check(struct scrub_bio *sbio, int ix);
61 static void scrub_fixup_end_io(struct bio *bio, int err);
62 static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
63 			  struct page *page);
64 static void scrub_fixup(struct scrub_bio *sbio, int ix);
65 
66 #define SCRUB_PAGES_PER_BIO	16	/* 64k per bio */
67 #define SCRUB_BIOS_PER_DEV	16	/* 1 MB per device in flight */
68 
69 struct scrub_page {
70 	u64			flags;  /* extent flags */
71 	u64			generation;
72 	u64			mirror_num;
73 	int			have_csum;
74 	u8			csum[BTRFS_CSUM_SIZE];
75 };
76 
77 struct scrub_bio {
78 	int			index;
79 	struct scrub_dev	*sdev;
80 	struct bio		*bio;
81 	int			err;
82 	u64			logical;
83 	u64			physical;
84 	struct scrub_page	spag[SCRUB_PAGES_PER_BIO];
85 	u64			count;
86 	int			next_free;
87 	struct btrfs_work	work;
88 };
89 
90 struct scrub_dev {
91 	struct scrub_bio	*bios[SCRUB_BIOS_PER_DEV];
92 	struct btrfs_device	*dev;
93 	int			first_free;
94 	int			curr;
95 	atomic_t		in_flight;
96 	spinlock_t		list_lock;
97 	wait_queue_head_t	list_wait;
98 	u16			csum_size;
99 	struct list_head	csum_list;
100 	atomic_t		cancel_req;
101 	int			readonly;
102 	/*
103 	 * statistics
104 	 */
105 	struct btrfs_scrub_progress stat;
106 	spinlock_t		stat_lock;
107 };
108 
109 static void scrub_free_csums(struct scrub_dev *sdev)
110 {
111 	while (!list_empty(&sdev->csum_list)) {
112 		struct btrfs_ordered_sum *sum;
113 		sum = list_first_entry(&sdev->csum_list,
114 				       struct btrfs_ordered_sum, list);
115 		list_del(&sum->list);
116 		kfree(sum);
117 	}
118 }
119 
120 static void scrub_free_bio(struct bio *bio)
121 {
122 	int i;
123 	struct page *last_page = NULL;
124 
125 	if (!bio)
126 		return;
127 
128 	for (i = 0; i < bio->bi_vcnt; ++i) {
129 		if (bio->bi_io_vec[i].bv_page == last_page)
130 			continue;
131 		last_page = bio->bi_io_vec[i].bv_page;
132 		__free_page(last_page);
133 	}
134 	bio_put(bio);
135 }
136 
137 static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
138 {
139 	int i;
140 
141 	if (!sdev)
142 		return;
143 
144 	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
145 		struct scrub_bio *sbio = sdev->bios[i];
146 
147 		if (!sbio)
148 			break;
149 
150 		scrub_free_bio(sbio->bio);
151 		kfree(sbio);
152 	}
153 
154 	scrub_free_csums(sdev);
155 	kfree(sdev);
156 }
157 
158 static noinline_for_stack
159 struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
160 {
161 	struct scrub_dev *sdev;
162 	int		i;
163 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
164 
165 	sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
166 	if (!sdev)
167 		goto nomem;
168 	sdev->dev = dev;
169 	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
170 		struct scrub_bio *sbio;
171 
172 		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
173 		if (!sbio)
174 			goto nomem;
175 		sdev->bios[i] = sbio;
176 
177 		sbio->index = i;
178 		sbio->sdev = sdev;
179 		sbio->count = 0;
180 		sbio->work.func = scrub_checksum;
181 
182 		if (i != SCRUB_BIOS_PER_DEV-1)
183 			sdev->bios[i]->next_free = i + 1;
184 		 else
185 			sdev->bios[i]->next_free = -1;
186 	}
187 	sdev->first_free = 0;
188 	sdev->curr = -1;
189 	atomic_set(&sdev->in_flight, 0);
190 	atomic_set(&sdev->cancel_req, 0);
191 	sdev->csum_size = btrfs_super_csum_size(&fs_info->super_copy);
192 	INIT_LIST_HEAD(&sdev->csum_list);
193 
194 	spin_lock_init(&sdev->list_lock);
195 	spin_lock_init(&sdev->stat_lock);
196 	init_waitqueue_head(&sdev->list_wait);
197 	return sdev;
198 
199 nomem:
200 	scrub_free_dev(sdev);
201 	return ERR_PTR(-ENOMEM);
202 }
203 
204 /*
205  * scrub_recheck_error gets called when either verification of the page
206  * failed or the bio failed to read, e.g. with EIO. In the latter case,
207  * recheck_error gets called for every page in the bio, even though only
208  * one may be bad
209  */
210 static void scrub_recheck_error(struct scrub_bio *sbio, int ix)
211 {
212 	if (sbio->err) {
213 		if (scrub_fixup_io(READ, sbio->sdev->dev->bdev,
214 				   (sbio->physical + ix * PAGE_SIZE) >> 9,
215 				   sbio->bio->bi_io_vec[ix].bv_page) == 0) {
216 			if (scrub_fixup_check(sbio, ix) == 0)
217 				return;
218 		}
219 	}
220 
221 	scrub_fixup(sbio, ix);
222 }
223 
224 static int scrub_fixup_check(struct scrub_bio *sbio, int ix)
225 {
226 	int ret = 1;
227 	struct page *page;
228 	void *buffer;
229 	u64 flags = sbio->spag[ix].flags;
230 
231 	page = sbio->bio->bi_io_vec[ix].bv_page;
232 	buffer = kmap_atomic(page, KM_USER0);
233 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
234 		ret = scrub_checksum_data(sbio->sdev,
235 					  sbio->spag + ix, buffer);
236 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
237 		ret = scrub_checksum_tree_block(sbio->sdev,
238 						sbio->spag + ix,
239 						sbio->logical + ix * PAGE_SIZE,
240 						buffer);
241 	} else {
242 		WARN_ON(1);
243 	}
244 	kunmap_atomic(buffer, KM_USER0);
245 
246 	return ret;
247 }
248 
249 static void scrub_fixup_end_io(struct bio *bio, int err)
250 {
251 	complete((struct completion *)bio->bi_private);
252 }
253 
254 static void scrub_fixup(struct scrub_bio *sbio, int ix)
255 {
256 	struct scrub_dev *sdev = sbio->sdev;
257 	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
258 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
259 	struct btrfs_multi_bio *multi = NULL;
260 	u64 logical = sbio->logical + ix * PAGE_SIZE;
261 	u64 length;
262 	int i;
263 	int ret;
264 	DECLARE_COMPLETION_ONSTACK(complete);
265 
266 	if ((sbio->spag[ix].flags & BTRFS_EXTENT_FLAG_DATA) &&
267 	    (sbio->spag[ix].have_csum == 0)) {
268 		/*
269 		 * nodatasum, don't try to fix anything
270 		 * FIXME: we can do better, open the inode and trigger a
271 		 * writeback
272 		 */
273 		goto uncorrectable;
274 	}
275 
276 	length = PAGE_SIZE;
277 	ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length,
278 			      &multi, 0);
279 	if (ret || !multi || length < PAGE_SIZE) {
280 		printk(KERN_ERR
281 		       "scrub_fixup: btrfs_map_block failed us for %llu\n",
282 		       (unsigned long long)logical);
283 		WARN_ON(1);
284 		return;
285 	}
286 
287 	if (multi->num_stripes == 1)
288 		/* there aren't any replicas */
289 		goto uncorrectable;
290 
291 	/*
292 	 * first find a good copy
293 	 */
294 	for (i = 0; i < multi->num_stripes; ++i) {
295 		if (i == sbio->spag[ix].mirror_num)
296 			continue;
297 
298 		if (scrub_fixup_io(READ, multi->stripes[i].dev->bdev,
299 				   multi->stripes[i].physical >> 9,
300 				   sbio->bio->bi_io_vec[ix].bv_page)) {
301 			/* I/O-error, this is not a good copy */
302 			continue;
303 		}
304 
305 		if (scrub_fixup_check(sbio, ix) == 0)
306 			break;
307 	}
308 	if (i == multi->num_stripes)
309 		goto uncorrectable;
310 
311 	if (!sdev->readonly) {
312 		/*
313 		 * bi_io_vec[ix].bv_page now contains good data, write it back
314 		 */
315 		if (scrub_fixup_io(WRITE, sdev->dev->bdev,
316 				   (sbio->physical + ix * PAGE_SIZE) >> 9,
317 				   sbio->bio->bi_io_vec[ix].bv_page)) {
318 			/* I/O-error, writeback failed, give up */
319 			goto uncorrectable;
320 		}
321 	}
322 
323 	kfree(multi);
324 	spin_lock(&sdev->stat_lock);
325 	++sdev->stat.corrected_errors;
326 	spin_unlock(&sdev->stat_lock);
327 
328 	if (printk_ratelimit())
329 		printk(KERN_ERR "btrfs: fixed up at %llu\n",
330 		       (unsigned long long)logical);
331 	return;
332 
333 uncorrectable:
334 	kfree(multi);
335 	spin_lock(&sdev->stat_lock);
336 	++sdev->stat.uncorrectable_errors;
337 	spin_unlock(&sdev->stat_lock);
338 
339 	if (printk_ratelimit())
340 		printk(KERN_ERR "btrfs: unable to fixup at %llu\n",
341 			 (unsigned long long)logical);
342 }
343 
344 static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
345 			 struct page *page)
346 {
347 	struct bio *bio = NULL;
348 	int ret;
349 	DECLARE_COMPLETION_ONSTACK(complete);
350 
351 	bio = bio_alloc(GFP_NOFS, 1);
352 	bio->bi_bdev = bdev;
353 	bio->bi_sector = sector;
354 	bio_add_page(bio, page, PAGE_SIZE, 0);
355 	bio->bi_end_io = scrub_fixup_end_io;
356 	bio->bi_private = &complete;
357 	submit_bio(rw, bio);
358 
359 	/* this will also unplug the queue */
360 	wait_for_completion(&complete);
361 
362 	ret = !test_bit(BIO_UPTODATE, &bio->bi_flags);
363 	bio_put(bio);
364 	return ret;
365 }
366 
367 static void scrub_bio_end_io(struct bio *bio, int err)
368 {
369 	struct scrub_bio *sbio = bio->bi_private;
370 	struct scrub_dev *sdev = sbio->sdev;
371 	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
372 
373 	sbio->err = err;
374 	sbio->bio = bio;
375 
376 	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
377 }
378 
379 static void scrub_checksum(struct btrfs_work *work)
380 {
381 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
382 	struct scrub_dev *sdev = sbio->sdev;
383 	struct page *page;
384 	void *buffer;
385 	int i;
386 	u64 flags;
387 	u64 logical;
388 	int ret;
389 
390 	if (sbio->err) {
391 		for (i = 0; i < sbio->count; ++i)
392 			scrub_recheck_error(sbio, i);
393 
394 		sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
395 		sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
396 		sbio->bio->bi_phys_segments = 0;
397 		sbio->bio->bi_idx = 0;
398 
399 		for (i = 0; i < sbio->count; i++) {
400 			struct bio_vec *bi;
401 			bi = &sbio->bio->bi_io_vec[i];
402 			bi->bv_offset = 0;
403 			bi->bv_len = PAGE_SIZE;
404 		}
405 
406 		spin_lock(&sdev->stat_lock);
407 		++sdev->stat.read_errors;
408 		spin_unlock(&sdev->stat_lock);
409 		goto out;
410 	}
411 	for (i = 0; i < sbio->count; ++i) {
412 		page = sbio->bio->bi_io_vec[i].bv_page;
413 		buffer = kmap_atomic(page, KM_USER0);
414 		flags = sbio->spag[i].flags;
415 		logical = sbio->logical + i * PAGE_SIZE;
416 		ret = 0;
417 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
418 			ret = scrub_checksum_data(sdev, sbio->spag + i, buffer);
419 		} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
420 			ret = scrub_checksum_tree_block(sdev, sbio->spag + i,
421 							logical, buffer);
422 		} else if (flags & BTRFS_EXTENT_FLAG_SUPER) {
423 			BUG_ON(i);
424 			(void)scrub_checksum_super(sbio, buffer);
425 		} else {
426 			WARN_ON(1);
427 		}
428 		kunmap_atomic(buffer, KM_USER0);
429 		if (ret)
430 			scrub_recheck_error(sbio, i);
431 	}
432 
433 out:
434 	scrub_free_bio(sbio->bio);
435 	sbio->bio = NULL;
436 	spin_lock(&sdev->list_lock);
437 	sbio->next_free = sdev->first_free;
438 	sdev->first_free = sbio->index;
439 	spin_unlock(&sdev->list_lock);
440 	atomic_dec(&sdev->in_flight);
441 	wake_up(&sdev->list_wait);
442 }
443 
444 static int scrub_checksum_data(struct scrub_dev *sdev,
445 			       struct scrub_page *spag, void *buffer)
446 {
447 	u8 csum[BTRFS_CSUM_SIZE];
448 	u32 crc = ~(u32)0;
449 	int fail = 0;
450 	struct btrfs_root *root = sdev->dev->dev_root;
451 
452 	if (!spag->have_csum)
453 		return 0;
454 
455 	crc = btrfs_csum_data(root, buffer, crc, PAGE_SIZE);
456 	btrfs_csum_final(crc, csum);
457 	if (memcmp(csum, spag->csum, sdev->csum_size))
458 		fail = 1;
459 
460 	spin_lock(&sdev->stat_lock);
461 	++sdev->stat.data_extents_scrubbed;
462 	sdev->stat.data_bytes_scrubbed += PAGE_SIZE;
463 	if (fail)
464 		++sdev->stat.csum_errors;
465 	spin_unlock(&sdev->stat_lock);
466 
467 	return fail;
468 }
469 
470 static int scrub_checksum_tree_block(struct scrub_dev *sdev,
471 				     struct scrub_page *spag, u64 logical,
472 				     void *buffer)
473 {
474 	struct btrfs_header *h;
475 	struct btrfs_root *root = sdev->dev->dev_root;
476 	struct btrfs_fs_info *fs_info = root->fs_info;
477 	u8 csum[BTRFS_CSUM_SIZE];
478 	u32 crc = ~(u32)0;
479 	int fail = 0;
480 	int crc_fail = 0;
481 
482 	/*
483 	 * we don't use the getter functions here, as we
484 	 * a) don't have an extent buffer and
485 	 * b) the page is already kmapped
486 	 */
487 	h = (struct btrfs_header *)buffer;
488 
489 	if (logical != le64_to_cpu(h->bytenr))
490 		++fail;
491 
492 	if (spag->generation != le64_to_cpu(h->generation))
493 		++fail;
494 
495 	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
496 		++fail;
497 
498 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
499 		   BTRFS_UUID_SIZE))
500 		++fail;
501 
502 	crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc,
503 			      PAGE_SIZE - BTRFS_CSUM_SIZE);
504 	btrfs_csum_final(crc, csum);
505 	if (memcmp(csum, h->csum, sdev->csum_size))
506 		++crc_fail;
507 
508 	spin_lock(&sdev->stat_lock);
509 	++sdev->stat.tree_extents_scrubbed;
510 	sdev->stat.tree_bytes_scrubbed += PAGE_SIZE;
511 	if (crc_fail)
512 		++sdev->stat.csum_errors;
513 	if (fail)
514 		++sdev->stat.verify_errors;
515 	spin_unlock(&sdev->stat_lock);
516 
517 	return fail || crc_fail;
518 }
519 
520 static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer)
521 {
522 	struct btrfs_super_block *s;
523 	u64 logical;
524 	struct scrub_dev *sdev = sbio->sdev;
525 	struct btrfs_root *root = sdev->dev->dev_root;
526 	struct btrfs_fs_info *fs_info = root->fs_info;
527 	u8 csum[BTRFS_CSUM_SIZE];
528 	u32 crc = ~(u32)0;
529 	int fail = 0;
530 
531 	s = (struct btrfs_super_block *)buffer;
532 	logical = sbio->logical;
533 
534 	if (logical != le64_to_cpu(s->bytenr))
535 		++fail;
536 
537 	if (sbio->spag[0].generation != le64_to_cpu(s->generation))
538 		++fail;
539 
540 	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
541 		++fail;
542 
543 	crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc,
544 			      PAGE_SIZE - BTRFS_CSUM_SIZE);
545 	btrfs_csum_final(crc, csum);
546 	if (memcmp(csum, s->csum, sbio->sdev->csum_size))
547 		++fail;
548 
549 	if (fail) {
550 		/*
551 		 * if we find an error in a super block, we just report it.
552 		 * They will get written with the next transaction commit
553 		 * anyway
554 		 */
555 		spin_lock(&sdev->stat_lock);
556 		++sdev->stat.super_errors;
557 		spin_unlock(&sdev->stat_lock);
558 	}
559 
560 	return fail;
561 }
562 
563 static int scrub_submit(struct scrub_dev *sdev)
564 {
565 	struct scrub_bio *sbio;
566 	struct bio *bio;
567 	int i;
568 
569 	if (sdev->curr == -1)
570 		return 0;
571 
572 	sbio = sdev->bios[sdev->curr];
573 
574 	bio = bio_alloc(GFP_NOFS, sbio->count);
575 	if (!bio)
576 		goto nomem;
577 
578 	bio->bi_private = sbio;
579 	bio->bi_end_io = scrub_bio_end_io;
580 	bio->bi_bdev = sdev->dev->bdev;
581 	bio->bi_sector = sbio->physical >> 9;
582 
583 	for (i = 0; i < sbio->count; ++i) {
584 		struct page *page;
585 		int ret;
586 
587 		page = alloc_page(GFP_NOFS);
588 		if (!page)
589 			goto nomem;
590 
591 		ret = bio_add_page(bio, page, PAGE_SIZE, 0);
592 		if (!ret) {
593 			__free_page(page);
594 			goto nomem;
595 		}
596 	}
597 
598 	sbio->err = 0;
599 	sdev->curr = -1;
600 	atomic_inc(&sdev->in_flight);
601 
602 	submit_bio(READ, bio);
603 
604 	return 0;
605 
606 nomem:
607 	scrub_free_bio(bio);
608 
609 	return -ENOMEM;
610 }
611 
612 static int scrub_page(struct scrub_dev *sdev, u64 logical, u64 len,
613 		      u64 physical, u64 flags, u64 gen, u64 mirror_num,
614 		      u8 *csum, int force)
615 {
616 	struct scrub_bio *sbio;
617 
618 again:
619 	/*
620 	 * grab a fresh bio or wait for one to become available
621 	 */
622 	while (sdev->curr == -1) {
623 		spin_lock(&sdev->list_lock);
624 		sdev->curr = sdev->first_free;
625 		if (sdev->curr != -1) {
626 			sdev->first_free = sdev->bios[sdev->curr]->next_free;
627 			sdev->bios[sdev->curr]->next_free = -1;
628 			sdev->bios[sdev->curr]->count = 0;
629 			spin_unlock(&sdev->list_lock);
630 		} else {
631 			spin_unlock(&sdev->list_lock);
632 			wait_event(sdev->list_wait, sdev->first_free != -1);
633 		}
634 	}
635 	sbio = sdev->bios[sdev->curr];
636 	if (sbio->count == 0) {
637 		sbio->physical = physical;
638 		sbio->logical = logical;
639 	} else if (sbio->physical + sbio->count * PAGE_SIZE != physical ||
640 		   sbio->logical + sbio->count * PAGE_SIZE != logical) {
641 		int ret;
642 
643 		ret = scrub_submit(sdev);
644 		if (ret)
645 			return ret;
646 		goto again;
647 	}
648 	sbio->spag[sbio->count].flags = flags;
649 	sbio->spag[sbio->count].generation = gen;
650 	sbio->spag[sbio->count].have_csum = 0;
651 	sbio->spag[sbio->count].mirror_num = mirror_num;
652 	if (csum) {
653 		sbio->spag[sbio->count].have_csum = 1;
654 		memcpy(sbio->spag[sbio->count].csum, csum, sdev->csum_size);
655 	}
656 	++sbio->count;
657 	if (sbio->count == SCRUB_PAGES_PER_BIO || force) {
658 		int ret;
659 
660 		ret = scrub_submit(sdev);
661 		if (ret)
662 			return ret;
663 	}
664 
665 	return 0;
666 }
667 
668 static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
669 			   u8 *csum)
670 {
671 	struct btrfs_ordered_sum *sum = NULL;
672 	int ret = 0;
673 	unsigned long i;
674 	unsigned long num_sectors;
675 	u32 sectorsize = sdev->dev->dev_root->sectorsize;
676 
677 	while (!list_empty(&sdev->csum_list)) {
678 		sum = list_first_entry(&sdev->csum_list,
679 				       struct btrfs_ordered_sum, list);
680 		if (sum->bytenr > logical)
681 			return 0;
682 		if (sum->bytenr + sum->len > logical)
683 			break;
684 
685 		++sdev->stat.csum_discards;
686 		list_del(&sum->list);
687 		kfree(sum);
688 		sum = NULL;
689 	}
690 	if (!sum)
691 		return 0;
692 
693 	num_sectors = sum->len / sectorsize;
694 	for (i = 0; i < num_sectors; ++i) {
695 		if (sum->sums[i].bytenr == logical) {
696 			memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
697 			ret = 1;
698 			break;
699 		}
700 	}
701 	if (ret && i == num_sectors - 1) {
702 		list_del(&sum->list);
703 		kfree(sum);
704 	}
705 	return ret;
706 }
707 
708 /* scrub extent tries to collect up to 64 kB for each bio */
709 static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
710 			u64 physical, u64 flags, u64 gen, u64 mirror_num)
711 {
712 	int ret;
713 	u8 csum[BTRFS_CSUM_SIZE];
714 
715 	while (len) {
716 		u64 l = min_t(u64, len, PAGE_SIZE);
717 		int have_csum = 0;
718 
719 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
720 			/* push csums to sbio */
721 			have_csum = scrub_find_csum(sdev, logical, l, csum);
722 			if (have_csum == 0)
723 				++sdev->stat.no_csum;
724 		}
725 		ret = scrub_page(sdev, logical, l, physical, flags, gen,
726 				 mirror_num, have_csum ? csum : NULL, 0);
727 		if (ret)
728 			return ret;
729 		len -= l;
730 		logical += l;
731 		physical += l;
732 	}
733 	return 0;
734 }
735 
736 static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
737 	struct map_lookup *map, int num, u64 base, u64 length)
738 {
739 	struct btrfs_path *path;
740 	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
741 	struct btrfs_root *root = fs_info->extent_root;
742 	struct btrfs_root *csum_root = fs_info->csum_root;
743 	struct btrfs_extent_item *extent;
744 	struct blk_plug plug;
745 	u64 flags;
746 	int ret;
747 	int slot;
748 	int i;
749 	u64 nstripes;
750 	int start_stripe;
751 	struct extent_buffer *l;
752 	struct btrfs_key key;
753 	u64 physical;
754 	u64 logical;
755 	u64 generation;
756 	u64 mirror_num;
757 
758 	u64 increment = map->stripe_len;
759 	u64 offset;
760 
761 	nstripes = length;
762 	offset = 0;
763 	do_div(nstripes, map->stripe_len);
764 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
765 		offset = map->stripe_len * num;
766 		increment = map->stripe_len * map->num_stripes;
767 		mirror_num = 0;
768 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
769 		int factor = map->num_stripes / map->sub_stripes;
770 		offset = map->stripe_len * (num / map->sub_stripes);
771 		increment = map->stripe_len * factor;
772 		mirror_num = num % map->sub_stripes;
773 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
774 		increment = map->stripe_len;
775 		mirror_num = num % map->num_stripes;
776 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
777 		increment = map->stripe_len;
778 		mirror_num = num % map->num_stripes;
779 	} else {
780 		increment = map->stripe_len;
781 		mirror_num = 0;
782 	}
783 
784 	path = btrfs_alloc_path();
785 	if (!path)
786 		return -ENOMEM;
787 
788 	path->reada = 2;
789 	path->search_commit_root = 1;
790 	path->skip_locking = 1;
791 
792 	/*
793 	 * find all extents for each stripe and just read them to get
794 	 * them into the page cache
795 	 * FIXME: we can do better. build a more intelligent prefetching
796 	 */
797 	logical = base + offset;
798 	physical = map->stripes[num].physical;
799 	ret = 0;
800 	for (i = 0; i < nstripes; ++i) {
801 		key.objectid = logical;
802 		key.type = BTRFS_EXTENT_ITEM_KEY;
803 		key.offset = (u64)0;
804 
805 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
806 		if (ret < 0)
807 			goto out;
808 
809 		l = path->nodes[0];
810 		slot = path->slots[0];
811 		btrfs_item_key_to_cpu(l, &key, slot);
812 		if (key.objectid != logical) {
813 			ret = btrfs_previous_item(root, path, 0,
814 						  BTRFS_EXTENT_ITEM_KEY);
815 			if (ret < 0)
816 				goto out;
817 		}
818 
819 		while (1) {
820 			l = path->nodes[0];
821 			slot = path->slots[0];
822 			if (slot >= btrfs_header_nritems(l)) {
823 				ret = btrfs_next_leaf(root, path);
824 				if (ret == 0)
825 					continue;
826 				if (ret < 0)
827 					goto out;
828 
829 				break;
830 			}
831 			btrfs_item_key_to_cpu(l, &key, slot);
832 
833 			if (key.objectid >= logical + map->stripe_len)
834 				break;
835 
836 			path->slots[0]++;
837 		}
838 		btrfs_release_path(path);
839 		logical += increment;
840 		physical += map->stripe_len;
841 		cond_resched();
842 	}
843 
844 	/*
845 	 * collect all data csums for the stripe to avoid seeking during
846 	 * the scrub. This might currently (crc32) end up to be about 1MB
847 	 */
848 	start_stripe = 0;
849 	blk_start_plug(&plug);
850 again:
851 	logical = base + offset + start_stripe * increment;
852 	for (i = start_stripe; i < nstripes; ++i) {
853 		ret = btrfs_lookup_csums_range(csum_root, logical,
854 					       logical + map->stripe_len - 1,
855 					       &sdev->csum_list, 1);
856 		if (ret)
857 			goto out;
858 
859 		logical += increment;
860 		cond_resched();
861 	}
862 	/*
863 	 * now find all extents for each stripe and scrub them
864 	 */
865 	logical = base + offset + start_stripe * increment;
866 	physical = map->stripes[num].physical + start_stripe * map->stripe_len;
867 	ret = 0;
868 	for (i = start_stripe; i < nstripes; ++i) {
869 		/*
870 		 * canceled?
871 		 */
872 		if (atomic_read(&fs_info->scrub_cancel_req) ||
873 		    atomic_read(&sdev->cancel_req)) {
874 			ret = -ECANCELED;
875 			goto out;
876 		}
877 		/*
878 		 * check to see if we have to pause
879 		 */
880 		if (atomic_read(&fs_info->scrub_pause_req)) {
881 			/* push queued extents */
882 			scrub_submit(sdev);
883 			wait_event(sdev->list_wait,
884 				   atomic_read(&sdev->in_flight) == 0);
885 			atomic_inc(&fs_info->scrubs_paused);
886 			wake_up(&fs_info->scrub_pause_wait);
887 			mutex_lock(&fs_info->scrub_lock);
888 			while (atomic_read(&fs_info->scrub_pause_req)) {
889 				mutex_unlock(&fs_info->scrub_lock);
890 				wait_event(fs_info->scrub_pause_wait,
891 				   atomic_read(&fs_info->scrub_pause_req) == 0);
892 				mutex_lock(&fs_info->scrub_lock);
893 			}
894 			atomic_dec(&fs_info->scrubs_paused);
895 			mutex_unlock(&fs_info->scrub_lock);
896 			wake_up(&fs_info->scrub_pause_wait);
897 			scrub_free_csums(sdev);
898 			start_stripe = i;
899 			goto again;
900 		}
901 
902 		key.objectid = logical;
903 		key.type = BTRFS_EXTENT_ITEM_KEY;
904 		key.offset = (u64)0;
905 
906 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
907 		if (ret < 0)
908 			goto out;
909 
910 		l = path->nodes[0];
911 		slot = path->slots[0];
912 		btrfs_item_key_to_cpu(l, &key, slot);
913 		if (key.objectid != logical) {
914 			ret = btrfs_previous_item(root, path, 0,
915 						  BTRFS_EXTENT_ITEM_KEY);
916 			if (ret < 0)
917 				goto out;
918 		}
919 
920 		while (1) {
921 			l = path->nodes[0];
922 			slot = path->slots[0];
923 			if (slot >= btrfs_header_nritems(l)) {
924 				ret = btrfs_next_leaf(root, path);
925 				if (ret == 0)
926 					continue;
927 				if (ret < 0)
928 					goto out;
929 
930 				break;
931 			}
932 			btrfs_item_key_to_cpu(l, &key, slot);
933 
934 			if (key.objectid + key.offset <= logical)
935 				goto next;
936 
937 			if (key.objectid >= logical + map->stripe_len)
938 				break;
939 
940 			if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
941 				goto next;
942 
943 			extent = btrfs_item_ptr(l, slot,
944 						struct btrfs_extent_item);
945 			flags = btrfs_extent_flags(l, extent);
946 			generation = btrfs_extent_generation(l, extent);
947 
948 			if (key.objectid < logical &&
949 			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
950 				printk(KERN_ERR
951 				       "btrfs scrub: tree block %llu spanning "
952 				       "stripes, ignored. logical=%llu\n",
953 				       (unsigned long long)key.objectid,
954 				       (unsigned long long)logical);
955 				goto next;
956 			}
957 
958 			/*
959 			 * trim extent to this stripe
960 			 */
961 			if (key.objectid < logical) {
962 				key.offset -= logical - key.objectid;
963 				key.objectid = logical;
964 			}
965 			if (key.objectid + key.offset >
966 			    logical + map->stripe_len) {
967 				key.offset = logical + map->stripe_len -
968 					     key.objectid;
969 			}
970 
971 			ret = scrub_extent(sdev, key.objectid, key.offset,
972 					   key.objectid - logical + physical,
973 					   flags, generation, mirror_num);
974 			if (ret)
975 				goto out;
976 
977 next:
978 			path->slots[0]++;
979 		}
980 		btrfs_release_path(path);
981 		logical += increment;
982 		physical += map->stripe_len;
983 		spin_lock(&sdev->stat_lock);
984 		sdev->stat.last_physical = physical;
985 		spin_unlock(&sdev->stat_lock);
986 	}
987 	/* push queued extents */
988 	scrub_submit(sdev);
989 
990 out:
991 	blk_finish_plug(&plug);
992 	btrfs_free_path(path);
993 	return ret < 0 ? ret : 0;
994 }
995 
996 static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
997 	u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length)
998 {
999 	struct btrfs_mapping_tree *map_tree =
1000 		&sdev->dev->dev_root->fs_info->mapping_tree;
1001 	struct map_lookup *map;
1002 	struct extent_map *em;
1003 	int i;
1004 	int ret = -EINVAL;
1005 
1006 	read_lock(&map_tree->map_tree.lock);
1007 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
1008 	read_unlock(&map_tree->map_tree.lock);
1009 
1010 	if (!em)
1011 		return -EINVAL;
1012 
1013 	map = (struct map_lookup *)em->bdev;
1014 	if (em->start != chunk_offset)
1015 		goto out;
1016 
1017 	if (em->len < length)
1018 		goto out;
1019 
1020 	for (i = 0; i < map->num_stripes; ++i) {
1021 		if (map->stripes[i].dev == sdev->dev) {
1022 			ret = scrub_stripe(sdev, map, i, chunk_offset, length);
1023 			if (ret)
1024 				goto out;
1025 		}
1026 	}
1027 out:
1028 	free_extent_map(em);
1029 
1030 	return ret;
1031 }
1032 
1033 static noinline_for_stack
1034 int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
1035 {
1036 	struct btrfs_dev_extent *dev_extent = NULL;
1037 	struct btrfs_path *path;
1038 	struct btrfs_root *root = sdev->dev->dev_root;
1039 	struct btrfs_fs_info *fs_info = root->fs_info;
1040 	u64 length;
1041 	u64 chunk_tree;
1042 	u64 chunk_objectid;
1043 	u64 chunk_offset;
1044 	int ret;
1045 	int slot;
1046 	struct extent_buffer *l;
1047 	struct btrfs_key key;
1048 	struct btrfs_key found_key;
1049 	struct btrfs_block_group_cache *cache;
1050 
1051 	path = btrfs_alloc_path();
1052 	if (!path)
1053 		return -ENOMEM;
1054 
1055 	path->reada = 2;
1056 	path->search_commit_root = 1;
1057 	path->skip_locking = 1;
1058 
1059 	key.objectid = sdev->dev->devid;
1060 	key.offset = 0ull;
1061 	key.type = BTRFS_DEV_EXTENT_KEY;
1062 
1063 
1064 	while (1) {
1065 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1066 		if (ret < 0)
1067 			goto out;
1068 		ret = 0;
1069 
1070 		l = path->nodes[0];
1071 		slot = path->slots[0];
1072 
1073 		btrfs_item_key_to_cpu(l, &found_key, slot);
1074 
1075 		if (found_key.objectid != sdev->dev->devid)
1076 			break;
1077 
1078 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1079 			break;
1080 
1081 		if (found_key.offset >= end)
1082 			break;
1083 
1084 		if (found_key.offset < key.offset)
1085 			break;
1086 
1087 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1088 		length = btrfs_dev_extent_length(l, dev_extent);
1089 
1090 		if (found_key.offset + length <= start) {
1091 			key.offset = found_key.offset + length;
1092 			btrfs_release_path(path);
1093 			continue;
1094 		}
1095 
1096 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1097 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1098 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1099 
1100 		/*
1101 		 * get a reference on the corresponding block group to prevent
1102 		 * the chunk from going away while we scrub it
1103 		 */
1104 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
1105 		if (!cache) {
1106 			ret = -ENOENT;
1107 			goto out;
1108 		}
1109 		ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
1110 				  chunk_offset, length);
1111 		btrfs_put_block_group(cache);
1112 		if (ret)
1113 			break;
1114 
1115 		key.offset = found_key.offset + length;
1116 		btrfs_release_path(path);
1117 	}
1118 
1119 out:
1120 	btrfs_free_path(path);
1121 	return ret;
1122 }
1123 
1124 static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
1125 {
1126 	int	i;
1127 	u64	bytenr;
1128 	u64	gen;
1129 	int	ret;
1130 	struct btrfs_device *device = sdev->dev;
1131 	struct btrfs_root *root = device->dev_root;
1132 
1133 	gen = root->fs_info->last_trans_committed;
1134 
1135 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1136 		bytenr = btrfs_sb_offset(i);
1137 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
1138 			break;
1139 
1140 		ret = scrub_page(sdev, bytenr, PAGE_SIZE, bytenr,
1141 				 BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
1142 		if (ret)
1143 			return ret;
1144 	}
1145 	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
1146 
1147 	return 0;
1148 }
1149 
1150 /*
1151  * get a reference count on fs_info->scrub_workers. start worker if necessary
1152  */
1153 static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
1154 {
1155 	struct btrfs_fs_info *fs_info = root->fs_info;
1156 
1157 	mutex_lock(&fs_info->scrub_lock);
1158 	if (fs_info->scrub_workers_refcnt == 0)
1159 		btrfs_start_workers(&fs_info->scrub_workers, 1);
1160 	++fs_info->scrub_workers_refcnt;
1161 	mutex_unlock(&fs_info->scrub_lock);
1162 
1163 	return 0;
1164 }
1165 
1166 static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
1167 {
1168 	struct btrfs_fs_info *fs_info = root->fs_info;
1169 
1170 	mutex_lock(&fs_info->scrub_lock);
1171 	if (--fs_info->scrub_workers_refcnt == 0)
1172 		btrfs_stop_workers(&fs_info->scrub_workers);
1173 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
1174 	mutex_unlock(&fs_info->scrub_lock);
1175 }
1176 
1177 
1178 int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
1179 		    struct btrfs_scrub_progress *progress, int readonly)
1180 {
1181 	struct scrub_dev *sdev;
1182 	struct btrfs_fs_info *fs_info = root->fs_info;
1183 	int ret;
1184 	struct btrfs_device *dev;
1185 
1186 	if (btrfs_fs_closing(root->fs_info))
1187 		return -EINVAL;
1188 
1189 	/*
1190 	 * check some assumptions
1191 	 */
1192 	if (root->sectorsize != PAGE_SIZE ||
1193 	    root->sectorsize != root->leafsize ||
1194 	    root->sectorsize != root->nodesize) {
1195 		printk(KERN_ERR "btrfs_scrub: size assumptions fail\n");
1196 		return -EINVAL;
1197 	}
1198 
1199 	ret = scrub_workers_get(root);
1200 	if (ret)
1201 		return ret;
1202 
1203 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1204 	dev = btrfs_find_device(root, devid, NULL, NULL);
1205 	if (!dev || dev->missing) {
1206 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1207 		scrub_workers_put(root);
1208 		return -ENODEV;
1209 	}
1210 	mutex_lock(&fs_info->scrub_lock);
1211 
1212 	if (!dev->in_fs_metadata) {
1213 		mutex_unlock(&fs_info->scrub_lock);
1214 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1215 		scrub_workers_put(root);
1216 		return -ENODEV;
1217 	}
1218 
1219 	if (dev->scrub_device) {
1220 		mutex_unlock(&fs_info->scrub_lock);
1221 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1222 		scrub_workers_put(root);
1223 		return -EINPROGRESS;
1224 	}
1225 	sdev = scrub_setup_dev(dev);
1226 	if (IS_ERR(sdev)) {
1227 		mutex_unlock(&fs_info->scrub_lock);
1228 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1229 		scrub_workers_put(root);
1230 		return PTR_ERR(sdev);
1231 	}
1232 	sdev->readonly = readonly;
1233 	dev->scrub_device = sdev;
1234 
1235 	atomic_inc(&fs_info->scrubs_running);
1236 	mutex_unlock(&fs_info->scrub_lock);
1237 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1238 
1239 	down_read(&fs_info->scrub_super_lock);
1240 	ret = scrub_supers(sdev);
1241 	up_read(&fs_info->scrub_super_lock);
1242 
1243 	if (!ret)
1244 		ret = scrub_enumerate_chunks(sdev, start, end);
1245 
1246 	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
1247 
1248 	atomic_dec(&fs_info->scrubs_running);
1249 	wake_up(&fs_info->scrub_pause_wait);
1250 
1251 	if (progress)
1252 		memcpy(progress, &sdev->stat, sizeof(*progress));
1253 
1254 	mutex_lock(&fs_info->scrub_lock);
1255 	dev->scrub_device = NULL;
1256 	mutex_unlock(&fs_info->scrub_lock);
1257 
1258 	scrub_free_dev(sdev);
1259 	scrub_workers_put(root);
1260 
1261 	return ret;
1262 }
1263 
1264 int btrfs_scrub_pause(struct btrfs_root *root)
1265 {
1266 	struct btrfs_fs_info *fs_info = root->fs_info;
1267 
1268 	mutex_lock(&fs_info->scrub_lock);
1269 	atomic_inc(&fs_info->scrub_pause_req);
1270 	while (atomic_read(&fs_info->scrubs_paused) !=
1271 	       atomic_read(&fs_info->scrubs_running)) {
1272 		mutex_unlock(&fs_info->scrub_lock);
1273 		wait_event(fs_info->scrub_pause_wait,
1274 			   atomic_read(&fs_info->scrubs_paused) ==
1275 			   atomic_read(&fs_info->scrubs_running));
1276 		mutex_lock(&fs_info->scrub_lock);
1277 	}
1278 	mutex_unlock(&fs_info->scrub_lock);
1279 
1280 	return 0;
1281 }
1282 
1283 int btrfs_scrub_continue(struct btrfs_root *root)
1284 {
1285 	struct btrfs_fs_info *fs_info = root->fs_info;
1286 
1287 	atomic_dec(&fs_info->scrub_pause_req);
1288 	wake_up(&fs_info->scrub_pause_wait);
1289 	return 0;
1290 }
1291 
1292 int btrfs_scrub_pause_super(struct btrfs_root *root)
1293 {
1294 	down_write(&root->fs_info->scrub_super_lock);
1295 	return 0;
1296 }
1297 
1298 int btrfs_scrub_continue_super(struct btrfs_root *root)
1299 {
1300 	up_write(&root->fs_info->scrub_super_lock);
1301 	return 0;
1302 }
1303 
1304 int btrfs_scrub_cancel(struct btrfs_root *root)
1305 {
1306 	struct btrfs_fs_info *fs_info = root->fs_info;
1307 
1308 	mutex_lock(&fs_info->scrub_lock);
1309 	if (!atomic_read(&fs_info->scrubs_running)) {
1310 		mutex_unlock(&fs_info->scrub_lock);
1311 		return -ENOTCONN;
1312 	}
1313 
1314 	atomic_inc(&fs_info->scrub_cancel_req);
1315 	while (atomic_read(&fs_info->scrubs_running)) {
1316 		mutex_unlock(&fs_info->scrub_lock);
1317 		wait_event(fs_info->scrub_pause_wait,
1318 			   atomic_read(&fs_info->scrubs_running) == 0);
1319 		mutex_lock(&fs_info->scrub_lock);
1320 	}
1321 	atomic_dec(&fs_info->scrub_cancel_req);
1322 	mutex_unlock(&fs_info->scrub_lock);
1323 
1324 	return 0;
1325 }
1326 
1327 int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
1328 {
1329 	struct btrfs_fs_info *fs_info = root->fs_info;
1330 	struct scrub_dev *sdev;
1331 
1332 	mutex_lock(&fs_info->scrub_lock);
1333 	sdev = dev->scrub_device;
1334 	if (!sdev) {
1335 		mutex_unlock(&fs_info->scrub_lock);
1336 		return -ENOTCONN;
1337 	}
1338 	atomic_inc(&sdev->cancel_req);
1339 	while (dev->scrub_device) {
1340 		mutex_unlock(&fs_info->scrub_lock);
1341 		wait_event(fs_info->scrub_pause_wait,
1342 			   dev->scrub_device == NULL);
1343 		mutex_lock(&fs_info->scrub_lock);
1344 	}
1345 	mutex_unlock(&fs_info->scrub_lock);
1346 
1347 	return 0;
1348 }
1349 int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
1350 {
1351 	struct btrfs_fs_info *fs_info = root->fs_info;
1352 	struct btrfs_device *dev;
1353 	int ret;
1354 
1355 	/*
1356 	 * we have to hold the device_list_mutex here so the device
1357 	 * does not go away in cancel_dev. FIXME: find a better solution
1358 	 */
1359 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1360 	dev = btrfs_find_device(root, devid, NULL, NULL);
1361 	if (!dev) {
1362 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1363 		return -ENODEV;
1364 	}
1365 	ret = btrfs_scrub_cancel_dev(root, dev);
1366 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1367 
1368 	return ret;
1369 }
1370 
1371 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
1372 			 struct btrfs_scrub_progress *progress)
1373 {
1374 	struct btrfs_device *dev;
1375 	struct scrub_dev *sdev = NULL;
1376 
1377 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1378 	dev = btrfs_find_device(root, devid, NULL, NULL);
1379 	if (dev)
1380 		sdev = dev->scrub_device;
1381 	if (sdev)
1382 		memcpy(progress, &sdev->stat, sizeof(*progress));
1383 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1384 
1385 	return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
1386 }
1387