xref: /linux/fs/btrfs/scrub.c (revision 09e61efd884ca68a768717d60858f138685b161b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "raid56.h"
21 #include "block-group.h"
22 #include "zoned.h"
23 #include "fs.h"
24 #include "accessors.h"
25 #include "file-item.h"
26 #include "scrub.h"
27 
28 /*
29  * This is only the first step towards a full-features scrub. It reads all
30  * extent and super block and verifies the checksums. In case a bad checksum
31  * is found or the extent cannot be read, good data will be written back if
32  * any can be found.
33  *
34  * Future enhancements:
35  *  - In case an unrepairable extent is encountered, track which files are
36  *    affected and report them
37  *  - track and record media errors, throw out bad devices
38  *  - add a mode to also read unallocated space
39  */
40 
41 struct scrub_block;
42 struct scrub_ctx;
43 
44 /*
45  * The following three values only influence the performance.
46  *
47  * The last one configures the number of parallel and outstanding I/O
48  * operations. The first one configures an upper limit for the number
49  * of (dynamically allocated) pages that are added to a bio.
50  */
51 #define SCRUB_SECTORS_PER_BIO	32	/* 128KiB per bio for 4KiB pages */
52 #define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for 4KiB pages */
53 
54 /*
55  * The following value times PAGE_SIZE needs to be large enough to match the
56  * largest node/leaf/sector size that shall be supported.
57  */
58 #define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
59 
60 #define SCRUB_MAX_PAGES			(DIV_ROUND_UP(BTRFS_MAX_METADATA_BLOCKSIZE, PAGE_SIZE))
61 
62 /*
63  * Maximum number of mirrors that can be available for all profiles counting
64  * the target device of dev-replace as one. During an active device replace
65  * procedure, the target device of the copy operation is a mirror for the
66  * filesystem data as well that can be used to read data in order to repair
67  * read errors on other disks.
68  *
69  * Current value is derived from RAID1C4 with 4 copies.
70  */
71 #define BTRFS_MAX_MIRRORS (4 + 1)
72 
73 struct scrub_recover {
74 	refcount_t		refs;
75 	struct btrfs_io_context	*bioc;
76 	u64			map_length;
77 };
78 
79 struct scrub_sector {
80 	struct scrub_block	*sblock;
81 	struct list_head	list;
82 	u64			flags;  /* extent flags */
83 	u64			generation;
84 	/* Offset in bytes to @sblock. */
85 	u32			offset;
86 	atomic_t		refs;
87 	unsigned int		have_csum:1;
88 	unsigned int		io_error:1;
89 	u8			csum[BTRFS_CSUM_SIZE];
90 
91 	struct scrub_recover	*recover;
92 };
93 
94 struct scrub_bio {
95 	int			index;
96 	struct scrub_ctx	*sctx;
97 	struct btrfs_device	*dev;
98 	struct bio		*bio;
99 	blk_status_t		status;
100 	u64			logical;
101 	u64			physical;
102 	struct scrub_sector	*sectors[SCRUB_SECTORS_PER_BIO];
103 	int			sector_count;
104 	int			next_free;
105 	struct work_struct	work;
106 };
107 
108 struct scrub_block {
109 	/*
110 	 * Each page will have its page::private used to record the logical
111 	 * bytenr.
112 	 */
113 	struct page		*pages[SCRUB_MAX_PAGES];
114 	struct scrub_sector	*sectors[SCRUB_MAX_SECTORS_PER_BLOCK];
115 	struct btrfs_device	*dev;
116 	/* Logical bytenr of the sblock */
117 	u64			logical;
118 	u64			physical;
119 	u64			physical_for_dev_replace;
120 	/* Length of sblock in bytes */
121 	u32			len;
122 	int			sector_count;
123 	int			mirror_num;
124 
125 	atomic_t		outstanding_sectors;
126 	refcount_t		refs; /* free mem on transition to zero */
127 	struct scrub_ctx	*sctx;
128 	struct scrub_parity	*sparity;
129 	struct {
130 		unsigned int	header_error:1;
131 		unsigned int	checksum_error:1;
132 		unsigned int	no_io_error_seen:1;
133 		unsigned int	generation_error:1; /* also sets header_error */
134 
135 		/* The following is for the data used to check parity */
136 		/* It is for the data with checksum */
137 		unsigned int	data_corrected:1;
138 	};
139 	struct work_struct	work;
140 };
141 
142 /* Used for the chunks with parity stripe such RAID5/6 */
143 struct scrub_parity {
144 	struct scrub_ctx	*sctx;
145 
146 	struct btrfs_device	*scrub_dev;
147 
148 	u64			logic_start;
149 
150 	u64			logic_end;
151 
152 	int			nsectors;
153 
154 	u32			stripe_len;
155 
156 	refcount_t		refs;
157 
158 	struct list_head	sectors_list;
159 
160 	/* Work of parity check and repair */
161 	struct work_struct	work;
162 
163 	/* Mark the parity blocks which have data */
164 	unsigned long		dbitmap;
165 
166 	/*
167 	 * Mark the parity blocks which have data, but errors happen when
168 	 * read data or check data
169 	 */
170 	unsigned long		ebitmap;
171 };
172 
173 struct scrub_ctx {
174 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
175 	struct btrfs_fs_info	*fs_info;
176 	int			first_free;
177 	int			curr;
178 	atomic_t		bios_in_flight;
179 	atomic_t		workers_pending;
180 	spinlock_t		list_lock;
181 	wait_queue_head_t	list_wait;
182 	struct list_head	csum_list;
183 	atomic_t		cancel_req;
184 	int			readonly;
185 	int			sectors_per_bio;
186 
187 	/* State of IO submission throttling affecting the associated device */
188 	ktime_t			throttle_deadline;
189 	u64			throttle_sent;
190 
191 	int			is_dev_replace;
192 	u64			write_pointer;
193 
194 	struct scrub_bio        *wr_curr_bio;
195 	struct mutex            wr_lock;
196 	struct btrfs_device     *wr_tgtdev;
197 	bool                    flush_all_writes;
198 
199 	/*
200 	 * statistics
201 	 */
202 	struct btrfs_scrub_progress stat;
203 	spinlock_t		stat_lock;
204 
205 	/*
206 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
207 	 * decrement bios_in_flight and workers_pending and then do a wakeup
208 	 * on the list_wait wait queue. We must ensure the main scrub task
209 	 * doesn't free the scrub context before or while the workers are
210 	 * doing the wakeup() call.
211 	 */
212 	refcount_t              refs;
213 };
214 
215 struct scrub_warning {
216 	struct btrfs_path	*path;
217 	u64			extent_item_size;
218 	const char		*errstr;
219 	u64			physical;
220 	u64			logical;
221 	struct btrfs_device	*dev;
222 };
223 
224 struct full_stripe_lock {
225 	struct rb_node node;
226 	u64 logical;
227 	u64 refs;
228 	struct mutex mutex;
229 };
230 
231 #ifndef CONFIG_64BIT
232 /* This structure is for archtectures whose (void *) is smaller than u64 */
233 struct scrub_page_private {
234 	u64 logical;
235 };
236 #endif
237 
238 static int attach_scrub_page_private(struct page *page, u64 logical)
239 {
240 #ifdef CONFIG_64BIT
241 	attach_page_private(page, (void *)logical);
242 	return 0;
243 #else
244 	struct scrub_page_private *spp;
245 
246 	spp = kmalloc(sizeof(*spp), GFP_KERNEL);
247 	if (!spp)
248 		return -ENOMEM;
249 	spp->logical = logical;
250 	attach_page_private(page, (void *)spp);
251 	return 0;
252 #endif
253 }
254 
255 static void detach_scrub_page_private(struct page *page)
256 {
257 #ifdef CONFIG_64BIT
258 	detach_page_private(page);
259 	return;
260 #else
261 	struct scrub_page_private *spp;
262 
263 	spp = detach_page_private(page);
264 	kfree(spp);
265 	return;
266 #endif
267 }
268 
269 static struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx,
270 					     struct btrfs_device *dev,
271 					     u64 logical, u64 physical,
272 					     u64 physical_for_dev_replace,
273 					     int mirror_num)
274 {
275 	struct scrub_block *sblock;
276 
277 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
278 	if (!sblock)
279 		return NULL;
280 	refcount_set(&sblock->refs, 1);
281 	sblock->sctx = sctx;
282 	sblock->logical = logical;
283 	sblock->physical = physical;
284 	sblock->physical_for_dev_replace = physical_for_dev_replace;
285 	sblock->dev = dev;
286 	sblock->mirror_num = mirror_num;
287 	sblock->no_io_error_seen = 1;
288 	/*
289 	 * Scrub_block::pages will be allocated at alloc_scrub_sector() when
290 	 * the corresponding page is not allocated.
291 	 */
292 	return sblock;
293 }
294 
295 /*
296  * Allocate a new scrub sector and attach it to @sblock.
297  *
298  * Will also allocate new pages for @sblock if needed.
299  */
300 static struct scrub_sector *alloc_scrub_sector(struct scrub_block *sblock,
301 					       u64 logical)
302 {
303 	const pgoff_t page_index = (logical - sblock->logical) >> PAGE_SHIFT;
304 	struct scrub_sector *ssector;
305 
306 	/* We must never have scrub_block exceed U32_MAX in size. */
307 	ASSERT(logical - sblock->logical < U32_MAX);
308 
309 	ssector = kzalloc(sizeof(*ssector), GFP_KERNEL);
310 	if (!ssector)
311 		return NULL;
312 
313 	/* Allocate a new page if the slot is not allocated */
314 	if (!sblock->pages[page_index]) {
315 		int ret;
316 
317 		sblock->pages[page_index] = alloc_page(GFP_KERNEL);
318 		if (!sblock->pages[page_index]) {
319 			kfree(ssector);
320 			return NULL;
321 		}
322 		ret = attach_scrub_page_private(sblock->pages[page_index],
323 				sblock->logical + (page_index << PAGE_SHIFT));
324 		if (ret < 0) {
325 			kfree(ssector);
326 			__free_page(sblock->pages[page_index]);
327 			sblock->pages[page_index] = NULL;
328 			return NULL;
329 		}
330 	}
331 
332 	atomic_set(&ssector->refs, 1);
333 	ssector->sblock = sblock;
334 	/* The sector to be added should not be used */
335 	ASSERT(sblock->sectors[sblock->sector_count] == NULL);
336 	ssector->offset = logical - sblock->logical;
337 
338 	/* The sector count must be smaller than the limit */
339 	ASSERT(sblock->sector_count < SCRUB_MAX_SECTORS_PER_BLOCK);
340 
341 	sblock->sectors[sblock->sector_count] = ssector;
342 	sblock->sector_count++;
343 	sblock->len += sblock->sctx->fs_info->sectorsize;
344 
345 	return ssector;
346 }
347 
348 static struct page *scrub_sector_get_page(struct scrub_sector *ssector)
349 {
350 	struct scrub_block *sblock = ssector->sblock;
351 	pgoff_t index;
352 	/*
353 	 * When calling this function, ssector must be alreaday attached to the
354 	 * parent sblock.
355 	 */
356 	ASSERT(sblock);
357 
358 	/* The range should be inside the sblock range */
359 	ASSERT(ssector->offset < sblock->len);
360 
361 	index = ssector->offset >> PAGE_SHIFT;
362 	ASSERT(index < SCRUB_MAX_PAGES);
363 	ASSERT(sblock->pages[index]);
364 	ASSERT(PagePrivate(sblock->pages[index]));
365 	return sblock->pages[index];
366 }
367 
368 static unsigned int scrub_sector_get_page_offset(struct scrub_sector *ssector)
369 {
370 	struct scrub_block *sblock = ssector->sblock;
371 
372 	/*
373 	 * When calling this function, ssector must be already attached to the
374 	 * parent sblock.
375 	 */
376 	ASSERT(sblock);
377 
378 	/* The range should be inside the sblock range */
379 	ASSERT(ssector->offset < sblock->len);
380 
381 	return offset_in_page(ssector->offset);
382 }
383 
384 static char *scrub_sector_get_kaddr(struct scrub_sector *ssector)
385 {
386 	return page_address(scrub_sector_get_page(ssector)) +
387 	       scrub_sector_get_page_offset(ssector);
388 }
389 
390 static int bio_add_scrub_sector(struct bio *bio, struct scrub_sector *ssector,
391 				unsigned int len)
392 {
393 	return bio_add_page(bio, scrub_sector_get_page(ssector), len,
394 			    scrub_sector_get_page_offset(ssector));
395 }
396 
397 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
398 				     struct scrub_block *sblocks_for_recheck[]);
399 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
400 				struct scrub_block *sblock,
401 				int retry_failed_mirror);
402 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
403 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
404 					     struct scrub_block *sblock_good);
405 static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
406 					    struct scrub_block *sblock_good,
407 					    int sector_num, int force_write);
408 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
409 static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock,
410 					     int sector_num);
411 static int scrub_checksum_data(struct scrub_block *sblock);
412 static int scrub_checksum_tree_block(struct scrub_block *sblock);
413 static int scrub_checksum_super(struct scrub_block *sblock);
414 static void scrub_block_put(struct scrub_block *sblock);
415 static void scrub_sector_get(struct scrub_sector *sector);
416 static void scrub_sector_put(struct scrub_sector *sector);
417 static void scrub_parity_get(struct scrub_parity *sparity);
418 static void scrub_parity_put(struct scrub_parity *sparity);
419 static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
420 			 u64 physical, struct btrfs_device *dev, u64 flags,
421 			 u64 gen, int mirror_num, u8 *csum,
422 			 u64 physical_for_dev_replace);
423 static void scrub_bio_end_io(struct bio *bio);
424 static void scrub_bio_end_io_worker(struct work_struct *work);
425 static void scrub_block_complete(struct scrub_block *sblock);
426 static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
427 				 u64 extent_logical, u32 extent_len,
428 				 u64 *extent_physical,
429 				 struct btrfs_device **extent_dev,
430 				 int *extent_mirror_num);
431 static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
432 				      struct scrub_sector *sector);
433 static void scrub_wr_submit(struct scrub_ctx *sctx);
434 static void scrub_wr_bio_end_io(struct bio *bio);
435 static void scrub_wr_bio_end_io_worker(struct work_struct *work);
436 static void scrub_put_ctx(struct scrub_ctx *sctx);
437 
438 static inline int scrub_is_page_on_raid56(struct scrub_sector *sector)
439 {
440 	return sector->recover &&
441 	       (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
442 }
443 
444 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
445 {
446 	refcount_inc(&sctx->refs);
447 	atomic_inc(&sctx->bios_in_flight);
448 }
449 
450 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
451 {
452 	atomic_dec(&sctx->bios_in_flight);
453 	wake_up(&sctx->list_wait);
454 	scrub_put_ctx(sctx);
455 }
456 
457 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
458 {
459 	while (atomic_read(&fs_info->scrub_pause_req)) {
460 		mutex_unlock(&fs_info->scrub_lock);
461 		wait_event(fs_info->scrub_pause_wait,
462 		   atomic_read(&fs_info->scrub_pause_req) == 0);
463 		mutex_lock(&fs_info->scrub_lock);
464 	}
465 }
466 
467 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
468 {
469 	atomic_inc(&fs_info->scrubs_paused);
470 	wake_up(&fs_info->scrub_pause_wait);
471 }
472 
473 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
474 {
475 	mutex_lock(&fs_info->scrub_lock);
476 	__scrub_blocked_if_needed(fs_info);
477 	atomic_dec(&fs_info->scrubs_paused);
478 	mutex_unlock(&fs_info->scrub_lock);
479 
480 	wake_up(&fs_info->scrub_pause_wait);
481 }
482 
483 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
484 {
485 	scrub_pause_on(fs_info);
486 	scrub_pause_off(fs_info);
487 }
488 
489 /*
490  * Insert new full stripe lock into full stripe locks tree
491  *
492  * Return pointer to existing or newly inserted full_stripe_lock structure if
493  * everything works well.
494  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
495  *
496  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
497  * function
498  */
499 static struct full_stripe_lock *insert_full_stripe_lock(
500 		struct btrfs_full_stripe_locks_tree *locks_root,
501 		u64 fstripe_logical)
502 {
503 	struct rb_node **p;
504 	struct rb_node *parent = NULL;
505 	struct full_stripe_lock *entry;
506 	struct full_stripe_lock *ret;
507 
508 	lockdep_assert_held(&locks_root->lock);
509 
510 	p = &locks_root->root.rb_node;
511 	while (*p) {
512 		parent = *p;
513 		entry = rb_entry(parent, struct full_stripe_lock, node);
514 		if (fstripe_logical < entry->logical) {
515 			p = &(*p)->rb_left;
516 		} else if (fstripe_logical > entry->logical) {
517 			p = &(*p)->rb_right;
518 		} else {
519 			entry->refs++;
520 			return entry;
521 		}
522 	}
523 
524 	/*
525 	 * Insert new lock.
526 	 */
527 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
528 	if (!ret)
529 		return ERR_PTR(-ENOMEM);
530 	ret->logical = fstripe_logical;
531 	ret->refs = 1;
532 	mutex_init(&ret->mutex);
533 
534 	rb_link_node(&ret->node, parent, p);
535 	rb_insert_color(&ret->node, &locks_root->root);
536 	return ret;
537 }
538 
539 /*
540  * Search for a full stripe lock of a block group
541  *
542  * Return pointer to existing full stripe lock if found
543  * Return NULL if not found
544  */
545 static struct full_stripe_lock *search_full_stripe_lock(
546 		struct btrfs_full_stripe_locks_tree *locks_root,
547 		u64 fstripe_logical)
548 {
549 	struct rb_node *node;
550 	struct full_stripe_lock *entry;
551 
552 	lockdep_assert_held(&locks_root->lock);
553 
554 	node = locks_root->root.rb_node;
555 	while (node) {
556 		entry = rb_entry(node, struct full_stripe_lock, node);
557 		if (fstripe_logical < entry->logical)
558 			node = node->rb_left;
559 		else if (fstripe_logical > entry->logical)
560 			node = node->rb_right;
561 		else
562 			return entry;
563 	}
564 	return NULL;
565 }
566 
567 /*
568  * Helper to get full stripe logical from a normal bytenr.
569  *
570  * Caller must ensure @cache is a RAID56 block group.
571  */
572 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
573 {
574 	u64 ret;
575 
576 	/*
577 	 * Due to chunk item size limit, full stripe length should not be
578 	 * larger than U32_MAX. Just a sanity check here.
579 	 */
580 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
581 
582 	/*
583 	 * round_down() can only handle power of 2, while RAID56 full
584 	 * stripe length can be 64KiB * n, so we need to manually round down.
585 	 */
586 	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
587 			cache->full_stripe_len + cache->start;
588 	return ret;
589 }
590 
591 /*
592  * Lock a full stripe to avoid concurrency of recovery and read
593  *
594  * It's only used for profiles with parities (RAID5/6), for other profiles it
595  * does nothing.
596  *
597  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
598  * So caller must call unlock_full_stripe() at the same context.
599  *
600  * Return <0 if encounters error.
601  */
602 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
603 			    bool *locked_ret)
604 {
605 	struct btrfs_block_group *bg_cache;
606 	struct btrfs_full_stripe_locks_tree *locks_root;
607 	struct full_stripe_lock *existing;
608 	u64 fstripe_start;
609 	int ret = 0;
610 
611 	*locked_ret = false;
612 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
613 	if (!bg_cache) {
614 		ASSERT(0);
615 		return -ENOENT;
616 	}
617 
618 	/* Profiles not based on parity don't need full stripe lock */
619 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
620 		goto out;
621 	locks_root = &bg_cache->full_stripe_locks_root;
622 
623 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
624 
625 	/* Now insert the full stripe lock */
626 	mutex_lock(&locks_root->lock);
627 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
628 	mutex_unlock(&locks_root->lock);
629 	if (IS_ERR(existing)) {
630 		ret = PTR_ERR(existing);
631 		goto out;
632 	}
633 	mutex_lock(&existing->mutex);
634 	*locked_ret = true;
635 out:
636 	btrfs_put_block_group(bg_cache);
637 	return ret;
638 }
639 
640 /*
641  * Unlock a full stripe.
642  *
643  * NOTE: Caller must ensure it's the same context calling corresponding
644  * lock_full_stripe().
645  *
646  * Return 0 if we unlock full stripe without problem.
647  * Return <0 for error
648  */
649 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
650 			      bool locked)
651 {
652 	struct btrfs_block_group *bg_cache;
653 	struct btrfs_full_stripe_locks_tree *locks_root;
654 	struct full_stripe_lock *fstripe_lock;
655 	u64 fstripe_start;
656 	bool freeit = false;
657 	int ret = 0;
658 
659 	/* If we didn't acquire full stripe lock, no need to continue */
660 	if (!locked)
661 		return 0;
662 
663 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
664 	if (!bg_cache) {
665 		ASSERT(0);
666 		return -ENOENT;
667 	}
668 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
669 		goto out;
670 
671 	locks_root = &bg_cache->full_stripe_locks_root;
672 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
673 
674 	mutex_lock(&locks_root->lock);
675 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
676 	/* Unpaired unlock_full_stripe() detected */
677 	if (!fstripe_lock) {
678 		WARN_ON(1);
679 		ret = -ENOENT;
680 		mutex_unlock(&locks_root->lock);
681 		goto out;
682 	}
683 
684 	if (fstripe_lock->refs == 0) {
685 		WARN_ON(1);
686 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
687 			fstripe_lock->logical);
688 	} else {
689 		fstripe_lock->refs--;
690 	}
691 
692 	if (fstripe_lock->refs == 0) {
693 		rb_erase(&fstripe_lock->node, &locks_root->root);
694 		freeit = true;
695 	}
696 	mutex_unlock(&locks_root->lock);
697 
698 	mutex_unlock(&fstripe_lock->mutex);
699 	if (freeit)
700 		kfree(fstripe_lock);
701 out:
702 	btrfs_put_block_group(bg_cache);
703 	return ret;
704 }
705 
706 static void scrub_free_csums(struct scrub_ctx *sctx)
707 {
708 	while (!list_empty(&sctx->csum_list)) {
709 		struct btrfs_ordered_sum *sum;
710 		sum = list_first_entry(&sctx->csum_list,
711 				       struct btrfs_ordered_sum, list);
712 		list_del(&sum->list);
713 		kfree(sum);
714 	}
715 }
716 
717 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
718 {
719 	int i;
720 
721 	if (!sctx)
722 		return;
723 
724 	/* this can happen when scrub is cancelled */
725 	if (sctx->curr != -1) {
726 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
727 
728 		for (i = 0; i < sbio->sector_count; i++)
729 			scrub_block_put(sbio->sectors[i]->sblock);
730 		bio_put(sbio->bio);
731 	}
732 
733 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
734 		struct scrub_bio *sbio = sctx->bios[i];
735 
736 		if (!sbio)
737 			break;
738 		kfree(sbio);
739 	}
740 
741 	kfree(sctx->wr_curr_bio);
742 	scrub_free_csums(sctx);
743 	kfree(sctx);
744 }
745 
746 static void scrub_put_ctx(struct scrub_ctx *sctx)
747 {
748 	if (refcount_dec_and_test(&sctx->refs))
749 		scrub_free_ctx(sctx);
750 }
751 
752 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
753 		struct btrfs_fs_info *fs_info, int is_dev_replace)
754 {
755 	struct scrub_ctx *sctx;
756 	int		i;
757 
758 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
759 	if (!sctx)
760 		goto nomem;
761 	refcount_set(&sctx->refs, 1);
762 	sctx->is_dev_replace = is_dev_replace;
763 	sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
764 	sctx->curr = -1;
765 	sctx->fs_info = fs_info;
766 	INIT_LIST_HEAD(&sctx->csum_list);
767 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
768 		struct scrub_bio *sbio;
769 
770 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
771 		if (!sbio)
772 			goto nomem;
773 		sctx->bios[i] = sbio;
774 
775 		sbio->index = i;
776 		sbio->sctx = sctx;
777 		sbio->sector_count = 0;
778 		INIT_WORK(&sbio->work, scrub_bio_end_io_worker);
779 
780 		if (i != SCRUB_BIOS_PER_SCTX - 1)
781 			sctx->bios[i]->next_free = i + 1;
782 		else
783 			sctx->bios[i]->next_free = -1;
784 	}
785 	sctx->first_free = 0;
786 	atomic_set(&sctx->bios_in_flight, 0);
787 	atomic_set(&sctx->workers_pending, 0);
788 	atomic_set(&sctx->cancel_req, 0);
789 
790 	spin_lock_init(&sctx->list_lock);
791 	spin_lock_init(&sctx->stat_lock);
792 	init_waitqueue_head(&sctx->list_wait);
793 	sctx->throttle_deadline = 0;
794 
795 	WARN_ON(sctx->wr_curr_bio != NULL);
796 	mutex_init(&sctx->wr_lock);
797 	sctx->wr_curr_bio = NULL;
798 	if (is_dev_replace) {
799 		WARN_ON(!fs_info->dev_replace.tgtdev);
800 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
801 		sctx->flush_all_writes = false;
802 	}
803 
804 	return sctx;
805 
806 nomem:
807 	scrub_free_ctx(sctx);
808 	return ERR_PTR(-ENOMEM);
809 }
810 
811 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
812 				     u64 root, void *warn_ctx)
813 {
814 	u32 nlink;
815 	int ret;
816 	int i;
817 	unsigned nofs_flag;
818 	struct extent_buffer *eb;
819 	struct btrfs_inode_item *inode_item;
820 	struct scrub_warning *swarn = warn_ctx;
821 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
822 	struct inode_fs_paths *ipath = NULL;
823 	struct btrfs_root *local_root;
824 	struct btrfs_key key;
825 
826 	local_root = btrfs_get_fs_root(fs_info, root, true);
827 	if (IS_ERR(local_root)) {
828 		ret = PTR_ERR(local_root);
829 		goto err;
830 	}
831 
832 	/*
833 	 * this makes the path point to (inum INODE_ITEM ioff)
834 	 */
835 	key.objectid = inum;
836 	key.type = BTRFS_INODE_ITEM_KEY;
837 	key.offset = 0;
838 
839 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
840 	if (ret) {
841 		btrfs_put_root(local_root);
842 		btrfs_release_path(swarn->path);
843 		goto err;
844 	}
845 
846 	eb = swarn->path->nodes[0];
847 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
848 					struct btrfs_inode_item);
849 	nlink = btrfs_inode_nlink(eb, inode_item);
850 	btrfs_release_path(swarn->path);
851 
852 	/*
853 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
854 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
855 	 * not seem to be strictly necessary.
856 	 */
857 	nofs_flag = memalloc_nofs_save();
858 	ipath = init_ipath(4096, local_root, swarn->path);
859 	memalloc_nofs_restore(nofs_flag);
860 	if (IS_ERR(ipath)) {
861 		btrfs_put_root(local_root);
862 		ret = PTR_ERR(ipath);
863 		ipath = NULL;
864 		goto err;
865 	}
866 	ret = paths_from_inode(inum, ipath);
867 
868 	if (ret < 0)
869 		goto err;
870 
871 	/*
872 	 * we deliberately ignore the bit ipath might have been too small to
873 	 * hold all of the paths here
874 	 */
875 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
876 		btrfs_warn_in_rcu(fs_info,
877 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
878 				  swarn->errstr, swarn->logical,
879 				  btrfs_dev_name(swarn->dev),
880 				  swarn->physical,
881 				  root, inum, offset,
882 				  fs_info->sectorsize, nlink,
883 				  (char *)(unsigned long)ipath->fspath->val[i]);
884 
885 	btrfs_put_root(local_root);
886 	free_ipath(ipath);
887 	return 0;
888 
889 err:
890 	btrfs_warn_in_rcu(fs_info,
891 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
892 			  swarn->errstr, swarn->logical,
893 			  btrfs_dev_name(swarn->dev),
894 			  swarn->physical,
895 			  root, inum, offset, ret);
896 
897 	free_ipath(ipath);
898 	return 0;
899 }
900 
901 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
902 {
903 	struct btrfs_device *dev;
904 	struct btrfs_fs_info *fs_info;
905 	struct btrfs_path *path;
906 	struct btrfs_key found_key;
907 	struct extent_buffer *eb;
908 	struct btrfs_extent_item *ei;
909 	struct scrub_warning swarn;
910 	unsigned long ptr = 0;
911 	u64 flags = 0;
912 	u64 ref_root;
913 	u32 item_size;
914 	u8 ref_level = 0;
915 	int ret;
916 
917 	WARN_ON(sblock->sector_count < 1);
918 	dev = sblock->dev;
919 	fs_info = sblock->sctx->fs_info;
920 
921 	/* Super block error, no need to search extent tree. */
922 	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
923 		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
924 			errstr, btrfs_dev_name(dev), sblock->physical);
925 		return;
926 	}
927 	path = btrfs_alloc_path();
928 	if (!path)
929 		return;
930 
931 	swarn.physical = sblock->physical;
932 	swarn.logical = sblock->logical;
933 	swarn.errstr = errstr;
934 	swarn.dev = NULL;
935 
936 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
937 				  &flags);
938 	if (ret < 0)
939 		goto out;
940 
941 	swarn.extent_item_size = found_key.offset;
942 
943 	eb = path->nodes[0];
944 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
945 	item_size = btrfs_item_size(eb, path->slots[0]);
946 
947 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
948 		do {
949 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
950 						      item_size, &ref_root,
951 						      &ref_level);
952 			btrfs_warn_in_rcu(fs_info,
953 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
954 				errstr, swarn.logical,
955 				btrfs_dev_name(dev),
956 				swarn.physical,
957 				ref_level ? "node" : "leaf",
958 				ret < 0 ? -1 : ref_level,
959 				ret < 0 ? -1 : ref_root);
960 		} while (ret != 1);
961 		btrfs_release_path(path);
962 	} else {
963 		struct btrfs_backref_walk_ctx ctx = { 0 };
964 
965 		btrfs_release_path(path);
966 
967 		ctx.bytenr = found_key.objectid;
968 		ctx.extent_item_pos = swarn.logical - found_key.objectid;
969 		ctx.fs_info = fs_info;
970 
971 		swarn.path = path;
972 		swarn.dev = dev;
973 
974 		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
975 	}
976 
977 out:
978 	btrfs_free_path(path);
979 }
980 
981 static inline void scrub_get_recover(struct scrub_recover *recover)
982 {
983 	refcount_inc(&recover->refs);
984 }
985 
986 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
987 				     struct scrub_recover *recover)
988 {
989 	if (refcount_dec_and_test(&recover->refs)) {
990 		btrfs_bio_counter_dec(fs_info);
991 		btrfs_put_bioc(recover->bioc);
992 		kfree(recover);
993 	}
994 }
995 
996 /*
997  * scrub_handle_errored_block gets called when either verification of the
998  * sectors failed or the bio failed to read, e.g. with EIO. In the latter
999  * case, this function handles all sectors in the bio, even though only one
1000  * may be bad.
1001  * The goal of this function is to repair the errored block by using the
1002  * contents of one of the mirrors.
1003  */
1004 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
1005 {
1006 	struct scrub_ctx *sctx = sblock_to_check->sctx;
1007 	struct btrfs_device *dev = sblock_to_check->dev;
1008 	struct btrfs_fs_info *fs_info;
1009 	u64 logical;
1010 	unsigned int failed_mirror_index;
1011 	unsigned int is_metadata;
1012 	unsigned int have_csum;
1013 	/* One scrub_block for each mirror */
1014 	struct scrub_block *sblocks_for_recheck[BTRFS_MAX_MIRRORS] = { 0 };
1015 	struct scrub_block *sblock_bad;
1016 	int ret;
1017 	int mirror_index;
1018 	int sector_num;
1019 	int success;
1020 	bool full_stripe_locked;
1021 	unsigned int nofs_flag;
1022 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1023 				      DEFAULT_RATELIMIT_BURST);
1024 
1025 	BUG_ON(sblock_to_check->sector_count < 1);
1026 	fs_info = sctx->fs_info;
1027 	if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1028 		/*
1029 		 * If we find an error in a super block, we just report it.
1030 		 * They will get written with the next transaction commit
1031 		 * anyway
1032 		 */
1033 		scrub_print_warning("super block error", sblock_to_check);
1034 		spin_lock(&sctx->stat_lock);
1035 		++sctx->stat.super_errors;
1036 		spin_unlock(&sctx->stat_lock);
1037 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
1038 		return 0;
1039 	}
1040 	logical = sblock_to_check->logical;
1041 	ASSERT(sblock_to_check->mirror_num);
1042 	failed_mirror_index = sblock_to_check->mirror_num - 1;
1043 	is_metadata = !(sblock_to_check->sectors[0]->flags &
1044 			BTRFS_EXTENT_FLAG_DATA);
1045 	have_csum = sblock_to_check->sectors[0]->have_csum;
1046 
1047 	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
1048 		return 0;
1049 
1050 	/*
1051 	 * We must use GFP_NOFS because the scrub task might be waiting for a
1052 	 * worker task executing this function and in turn a transaction commit
1053 	 * might be waiting the scrub task to pause (which needs to wait for all
1054 	 * the worker tasks to complete before pausing).
1055 	 * We do allocations in the workers through insert_full_stripe_lock()
1056 	 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of
1057 	 * this function.
1058 	 */
1059 	nofs_flag = memalloc_nofs_save();
1060 	/*
1061 	 * For RAID5/6, race can happen for a different device scrub thread.
1062 	 * For data corruption, Parity and Data threads will both try
1063 	 * to recovery the data.
1064 	 * Race can lead to doubly added csum error, or even unrecoverable
1065 	 * error.
1066 	 */
1067 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1068 	if (ret < 0) {
1069 		memalloc_nofs_restore(nofs_flag);
1070 		spin_lock(&sctx->stat_lock);
1071 		if (ret == -ENOMEM)
1072 			sctx->stat.malloc_errors++;
1073 		sctx->stat.read_errors++;
1074 		sctx->stat.uncorrectable_errors++;
1075 		spin_unlock(&sctx->stat_lock);
1076 		return ret;
1077 	}
1078 
1079 	/*
1080 	 * read all mirrors one after the other. This includes to
1081 	 * re-read the extent or metadata block that failed (that was
1082 	 * the cause that this fixup code is called) another time,
1083 	 * sector by sector this time in order to know which sectors
1084 	 * caused I/O errors and which ones are good (for all mirrors).
1085 	 * It is the goal to handle the situation when more than one
1086 	 * mirror contains I/O errors, but the errors do not
1087 	 * overlap, i.e. the data can be repaired by selecting the
1088 	 * sectors from those mirrors without I/O error on the
1089 	 * particular sectors. One example (with blocks >= 2 * sectorsize)
1090 	 * would be that mirror #1 has an I/O error on the first sector,
1091 	 * the second sector is good, and mirror #2 has an I/O error on
1092 	 * the second sector, but the first sector is good.
1093 	 * Then the first sector of the first mirror can be repaired by
1094 	 * taking the first sector of the second mirror, and the
1095 	 * second sector of the second mirror can be repaired by
1096 	 * copying the contents of the 2nd sector of the 1st mirror.
1097 	 * One more note: if the sectors of one mirror contain I/O
1098 	 * errors, the checksum cannot be verified. In order to get
1099 	 * the best data for repairing, the first attempt is to find
1100 	 * a mirror without I/O errors and with a validated checksum.
1101 	 * Only if this is not possible, the sectors are picked from
1102 	 * mirrors with I/O errors without considering the checksum.
1103 	 * If the latter is the case, at the end, the checksum of the
1104 	 * repaired area is verified in order to correctly maintain
1105 	 * the statistics.
1106 	 */
1107 	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1108 		/*
1109 		 * Note: the two members refs and outstanding_sectors are not
1110 		 * used in the blocks that are used for the recheck procedure.
1111 		 *
1112 		 * But alloc_scrub_block() will initialize sblock::ref anyway,
1113 		 * so we can use scrub_block_put() to clean them up.
1114 		 *
1115 		 * And here we don't setup the physical/dev for the sblock yet,
1116 		 * they will be correctly initialized in scrub_setup_recheck_block().
1117 		 */
1118 		sblocks_for_recheck[mirror_index] = alloc_scrub_block(sctx, NULL,
1119 							logical, 0, 0, mirror_index);
1120 		if (!sblocks_for_recheck[mirror_index]) {
1121 			spin_lock(&sctx->stat_lock);
1122 			sctx->stat.malloc_errors++;
1123 			sctx->stat.read_errors++;
1124 			sctx->stat.uncorrectable_errors++;
1125 			spin_unlock(&sctx->stat_lock);
1126 			btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1127 			goto out;
1128 		}
1129 	}
1130 
1131 	/* Setup the context, map the logical blocks and alloc the sectors */
1132 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1133 	if (ret) {
1134 		spin_lock(&sctx->stat_lock);
1135 		sctx->stat.read_errors++;
1136 		sctx->stat.uncorrectable_errors++;
1137 		spin_unlock(&sctx->stat_lock);
1138 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1139 		goto out;
1140 	}
1141 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1142 	sblock_bad = sblocks_for_recheck[failed_mirror_index];
1143 
1144 	/* build and submit the bios for the failed mirror, check checksums */
1145 	scrub_recheck_block(fs_info, sblock_bad, 1);
1146 
1147 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1148 	    sblock_bad->no_io_error_seen) {
1149 		/*
1150 		 * The error disappeared after reading sector by sector, or
1151 		 * the area was part of a huge bio and other parts of the
1152 		 * bio caused I/O errors, or the block layer merged several
1153 		 * read requests into one and the error is caused by a
1154 		 * different bio (usually one of the two latter cases is
1155 		 * the cause)
1156 		 */
1157 		spin_lock(&sctx->stat_lock);
1158 		sctx->stat.unverified_errors++;
1159 		sblock_to_check->data_corrected = 1;
1160 		spin_unlock(&sctx->stat_lock);
1161 
1162 		if (sctx->is_dev_replace)
1163 			scrub_write_block_to_dev_replace(sblock_bad);
1164 		goto out;
1165 	}
1166 
1167 	if (!sblock_bad->no_io_error_seen) {
1168 		spin_lock(&sctx->stat_lock);
1169 		sctx->stat.read_errors++;
1170 		spin_unlock(&sctx->stat_lock);
1171 		if (__ratelimit(&rs))
1172 			scrub_print_warning("i/o error", sblock_to_check);
1173 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1174 	} else if (sblock_bad->checksum_error) {
1175 		spin_lock(&sctx->stat_lock);
1176 		sctx->stat.csum_errors++;
1177 		spin_unlock(&sctx->stat_lock);
1178 		if (__ratelimit(&rs))
1179 			scrub_print_warning("checksum error", sblock_to_check);
1180 		btrfs_dev_stat_inc_and_print(dev,
1181 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1182 	} else if (sblock_bad->header_error) {
1183 		spin_lock(&sctx->stat_lock);
1184 		sctx->stat.verify_errors++;
1185 		spin_unlock(&sctx->stat_lock);
1186 		if (__ratelimit(&rs))
1187 			scrub_print_warning("checksum/header error",
1188 					    sblock_to_check);
1189 		if (sblock_bad->generation_error)
1190 			btrfs_dev_stat_inc_and_print(dev,
1191 				BTRFS_DEV_STAT_GENERATION_ERRS);
1192 		else
1193 			btrfs_dev_stat_inc_and_print(dev,
1194 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1195 	}
1196 
1197 	if (sctx->readonly) {
1198 		ASSERT(!sctx->is_dev_replace);
1199 		goto out;
1200 	}
1201 
1202 	/*
1203 	 * now build and submit the bios for the other mirrors, check
1204 	 * checksums.
1205 	 * First try to pick the mirror which is completely without I/O
1206 	 * errors and also does not have a checksum error.
1207 	 * If one is found, and if a checksum is present, the full block
1208 	 * that is known to contain an error is rewritten. Afterwards
1209 	 * the block is known to be corrected.
1210 	 * If a mirror is found which is completely correct, and no
1211 	 * checksum is present, only those sectors are rewritten that had
1212 	 * an I/O error in the block to be repaired, since it cannot be
1213 	 * determined, which copy of the other sectors is better (and it
1214 	 * could happen otherwise that a correct sector would be
1215 	 * overwritten by a bad one).
1216 	 */
1217 	for (mirror_index = 0; ;mirror_index++) {
1218 		struct scrub_block *sblock_other;
1219 
1220 		if (mirror_index == failed_mirror_index)
1221 			continue;
1222 
1223 		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1224 		if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1225 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1226 				break;
1227 			if (!sblocks_for_recheck[mirror_index]->sector_count)
1228 				break;
1229 
1230 			sblock_other = sblocks_for_recheck[mirror_index];
1231 		} else {
1232 			struct scrub_recover *r = sblock_bad->sectors[0]->recover;
1233 			int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1234 
1235 			if (mirror_index >= max_allowed)
1236 				break;
1237 			if (!sblocks_for_recheck[1]->sector_count)
1238 				break;
1239 
1240 			ASSERT(failed_mirror_index == 0);
1241 			sblock_other = sblocks_for_recheck[1];
1242 			sblock_other->mirror_num = 1 + mirror_index;
1243 		}
1244 
1245 		/* build and submit the bios, check checksums */
1246 		scrub_recheck_block(fs_info, sblock_other, 0);
1247 
1248 		if (!sblock_other->header_error &&
1249 		    !sblock_other->checksum_error &&
1250 		    sblock_other->no_io_error_seen) {
1251 			if (sctx->is_dev_replace) {
1252 				scrub_write_block_to_dev_replace(sblock_other);
1253 				goto corrected_error;
1254 			} else {
1255 				ret = scrub_repair_block_from_good_copy(
1256 						sblock_bad, sblock_other);
1257 				if (!ret)
1258 					goto corrected_error;
1259 			}
1260 		}
1261 	}
1262 
1263 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1264 		goto did_not_correct_error;
1265 
1266 	/*
1267 	 * In case of I/O errors in the area that is supposed to be
1268 	 * repaired, continue by picking good copies of those sectors.
1269 	 * Select the good sectors from mirrors to rewrite bad sectors from
1270 	 * the area to fix. Afterwards verify the checksum of the block
1271 	 * that is supposed to be repaired. This verification step is
1272 	 * only done for the purpose of statistic counting and for the
1273 	 * final scrub report, whether errors remain.
1274 	 * A perfect algorithm could make use of the checksum and try
1275 	 * all possible combinations of sectors from the different mirrors
1276 	 * until the checksum verification succeeds. For example, when
1277 	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1278 	 * of mirror #2 is readable but the final checksum test fails,
1279 	 * then the 2nd sector of mirror #3 could be tried, whether now
1280 	 * the final checksum succeeds. But this would be a rare
1281 	 * exception and is therefore not implemented. At least it is
1282 	 * avoided that the good copy is overwritten.
1283 	 * A more useful improvement would be to pick the sectors
1284 	 * without I/O error based on sector sizes (512 bytes on legacy
1285 	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1286 	 * mirror could be repaired by taking 512 byte of a different
1287 	 * mirror, even if other 512 byte sectors in the same sectorsize
1288 	 * area are unreadable.
1289 	 */
1290 	success = 1;
1291 	for (sector_num = 0; sector_num < sblock_bad->sector_count;
1292 	     sector_num++) {
1293 		struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1294 		struct scrub_block *sblock_other = NULL;
1295 
1296 		/* Skip no-io-error sectors in scrub */
1297 		if (!sector_bad->io_error && !sctx->is_dev_replace)
1298 			continue;
1299 
1300 		if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1301 			/*
1302 			 * In case of dev replace, if raid56 rebuild process
1303 			 * didn't work out correct data, then copy the content
1304 			 * in sblock_bad to make sure target device is identical
1305 			 * to source device, instead of writing garbage data in
1306 			 * sblock_for_recheck array to target device.
1307 			 */
1308 			sblock_other = NULL;
1309 		} else if (sector_bad->io_error) {
1310 			/* Try to find no-io-error sector in mirrors */
1311 			for (mirror_index = 0;
1312 			     mirror_index < BTRFS_MAX_MIRRORS &&
1313 			     sblocks_for_recheck[mirror_index]->sector_count > 0;
1314 			     mirror_index++) {
1315 				if (!sblocks_for_recheck[mirror_index]->
1316 				    sectors[sector_num]->io_error) {
1317 					sblock_other = sblocks_for_recheck[mirror_index];
1318 					break;
1319 				}
1320 			}
1321 			if (!sblock_other)
1322 				success = 0;
1323 		}
1324 
1325 		if (sctx->is_dev_replace) {
1326 			/*
1327 			 * Did not find a mirror to fetch the sector from.
1328 			 * scrub_write_sector_to_dev_replace() handles this
1329 			 * case (sector->io_error), by filling the block with
1330 			 * zeros before submitting the write request
1331 			 */
1332 			if (!sblock_other)
1333 				sblock_other = sblock_bad;
1334 
1335 			if (scrub_write_sector_to_dev_replace(sblock_other,
1336 							      sector_num) != 0) {
1337 				atomic64_inc(
1338 					&fs_info->dev_replace.num_write_errors);
1339 				success = 0;
1340 			}
1341 		} else if (sblock_other) {
1342 			ret = scrub_repair_sector_from_good_copy(sblock_bad,
1343 								 sblock_other,
1344 								 sector_num, 0);
1345 			if (0 == ret)
1346 				sector_bad->io_error = 0;
1347 			else
1348 				success = 0;
1349 		}
1350 	}
1351 
1352 	if (success && !sctx->is_dev_replace) {
1353 		if (is_metadata || have_csum) {
1354 			/*
1355 			 * need to verify the checksum now that all
1356 			 * sectors on disk are repaired (the write
1357 			 * request for data to be repaired is on its way).
1358 			 * Just be lazy and use scrub_recheck_block()
1359 			 * which re-reads the data before the checksum
1360 			 * is verified, but most likely the data comes out
1361 			 * of the page cache.
1362 			 */
1363 			scrub_recheck_block(fs_info, sblock_bad, 1);
1364 			if (!sblock_bad->header_error &&
1365 			    !sblock_bad->checksum_error &&
1366 			    sblock_bad->no_io_error_seen)
1367 				goto corrected_error;
1368 			else
1369 				goto did_not_correct_error;
1370 		} else {
1371 corrected_error:
1372 			spin_lock(&sctx->stat_lock);
1373 			sctx->stat.corrected_errors++;
1374 			sblock_to_check->data_corrected = 1;
1375 			spin_unlock(&sctx->stat_lock);
1376 			btrfs_err_rl_in_rcu(fs_info,
1377 				"fixed up error at logical %llu on dev %s",
1378 				logical, btrfs_dev_name(dev));
1379 		}
1380 	} else {
1381 did_not_correct_error:
1382 		spin_lock(&sctx->stat_lock);
1383 		sctx->stat.uncorrectable_errors++;
1384 		spin_unlock(&sctx->stat_lock);
1385 		btrfs_err_rl_in_rcu(fs_info,
1386 			"unable to fixup (regular) error at logical %llu on dev %s",
1387 			logical, btrfs_dev_name(dev));
1388 	}
1389 
1390 out:
1391 	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1392 		struct scrub_block *sblock = sblocks_for_recheck[mirror_index];
1393 		struct scrub_recover *recover;
1394 		int sector_index;
1395 
1396 		/* Not allocated, continue checking the next mirror */
1397 		if (!sblock)
1398 			continue;
1399 
1400 		for (sector_index = 0; sector_index < sblock->sector_count;
1401 		     sector_index++) {
1402 			/*
1403 			 * Here we just cleanup the recover, each sector will be
1404 			 * properly cleaned up by later scrub_block_put()
1405 			 */
1406 			recover = sblock->sectors[sector_index]->recover;
1407 			if (recover) {
1408 				scrub_put_recover(fs_info, recover);
1409 				sblock->sectors[sector_index]->recover = NULL;
1410 			}
1411 		}
1412 		scrub_block_put(sblock);
1413 	}
1414 
1415 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1416 	memalloc_nofs_restore(nofs_flag);
1417 	if (ret < 0)
1418 		return ret;
1419 	return 0;
1420 }
1421 
1422 static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1423 {
1424 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
1425 		return 2;
1426 	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
1427 		return 3;
1428 	else
1429 		return (int)bioc->num_stripes;
1430 }
1431 
1432 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1433 						 u64 *raid_map,
1434 						 int nstripes, int mirror,
1435 						 int *stripe_index,
1436 						 u64 *stripe_offset)
1437 {
1438 	int i;
1439 
1440 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1441 		/* RAID5/6 */
1442 		for (i = 0; i < nstripes; i++) {
1443 			if (raid_map[i] == RAID6_Q_STRIPE ||
1444 			    raid_map[i] == RAID5_P_STRIPE)
1445 				continue;
1446 
1447 			if (logical >= raid_map[i] &&
1448 			    logical < raid_map[i] + BTRFS_STRIPE_LEN)
1449 				break;
1450 		}
1451 
1452 		*stripe_index = i;
1453 		*stripe_offset = logical - raid_map[i];
1454 	} else {
1455 		/* The other RAID type */
1456 		*stripe_index = mirror;
1457 		*stripe_offset = 0;
1458 	}
1459 }
1460 
1461 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1462 				     struct scrub_block *sblocks_for_recheck[])
1463 {
1464 	struct scrub_ctx *sctx = original_sblock->sctx;
1465 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1466 	u64 logical = original_sblock->logical;
1467 	u64 length = original_sblock->sector_count << fs_info->sectorsize_bits;
1468 	u64 generation = original_sblock->sectors[0]->generation;
1469 	u64 flags = original_sblock->sectors[0]->flags;
1470 	u64 have_csum = original_sblock->sectors[0]->have_csum;
1471 	struct scrub_recover *recover;
1472 	struct btrfs_io_context *bioc;
1473 	u64 sublen;
1474 	u64 mapped_length;
1475 	u64 stripe_offset;
1476 	int stripe_index;
1477 	int sector_index = 0;
1478 	int mirror_index;
1479 	int nmirrors;
1480 	int ret;
1481 
1482 	while (length > 0) {
1483 		sublen = min_t(u64, length, fs_info->sectorsize);
1484 		mapped_length = sublen;
1485 		bioc = NULL;
1486 
1487 		/*
1488 		 * With a length of sectorsize, each returned stripe represents
1489 		 * one mirror
1490 		 */
1491 		btrfs_bio_counter_inc_blocked(fs_info);
1492 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1493 				       logical, &mapped_length, &bioc);
1494 		if (ret || !bioc || mapped_length < sublen) {
1495 			btrfs_put_bioc(bioc);
1496 			btrfs_bio_counter_dec(fs_info);
1497 			return -EIO;
1498 		}
1499 
1500 		recover = kzalloc(sizeof(struct scrub_recover), GFP_KERNEL);
1501 		if (!recover) {
1502 			btrfs_put_bioc(bioc);
1503 			btrfs_bio_counter_dec(fs_info);
1504 			return -ENOMEM;
1505 		}
1506 
1507 		refcount_set(&recover->refs, 1);
1508 		recover->bioc = bioc;
1509 		recover->map_length = mapped_length;
1510 
1511 		ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK);
1512 
1513 		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
1514 
1515 		for (mirror_index = 0; mirror_index < nmirrors;
1516 		     mirror_index++) {
1517 			struct scrub_block *sblock;
1518 			struct scrub_sector *sector;
1519 
1520 			sblock = sblocks_for_recheck[mirror_index];
1521 			sblock->sctx = sctx;
1522 
1523 			sector = alloc_scrub_sector(sblock, logical);
1524 			if (!sector) {
1525 				spin_lock(&sctx->stat_lock);
1526 				sctx->stat.malloc_errors++;
1527 				spin_unlock(&sctx->stat_lock);
1528 				scrub_put_recover(fs_info, recover);
1529 				return -ENOMEM;
1530 			}
1531 			sector->flags = flags;
1532 			sector->generation = generation;
1533 			sector->have_csum = have_csum;
1534 			if (have_csum)
1535 				memcpy(sector->csum,
1536 				       original_sblock->sectors[0]->csum,
1537 				       sctx->fs_info->csum_size);
1538 
1539 			scrub_stripe_index_and_offset(logical,
1540 						      bioc->map_type,
1541 						      bioc->raid_map,
1542 						      bioc->num_stripes -
1543 						      bioc->num_tgtdevs,
1544 						      mirror_index,
1545 						      &stripe_index,
1546 						      &stripe_offset);
1547 			/*
1548 			 * We're at the first sector, also populate @sblock
1549 			 * physical and dev.
1550 			 */
1551 			if (sector_index == 0) {
1552 				sblock->physical =
1553 					bioc->stripes[stripe_index].physical +
1554 					stripe_offset;
1555 				sblock->dev = bioc->stripes[stripe_index].dev;
1556 				sblock->physical_for_dev_replace =
1557 					original_sblock->physical_for_dev_replace;
1558 			}
1559 
1560 			BUG_ON(sector_index >= original_sblock->sector_count);
1561 			scrub_get_recover(recover);
1562 			sector->recover = recover;
1563 		}
1564 		scrub_put_recover(fs_info, recover);
1565 		length -= sublen;
1566 		logical += sublen;
1567 		sector_index++;
1568 	}
1569 
1570 	return 0;
1571 }
1572 
1573 static void scrub_bio_wait_endio(struct bio *bio)
1574 {
1575 	complete(bio->bi_private);
1576 }
1577 
1578 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1579 					struct bio *bio,
1580 					struct scrub_sector *sector)
1581 {
1582 	DECLARE_COMPLETION_ONSTACK(done);
1583 
1584 	bio->bi_iter.bi_sector = (sector->offset + sector->sblock->logical) >>
1585 				 SECTOR_SHIFT;
1586 	bio->bi_private = &done;
1587 	bio->bi_end_io = scrub_bio_wait_endio;
1588 	raid56_parity_recover(bio, sector->recover->bioc, sector->sblock->mirror_num);
1589 
1590 	wait_for_completion_io(&done);
1591 	return blk_status_to_errno(bio->bi_status);
1592 }
1593 
1594 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1595 					  struct scrub_block *sblock)
1596 {
1597 	struct scrub_sector *first_sector = sblock->sectors[0];
1598 	struct bio *bio;
1599 	int i;
1600 
1601 	/* All sectors in sblock belong to the same stripe on the same device. */
1602 	ASSERT(sblock->dev);
1603 	if (!sblock->dev->bdev)
1604 		goto out;
1605 
1606 	bio = bio_alloc(sblock->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
1607 
1608 	for (i = 0; i < sblock->sector_count; i++) {
1609 		struct scrub_sector *sector = sblock->sectors[i];
1610 
1611 		bio_add_scrub_sector(bio, sector, fs_info->sectorsize);
1612 	}
1613 
1614 	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) {
1615 		bio_put(bio);
1616 		goto out;
1617 	}
1618 
1619 	bio_put(bio);
1620 
1621 	scrub_recheck_block_checksum(sblock);
1622 
1623 	return;
1624 out:
1625 	for (i = 0; i < sblock->sector_count; i++)
1626 		sblock->sectors[i]->io_error = 1;
1627 
1628 	sblock->no_io_error_seen = 0;
1629 }
1630 
1631 /*
1632  * This function will check the on disk data for checksum errors, header errors
1633  * and read I/O errors. If any I/O errors happen, the exact sectors which are
1634  * errored are marked as being bad. The goal is to enable scrub to take those
1635  * sectors that are not errored from all the mirrors so that the sectors that
1636  * are errored in the just handled mirror can be repaired.
1637  */
1638 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1639 				struct scrub_block *sblock,
1640 				int retry_failed_mirror)
1641 {
1642 	int i;
1643 
1644 	sblock->no_io_error_seen = 1;
1645 
1646 	/* short cut for raid56 */
1647 	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0]))
1648 		return scrub_recheck_block_on_raid56(fs_info, sblock);
1649 
1650 	for (i = 0; i < sblock->sector_count; i++) {
1651 		struct scrub_sector *sector = sblock->sectors[i];
1652 		struct bio bio;
1653 		struct bio_vec bvec;
1654 
1655 		if (sblock->dev->bdev == NULL) {
1656 			sector->io_error = 1;
1657 			sblock->no_io_error_seen = 0;
1658 			continue;
1659 		}
1660 
1661 		bio_init(&bio, sblock->dev->bdev, &bvec, 1, REQ_OP_READ);
1662 		bio_add_scrub_sector(&bio, sector, fs_info->sectorsize);
1663 		bio.bi_iter.bi_sector = (sblock->physical + sector->offset) >>
1664 					SECTOR_SHIFT;
1665 
1666 		btrfsic_check_bio(&bio);
1667 		if (submit_bio_wait(&bio)) {
1668 			sector->io_error = 1;
1669 			sblock->no_io_error_seen = 0;
1670 		}
1671 
1672 		bio_uninit(&bio);
1673 	}
1674 
1675 	if (sblock->no_io_error_seen)
1676 		scrub_recheck_block_checksum(sblock);
1677 }
1678 
1679 static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector)
1680 {
1681 	struct btrfs_fs_devices *fs_devices = sector->sblock->dev->fs_devices;
1682 	int ret;
1683 
1684 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1685 	return !ret;
1686 }
1687 
1688 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1689 {
1690 	sblock->header_error = 0;
1691 	sblock->checksum_error = 0;
1692 	sblock->generation_error = 0;
1693 
1694 	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1695 		scrub_checksum_data(sblock);
1696 	else
1697 		scrub_checksum_tree_block(sblock);
1698 }
1699 
1700 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1701 					     struct scrub_block *sblock_good)
1702 {
1703 	int i;
1704 	int ret = 0;
1705 
1706 	for (i = 0; i < sblock_bad->sector_count; i++) {
1707 		int ret_sub;
1708 
1709 		ret_sub = scrub_repair_sector_from_good_copy(sblock_bad,
1710 							     sblock_good, i, 1);
1711 		if (ret_sub)
1712 			ret = ret_sub;
1713 	}
1714 
1715 	return ret;
1716 }
1717 
1718 static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
1719 					      struct scrub_block *sblock_good,
1720 					      int sector_num, int force_write)
1721 {
1722 	struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1723 	struct scrub_sector *sector_good = sblock_good->sectors[sector_num];
1724 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1725 	const u32 sectorsize = fs_info->sectorsize;
1726 
1727 	if (force_write || sblock_bad->header_error ||
1728 	    sblock_bad->checksum_error || sector_bad->io_error) {
1729 		struct bio bio;
1730 		struct bio_vec bvec;
1731 		int ret;
1732 
1733 		if (!sblock_bad->dev->bdev) {
1734 			btrfs_warn_rl(fs_info,
1735 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1736 			return -EIO;
1737 		}
1738 
1739 		bio_init(&bio, sblock_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE);
1740 		bio.bi_iter.bi_sector = (sblock_bad->physical +
1741 					 sector_bad->offset) >> SECTOR_SHIFT;
1742 		ret = bio_add_scrub_sector(&bio, sector_good, sectorsize);
1743 
1744 		btrfsic_check_bio(&bio);
1745 		ret = submit_bio_wait(&bio);
1746 		bio_uninit(&bio);
1747 
1748 		if (ret) {
1749 			btrfs_dev_stat_inc_and_print(sblock_bad->dev,
1750 				BTRFS_DEV_STAT_WRITE_ERRS);
1751 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1752 			return -EIO;
1753 		}
1754 	}
1755 
1756 	return 0;
1757 }
1758 
1759 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1760 {
1761 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1762 	int i;
1763 
1764 	/*
1765 	 * This block is used for the check of the parity on the source device,
1766 	 * so the data needn't be written into the destination device.
1767 	 */
1768 	if (sblock->sparity)
1769 		return;
1770 
1771 	for (i = 0; i < sblock->sector_count; i++) {
1772 		int ret;
1773 
1774 		ret = scrub_write_sector_to_dev_replace(sblock, i);
1775 		if (ret)
1776 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1777 	}
1778 }
1779 
1780 static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num)
1781 {
1782 	const u32 sectorsize = sblock->sctx->fs_info->sectorsize;
1783 	struct scrub_sector *sector = sblock->sectors[sector_num];
1784 
1785 	if (sector->io_error)
1786 		memset(scrub_sector_get_kaddr(sector), 0, sectorsize);
1787 
1788 	return scrub_add_sector_to_wr_bio(sblock->sctx, sector);
1789 }
1790 
1791 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
1792 {
1793 	int ret = 0;
1794 	u64 length;
1795 
1796 	if (!btrfs_is_zoned(sctx->fs_info))
1797 		return 0;
1798 
1799 	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
1800 		return 0;
1801 
1802 	if (sctx->write_pointer < physical) {
1803 		length = physical - sctx->write_pointer;
1804 
1805 		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
1806 						sctx->write_pointer, length);
1807 		if (!ret)
1808 			sctx->write_pointer = physical;
1809 	}
1810 	return ret;
1811 }
1812 
1813 static void scrub_block_get(struct scrub_block *sblock)
1814 {
1815 	refcount_inc(&sblock->refs);
1816 }
1817 
1818 static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
1819 				      struct scrub_sector *sector)
1820 {
1821 	struct scrub_block *sblock = sector->sblock;
1822 	struct scrub_bio *sbio;
1823 	int ret;
1824 	const u32 sectorsize = sctx->fs_info->sectorsize;
1825 
1826 	mutex_lock(&sctx->wr_lock);
1827 again:
1828 	if (!sctx->wr_curr_bio) {
1829 		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1830 					      GFP_KERNEL);
1831 		if (!sctx->wr_curr_bio) {
1832 			mutex_unlock(&sctx->wr_lock);
1833 			return -ENOMEM;
1834 		}
1835 		sctx->wr_curr_bio->sctx = sctx;
1836 		sctx->wr_curr_bio->sector_count = 0;
1837 	}
1838 	sbio = sctx->wr_curr_bio;
1839 	if (sbio->sector_count == 0) {
1840 		ret = fill_writer_pointer_gap(sctx, sector->offset +
1841 					      sblock->physical_for_dev_replace);
1842 		if (ret) {
1843 			mutex_unlock(&sctx->wr_lock);
1844 			return ret;
1845 		}
1846 
1847 		sbio->physical = sblock->physical_for_dev_replace + sector->offset;
1848 		sbio->logical = sblock->logical + sector->offset;
1849 		sbio->dev = sctx->wr_tgtdev;
1850 		if (!sbio->bio) {
1851 			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
1852 					      REQ_OP_WRITE, GFP_NOFS);
1853 		}
1854 		sbio->bio->bi_private = sbio;
1855 		sbio->bio->bi_end_io = scrub_wr_bio_end_io;
1856 		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
1857 		sbio->status = 0;
1858 	} else if (sbio->physical + sbio->sector_count * sectorsize !=
1859 		   sblock->physical_for_dev_replace + sector->offset ||
1860 		   sbio->logical + sbio->sector_count * sectorsize !=
1861 		   sblock->logical + sector->offset) {
1862 		scrub_wr_submit(sctx);
1863 		goto again;
1864 	}
1865 
1866 	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
1867 	if (ret != sectorsize) {
1868 		if (sbio->sector_count < 1) {
1869 			bio_put(sbio->bio);
1870 			sbio->bio = NULL;
1871 			mutex_unlock(&sctx->wr_lock);
1872 			return -EIO;
1873 		}
1874 		scrub_wr_submit(sctx);
1875 		goto again;
1876 	}
1877 
1878 	sbio->sectors[sbio->sector_count] = sector;
1879 	scrub_sector_get(sector);
1880 	/*
1881 	 * Since ssector no longer holds a page, but uses sblock::pages, we
1882 	 * have to ensure the sblock had not been freed before our write bio
1883 	 * finished.
1884 	 */
1885 	scrub_block_get(sector->sblock);
1886 
1887 	sbio->sector_count++;
1888 	if (sbio->sector_count == sctx->sectors_per_bio)
1889 		scrub_wr_submit(sctx);
1890 	mutex_unlock(&sctx->wr_lock);
1891 
1892 	return 0;
1893 }
1894 
1895 static void scrub_wr_submit(struct scrub_ctx *sctx)
1896 {
1897 	struct scrub_bio *sbio;
1898 
1899 	if (!sctx->wr_curr_bio)
1900 		return;
1901 
1902 	sbio = sctx->wr_curr_bio;
1903 	sctx->wr_curr_bio = NULL;
1904 	scrub_pending_bio_inc(sctx);
1905 	/* process all writes in a single worker thread. Then the block layer
1906 	 * orders the requests before sending them to the driver which
1907 	 * doubled the write performance on spinning disks when measured
1908 	 * with Linux 3.5 */
1909 	btrfsic_check_bio(sbio->bio);
1910 	submit_bio(sbio->bio);
1911 
1912 	if (btrfs_is_zoned(sctx->fs_info))
1913 		sctx->write_pointer = sbio->physical + sbio->sector_count *
1914 			sctx->fs_info->sectorsize;
1915 }
1916 
1917 static void scrub_wr_bio_end_io(struct bio *bio)
1918 {
1919 	struct scrub_bio *sbio = bio->bi_private;
1920 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1921 
1922 	sbio->status = bio->bi_status;
1923 	sbio->bio = bio;
1924 
1925 	INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker);
1926 	queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1927 }
1928 
1929 static void scrub_wr_bio_end_io_worker(struct work_struct *work)
1930 {
1931 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1932 	struct scrub_ctx *sctx = sbio->sctx;
1933 	int i;
1934 
1935 	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
1936 	if (sbio->status) {
1937 		struct btrfs_dev_replace *dev_replace =
1938 			&sbio->sctx->fs_info->dev_replace;
1939 
1940 		for (i = 0; i < sbio->sector_count; i++) {
1941 			struct scrub_sector *sector = sbio->sectors[i];
1942 
1943 			sector->io_error = 1;
1944 			atomic64_inc(&dev_replace->num_write_errors);
1945 		}
1946 	}
1947 
1948 	/*
1949 	 * In scrub_add_sector_to_wr_bio() we grab extra ref for sblock, now in
1950 	 * endio we should put the sblock.
1951 	 */
1952 	for (i = 0; i < sbio->sector_count; i++) {
1953 		scrub_block_put(sbio->sectors[i]->sblock);
1954 		scrub_sector_put(sbio->sectors[i]);
1955 	}
1956 
1957 	bio_put(sbio->bio);
1958 	kfree(sbio);
1959 	scrub_pending_bio_dec(sctx);
1960 }
1961 
1962 static int scrub_checksum(struct scrub_block *sblock)
1963 {
1964 	u64 flags;
1965 	int ret;
1966 
1967 	/*
1968 	 * No need to initialize these stats currently,
1969 	 * because this function only use return value
1970 	 * instead of these stats value.
1971 	 *
1972 	 * Todo:
1973 	 * always use stats
1974 	 */
1975 	sblock->header_error = 0;
1976 	sblock->generation_error = 0;
1977 	sblock->checksum_error = 0;
1978 
1979 	WARN_ON(sblock->sector_count < 1);
1980 	flags = sblock->sectors[0]->flags;
1981 	ret = 0;
1982 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1983 		ret = scrub_checksum_data(sblock);
1984 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1985 		ret = scrub_checksum_tree_block(sblock);
1986 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1987 		ret = scrub_checksum_super(sblock);
1988 	else
1989 		WARN_ON(1);
1990 	if (ret)
1991 		scrub_handle_errored_block(sblock);
1992 
1993 	return ret;
1994 }
1995 
1996 static int scrub_checksum_data(struct scrub_block *sblock)
1997 {
1998 	struct scrub_ctx *sctx = sblock->sctx;
1999 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2000 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2001 	u8 csum[BTRFS_CSUM_SIZE];
2002 	struct scrub_sector *sector;
2003 	char *kaddr;
2004 
2005 	BUG_ON(sblock->sector_count < 1);
2006 	sector = sblock->sectors[0];
2007 	if (!sector->have_csum)
2008 		return 0;
2009 
2010 	kaddr = scrub_sector_get_kaddr(sector);
2011 
2012 	shash->tfm = fs_info->csum_shash;
2013 	crypto_shash_init(shash);
2014 
2015 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
2016 
2017 	if (memcmp(csum, sector->csum, fs_info->csum_size))
2018 		sblock->checksum_error = 1;
2019 	return sblock->checksum_error;
2020 }
2021 
2022 static int scrub_checksum_tree_block(struct scrub_block *sblock)
2023 {
2024 	struct scrub_ctx *sctx = sblock->sctx;
2025 	struct btrfs_header *h;
2026 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2027 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2028 	u8 calculated_csum[BTRFS_CSUM_SIZE];
2029 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2030 	/*
2031 	 * This is done in sectorsize steps even for metadata as there's a
2032 	 * constraint for nodesize to be aligned to sectorsize. This will need
2033 	 * to change so we don't misuse data and metadata units like that.
2034 	 */
2035 	const u32 sectorsize = sctx->fs_info->sectorsize;
2036 	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
2037 	int i;
2038 	struct scrub_sector *sector;
2039 	char *kaddr;
2040 
2041 	BUG_ON(sblock->sector_count < 1);
2042 
2043 	/* Each member in sectors is just one sector */
2044 	ASSERT(sblock->sector_count == num_sectors);
2045 
2046 	sector = sblock->sectors[0];
2047 	kaddr = scrub_sector_get_kaddr(sector);
2048 	h = (struct btrfs_header *)kaddr;
2049 	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
2050 
2051 	/*
2052 	 * we don't use the getter functions here, as we
2053 	 * a) don't have an extent buffer and
2054 	 * b) the page is already kmapped
2055 	 */
2056 	if (sblock->logical != btrfs_stack_header_bytenr(h))
2057 		sblock->header_error = 1;
2058 
2059 	if (sector->generation != btrfs_stack_header_generation(h)) {
2060 		sblock->header_error = 1;
2061 		sblock->generation_error = 1;
2062 	}
2063 
2064 	if (!scrub_check_fsid(h->fsid, sector))
2065 		sblock->header_error = 1;
2066 
2067 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
2068 		   BTRFS_UUID_SIZE))
2069 		sblock->header_error = 1;
2070 
2071 	shash->tfm = fs_info->csum_shash;
2072 	crypto_shash_init(shash);
2073 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
2074 			    sectorsize - BTRFS_CSUM_SIZE);
2075 
2076 	for (i = 1; i < num_sectors; i++) {
2077 		kaddr = scrub_sector_get_kaddr(sblock->sectors[i]);
2078 		crypto_shash_update(shash, kaddr, sectorsize);
2079 	}
2080 
2081 	crypto_shash_final(shash, calculated_csum);
2082 	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
2083 		sblock->checksum_error = 1;
2084 
2085 	return sblock->header_error || sblock->checksum_error;
2086 }
2087 
2088 static int scrub_checksum_super(struct scrub_block *sblock)
2089 {
2090 	struct btrfs_super_block *s;
2091 	struct scrub_ctx *sctx = sblock->sctx;
2092 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2093 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2094 	u8 calculated_csum[BTRFS_CSUM_SIZE];
2095 	struct scrub_sector *sector;
2096 	char *kaddr;
2097 	int fail_gen = 0;
2098 	int fail_cor = 0;
2099 
2100 	BUG_ON(sblock->sector_count < 1);
2101 	sector = sblock->sectors[0];
2102 	kaddr = scrub_sector_get_kaddr(sector);
2103 	s = (struct btrfs_super_block *)kaddr;
2104 
2105 	if (sblock->logical != btrfs_super_bytenr(s))
2106 		++fail_cor;
2107 
2108 	if (sector->generation != btrfs_super_generation(s))
2109 		++fail_gen;
2110 
2111 	if (!scrub_check_fsid(s->fsid, sector))
2112 		++fail_cor;
2113 
2114 	shash->tfm = fs_info->csum_shash;
2115 	crypto_shash_init(shash);
2116 	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
2117 			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
2118 
2119 	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
2120 		++fail_cor;
2121 
2122 	return fail_cor + fail_gen;
2123 }
2124 
2125 static void scrub_block_put(struct scrub_block *sblock)
2126 {
2127 	if (refcount_dec_and_test(&sblock->refs)) {
2128 		int i;
2129 
2130 		if (sblock->sparity)
2131 			scrub_parity_put(sblock->sparity);
2132 
2133 		for (i = 0; i < sblock->sector_count; i++)
2134 			scrub_sector_put(sblock->sectors[i]);
2135 		for (i = 0; i < DIV_ROUND_UP(sblock->len, PAGE_SIZE); i++) {
2136 			if (sblock->pages[i]) {
2137 				detach_scrub_page_private(sblock->pages[i]);
2138 				__free_page(sblock->pages[i]);
2139 			}
2140 		}
2141 		kfree(sblock);
2142 	}
2143 }
2144 
2145 static void scrub_sector_get(struct scrub_sector *sector)
2146 {
2147 	atomic_inc(&sector->refs);
2148 }
2149 
2150 static void scrub_sector_put(struct scrub_sector *sector)
2151 {
2152 	if (atomic_dec_and_test(&sector->refs))
2153 		kfree(sector);
2154 }
2155 
2156 /*
2157  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
2158  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
2159  */
2160 static void scrub_throttle(struct scrub_ctx *sctx)
2161 {
2162 	const int time_slice = 1000;
2163 	struct scrub_bio *sbio;
2164 	struct btrfs_device *device;
2165 	s64 delta;
2166 	ktime_t now;
2167 	u32 div;
2168 	u64 bwlimit;
2169 
2170 	sbio = sctx->bios[sctx->curr];
2171 	device = sbio->dev;
2172 	bwlimit = READ_ONCE(device->scrub_speed_max);
2173 	if (bwlimit == 0)
2174 		return;
2175 
2176 	/*
2177 	 * Slice is divided into intervals when the IO is submitted, adjust by
2178 	 * bwlimit and maximum of 64 intervals.
2179 	 */
2180 	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
2181 	div = min_t(u32, 64, div);
2182 
2183 	/* Start new epoch, set deadline */
2184 	now = ktime_get();
2185 	if (sctx->throttle_deadline == 0) {
2186 		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
2187 		sctx->throttle_sent = 0;
2188 	}
2189 
2190 	/* Still in the time to send? */
2191 	if (ktime_before(now, sctx->throttle_deadline)) {
2192 		/* If current bio is within the limit, send it */
2193 		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
2194 		if (sctx->throttle_sent <= div_u64(bwlimit, div))
2195 			return;
2196 
2197 		/* We're over the limit, sleep until the rest of the slice */
2198 		delta = ktime_ms_delta(sctx->throttle_deadline, now);
2199 	} else {
2200 		/* New request after deadline, start new epoch */
2201 		delta = 0;
2202 	}
2203 
2204 	if (delta) {
2205 		long timeout;
2206 
2207 		timeout = div_u64(delta * HZ, 1000);
2208 		schedule_timeout_interruptible(timeout);
2209 	}
2210 
2211 	/* Next call will start the deadline period */
2212 	sctx->throttle_deadline = 0;
2213 }
2214 
2215 static void scrub_submit(struct scrub_ctx *sctx)
2216 {
2217 	struct scrub_bio *sbio;
2218 
2219 	if (sctx->curr == -1)
2220 		return;
2221 
2222 	scrub_throttle(sctx);
2223 
2224 	sbio = sctx->bios[sctx->curr];
2225 	sctx->curr = -1;
2226 	scrub_pending_bio_inc(sctx);
2227 	btrfsic_check_bio(sbio->bio);
2228 	submit_bio(sbio->bio);
2229 }
2230 
2231 static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx,
2232 				      struct scrub_sector *sector)
2233 {
2234 	struct scrub_block *sblock = sector->sblock;
2235 	struct scrub_bio *sbio;
2236 	const u32 sectorsize = sctx->fs_info->sectorsize;
2237 	int ret;
2238 
2239 again:
2240 	/*
2241 	 * grab a fresh bio or wait for one to become available
2242 	 */
2243 	while (sctx->curr == -1) {
2244 		spin_lock(&sctx->list_lock);
2245 		sctx->curr = sctx->first_free;
2246 		if (sctx->curr != -1) {
2247 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2248 			sctx->bios[sctx->curr]->next_free = -1;
2249 			sctx->bios[sctx->curr]->sector_count = 0;
2250 			spin_unlock(&sctx->list_lock);
2251 		} else {
2252 			spin_unlock(&sctx->list_lock);
2253 			wait_event(sctx->list_wait, sctx->first_free != -1);
2254 		}
2255 	}
2256 	sbio = sctx->bios[sctx->curr];
2257 	if (sbio->sector_count == 0) {
2258 		sbio->physical = sblock->physical + sector->offset;
2259 		sbio->logical = sblock->logical + sector->offset;
2260 		sbio->dev = sblock->dev;
2261 		if (!sbio->bio) {
2262 			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
2263 					      REQ_OP_READ, GFP_NOFS);
2264 		}
2265 		sbio->bio->bi_private = sbio;
2266 		sbio->bio->bi_end_io = scrub_bio_end_io;
2267 		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
2268 		sbio->status = 0;
2269 	} else if (sbio->physical + sbio->sector_count * sectorsize !=
2270 		   sblock->physical + sector->offset ||
2271 		   sbio->logical + sbio->sector_count * sectorsize !=
2272 		   sblock->logical + sector->offset ||
2273 		   sbio->dev != sblock->dev) {
2274 		scrub_submit(sctx);
2275 		goto again;
2276 	}
2277 
2278 	sbio->sectors[sbio->sector_count] = sector;
2279 	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
2280 	if (ret != sectorsize) {
2281 		if (sbio->sector_count < 1) {
2282 			bio_put(sbio->bio);
2283 			sbio->bio = NULL;
2284 			return -EIO;
2285 		}
2286 		scrub_submit(sctx);
2287 		goto again;
2288 	}
2289 
2290 	scrub_block_get(sblock); /* one for the page added to the bio */
2291 	atomic_inc(&sblock->outstanding_sectors);
2292 	sbio->sector_count++;
2293 	if (sbio->sector_count == sctx->sectors_per_bio)
2294 		scrub_submit(sctx);
2295 
2296 	return 0;
2297 }
2298 
2299 static void scrub_missing_raid56_end_io(struct bio *bio)
2300 {
2301 	struct scrub_block *sblock = bio->bi_private;
2302 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2303 
2304 	btrfs_bio_counter_dec(fs_info);
2305 	if (bio->bi_status)
2306 		sblock->no_io_error_seen = 0;
2307 
2308 	bio_put(bio);
2309 
2310 	queue_work(fs_info->scrub_workers, &sblock->work);
2311 }
2312 
2313 static void scrub_missing_raid56_worker(struct work_struct *work)
2314 {
2315 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2316 	struct scrub_ctx *sctx = sblock->sctx;
2317 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2318 	u64 logical;
2319 	struct btrfs_device *dev;
2320 
2321 	logical = sblock->logical;
2322 	dev = sblock->dev;
2323 
2324 	if (sblock->no_io_error_seen)
2325 		scrub_recheck_block_checksum(sblock);
2326 
2327 	if (!sblock->no_io_error_seen) {
2328 		spin_lock(&sctx->stat_lock);
2329 		sctx->stat.read_errors++;
2330 		spin_unlock(&sctx->stat_lock);
2331 		btrfs_err_rl_in_rcu(fs_info,
2332 			"IO error rebuilding logical %llu for dev %s",
2333 			logical, btrfs_dev_name(dev));
2334 	} else if (sblock->header_error || sblock->checksum_error) {
2335 		spin_lock(&sctx->stat_lock);
2336 		sctx->stat.uncorrectable_errors++;
2337 		spin_unlock(&sctx->stat_lock);
2338 		btrfs_err_rl_in_rcu(fs_info,
2339 			"failed to rebuild valid logical %llu for dev %s",
2340 			logical, btrfs_dev_name(dev));
2341 	} else {
2342 		scrub_write_block_to_dev_replace(sblock);
2343 	}
2344 
2345 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2346 		mutex_lock(&sctx->wr_lock);
2347 		scrub_wr_submit(sctx);
2348 		mutex_unlock(&sctx->wr_lock);
2349 	}
2350 
2351 	scrub_block_put(sblock);
2352 	scrub_pending_bio_dec(sctx);
2353 }
2354 
2355 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2356 {
2357 	struct scrub_ctx *sctx = sblock->sctx;
2358 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2359 	u64 length = sblock->sector_count << fs_info->sectorsize_bits;
2360 	u64 logical = sblock->logical;
2361 	struct btrfs_io_context *bioc = NULL;
2362 	struct bio *bio;
2363 	struct btrfs_raid_bio *rbio;
2364 	int ret;
2365 	int i;
2366 
2367 	btrfs_bio_counter_inc_blocked(fs_info);
2368 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2369 			       &length, &bioc);
2370 	if (ret || !bioc || !bioc->raid_map)
2371 		goto bioc_out;
2372 
2373 	if (WARN_ON(!sctx->is_dev_replace ||
2374 		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2375 		/*
2376 		 * We shouldn't be scrubbing a missing device. Even for dev
2377 		 * replace, we should only get here for RAID 5/6. We either
2378 		 * managed to mount something with no mirrors remaining or
2379 		 * there's a bug in scrub_find_good_copy()/btrfs_map_block().
2380 		 */
2381 		goto bioc_out;
2382 	}
2383 
2384 	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2385 	bio->bi_iter.bi_sector = logical >> 9;
2386 	bio->bi_private = sblock;
2387 	bio->bi_end_io = scrub_missing_raid56_end_io;
2388 
2389 	rbio = raid56_alloc_missing_rbio(bio, bioc);
2390 	if (!rbio)
2391 		goto rbio_out;
2392 
2393 	for (i = 0; i < sblock->sector_count; i++) {
2394 		struct scrub_sector *sector = sblock->sectors[i];
2395 
2396 		raid56_add_scrub_pages(rbio, scrub_sector_get_page(sector),
2397 				       scrub_sector_get_page_offset(sector),
2398 				       sector->offset + sector->sblock->logical);
2399 	}
2400 
2401 	INIT_WORK(&sblock->work, scrub_missing_raid56_worker);
2402 	scrub_block_get(sblock);
2403 	scrub_pending_bio_inc(sctx);
2404 	raid56_submit_missing_rbio(rbio);
2405 	btrfs_put_bioc(bioc);
2406 	return;
2407 
2408 rbio_out:
2409 	bio_put(bio);
2410 bioc_out:
2411 	btrfs_bio_counter_dec(fs_info);
2412 	btrfs_put_bioc(bioc);
2413 	spin_lock(&sctx->stat_lock);
2414 	sctx->stat.malloc_errors++;
2415 	spin_unlock(&sctx->stat_lock);
2416 }
2417 
2418 static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
2419 		       u64 physical, struct btrfs_device *dev, u64 flags,
2420 		       u64 gen, int mirror_num, u8 *csum,
2421 		       u64 physical_for_dev_replace)
2422 {
2423 	struct scrub_block *sblock;
2424 	const u32 sectorsize = sctx->fs_info->sectorsize;
2425 	int index;
2426 
2427 	sblock = alloc_scrub_block(sctx, dev, logical, physical,
2428 				   physical_for_dev_replace, mirror_num);
2429 	if (!sblock) {
2430 		spin_lock(&sctx->stat_lock);
2431 		sctx->stat.malloc_errors++;
2432 		spin_unlock(&sctx->stat_lock);
2433 		return -ENOMEM;
2434 	}
2435 
2436 	for (index = 0; len > 0; index++) {
2437 		struct scrub_sector *sector;
2438 		/*
2439 		 * Here we will allocate one page for one sector to scrub.
2440 		 * This is fine if PAGE_SIZE == sectorsize, but will cost
2441 		 * more memory for PAGE_SIZE > sectorsize case.
2442 		 */
2443 		u32 l = min(sectorsize, len);
2444 
2445 		sector = alloc_scrub_sector(sblock, logical);
2446 		if (!sector) {
2447 			spin_lock(&sctx->stat_lock);
2448 			sctx->stat.malloc_errors++;
2449 			spin_unlock(&sctx->stat_lock);
2450 			scrub_block_put(sblock);
2451 			return -ENOMEM;
2452 		}
2453 		sector->flags = flags;
2454 		sector->generation = gen;
2455 		if (csum) {
2456 			sector->have_csum = 1;
2457 			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2458 		} else {
2459 			sector->have_csum = 0;
2460 		}
2461 		len -= l;
2462 		logical += l;
2463 		physical += l;
2464 		physical_for_dev_replace += l;
2465 	}
2466 
2467 	WARN_ON(sblock->sector_count == 0);
2468 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2469 		/*
2470 		 * This case should only be hit for RAID 5/6 device replace. See
2471 		 * the comment in scrub_missing_raid56_pages() for details.
2472 		 */
2473 		scrub_missing_raid56_pages(sblock);
2474 	} else {
2475 		for (index = 0; index < sblock->sector_count; index++) {
2476 			struct scrub_sector *sector = sblock->sectors[index];
2477 			int ret;
2478 
2479 			ret = scrub_add_sector_to_rd_bio(sctx, sector);
2480 			if (ret) {
2481 				scrub_block_put(sblock);
2482 				return ret;
2483 			}
2484 		}
2485 
2486 		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2487 			scrub_submit(sctx);
2488 	}
2489 
2490 	/* last one frees, either here or in bio completion for last page */
2491 	scrub_block_put(sblock);
2492 	return 0;
2493 }
2494 
2495 static void scrub_bio_end_io(struct bio *bio)
2496 {
2497 	struct scrub_bio *sbio = bio->bi_private;
2498 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2499 
2500 	sbio->status = bio->bi_status;
2501 	sbio->bio = bio;
2502 
2503 	queue_work(fs_info->scrub_workers, &sbio->work);
2504 }
2505 
2506 static void scrub_bio_end_io_worker(struct work_struct *work)
2507 {
2508 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2509 	struct scrub_ctx *sctx = sbio->sctx;
2510 	int i;
2511 
2512 	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
2513 	if (sbio->status) {
2514 		for (i = 0; i < sbio->sector_count; i++) {
2515 			struct scrub_sector *sector = sbio->sectors[i];
2516 
2517 			sector->io_error = 1;
2518 			sector->sblock->no_io_error_seen = 0;
2519 		}
2520 	}
2521 
2522 	/* Now complete the scrub_block items that have all pages completed */
2523 	for (i = 0; i < sbio->sector_count; i++) {
2524 		struct scrub_sector *sector = sbio->sectors[i];
2525 		struct scrub_block *sblock = sector->sblock;
2526 
2527 		if (atomic_dec_and_test(&sblock->outstanding_sectors))
2528 			scrub_block_complete(sblock);
2529 		scrub_block_put(sblock);
2530 	}
2531 
2532 	bio_put(sbio->bio);
2533 	sbio->bio = NULL;
2534 	spin_lock(&sctx->list_lock);
2535 	sbio->next_free = sctx->first_free;
2536 	sctx->first_free = sbio->index;
2537 	spin_unlock(&sctx->list_lock);
2538 
2539 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2540 		mutex_lock(&sctx->wr_lock);
2541 		scrub_wr_submit(sctx);
2542 		mutex_unlock(&sctx->wr_lock);
2543 	}
2544 
2545 	scrub_pending_bio_dec(sctx);
2546 }
2547 
2548 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2549 				       unsigned long *bitmap,
2550 				       u64 start, u32 len)
2551 {
2552 	u64 offset;
2553 	u32 nsectors;
2554 	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2555 
2556 	if (len >= sparity->stripe_len) {
2557 		bitmap_set(bitmap, 0, sparity->nsectors);
2558 		return;
2559 	}
2560 
2561 	start -= sparity->logic_start;
2562 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2563 	offset = offset >> sectorsize_bits;
2564 	nsectors = len >> sectorsize_bits;
2565 
2566 	if (offset + nsectors <= sparity->nsectors) {
2567 		bitmap_set(bitmap, offset, nsectors);
2568 		return;
2569 	}
2570 
2571 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2572 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2573 }
2574 
2575 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2576 						   u64 start, u32 len)
2577 {
2578 	__scrub_mark_bitmap(sparity, &sparity->ebitmap, start, len);
2579 }
2580 
2581 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2582 						  u64 start, u32 len)
2583 {
2584 	__scrub_mark_bitmap(sparity, &sparity->dbitmap, start, len);
2585 }
2586 
2587 static void scrub_block_complete(struct scrub_block *sblock)
2588 {
2589 	int corrupted = 0;
2590 
2591 	if (!sblock->no_io_error_seen) {
2592 		corrupted = 1;
2593 		scrub_handle_errored_block(sblock);
2594 	} else {
2595 		/*
2596 		 * if has checksum error, write via repair mechanism in
2597 		 * dev replace case, otherwise write here in dev replace
2598 		 * case.
2599 		 */
2600 		corrupted = scrub_checksum(sblock);
2601 		if (!corrupted && sblock->sctx->is_dev_replace)
2602 			scrub_write_block_to_dev_replace(sblock);
2603 	}
2604 
2605 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2606 		u64 start = sblock->logical;
2607 		u64 end = sblock->logical +
2608 			  sblock->sectors[sblock->sector_count - 1]->offset +
2609 			  sblock->sctx->fs_info->sectorsize;
2610 
2611 		ASSERT(end - start <= U32_MAX);
2612 		scrub_parity_mark_sectors_error(sblock->sparity,
2613 						start, end - start);
2614 	}
2615 }
2616 
2617 static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
2618 {
2619 	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
2620 	list_del(&sum->list);
2621 	kfree(sum);
2622 }
2623 
2624 /*
2625  * Find the desired csum for range [logical, logical + sectorsize), and store
2626  * the csum into @csum.
2627  *
2628  * The search source is sctx->csum_list, which is a pre-populated list
2629  * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2630  * that is before @logical.
2631  *
2632  * Return 0 if there is no csum for the range.
2633  * Return 1 if there is csum for the range and copied to @csum.
2634  */
2635 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2636 {
2637 	bool found = false;
2638 
2639 	while (!list_empty(&sctx->csum_list)) {
2640 		struct btrfs_ordered_sum *sum = NULL;
2641 		unsigned long index;
2642 		unsigned long num_sectors;
2643 
2644 		sum = list_first_entry(&sctx->csum_list,
2645 				       struct btrfs_ordered_sum, list);
2646 		/* The current csum range is beyond our range, no csum found */
2647 		if (sum->bytenr > logical)
2648 			break;
2649 
2650 		/*
2651 		 * The current sum is before our bytenr, since scrub is always
2652 		 * done in bytenr order, the csum will never be used anymore,
2653 		 * clean it up so that later calls won't bother with the range,
2654 		 * and continue search the next range.
2655 		 */
2656 		if (sum->bytenr + sum->len <= logical) {
2657 			drop_csum_range(sctx, sum);
2658 			continue;
2659 		}
2660 
2661 		/* Now the csum range covers our bytenr, copy the csum */
2662 		found = true;
2663 		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
2664 		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2665 
2666 		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
2667 		       sctx->fs_info->csum_size);
2668 
2669 		/* Cleanup the range if we're at the end of the csum range */
2670 		if (index == num_sectors - 1)
2671 			drop_csum_range(sctx, sum);
2672 		break;
2673 	}
2674 	if (!found)
2675 		return 0;
2676 	return 1;
2677 }
2678 
2679 /* scrub extent tries to collect up to 64 kB for each bio */
2680 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2681 			u64 logical, u32 len,
2682 			u64 physical, struct btrfs_device *dev, u64 flags,
2683 			u64 gen, int mirror_num)
2684 {
2685 	struct btrfs_device *src_dev = dev;
2686 	u64 src_physical = physical;
2687 	int src_mirror = mirror_num;
2688 	int ret;
2689 	u8 csum[BTRFS_CSUM_SIZE];
2690 	u32 blocksize;
2691 
2692 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2693 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2694 			blocksize = map->stripe_len;
2695 		else
2696 			blocksize = sctx->fs_info->sectorsize;
2697 		spin_lock(&sctx->stat_lock);
2698 		sctx->stat.data_extents_scrubbed++;
2699 		sctx->stat.data_bytes_scrubbed += len;
2700 		spin_unlock(&sctx->stat_lock);
2701 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2702 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2703 			blocksize = map->stripe_len;
2704 		else
2705 			blocksize = sctx->fs_info->nodesize;
2706 		spin_lock(&sctx->stat_lock);
2707 		sctx->stat.tree_extents_scrubbed++;
2708 		sctx->stat.tree_bytes_scrubbed += len;
2709 		spin_unlock(&sctx->stat_lock);
2710 	} else {
2711 		blocksize = sctx->fs_info->sectorsize;
2712 		WARN_ON(1);
2713 	}
2714 
2715 	/*
2716 	 * For dev-replace case, we can have @dev being a missing device.
2717 	 * Regular scrub will avoid its execution on missing device at all,
2718 	 * as that would trigger tons of read error.
2719 	 *
2720 	 * Reading from missing device will cause read error counts to
2721 	 * increase unnecessarily.
2722 	 * So here we change the read source to a good mirror.
2723 	 */
2724 	if (sctx->is_dev_replace && !dev->bdev)
2725 		scrub_find_good_copy(sctx->fs_info, logical, len, &src_physical,
2726 				     &src_dev, &src_mirror);
2727 	while (len) {
2728 		u32 l = min(len, blocksize);
2729 		int have_csum = 0;
2730 
2731 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2732 			/* push csums to sbio */
2733 			have_csum = scrub_find_csum(sctx, logical, csum);
2734 			if (have_csum == 0)
2735 				++sctx->stat.no_csum;
2736 		}
2737 		ret = scrub_sectors(sctx, logical, l, src_physical, src_dev,
2738 				    flags, gen, src_mirror,
2739 				    have_csum ? csum : NULL, physical);
2740 		if (ret)
2741 			return ret;
2742 		len -= l;
2743 		logical += l;
2744 		physical += l;
2745 		src_physical += l;
2746 	}
2747 	return 0;
2748 }
2749 
2750 static int scrub_sectors_for_parity(struct scrub_parity *sparity,
2751 				  u64 logical, u32 len,
2752 				  u64 physical, struct btrfs_device *dev,
2753 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2754 {
2755 	struct scrub_ctx *sctx = sparity->sctx;
2756 	struct scrub_block *sblock;
2757 	const u32 sectorsize = sctx->fs_info->sectorsize;
2758 	int index;
2759 
2760 	ASSERT(IS_ALIGNED(len, sectorsize));
2761 
2762 	sblock = alloc_scrub_block(sctx, dev, logical, physical, physical, mirror_num);
2763 	if (!sblock) {
2764 		spin_lock(&sctx->stat_lock);
2765 		sctx->stat.malloc_errors++;
2766 		spin_unlock(&sctx->stat_lock);
2767 		return -ENOMEM;
2768 	}
2769 
2770 	sblock->sparity = sparity;
2771 	scrub_parity_get(sparity);
2772 
2773 	for (index = 0; len > 0; index++) {
2774 		struct scrub_sector *sector;
2775 
2776 		sector = alloc_scrub_sector(sblock, logical);
2777 		if (!sector) {
2778 			spin_lock(&sctx->stat_lock);
2779 			sctx->stat.malloc_errors++;
2780 			spin_unlock(&sctx->stat_lock);
2781 			scrub_block_put(sblock);
2782 			return -ENOMEM;
2783 		}
2784 		sblock->sectors[index] = sector;
2785 		/* For scrub parity */
2786 		scrub_sector_get(sector);
2787 		list_add_tail(&sector->list, &sparity->sectors_list);
2788 		sector->flags = flags;
2789 		sector->generation = gen;
2790 		if (csum) {
2791 			sector->have_csum = 1;
2792 			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2793 		} else {
2794 			sector->have_csum = 0;
2795 		}
2796 
2797 		/* Iterate over the stripe range in sectorsize steps */
2798 		len -= sectorsize;
2799 		logical += sectorsize;
2800 		physical += sectorsize;
2801 	}
2802 
2803 	WARN_ON(sblock->sector_count == 0);
2804 	for (index = 0; index < sblock->sector_count; index++) {
2805 		struct scrub_sector *sector = sblock->sectors[index];
2806 		int ret;
2807 
2808 		ret = scrub_add_sector_to_rd_bio(sctx, sector);
2809 		if (ret) {
2810 			scrub_block_put(sblock);
2811 			return ret;
2812 		}
2813 	}
2814 
2815 	/* Last one frees, either here or in bio completion for last sector */
2816 	scrub_block_put(sblock);
2817 	return 0;
2818 }
2819 
2820 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2821 				   u64 logical, u32 len,
2822 				   u64 physical, struct btrfs_device *dev,
2823 				   u64 flags, u64 gen, int mirror_num)
2824 {
2825 	struct scrub_ctx *sctx = sparity->sctx;
2826 	int ret;
2827 	u8 csum[BTRFS_CSUM_SIZE];
2828 	u32 blocksize;
2829 
2830 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2831 		scrub_parity_mark_sectors_error(sparity, logical, len);
2832 		return 0;
2833 	}
2834 
2835 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2836 		blocksize = sparity->stripe_len;
2837 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2838 		blocksize = sparity->stripe_len;
2839 	} else {
2840 		blocksize = sctx->fs_info->sectorsize;
2841 		WARN_ON(1);
2842 	}
2843 
2844 	while (len) {
2845 		u32 l = min(len, blocksize);
2846 		int have_csum = 0;
2847 
2848 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2849 			/* push csums to sbio */
2850 			have_csum = scrub_find_csum(sctx, logical, csum);
2851 			if (have_csum == 0)
2852 				goto skip;
2853 		}
2854 		ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev,
2855 					     flags, gen, mirror_num,
2856 					     have_csum ? csum : NULL);
2857 		if (ret)
2858 			return ret;
2859 skip:
2860 		len -= l;
2861 		logical += l;
2862 		physical += l;
2863 	}
2864 	return 0;
2865 }
2866 
2867 /*
2868  * Given a physical address, this will calculate it's
2869  * logical offset. if this is a parity stripe, it will return
2870  * the most left data stripe's logical offset.
2871  *
2872  * return 0 if it is a data stripe, 1 means parity stripe.
2873  */
2874 static int get_raid56_logic_offset(u64 physical, int num,
2875 				   struct map_lookup *map, u64 *offset,
2876 				   u64 *stripe_start)
2877 {
2878 	int i;
2879 	int j = 0;
2880 	u64 stripe_nr;
2881 	u64 last_offset;
2882 	u32 stripe_index;
2883 	u32 rot;
2884 	const int data_stripes = nr_data_stripes(map);
2885 
2886 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2887 	if (stripe_start)
2888 		*stripe_start = last_offset;
2889 
2890 	*offset = last_offset;
2891 	for (i = 0; i < data_stripes; i++) {
2892 		*offset = last_offset + i * map->stripe_len;
2893 
2894 		stripe_nr = div64_u64(*offset, map->stripe_len);
2895 		stripe_nr = div_u64(stripe_nr, data_stripes);
2896 
2897 		/* Work out the disk rotation on this stripe-set */
2898 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2899 		/* calculate which stripe this data locates */
2900 		rot += i;
2901 		stripe_index = rot % map->num_stripes;
2902 		if (stripe_index == num)
2903 			return 0;
2904 		if (stripe_index < num)
2905 			j++;
2906 	}
2907 	*offset = last_offset + j * map->stripe_len;
2908 	return 1;
2909 }
2910 
2911 static void scrub_free_parity(struct scrub_parity *sparity)
2912 {
2913 	struct scrub_ctx *sctx = sparity->sctx;
2914 	struct scrub_sector *curr, *next;
2915 	int nbits;
2916 
2917 	nbits = bitmap_weight(&sparity->ebitmap, sparity->nsectors);
2918 	if (nbits) {
2919 		spin_lock(&sctx->stat_lock);
2920 		sctx->stat.read_errors += nbits;
2921 		sctx->stat.uncorrectable_errors += nbits;
2922 		spin_unlock(&sctx->stat_lock);
2923 	}
2924 
2925 	list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) {
2926 		list_del_init(&curr->list);
2927 		scrub_sector_put(curr);
2928 	}
2929 
2930 	kfree(sparity);
2931 }
2932 
2933 static void scrub_parity_bio_endio_worker(struct work_struct *work)
2934 {
2935 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2936 						    work);
2937 	struct scrub_ctx *sctx = sparity->sctx;
2938 
2939 	btrfs_bio_counter_dec(sctx->fs_info);
2940 	scrub_free_parity(sparity);
2941 	scrub_pending_bio_dec(sctx);
2942 }
2943 
2944 static void scrub_parity_bio_endio(struct bio *bio)
2945 {
2946 	struct scrub_parity *sparity = bio->bi_private;
2947 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2948 
2949 	if (bio->bi_status)
2950 		bitmap_or(&sparity->ebitmap, &sparity->ebitmap,
2951 			  &sparity->dbitmap, sparity->nsectors);
2952 
2953 	bio_put(bio);
2954 
2955 	INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker);
2956 	queue_work(fs_info->scrub_parity_workers, &sparity->work);
2957 }
2958 
2959 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2960 {
2961 	struct scrub_ctx *sctx = sparity->sctx;
2962 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2963 	struct bio *bio;
2964 	struct btrfs_raid_bio *rbio;
2965 	struct btrfs_io_context *bioc = NULL;
2966 	u64 length;
2967 	int ret;
2968 
2969 	if (!bitmap_andnot(&sparity->dbitmap, &sparity->dbitmap,
2970 			   &sparity->ebitmap, sparity->nsectors))
2971 		goto out;
2972 
2973 	length = sparity->logic_end - sparity->logic_start;
2974 
2975 	btrfs_bio_counter_inc_blocked(fs_info);
2976 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2977 			       &length, &bioc);
2978 	if (ret || !bioc || !bioc->raid_map)
2979 		goto bioc_out;
2980 
2981 	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2982 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2983 	bio->bi_private = sparity;
2984 	bio->bi_end_io = scrub_parity_bio_endio;
2985 
2986 	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc,
2987 					      sparity->scrub_dev,
2988 					      &sparity->dbitmap,
2989 					      sparity->nsectors);
2990 	btrfs_put_bioc(bioc);
2991 	if (!rbio)
2992 		goto rbio_out;
2993 
2994 	scrub_pending_bio_inc(sctx);
2995 	raid56_parity_submit_scrub_rbio(rbio);
2996 	return;
2997 
2998 rbio_out:
2999 	bio_put(bio);
3000 bioc_out:
3001 	btrfs_bio_counter_dec(fs_info);
3002 	bitmap_or(&sparity->ebitmap, &sparity->ebitmap, &sparity->dbitmap,
3003 		  sparity->nsectors);
3004 	spin_lock(&sctx->stat_lock);
3005 	sctx->stat.malloc_errors++;
3006 	spin_unlock(&sctx->stat_lock);
3007 out:
3008 	scrub_free_parity(sparity);
3009 }
3010 
3011 static void scrub_parity_get(struct scrub_parity *sparity)
3012 {
3013 	refcount_inc(&sparity->refs);
3014 }
3015 
3016 static void scrub_parity_put(struct scrub_parity *sparity)
3017 {
3018 	if (!refcount_dec_and_test(&sparity->refs))
3019 		return;
3020 
3021 	scrub_parity_check_and_repair(sparity);
3022 }
3023 
3024 /*
3025  * Return 0 if the extent item range covers any byte of the range.
3026  * Return <0 if the extent item is before @search_start.
3027  * Return >0 if the extent item is after @start_start + @search_len.
3028  */
3029 static int compare_extent_item_range(struct btrfs_path *path,
3030 				     u64 search_start, u64 search_len)
3031 {
3032 	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
3033 	u64 len;
3034 	struct btrfs_key key;
3035 
3036 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3037 	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
3038 	       key.type == BTRFS_METADATA_ITEM_KEY);
3039 	if (key.type == BTRFS_METADATA_ITEM_KEY)
3040 		len = fs_info->nodesize;
3041 	else
3042 		len = key.offset;
3043 
3044 	if (key.objectid + len <= search_start)
3045 		return -1;
3046 	if (key.objectid >= search_start + search_len)
3047 		return 1;
3048 	return 0;
3049 }
3050 
3051 /*
3052  * Locate one extent item which covers any byte in range
3053  * [@search_start, @search_start + @search_length)
3054  *
3055  * If the path is not initialized, we will initialize the search by doing
3056  * a btrfs_search_slot().
3057  * If the path is already initialized, we will use the path as the initial
3058  * slot, to avoid duplicated btrfs_search_slot() calls.
3059  *
3060  * NOTE: If an extent item starts before @search_start, we will still
3061  * return the extent item. This is for data extent crossing stripe boundary.
3062  *
3063  * Return 0 if we found such extent item, and @path will point to the extent item.
3064  * Return >0 if no such extent item can be found, and @path will be released.
3065  * Return <0 if hit fatal error, and @path will be released.
3066  */
3067 static int find_first_extent_item(struct btrfs_root *extent_root,
3068 				  struct btrfs_path *path,
3069 				  u64 search_start, u64 search_len)
3070 {
3071 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3072 	struct btrfs_key key;
3073 	int ret;
3074 
3075 	/* Continue using the existing path */
3076 	if (path->nodes[0])
3077 		goto search_forward;
3078 
3079 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3080 		key.type = BTRFS_METADATA_ITEM_KEY;
3081 	else
3082 		key.type = BTRFS_EXTENT_ITEM_KEY;
3083 	key.objectid = search_start;
3084 	key.offset = (u64)-1;
3085 
3086 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3087 	if (ret < 0)
3088 		return ret;
3089 
3090 	ASSERT(ret > 0);
3091 	/*
3092 	 * Here we intentionally pass 0 as @min_objectid, as there could be
3093 	 * an extent item starting before @search_start.
3094 	 */
3095 	ret = btrfs_previous_extent_item(extent_root, path, 0);
3096 	if (ret < 0)
3097 		return ret;
3098 	/*
3099 	 * No matter whether we have found an extent item, the next loop will
3100 	 * properly do every check on the key.
3101 	 */
3102 search_forward:
3103 	while (true) {
3104 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3105 		if (key.objectid >= search_start + search_len)
3106 			break;
3107 		if (key.type != BTRFS_METADATA_ITEM_KEY &&
3108 		    key.type != BTRFS_EXTENT_ITEM_KEY)
3109 			goto next;
3110 
3111 		ret = compare_extent_item_range(path, search_start, search_len);
3112 		if (ret == 0)
3113 			return ret;
3114 		if (ret > 0)
3115 			break;
3116 next:
3117 		path->slots[0]++;
3118 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3119 			ret = btrfs_next_leaf(extent_root, path);
3120 			if (ret) {
3121 				/* Either no more item or fatal error */
3122 				btrfs_release_path(path);
3123 				return ret;
3124 			}
3125 		}
3126 	}
3127 	btrfs_release_path(path);
3128 	return 1;
3129 }
3130 
3131 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
3132 			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
3133 {
3134 	struct btrfs_key key;
3135 	struct btrfs_extent_item *ei;
3136 
3137 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3138 	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
3139 	       key.type == BTRFS_EXTENT_ITEM_KEY);
3140 	*extent_start_ret = key.objectid;
3141 	if (key.type == BTRFS_METADATA_ITEM_KEY)
3142 		*size_ret = path->nodes[0]->fs_info->nodesize;
3143 	else
3144 		*size_ret = key.offset;
3145 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
3146 	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
3147 	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
3148 }
3149 
3150 static bool does_range_cross_boundary(u64 extent_start, u64 extent_len,
3151 				      u64 boundary_start, u64 boudary_len)
3152 {
3153 	return (extent_start < boundary_start &&
3154 		extent_start + extent_len > boundary_start) ||
3155 	       (extent_start < boundary_start + boudary_len &&
3156 		extent_start + extent_len > boundary_start + boudary_len);
3157 }
3158 
3159 static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx,
3160 					       struct scrub_parity *sparity,
3161 					       struct map_lookup *map,
3162 					       struct btrfs_device *sdev,
3163 					       struct btrfs_path *path,
3164 					       u64 logical)
3165 {
3166 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3167 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
3168 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical);
3169 	u64 cur_logical = logical;
3170 	int ret;
3171 
3172 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
3173 
3174 	/* Path must not be populated */
3175 	ASSERT(!path->nodes[0]);
3176 
3177 	while (cur_logical < logical + map->stripe_len) {
3178 		struct btrfs_io_context *bioc = NULL;
3179 		struct btrfs_device *extent_dev;
3180 		u64 extent_start;
3181 		u64 extent_size;
3182 		u64 mapped_length;
3183 		u64 extent_flags;
3184 		u64 extent_gen;
3185 		u64 extent_physical;
3186 		u64 extent_mirror_num;
3187 
3188 		ret = find_first_extent_item(extent_root, path, cur_logical,
3189 					     logical + map->stripe_len - cur_logical);
3190 		/* No more extent item in this data stripe */
3191 		if (ret > 0) {
3192 			ret = 0;
3193 			break;
3194 		}
3195 		if (ret < 0)
3196 			break;
3197 		get_extent_info(path, &extent_start, &extent_size, &extent_flags,
3198 				&extent_gen);
3199 
3200 		/* Metadata should not cross stripe boundaries */
3201 		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3202 		    does_range_cross_boundary(extent_start, extent_size,
3203 					      logical, map->stripe_len)) {
3204 			btrfs_err(fs_info,
3205 	"scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3206 				  extent_start, logical);
3207 			spin_lock(&sctx->stat_lock);
3208 			sctx->stat.uncorrectable_errors++;
3209 			spin_unlock(&sctx->stat_lock);
3210 			cur_logical += extent_size;
3211 			continue;
3212 		}
3213 
3214 		/* Skip hole range which doesn't have any extent */
3215 		cur_logical = max(extent_start, cur_logical);
3216 
3217 		/* Truncate the range inside this data stripe */
3218 		extent_size = min(extent_start + extent_size,
3219 				  logical + map->stripe_len) - cur_logical;
3220 		extent_start = cur_logical;
3221 		ASSERT(extent_size <= U32_MAX);
3222 
3223 		scrub_parity_mark_sectors_data(sparity, extent_start, extent_size);
3224 
3225 		mapped_length = extent_size;
3226 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start,
3227 				      &mapped_length, &bioc, 0);
3228 		if (!ret && (!bioc || mapped_length < extent_size))
3229 			ret = -EIO;
3230 		if (ret) {
3231 			btrfs_put_bioc(bioc);
3232 			scrub_parity_mark_sectors_error(sparity, extent_start,
3233 							extent_size);
3234 			break;
3235 		}
3236 		extent_physical = bioc->stripes[0].physical;
3237 		extent_mirror_num = bioc->mirror_num;
3238 		extent_dev = bioc->stripes[0].dev;
3239 		btrfs_put_bioc(bioc);
3240 
3241 		ret = btrfs_lookup_csums_list(csum_root, extent_start,
3242 					      extent_start + extent_size - 1,
3243 					      &sctx->csum_list, 1, false);
3244 		if (ret) {
3245 			scrub_parity_mark_sectors_error(sparity, extent_start,
3246 							extent_size);
3247 			break;
3248 		}
3249 
3250 		ret = scrub_extent_for_parity(sparity, extent_start,
3251 					      extent_size, extent_physical,
3252 					      extent_dev, extent_flags,
3253 					      extent_gen, extent_mirror_num);
3254 		scrub_free_csums(sctx);
3255 
3256 		if (ret) {
3257 			scrub_parity_mark_sectors_error(sparity, extent_start,
3258 							extent_size);
3259 			break;
3260 		}
3261 
3262 		cond_resched();
3263 		cur_logical += extent_size;
3264 	}
3265 	btrfs_release_path(path);
3266 	return ret;
3267 }
3268 
3269 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3270 						  struct map_lookup *map,
3271 						  struct btrfs_device *sdev,
3272 						  u64 logic_start,
3273 						  u64 logic_end)
3274 {
3275 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3276 	struct btrfs_path *path;
3277 	u64 cur_logical;
3278 	int ret;
3279 	struct scrub_parity *sparity;
3280 	int nsectors;
3281 
3282 	path = btrfs_alloc_path();
3283 	if (!path) {
3284 		spin_lock(&sctx->stat_lock);
3285 		sctx->stat.malloc_errors++;
3286 		spin_unlock(&sctx->stat_lock);
3287 		return -ENOMEM;
3288 	}
3289 	path->search_commit_root = 1;
3290 	path->skip_locking = 1;
3291 
3292 	ASSERT(map->stripe_len <= U32_MAX);
3293 	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
3294 	ASSERT(nsectors <= BITS_PER_LONG);
3295 	sparity = kzalloc(sizeof(struct scrub_parity), GFP_NOFS);
3296 	if (!sparity) {
3297 		spin_lock(&sctx->stat_lock);
3298 		sctx->stat.malloc_errors++;
3299 		spin_unlock(&sctx->stat_lock);
3300 		btrfs_free_path(path);
3301 		return -ENOMEM;
3302 	}
3303 
3304 	ASSERT(map->stripe_len <= U32_MAX);
3305 	sparity->stripe_len = map->stripe_len;
3306 	sparity->nsectors = nsectors;
3307 	sparity->sctx = sctx;
3308 	sparity->scrub_dev = sdev;
3309 	sparity->logic_start = logic_start;
3310 	sparity->logic_end = logic_end;
3311 	refcount_set(&sparity->refs, 1);
3312 	INIT_LIST_HEAD(&sparity->sectors_list);
3313 
3314 	ret = 0;
3315 	for (cur_logical = logic_start; cur_logical < logic_end;
3316 	     cur_logical += map->stripe_len) {
3317 		ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map,
3318 							  sdev, path, cur_logical);
3319 		if (ret < 0)
3320 			break;
3321 	}
3322 
3323 	scrub_parity_put(sparity);
3324 	scrub_submit(sctx);
3325 	mutex_lock(&sctx->wr_lock);
3326 	scrub_wr_submit(sctx);
3327 	mutex_unlock(&sctx->wr_lock);
3328 
3329 	btrfs_free_path(path);
3330 	return ret < 0 ? ret : 0;
3331 }
3332 
3333 static void sync_replace_for_zoned(struct scrub_ctx *sctx)
3334 {
3335 	if (!btrfs_is_zoned(sctx->fs_info))
3336 		return;
3337 
3338 	sctx->flush_all_writes = true;
3339 	scrub_submit(sctx);
3340 	mutex_lock(&sctx->wr_lock);
3341 	scrub_wr_submit(sctx);
3342 	mutex_unlock(&sctx->wr_lock);
3343 
3344 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3345 }
3346 
3347 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
3348 					u64 physical, u64 physical_end)
3349 {
3350 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3351 	int ret = 0;
3352 
3353 	if (!btrfs_is_zoned(fs_info))
3354 		return 0;
3355 
3356 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3357 
3358 	mutex_lock(&sctx->wr_lock);
3359 	if (sctx->write_pointer < physical_end) {
3360 		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
3361 						    physical,
3362 						    sctx->write_pointer);
3363 		if (ret)
3364 			btrfs_err(fs_info,
3365 				  "zoned: failed to recover write pointer");
3366 	}
3367 	mutex_unlock(&sctx->wr_lock);
3368 	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
3369 
3370 	return ret;
3371 }
3372 
3373 /*
3374  * Scrub one range which can only has simple mirror based profile.
3375  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
3376  *  RAID0/RAID10).
3377  *
3378  * Since we may need to handle a subset of block group, we need @logical_start
3379  * and @logical_length parameter.
3380  */
3381 static int scrub_simple_mirror(struct scrub_ctx *sctx,
3382 			       struct btrfs_root *extent_root,
3383 			       struct btrfs_root *csum_root,
3384 			       struct btrfs_block_group *bg,
3385 			       struct map_lookup *map,
3386 			       u64 logical_start, u64 logical_length,
3387 			       struct btrfs_device *device,
3388 			       u64 physical, int mirror_num)
3389 {
3390 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3391 	const u64 logical_end = logical_start + logical_length;
3392 	/* An artificial limit, inherit from old scrub behavior */
3393 	const u32 max_length = SZ_64K;
3394 	struct btrfs_path path = { 0 };
3395 	u64 cur_logical = logical_start;
3396 	int ret;
3397 
3398 	/* The range must be inside the bg */
3399 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
3400 
3401 	path.search_commit_root = 1;
3402 	path.skip_locking = 1;
3403 	/* Go through each extent items inside the logical range */
3404 	while (cur_logical < logical_end) {
3405 		u64 extent_start;
3406 		u64 extent_len;
3407 		u64 extent_flags;
3408 		u64 extent_gen;
3409 		u64 scrub_len;
3410 
3411 		/* Canceled? */
3412 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3413 		    atomic_read(&sctx->cancel_req)) {
3414 			ret = -ECANCELED;
3415 			break;
3416 		}
3417 		/* Paused? */
3418 		if (atomic_read(&fs_info->scrub_pause_req)) {
3419 			/* Push queued extents */
3420 			sctx->flush_all_writes = true;
3421 			scrub_submit(sctx);
3422 			mutex_lock(&sctx->wr_lock);
3423 			scrub_wr_submit(sctx);
3424 			mutex_unlock(&sctx->wr_lock);
3425 			wait_event(sctx->list_wait,
3426 				   atomic_read(&sctx->bios_in_flight) == 0);
3427 			sctx->flush_all_writes = false;
3428 			scrub_blocked_if_needed(fs_info);
3429 		}
3430 		/* Block group removed? */
3431 		spin_lock(&bg->lock);
3432 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
3433 			spin_unlock(&bg->lock);
3434 			ret = 0;
3435 			break;
3436 		}
3437 		spin_unlock(&bg->lock);
3438 
3439 		ret = find_first_extent_item(extent_root, &path, cur_logical,
3440 					     logical_end - cur_logical);
3441 		if (ret > 0) {
3442 			/* No more extent, just update the accounting */
3443 			sctx->stat.last_physical = physical + logical_length;
3444 			ret = 0;
3445 			break;
3446 		}
3447 		if (ret < 0)
3448 			break;
3449 		get_extent_info(&path, &extent_start, &extent_len,
3450 				&extent_flags, &extent_gen);
3451 		/* Skip hole range which doesn't have any extent */
3452 		cur_logical = max(extent_start, cur_logical);
3453 
3454 		/*
3455 		 * Scrub len has three limits:
3456 		 * - Extent size limit
3457 		 * - Scrub range limit
3458 		 *   This is especially imporatant for RAID0/RAID10 to reuse
3459 		 *   this function
3460 		 * - Max scrub size limit
3461 		 */
3462 		scrub_len = min(min(extent_start + extent_len,
3463 				    logical_end), cur_logical + max_length) -
3464 			    cur_logical;
3465 
3466 		if (extent_flags & BTRFS_EXTENT_FLAG_DATA) {
3467 			ret = btrfs_lookup_csums_list(csum_root, cur_logical,
3468 					cur_logical + scrub_len - 1,
3469 					&sctx->csum_list, 1, false);
3470 			if (ret)
3471 				break;
3472 		}
3473 		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3474 		    does_range_cross_boundary(extent_start, extent_len,
3475 					      logical_start, logical_length)) {
3476 			btrfs_err(fs_info,
3477 "scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)",
3478 				  extent_start, logical_start, logical_end);
3479 			spin_lock(&sctx->stat_lock);
3480 			sctx->stat.uncorrectable_errors++;
3481 			spin_unlock(&sctx->stat_lock);
3482 			cur_logical += scrub_len;
3483 			continue;
3484 		}
3485 		ret = scrub_extent(sctx, map, cur_logical, scrub_len,
3486 				   cur_logical - logical_start + physical,
3487 				   device, extent_flags, extent_gen,
3488 				   mirror_num);
3489 		scrub_free_csums(sctx);
3490 		if (ret)
3491 			break;
3492 		if (sctx->is_dev_replace)
3493 			sync_replace_for_zoned(sctx);
3494 		cur_logical += scrub_len;
3495 		/* Don't hold CPU for too long time */
3496 		cond_resched();
3497 	}
3498 	btrfs_release_path(&path);
3499 	return ret;
3500 }
3501 
3502 /* Calculate the full stripe length for simple stripe based profiles */
3503 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
3504 {
3505 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3506 			    BTRFS_BLOCK_GROUP_RAID10));
3507 
3508 	return map->num_stripes / map->sub_stripes * map->stripe_len;
3509 }
3510 
3511 /* Get the logical bytenr for the stripe */
3512 static u64 simple_stripe_get_logical(struct map_lookup *map,
3513 				     struct btrfs_block_group *bg,
3514 				     int stripe_index)
3515 {
3516 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3517 			    BTRFS_BLOCK_GROUP_RAID10));
3518 	ASSERT(stripe_index < map->num_stripes);
3519 
3520 	/*
3521 	 * (stripe_index / sub_stripes) gives how many data stripes we need to
3522 	 * skip.
3523 	 */
3524 	return (stripe_index / map->sub_stripes) * map->stripe_len + bg->start;
3525 }
3526 
3527 /* Get the mirror number for the stripe */
3528 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
3529 {
3530 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3531 			    BTRFS_BLOCK_GROUP_RAID10));
3532 	ASSERT(stripe_index < map->num_stripes);
3533 
3534 	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
3535 	return stripe_index % map->sub_stripes + 1;
3536 }
3537 
3538 static int scrub_simple_stripe(struct scrub_ctx *sctx,
3539 			       struct btrfs_root *extent_root,
3540 			       struct btrfs_root *csum_root,
3541 			       struct btrfs_block_group *bg,
3542 			       struct map_lookup *map,
3543 			       struct btrfs_device *device,
3544 			       int stripe_index)
3545 {
3546 	const u64 logical_increment = simple_stripe_full_stripe_len(map);
3547 	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
3548 	const u64 orig_physical = map->stripes[stripe_index].physical;
3549 	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
3550 	u64 cur_logical = orig_logical;
3551 	u64 cur_physical = orig_physical;
3552 	int ret = 0;
3553 
3554 	while (cur_logical < bg->start + bg->length) {
3555 		/*
3556 		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
3557 		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
3558 		 * this stripe.
3559 		 */
3560 		ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map,
3561 					  cur_logical, map->stripe_len, device,
3562 					  cur_physical, mirror_num);
3563 		if (ret)
3564 			return ret;
3565 		/* Skip to next stripe which belongs to the target device */
3566 		cur_logical += logical_increment;
3567 		/* For physical offset, we just go to next stripe */
3568 		cur_physical += map->stripe_len;
3569 	}
3570 	return ret;
3571 }
3572 
3573 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3574 					   struct btrfs_block_group *bg,
3575 					   struct extent_map *em,
3576 					   struct btrfs_device *scrub_dev,
3577 					   int stripe_index)
3578 {
3579 	struct btrfs_path *path;
3580 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3581 	struct btrfs_root *root;
3582 	struct btrfs_root *csum_root;
3583 	struct blk_plug plug;
3584 	struct map_lookup *map = em->map_lookup;
3585 	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3586 	const u64 chunk_logical = bg->start;
3587 	int ret;
3588 	u64 physical = map->stripes[stripe_index].physical;
3589 	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
3590 	const u64 physical_end = physical + dev_stripe_len;
3591 	u64 logical;
3592 	u64 logic_end;
3593 	/* The logical increment after finishing one stripe */
3594 	u64 increment;
3595 	/* Offset inside the chunk */
3596 	u64 offset;
3597 	u64 stripe_logical;
3598 	u64 stripe_end;
3599 	int stop_loop = 0;
3600 
3601 	path = btrfs_alloc_path();
3602 	if (!path)
3603 		return -ENOMEM;
3604 
3605 	/*
3606 	 * work on commit root. The related disk blocks are static as
3607 	 * long as COW is applied. This means, it is save to rewrite
3608 	 * them to repair disk errors without any race conditions
3609 	 */
3610 	path->search_commit_root = 1;
3611 	path->skip_locking = 1;
3612 	path->reada = READA_FORWARD;
3613 
3614 	wait_event(sctx->list_wait,
3615 		   atomic_read(&sctx->bios_in_flight) == 0);
3616 	scrub_blocked_if_needed(fs_info);
3617 
3618 	root = btrfs_extent_root(fs_info, bg->start);
3619 	csum_root = btrfs_csum_root(fs_info, bg->start);
3620 
3621 	/*
3622 	 * collect all data csums for the stripe to avoid seeking during
3623 	 * the scrub. This might currently (crc32) end up to be about 1MB
3624 	 */
3625 	blk_start_plug(&plug);
3626 
3627 	if (sctx->is_dev_replace &&
3628 	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
3629 		mutex_lock(&sctx->wr_lock);
3630 		sctx->write_pointer = physical;
3631 		mutex_unlock(&sctx->wr_lock);
3632 		sctx->flush_all_writes = true;
3633 	}
3634 
3635 	/*
3636 	 * There used to be a big double loop to handle all profiles using the
3637 	 * same routine, which grows larger and more gross over time.
3638 	 *
3639 	 * So here we handle each profile differently, so simpler profiles
3640 	 * have simpler scrubbing function.
3641 	 */
3642 	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
3643 			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
3644 		/*
3645 		 * Above check rules out all complex profile, the remaining
3646 		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
3647 		 * mirrored duplication without stripe.
3648 		 *
3649 		 * Only @physical and @mirror_num needs to calculated using
3650 		 * @stripe_index.
3651 		 */
3652 		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
3653 				bg->start, bg->length, scrub_dev,
3654 				map->stripes[stripe_index].physical,
3655 				stripe_index + 1);
3656 		offset = 0;
3657 		goto out;
3658 	}
3659 	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3660 		ret = scrub_simple_stripe(sctx, root, csum_root, bg, map,
3661 					  scrub_dev, stripe_index);
3662 		offset = map->stripe_len * (stripe_index / map->sub_stripes);
3663 		goto out;
3664 	}
3665 
3666 	/* Only RAID56 goes through the old code */
3667 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
3668 	ret = 0;
3669 
3670 	/* Calculate the logical end of the stripe */
3671 	get_raid56_logic_offset(physical_end, stripe_index,
3672 				map, &logic_end, NULL);
3673 	logic_end += chunk_logical;
3674 
3675 	/* Initialize @offset in case we need to go to out: label */
3676 	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
3677 	increment = map->stripe_len * nr_data_stripes(map);
3678 
3679 	/*
3680 	 * Due to the rotation, for RAID56 it's better to iterate each stripe
3681 	 * using their physical offset.
3682 	 */
3683 	while (physical < physical_end) {
3684 		ret = get_raid56_logic_offset(physical, stripe_index, map,
3685 					      &logical, &stripe_logical);
3686 		logical += chunk_logical;
3687 		if (ret) {
3688 			/* it is parity strip */
3689 			stripe_logical += chunk_logical;
3690 			stripe_end = stripe_logical + increment;
3691 			ret = scrub_raid56_parity(sctx, map, scrub_dev,
3692 						  stripe_logical,
3693 						  stripe_end);
3694 			if (ret)
3695 				goto out;
3696 			goto next;
3697 		}
3698 
3699 		/*
3700 		 * Now we're at a data stripe, scrub each extents in the range.
3701 		 *
3702 		 * At this stage, if we ignore the repair part, inside each data
3703 		 * stripe it is no different than SINGLE profile.
3704 		 * We can reuse scrub_simple_mirror() here, as the repair part
3705 		 * is still based on @mirror_num.
3706 		 */
3707 		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
3708 					  logical, map->stripe_len,
3709 					  scrub_dev, physical, 1);
3710 		if (ret < 0)
3711 			goto out;
3712 next:
3713 		logical += increment;
3714 		physical += map->stripe_len;
3715 		spin_lock(&sctx->stat_lock);
3716 		if (stop_loop)
3717 			sctx->stat.last_physical =
3718 				map->stripes[stripe_index].physical + dev_stripe_len;
3719 		else
3720 			sctx->stat.last_physical = physical;
3721 		spin_unlock(&sctx->stat_lock);
3722 		if (stop_loop)
3723 			break;
3724 	}
3725 out:
3726 	/* push queued extents */
3727 	scrub_submit(sctx);
3728 	mutex_lock(&sctx->wr_lock);
3729 	scrub_wr_submit(sctx);
3730 	mutex_unlock(&sctx->wr_lock);
3731 
3732 	blk_finish_plug(&plug);
3733 	btrfs_free_path(path);
3734 
3735 	if (sctx->is_dev_replace && ret >= 0) {
3736 		int ret2;
3737 
3738 		ret2 = sync_write_pointer_for_zoned(sctx,
3739 				chunk_logical + offset,
3740 				map->stripes[stripe_index].physical,
3741 				physical_end);
3742 		if (ret2)
3743 			ret = ret2;
3744 	}
3745 
3746 	return ret < 0 ? ret : 0;
3747 }
3748 
3749 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3750 					  struct btrfs_block_group *bg,
3751 					  struct btrfs_device *scrub_dev,
3752 					  u64 dev_offset,
3753 					  u64 dev_extent_len)
3754 {
3755 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3756 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3757 	struct map_lookup *map;
3758 	struct extent_map *em;
3759 	int i;
3760 	int ret = 0;
3761 
3762 	read_lock(&map_tree->lock);
3763 	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
3764 	read_unlock(&map_tree->lock);
3765 
3766 	if (!em) {
3767 		/*
3768 		 * Might have been an unused block group deleted by the cleaner
3769 		 * kthread or relocation.
3770 		 */
3771 		spin_lock(&bg->lock);
3772 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
3773 			ret = -EINVAL;
3774 		spin_unlock(&bg->lock);
3775 
3776 		return ret;
3777 	}
3778 	if (em->start != bg->start)
3779 		goto out;
3780 	if (em->len < dev_extent_len)
3781 		goto out;
3782 
3783 	map = em->map_lookup;
3784 	for (i = 0; i < map->num_stripes; ++i) {
3785 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3786 		    map->stripes[i].physical == dev_offset) {
3787 			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
3788 			if (ret)
3789 				goto out;
3790 		}
3791 	}
3792 out:
3793 	free_extent_map(em);
3794 
3795 	return ret;
3796 }
3797 
3798 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
3799 					  struct btrfs_block_group *cache)
3800 {
3801 	struct btrfs_fs_info *fs_info = cache->fs_info;
3802 	struct btrfs_trans_handle *trans;
3803 
3804 	if (!btrfs_is_zoned(fs_info))
3805 		return 0;
3806 
3807 	btrfs_wait_block_group_reservations(cache);
3808 	btrfs_wait_nocow_writers(cache);
3809 	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
3810 
3811 	trans = btrfs_join_transaction(root);
3812 	if (IS_ERR(trans))
3813 		return PTR_ERR(trans);
3814 	return btrfs_commit_transaction(trans);
3815 }
3816 
3817 static noinline_for_stack
3818 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3819 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
3820 {
3821 	struct btrfs_dev_extent *dev_extent = NULL;
3822 	struct btrfs_path *path;
3823 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3824 	struct btrfs_root *root = fs_info->dev_root;
3825 	u64 chunk_offset;
3826 	int ret = 0;
3827 	int ro_set;
3828 	int slot;
3829 	struct extent_buffer *l;
3830 	struct btrfs_key key;
3831 	struct btrfs_key found_key;
3832 	struct btrfs_block_group *cache;
3833 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3834 
3835 	path = btrfs_alloc_path();
3836 	if (!path)
3837 		return -ENOMEM;
3838 
3839 	path->reada = READA_FORWARD;
3840 	path->search_commit_root = 1;
3841 	path->skip_locking = 1;
3842 
3843 	key.objectid = scrub_dev->devid;
3844 	key.offset = 0ull;
3845 	key.type = BTRFS_DEV_EXTENT_KEY;
3846 
3847 	while (1) {
3848 		u64 dev_extent_len;
3849 
3850 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3851 		if (ret < 0)
3852 			break;
3853 		if (ret > 0) {
3854 			if (path->slots[0] >=
3855 			    btrfs_header_nritems(path->nodes[0])) {
3856 				ret = btrfs_next_leaf(root, path);
3857 				if (ret < 0)
3858 					break;
3859 				if (ret > 0) {
3860 					ret = 0;
3861 					break;
3862 				}
3863 			} else {
3864 				ret = 0;
3865 			}
3866 		}
3867 
3868 		l = path->nodes[0];
3869 		slot = path->slots[0];
3870 
3871 		btrfs_item_key_to_cpu(l, &found_key, slot);
3872 
3873 		if (found_key.objectid != scrub_dev->devid)
3874 			break;
3875 
3876 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3877 			break;
3878 
3879 		if (found_key.offset >= end)
3880 			break;
3881 
3882 		if (found_key.offset < key.offset)
3883 			break;
3884 
3885 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3886 		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
3887 
3888 		if (found_key.offset + dev_extent_len <= start)
3889 			goto skip;
3890 
3891 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3892 
3893 		/*
3894 		 * get a reference on the corresponding block group to prevent
3895 		 * the chunk from going away while we scrub it
3896 		 */
3897 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3898 
3899 		/* some chunks are removed but not committed to disk yet,
3900 		 * continue scrubbing */
3901 		if (!cache)
3902 			goto skip;
3903 
3904 		ASSERT(cache->start <= chunk_offset);
3905 		/*
3906 		 * We are using the commit root to search for device extents, so
3907 		 * that means we could have found a device extent item from a
3908 		 * block group that was deleted in the current transaction. The
3909 		 * logical start offset of the deleted block group, stored at
3910 		 * @chunk_offset, might be part of the logical address range of
3911 		 * a new block group (which uses different physical extents).
3912 		 * In this case btrfs_lookup_block_group() has returned the new
3913 		 * block group, and its start address is less than @chunk_offset.
3914 		 *
3915 		 * We skip such new block groups, because it's pointless to
3916 		 * process them, as we won't find their extents because we search
3917 		 * for them using the commit root of the extent tree. For a device
3918 		 * replace it's also fine to skip it, we won't miss copying them
3919 		 * to the target device because we have the write duplication
3920 		 * setup through the regular write path (by btrfs_map_block()),
3921 		 * and we have committed a transaction when we started the device
3922 		 * replace, right after setting up the device replace state.
3923 		 */
3924 		if (cache->start < chunk_offset) {
3925 			btrfs_put_block_group(cache);
3926 			goto skip;
3927 		}
3928 
3929 		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3930 			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
3931 				btrfs_put_block_group(cache);
3932 				goto skip;
3933 			}
3934 		}
3935 
3936 		/*
3937 		 * Make sure that while we are scrubbing the corresponding block
3938 		 * group doesn't get its logical address and its device extents
3939 		 * reused for another block group, which can possibly be of a
3940 		 * different type and different profile. We do this to prevent
3941 		 * false error detections and crashes due to bogus attempts to
3942 		 * repair extents.
3943 		 */
3944 		spin_lock(&cache->lock);
3945 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
3946 			spin_unlock(&cache->lock);
3947 			btrfs_put_block_group(cache);
3948 			goto skip;
3949 		}
3950 		btrfs_freeze_block_group(cache);
3951 		spin_unlock(&cache->lock);
3952 
3953 		/*
3954 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3955 		 * to avoid deadlock caused by:
3956 		 * btrfs_inc_block_group_ro()
3957 		 * -> btrfs_wait_for_commit()
3958 		 * -> btrfs_commit_transaction()
3959 		 * -> btrfs_scrub_pause()
3960 		 */
3961 		scrub_pause_on(fs_info);
3962 
3963 		/*
3964 		 * Don't do chunk preallocation for scrub.
3965 		 *
3966 		 * This is especially important for SYSTEM bgs, or we can hit
3967 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
3968 		 * 1. The only SYSTEM bg is marked RO.
3969 		 *    Since SYSTEM bg is small, that's pretty common.
3970 		 * 2. New SYSTEM bg will be allocated
3971 		 *    Due to regular version will allocate new chunk.
3972 		 * 3. New SYSTEM bg is empty and will get cleaned up
3973 		 *    Before cleanup really happens, it's marked RO again.
3974 		 * 4. Empty SYSTEM bg get scrubbed
3975 		 *    We go back to 2.
3976 		 *
3977 		 * This can easily boost the amount of SYSTEM chunks if cleaner
3978 		 * thread can't be triggered fast enough, and use up all space
3979 		 * of btrfs_super_block::sys_chunk_array
3980 		 *
3981 		 * While for dev replace, we need to try our best to mark block
3982 		 * group RO, to prevent race between:
3983 		 * - Write duplication
3984 		 *   Contains latest data
3985 		 * - Scrub copy
3986 		 *   Contains data from commit tree
3987 		 *
3988 		 * If target block group is not marked RO, nocow writes can
3989 		 * be overwritten by scrub copy, causing data corruption.
3990 		 * So for dev-replace, it's not allowed to continue if a block
3991 		 * group is not RO.
3992 		 */
3993 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3994 		if (!ret && sctx->is_dev_replace) {
3995 			ret = finish_extent_writes_for_zoned(root, cache);
3996 			if (ret) {
3997 				btrfs_dec_block_group_ro(cache);
3998 				scrub_pause_off(fs_info);
3999 				btrfs_put_block_group(cache);
4000 				break;
4001 			}
4002 		}
4003 
4004 		if (ret == 0) {
4005 			ro_set = 1;
4006 		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
4007 			/*
4008 			 * btrfs_inc_block_group_ro return -ENOSPC when it
4009 			 * failed in creating new chunk for metadata.
4010 			 * It is not a problem for scrub, because
4011 			 * metadata are always cowed, and our scrub paused
4012 			 * commit_transactions.
4013 			 */
4014 			ro_set = 0;
4015 		} else if (ret == -ETXTBSY) {
4016 			btrfs_warn(fs_info,
4017 		   "skipping scrub of block group %llu due to active swapfile",
4018 				   cache->start);
4019 			scrub_pause_off(fs_info);
4020 			ret = 0;
4021 			goto skip_unfreeze;
4022 		} else {
4023 			btrfs_warn(fs_info,
4024 				   "failed setting block group ro: %d", ret);
4025 			btrfs_unfreeze_block_group(cache);
4026 			btrfs_put_block_group(cache);
4027 			scrub_pause_off(fs_info);
4028 			break;
4029 		}
4030 
4031 		/*
4032 		 * Now the target block is marked RO, wait for nocow writes to
4033 		 * finish before dev-replace.
4034 		 * COW is fine, as COW never overwrites extents in commit tree.
4035 		 */
4036 		if (sctx->is_dev_replace) {
4037 			btrfs_wait_nocow_writers(cache);
4038 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
4039 					cache->length);
4040 		}
4041 
4042 		scrub_pause_off(fs_info);
4043 		down_write(&dev_replace->rwsem);
4044 		dev_replace->cursor_right = found_key.offset + dev_extent_len;
4045 		dev_replace->cursor_left = found_key.offset;
4046 		dev_replace->item_needs_writeback = 1;
4047 		up_write(&dev_replace->rwsem);
4048 
4049 		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
4050 				  dev_extent_len);
4051 
4052 		/*
4053 		 * flush, submit all pending read and write bios, afterwards
4054 		 * wait for them.
4055 		 * Note that in the dev replace case, a read request causes
4056 		 * write requests that are submitted in the read completion
4057 		 * worker. Therefore in the current situation, it is required
4058 		 * that all write requests are flushed, so that all read and
4059 		 * write requests are really completed when bios_in_flight
4060 		 * changes to 0.
4061 		 */
4062 		sctx->flush_all_writes = true;
4063 		scrub_submit(sctx);
4064 		mutex_lock(&sctx->wr_lock);
4065 		scrub_wr_submit(sctx);
4066 		mutex_unlock(&sctx->wr_lock);
4067 
4068 		wait_event(sctx->list_wait,
4069 			   atomic_read(&sctx->bios_in_flight) == 0);
4070 
4071 		scrub_pause_on(fs_info);
4072 
4073 		/*
4074 		 * must be called before we decrease @scrub_paused.
4075 		 * make sure we don't block transaction commit while
4076 		 * we are waiting pending workers finished.
4077 		 */
4078 		wait_event(sctx->list_wait,
4079 			   atomic_read(&sctx->workers_pending) == 0);
4080 		sctx->flush_all_writes = false;
4081 
4082 		scrub_pause_off(fs_info);
4083 
4084 		if (sctx->is_dev_replace &&
4085 		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
4086 						      cache, found_key.offset))
4087 			ro_set = 0;
4088 
4089 		down_write(&dev_replace->rwsem);
4090 		dev_replace->cursor_left = dev_replace->cursor_right;
4091 		dev_replace->item_needs_writeback = 1;
4092 		up_write(&dev_replace->rwsem);
4093 
4094 		if (ro_set)
4095 			btrfs_dec_block_group_ro(cache);
4096 
4097 		/*
4098 		 * We might have prevented the cleaner kthread from deleting
4099 		 * this block group if it was already unused because we raced
4100 		 * and set it to RO mode first. So add it back to the unused
4101 		 * list, otherwise it might not ever be deleted unless a manual
4102 		 * balance is triggered or it becomes used and unused again.
4103 		 */
4104 		spin_lock(&cache->lock);
4105 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
4106 		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
4107 			spin_unlock(&cache->lock);
4108 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
4109 				btrfs_discard_queue_work(&fs_info->discard_ctl,
4110 							 cache);
4111 			else
4112 				btrfs_mark_bg_unused(cache);
4113 		} else {
4114 			spin_unlock(&cache->lock);
4115 		}
4116 skip_unfreeze:
4117 		btrfs_unfreeze_block_group(cache);
4118 		btrfs_put_block_group(cache);
4119 		if (ret)
4120 			break;
4121 		if (sctx->is_dev_replace &&
4122 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
4123 			ret = -EIO;
4124 			break;
4125 		}
4126 		if (sctx->stat.malloc_errors > 0) {
4127 			ret = -ENOMEM;
4128 			break;
4129 		}
4130 skip:
4131 		key.offset = found_key.offset + dev_extent_len;
4132 		btrfs_release_path(path);
4133 	}
4134 
4135 	btrfs_free_path(path);
4136 
4137 	return ret;
4138 }
4139 
4140 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
4141 					   struct btrfs_device *scrub_dev)
4142 {
4143 	int	i;
4144 	u64	bytenr;
4145 	u64	gen;
4146 	int	ret;
4147 	struct btrfs_fs_info *fs_info = sctx->fs_info;
4148 
4149 	if (BTRFS_FS_ERROR(fs_info))
4150 		return -EROFS;
4151 
4152 	/* Seed devices of a new filesystem has their own generation. */
4153 	if (scrub_dev->fs_devices != fs_info->fs_devices)
4154 		gen = scrub_dev->generation;
4155 	else
4156 		gen = fs_info->last_trans_committed;
4157 
4158 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
4159 		bytenr = btrfs_sb_offset(i);
4160 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
4161 		    scrub_dev->commit_total_bytes)
4162 			break;
4163 		if (!btrfs_check_super_location(scrub_dev, bytenr))
4164 			continue;
4165 
4166 		ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4167 				    scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4168 				    NULL, bytenr);
4169 		if (ret)
4170 			return ret;
4171 	}
4172 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4173 
4174 	return 0;
4175 }
4176 
4177 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
4178 {
4179 	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
4180 					&fs_info->scrub_lock)) {
4181 		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
4182 		struct workqueue_struct *scrub_wr_comp =
4183 						fs_info->scrub_wr_completion_workers;
4184 		struct workqueue_struct *scrub_parity =
4185 						fs_info->scrub_parity_workers;
4186 
4187 		fs_info->scrub_workers = NULL;
4188 		fs_info->scrub_wr_completion_workers = NULL;
4189 		fs_info->scrub_parity_workers = NULL;
4190 		mutex_unlock(&fs_info->scrub_lock);
4191 
4192 		if (scrub_workers)
4193 			destroy_workqueue(scrub_workers);
4194 		if (scrub_wr_comp)
4195 			destroy_workqueue(scrub_wr_comp);
4196 		if (scrub_parity)
4197 			destroy_workqueue(scrub_parity);
4198 	}
4199 }
4200 
4201 /*
4202  * get a reference count on fs_info->scrub_workers. start worker if necessary
4203  */
4204 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4205 						int is_dev_replace)
4206 {
4207 	struct workqueue_struct *scrub_workers = NULL;
4208 	struct workqueue_struct *scrub_wr_comp = NULL;
4209 	struct workqueue_struct *scrub_parity = NULL;
4210 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4211 	int max_active = fs_info->thread_pool_size;
4212 	int ret = -ENOMEM;
4213 
4214 	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
4215 		return 0;
4216 
4217 	scrub_workers = alloc_workqueue("btrfs-scrub", flags,
4218 					is_dev_replace ? 1 : max_active);
4219 	if (!scrub_workers)
4220 		goto fail_scrub_workers;
4221 
4222 	scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
4223 	if (!scrub_wr_comp)
4224 		goto fail_scrub_wr_completion_workers;
4225 
4226 	scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active);
4227 	if (!scrub_parity)
4228 		goto fail_scrub_parity_workers;
4229 
4230 	mutex_lock(&fs_info->scrub_lock);
4231 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
4232 		ASSERT(fs_info->scrub_workers == NULL &&
4233 		       fs_info->scrub_wr_completion_workers == NULL &&
4234 		       fs_info->scrub_parity_workers == NULL);
4235 		fs_info->scrub_workers = scrub_workers;
4236 		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
4237 		fs_info->scrub_parity_workers = scrub_parity;
4238 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4239 		mutex_unlock(&fs_info->scrub_lock);
4240 		return 0;
4241 	}
4242 	/* Other thread raced in and created the workers for us */
4243 	refcount_inc(&fs_info->scrub_workers_refcnt);
4244 	mutex_unlock(&fs_info->scrub_lock);
4245 
4246 	ret = 0;
4247 	destroy_workqueue(scrub_parity);
4248 fail_scrub_parity_workers:
4249 	destroy_workqueue(scrub_wr_comp);
4250 fail_scrub_wr_completion_workers:
4251 	destroy_workqueue(scrub_workers);
4252 fail_scrub_workers:
4253 	return ret;
4254 }
4255 
4256 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4257 		    u64 end, struct btrfs_scrub_progress *progress,
4258 		    int readonly, int is_dev_replace)
4259 {
4260 	struct btrfs_dev_lookup_args args = { .devid = devid };
4261 	struct scrub_ctx *sctx;
4262 	int ret;
4263 	struct btrfs_device *dev;
4264 	unsigned int nofs_flag;
4265 	bool need_commit = false;
4266 
4267 	if (btrfs_fs_closing(fs_info))
4268 		return -EAGAIN;
4269 
4270 	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
4271 	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
4272 
4273 	/*
4274 	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
4275 	 * value (max nodesize / min sectorsize), thus nodesize should always
4276 	 * be fine.
4277 	 */
4278 	ASSERT(fs_info->nodesize <=
4279 	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
4280 
4281 	/* Allocate outside of device_list_mutex */
4282 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
4283 	if (IS_ERR(sctx))
4284 		return PTR_ERR(sctx);
4285 
4286 	ret = scrub_workers_get(fs_info, is_dev_replace);
4287 	if (ret)
4288 		goto out_free_ctx;
4289 
4290 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4291 	dev = btrfs_find_device(fs_info->fs_devices, &args);
4292 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4293 		     !is_dev_replace)) {
4294 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4295 		ret = -ENODEV;
4296 		goto out;
4297 	}
4298 
4299 	if (!is_dev_replace && !readonly &&
4300 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4301 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4302 		btrfs_err_in_rcu(fs_info,
4303 			"scrub on devid %llu: filesystem on %s is not writable",
4304 				 devid, btrfs_dev_name(dev));
4305 		ret = -EROFS;
4306 		goto out;
4307 	}
4308 
4309 	mutex_lock(&fs_info->scrub_lock);
4310 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4311 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4312 		mutex_unlock(&fs_info->scrub_lock);
4313 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4314 		ret = -EIO;
4315 		goto out;
4316 	}
4317 
4318 	down_read(&fs_info->dev_replace.rwsem);
4319 	if (dev->scrub_ctx ||
4320 	    (!is_dev_replace &&
4321 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4322 		up_read(&fs_info->dev_replace.rwsem);
4323 		mutex_unlock(&fs_info->scrub_lock);
4324 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4325 		ret = -EINPROGRESS;
4326 		goto out;
4327 	}
4328 	up_read(&fs_info->dev_replace.rwsem);
4329 
4330 	sctx->readonly = readonly;
4331 	dev->scrub_ctx = sctx;
4332 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4333 
4334 	/*
4335 	 * checking @scrub_pause_req here, we can avoid
4336 	 * race between committing transaction and scrubbing.
4337 	 */
4338 	__scrub_blocked_if_needed(fs_info);
4339 	atomic_inc(&fs_info->scrubs_running);
4340 	mutex_unlock(&fs_info->scrub_lock);
4341 
4342 	/*
4343 	 * In order to avoid deadlock with reclaim when there is a transaction
4344 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4345 	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
4346 	 * invoked by our callees. The pausing request is done when the
4347 	 * transaction commit starts, and it blocks the transaction until scrub
4348 	 * is paused (done at specific points at scrub_stripe() or right above
4349 	 * before incrementing fs_info->scrubs_running).
4350 	 */
4351 	nofs_flag = memalloc_nofs_save();
4352 	if (!is_dev_replace) {
4353 		u64 old_super_errors;
4354 
4355 		spin_lock(&sctx->stat_lock);
4356 		old_super_errors = sctx->stat.super_errors;
4357 		spin_unlock(&sctx->stat_lock);
4358 
4359 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4360 		/*
4361 		 * by holding device list mutex, we can
4362 		 * kick off writing super in log tree sync.
4363 		 */
4364 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4365 		ret = scrub_supers(sctx, dev);
4366 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4367 
4368 		spin_lock(&sctx->stat_lock);
4369 		/*
4370 		 * Super block errors found, but we can not commit transaction
4371 		 * at current context, since btrfs_commit_transaction() needs
4372 		 * to pause the current running scrub (hold by ourselves).
4373 		 */
4374 		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
4375 			need_commit = true;
4376 		spin_unlock(&sctx->stat_lock);
4377 	}
4378 
4379 	if (!ret)
4380 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4381 	memalloc_nofs_restore(nofs_flag);
4382 
4383 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4384 	atomic_dec(&fs_info->scrubs_running);
4385 	wake_up(&fs_info->scrub_pause_wait);
4386 
4387 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4388 
4389 	if (progress)
4390 		memcpy(progress, &sctx->stat, sizeof(*progress));
4391 
4392 	if (!is_dev_replace)
4393 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
4394 			ret ? "not finished" : "finished", devid, ret);
4395 
4396 	mutex_lock(&fs_info->scrub_lock);
4397 	dev->scrub_ctx = NULL;
4398 	mutex_unlock(&fs_info->scrub_lock);
4399 
4400 	scrub_workers_put(fs_info);
4401 	scrub_put_ctx(sctx);
4402 
4403 	/*
4404 	 * We found some super block errors before, now try to force a
4405 	 * transaction commit, as scrub has finished.
4406 	 */
4407 	if (need_commit) {
4408 		struct btrfs_trans_handle *trans;
4409 
4410 		trans = btrfs_start_transaction(fs_info->tree_root, 0);
4411 		if (IS_ERR(trans)) {
4412 			ret = PTR_ERR(trans);
4413 			btrfs_err(fs_info,
4414 	"scrub: failed to start transaction to fix super block errors: %d", ret);
4415 			return ret;
4416 		}
4417 		ret = btrfs_commit_transaction(trans);
4418 		if (ret < 0)
4419 			btrfs_err(fs_info,
4420 	"scrub: failed to commit transaction to fix super block errors: %d", ret);
4421 	}
4422 	return ret;
4423 out:
4424 	scrub_workers_put(fs_info);
4425 out_free_ctx:
4426 	scrub_free_ctx(sctx);
4427 
4428 	return ret;
4429 }
4430 
4431 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4432 {
4433 	mutex_lock(&fs_info->scrub_lock);
4434 	atomic_inc(&fs_info->scrub_pause_req);
4435 	while (atomic_read(&fs_info->scrubs_paused) !=
4436 	       atomic_read(&fs_info->scrubs_running)) {
4437 		mutex_unlock(&fs_info->scrub_lock);
4438 		wait_event(fs_info->scrub_pause_wait,
4439 			   atomic_read(&fs_info->scrubs_paused) ==
4440 			   atomic_read(&fs_info->scrubs_running));
4441 		mutex_lock(&fs_info->scrub_lock);
4442 	}
4443 	mutex_unlock(&fs_info->scrub_lock);
4444 }
4445 
4446 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4447 {
4448 	atomic_dec(&fs_info->scrub_pause_req);
4449 	wake_up(&fs_info->scrub_pause_wait);
4450 }
4451 
4452 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4453 {
4454 	mutex_lock(&fs_info->scrub_lock);
4455 	if (!atomic_read(&fs_info->scrubs_running)) {
4456 		mutex_unlock(&fs_info->scrub_lock);
4457 		return -ENOTCONN;
4458 	}
4459 
4460 	atomic_inc(&fs_info->scrub_cancel_req);
4461 	while (atomic_read(&fs_info->scrubs_running)) {
4462 		mutex_unlock(&fs_info->scrub_lock);
4463 		wait_event(fs_info->scrub_pause_wait,
4464 			   atomic_read(&fs_info->scrubs_running) == 0);
4465 		mutex_lock(&fs_info->scrub_lock);
4466 	}
4467 	atomic_dec(&fs_info->scrub_cancel_req);
4468 	mutex_unlock(&fs_info->scrub_lock);
4469 
4470 	return 0;
4471 }
4472 
4473 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4474 {
4475 	struct btrfs_fs_info *fs_info = dev->fs_info;
4476 	struct scrub_ctx *sctx;
4477 
4478 	mutex_lock(&fs_info->scrub_lock);
4479 	sctx = dev->scrub_ctx;
4480 	if (!sctx) {
4481 		mutex_unlock(&fs_info->scrub_lock);
4482 		return -ENOTCONN;
4483 	}
4484 	atomic_inc(&sctx->cancel_req);
4485 	while (dev->scrub_ctx) {
4486 		mutex_unlock(&fs_info->scrub_lock);
4487 		wait_event(fs_info->scrub_pause_wait,
4488 			   dev->scrub_ctx == NULL);
4489 		mutex_lock(&fs_info->scrub_lock);
4490 	}
4491 	mutex_unlock(&fs_info->scrub_lock);
4492 
4493 	return 0;
4494 }
4495 
4496 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4497 			 struct btrfs_scrub_progress *progress)
4498 {
4499 	struct btrfs_dev_lookup_args args = { .devid = devid };
4500 	struct btrfs_device *dev;
4501 	struct scrub_ctx *sctx = NULL;
4502 
4503 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4504 	dev = btrfs_find_device(fs_info->fs_devices, &args);
4505 	if (dev)
4506 		sctx = dev->scrub_ctx;
4507 	if (sctx)
4508 		memcpy(progress, &sctx->stat, sizeof(*progress));
4509 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4510 
4511 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4512 }
4513 
4514 static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
4515 				 u64 extent_logical, u32 extent_len,
4516 				 u64 *extent_physical,
4517 				 struct btrfs_device **extent_dev,
4518 				 int *extent_mirror_num)
4519 {
4520 	u64 mapped_length;
4521 	struct btrfs_io_context *bioc = NULL;
4522 	int ret;
4523 
4524 	mapped_length = extent_len;
4525 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4526 			      &mapped_length, &bioc, 0);
4527 	if (ret || !bioc || mapped_length < extent_len ||
4528 	    !bioc->stripes[0].dev->bdev) {
4529 		btrfs_put_bioc(bioc);
4530 		return;
4531 	}
4532 
4533 	*extent_physical = bioc->stripes[0].physical;
4534 	*extent_mirror_num = bioc->mirror_num;
4535 	*extent_dev = bioc->stripes[0].dev;
4536 	btrfs_put_bioc(bioc);
4537 }
4538