xref: /linux/fs/btrfs/scrub.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "check-integrity.h"
29 #include "rcu-string.h"
30 
31 /*
32  * This is only the first step towards a full-features scrub. It reads all
33  * extent and super block and verifies the checksums. In case a bad checksum
34  * is found or the extent cannot be read, good data will be written back if
35  * any can be found.
36  *
37  * Future enhancements:
38  *  - In case an unrepairable extent is encountered, track which files are
39  *    affected and report them
40  *  - track and record media errors, throw out bad devices
41  *  - add a mode to also read unallocated space
42  */
43 
44 struct scrub_block;
45 struct scrub_dev;
46 
47 #define SCRUB_PAGES_PER_BIO	16	/* 64k per bio */
48 #define SCRUB_BIOS_PER_DEV	16	/* 1 MB per device in flight */
49 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
50 
51 struct scrub_page {
52 	struct scrub_block	*sblock;
53 	struct page		*page;
54 	struct btrfs_device	*dev;
55 	u64			flags;  /* extent flags */
56 	u64			generation;
57 	u64			logical;
58 	u64			physical;
59 	struct {
60 		unsigned int	mirror_num:8;
61 		unsigned int	have_csum:1;
62 		unsigned int	io_error:1;
63 	};
64 	u8			csum[BTRFS_CSUM_SIZE];
65 };
66 
67 struct scrub_bio {
68 	int			index;
69 	struct scrub_dev	*sdev;
70 	struct bio		*bio;
71 	int			err;
72 	u64			logical;
73 	u64			physical;
74 	struct scrub_page	*pagev[SCRUB_PAGES_PER_BIO];
75 	int			page_count;
76 	int			next_free;
77 	struct btrfs_work	work;
78 };
79 
80 struct scrub_block {
81 	struct scrub_page	pagev[SCRUB_MAX_PAGES_PER_BLOCK];
82 	int			page_count;
83 	atomic_t		outstanding_pages;
84 	atomic_t		ref_count; /* free mem on transition to zero */
85 	struct scrub_dev	*sdev;
86 	struct {
87 		unsigned int	header_error:1;
88 		unsigned int	checksum_error:1;
89 		unsigned int	no_io_error_seen:1;
90 		unsigned int	generation_error:1; /* also sets header_error */
91 	};
92 };
93 
94 struct scrub_dev {
95 	struct scrub_bio	*bios[SCRUB_BIOS_PER_DEV];
96 	struct btrfs_device	*dev;
97 	int			first_free;
98 	int			curr;
99 	atomic_t		in_flight;
100 	atomic_t		fixup_cnt;
101 	spinlock_t		list_lock;
102 	wait_queue_head_t	list_wait;
103 	u16			csum_size;
104 	struct list_head	csum_list;
105 	atomic_t		cancel_req;
106 	int			readonly;
107 	int			pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */
108 	u32			sectorsize;
109 	u32			nodesize;
110 	u32			leafsize;
111 	/*
112 	 * statistics
113 	 */
114 	struct btrfs_scrub_progress stat;
115 	spinlock_t		stat_lock;
116 };
117 
118 struct scrub_fixup_nodatasum {
119 	struct scrub_dev	*sdev;
120 	u64			logical;
121 	struct btrfs_root	*root;
122 	struct btrfs_work	work;
123 	int			mirror_num;
124 };
125 
126 struct scrub_warning {
127 	struct btrfs_path	*path;
128 	u64			extent_item_size;
129 	char			*scratch_buf;
130 	char			*msg_buf;
131 	const char		*errstr;
132 	sector_t		sector;
133 	u64			logical;
134 	struct btrfs_device	*dev;
135 	int			msg_bufsize;
136 	int			scratch_bufsize;
137 };
138 
139 
140 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
141 static int scrub_setup_recheck_block(struct scrub_dev *sdev,
142 				     struct btrfs_mapping_tree *map_tree,
143 				     u64 length, u64 logical,
144 				     struct scrub_block *sblock);
145 static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
146 			       struct scrub_block *sblock, int is_metadata,
147 			       int have_csum, u8 *csum, u64 generation,
148 			       u16 csum_size);
149 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
150 					 struct scrub_block *sblock,
151 					 int is_metadata, int have_csum,
152 					 const u8 *csum, u64 generation,
153 					 u16 csum_size);
154 static void scrub_complete_bio_end_io(struct bio *bio, int err);
155 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
156 					     struct scrub_block *sblock_good,
157 					     int force_write);
158 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
159 					    struct scrub_block *sblock_good,
160 					    int page_num, int force_write);
161 static int scrub_checksum_data(struct scrub_block *sblock);
162 static int scrub_checksum_tree_block(struct scrub_block *sblock);
163 static int scrub_checksum_super(struct scrub_block *sblock);
164 static void scrub_block_get(struct scrub_block *sblock);
165 static void scrub_block_put(struct scrub_block *sblock);
166 static int scrub_add_page_to_bio(struct scrub_dev *sdev,
167 				 struct scrub_page *spage);
168 static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
169 		       u64 physical, u64 flags, u64 gen, int mirror_num,
170 		       u8 *csum, int force);
171 static void scrub_bio_end_io(struct bio *bio, int err);
172 static void scrub_bio_end_io_worker(struct btrfs_work *work);
173 static void scrub_block_complete(struct scrub_block *sblock);
174 
175 
176 static void scrub_free_csums(struct scrub_dev *sdev)
177 {
178 	while (!list_empty(&sdev->csum_list)) {
179 		struct btrfs_ordered_sum *sum;
180 		sum = list_first_entry(&sdev->csum_list,
181 				       struct btrfs_ordered_sum, list);
182 		list_del(&sum->list);
183 		kfree(sum);
184 	}
185 }
186 
187 static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
188 {
189 	int i;
190 
191 	if (!sdev)
192 		return;
193 
194 	/* this can happen when scrub is cancelled */
195 	if (sdev->curr != -1) {
196 		struct scrub_bio *sbio = sdev->bios[sdev->curr];
197 
198 		for (i = 0; i < sbio->page_count; i++) {
199 			BUG_ON(!sbio->pagev[i]);
200 			BUG_ON(!sbio->pagev[i]->page);
201 			scrub_block_put(sbio->pagev[i]->sblock);
202 		}
203 		bio_put(sbio->bio);
204 	}
205 
206 	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
207 		struct scrub_bio *sbio = sdev->bios[i];
208 
209 		if (!sbio)
210 			break;
211 		kfree(sbio);
212 	}
213 
214 	scrub_free_csums(sdev);
215 	kfree(sdev);
216 }
217 
218 static noinline_for_stack
219 struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
220 {
221 	struct scrub_dev *sdev;
222 	int		i;
223 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
224 	int pages_per_bio;
225 
226 	pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO,
227 			      bio_get_nr_vecs(dev->bdev));
228 	sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
229 	if (!sdev)
230 		goto nomem;
231 	sdev->dev = dev;
232 	sdev->pages_per_bio = pages_per_bio;
233 	sdev->curr = -1;
234 	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
235 		struct scrub_bio *sbio;
236 
237 		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
238 		if (!sbio)
239 			goto nomem;
240 		sdev->bios[i] = sbio;
241 
242 		sbio->index = i;
243 		sbio->sdev = sdev;
244 		sbio->page_count = 0;
245 		sbio->work.func = scrub_bio_end_io_worker;
246 
247 		if (i != SCRUB_BIOS_PER_DEV-1)
248 			sdev->bios[i]->next_free = i + 1;
249 		else
250 			sdev->bios[i]->next_free = -1;
251 	}
252 	sdev->first_free = 0;
253 	sdev->nodesize = dev->dev_root->nodesize;
254 	sdev->leafsize = dev->dev_root->leafsize;
255 	sdev->sectorsize = dev->dev_root->sectorsize;
256 	atomic_set(&sdev->in_flight, 0);
257 	atomic_set(&sdev->fixup_cnt, 0);
258 	atomic_set(&sdev->cancel_req, 0);
259 	sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
260 	INIT_LIST_HEAD(&sdev->csum_list);
261 
262 	spin_lock_init(&sdev->list_lock);
263 	spin_lock_init(&sdev->stat_lock);
264 	init_waitqueue_head(&sdev->list_wait);
265 	return sdev;
266 
267 nomem:
268 	scrub_free_dev(sdev);
269 	return ERR_PTR(-ENOMEM);
270 }
271 
272 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
273 {
274 	u64 isize;
275 	u32 nlink;
276 	int ret;
277 	int i;
278 	struct extent_buffer *eb;
279 	struct btrfs_inode_item *inode_item;
280 	struct scrub_warning *swarn = ctx;
281 	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
282 	struct inode_fs_paths *ipath = NULL;
283 	struct btrfs_root *local_root;
284 	struct btrfs_key root_key;
285 
286 	root_key.objectid = root;
287 	root_key.type = BTRFS_ROOT_ITEM_KEY;
288 	root_key.offset = (u64)-1;
289 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
290 	if (IS_ERR(local_root)) {
291 		ret = PTR_ERR(local_root);
292 		goto err;
293 	}
294 
295 	ret = inode_item_info(inum, 0, local_root, swarn->path);
296 	if (ret) {
297 		btrfs_release_path(swarn->path);
298 		goto err;
299 	}
300 
301 	eb = swarn->path->nodes[0];
302 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
303 					struct btrfs_inode_item);
304 	isize = btrfs_inode_size(eb, inode_item);
305 	nlink = btrfs_inode_nlink(eb, inode_item);
306 	btrfs_release_path(swarn->path);
307 
308 	ipath = init_ipath(4096, local_root, swarn->path);
309 	if (IS_ERR(ipath)) {
310 		ret = PTR_ERR(ipath);
311 		ipath = NULL;
312 		goto err;
313 	}
314 	ret = paths_from_inode(inum, ipath);
315 
316 	if (ret < 0)
317 		goto err;
318 
319 	/*
320 	 * we deliberately ignore the bit ipath might have been too small to
321 	 * hold all of the paths here
322 	 */
323 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
324 		printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
325 			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
326 			"length %llu, links %u (path: %s)\n", swarn->errstr,
327 			swarn->logical, rcu_str_deref(swarn->dev->name),
328 			(unsigned long long)swarn->sector, root, inum, offset,
329 			min(isize - offset, (u64)PAGE_SIZE), nlink,
330 			(char *)(unsigned long)ipath->fspath->val[i]);
331 
332 	free_ipath(ipath);
333 	return 0;
334 
335 err:
336 	printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
337 		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
338 		"resolving failed with ret=%d\n", swarn->errstr,
339 		swarn->logical, rcu_str_deref(swarn->dev->name),
340 		(unsigned long long)swarn->sector, root, inum, offset, ret);
341 
342 	free_ipath(ipath);
343 	return 0;
344 }
345 
346 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
347 {
348 	struct btrfs_device *dev = sblock->sdev->dev;
349 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
350 	struct btrfs_path *path;
351 	struct btrfs_key found_key;
352 	struct extent_buffer *eb;
353 	struct btrfs_extent_item *ei;
354 	struct scrub_warning swarn;
355 	unsigned long ptr = 0;
356 	u64 extent_item_pos;
357 	u64 flags = 0;
358 	u64 ref_root;
359 	u32 item_size;
360 	u8 ref_level;
361 	const int bufsize = 4096;
362 	int ret;
363 
364 	path = btrfs_alloc_path();
365 
366 	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
367 	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
368 	BUG_ON(sblock->page_count < 1);
369 	swarn.sector = (sblock->pagev[0].physical) >> 9;
370 	swarn.logical = sblock->pagev[0].logical;
371 	swarn.errstr = errstr;
372 	swarn.dev = dev;
373 	swarn.msg_bufsize = bufsize;
374 	swarn.scratch_bufsize = bufsize;
375 
376 	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
377 		goto out;
378 
379 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
380 				  &flags);
381 	if (ret < 0)
382 		goto out;
383 
384 	extent_item_pos = swarn.logical - found_key.objectid;
385 	swarn.extent_item_size = found_key.offset;
386 
387 	eb = path->nodes[0];
388 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
389 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
390 	btrfs_release_path(path);
391 
392 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
393 		do {
394 			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
395 							&ref_root, &ref_level);
396 			printk_in_rcu(KERN_WARNING
397 				"btrfs: %s at logical %llu on dev %s, "
398 				"sector %llu: metadata %s (level %d) in tree "
399 				"%llu\n", errstr, swarn.logical,
400 				rcu_str_deref(dev->name),
401 				(unsigned long long)swarn.sector,
402 				ref_level ? "node" : "leaf",
403 				ret < 0 ? -1 : ref_level,
404 				ret < 0 ? -1 : ref_root);
405 		} while (ret != 1);
406 	} else {
407 		swarn.path = path;
408 		iterate_extent_inodes(fs_info, found_key.objectid,
409 					extent_item_pos, 1,
410 					scrub_print_warning_inode, &swarn);
411 	}
412 
413 out:
414 	btrfs_free_path(path);
415 	kfree(swarn.scratch_buf);
416 	kfree(swarn.msg_buf);
417 }
418 
419 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
420 {
421 	struct page *page = NULL;
422 	unsigned long index;
423 	struct scrub_fixup_nodatasum *fixup = ctx;
424 	int ret;
425 	int corrected = 0;
426 	struct btrfs_key key;
427 	struct inode *inode = NULL;
428 	u64 end = offset + PAGE_SIZE - 1;
429 	struct btrfs_root *local_root;
430 
431 	key.objectid = root;
432 	key.type = BTRFS_ROOT_ITEM_KEY;
433 	key.offset = (u64)-1;
434 	local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
435 	if (IS_ERR(local_root))
436 		return PTR_ERR(local_root);
437 
438 	key.type = BTRFS_INODE_ITEM_KEY;
439 	key.objectid = inum;
440 	key.offset = 0;
441 	inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
442 	if (IS_ERR(inode))
443 		return PTR_ERR(inode);
444 
445 	index = offset >> PAGE_CACHE_SHIFT;
446 
447 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
448 	if (!page) {
449 		ret = -ENOMEM;
450 		goto out;
451 	}
452 
453 	if (PageUptodate(page)) {
454 		struct btrfs_mapping_tree *map_tree;
455 		if (PageDirty(page)) {
456 			/*
457 			 * we need to write the data to the defect sector. the
458 			 * data that was in that sector is not in memory,
459 			 * because the page was modified. we must not write the
460 			 * modified page to that sector.
461 			 *
462 			 * TODO: what could be done here: wait for the delalloc
463 			 *       runner to write out that page (might involve
464 			 *       COW) and see whether the sector is still
465 			 *       referenced afterwards.
466 			 *
467 			 * For the meantime, we'll treat this error
468 			 * incorrectable, although there is a chance that a
469 			 * later scrub will find the bad sector again and that
470 			 * there's no dirty page in memory, then.
471 			 */
472 			ret = -EIO;
473 			goto out;
474 		}
475 		map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
476 		ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
477 					fixup->logical, page,
478 					fixup->mirror_num);
479 		unlock_page(page);
480 		corrected = !ret;
481 	} else {
482 		/*
483 		 * we need to get good data first. the general readpage path
484 		 * will call repair_io_failure for us, we just have to make
485 		 * sure we read the bad mirror.
486 		 */
487 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
488 					EXTENT_DAMAGED, GFP_NOFS);
489 		if (ret) {
490 			/* set_extent_bits should give proper error */
491 			WARN_ON(ret > 0);
492 			if (ret > 0)
493 				ret = -EFAULT;
494 			goto out;
495 		}
496 
497 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
498 						btrfs_get_extent,
499 						fixup->mirror_num);
500 		wait_on_page_locked(page);
501 
502 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
503 						end, EXTENT_DAMAGED, 0, NULL);
504 		if (!corrected)
505 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
506 						EXTENT_DAMAGED, GFP_NOFS);
507 	}
508 
509 out:
510 	if (page)
511 		put_page(page);
512 	if (inode)
513 		iput(inode);
514 
515 	if (ret < 0)
516 		return ret;
517 
518 	if (ret == 0 && corrected) {
519 		/*
520 		 * we only need to call readpage for one of the inodes belonging
521 		 * to this extent. so make iterate_extent_inodes stop
522 		 */
523 		return 1;
524 	}
525 
526 	return -EIO;
527 }
528 
529 static void scrub_fixup_nodatasum(struct btrfs_work *work)
530 {
531 	int ret;
532 	struct scrub_fixup_nodatasum *fixup;
533 	struct scrub_dev *sdev;
534 	struct btrfs_trans_handle *trans = NULL;
535 	struct btrfs_fs_info *fs_info;
536 	struct btrfs_path *path;
537 	int uncorrectable = 0;
538 
539 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
540 	sdev = fixup->sdev;
541 	fs_info = fixup->root->fs_info;
542 
543 	path = btrfs_alloc_path();
544 	if (!path) {
545 		spin_lock(&sdev->stat_lock);
546 		++sdev->stat.malloc_errors;
547 		spin_unlock(&sdev->stat_lock);
548 		uncorrectable = 1;
549 		goto out;
550 	}
551 
552 	trans = btrfs_join_transaction(fixup->root);
553 	if (IS_ERR(trans)) {
554 		uncorrectable = 1;
555 		goto out;
556 	}
557 
558 	/*
559 	 * the idea is to trigger a regular read through the standard path. we
560 	 * read a page from the (failed) logical address by specifying the
561 	 * corresponding copynum of the failed sector. thus, that readpage is
562 	 * expected to fail.
563 	 * that is the point where on-the-fly error correction will kick in
564 	 * (once it's finished) and rewrite the failed sector if a good copy
565 	 * can be found.
566 	 */
567 	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
568 						path, scrub_fixup_readpage,
569 						fixup);
570 	if (ret < 0) {
571 		uncorrectable = 1;
572 		goto out;
573 	}
574 	WARN_ON(ret != 1);
575 
576 	spin_lock(&sdev->stat_lock);
577 	++sdev->stat.corrected_errors;
578 	spin_unlock(&sdev->stat_lock);
579 
580 out:
581 	if (trans && !IS_ERR(trans))
582 		btrfs_end_transaction(trans, fixup->root);
583 	if (uncorrectable) {
584 		spin_lock(&sdev->stat_lock);
585 		++sdev->stat.uncorrectable_errors;
586 		spin_unlock(&sdev->stat_lock);
587 
588 		printk_ratelimited_in_rcu(KERN_ERR
589 			"btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
590 			(unsigned long long)fixup->logical,
591 			rcu_str_deref(sdev->dev->name));
592 	}
593 
594 	btrfs_free_path(path);
595 	kfree(fixup);
596 
597 	/* see caller why we're pretending to be paused in the scrub counters */
598 	mutex_lock(&fs_info->scrub_lock);
599 	atomic_dec(&fs_info->scrubs_running);
600 	atomic_dec(&fs_info->scrubs_paused);
601 	mutex_unlock(&fs_info->scrub_lock);
602 	atomic_dec(&sdev->fixup_cnt);
603 	wake_up(&fs_info->scrub_pause_wait);
604 	wake_up(&sdev->list_wait);
605 }
606 
607 /*
608  * scrub_handle_errored_block gets called when either verification of the
609  * pages failed or the bio failed to read, e.g. with EIO. In the latter
610  * case, this function handles all pages in the bio, even though only one
611  * may be bad.
612  * The goal of this function is to repair the errored block by using the
613  * contents of one of the mirrors.
614  */
615 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
616 {
617 	struct scrub_dev *sdev = sblock_to_check->sdev;
618 	struct btrfs_fs_info *fs_info;
619 	u64 length;
620 	u64 logical;
621 	u64 generation;
622 	unsigned int failed_mirror_index;
623 	unsigned int is_metadata;
624 	unsigned int have_csum;
625 	u8 *csum;
626 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
627 	struct scrub_block *sblock_bad;
628 	int ret;
629 	int mirror_index;
630 	int page_num;
631 	int success;
632 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
633 				      DEFAULT_RATELIMIT_BURST);
634 
635 	BUG_ON(sblock_to_check->page_count < 1);
636 	fs_info = sdev->dev->dev_root->fs_info;
637 	length = sblock_to_check->page_count * PAGE_SIZE;
638 	logical = sblock_to_check->pagev[0].logical;
639 	generation = sblock_to_check->pagev[0].generation;
640 	BUG_ON(sblock_to_check->pagev[0].mirror_num < 1);
641 	failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1;
642 	is_metadata = !(sblock_to_check->pagev[0].flags &
643 			BTRFS_EXTENT_FLAG_DATA);
644 	have_csum = sblock_to_check->pagev[0].have_csum;
645 	csum = sblock_to_check->pagev[0].csum;
646 
647 	/*
648 	 * read all mirrors one after the other. This includes to
649 	 * re-read the extent or metadata block that failed (that was
650 	 * the cause that this fixup code is called) another time,
651 	 * page by page this time in order to know which pages
652 	 * caused I/O errors and which ones are good (for all mirrors).
653 	 * It is the goal to handle the situation when more than one
654 	 * mirror contains I/O errors, but the errors do not
655 	 * overlap, i.e. the data can be repaired by selecting the
656 	 * pages from those mirrors without I/O error on the
657 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
658 	 * would be that mirror #1 has an I/O error on the first page,
659 	 * the second page is good, and mirror #2 has an I/O error on
660 	 * the second page, but the first page is good.
661 	 * Then the first page of the first mirror can be repaired by
662 	 * taking the first page of the second mirror, and the
663 	 * second page of the second mirror can be repaired by
664 	 * copying the contents of the 2nd page of the 1st mirror.
665 	 * One more note: if the pages of one mirror contain I/O
666 	 * errors, the checksum cannot be verified. In order to get
667 	 * the best data for repairing, the first attempt is to find
668 	 * a mirror without I/O errors and with a validated checksum.
669 	 * Only if this is not possible, the pages are picked from
670 	 * mirrors with I/O errors without considering the checksum.
671 	 * If the latter is the case, at the end, the checksum of the
672 	 * repaired area is verified in order to correctly maintain
673 	 * the statistics.
674 	 */
675 
676 	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
677 				     sizeof(*sblocks_for_recheck),
678 				     GFP_NOFS);
679 	if (!sblocks_for_recheck) {
680 		spin_lock(&sdev->stat_lock);
681 		sdev->stat.malloc_errors++;
682 		sdev->stat.read_errors++;
683 		sdev->stat.uncorrectable_errors++;
684 		spin_unlock(&sdev->stat_lock);
685 		btrfs_dev_stat_inc_and_print(sdev->dev,
686 					     BTRFS_DEV_STAT_READ_ERRS);
687 		goto out;
688 	}
689 
690 	/* setup the context, map the logical blocks and alloc the pages */
691 	ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length,
692 					logical, sblocks_for_recheck);
693 	if (ret) {
694 		spin_lock(&sdev->stat_lock);
695 		sdev->stat.read_errors++;
696 		sdev->stat.uncorrectable_errors++;
697 		spin_unlock(&sdev->stat_lock);
698 		btrfs_dev_stat_inc_and_print(sdev->dev,
699 					     BTRFS_DEV_STAT_READ_ERRS);
700 		goto out;
701 	}
702 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
703 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
704 
705 	/* build and submit the bios for the failed mirror, check checksums */
706 	ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
707 				  csum, generation, sdev->csum_size);
708 	if (ret) {
709 		spin_lock(&sdev->stat_lock);
710 		sdev->stat.read_errors++;
711 		sdev->stat.uncorrectable_errors++;
712 		spin_unlock(&sdev->stat_lock);
713 		btrfs_dev_stat_inc_and_print(sdev->dev,
714 					     BTRFS_DEV_STAT_READ_ERRS);
715 		goto out;
716 	}
717 
718 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
719 	    sblock_bad->no_io_error_seen) {
720 		/*
721 		 * the error disappeared after reading page by page, or
722 		 * the area was part of a huge bio and other parts of the
723 		 * bio caused I/O errors, or the block layer merged several
724 		 * read requests into one and the error is caused by a
725 		 * different bio (usually one of the two latter cases is
726 		 * the cause)
727 		 */
728 		spin_lock(&sdev->stat_lock);
729 		sdev->stat.unverified_errors++;
730 		spin_unlock(&sdev->stat_lock);
731 
732 		goto out;
733 	}
734 
735 	if (!sblock_bad->no_io_error_seen) {
736 		spin_lock(&sdev->stat_lock);
737 		sdev->stat.read_errors++;
738 		spin_unlock(&sdev->stat_lock);
739 		if (__ratelimit(&_rs))
740 			scrub_print_warning("i/o error", sblock_to_check);
741 		btrfs_dev_stat_inc_and_print(sdev->dev,
742 					     BTRFS_DEV_STAT_READ_ERRS);
743 	} else if (sblock_bad->checksum_error) {
744 		spin_lock(&sdev->stat_lock);
745 		sdev->stat.csum_errors++;
746 		spin_unlock(&sdev->stat_lock);
747 		if (__ratelimit(&_rs))
748 			scrub_print_warning("checksum error", sblock_to_check);
749 		btrfs_dev_stat_inc_and_print(sdev->dev,
750 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
751 	} else if (sblock_bad->header_error) {
752 		spin_lock(&sdev->stat_lock);
753 		sdev->stat.verify_errors++;
754 		spin_unlock(&sdev->stat_lock);
755 		if (__ratelimit(&_rs))
756 			scrub_print_warning("checksum/header error",
757 					    sblock_to_check);
758 		if (sblock_bad->generation_error)
759 			btrfs_dev_stat_inc_and_print(sdev->dev,
760 				BTRFS_DEV_STAT_GENERATION_ERRS);
761 		else
762 			btrfs_dev_stat_inc_and_print(sdev->dev,
763 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
764 	}
765 
766 	if (sdev->readonly)
767 		goto did_not_correct_error;
768 
769 	if (!is_metadata && !have_csum) {
770 		struct scrub_fixup_nodatasum *fixup_nodatasum;
771 
772 		/*
773 		 * !is_metadata and !have_csum, this means that the data
774 		 * might not be COW'ed, that it might be modified
775 		 * concurrently. The general strategy to work on the
776 		 * commit root does not help in the case when COW is not
777 		 * used.
778 		 */
779 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
780 		if (!fixup_nodatasum)
781 			goto did_not_correct_error;
782 		fixup_nodatasum->sdev = sdev;
783 		fixup_nodatasum->logical = logical;
784 		fixup_nodatasum->root = fs_info->extent_root;
785 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
786 		/*
787 		 * increment scrubs_running to prevent cancel requests from
788 		 * completing as long as a fixup worker is running. we must also
789 		 * increment scrubs_paused to prevent deadlocking on pause
790 		 * requests used for transactions commits (as the worker uses a
791 		 * transaction context). it is safe to regard the fixup worker
792 		 * as paused for all matters practical. effectively, we only
793 		 * avoid cancellation requests from completing.
794 		 */
795 		mutex_lock(&fs_info->scrub_lock);
796 		atomic_inc(&fs_info->scrubs_running);
797 		atomic_inc(&fs_info->scrubs_paused);
798 		mutex_unlock(&fs_info->scrub_lock);
799 		atomic_inc(&sdev->fixup_cnt);
800 		fixup_nodatasum->work.func = scrub_fixup_nodatasum;
801 		btrfs_queue_worker(&fs_info->scrub_workers,
802 				   &fixup_nodatasum->work);
803 		goto out;
804 	}
805 
806 	/*
807 	 * now build and submit the bios for the other mirrors, check
808 	 * checksums
809 	 */
810 	for (mirror_index = 0;
811 	     mirror_index < BTRFS_MAX_MIRRORS &&
812 	     sblocks_for_recheck[mirror_index].page_count > 0;
813 	     mirror_index++) {
814 		if (mirror_index == failed_mirror_index)
815 			continue;
816 
817 		/* build and submit the bios, check checksums */
818 		ret = scrub_recheck_block(fs_info,
819 					  sblocks_for_recheck + mirror_index,
820 					  is_metadata, have_csum, csum,
821 					  generation, sdev->csum_size);
822 		if (ret)
823 			goto did_not_correct_error;
824 	}
825 
826 	/*
827 	 * first try to pick the mirror which is completely without I/O
828 	 * errors and also does not have a checksum error.
829 	 * If one is found, and if a checksum is present, the full block
830 	 * that is known to contain an error is rewritten. Afterwards
831 	 * the block is known to be corrected.
832 	 * If a mirror is found which is completely correct, and no
833 	 * checksum is present, only those pages are rewritten that had
834 	 * an I/O error in the block to be repaired, since it cannot be
835 	 * determined, which copy of the other pages is better (and it
836 	 * could happen otherwise that a correct page would be
837 	 * overwritten by a bad one).
838 	 */
839 	for (mirror_index = 0;
840 	     mirror_index < BTRFS_MAX_MIRRORS &&
841 	     sblocks_for_recheck[mirror_index].page_count > 0;
842 	     mirror_index++) {
843 		struct scrub_block *sblock_other = sblocks_for_recheck +
844 						   mirror_index;
845 
846 		if (!sblock_other->header_error &&
847 		    !sblock_other->checksum_error &&
848 		    sblock_other->no_io_error_seen) {
849 			int force_write = is_metadata || have_csum;
850 
851 			ret = scrub_repair_block_from_good_copy(sblock_bad,
852 								sblock_other,
853 								force_write);
854 			if (0 == ret)
855 				goto corrected_error;
856 		}
857 	}
858 
859 	/*
860 	 * in case of I/O errors in the area that is supposed to be
861 	 * repaired, continue by picking good copies of those pages.
862 	 * Select the good pages from mirrors to rewrite bad pages from
863 	 * the area to fix. Afterwards verify the checksum of the block
864 	 * that is supposed to be repaired. This verification step is
865 	 * only done for the purpose of statistic counting and for the
866 	 * final scrub report, whether errors remain.
867 	 * A perfect algorithm could make use of the checksum and try
868 	 * all possible combinations of pages from the different mirrors
869 	 * until the checksum verification succeeds. For example, when
870 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
871 	 * of mirror #2 is readable but the final checksum test fails,
872 	 * then the 2nd page of mirror #3 could be tried, whether now
873 	 * the final checksum succeedes. But this would be a rare
874 	 * exception and is therefore not implemented. At least it is
875 	 * avoided that the good copy is overwritten.
876 	 * A more useful improvement would be to pick the sectors
877 	 * without I/O error based on sector sizes (512 bytes on legacy
878 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
879 	 * mirror could be repaired by taking 512 byte of a different
880 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
881 	 * area are unreadable.
882 	 */
883 
884 	/* can only fix I/O errors from here on */
885 	if (sblock_bad->no_io_error_seen)
886 		goto did_not_correct_error;
887 
888 	success = 1;
889 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
890 		struct scrub_page *page_bad = sblock_bad->pagev + page_num;
891 
892 		if (!page_bad->io_error)
893 			continue;
894 
895 		for (mirror_index = 0;
896 		     mirror_index < BTRFS_MAX_MIRRORS &&
897 		     sblocks_for_recheck[mirror_index].page_count > 0;
898 		     mirror_index++) {
899 			struct scrub_block *sblock_other = sblocks_for_recheck +
900 							   mirror_index;
901 			struct scrub_page *page_other = sblock_other->pagev +
902 							page_num;
903 
904 			if (!page_other->io_error) {
905 				ret = scrub_repair_page_from_good_copy(
906 					sblock_bad, sblock_other, page_num, 0);
907 				if (0 == ret) {
908 					page_bad->io_error = 0;
909 					break; /* succeeded for this page */
910 				}
911 			}
912 		}
913 
914 		if (page_bad->io_error) {
915 			/* did not find a mirror to copy the page from */
916 			success = 0;
917 		}
918 	}
919 
920 	if (success) {
921 		if (is_metadata || have_csum) {
922 			/*
923 			 * need to verify the checksum now that all
924 			 * sectors on disk are repaired (the write
925 			 * request for data to be repaired is on its way).
926 			 * Just be lazy and use scrub_recheck_block()
927 			 * which re-reads the data before the checksum
928 			 * is verified, but most likely the data comes out
929 			 * of the page cache.
930 			 */
931 			ret = scrub_recheck_block(fs_info, sblock_bad,
932 						  is_metadata, have_csum, csum,
933 						  generation, sdev->csum_size);
934 			if (!ret && !sblock_bad->header_error &&
935 			    !sblock_bad->checksum_error &&
936 			    sblock_bad->no_io_error_seen)
937 				goto corrected_error;
938 			else
939 				goto did_not_correct_error;
940 		} else {
941 corrected_error:
942 			spin_lock(&sdev->stat_lock);
943 			sdev->stat.corrected_errors++;
944 			spin_unlock(&sdev->stat_lock);
945 			printk_ratelimited_in_rcu(KERN_ERR
946 				"btrfs: fixed up error at logical %llu on dev %s\n",
947 				(unsigned long long)logical,
948 				rcu_str_deref(sdev->dev->name));
949 		}
950 	} else {
951 did_not_correct_error:
952 		spin_lock(&sdev->stat_lock);
953 		sdev->stat.uncorrectable_errors++;
954 		spin_unlock(&sdev->stat_lock);
955 		printk_ratelimited_in_rcu(KERN_ERR
956 			"btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
957 			(unsigned long long)logical,
958 			rcu_str_deref(sdev->dev->name));
959 	}
960 
961 out:
962 	if (sblocks_for_recheck) {
963 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
964 		     mirror_index++) {
965 			struct scrub_block *sblock = sblocks_for_recheck +
966 						     mirror_index;
967 			int page_index;
968 
969 			for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO;
970 			     page_index++)
971 				if (sblock->pagev[page_index].page)
972 					__free_page(
973 						sblock->pagev[page_index].page);
974 		}
975 		kfree(sblocks_for_recheck);
976 	}
977 
978 	return 0;
979 }
980 
981 static int scrub_setup_recheck_block(struct scrub_dev *sdev,
982 				     struct btrfs_mapping_tree *map_tree,
983 				     u64 length, u64 logical,
984 				     struct scrub_block *sblocks_for_recheck)
985 {
986 	int page_index;
987 	int mirror_index;
988 	int ret;
989 
990 	/*
991 	 * note: the three members sdev, ref_count and outstanding_pages
992 	 * are not used (and not set) in the blocks that are used for
993 	 * the recheck procedure
994 	 */
995 
996 	page_index = 0;
997 	while (length > 0) {
998 		u64 sublen = min_t(u64, length, PAGE_SIZE);
999 		u64 mapped_length = sublen;
1000 		struct btrfs_bio *bbio = NULL;
1001 
1002 		/*
1003 		 * with a length of PAGE_SIZE, each returned stripe
1004 		 * represents one mirror
1005 		 */
1006 		ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length,
1007 				      &bbio, 0);
1008 		if (ret || !bbio || mapped_length < sublen) {
1009 			kfree(bbio);
1010 			return -EIO;
1011 		}
1012 
1013 		BUG_ON(page_index >= SCRUB_PAGES_PER_BIO);
1014 		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1015 		     mirror_index++) {
1016 			struct scrub_block *sblock;
1017 			struct scrub_page *page;
1018 
1019 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1020 				continue;
1021 
1022 			sblock = sblocks_for_recheck + mirror_index;
1023 			page = sblock->pagev + page_index;
1024 			page->logical = logical;
1025 			page->physical = bbio->stripes[mirror_index].physical;
1026 			/* for missing devices, dev->bdev is NULL */
1027 			page->dev = bbio->stripes[mirror_index].dev;
1028 			page->mirror_num = mirror_index + 1;
1029 			page->page = alloc_page(GFP_NOFS);
1030 			if (!page->page) {
1031 				spin_lock(&sdev->stat_lock);
1032 				sdev->stat.malloc_errors++;
1033 				spin_unlock(&sdev->stat_lock);
1034 				kfree(bbio);
1035 				return -ENOMEM;
1036 			}
1037 			sblock->page_count++;
1038 		}
1039 		kfree(bbio);
1040 		length -= sublen;
1041 		logical += sublen;
1042 		page_index++;
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 /*
1049  * this function will check the on disk data for checksum errors, header
1050  * errors and read I/O errors. If any I/O errors happen, the exact pages
1051  * which are errored are marked as being bad. The goal is to enable scrub
1052  * to take those pages that are not errored from all the mirrors so that
1053  * the pages that are errored in the just handled mirror can be repaired.
1054  */
1055 static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
1056 			       struct scrub_block *sblock, int is_metadata,
1057 			       int have_csum, u8 *csum, u64 generation,
1058 			       u16 csum_size)
1059 {
1060 	int page_num;
1061 
1062 	sblock->no_io_error_seen = 1;
1063 	sblock->header_error = 0;
1064 	sblock->checksum_error = 0;
1065 
1066 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1067 		struct bio *bio;
1068 		int ret;
1069 		struct scrub_page *page = sblock->pagev + page_num;
1070 		DECLARE_COMPLETION_ONSTACK(complete);
1071 
1072 		if (page->dev->bdev == NULL) {
1073 			page->io_error = 1;
1074 			sblock->no_io_error_seen = 0;
1075 			continue;
1076 		}
1077 
1078 		BUG_ON(!page->page);
1079 		bio = bio_alloc(GFP_NOFS, 1);
1080 		if (!bio)
1081 			return -EIO;
1082 		bio->bi_bdev = page->dev->bdev;
1083 		bio->bi_sector = page->physical >> 9;
1084 		bio->bi_end_io = scrub_complete_bio_end_io;
1085 		bio->bi_private = &complete;
1086 
1087 		ret = bio_add_page(bio, page->page, PAGE_SIZE, 0);
1088 		if (PAGE_SIZE != ret) {
1089 			bio_put(bio);
1090 			return -EIO;
1091 		}
1092 		btrfsic_submit_bio(READ, bio);
1093 
1094 		/* this will also unplug the queue */
1095 		wait_for_completion(&complete);
1096 
1097 		page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1098 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1099 			sblock->no_io_error_seen = 0;
1100 		bio_put(bio);
1101 	}
1102 
1103 	if (sblock->no_io_error_seen)
1104 		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1105 					     have_csum, csum, generation,
1106 					     csum_size);
1107 
1108 	return 0;
1109 }
1110 
1111 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1112 					 struct scrub_block *sblock,
1113 					 int is_metadata, int have_csum,
1114 					 const u8 *csum, u64 generation,
1115 					 u16 csum_size)
1116 {
1117 	int page_num;
1118 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1119 	u32 crc = ~(u32)0;
1120 	struct btrfs_root *root = fs_info->extent_root;
1121 	void *mapped_buffer;
1122 
1123 	BUG_ON(!sblock->pagev[0].page);
1124 	if (is_metadata) {
1125 		struct btrfs_header *h;
1126 
1127 		mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1128 		h = (struct btrfs_header *)mapped_buffer;
1129 
1130 		if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) ||
1131 		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1132 		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1133 			   BTRFS_UUID_SIZE)) {
1134 			sblock->header_error = 1;
1135 		} else if (generation != le64_to_cpu(h->generation)) {
1136 			sblock->header_error = 1;
1137 			sblock->generation_error = 1;
1138 		}
1139 		csum = h->csum;
1140 	} else {
1141 		if (!have_csum)
1142 			return;
1143 
1144 		mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1145 	}
1146 
1147 	for (page_num = 0;;) {
1148 		if (page_num == 0 && is_metadata)
1149 			crc = btrfs_csum_data(root,
1150 				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1151 				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1152 		else
1153 			crc = btrfs_csum_data(root, mapped_buffer, crc,
1154 					      PAGE_SIZE);
1155 
1156 		kunmap_atomic(mapped_buffer);
1157 		page_num++;
1158 		if (page_num >= sblock->page_count)
1159 			break;
1160 		BUG_ON(!sblock->pagev[page_num].page);
1161 
1162 		mapped_buffer = kmap_atomic(sblock->pagev[page_num].page);
1163 	}
1164 
1165 	btrfs_csum_final(crc, calculated_csum);
1166 	if (memcmp(calculated_csum, csum, csum_size))
1167 		sblock->checksum_error = 1;
1168 }
1169 
1170 static void scrub_complete_bio_end_io(struct bio *bio, int err)
1171 {
1172 	complete((struct completion *)bio->bi_private);
1173 }
1174 
1175 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1176 					     struct scrub_block *sblock_good,
1177 					     int force_write)
1178 {
1179 	int page_num;
1180 	int ret = 0;
1181 
1182 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1183 		int ret_sub;
1184 
1185 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1186 							   sblock_good,
1187 							   page_num,
1188 							   force_write);
1189 		if (ret_sub)
1190 			ret = ret_sub;
1191 	}
1192 
1193 	return ret;
1194 }
1195 
1196 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1197 					    struct scrub_block *sblock_good,
1198 					    int page_num, int force_write)
1199 {
1200 	struct scrub_page *page_bad = sblock_bad->pagev + page_num;
1201 	struct scrub_page *page_good = sblock_good->pagev + page_num;
1202 
1203 	BUG_ON(sblock_bad->pagev[page_num].page == NULL);
1204 	BUG_ON(sblock_good->pagev[page_num].page == NULL);
1205 	if (force_write || sblock_bad->header_error ||
1206 	    sblock_bad->checksum_error || page_bad->io_error) {
1207 		struct bio *bio;
1208 		int ret;
1209 		DECLARE_COMPLETION_ONSTACK(complete);
1210 
1211 		bio = bio_alloc(GFP_NOFS, 1);
1212 		if (!bio)
1213 			return -EIO;
1214 		bio->bi_bdev = page_bad->dev->bdev;
1215 		bio->bi_sector = page_bad->physical >> 9;
1216 		bio->bi_end_io = scrub_complete_bio_end_io;
1217 		bio->bi_private = &complete;
1218 
1219 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1220 		if (PAGE_SIZE != ret) {
1221 			bio_put(bio);
1222 			return -EIO;
1223 		}
1224 		btrfsic_submit_bio(WRITE, bio);
1225 
1226 		/* this will also unplug the queue */
1227 		wait_for_completion(&complete);
1228 		if (!bio_flagged(bio, BIO_UPTODATE)) {
1229 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1230 				BTRFS_DEV_STAT_WRITE_ERRS);
1231 			bio_put(bio);
1232 			return -EIO;
1233 		}
1234 		bio_put(bio);
1235 	}
1236 
1237 	return 0;
1238 }
1239 
1240 static void scrub_checksum(struct scrub_block *sblock)
1241 {
1242 	u64 flags;
1243 	int ret;
1244 
1245 	BUG_ON(sblock->page_count < 1);
1246 	flags = sblock->pagev[0].flags;
1247 	ret = 0;
1248 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1249 		ret = scrub_checksum_data(sblock);
1250 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1251 		ret = scrub_checksum_tree_block(sblock);
1252 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1253 		(void)scrub_checksum_super(sblock);
1254 	else
1255 		WARN_ON(1);
1256 	if (ret)
1257 		scrub_handle_errored_block(sblock);
1258 }
1259 
1260 static int scrub_checksum_data(struct scrub_block *sblock)
1261 {
1262 	struct scrub_dev *sdev = sblock->sdev;
1263 	u8 csum[BTRFS_CSUM_SIZE];
1264 	u8 *on_disk_csum;
1265 	struct page *page;
1266 	void *buffer;
1267 	u32 crc = ~(u32)0;
1268 	int fail = 0;
1269 	struct btrfs_root *root = sdev->dev->dev_root;
1270 	u64 len;
1271 	int index;
1272 
1273 	BUG_ON(sblock->page_count < 1);
1274 	if (!sblock->pagev[0].have_csum)
1275 		return 0;
1276 
1277 	on_disk_csum = sblock->pagev[0].csum;
1278 	page = sblock->pagev[0].page;
1279 	buffer = kmap_atomic(page);
1280 
1281 	len = sdev->sectorsize;
1282 	index = 0;
1283 	for (;;) {
1284 		u64 l = min_t(u64, len, PAGE_SIZE);
1285 
1286 		crc = btrfs_csum_data(root, buffer, crc, l);
1287 		kunmap_atomic(buffer);
1288 		len -= l;
1289 		if (len == 0)
1290 			break;
1291 		index++;
1292 		BUG_ON(index >= sblock->page_count);
1293 		BUG_ON(!sblock->pagev[index].page);
1294 		page = sblock->pagev[index].page;
1295 		buffer = kmap_atomic(page);
1296 	}
1297 
1298 	btrfs_csum_final(crc, csum);
1299 	if (memcmp(csum, on_disk_csum, sdev->csum_size))
1300 		fail = 1;
1301 
1302 	return fail;
1303 }
1304 
1305 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1306 {
1307 	struct scrub_dev *sdev = sblock->sdev;
1308 	struct btrfs_header *h;
1309 	struct btrfs_root *root = sdev->dev->dev_root;
1310 	struct btrfs_fs_info *fs_info = root->fs_info;
1311 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1312 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1313 	struct page *page;
1314 	void *mapped_buffer;
1315 	u64 mapped_size;
1316 	void *p;
1317 	u32 crc = ~(u32)0;
1318 	int fail = 0;
1319 	int crc_fail = 0;
1320 	u64 len;
1321 	int index;
1322 
1323 	BUG_ON(sblock->page_count < 1);
1324 	page = sblock->pagev[0].page;
1325 	mapped_buffer = kmap_atomic(page);
1326 	h = (struct btrfs_header *)mapped_buffer;
1327 	memcpy(on_disk_csum, h->csum, sdev->csum_size);
1328 
1329 	/*
1330 	 * we don't use the getter functions here, as we
1331 	 * a) don't have an extent buffer and
1332 	 * b) the page is already kmapped
1333 	 */
1334 
1335 	if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr))
1336 		++fail;
1337 
1338 	if (sblock->pagev[0].generation != le64_to_cpu(h->generation))
1339 		++fail;
1340 
1341 	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1342 		++fail;
1343 
1344 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1345 		   BTRFS_UUID_SIZE))
1346 		++fail;
1347 
1348 	BUG_ON(sdev->nodesize != sdev->leafsize);
1349 	len = sdev->nodesize - BTRFS_CSUM_SIZE;
1350 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1351 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1352 	index = 0;
1353 	for (;;) {
1354 		u64 l = min_t(u64, len, mapped_size);
1355 
1356 		crc = btrfs_csum_data(root, p, crc, l);
1357 		kunmap_atomic(mapped_buffer);
1358 		len -= l;
1359 		if (len == 0)
1360 			break;
1361 		index++;
1362 		BUG_ON(index >= sblock->page_count);
1363 		BUG_ON(!sblock->pagev[index].page);
1364 		page = sblock->pagev[index].page;
1365 		mapped_buffer = kmap_atomic(page);
1366 		mapped_size = PAGE_SIZE;
1367 		p = mapped_buffer;
1368 	}
1369 
1370 	btrfs_csum_final(crc, calculated_csum);
1371 	if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1372 		++crc_fail;
1373 
1374 	return fail || crc_fail;
1375 }
1376 
1377 static int scrub_checksum_super(struct scrub_block *sblock)
1378 {
1379 	struct btrfs_super_block *s;
1380 	struct scrub_dev *sdev = sblock->sdev;
1381 	struct btrfs_root *root = sdev->dev->dev_root;
1382 	struct btrfs_fs_info *fs_info = root->fs_info;
1383 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1384 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1385 	struct page *page;
1386 	void *mapped_buffer;
1387 	u64 mapped_size;
1388 	void *p;
1389 	u32 crc = ~(u32)0;
1390 	int fail_gen = 0;
1391 	int fail_cor = 0;
1392 	u64 len;
1393 	int index;
1394 
1395 	BUG_ON(sblock->page_count < 1);
1396 	page = sblock->pagev[0].page;
1397 	mapped_buffer = kmap_atomic(page);
1398 	s = (struct btrfs_super_block *)mapped_buffer;
1399 	memcpy(on_disk_csum, s->csum, sdev->csum_size);
1400 
1401 	if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr))
1402 		++fail_cor;
1403 
1404 	if (sblock->pagev[0].generation != le64_to_cpu(s->generation))
1405 		++fail_gen;
1406 
1407 	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1408 		++fail_cor;
1409 
1410 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1411 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1412 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1413 	index = 0;
1414 	for (;;) {
1415 		u64 l = min_t(u64, len, mapped_size);
1416 
1417 		crc = btrfs_csum_data(root, p, crc, l);
1418 		kunmap_atomic(mapped_buffer);
1419 		len -= l;
1420 		if (len == 0)
1421 			break;
1422 		index++;
1423 		BUG_ON(index >= sblock->page_count);
1424 		BUG_ON(!sblock->pagev[index].page);
1425 		page = sblock->pagev[index].page;
1426 		mapped_buffer = kmap_atomic(page);
1427 		mapped_size = PAGE_SIZE;
1428 		p = mapped_buffer;
1429 	}
1430 
1431 	btrfs_csum_final(crc, calculated_csum);
1432 	if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1433 		++fail_cor;
1434 
1435 	if (fail_cor + fail_gen) {
1436 		/*
1437 		 * if we find an error in a super block, we just report it.
1438 		 * They will get written with the next transaction commit
1439 		 * anyway
1440 		 */
1441 		spin_lock(&sdev->stat_lock);
1442 		++sdev->stat.super_errors;
1443 		spin_unlock(&sdev->stat_lock);
1444 		if (fail_cor)
1445 			btrfs_dev_stat_inc_and_print(sdev->dev,
1446 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1447 		else
1448 			btrfs_dev_stat_inc_and_print(sdev->dev,
1449 				BTRFS_DEV_STAT_GENERATION_ERRS);
1450 	}
1451 
1452 	return fail_cor + fail_gen;
1453 }
1454 
1455 static void scrub_block_get(struct scrub_block *sblock)
1456 {
1457 	atomic_inc(&sblock->ref_count);
1458 }
1459 
1460 static void scrub_block_put(struct scrub_block *sblock)
1461 {
1462 	if (atomic_dec_and_test(&sblock->ref_count)) {
1463 		int i;
1464 
1465 		for (i = 0; i < sblock->page_count; i++)
1466 			if (sblock->pagev[i].page)
1467 				__free_page(sblock->pagev[i].page);
1468 		kfree(sblock);
1469 	}
1470 }
1471 
1472 static void scrub_submit(struct scrub_dev *sdev)
1473 {
1474 	struct scrub_bio *sbio;
1475 
1476 	if (sdev->curr == -1)
1477 		return;
1478 
1479 	sbio = sdev->bios[sdev->curr];
1480 	sdev->curr = -1;
1481 	atomic_inc(&sdev->in_flight);
1482 
1483 	btrfsic_submit_bio(READ, sbio->bio);
1484 }
1485 
1486 static int scrub_add_page_to_bio(struct scrub_dev *sdev,
1487 				 struct scrub_page *spage)
1488 {
1489 	struct scrub_block *sblock = spage->sblock;
1490 	struct scrub_bio *sbio;
1491 	int ret;
1492 
1493 again:
1494 	/*
1495 	 * grab a fresh bio or wait for one to become available
1496 	 */
1497 	while (sdev->curr == -1) {
1498 		spin_lock(&sdev->list_lock);
1499 		sdev->curr = sdev->first_free;
1500 		if (sdev->curr != -1) {
1501 			sdev->first_free = sdev->bios[sdev->curr]->next_free;
1502 			sdev->bios[sdev->curr]->next_free = -1;
1503 			sdev->bios[sdev->curr]->page_count = 0;
1504 			spin_unlock(&sdev->list_lock);
1505 		} else {
1506 			spin_unlock(&sdev->list_lock);
1507 			wait_event(sdev->list_wait, sdev->first_free != -1);
1508 		}
1509 	}
1510 	sbio = sdev->bios[sdev->curr];
1511 	if (sbio->page_count == 0) {
1512 		struct bio *bio;
1513 
1514 		sbio->physical = spage->physical;
1515 		sbio->logical = spage->logical;
1516 		bio = sbio->bio;
1517 		if (!bio) {
1518 			bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio);
1519 			if (!bio)
1520 				return -ENOMEM;
1521 			sbio->bio = bio;
1522 		}
1523 
1524 		bio->bi_private = sbio;
1525 		bio->bi_end_io = scrub_bio_end_io;
1526 		bio->bi_bdev = sdev->dev->bdev;
1527 		bio->bi_sector = spage->physical >> 9;
1528 		sbio->err = 0;
1529 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1530 		   spage->physical ||
1531 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1532 		   spage->logical) {
1533 		scrub_submit(sdev);
1534 		goto again;
1535 	}
1536 
1537 	sbio->pagev[sbio->page_count] = spage;
1538 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1539 	if (ret != PAGE_SIZE) {
1540 		if (sbio->page_count < 1) {
1541 			bio_put(sbio->bio);
1542 			sbio->bio = NULL;
1543 			return -EIO;
1544 		}
1545 		scrub_submit(sdev);
1546 		goto again;
1547 	}
1548 
1549 	scrub_block_get(sblock); /* one for the added page */
1550 	atomic_inc(&sblock->outstanding_pages);
1551 	sbio->page_count++;
1552 	if (sbio->page_count == sdev->pages_per_bio)
1553 		scrub_submit(sdev);
1554 
1555 	return 0;
1556 }
1557 
1558 static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
1559 		       u64 physical, u64 flags, u64 gen, int mirror_num,
1560 		       u8 *csum, int force)
1561 {
1562 	struct scrub_block *sblock;
1563 	int index;
1564 
1565 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1566 	if (!sblock) {
1567 		spin_lock(&sdev->stat_lock);
1568 		sdev->stat.malloc_errors++;
1569 		spin_unlock(&sdev->stat_lock);
1570 		return -ENOMEM;
1571 	}
1572 
1573 	/* one ref inside this function, plus one for each page later on */
1574 	atomic_set(&sblock->ref_count, 1);
1575 	sblock->sdev = sdev;
1576 	sblock->no_io_error_seen = 1;
1577 
1578 	for (index = 0; len > 0; index++) {
1579 		struct scrub_page *spage = sblock->pagev + index;
1580 		u64 l = min_t(u64, len, PAGE_SIZE);
1581 
1582 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
1583 		spage->page = alloc_page(GFP_NOFS);
1584 		if (!spage->page) {
1585 			spin_lock(&sdev->stat_lock);
1586 			sdev->stat.malloc_errors++;
1587 			spin_unlock(&sdev->stat_lock);
1588 			while (index > 0) {
1589 				index--;
1590 				__free_page(sblock->pagev[index].page);
1591 			}
1592 			kfree(sblock);
1593 			return -ENOMEM;
1594 		}
1595 		spage->sblock = sblock;
1596 		spage->dev = sdev->dev;
1597 		spage->flags = flags;
1598 		spage->generation = gen;
1599 		spage->logical = logical;
1600 		spage->physical = physical;
1601 		spage->mirror_num = mirror_num;
1602 		if (csum) {
1603 			spage->have_csum = 1;
1604 			memcpy(spage->csum, csum, sdev->csum_size);
1605 		} else {
1606 			spage->have_csum = 0;
1607 		}
1608 		sblock->page_count++;
1609 		len -= l;
1610 		logical += l;
1611 		physical += l;
1612 	}
1613 
1614 	BUG_ON(sblock->page_count == 0);
1615 	for (index = 0; index < sblock->page_count; index++) {
1616 		struct scrub_page *spage = sblock->pagev + index;
1617 		int ret;
1618 
1619 		ret = scrub_add_page_to_bio(sdev, spage);
1620 		if (ret) {
1621 			scrub_block_put(sblock);
1622 			return ret;
1623 		}
1624 	}
1625 
1626 	if (force)
1627 		scrub_submit(sdev);
1628 
1629 	/* last one frees, either here or in bio completion for last page */
1630 	scrub_block_put(sblock);
1631 	return 0;
1632 }
1633 
1634 static void scrub_bio_end_io(struct bio *bio, int err)
1635 {
1636 	struct scrub_bio *sbio = bio->bi_private;
1637 	struct scrub_dev *sdev = sbio->sdev;
1638 	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1639 
1640 	sbio->err = err;
1641 	sbio->bio = bio;
1642 
1643 	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
1644 }
1645 
1646 static void scrub_bio_end_io_worker(struct btrfs_work *work)
1647 {
1648 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1649 	struct scrub_dev *sdev = sbio->sdev;
1650 	int i;
1651 
1652 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO);
1653 	if (sbio->err) {
1654 		for (i = 0; i < sbio->page_count; i++) {
1655 			struct scrub_page *spage = sbio->pagev[i];
1656 
1657 			spage->io_error = 1;
1658 			spage->sblock->no_io_error_seen = 0;
1659 		}
1660 	}
1661 
1662 	/* now complete the scrub_block items that have all pages completed */
1663 	for (i = 0; i < sbio->page_count; i++) {
1664 		struct scrub_page *spage = sbio->pagev[i];
1665 		struct scrub_block *sblock = spage->sblock;
1666 
1667 		if (atomic_dec_and_test(&sblock->outstanding_pages))
1668 			scrub_block_complete(sblock);
1669 		scrub_block_put(sblock);
1670 	}
1671 
1672 	bio_put(sbio->bio);
1673 	sbio->bio = NULL;
1674 	spin_lock(&sdev->list_lock);
1675 	sbio->next_free = sdev->first_free;
1676 	sdev->first_free = sbio->index;
1677 	spin_unlock(&sdev->list_lock);
1678 	atomic_dec(&sdev->in_flight);
1679 	wake_up(&sdev->list_wait);
1680 }
1681 
1682 static void scrub_block_complete(struct scrub_block *sblock)
1683 {
1684 	if (!sblock->no_io_error_seen)
1685 		scrub_handle_errored_block(sblock);
1686 	else
1687 		scrub_checksum(sblock);
1688 }
1689 
1690 static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
1691 			   u8 *csum)
1692 {
1693 	struct btrfs_ordered_sum *sum = NULL;
1694 	int ret = 0;
1695 	unsigned long i;
1696 	unsigned long num_sectors;
1697 
1698 	while (!list_empty(&sdev->csum_list)) {
1699 		sum = list_first_entry(&sdev->csum_list,
1700 				       struct btrfs_ordered_sum, list);
1701 		if (sum->bytenr > logical)
1702 			return 0;
1703 		if (sum->bytenr + sum->len > logical)
1704 			break;
1705 
1706 		++sdev->stat.csum_discards;
1707 		list_del(&sum->list);
1708 		kfree(sum);
1709 		sum = NULL;
1710 	}
1711 	if (!sum)
1712 		return 0;
1713 
1714 	num_sectors = sum->len / sdev->sectorsize;
1715 	for (i = 0; i < num_sectors; ++i) {
1716 		if (sum->sums[i].bytenr == logical) {
1717 			memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
1718 			ret = 1;
1719 			break;
1720 		}
1721 	}
1722 	if (ret && i == num_sectors - 1) {
1723 		list_del(&sum->list);
1724 		kfree(sum);
1725 	}
1726 	return ret;
1727 }
1728 
1729 /* scrub extent tries to collect up to 64 kB for each bio */
1730 static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
1731 			u64 physical, u64 flags, u64 gen, int mirror_num)
1732 {
1733 	int ret;
1734 	u8 csum[BTRFS_CSUM_SIZE];
1735 	u32 blocksize;
1736 
1737 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
1738 		blocksize = sdev->sectorsize;
1739 		spin_lock(&sdev->stat_lock);
1740 		sdev->stat.data_extents_scrubbed++;
1741 		sdev->stat.data_bytes_scrubbed += len;
1742 		spin_unlock(&sdev->stat_lock);
1743 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1744 		BUG_ON(sdev->nodesize != sdev->leafsize);
1745 		blocksize = sdev->nodesize;
1746 		spin_lock(&sdev->stat_lock);
1747 		sdev->stat.tree_extents_scrubbed++;
1748 		sdev->stat.tree_bytes_scrubbed += len;
1749 		spin_unlock(&sdev->stat_lock);
1750 	} else {
1751 		blocksize = sdev->sectorsize;
1752 		BUG_ON(1);
1753 	}
1754 
1755 	while (len) {
1756 		u64 l = min_t(u64, len, blocksize);
1757 		int have_csum = 0;
1758 
1759 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
1760 			/* push csums to sbio */
1761 			have_csum = scrub_find_csum(sdev, logical, l, csum);
1762 			if (have_csum == 0)
1763 				++sdev->stat.no_csum;
1764 		}
1765 		ret = scrub_pages(sdev, logical, l, physical, flags, gen,
1766 				  mirror_num, have_csum ? csum : NULL, 0);
1767 		if (ret)
1768 			return ret;
1769 		len -= l;
1770 		logical += l;
1771 		physical += l;
1772 	}
1773 	return 0;
1774 }
1775 
1776 static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
1777 	struct map_lookup *map, int num, u64 base, u64 length)
1778 {
1779 	struct btrfs_path *path;
1780 	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1781 	struct btrfs_root *root = fs_info->extent_root;
1782 	struct btrfs_root *csum_root = fs_info->csum_root;
1783 	struct btrfs_extent_item *extent;
1784 	struct blk_plug plug;
1785 	u64 flags;
1786 	int ret;
1787 	int slot;
1788 	int i;
1789 	u64 nstripes;
1790 	struct extent_buffer *l;
1791 	struct btrfs_key key;
1792 	u64 physical;
1793 	u64 logical;
1794 	u64 generation;
1795 	int mirror_num;
1796 	struct reada_control *reada1;
1797 	struct reada_control *reada2;
1798 	struct btrfs_key key_start;
1799 	struct btrfs_key key_end;
1800 
1801 	u64 increment = map->stripe_len;
1802 	u64 offset;
1803 
1804 	nstripes = length;
1805 	offset = 0;
1806 	do_div(nstripes, map->stripe_len);
1807 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1808 		offset = map->stripe_len * num;
1809 		increment = map->stripe_len * map->num_stripes;
1810 		mirror_num = 1;
1811 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1812 		int factor = map->num_stripes / map->sub_stripes;
1813 		offset = map->stripe_len * (num / map->sub_stripes);
1814 		increment = map->stripe_len * factor;
1815 		mirror_num = num % map->sub_stripes + 1;
1816 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1817 		increment = map->stripe_len;
1818 		mirror_num = num % map->num_stripes + 1;
1819 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1820 		increment = map->stripe_len;
1821 		mirror_num = num % map->num_stripes + 1;
1822 	} else {
1823 		increment = map->stripe_len;
1824 		mirror_num = 1;
1825 	}
1826 
1827 	path = btrfs_alloc_path();
1828 	if (!path)
1829 		return -ENOMEM;
1830 
1831 	/*
1832 	 * work on commit root. The related disk blocks are static as
1833 	 * long as COW is applied. This means, it is save to rewrite
1834 	 * them to repair disk errors without any race conditions
1835 	 */
1836 	path->search_commit_root = 1;
1837 	path->skip_locking = 1;
1838 
1839 	/*
1840 	 * trigger the readahead for extent tree csum tree and wait for
1841 	 * completion. During readahead, the scrub is officially paused
1842 	 * to not hold off transaction commits
1843 	 */
1844 	logical = base + offset;
1845 
1846 	wait_event(sdev->list_wait,
1847 		   atomic_read(&sdev->in_flight) == 0);
1848 	atomic_inc(&fs_info->scrubs_paused);
1849 	wake_up(&fs_info->scrub_pause_wait);
1850 
1851 	/* FIXME it might be better to start readahead at commit root */
1852 	key_start.objectid = logical;
1853 	key_start.type = BTRFS_EXTENT_ITEM_KEY;
1854 	key_start.offset = (u64)0;
1855 	key_end.objectid = base + offset + nstripes * increment;
1856 	key_end.type = BTRFS_EXTENT_ITEM_KEY;
1857 	key_end.offset = (u64)0;
1858 	reada1 = btrfs_reada_add(root, &key_start, &key_end);
1859 
1860 	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1861 	key_start.type = BTRFS_EXTENT_CSUM_KEY;
1862 	key_start.offset = logical;
1863 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1864 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
1865 	key_end.offset = base + offset + nstripes * increment;
1866 	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
1867 
1868 	if (!IS_ERR(reada1))
1869 		btrfs_reada_wait(reada1);
1870 	if (!IS_ERR(reada2))
1871 		btrfs_reada_wait(reada2);
1872 
1873 	mutex_lock(&fs_info->scrub_lock);
1874 	while (atomic_read(&fs_info->scrub_pause_req)) {
1875 		mutex_unlock(&fs_info->scrub_lock);
1876 		wait_event(fs_info->scrub_pause_wait,
1877 		   atomic_read(&fs_info->scrub_pause_req) == 0);
1878 		mutex_lock(&fs_info->scrub_lock);
1879 	}
1880 	atomic_dec(&fs_info->scrubs_paused);
1881 	mutex_unlock(&fs_info->scrub_lock);
1882 	wake_up(&fs_info->scrub_pause_wait);
1883 
1884 	/*
1885 	 * collect all data csums for the stripe to avoid seeking during
1886 	 * the scrub. This might currently (crc32) end up to be about 1MB
1887 	 */
1888 	blk_start_plug(&plug);
1889 
1890 	/*
1891 	 * now find all extents for each stripe and scrub them
1892 	 */
1893 	logical = base + offset;
1894 	physical = map->stripes[num].physical;
1895 	ret = 0;
1896 	for (i = 0; i < nstripes; ++i) {
1897 		/*
1898 		 * canceled?
1899 		 */
1900 		if (atomic_read(&fs_info->scrub_cancel_req) ||
1901 		    atomic_read(&sdev->cancel_req)) {
1902 			ret = -ECANCELED;
1903 			goto out;
1904 		}
1905 		/*
1906 		 * check to see if we have to pause
1907 		 */
1908 		if (atomic_read(&fs_info->scrub_pause_req)) {
1909 			/* push queued extents */
1910 			scrub_submit(sdev);
1911 			wait_event(sdev->list_wait,
1912 				   atomic_read(&sdev->in_flight) == 0);
1913 			atomic_inc(&fs_info->scrubs_paused);
1914 			wake_up(&fs_info->scrub_pause_wait);
1915 			mutex_lock(&fs_info->scrub_lock);
1916 			while (atomic_read(&fs_info->scrub_pause_req)) {
1917 				mutex_unlock(&fs_info->scrub_lock);
1918 				wait_event(fs_info->scrub_pause_wait,
1919 				   atomic_read(&fs_info->scrub_pause_req) == 0);
1920 				mutex_lock(&fs_info->scrub_lock);
1921 			}
1922 			atomic_dec(&fs_info->scrubs_paused);
1923 			mutex_unlock(&fs_info->scrub_lock);
1924 			wake_up(&fs_info->scrub_pause_wait);
1925 		}
1926 
1927 		ret = btrfs_lookup_csums_range(csum_root, logical,
1928 					       logical + map->stripe_len - 1,
1929 					       &sdev->csum_list, 1);
1930 		if (ret)
1931 			goto out;
1932 
1933 		key.objectid = logical;
1934 		key.type = BTRFS_EXTENT_ITEM_KEY;
1935 		key.offset = (u64)0;
1936 
1937 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1938 		if (ret < 0)
1939 			goto out;
1940 		if (ret > 0) {
1941 			ret = btrfs_previous_item(root, path, 0,
1942 						  BTRFS_EXTENT_ITEM_KEY);
1943 			if (ret < 0)
1944 				goto out;
1945 			if (ret > 0) {
1946 				/* there's no smaller item, so stick with the
1947 				 * larger one */
1948 				btrfs_release_path(path);
1949 				ret = btrfs_search_slot(NULL, root, &key,
1950 							path, 0, 0);
1951 				if (ret < 0)
1952 					goto out;
1953 			}
1954 		}
1955 
1956 		while (1) {
1957 			l = path->nodes[0];
1958 			slot = path->slots[0];
1959 			if (slot >= btrfs_header_nritems(l)) {
1960 				ret = btrfs_next_leaf(root, path);
1961 				if (ret == 0)
1962 					continue;
1963 				if (ret < 0)
1964 					goto out;
1965 
1966 				break;
1967 			}
1968 			btrfs_item_key_to_cpu(l, &key, slot);
1969 
1970 			if (key.objectid + key.offset <= logical)
1971 				goto next;
1972 
1973 			if (key.objectid >= logical + map->stripe_len)
1974 				break;
1975 
1976 			if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
1977 				goto next;
1978 
1979 			extent = btrfs_item_ptr(l, slot,
1980 						struct btrfs_extent_item);
1981 			flags = btrfs_extent_flags(l, extent);
1982 			generation = btrfs_extent_generation(l, extent);
1983 
1984 			if (key.objectid < logical &&
1985 			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
1986 				printk(KERN_ERR
1987 				       "btrfs scrub: tree block %llu spanning "
1988 				       "stripes, ignored. logical=%llu\n",
1989 				       (unsigned long long)key.objectid,
1990 				       (unsigned long long)logical);
1991 				goto next;
1992 			}
1993 
1994 			/*
1995 			 * trim extent to this stripe
1996 			 */
1997 			if (key.objectid < logical) {
1998 				key.offset -= logical - key.objectid;
1999 				key.objectid = logical;
2000 			}
2001 			if (key.objectid + key.offset >
2002 			    logical + map->stripe_len) {
2003 				key.offset = logical + map->stripe_len -
2004 					     key.objectid;
2005 			}
2006 
2007 			ret = scrub_extent(sdev, key.objectid, key.offset,
2008 					   key.objectid - logical + physical,
2009 					   flags, generation, mirror_num);
2010 			if (ret)
2011 				goto out;
2012 
2013 next:
2014 			path->slots[0]++;
2015 		}
2016 		btrfs_release_path(path);
2017 		logical += increment;
2018 		physical += map->stripe_len;
2019 		spin_lock(&sdev->stat_lock);
2020 		sdev->stat.last_physical = physical;
2021 		spin_unlock(&sdev->stat_lock);
2022 	}
2023 	/* push queued extents */
2024 	scrub_submit(sdev);
2025 
2026 out:
2027 	blk_finish_plug(&plug);
2028 	btrfs_free_path(path);
2029 	return ret < 0 ? ret : 0;
2030 }
2031 
2032 static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
2033 	u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length,
2034 	u64 dev_offset)
2035 {
2036 	struct btrfs_mapping_tree *map_tree =
2037 		&sdev->dev->dev_root->fs_info->mapping_tree;
2038 	struct map_lookup *map;
2039 	struct extent_map *em;
2040 	int i;
2041 	int ret = -EINVAL;
2042 
2043 	read_lock(&map_tree->map_tree.lock);
2044 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2045 	read_unlock(&map_tree->map_tree.lock);
2046 
2047 	if (!em)
2048 		return -EINVAL;
2049 
2050 	map = (struct map_lookup *)em->bdev;
2051 	if (em->start != chunk_offset)
2052 		goto out;
2053 
2054 	if (em->len < length)
2055 		goto out;
2056 
2057 	for (i = 0; i < map->num_stripes; ++i) {
2058 		if (map->stripes[i].dev == sdev->dev &&
2059 		    map->stripes[i].physical == dev_offset) {
2060 			ret = scrub_stripe(sdev, map, i, chunk_offset, length);
2061 			if (ret)
2062 				goto out;
2063 		}
2064 	}
2065 out:
2066 	free_extent_map(em);
2067 
2068 	return ret;
2069 }
2070 
2071 static noinline_for_stack
2072 int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
2073 {
2074 	struct btrfs_dev_extent *dev_extent = NULL;
2075 	struct btrfs_path *path;
2076 	struct btrfs_root *root = sdev->dev->dev_root;
2077 	struct btrfs_fs_info *fs_info = root->fs_info;
2078 	u64 length;
2079 	u64 chunk_tree;
2080 	u64 chunk_objectid;
2081 	u64 chunk_offset;
2082 	int ret;
2083 	int slot;
2084 	struct extent_buffer *l;
2085 	struct btrfs_key key;
2086 	struct btrfs_key found_key;
2087 	struct btrfs_block_group_cache *cache;
2088 
2089 	path = btrfs_alloc_path();
2090 	if (!path)
2091 		return -ENOMEM;
2092 
2093 	path->reada = 2;
2094 	path->search_commit_root = 1;
2095 	path->skip_locking = 1;
2096 
2097 	key.objectid = sdev->dev->devid;
2098 	key.offset = 0ull;
2099 	key.type = BTRFS_DEV_EXTENT_KEY;
2100 
2101 
2102 	while (1) {
2103 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2104 		if (ret < 0)
2105 			break;
2106 		if (ret > 0) {
2107 			if (path->slots[0] >=
2108 			    btrfs_header_nritems(path->nodes[0])) {
2109 				ret = btrfs_next_leaf(root, path);
2110 				if (ret)
2111 					break;
2112 			}
2113 		}
2114 
2115 		l = path->nodes[0];
2116 		slot = path->slots[0];
2117 
2118 		btrfs_item_key_to_cpu(l, &found_key, slot);
2119 
2120 		if (found_key.objectid != sdev->dev->devid)
2121 			break;
2122 
2123 		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2124 			break;
2125 
2126 		if (found_key.offset >= end)
2127 			break;
2128 
2129 		if (found_key.offset < key.offset)
2130 			break;
2131 
2132 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2133 		length = btrfs_dev_extent_length(l, dev_extent);
2134 
2135 		if (found_key.offset + length <= start) {
2136 			key.offset = found_key.offset + length;
2137 			btrfs_release_path(path);
2138 			continue;
2139 		}
2140 
2141 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2142 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2143 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2144 
2145 		/*
2146 		 * get a reference on the corresponding block group to prevent
2147 		 * the chunk from going away while we scrub it
2148 		 */
2149 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2150 		if (!cache) {
2151 			ret = -ENOENT;
2152 			break;
2153 		}
2154 		ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
2155 				  chunk_offset, length, found_key.offset);
2156 		btrfs_put_block_group(cache);
2157 		if (ret)
2158 			break;
2159 
2160 		key.offset = found_key.offset + length;
2161 		btrfs_release_path(path);
2162 	}
2163 
2164 	btrfs_free_path(path);
2165 
2166 	/*
2167 	 * ret can still be 1 from search_slot or next_leaf,
2168 	 * that's not an error
2169 	 */
2170 	return ret < 0 ? ret : 0;
2171 }
2172 
2173 static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
2174 {
2175 	int	i;
2176 	u64	bytenr;
2177 	u64	gen;
2178 	int	ret;
2179 	struct btrfs_device *device = sdev->dev;
2180 	struct btrfs_root *root = device->dev_root;
2181 
2182 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2183 		return -EIO;
2184 
2185 	gen = root->fs_info->last_trans_committed;
2186 
2187 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2188 		bytenr = btrfs_sb_offset(i);
2189 		if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
2190 			break;
2191 
2192 		ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2193 				     BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
2194 		if (ret)
2195 			return ret;
2196 	}
2197 	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2198 
2199 	return 0;
2200 }
2201 
2202 /*
2203  * get a reference count on fs_info->scrub_workers. start worker if necessary
2204  */
2205 static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
2206 {
2207 	struct btrfs_fs_info *fs_info = root->fs_info;
2208 	int ret = 0;
2209 
2210 	mutex_lock(&fs_info->scrub_lock);
2211 	if (fs_info->scrub_workers_refcnt == 0) {
2212 		btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2213 			   fs_info->thread_pool_size, &fs_info->generic_worker);
2214 		fs_info->scrub_workers.idle_thresh = 4;
2215 		ret = btrfs_start_workers(&fs_info->scrub_workers);
2216 		if (ret)
2217 			goto out;
2218 	}
2219 	++fs_info->scrub_workers_refcnt;
2220 out:
2221 	mutex_unlock(&fs_info->scrub_lock);
2222 
2223 	return ret;
2224 }
2225 
2226 static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
2227 {
2228 	struct btrfs_fs_info *fs_info = root->fs_info;
2229 
2230 	mutex_lock(&fs_info->scrub_lock);
2231 	if (--fs_info->scrub_workers_refcnt == 0)
2232 		btrfs_stop_workers(&fs_info->scrub_workers);
2233 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
2234 	mutex_unlock(&fs_info->scrub_lock);
2235 }
2236 
2237 
2238 int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
2239 		    struct btrfs_scrub_progress *progress, int readonly)
2240 {
2241 	struct scrub_dev *sdev;
2242 	struct btrfs_fs_info *fs_info = root->fs_info;
2243 	int ret;
2244 	struct btrfs_device *dev;
2245 
2246 	if (btrfs_fs_closing(root->fs_info))
2247 		return -EINVAL;
2248 
2249 	/*
2250 	 * check some assumptions
2251 	 */
2252 	if (root->nodesize != root->leafsize) {
2253 		printk(KERN_ERR
2254 		       "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2255 		       root->nodesize, root->leafsize);
2256 		return -EINVAL;
2257 	}
2258 
2259 	if (root->nodesize > BTRFS_STRIPE_LEN) {
2260 		/*
2261 		 * in this case scrub is unable to calculate the checksum
2262 		 * the way scrub is implemented. Do not handle this
2263 		 * situation at all because it won't ever happen.
2264 		 */
2265 		printk(KERN_ERR
2266 		       "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2267 		       root->nodesize, BTRFS_STRIPE_LEN);
2268 		return -EINVAL;
2269 	}
2270 
2271 	if (root->sectorsize != PAGE_SIZE) {
2272 		/* not supported for data w/o checksums */
2273 		printk(KERN_ERR
2274 		       "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2275 		       root->sectorsize, (unsigned long long)PAGE_SIZE);
2276 		return -EINVAL;
2277 	}
2278 
2279 	ret = scrub_workers_get(root);
2280 	if (ret)
2281 		return ret;
2282 
2283 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2284 	dev = btrfs_find_device(root, devid, NULL, NULL);
2285 	if (!dev || dev->missing) {
2286 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2287 		scrub_workers_put(root);
2288 		return -ENODEV;
2289 	}
2290 	mutex_lock(&fs_info->scrub_lock);
2291 
2292 	if (!dev->in_fs_metadata) {
2293 		mutex_unlock(&fs_info->scrub_lock);
2294 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2295 		scrub_workers_put(root);
2296 		return -ENODEV;
2297 	}
2298 
2299 	if (dev->scrub_device) {
2300 		mutex_unlock(&fs_info->scrub_lock);
2301 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2302 		scrub_workers_put(root);
2303 		return -EINPROGRESS;
2304 	}
2305 	sdev = scrub_setup_dev(dev);
2306 	if (IS_ERR(sdev)) {
2307 		mutex_unlock(&fs_info->scrub_lock);
2308 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2309 		scrub_workers_put(root);
2310 		return PTR_ERR(sdev);
2311 	}
2312 	sdev->readonly = readonly;
2313 	dev->scrub_device = sdev;
2314 
2315 	atomic_inc(&fs_info->scrubs_running);
2316 	mutex_unlock(&fs_info->scrub_lock);
2317 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2318 
2319 	down_read(&fs_info->scrub_super_lock);
2320 	ret = scrub_supers(sdev);
2321 	up_read(&fs_info->scrub_super_lock);
2322 
2323 	if (!ret)
2324 		ret = scrub_enumerate_chunks(sdev, start, end);
2325 
2326 	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2327 	atomic_dec(&fs_info->scrubs_running);
2328 	wake_up(&fs_info->scrub_pause_wait);
2329 
2330 	wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
2331 
2332 	if (progress)
2333 		memcpy(progress, &sdev->stat, sizeof(*progress));
2334 
2335 	mutex_lock(&fs_info->scrub_lock);
2336 	dev->scrub_device = NULL;
2337 	mutex_unlock(&fs_info->scrub_lock);
2338 
2339 	scrub_free_dev(sdev);
2340 	scrub_workers_put(root);
2341 
2342 	return ret;
2343 }
2344 
2345 void btrfs_scrub_pause(struct btrfs_root *root)
2346 {
2347 	struct btrfs_fs_info *fs_info = root->fs_info;
2348 
2349 	mutex_lock(&fs_info->scrub_lock);
2350 	atomic_inc(&fs_info->scrub_pause_req);
2351 	while (atomic_read(&fs_info->scrubs_paused) !=
2352 	       atomic_read(&fs_info->scrubs_running)) {
2353 		mutex_unlock(&fs_info->scrub_lock);
2354 		wait_event(fs_info->scrub_pause_wait,
2355 			   atomic_read(&fs_info->scrubs_paused) ==
2356 			   atomic_read(&fs_info->scrubs_running));
2357 		mutex_lock(&fs_info->scrub_lock);
2358 	}
2359 	mutex_unlock(&fs_info->scrub_lock);
2360 }
2361 
2362 void btrfs_scrub_continue(struct btrfs_root *root)
2363 {
2364 	struct btrfs_fs_info *fs_info = root->fs_info;
2365 
2366 	atomic_dec(&fs_info->scrub_pause_req);
2367 	wake_up(&fs_info->scrub_pause_wait);
2368 }
2369 
2370 void btrfs_scrub_pause_super(struct btrfs_root *root)
2371 {
2372 	down_write(&root->fs_info->scrub_super_lock);
2373 }
2374 
2375 void btrfs_scrub_continue_super(struct btrfs_root *root)
2376 {
2377 	up_write(&root->fs_info->scrub_super_lock);
2378 }
2379 
2380 int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2381 {
2382 
2383 	mutex_lock(&fs_info->scrub_lock);
2384 	if (!atomic_read(&fs_info->scrubs_running)) {
2385 		mutex_unlock(&fs_info->scrub_lock);
2386 		return -ENOTCONN;
2387 	}
2388 
2389 	atomic_inc(&fs_info->scrub_cancel_req);
2390 	while (atomic_read(&fs_info->scrubs_running)) {
2391 		mutex_unlock(&fs_info->scrub_lock);
2392 		wait_event(fs_info->scrub_pause_wait,
2393 			   atomic_read(&fs_info->scrubs_running) == 0);
2394 		mutex_lock(&fs_info->scrub_lock);
2395 	}
2396 	atomic_dec(&fs_info->scrub_cancel_req);
2397 	mutex_unlock(&fs_info->scrub_lock);
2398 
2399 	return 0;
2400 }
2401 
2402 int btrfs_scrub_cancel(struct btrfs_root *root)
2403 {
2404 	return __btrfs_scrub_cancel(root->fs_info);
2405 }
2406 
2407 int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
2408 {
2409 	struct btrfs_fs_info *fs_info = root->fs_info;
2410 	struct scrub_dev *sdev;
2411 
2412 	mutex_lock(&fs_info->scrub_lock);
2413 	sdev = dev->scrub_device;
2414 	if (!sdev) {
2415 		mutex_unlock(&fs_info->scrub_lock);
2416 		return -ENOTCONN;
2417 	}
2418 	atomic_inc(&sdev->cancel_req);
2419 	while (dev->scrub_device) {
2420 		mutex_unlock(&fs_info->scrub_lock);
2421 		wait_event(fs_info->scrub_pause_wait,
2422 			   dev->scrub_device == NULL);
2423 		mutex_lock(&fs_info->scrub_lock);
2424 	}
2425 	mutex_unlock(&fs_info->scrub_lock);
2426 
2427 	return 0;
2428 }
2429 
2430 int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
2431 {
2432 	struct btrfs_fs_info *fs_info = root->fs_info;
2433 	struct btrfs_device *dev;
2434 	int ret;
2435 
2436 	/*
2437 	 * we have to hold the device_list_mutex here so the device
2438 	 * does not go away in cancel_dev. FIXME: find a better solution
2439 	 */
2440 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2441 	dev = btrfs_find_device(root, devid, NULL, NULL);
2442 	if (!dev) {
2443 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2444 		return -ENODEV;
2445 	}
2446 	ret = btrfs_scrub_cancel_dev(root, dev);
2447 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2448 
2449 	return ret;
2450 }
2451 
2452 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
2453 			 struct btrfs_scrub_progress *progress)
2454 {
2455 	struct btrfs_device *dev;
2456 	struct scrub_dev *sdev = NULL;
2457 
2458 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2459 	dev = btrfs_find_device(root, devid, NULL, NULL);
2460 	if (dev)
2461 		sdev = dev->scrub_device;
2462 	if (sdev)
2463 		memcpy(progress, &sdev->stat, sizeof(*progress));
2464 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2465 
2466 	return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
2467 }
2468