xref: /linux/fs/btrfs/scrub.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32 
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45 
46 struct scrub_block;
47 struct scrub_ctx;
48 
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
65 
66 struct scrub_recover {
67 	atomic_t		refs;
68 	struct btrfs_bio	*bbio;
69 	u64			map_length;
70 };
71 
72 struct scrub_page {
73 	struct scrub_block	*sblock;
74 	struct page		*page;
75 	struct btrfs_device	*dev;
76 	struct list_head	list;
77 	u64			flags;  /* extent flags */
78 	u64			generation;
79 	u64			logical;
80 	u64			physical;
81 	u64			physical_for_dev_replace;
82 	atomic_t		refs;
83 	struct {
84 		unsigned int	mirror_num:8;
85 		unsigned int	have_csum:1;
86 		unsigned int	io_error:1;
87 	};
88 	u8			csum[BTRFS_CSUM_SIZE];
89 
90 	struct scrub_recover	*recover;
91 };
92 
93 struct scrub_bio {
94 	int			index;
95 	struct scrub_ctx	*sctx;
96 	struct btrfs_device	*dev;
97 	struct bio		*bio;
98 	int			err;
99 	u64			logical;
100 	u64			physical;
101 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
103 #else
104 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
105 #endif
106 	int			page_count;
107 	int			next_free;
108 	struct btrfs_work	work;
109 };
110 
111 struct scrub_block {
112 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 	int			page_count;
114 	atomic_t		outstanding_pages;
115 	atomic_t		refs; /* free mem on transition to zero */
116 	struct scrub_ctx	*sctx;
117 	struct scrub_parity	*sparity;
118 	struct {
119 		unsigned int	header_error:1;
120 		unsigned int	checksum_error:1;
121 		unsigned int	no_io_error_seen:1;
122 		unsigned int	generation_error:1; /* also sets header_error */
123 
124 		/* The following is for the data used to check parity */
125 		/* It is for the data with checksum */
126 		unsigned int	data_corrected:1;
127 	};
128 	struct btrfs_work	work;
129 };
130 
131 /* Used for the chunks with parity stripe such RAID5/6 */
132 struct scrub_parity {
133 	struct scrub_ctx	*sctx;
134 
135 	struct btrfs_device	*scrub_dev;
136 
137 	u64			logic_start;
138 
139 	u64			logic_end;
140 
141 	int			nsectors;
142 
143 	int			stripe_len;
144 
145 	atomic_t		refs;
146 
147 	struct list_head	spages;
148 
149 	/* Work of parity check and repair */
150 	struct btrfs_work	work;
151 
152 	/* Mark the parity blocks which have data */
153 	unsigned long		*dbitmap;
154 
155 	/*
156 	 * Mark the parity blocks which have data, but errors happen when
157 	 * read data or check data
158 	 */
159 	unsigned long		*ebitmap;
160 
161 	unsigned long		bitmap[0];
162 };
163 
164 struct scrub_wr_ctx {
165 	struct scrub_bio *wr_curr_bio;
166 	struct btrfs_device *tgtdev;
167 	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
168 	atomic_t flush_all_writes;
169 	struct mutex wr_lock;
170 };
171 
172 struct scrub_ctx {
173 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
174 	struct btrfs_root	*dev_root;
175 	int			first_free;
176 	int			curr;
177 	atomic_t		bios_in_flight;
178 	atomic_t		workers_pending;
179 	spinlock_t		list_lock;
180 	wait_queue_head_t	list_wait;
181 	u16			csum_size;
182 	struct list_head	csum_list;
183 	atomic_t		cancel_req;
184 	int			readonly;
185 	int			pages_per_rd_bio;
186 	u32			sectorsize;
187 	u32			nodesize;
188 
189 	int			is_dev_replace;
190 	struct scrub_wr_ctx	wr_ctx;
191 
192 	/*
193 	 * statistics
194 	 */
195 	struct btrfs_scrub_progress stat;
196 	spinlock_t		stat_lock;
197 
198 	/*
199 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
200 	 * decrement bios_in_flight and workers_pending and then do a wakeup
201 	 * on the list_wait wait queue. We must ensure the main scrub task
202 	 * doesn't free the scrub context before or while the workers are
203 	 * doing the wakeup() call.
204 	 */
205 	atomic_t                refs;
206 };
207 
208 struct scrub_fixup_nodatasum {
209 	struct scrub_ctx	*sctx;
210 	struct btrfs_device	*dev;
211 	u64			logical;
212 	struct btrfs_root	*root;
213 	struct btrfs_work	work;
214 	int			mirror_num;
215 };
216 
217 struct scrub_nocow_inode {
218 	u64			inum;
219 	u64			offset;
220 	u64			root;
221 	struct list_head	list;
222 };
223 
224 struct scrub_copy_nocow_ctx {
225 	struct scrub_ctx	*sctx;
226 	u64			logical;
227 	u64			len;
228 	int			mirror_num;
229 	u64			physical_for_dev_replace;
230 	struct list_head	inodes;
231 	struct btrfs_work	work;
232 };
233 
234 struct scrub_warning {
235 	struct btrfs_path	*path;
236 	u64			extent_item_size;
237 	const char		*errstr;
238 	sector_t		sector;
239 	u64			logical;
240 	struct btrfs_device	*dev;
241 };
242 
243 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
244 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
245 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
246 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
247 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
248 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
249 				     struct scrub_block *sblocks_for_recheck);
250 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
251 				struct scrub_block *sblock,
252 				int retry_failed_mirror);
253 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
254 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
255 					     struct scrub_block *sblock_good);
256 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
257 					    struct scrub_block *sblock_good,
258 					    int page_num, int force_write);
259 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
260 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
261 					   int page_num);
262 static int scrub_checksum_data(struct scrub_block *sblock);
263 static int scrub_checksum_tree_block(struct scrub_block *sblock);
264 static int scrub_checksum_super(struct scrub_block *sblock);
265 static void scrub_block_get(struct scrub_block *sblock);
266 static void scrub_block_put(struct scrub_block *sblock);
267 static void scrub_page_get(struct scrub_page *spage);
268 static void scrub_page_put(struct scrub_page *spage);
269 static void scrub_parity_get(struct scrub_parity *sparity);
270 static void scrub_parity_put(struct scrub_parity *sparity);
271 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
272 				    struct scrub_page *spage);
273 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
274 		       u64 physical, struct btrfs_device *dev, u64 flags,
275 		       u64 gen, int mirror_num, u8 *csum, int force,
276 		       u64 physical_for_dev_replace);
277 static void scrub_bio_end_io(struct bio *bio);
278 static void scrub_bio_end_io_worker(struct btrfs_work *work);
279 static void scrub_block_complete(struct scrub_block *sblock);
280 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
281 			       u64 extent_logical, u64 extent_len,
282 			       u64 *extent_physical,
283 			       struct btrfs_device **extent_dev,
284 			       int *extent_mirror_num);
285 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
286 			      struct scrub_wr_ctx *wr_ctx,
287 			      struct btrfs_fs_info *fs_info,
288 			      struct btrfs_device *dev,
289 			      int is_dev_replace);
290 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
291 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
292 				    struct scrub_page *spage);
293 static void scrub_wr_submit(struct scrub_ctx *sctx);
294 static void scrub_wr_bio_end_io(struct bio *bio);
295 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
296 static int write_page_nocow(struct scrub_ctx *sctx,
297 			    u64 physical_for_dev_replace, struct page *page);
298 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
299 				      struct scrub_copy_nocow_ctx *ctx);
300 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
301 			    int mirror_num, u64 physical_for_dev_replace);
302 static void copy_nocow_pages_worker(struct btrfs_work *work);
303 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
304 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
305 static void scrub_put_ctx(struct scrub_ctx *sctx);
306 
307 
308 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
309 {
310 	atomic_inc(&sctx->refs);
311 	atomic_inc(&sctx->bios_in_flight);
312 }
313 
314 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
315 {
316 	atomic_dec(&sctx->bios_in_flight);
317 	wake_up(&sctx->list_wait);
318 	scrub_put_ctx(sctx);
319 }
320 
321 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
322 {
323 	while (atomic_read(&fs_info->scrub_pause_req)) {
324 		mutex_unlock(&fs_info->scrub_lock);
325 		wait_event(fs_info->scrub_pause_wait,
326 		   atomic_read(&fs_info->scrub_pause_req) == 0);
327 		mutex_lock(&fs_info->scrub_lock);
328 	}
329 }
330 
331 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
332 {
333 	atomic_inc(&fs_info->scrubs_paused);
334 	wake_up(&fs_info->scrub_pause_wait);
335 }
336 
337 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
338 {
339 	mutex_lock(&fs_info->scrub_lock);
340 	__scrub_blocked_if_needed(fs_info);
341 	atomic_dec(&fs_info->scrubs_paused);
342 	mutex_unlock(&fs_info->scrub_lock);
343 
344 	wake_up(&fs_info->scrub_pause_wait);
345 }
346 
347 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
348 {
349 	scrub_pause_on(fs_info);
350 	scrub_pause_off(fs_info);
351 }
352 
353 /*
354  * used for workers that require transaction commits (i.e., for the
355  * NOCOW case)
356  */
357 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
358 {
359 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
360 
361 	atomic_inc(&sctx->refs);
362 	/*
363 	 * increment scrubs_running to prevent cancel requests from
364 	 * completing as long as a worker is running. we must also
365 	 * increment scrubs_paused to prevent deadlocking on pause
366 	 * requests used for transactions commits (as the worker uses a
367 	 * transaction context). it is safe to regard the worker
368 	 * as paused for all matters practical. effectively, we only
369 	 * avoid cancellation requests from completing.
370 	 */
371 	mutex_lock(&fs_info->scrub_lock);
372 	atomic_inc(&fs_info->scrubs_running);
373 	atomic_inc(&fs_info->scrubs_paused);
374 	mutex_unlock(&fs_info->scrub_lock);
375 
376 	/*
377 	 * check if @scrubs_running=@scrubs_paused condition
378 	 * inside wait_event() is not an atomic operation.
379 	 * which means we may inc/dec @scrub_running/paused
380 	 * at any time. Let's wake up @scrub_pause_wait as
381 	 * much as we can to let commit transaction blocked less.
382 	 */
383 	wake_up(&fs_info->scrub_pause_wait);
384 
385 	atomic_inc(&sctx->workers_pending);
386 }
387 
388 /* used for workers that require transaction commits */
389 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
390 {
391 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
392 
393 	/*
394 	 * see scrub_pending_trans_workers_inc() why we're pretending
395 	 * to be paused in the scrub counters
396 	 */
397 	mutex_lock(&fs_info->scrub_lock);
398 	atomic_dec(&fs_info->scrubs_running);
399 	atomic_dec(&fs_info->scrubs_paused);
400 	mutex_unlock(&fs_info->scrub_lock);
401 	atomic_dec(&sctx->workers_pending);
402 	wake_up(&fs_info->scrub_pause_wait);
403 	wake_up(&sctx->list_wait);
404 	scrub_put_ctx(sctx);
405 }
406 
407 static void scrub_free_csums(struct scrub_ctx *sctx)
408 {
409 	while (!list_empty(&sctx->csum_list)) {
410 		struct btrfs_ordered_sum *sum;
411 		sum = list_first_entry(&sctx->csum_list,
412 				       struct btrfs_ordered_sum, list);
413 		list_del(&sum->list);
414 		kfree(sum);
415 	}
416 }
417 
418 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
419 {
420 	int i;
421 
422 	if (!sctx)
423 		return;
424 
425 	scrub_free_wr_ctx(&sctx->wr_ctx);
426 
427 	/* this can happen when scrub is cancelled */
428 	if (sctx->curr != -1) {
429 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
430 
431 		for (i = 0; i < sbio->page_count; i++) {
432 			WARN_ON(!sbio->pagev[i]->page);
433 			scrub_block_put(sbio->pagev[i]->sblock);
434 		}
435 		bio_put(sbio->bio);
436 	}
437 
438 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
439 		struct scrub_bio *sbio = sctx->bios[i];
440 
441 		if (!sbio)
442 			break;
443 		kfree(sbio);
444 	}
445 
446 	scrub_free_csums(sctx);
447 	kfree(sctx);
448 }
449 
450 static void scrub_put_ctx(struct scrub_ctx *sctx)
451 {
452 	if (atomic_dec_and_test(&sctx->refs))
453 		scrub_free_ctx(sctx);
454 }
455 
456 static noinline_for_stack
457 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
458 {
459 	struct scrub_ctx *sctx;
460 	int		i;
461 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
462 	int ret;
463 
464 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
465 	if (!sctx)
466 		goto nomem;
467 	atomic_set(&sctx->refs, 1);
468 	sctx->is_dev_replace = is_dev_replace;
469 	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
470 	sctx->curr = -1;
471 	sctx->dev_root = dev->dev_root;
472 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
473 		struct scrub_bio *sbio;
474 
475 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
476 		if (!sbio)
477 			goto nomem;
478 		sctx->bios[i] = sbio;
479 
480 		sbio->index = i;
481 		sbio->sctx = sctx;
482 		sbio->page_count = 0;
483 		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
484 				scrub_bio_end_io_worker, NULL, NULL);
485 
486 		if (i != SCRUB_BIOS_PER_SCTX - 1)
487 			sctx->bios[i]->next_free = i + 1;
488 		else
489 			sctx->bios[i]->next_free = -1;
490 	}
491 	sctx->first_free = 0;
492 	sctx->nodesize = dev->dev_root->nodesize;
493 	sctx->sectorsize = dev->dev_root->sectorsize;
494 	atomic_set(&sctx->bios_in_flight, 0);
495 	atomic_set(&sctx->workers_pending, 0);
496 	atomic_set(&sctx->cancel_req, 0);
497 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
498 	INIT_LIST_HEAD(&sctx->csum_list);
499 
500 	spin_lock_init(&sctx->list_lock);
501 	spin_lock_init(&sctx->stat_lock);
502 	init_waitqueue_head(&sctx->list_wait);
503 
504 	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
505 				 fs_info->dev_replace.tgtdev, is_dev_replace);
506 	if (ret) {
507 		scrub_free_ctx(sctx);
508 		return ERR_PTR(ret);
509 	}
510 	return sctx;
511 
512 nomem:
513 	scrub_free_ctx(sctx);
514 	return ERR_PTR(-ENOMEM);
515 }
516 
517 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
518 				     void *warn_ctx)
519 {
520 	u64 isize;
521 	u32 nlink;
522 	int ret;
523 	int i;
524 	struct extent_buffer *eb;
525 	struct btrfs_inode_item *inode_item;
526 	struct scrub_warning *swarn = warn_ctx;
527 	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
528 	struct inode_fs_paths *ipath = NULL;
529 	struct btrfs_root *local_root;
530 	struct btrfs_key root_key;
531 	struct btrfs_key key;
532 
533 	root_key.objectid = root;
534 	root_key.type = BTRFS_ROOT_ITEM_KEY;
535 	root_key.offset = (u64)-1;
536 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
537 	if (IS_ERR(local_root)) {
538 		ret = PTR_ERR(local_root);
539 		goto err;
540 	}
541 
542 	/*
543 	 * this makes the path point to (inum INODE_ITEM ioff)
544 	 */
545 	key.objectid = inum;
546 	key.type = BTRFS_INODE_ITEM_KEY;
547 	key.offset = 0;
548 
549 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
550 	if (ret) {
551 		btrfs_release_path(swarn->path);
552 		goto err;
553 	}
554 
555 	eb = swarn->path->nodes[0];
556 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
557 					struct btrfs_inode_item);
558 	isize = btrfs_inode_size(eb, inode_item);
559 	nlink = btrfs_inode_nlink(eb, inode_item);
560 	btrfs_release_path(swarn->path);
561 
562 	ipath = init_ipath(4096, local_root, swarn->path);
563 	if (IS_ERR(ipath)) {
564 		ret = PTR_ERR(ipath);
565 		ipath = NULL;
566 		goto err;
567 	}
568 	ret = paths_from_inode(inum, ipath);
569 
570 	if (ret < 0)
571 		goto err;
572 
573 	/*
574 	 * we deliberately ignore the bit ipath might have been too small to
575 	 * hold all of the paths here
576 	 */
577 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
578 		btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev "
579 			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
580 			"length %llu, links %u (path: %s)", swarn->errstr,
581 			swarn->logical, rcu_str_deref(swarn->dev->name),
582 			(unsigned long long)swarn->sector, root, inum, offset,
583 			min(isize - offset, (u64)PAGE_SIZE), nlink,
584 			(char *)(unsigned long)ipath->fspath->val[i]);
585 
586 	free_ipath(ipath);
587 	return 0;
588 
589 err:
590 	btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev "
591 		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
592 		"resolving failed with ret=%d", swarn->errstr,
593 		swarn->logical, rcu_str_deref(swarn->dev->name),
594 		(unsigned long long)swarn->sector, root, inum, offset, ret);
595 
596 	free_ipath(ipath);
597 	return 0;
598 }
599 
600 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
601 {
602 	struct btrfs_device *dev;
603 	struct btrfs_fs_info *fs_info;
604 	struct btrfs_path *path;
605 	struct btrfs_key found_key;
606 	struct extent_buffer *eb;
607 	struct btrfs_extent_item *ei;
608 	struct scrub_warning swarn;
609 	unsigned long ptr = 0;
610 	u64 extent_item_pos;
611 	u64 flags = 0;
612 	u64 ref_root;
613 	u32 item_size;
614 	u8 ref_level = 0;
615 	int ret;
616 
617 	WARN_ON(sblock->page_count < 1);
618 	dev = sblock->pagev[0]->dev;
619 	fs_info = sblock->sctx->dev_root->fs_info;
620 
621 	path = btrfs_alloc_path();
622 	if (!path)
623 		return;
624 
625 	swarn.sector = (sblock->pagev[0]->physical) >> 9;
626 	swarn.logical = sblock->pagev[0]->logical;
627 	swarn.errstr = errstr;
628 	swarn.dev = NULL;
629 
630 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
631 				  &flags);
632 	if (ret < 0)
633 		goto out;
634 
635 	extent_item_pos = swarn.logical - found_key.objectid;
636 	swarn.extent_item_size = found_key.offset;
637 
638 	eb = path->nodes[0];
639 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
640 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
641 
642 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
643 		do {
644 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
645 						      item_size, &ref_root,
646 						      &ref_level);
647 			btrfs_warn_in_rcu(fs_info,
648 				"%s at logical %llu on dev %s, "
649 				"sector %llu: metadata %s (level %d) in tree "
650 				"%llu", errstr, swarn.logical,
651 				rcu_str_deref(dev->name),
652 				(unsigned long long)swarn.sector,
653 				ref_level ? "node" : "leaf",
654 				ret < 0 ? -1 : ref_level,
655 				ret < 0 ? -1 : ref_root);
656 		} while (ret != 1);
657 		btrfs_release_path(path);
658 	} else {
659 		btrfs_release_path(path);
660 		swarn.path = path;
661 		swarn.dev = dev;
662 		iterate_extent_inodes(fs_info, found_key.objectid,
663 					extent_item_pos, 1,
664 					scrub_print_warning_inode, &swarn);
665 	}
666 
667 out:
668 	btrfs_free_path(path);
669 }
670 
671 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
672 {
673 	struct page *page = NULL;
674 	unsigned long index;
675 	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
676 	int ret;
677 	int corrected = 0;
678 	struct btrfs_key key;
679 	struct inode *inode = NULL;
680 	struct btrfs_fs_info *fs_info;
681 	u64 end = offset + PAGE_SIZE - 1;
682 	struct btrfs_root *local_root;
683 	int srcu_index;
684 
685 	key.objectid = root;
686 	key.type = BTRFS_ROOT_ITEM_KEY;
687 	key.offset = (u64)-1;
688 
689 	fs_info = fixup->root->fs_info;
690 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
691 
692 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
693 	if (IS_ERR(local_root)) {
694 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
695 		return PTR_ERR(local_root);
696 	}
697 
698 	key.type = BTRFS_INODE_ITEM_KEY;
699 	key.objectid = inum;
700 	key.offset = 0;
701 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
702 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
703 	if (IS_ERR(inode))
704 		return PTR_ERR(inode);
705 
706 	index = offset >> PAGE_SHIFT;
707 
708 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
709 	if (!page) {
710 		ret = -ENOMEM;
711 		goto out;
712 	}
713 
714 	if (PageUptodate(page)) {
715 		if (PageDirty(page)) {
716 			/*
717 			 * we need to write the data to the defect sector. the
718 			 * data that was in that sector is not in memory,
719 			 * because the page was modified. we must not write the
720 			 * modified page to that sector.
721 			 *
722 			 * TODO: what could be done here: wait for the delalloc
723 			 *       runner to write out that page (might involve
724 			 *       COW) and see whether the sector is still
725 			 *       referenced afterwards.
726 			 *
727 			 * For the meantime, we'll treat this error
728 			 * incorrectable, although there is a chance that a
729 			 * later scrub will find the bad sector again and that
730 			 * there's no dirty page in memory, then.
731 			 */
732 			ret = -EIO;
733 			goto out;
734 		}
735 		ret = repair_io_failure(inode, offset, PAGE_SIZE,
736 					fixup->logical, page,
737 					offset - page_offset(page),
738 					fixup->mirror_num);
739 		unlock_page(page);
740 		corrected = !ret;
741 	} else {
742 		/*
743 		 * we need to get good data first. the general readpage path
744 		 * will call repair_io_failure for us, we just have to make
745 		 * sure we read the bad mirror.
746 		 */
747 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
748 					EXTENT_DAMAGED);
749 		if (ret) {
750 			/* set_extent_bits should give proper error */
751 			WARN_ON(ret > 0);
752 			if (ret > 0)
753 				ret = -EFAULT;
754 			goto out;
755 		}
756 
757 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
758 						btrfs_get_extent,
759 						fixup->mirror_num);
760 		wait_on_page_locked(page);
761 
762 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
763 						end, EXTENT_DAMAGED, 0, NULL);
764 		if (!corrected)
765 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
766 						EXTENT_DAMAGED);
767 	}
768 
769 out:
770 	if (page)
771 		put_page(page);
772 
773 	iput(inode);
774 
775 	if (ret < 0)
776 		return ret;
777 
778 	if (ret == 0 && corrected) {
779 		/*
780 		 * we only need to call readpage for one of the inodes belonging
781 		 * to this extent. so make iterate_extent_inodes stop
782 		 */
783 		return 1;
784 	}
785 
786 	return -EIO;
787 }
788 
789 static void scrub_fixup_nodatasum(struct btrfs_work *work)
790 {
791 	int ret;
792 	struct scrub_fixup_nodatasum *fixup;
793 	struct scrub_ctx *sctx;
794 	struct btrfs_trans_handle *trans = NULL;
795 	struct btrfs_path *path;
796 	int uncorrectable = 0;
797 
798 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
799 	sctx = fixup->sctx;
800 
801 	path = btrfs_alloc_path();
802 	if (!path) {
803 		spin_lock(&sctx->stat_lock);
804 		++sctx->stat.malloc_errors;
805 		spin_unlock(&sctx->stat_lock);
806 		uncorrectable = 1;
807 		goto out;
808 	}
809 
810 	trans = btrfs_join_transaction(fixup->root);
811 	if (IS_ERR(trans)) {
812 		uncorrectable = 1;
813 		goto out;
814 	}
815 
816 	/*
817 	 * the idea is to trigger a regular read through the standard path. we
818 	 * read a page from the (failed) logical address by specifying the
819 	 * corresponding copynum of the failed sector. thus, that readpage is
820 	 * expected to fail.
821 	 * that is the point where on-the-fly error correction will kick in
822 	 * (once it's finished) and rewrite the failed sector if a good copy
823 	 * can be found.
824 	 */
825 	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
826 						path, scrub_fixup_readpage,
827 						fixup);
828 	if (ret < 0) {
829 		uncorrectable = 1;
830 		goto out;
831 	}
832 	WARN_ON(ret != 1);
833 
834 	spin_lock(&sctx->stat_lock);
835 	++sctx->stat.corrected_errors;
836 	spin_unlock(&sctx->stat_lock);
837 
838 out:
839 	if (trans && !IS_ERR(trans))
840 		btrfs_end_transaction(trans, fixup->root);
841 	if (uncorrectable) {
842 		spin_lock(&sctx->stat_lock);
843 		++sctx->stat.uncorrectable_errors;
844 		spin_unlock(&sctx->stat_lock);
845 		btrfs_dev_replace_stats_inc(
846 			&sctx->dev_root->fs_info->dev_replace.
847 			num_uncorrectable_read_errors);
848 		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
849 		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
850 			fixup->logical, rcu_str_deref(fixup->dev->name));
851 	}
852 
853 	btrfs_free_path(path);
854 	kfree(fixup);
855 
856 	scrub_pending_trans_workers_dec(sctx);
857 }
858 
859 static inline void scrub_get_recover(struct scrub_recover *recover)
860 {
861 	atomic_inc(&recover->refs);
862 }
863 
864 static inline void scrub_put_recover(struct scrub_recover *recover)
865 {
866 	if (atomic_dec_and_test(&recover->refs)) {
867 		btrfs_put_bbio(recover->bbio);
868 		kfree(recover);
869 	}
870 }
871 
872 /*
873  * scrub_handle_errored_block gets called when either verification of the
874  * pages failed or the bio failed to read, e.g. with EIO. In the latter
875  * case, this function handles all pages in the bio, even though only one
876  * may be bad.
877  * The goal of this function is to repair the errored block by using the
878  * contents of one of the mirrors.
879  */
880 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
881 {
882 	struct scrub_ctx *sctx = sblock_to_check->sctx;
883 	struct btrfs_device *dev;
884 	struct btrfs_fs_info *fs_info;
885 	u64 length;
886 	u64 logical;
887 	unsigned int failed_mirror_index;
888 	unsigned int is_metadata;
889 	unsigned int have_csum;
890 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
891 	struct scrub_block *sblock_bad;
892 	int ret;
893 	int mirror_index;
894 	int page_num;
895 	int success;
896 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
897 				      DEFAULT_RATELIMIT_BURST);
898 
899 	BUG_ON(sblock_to_check->page_count < 1);
900 	fs_info = sctx->dev_root->fs_info;
901 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
902 		/*
903 		 * if we find an error in a super block, we just report it.
904 		 * They will get written with the next transaction commit
905 		 * anyway
906 		 */
907 		spin_lock(&sctx->stat_lock);
908 		++sctx->stat.super_errors;
909 		spin_unlock(&sctx->stat_lock);
910 		return 0;
911 	}
912 	length = sblock_to_check->page_count * PAGE_SIZE;
913 	logical = sblock_to_check->pagev[0]->logical;
914 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
915 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
916 	is_metadata = !(sblock_to_check->pagev[0]->flags &
917 			BTRFS_EXTENT_FLAG_DATA);
918 	have_csum = sblock_to_check->pagev[0]->have_csum;
919 	dev = sblock_to_check->pagev[0]->dev;
920 
921 	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
922 		sblocks_for_recheck = NULL;
923 		goto nodatasum_case;
924 	}
925 
926 	/*
927 	 * read all mirrors one after the other. This includes to
928 	 * re-read the extent or metadata block that failed (that was
929 	 * the cause that this fixup code is called) another time,
930 	 * page by page this time in order to know which pages
931 	 * caused I/O errors and which ones are good (for all mirrors).
932 	 * It is the goal to handle the situation when more than one
933 	 * mirror contains I/O errors, but the errors do not
934 	 * overlap, i.e. the data can be repaired by selecting the
935 	 * pages from those mirrors without I/O error on the
936 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
937 	 * would be that mirror #1 has an I/O error on the first page,
938 	 * the second page is good, and mirror #2 has an I/O error on
939 	 * the second page, but the first page is good.
940 	 * Then the first page of the first mirror can be repaired by
941 	 * taking the first page of the second mirror, and the
942 	 * second page of the second mirror can be repaired by
943 	 * copying the contents of the 2nd page of the 1st mirror.
944 	 * One more note: if the pages of one mirror contain I/O
945 	 * errors, the checksum cannot be verified. In order to get
946 	 * the best data for repairing, the first attempt is to find
947 	 * a mirror without I/O errors and with a validated checksum.
948 	 * Only if this is not possible, the pages are picked from
949 	 * mirrors with I/O errors without considering the checksum.
950 	 * If the latter is the case, at the end, the checksum of the
951 	 * repaired area is verified in order to correctly maintain
952 	 * the statistics.
953 	 */
954 
955 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
956 				      sizeof(*sblocks_for_recheck), GFP_NOFS);
957 	if (!sblocks_for_recheck) {
958 		spin_lock(&sctx->stat_lock);
959 		sctx->stat.malloc_errors++;
960 		sctx->stat.read_errors++;
961 		sctx->stat.uncorrectable_errors++;
962 		spin_unlock(&sctx->stat_lock);
963 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
964 		goto out;
965 	}
966 
967 	/* setup the context, map the logical blocks and alloc the pages */
968 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
969 	if (ret) {
970 		spin_lock(&sctx->stat_lock);
971 		sctx->stat.read_errors++;
972 		sctx->stat.uncorrectable_errors++;
973 		spin_unlock(&sctx->stat_lock);
974 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
975 		goto out;
976 	}
977 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
978 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
979 
980 	/* build and submit the bios for the failed mirror, check checksums */
981 	scrub_recheck_block(fs_info, sblock_bad, 1);
982 
983 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
984 	    sblock_bad->no_io_error_seen) {
985 		/*
986 		 * the error disappeared after reading page by page, or
987 		 * the area was part of a huge bio and other parts of the
988 		 * bio caused I/O errors, or the block layer merged several
989 		 * read requests into one and the error is caused by a
990 		 * different bio (usually one of the two latter cases is
991 		 * the cause)
992 		 */
993 		spin_lock(&sctx->stat_lock);
994 		sctx->stat.unverified_errors++;
995 		sblock_to_check->data_corrected = 1;
996 		spin_unlock(&sctx->stat_lock);
997 
998 		if (sctx->is_dev_replace)
999 			scrub_write_block_to_dev_replace(sblock_bad);
1000 		goto out;
1001 	}
1002 
1003 	if (!sblock_bad->no_io_error_seen) {
1004 		spin_lock(&sctx->stat_lock);
1005 		sctx->stat.read_errors++;
1006 		spin_unlock(&sctx->stat_lock);
1007 		if (__ratelimit(&_rs))
1008 			scrub_print_warning("i/o error", sblock_to_check);
1009 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1010 	} else if (sblock_bad->checksum_error) {
1011 		spin_lock(&sctx->stat_lock);
1012 		sctx->stat.csum_errors++;
1013 		spin_unlock(&sctx->stat_lock);
1014 		if (__ratelimit(&_rs))
1015 			scrub_print_warning("checksum error", sblock_to_check);
1016 		btrfs_dev_stat_inc_and_print(dev,
1017 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1018 	} else if (sblock_bad->header_error) {
1019 		spin_lock(&sctx->stat_lock);
1020 		sctx->stat.verify_errors++;
1021 		spin_unlock(&sctx->stat_lock);
1022 		if (__ratelimit(&_rs))
1023 			scrub_print_warning("checksum/header error",
1024 					    sblock_to_check);
1025 		if (sblock_bad->generation_error)
1026 			btrfs_dev_stat_inc_and_print(dev,
1027 				BTRFS_DEV_STAT_GENERATION_ERRS);
1028 		else
1029 			btrfs_dev_stat_inc_and_print(dev,
1030 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1031 	}
1032 
1033 	if (sctx->readonly) {
1034 		ASSERT(!sctx->is_dev_replace);
1035 		goto out;
1036 	}
1037 
1038 	if (!is_metadata && !have_csum) {
1039 		struct scrub_fixup_nodatasum *fixup_nodatasum;
1040 
1041 		WARN_ON(sctx->is_dev_replace);
1042 
1043 nodatasum_case:
1044 
1045 		/*
1046 		 * !is_metadata and !have_csum, this means that the data
1047 		 * might not be COWed, that it might be modified
1048 		 * concurrently. The general strategy to work on the
1049 		 * commit root does not help in the case when COW is not
1050 		 * used.
1051 		 */
1052 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1053 		if (!fixup_nodatasum)
1054 			goto did_not_correct_error;
1055 		fixup_nodatasum->sctx = sctx;
1056 		fixup_nodatasum->dev = dev;
1057 		fixup_nodatasum->logical = logical;
1058 		fixup_nodatasum->root = fs_info->extent_root;
1059 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1060 		scrub_pending_trans_workers_inc(sctx);
1061 		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1062 				scrub_fixup_nodatasum, NULL, NULL);
1063 		btrfs_queue_work(fs_info->scrub_workers,
1064 				 &fixup_nodatasum->work);
1065 		goto out;
1066 	}
1067 
1068 	/*
1069 	 * now build and submit the bios for the other mirrors, check
1070 	 * checksums.
1071 	 * First try to pick the mirror which is completely without I/O
1072 	 * errors and also does not have a checksum error.
1073 	 * If one is found, and if a checksum is present, the full block
1074 	 * that is known to contain an error is rewritten. Afterwards
1075 	 * the block is known to be corrected.
1076 	 * If a mirror is found which is completely correct, and no
1077 	 * checksum is present, only those pages are rewritten that had
1078 	 * an I/O error in the block to be repaired, since it cannot be
1079 	 * determined, which copy of the other pages is better (and it
1080 	 * could happen otherwise that a correct page would be
1081 	 * overwritten by a bad one).
1082 	 */
1083 	for (mirror_index = 0;
1084 	     mirror_index < BTRFS_MAX_MIRRORS &&
1085 	     sblocks_for_recheck[mirror_index].page_count > 0;
1086 	     mirror_index++) {
1087 		struct scrub_block *sblock_other;
1088 
1089 		if (mirror_index == failed_mirror_index)
1090 			continue;
1091 		sblock_other = sblocks_for_recheck + mirror_index;
1092 
1093 		/* build and submit the bios, check checksums */
1094 		scrub_recheck_block(fs_info, sblock_other, 0);
1095 
1096 		if (!sblock_other->header_error &&
1097 		    !sblock_other->checksum_error &&
1098 		    sblock_other->no_io_error_seen) {
1099 			if (sctx->is_dev_replace) {
1100 				scrub_write_block_to_dev_replace(sblock_other);
1101 				goto corrected_error;
1102 			} else {
1103 				ret = scrub_repair_block_from_good_copy(
1104 						sblock_bad, sblock_other);
1105 				if (!ret)
1106 					goto corrected_error;
1107 			}
1108 		}
1109 	}
1110 
1111 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1112 		goto did_not_correct_error;
1113 
1114 	/*
1115 	 * In case of I/O errors in the area that is supposed to be
1116 	 * repaired, continue by picking good copies of those pages.
1117 	 * Select the good pages from mirrors to rewrite bad pages from
1118 	 * the area to fix. Afterwards verify the checksum of the block
1119 	 * that is supposed to be repaired. This verification step is
1120 	 * only done for the purpose of statistic counting and for the
1121 	 * final scrub report, whether errors remain.
1122 	 * A perfect algorithm could make use of the checksum and try
1123 	 * all possible combinations of pages from the different mirrors
1124 	 * until the checksum verification succeeds. For example, when
1125 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1126 	 * of mirror #2 is readable but the final checksum test fails,
1127 	 * then the 2nd page of mirror #3 could be tried, whether now
1128 	 * the final checksum succeeds. But this would be a rare
1129 	 * exception and is therefore not implemented. At least it is
1130 	 * avoided that the good copy is overwritten.
1131 	 * A more useful improvement would be to pick the sectors
1132 	 * without I/O error based on sector sizes (512 bytes on legacy
1133 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1134 	 * mirror could be repaired by taking 512 byte of a different
1135 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1136 	 * area are unreadable.
1137 	 */
1138 	success = 1;
1139 	for (page_num = 0; page_num < sblock_bad->page_count;
1140 	     page_num++) {
1141 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1142 		struct scrub_block *sblock_other = NULL;
1143 
1144 		/* skip no-io-error page in scrub */
1145 		if (!page_bad->io_error && !sctx->is_dev_replace)
1146 			continue;
1147 
1148 		/* try to find no-io-error page in mirrors */
1149 		if (page_bad->io_error) {
1150 			for (mirror_index = 0;
1151 			     mirror_index < BTRFS_MAX_MIRRORS &&
1152 			     sblocks_for_recheck[mirror_index].page_count > 0;
1153 			     mirror_index++) {
1154 				if (!sblocks_for_recheck[mirror_index].
1155 				    pagev[page_num]->io_error) {
1156 					sblock_other = sblocks_for_recheck +
1157 						       mirror_index;
1158 					break;
1159 				}
1160 			}
1161 			if (!sblock_other)
1162 				success = 0;
1163 		}
1164 
1165 		if (sctx->is_dev_replace) {
1166 			/*
1167 			 * did not find a mirror to fetch the page
1168 			 * from. scrub_write_page_to_dev_replace()
1169 			 * handles this case (page->io_error), by
1170 			 * filling the block with zeros before
1171 			 * submitting the write request
1172 			 */
1173 			if (!sblock_other)
1174 				sblock_other = sblock_bad;
1175 
1176 			if (scrub_write_page_to_dev_replace(sblock_other,
1177 							    page_num) != 0) {
1178 				btrfs_dev_replace_stats_inc(
1179 					&sctx->dev_root->
1180 					fs_info->dev_replace.
1181 					num_write_errors);
1182 				success = 0;
1183 			}
1184 		} else if (sblock_other) {
1185 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1186 							       sblock_other,
1187 							       page_num, 0);
1188 			if (0 == ret)
1189 				page_bad->io_error = 0;
1190 			else
1191 				success = 0;
1192 		}
1193 	}
1194 
1195 	if (success && !sctx->is_dev_replace) {
1196 		if (is_metadata || have_csum) {
1197 			/*
1198 			 * need to verify the checksum now that all
1199 			 * sectors on disk are repaired (the write
1200 			 * request for data to be repaired is on its way).
1201 			 * Just be lazy and use scrub_recheck_block()
1202 			 * which re-reads the data before the checksum
1203 			 * is verified, but most likely the data comes out
1204 			 * of the page cache.
1205 			 */
1206 			scrub_recheck_block(fs_info, sblock_bad, 1);
1207 			if (!sblock_bad->header_error &&
1208 			    !sblock_bad->checksum_error &&
1209 			    sblock_bad->no_io_error_seen)
1210 				goto corrected_error;
1211 			else
1212 				goto did_not_correct_error;
1213 		} else {
1214 corrected_error:
1215 			spin_lock(&sctx->stat_lock);
1216 			sctx->stat.corrected_errors++;
1217 			sblock_to_check->data_corrected = 1;
1218 			spin_unlock(&sctx->stat_lock);
1219 			btrfs_err_rl_in_rcu(fs_info,
1220 				"fixed up error at logical %llu on dev %s",
1221 				logical, rcu_str_deref(dev->name));
1222 		}
1223 	} else {
1224 did_not_correct_error:
1225 		spin_lock(&sctx->stat_lock);
1226 		sctx->stat.uncorrectable_errors++;
1227 		spin_unlock(&sctx->stat_lock);
1228 		btrfs_err_rl_in_rcu(fs_info,
1229 			"unable to fixup (regular) error at logical %llu on dev %s",
1230 			logical, rcu_str_deref(dev->name));
1231 	}
1232 
1233 out:
1234 	if (sblocks_for_recheck) {
1235 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1236 		     mirror_index++) {
1237 			struct scrub_block *sblock = sblocks_for_recheck +
1238 						     mirror_index;
1239 			struct scrub_recover *recover;
1240 			int page_index;
1241 
1242 			for (page_index = 0; page_index < sblock->page_count;
1243 			     page_index++) {
1244 				sblock->pagev[page_index]->sblock = NULL;
1245 				recover = sblock->pagev[page_index]->recover;
1246 				if (recover) {
1247 					scrub_put_recover(recover);
1248 					sblock->pagev[page_index]->recover =
1249 									NULL;
1250 				}
1251 				scrub_page_put(sblock->pagev[page_index]);
1252 			}
1253 		}
1254 		kfree(sblocks_for_recheck);
1255 	}
1256 
1257 	return 0;
1258 }
1259 
1260 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1261 {
1262 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1263 		return 2;
1264 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1265 		return 3;
1266 	else
1267 		return (int)bbio->num_stripes;
1268 }
1269 
1270 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1271 						 u64 *raid_map,
1272 						 u64 mapped_length,
1273 						 int nstripes, int mirror,
1274 						 int *stripe_index,
1275 						 u64 *stripe_offset)
1276 {
1277 	int i;
1278 
1279 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1280 		/* RAID5/6 */
1281 		for (i = 0; i < nstripes; i++) {
1282 			if (raid_map[i] == RAID6_Q_STRIPE ||
1283 			    raid_map[i] == RAID5_P_STRIPE)
1284 				continue;
1285 
1286 			if (logical >= raid_map[i] &&
1287 			    logical < raid_map[i] + mapped_length)
1288 				break;
1289 		}
1290 
1291 		*stripe_index = i;
1292 		*stripe_offset = logical - raid_map[i];
1293 	} else {
1294 		/* The other RAID type */
1295 		*stripe_index = mirror;
1296 		*stripe_offset = 0;
1297 	}
1298 }
1299 
1300 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1301 				     struct scrub_block *sblocks_for_recheck)
1302 {
1303 	struct scrub_ctx *sctx = original_sblock->sctx;
1304 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
1305 	u64 length = original_sblock->page_count * PAGE_SIZE;
1306 	u64 logical = original_sblock->pagev[0]->logical;
1307 	u64 generation = original_sblock->pagev[0]->generation;
1308 	u64 flags = original_sblock->pagev[0]->flags;
1309 	u64 have_csum = original_sblock->pagev[0]->have_csum;
1310 	struct scrub_recover *recover;
1311 	struct btrfs_bio *bbio;
1312 	u64 sublen;
1313 	u64 mapped_length;
1314 	u64 stripe_offset;
1315 	int stripe_index;
1316 	int page_index = 0;
1317 	int mirror_index;
1318 	int nmirrors;
1319 	int ret;
1320 
1321 	/*
1322 	 * note: the two members refs and outstanding_pages
1323 	 * are not used (and not set) in the blocks that are used for
1324 	 * the recheck procedure
1325 	 */
1326 
1327 	while (length > 0) {
1328 		sublen = min_t(u64, length, PAGE_SIZE);
1329 		mapped_length = sublen;
1330 		bbio = NULL;
1331 
1332 		/*
1333 		 * with a length of PAGE_SIZE, each returned stripe
1334 		 * represents one mirror
1335 		 */
1336 		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1337 				       &mapped_length, &bbio, 0, 1);
1338 		if (ret || !bbio || mapped_length < sublen) {
1339 			btrfs_put_bbio(bbio);
1340 			return -EIO;
1341 		}
1342 
1343 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1344 		if (!recover) {
1345 			btrfs_put_bbio(bbio);
1346 			return -ENOMEM;
1347 		}
1348 
1349 		atomic_set(&recover->refs, 1);
1350 		recover->bbio = bbio;
1351 		recover->map_length = mapped_length;
1352 
1353 		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1354 
1355 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1356 
1357 		for (mirror_index = 0; mirror_index < nmirrors;
1358 		     mirror_index++) {
1359 			struct scrub_block *sblock;
1360 			struct scrub_page *page;
1361 
1362 			sblock = sblocks_for_recheck + mirror_index;
1363 			sblock->sctx = sctx;
1364 
1365 			page = kzalloc(sizeof(*page), GFP_NOFS);
1366 			if (!page) {
1367 leave_nomem:
1368 				spin_lock(&sctx->stat_lock);
1369 				sctx->stat.malloc_errors++;
1370 				spin_unlock(&sctx->stat_lock);
1371 				scrub_put_recover(recover);
1372 				return -ENOMEM;
1373 			}
1374 			scrub_page_get(page);
1375 			sblock->pagev[page_index] = page;
1376 			page->sblock = sblock;
1377 			page->flags = flags;
1378 			page->generation = generation;
1379 			page->logical = logical;
1380 			page->have_csum = have_csum;
1381 			if (have_csum)
1382 				memcpy(page->csum,
1383 				       original_sblock->pagev[0]->csum,
1384 				       sctx->csum_size);
1385 
1386 			scrub_stripe_index_and_offset(logical,
1387 						      bbio->map_type,
1388 						      bbio->raid_map,
1389 						      mapped_length,
1390 						      bbio->num_stripes -
1391 						      bbio->num_tgtdevs,
1392 						      mirror_index,
1393 						      &stripe_index,
1394 						      &stripe_offset);
1395 			page->physical = bbio->stripes[stripe_index].physical +
1396 					 stripe_offset;
1397 			page->dev = bbio->stripes[stripe_index].dev;
1398 
1399 			BUG_ON(page_index >= original_sblock->page_count);
1400 			page->physical_for_dev_replace =
1401 				original_sblock->pagev[page_index]->
1402 				physical_for_dev_replace;
1403 			/* for missing devices, dev->bdev is NULL */
1404 			page->mirror_num = mirror_index + 1;
1405 			sblock->page_count++;
1406 			page->page = alloc_page(GFP_NOFS);
1407 			if (!page->page)
1408 				goto leave_nomem;
1409 
1410 			scrub_get_recover(recover);
1411 			page->recover = recover;
1412 		}
1413 		scrub_put_recover(recover);
1414 		length -= sublen;
1415 		logical += sublen;
1416 		page_index++;
1417 	}
1418 
1419 	return 0;
1420 }
1421 
1422 struct scrub_bio_ret {
1423 	struct completion event;
1424 	int error;
1425 };
1426 
1427 static void scrub_bio_wait_endio(struct bio *bio)
1428 {
1429 	struct scrub_bio_ret *ret = bio->bi_private;
1430 
1431 	ret->error = bio->bi_error;
1432 	complete(&ret->event);
1433 }
1434 
1435 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1436 {
1437 	return page->recover &&
1438 	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1439 }
1440 
1441 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1442 					struct bio *bio,
1443 					struct scrub_page *page)
1444 {
1445 	struct scrub_bio_ret done;
1446 	int ret;
1447 
1448 	init_completion(&done.event);
1449 	done.error = 0;
1450 	bio->bi_iter.bi_sector = page->logical >> 9;
1451 	bio->bi_private = &done;
1452 	bio->bi_end_io = scrub_bio_wait_endio;
1453 
1454 	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
1455 				    page->recover->map_length,
1456 				    page->mirror_num, 0);
1457 	if (ret)
1458 		return ret;
1459 
1460 	wait_for_completion(&done.event);
1461 	if (done.error)
1462 		return -EIO;
1463 
1464 	return 0;
1465 }
1466 
1467 /*
1468  * this function will check the on disk data for checksum errors, header
1469  * errors and read I/O errors. If any I/O errors happen, the exact pages
1470  * which are errored are marked as being bad. The goal is to enable scrub
1471  * to take those pages that are not errored from all the mirrors so that
1472  * the pages that are errored in the just handled mirror can be repaired.
1473  */
1474 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1475 				struct scrub_block *sblock,
1476 				int retry_failed_mirror)
1477 {
1478 	int page_num;
1479 
1480 	sblock->no_io_error_seen = 1;
1481 
1482 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1483 		struct bio *bio;
1484 		struct scrub_page *page = sblock->pagev[page_num];
1485 
1486 		if (page->dev->bdev == NULL) {
1487 			page->io_error = 1;
1488 			sblock->no_io_error_seen = 0;
1489 			continue;
1490 		}
1491 
1492 		WARN_ON(!page->page);
1493 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1494 		if (!bio) {
1495 			page->io_error = 1;
1496 			sblock->no_io_error_seen = 0;
1497 			continue;
1498 		}
1499 		bio->bi_bdev = page->dev->bdev;
1500 
1501 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1502 		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1503 			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
1504 				sblock->no_io_error_seen = 0;
1505 		} else {
1506 			bio->bi_iter.bi_sector = page->physical >> 9;
1507 
1508 			if (btrfsic_submit_bio_wait(READ, bio))
1509 				sblock->no_io_error_seen = 0;
1510 		}
1511 
1512 		bio_put(bio);
1513 	}
1514 
1515 	if (sblock->no_io_error_seen)
1516 		scrub_recheck_block_checksum(sblock);
1517 }
1518 
1519 static inline int scrub_check_fsid(u8 fsid[],
1520 				   struct scrub_page *spage)
1521 {
1522 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1523 	int ret;
1524 
1525 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1526 	return !ret;
1527 }
1528 
1529 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1530 {
1531 	sblock->header_error = 0;
1532 	sblock->checksum_error = 0;
1533 	sblock->generation_error = 0;
1534 
1535 	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1536 		scrub_checksum_data(sblock);
1537 	else
1538 		scrub_checksum_tree_block(sblock);
1539 }
1540 
1541 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1542 					     struct scrub_block *sblock_good)
1543 {
1544 	int page_num;
1545 	int ret = 0;
1546 
1547 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1548 		int ret_sub;
1549 
1550 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1551 							   sblock_good,
1552 							   page_num, 1);
1553 		if (ret_sub)
1554 			ret = ret_sub;
1555 	}
1556 
1557 	return ret;
1558 }
1559 
1560 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1561 					    struct scrub_block *sblock_good,
1562 					    int page_num, int force_write)
1563 {
1564 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1565 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1566 
1567 	BUG_ON(page_bad->page == NULL);
1568 	BUG_ON(page_good->page == NULL);
1569 	if (force_write || sblock_bad->header_error ||
1570 	    sblock_bad->checksum_error || page_bad->io_error) {
1571 		struct bio *bio;
1572 		int ret;
1573 
1574 		if (!page_bad->dev->bdev) {
1575 			btrfs_warn_rl(sblock_bad->sctx->dev_root->fs_info,
1576 				"scrub_repair_page_from_good_copy(bdev == NULL) "
1577 				"is unexpected");
1578 			return -EIO;
1579 		}
1580 
1581 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1582 		if (!bio)
1583 			return -EIO;
1584 		bio->bi_bdev = page_bad->dev->bdev;
1585 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1586 
1587 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1588 		if (PAGE_SIZE != ret) {
1589 			bio_put(bio);
1590 			return -EIO;
1591 		}
1592 
1593 		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1594 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1595 				BTRFS_DEV_STAT_WRITE_ERRS);
1596 			btrfs_dev_replace_stats_inc(
1597 				&sblock_bad->sctx->dev_root->fs_info->
1598 				dev_replace.num_write_errors);
1599 			bio_put(bio);
1600 			return -EIO;
1601 		}
1602 		bio_put(bio);
1603 	}
1604 
1605 	return 0;
1606 }
1607 
1608 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1609 {
1610 	int page_num;
1611 
1612 	/*
1613 	 * This block is used for the check of the parity on the source device,
1614 	 * so the data needn't be written into the destination device.
1615 	 */
1616 	if (sblock->sparity)
1617 		return;
1618 
1619 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1620 		int ret;
1621 
1622 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1623 		if (ret)
1624 			btrfs_dev_replace_stats_inc(
1625 				&sblock->sctx->dev_root->fs_info->dev_replace.
1626 				num_write_errors);
1627 	}
1628 }
1629 
1630 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1631 					   int page_num)
1632 {
1633 	struct scrub_page *spage = sblock->pagev[page_num];
1634 
1635 	BUG_ON(spage->page == NULL);
1636 	if (spage->io_error) {
1637 		void *mapped_buffer = kmap_atomic(spage->page);
1638 
1639 		memset(mapped_buffer, 0, PAGE_SIZE);
1640 		flush_dcache_page(spage->page);
1641 		kunmap_atomic(mapped_buffer);
1642 	}
1643 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1644 }
1645 
1646 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1647 				    struct scrub_page *spage)
1648 {
1649 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1650 	struct scrub_bio *sbio;
1651 	int ret;
1652 
1653 	mutex_lock(&wr_ctx->wr_lock);
1654 again:
1655 	if (!wr_ctx->wr_curr_bio) {
1656 		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1657 					      GFP_KERNEL);
1658 		if (!wr_ctx->wr_curr_bio) {
1659 			mutex_unlock(&wr_ctx->wr_lock);
1660 			return -ENOMEM;
1661 		}
1662 		wr_ctx->wr_curr_bio->sctx = sctx;
1663 		wr_ctx->wr_curr_bio->page_count = 0;
1664 	}
1665 	sbio = wr_ctx->wr_curr_bio;
1666 	if (sbio->page_count == 0) {
1667 		struct bio *bio;
1668 
1669 		sbio->physical = spage->physical_for_dev_replace;
1670 		sbio->logical = spage->logical;
1671 		sbio->dev = wr_ctx->tgtdev;
1672 		bio = sbio->bio;
1673 		if (!bio) {
1674 			bio = btrfs_io_bio_alloc(GFP_KERNEL,
1675 					wr_ctx->pages_per_wr_bio);
1676 			if (!bio) {
1677 				mutex_unlock(&wr_ctx->wr_lock);
1678 				return -ENOMEM;
1679 			}
1680 			sbio->bio = bio;
1681 		}
1682 
1683 		bio->bi_private = sbio;
1684 		bio->bi_end_io = scrub_wr_bio_end_io;
1685 		bio->bi_bdev = sbio->dev->bdev;
1686 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1687 		sbio->err = 0;
1688 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1689 		   spage->physical_for_dev_replace ||
1690 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1691 		   spage->logical) {
1692 		scrub_wr_submit(sctx);
1693 		goto again;
1694 	}
1695 
1696 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1697 	if (ret != PAGE_SIZE) {
1698 		if (sbio->page_count < 1) {
1699 			bio_put(sbio->bio);
1700 			sbio->bio = NULL;
1701 			mutex_unlock(&wr_ctx->wr_lock);
1702 			return -EIO;
1703 		}
1704 		scrub_wr_submit(sctx);
1705 		goto again;
1706 	}
1707 
1708 	sbio->pagev[sbio->page_count] = spage;
1709 	scrub_page_get(spage);
1710 	sbio->page_count++;
1711 	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1712 		scrub_wr_submit(sctx);
1713 	mutex_unlock(&wr_ctx->wr_lock);
1714 
1715 	return 0;
1716 }
1717 
1718 static void scrub_wr_submit(struct scrub_ctx *sctx)
1719 {
1720 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1721 	struct scrub_bio *sbio;
1722 
1723 	if (!wr_ctx->wr_curr_bio)
1724 		return;
1725 
1726 	sbio = wr_ctx->wr_curr_bio;
1727 	wr_ctx->wr_curr_bio = NULL;
1728 	WARN_ON(!sbio->bio->bi_bdev);
1729 	scrub_pending_bio_inc(sctx);
1730 	/* process all writes in a single worker thread. Then the block layer
1731 	 * orders the requests before sending them to the driver which
1732 	 * doubled the write performance on spinning disks when measured
1733 	 * with Linux 3.5 */
1734 	btrfsic_submit_bio(WRITE, sbio->bio);
1735 }
1736 
1737 static void scrub_wr_bio_end_io(struct bio *bio)
1738 {
1739 	struct scrub_bio *sbio = bio->bi_private;
1740 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1741 
1742 	sbio->err = bio->bi_error;
1743 	sbio->bio = bio;
1744 
1745 	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1746 			 scrub_wr_bio_end_io_worker, NULL, NULL);
1747 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1748 }
1749 
1750 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1751 {
1752 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1753 	struct scrub_ctx *sctx = sbio->sctx;
1754 	int i;
1755 
1756 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1757 	if (sbio->err) {
1758 		struct btrfs_dev_replace *dev_replace =
1759 			&sbio->sctx->dev_root->fs_info->dev_replace;
1760 
1761 		for (i = 0; i < sbio->page_count; i++) {
1762 			struct scrub_page *spage = sbio->pagev[i];
1763 
1764 			spage->io_error = 1;
1765 			btrfs_dev_replace_stats_inc(&dev_replace->
1766 						    num_write_errors);
1767 		}
1768 	}
1769 
1770 	for (i = 0; i < sbio->page_count; i++)
1771 		scrub_page_put(sbio->pagev[i]);
1772 
1773 	bio_put(sbio->bio);
1774 	kfree(sbio);
1775 	scrub_pending_bio_dec(sctx);
1776 }
1777 
1778 static int scrub_checksum(struct scrub_block *sblock)
1779 {
1780 	u64 flags;
1781 	int ret;
1782 
1783 	/*
1784 	 * No need to initialize these stats currently,
1785 	 * because this function only use return value
1786 	 * instead of these stats value.
1787 	 *
1788 	 * Todo:
1789 	 * always use stats
1790 	 */
1791 	sblock->header_error = 0;
1792 	sblock->generation_error = 0;
1793 	sblock->checksum_error = 0;
1794 
1795 	WARN_ON(sblock->page_count < 1);
1796 	flags = sblock->pagev[0]->flags;
1797 	ret = 0;
1798 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1799 		ret = scrub_checksum_data(sblock);
1800 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1801 		ret = scrub_checksum_tree_block(sblock);
1802 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1803 		(void)scrub_checksum_super(sblock);
1804 	else
1805 		WARN_ON(1);
1806 	if (ret)
1807 		scrub_handle_errored_block(sblock);
1808 
1809 	return ret;
1810 }
1811 
1812 static int scrub_checksum_data(struct scrub_block *sblock)
1813 {
1814 	struct scrub_ctx *sctx = sblock->sctx;
1815 	u8 csum[BTRFS_CSUM_SIZE];
1816 	u8 *on_disk_csum;
1817 	struct page *page;
1818 	void *buffer;
1819 	u32 crc = ~(u32)0;
1820 	u64 len;
1821 	int index;
1822 
1823 	BUG_ON(sblock->page_count < 1);
1824 	if (!sblock->pagev[0]->have_csum)
1825 		return 0;
1826 
1827 	on_disk_csum = sblock->pagev[0]->csum;
1828 	page = sblock->pagev[0]->page;
1829 	buffer = kmap_atomic(page);
1830 
1831 	len = sctx->sectorsize;
1832 	index = 0;
1833 	for (;;) {
1834 		u64 l = min_t(u64, len, PAGE_SIZE);
1835 
1836 		crc = btrfs_csum_data(buffer, crc, l);
1837 		kunmap_atomic(buffer);
1838 		len -= l;
1839 		if (len == 0)
1840 			break;
1841 		index++;
1842 		BUG_ON(index >= sblock->page_count);
1843 		BUG_ON(!sblock->pagev[index]->page);
1844 		page = sblock->pagev[index]->page;
1845 		buffer = kmap_atomic(page);
1846 	}
1847 
1848 	btrfs_csum_final(crc, csum);
1849 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1850 		sblock->checksum_error = 1;
1851 
1852 	return sblock->checksum_error;
1853 }
1854 
1855 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1856 {
1857 	struct scrub_ctx *sctx = sblock->sctx;
1858 	struct btrfs_header *h;
1859 	struct btrfs_root *root = sctx->dev_root;
1860 	struct btrfs_fs_info *fs_info = root->fs_info;
1861 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1862 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1863 	struct page *page;
1864 	void *mapped_buffer;
1865 	u64 mapped_size;
1866 	void *p;
1867 	u32 crc = ~(u32)0;
1868 	u64 len;
1869 	int index;
1870 
1871 	BUG_ON(sblock->page_count < 1);
1872 	page = sblock->pagev[0]->page;
1873 	mapped_buffer = kmap_atomic(page);
1874 	h = (struct btrfs_header *)mapped_buffer;
1875 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1876 
1877 	/*
1878 	 * we don't use the getter functions here, as we
1879 	 * a) don't have an extent buffer and
1880 	 * b) the page is already kmapped
1881 	 */
1882 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1883 		sblock->header_error = 1;
1884 
1885 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1886 		sblock->header_error = 1;
1887 		sblock->generation_error = 1;
1888 	}
1889 
1890 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1891 		sblock->header_error = 1;
1892 
1893 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1894 		   BTRFS_UUID_SIZE))
1895 		sblock->header_error = 1;
1896 
1897 	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1898 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1899 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1900 	index = 0;
1901 	for (;;) {
1902 		u64 l = min_t(u64, len, mapped_size);
1903 
1904 		crc = btrfs_csum_data(p, crc, l);
1905 		kunmap_atomic(mapped_buffer);
1906 		len -= l;
1907 		if (len == 0)
1908 			break;
1909 		index++;
1910 		BUG_ON(index >= sblock->page_count);
1911 		BUG_ON(!sblock->pagev[index]->page);
1912 		page = sblock->pagev[index]->page;
1913 		mapped_buffer = kmap_atomic(page);
1914 		mapped_size = PAGE_SIZE;
1915 		p = mapped_buffer;
1916 	}
1917 
1918 	btrfs_csum_final(crc, calculated_csum);
1919 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1920 		sblock->checksum_error = 1;
1921 
1922 	return sblock->header_error || sblock->checksum_error;
1923 }
1924 
1925 static int scrub_checksum_super(struct scrub_block *sblock)
1926 {
1927 	struct btrfs_super_block *s;
1928 	struct scrub_ctx *sctx = sblock->sctx;
1929 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1930 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1931 	struct page *page;
1932 	void *mapped_buffer;
1933 	u64 mapped_size;
1934 	void *p;
1935 	u32 crc = ~(u32)0;
1936 	int fail_gen = 0;
1937 	int fail_cor = 0;
1938 	u64 len;
1939 	int index;
1940 
1941 	BUG_ON(sblock->page_count < 1);
1942 	page = sblock->pagev[0]->page;
1943 	mapped_buffer = kmap_atomic(page);
1944 	s = (struct btrfs_super_block *)mapped_buffer;
1945 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1946 
1947 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1948 		++fail_cor;
1949 
1950 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1951 		++fail_gen;
1952 
1953 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1954 		++fail_cor;
1955 
1956 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1957 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1958 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1959 	index = 0;
1960 	for (;;) {
1961 		u64 l = min_t(u64, len, mapped_size);
1962 
1963 		crc = btrfs_csum_data(p, crc, l);
1964 		kunmap_atomic(mapped_buffer);
1965 		len -= l;
1966 		if (len == 0)
1967 			break;
1968 		index++;
1969 		BUG_ON(index >= sblock->page_count);
1970 		BUG_ON(!sblock->pagev[index]->page);
1971 		page = sblock->pagev[index]->page;
1972 		mapped_buffer = kmap_atomic(page);
1973 		mapped_size = PAGE_SIZE;
1974 		p = mapped_buffer;
1975 	}
1976 
1977 	btrfs_csum_final(crc, calculated_csum);
1978 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1979 		++fail_cor;
1980 
1981 	if (fail_cor + fail_gen) {
1982 		/*
1983 		 * if we find an error in a super block, we just report it.
1984 		 * They will get written with the next transaction commit
1985 		 * anyway
1986 		 */
1987 		spin_lock(&sctx->stat_lock);
1988 		++sctx->stat.super_errors;
1989 		spin_unlock(&sctx->stat_lock);
1990 		if (fail_cor)
1991 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1992 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1993 		else
1994 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1995 				BTRFS_DEV_STAT_GENERATION_ERRS);
1996 	}
1997 
1998 	return fail_cor + fail_gen;
1999 }
2000 
2001 static void scrub_block_get(struct scrub_block *sblock)
2002 {
2003 	atomic_inc(&sblock->refs);
2004 }
2005 
2006 static void scrub_block_put(struct scrub_block *sblock)
2007 {
2008 	if (atomic_dec_and_test(&sblock->refs)) {
2009 		int i;
2010 
2011 		if (sblock->sparity)
2012 			scrub_parity_put(sblock->sparity);
2013 
2014 		for (i = 0; i < sblock->page_count; i++)
2015 			scrub_page_put(sblock->pagev[i]);
2016 		kfree(sblock);
2017 	}
2018 }
2019 
2020 static void scrub_page_get(struct scrub_page *spage)
2021 {
2022 	atomic_inc(&spage->refs);
2023 }
2024 
2025 static void scrub_page_put(struct scrub_page *spage)
2026 {
2027 	if (atomic_dec_and_test(&spage->refs)) {
2028 		if (spage->page)
2029 			__free_page(spage->page);
2030 		kfree(spage);
2031 	}
2032 }
2033 
2034 static void scrub_submit(struct scrub_ctx *sctx)
2035 {
2036 	struct scrub_bio *sbio;
2037 
2038 	if (sctx->curr == -1)
2039 		return;
2040 
2041 	sbio = sctx->bios[sctx->curr];
2042 	sctx->curr = -1;
2043 	scrub_pending_bio_inc(sctx);
2044 	btrfsic_submit_bio(READ, sbio->bio);
2045 }
2046 
2047 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2048 				    struct scrub_page *spage)
2049 {
2050 	struct scrub_block *sblock = spage->sblock;
2051 	struct scrub_bio *sbio;
2052 	int ret;
2053 
2054 again:
2055 	/*
2056 	 * grab a fresh bio or wait for one to become available
2057 	 */
2058 	while (sctx->curr == -1) {
2059 		spin_lock(&sctx->list_lock);
2060 		sctx->curr = sctx->first_free;
2061 		if (sctx->curr != -1) {
2062 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2063 			sctx->bios[sctx->curr]->next_free = -1;
2064 			sctx->bios[sctx->curr]->page_count = 0;
2065 			spin_unlock(&sctx->list_lock);
2066 		} else {
2067 			spin_unlock(&sctx->list_lock);
2068 			wait_event(sctx->list_wait, sctx->first_free != -1);
2069 		}
2070 	}
2071 	sbio = sctx->bios[sctx->curr];
2072 	if (sbio->page_count == 0) {
2073 		struct bio *bio;
2074 
2075 		sbio->physical = spage->physical;
2076 		sbio->logical = spage->logical;
2077 		sbio->dev = spage->dev;
2078 		bio = sbio->bio;
2079 		if (!bio) {
2080 			bio = btrfs_io_bio_alloc(GFP_KERNEL,
2081 					sctx->pages_per_rd_bio);
2082 			if (!bio)
2083 				return -ENOMEM;
2084 			sbio->bio = bio;
2085 		}
2086 
2087 		bio->bi_private = sbio;
2088 		bio->bi_end_io = scrub_bio_end_io;
2089 		bio->bi_bdev = sbio->dev->bdev;
2090 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2091 		sbio->err = 0;
2092 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2093 		   spage->physical ||
2094 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2095 		   spage->logical ||
2096 		   sbio->dev != spage->dev) {
2097 		scrub_submit(sctx);
2098 		goto again;
2099 	}
2100 
2101 	sbio->pagev[sbio->page_count] = spage;
2102 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2103 	if (ret != PAGE_SIZE) {
2104 		if (sbio->page_count < 1) {
2105 			bio_put(sbio->bio);
2106 			sbio->bio = NULL;
2107 			return -EIO;
2108 		}
2109 		scrub_submit(sctx);
2110 		goto again;
2111 	}
2112 
2113 	scrub_block_get(sblock); /* one for the page added to the bio */
2114 	atomic_inc(&sblock->outstanding_pages);
2115 	sbio->page_count++;
2116 	if (sbio->page_count == sctx->pages_per_rd_bio)
2117 		scrub_submit(sctx);
2118 
2119 	return 0;
2120 }
2121 
2122 static void scrub_missing_raid56_end_io(struct bio *bio)
2123 {
2124 	struct scrub_block *sblock = bio->bi_private;
2125 	struct btrfs_fs_info *fs_info = sblock->sctx->dev_root->fs_info;
2126 
2127 	if (bio->bi_error)
2128 		sblock->no_io_error_seen = 0;
2129 
2130 	bio_put(bio);
2131 
2132 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2133 }
2134 
2135 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2136 {
2137 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2138 	struct scrub_ctx *sctx = sblock->sctx;
2139 	u64 logical;
2140 	struct btrfs_device *dev;
2141 
2142 	logical = sblock->pagev[0]->logical;
2143 	dev = sblock->pagev[0]->dev;
2144 
2145 	if (sblock->no_io_error_seen)
2146 		scrub_recheck_block_checksum(sblock);
2147 
2148 	if (!sblock->no_io_error_seen) {
2149 		spin_lock(&sctx->stat_lock);
2150 		sctx->stat.read_errors++;
2151 		spin_unlock(&sctx->stat_lock);
2152 		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
2153 			"IO error rebuilding logical %llu for dev %s",
2154 			logical, rcu_str_deref(dev->name));
2155 	} else if (sblock->header_error || sblock->checksum_error) {
2156 		spin_lock(&sctx->stat_lock);
2157 		sctx->stat.uncorrectable_errors++;
2158 		spin_unlock(&sctx->stat_lock);
2159 		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
2160 			"failed to rebuild valid logical %llu for dev %s",
2161 			logical, rcu_str_deref(dev->name));
2162 	} else {
2163 		scrub_write_block_to_dev_replace(sblock);
2164 	}
2165 
2166 	scrub_block_put(sblock);
2167 
2168 	if (sctx->is_dev_replace &&
2169 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2170 		mutex_lock(&sctx->wr_ctx.wr_lock);
2171 		scrub_wr_submit(sctx);
2172 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2173 	}
2174 
2175 	scrub_pending_bio_dec(sctx);
2176 }
2177 
2178 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2179 {
2180 	struct scrub_ctx *sctx = sblock->sctx;
2181 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2182 	u64 length = sblock->page_count * PAGE_SIZE;
2183 	u64 logical = sblock->pagev[0]->logical;
2184 	struct btrfs_bio *bbio = NULL;
2185 	struct bio *bio;
2186 	struct btrfs_raid_bio *rbio;
2187 	int ret;
2188 	int i;
2189 
2190 	ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
2191 			       &bbio, 0, 1);
2192 	if (ret || !bbio || !bbio->raid_map)
2193 		goto bbio_out;
2194 
2195 	if (WARN_ON(!sctx->is_dev_replace ||
2196 		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2197 		/*
2198 		 * We shouldn't be scrubbing a missing device. Even for dev
2199 		 * replace, we should only get here for RAID 5/6. We either
2200 		 * managed to mount something with no mirrors remaining or
2201 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2202 		 */
2203 		goto bbio_out;
2204 	}
2205 
2206 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2207 	if (!bio)
2208 		goto bbio_out;
2209 
2210 	bio->bi_iter.bi_sector = logical >> 9;
2211 	bio->bi_private = sblock;
2212 	bio->bi_end_io = scrub_missing_raid56_end_io;
2213 
2214 	rbio = raid56_alloc_missing_rbio(sctx->dev_root, bio, bbio, length);
2215 	if (!rbio)
2216 		goto rbio_out;
2217 
2218 	for (i = 0; i < sblock->page_count; i++) {
2219 		struct scrub_page *spage = sblock->pagev[i];
2220 
2221 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2222 	}
2223 
2224 	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2225 			scrub_missing_raid56_worker, NULL, NULL);
2226 	scrub_block_get(sblock);
2227 	scrub_pending_bio_inc(sctx);
2228 	raid56_submit_missing_rbio(rbio);
2229 	return;
2230 
2231 rbio_out:
2232 	bio_put(bio);
2233 bbio_out:
2234 	btrfs_put_bbio(bbio);
2235 	spin_lock(&sctx->stat_lock);
2236 	sctx->stat.malloc_errors++;
2237 	spin_unlock(&sctx->stat_lock);
2238 }
2239 
2240 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2241 		       u64 physical, struct btrfs_device *dev, u64 flags,
2242 		       u64 gen, int mirror_num, u8 *csum, int force,
2243 		       u64 physical_for_dev_replace)
2244 {
2245 	struct scrub_block *sblock;
2246 	int index;
2247 
2248 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2249 	if (!sblock) {
2250 		spin_lock(&sctx->stat_lock);
2251 		sctx->stat.malloc_errors++;
2252 		spin_unlock(&sctx->stat_lock);
2253 		return -ENOMEM;
2254 	}
2255 
2256 	/* one ref inside this function, plus one for each page added to
2257 	 * a bio later on */
2258 	atomic_set(&sblock->refs, 1);
2259 	sblock->sctx = sctx;
2260 	sblock->no_io_error_seen = 1;
2261 
2262 	for (index = 0; len > 0; index++) {
2263 		struct scrub_page *spage;
2264 		u64 l = min_t(u64, len, PAGE_SIZE);
2265 
2266 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2267 		if (!spage) {
2268 leave_nomem:
2269 			spin_lock(&sctx->stat_lock);
2270 			sctx->stat.malloc_errors++;
2271 			spin_unlock(&sctx->stat_lock);
2272 			scrub_block_put(sblock);
2273 			return -ENOMEM;
2274 		}
2275 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2276 		scrub_page_get(spage);
2277 		sblock->pagev[index] = spage;
2278 		spage->sblock = sblock;
2279 		spage->dev = dev;
2280 		spage->flags = flags;
2281 		spage->generation = gen;
2282 		spage->logical = logical;
2283 		spage->physical = physical;
2284 		spage->physical_for_dev_replace = physical_for_dev_replace;
2285 		spage->mirror_num = mirror_num;
2286 		if (csum) {
2287 			spage->have_csum = 1;
2288 			memcpy(spage->csum, csum, sctx->csum_size);
2289 		} else {
2290 			spage->have_csum = 0;
2291 		}
2292 		sblock->page_count++;
2293 		spage->page = alloc_page(GFP_KERNEL);
2294 		if (!spage->page)
2295 			goto leave_nomem;
2296 		len -= l;
2297 		logical += l;
2298 		physical += l;
2299 		physical_for_dev_replace += l;
2300 	}
2301 
2302 	WARN_ON(sblock->page_count == 0);
2303 	if (dev->missing) {
2304 		/*
2305 		 * This case should only be hit for RAID 5/6 device replace. See
2306 		 * the comment in scrub_missing_raid56_pages() for details.
2307 		 */
2308 		scrub_missing_raid56_pages(sblock);
2309 	} else {
2310 		for (index = 0; index < sblock->page_count; index++) {
2311 			struct scrub_page *spage = sblock->pagev[index];
2312 			int ret;
2313 
2314 			ret = scrub_add_page_to_rd_bio(sctx, spage);
2315 			if (ret) {
2316 				scrub_block_put(sblock);
2317 				return ret;
2318 			}
2319 		}
2320 
2321 		if (force)
2322 			scrub_submit(sctx);
2323 	}
2324 
2325 	/* last one frees, either here or in bio completion for last page */
2326 	scrub_block_put(sblock);
2327 	return 0;
2328 }
2329 
2330 static void scrub_bio_end_io(struct bio *bio)
2331 {
2332 	struct scrub_bio *sbio = bio->bi_private;
2333 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2334 
2335 	sbio->err = bio->bi_error;
2336 	sbio->bio = bio;
2337 
2338 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2339 }
2340 
2341 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2342 {
2343 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2344 	struct scrub_ctx *sctx = sbio->sctx;
2345 	int i;
2346 
2347 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2348 	if (sbio->err) {
2349 		for (i = 0; i < sbio->page_count; i++) {
2350 			struct scrub_page *spage = sbio->pagev[i];
2351 
2352 			spage->io_error = 1;
2353 			spage->sblock->no_io_error_seen = 0;
2354 		}
2355 	}
2356 
2357 	/* now complete the scrub_block items that have all pages completed */
2358 	for (i = 0; i < sbio->page_count; i++) {
2359 		struct scrub_page *spage = sbio->pagev[i];
2360 		struct scrub_block *sblock = spage->sblock;
2361 
2362 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2363 			scrub_block_complete(sblock);
2364 		scrub_block_put(sblock);
2365 	}
2366 
2367 	bio_put(sbio->bio);
2368 	sbio->bio = NULL;
2369 	spin_lock(&sctx->list_lock);
2370 	sbio->next_free = sctx->first_free;
2371 	sctx->first_free = sbio->index;
2372 	spin_unlock(&sctx->list_lock);
2373 
2374 	if (sctx->is_dev_replace &&
2375 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2376 		mutex_lock(&sctx->wr_ctx.wr_lock);
2377 		scrub_wr_submit(sctx);
2378 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2379 	}
2380 
2381 	scrub_pending_bio_dec(sctx);
2382 }
2383 
2384 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2385 				       unsigned long *bitmap,
2386 				       u64 start, u64 len)
2387 {
2388 	u32 offset;
2389 	int nsectors;
2390 	int sectorsize = sparity->sctx->dev_root->sectorsize;
2391 
2392 	if (len >= sparity->stripe_len) {
2393 		bitmap_set(bitmap, 0, sparity->nsectors);
2394 		return;
2395 	}
2396 
2397 	start -= sparity->logic_start;
2398 	start = div_u64_rem(start, sparity->stripe_len, &offset);
2399 	offset /= sectorsize;
2400 	nsectors = (int)len / sectorsize;
2401 
2402 	if (offset + nsectors <= sparity->nsectors) {
2403 		bitmap_set(bitmap, offset, nsectors);
2404 		return;
2405 	}
2406 
2407 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2408 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2409 }
2410 
2411 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2412 						   u64 start, u64 len)
2413 {
2414 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2415 }
2416 
2417 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2418 						  u64 start, u64 len)
2419 {
2420 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2421 }
2422 
2423 static void scrub_block_complete(struct scrub_block *sblock)
2424 {
2425 	int corrupted = 0;
2426 
2427 	if (!sblock->no_io_error_seen) {
2428 		corrupted = 1;
2429 		scrub_handle_errored_block(sblock);
2430 	} else {
2431 		/*
2432 		 * if has checksum error, write via repair mechanism in
2433 		 * dev replace case, otherwise write here in dev replace
2434 		 * case.
2435 		 */
2436 		corrupted = scrub_checksum(sblock);
2437 		if (!corrupted && sblock->sctx->is_dev_replace)
2438 			scrub_write_block_to_dev_replace(sblock);
2439 	}
2440 
2441 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2442 		u64 start = sblock->pagev[0]->logical;
2443 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2444 			  PAGE_SIZE;
2445 
2446 		scrub_parity_mark_sectors_error(sblock->sparity,
2447 						start, end - start);
2448 	}
2449 }
2450 
2451 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2452 {
2453 	struct btrfs_ordered_sum *sum = NULL;
2454 	unsigned long index;
2455 	unsigned long num_sectors;
2456 
2457 	while (!list_empty(&sctx->csum_list)) {
2458 		sum = list_first_entry(&sctx->csum_list,
2459 				       struct btrfs_ordered_sum, list);
2460 		if (sum->bytenr > logical)
2461 			return 0;
2462 		if (sum->bytenr + sum->len > logical)
2463 			break;
2464 
2465 		++sctx->stat.csum_discards;
2466 		list_del(&sum->list);
2467 		kfree(sum);
2468 		sum = NULL;
2469 	}
2470 	if (!sum)
2471 		return 0;
2472 
2473 	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2474 	num_sectors = sum->len / sctx->sectorsize;
2475 	memcpy(csum, sum->sums + index, sctx->csum_size);
2476 	if (index == num_sectors - 1) {
2477 		list_del(&sum->list);
2478 		kfree(sum);
2479 	}
2480 	return 1;
2481 }
2482 
2483 /* scrub extent tries to collect up to 64 kB for each bio */
2484 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2485 			u64 physical, struct btrfs_device *dev, u64 flags,
2486 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2487 {
2488 	int ret;
2489 	u8 csum[BTRFS_CSUM_SIZE];
2490 	u32 blocksize;
2491 
2492 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2493 		blocksize = sctx->sectorsize;
2494 		spin_lock(&sctx->stat_lock);
2495 		sctx->stat.data_extents_scrubbed++;
2496 		sctx->stat.data_bytes_scrubbed += len;
2497 		spin_unlock(&sctx->stat_lock);
2498 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2499 		blocksize = sctx->nodesize;
2500 		spin_lock(&sctx->stat_lock);
2501 		sctx->stat.tree_extents_scrubbed++;
2502 		sctx->stat.tree_bytes_scrubbed += len;
2503 		spin_unlock(&sctx->stat_lock);
2504 	} else {
2505 		blocksize = sctx->sectorsize;
2506 		WARN_ON(1);
2507 	}
2508 
2509 	while (len) {
2510 		u64 l = min_t(u64, len, blocksize);
2511 		int have_csum = 0;
2512 
2513 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2514 			/* push csums to sbio */
2515 			have_csum = scrub_find_csum(sctx, logical, csum);
2516 			if (have_csum == 0)
2517 				++sctx->stat.no_csum;
2518 			if (sctx->is_dev_replace && !have_csum) {
2519 				ret = copy_nocow_pages(sctx, logical, l,
2520 						       mirror_num,
2521 						      physical_for_dev_replace);
2522 				goto behind_scrub_pages;
2523 			}
2524 		}
2525 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2526 				  mirror_num, have_csum ? csum : NULL, 0,
2527 				  physical_for_dev_replace);
2528 behind_scrub_pages:
2529 		if (ret)
2530 			return ret;
2531 		len -= l;
2532 		logical += l;
2533 		physical += l;
2534 		physical_for_dev_replace += l;
2535 	}
2536 	return 0;
2537 }
2538 
2539 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2540 				  u64 logical, u64 len,
2541 				  u64 physical, struct btrfs_device *dev,
2542 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2543 {
2544 	struct scrub_ctx *sctx = sparity->sctx;
2545 	struct scrub_block *sblock;
2546 	int index;
2547 
2548 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2549 	if (!sblock) {
2550 		spin_lock(&sctx->stat_lock);
2551 		sctx->stat.malloc_errors++;
2552 		spin_unlock(&sctx->stat_lock);
2553 		return -ENOMEM;
2554 	}
2555 
2556 	/* one ref inside this function, plus one for each page added to
2557 	 * a bio later on */
2558 	atomic_set(&sblock->refs, 1);
2559 	sblock->sctx = sctx;
2560 	sblock->no_io_error_seen = 1;
2561 	sblock->sparity = sparity;
2562 	scrub_parity_get(sparity);
2563 
2564 	for (index = 0; len > 0; index++) {
2565 		struct scrub_page *spage;
2566 		u64 l = min_t(u64, len, PAGE_SIZE);
2567 
2568 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2569 		if (!spage) {
2570 leave_nomem:
2571 			spin_lock(&sctx->stat_lock);
2572 			sctx->stat.malloc_errors++;
2573 			spin_unlock(&sctx->stat_lock);
2574 			scrub_block_put(sblock);
2575 			return -ENOMEM;
2576 		}
2577 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2578 		/* For scrub block */
2579 		scrub_page_get(spage);
2580 		sblock->pagev[index] = spage;
2581 		/* For scrub parity */
2582 		scrub_page_get(spage);
2583 		list_add_tail(&spage->list, &sparity->spages);
2584 		spage->sblock = sblock;
2585 		spage->dev = dev;
2586 		spage->flags = flags;
2587 		spage->generation = gen;
2588 		spage->logical = logical;
2589 		spage->physical = physical;
2590 		spage->mirror_num = mirror_num;
2591 		if (csum) {
2592 			spage->have_csum = 1;
2593 			memcpy(spage->csum, csum, sctx->csum_size);
2594 		} else {
2595 			spage->have_csum = 0;
2596 		}
2597 		sblock->page_count++;
2598 		spage->page = alloc_page(GFP_KERNEL);
2599 		if (!spage->page)
2600 			goto leave_nomem;
2601 		len -= l;
2602 		logical += l;
2603 		physical += l;
2604 	}
2605 
2606 	WARN_ON(sblock->page_count == 0);
2607 	for (index = 0; index < sblock->page_count; index++) {
2608 		struct scrub_page *spage = sblock->pagev[index];
2609 		int ret;
2610 
2611 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2612 		if (ret) {
2613 			scrub_block_put(sblock);
2614 			return ret;
2615 		}
2616 	}
2617 
2618 	/* last one frees, either here or in bio completion for last page */
2619 	scrub_block_put(sblock);
2620 	return 0;
2621 }
2622 
2623 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2624 				   u64 logical, u64 len,
2625 				   u64 physical, struct btrfs_device *dev,
2626 				   u64 flags, u64 gen, int mirror_num)
2627 {
2628 	struct scrub_ctx *sctx = sparity->sctx;
2629 	int ret;
2630 	u8 csum[BTRFS_CSUM_SIZE];
2631 	u32 blocksize;
2632 
2633 	if (dev->missing) {
2634 		scrub_parity_mark_sectors_error(sparity, logical, len);
2635 		return 0;
2636 	}
2637 
2638 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2639 		blocksize = sctx->sectorsize;
2640 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2641 		blocksize = sctx->nodesize;
2642 	} else {
2643 		blocksize = sctx->sectorsize;
2644 		WARN_ON(1);
2645 	}
2646 
2647 	while (len) {
2648 		u64 l = min_t(u64, len, blocksize);
2649 		int have_csum = 0;
2650 
2651 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2652 			/* push csums to sbio */
2653 			have_csum = scrub_find_csum(sctx, logical, csum);
2654 			if (have_csum == 0)
2655 				goto skip;
2656 		}
2657 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2658 					     flags, gen, mirror_num,
2659 					     have_csum ? csum : NULL);
2660 		if (ret)
2661 			return ret;
2662 skip:
2663 		len -= l;
2664 		logical += l;
2665 		physical += l;
2666 	}
2667 	return 0;
2668 }
2669 
2670 /*
2671  * Given a physical address, this will calculate it's
2672  * logical offset. if this is a parity stripe, it will return
2673  * the most left data stripe's logical offset.
2674  *
2675  * return 0 if it is a data stripe, 1 means parity stripe.
2676  */
2677 static int get_raid56_logic_offset(u64 physical, int num,
2678 				   struct map_lookup *map, u64 *offset,
2679 				   u64 *stripe_start)
2680 {
2681 	int i;
2682 	int j = 0;
2683 	u64 stripe_nr;
2684 	u64 last_offset;
2685 	u32 stripe_index;
2686 	u32 rot;
2687 
2688 	last_offset = (physical - map->stripes[num].physical) *
2689 		      nr_data_stripes(map);
2690 	if (stripe_start)
2691 		*stripe_start = last_offset;
2692 
2693 	*offset = last_offset;
2694 	for (i = 0; i < nr_data_stripes(map); i++) {
2695 		*offset = last_offset + i * map->stripe_len;
2696 
2697 		stripe_nr = div_u64(*offset, map->stripe_len);
2698 		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2699 
2700 		/* Work out the disk rotation on this stripe-set */
2701 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2702 		/* calculate which stripe this data locates */
2703 		rot += i;
2704 		stripe_index = rot % map->num_stripes;
2705 		if (stripe_index == num)
2706 			return 0;
2707 		if (stripe_index < num)
2708 			j++;
2709 	}
2710 	*offset = last_offset + j * map->stripe_len;
2711 	return 1;
2712 }
2713 
2714 static void scrub_free_parity(struct scrub_parity *sparity)
2715 {
2716 	struct scrub_ctx *sctx = sparity->sctx;
2717 	struct scrub_page *curr, *next;
2718 	int nbits;
2719 
2720 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2721 	if (nbits) {
2722 		spin_lock(&sctx->stat_lock);
2723 		sctx->stat.read_errors += nbits;
2724 		sctx->stat.uncorrectable_errors += nbits;
2725 		spin_unlock(&sctx->stat_lock);
2726 	}
2727 
2728 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2729 		list_del_init(&curr->list);
2730 		scrub_page_put(curr);
2731 	}
2732 
2733 	kfree(sparity);
2734 }
2735 
2736 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2737 {
2738 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2739 						    work);
2740 	struct scrub_ctx *sctx = sparity->sctx;
2741 
2742 	scrub_free_parity(sparity);
2743 	scrub_pending_bio_dec(sctx);
2744 }
2745 
2746 static void scrub_parity_bio_endio(struct bio *bio)
2747 {
2748 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2749 
2750 	if (bio->bi_error)
2751 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2752 			  sparity->nsectors);
2753 
2754 	bio_put(bio);
2755 
2756 	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2757 			scrub_parity_bio_endio_worker, NULL, NULL);
2758 	btrfs_queue_work(sparity->sctx->dev_root->fs_info->scrub_parity_workers,
2759 			 &sparity->work);
2760 }
2761 
2762 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2763 {
2764 	struct scrub_ctx *sctx = sparity->sctx;
2765 	struct bio *bio;
2766 	struct btrfs_raid_bio *rbio;
2767 	struct scrub_page *spage;
2768 	struct btrfs_bio *bbio = NULL;
2769 	u64 length;
2770 	int ret;
2771 
2772 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2773 			   sparity->nsectors))
2774 		goto out;
2775 
2776 	length = sparity->logic_end - sparity->logic_start;
2777 	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2778 			       sparity->logic_start,
2779 			       &length, &bbio, 0, 1);
2780 	if (ret || !bbio || !bbio->raid_map)
2781 		goto bbio_out;
2782 
2783 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2784 	if (!bio)
2785 		goto bbio_out;
2786 
2787 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2788 	bio->bi_private = sparity;
2789 	bio->bi_end_io = scrub_parity_bio_endio;
2790 
2791 	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2792 					      length, sparity->scrub_dev,
2793 					      sparity->dbitmap,
2794 					      sparity->nsectors);
2795 	if (!rbio)
2796 		goto rbio_out;
2797 
2798 	list_for_each_entry(spage, &sparity->spages, list)
2799 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2800 
2801 	scrub_pending_bio_inc(sctx);
2802 	raid56_parity_submit_scrub_rbio(rbio);
2803 	return;
2804 
2805 rbio_out:
2806 	bio_put(bio);
2807 bbio_out:
2808 	btrfs_put_bbio(bbio);
2809 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2810 		  sparity->nsectors);
2811 	spin_lock(&sctx->stat_lock);
2812 	sctx->stat.malloc_errors++;
2813 	spin_unlock(&sctx->stat_lock);
2814 out:
2815 	scrub_free_parity(sparity);
2816 }
2817 
2818 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2819 {
2820 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2821 }
2822 
2823 static void scrub_parity_get(struct scrub_parity *sparity)
2824 {
2825 	atomic_inc(&sparity->refs);
2826 }
2827 
2828 static void scrub_parity_put(struct scrub_parity *sparity)
2829 {
2830 	if (!atomic_dec_and_test(&sparity->refs))
2831 		return;
2832 
2833 	scrub_parity_check_and_repair(sparity);
2834 }
2835 
2836 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2837 						  struct map_lookup *map,
2838 						  struct btrfs_device *sdev,
2839 						  struct btrfs_path *path,
2840 						  u64 logic_start,
2841 						  u64 logic_end)
2842 {
2843 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2844 	struct btrfs_root *root = fs_info->extent_root;
2845 	struct btrfs_root *csum_root = fs_info->csum_root;
2846 	struct btrfs_extent_item *extent;
2847 	struct btrfs_bio *bbio = NULL;
2848 	u64 flags;
2849 	int ret;
2850 	int slot;
2851 	struct extent_buffer *l;
2852 	struct btrfs_key key;
2853 	u64 generation;
2854 	u64 extent_logical;
2855 	u64 extent_physical;
2856 	u64 extent_len;
2857 	u64 mapped_length;
2858 	struct btrfs_device *extent_dev;
2859 	struct scrub_parity *sparity;
2860 	int nsectors;
2861 	int bitmap_len;
2862 	int extent_mirror_num;
2863 	int stop_loop = 0;
2864 
2865 	nsectors = div_u64(map->stripe_len, root->sectorsize);
2866 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2867 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2868 			  GFP_NOFS);
2869 	if (!sparity) {
2870 		spin_lock(&sctx->stat_lock);
2871 		sctx->stat.malloc_errors++;
2872 		spin_unlock(&sctx->stat_lock);
2873 		return -ENOMEM;
2874 	}
2875 
2876 	sparity->stripe_len = map->stripe_len;
2877 	sparity->nsectors = nsectors;
2878 	sparity->sctx = sctx;
2879 	sparity->scrub_dev = sdev;
2880 	sparity->logic_start = logic_start;
2881 	sparity->logic_end = logic_end;
2882 	atomic_set(&sparity->refs, 1);
2883 	INIT_LIST_HEAD(&sparity->spages);
2884 	sparity->dbitmap = sparity->bitmap;
2885 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2886 
2887 	ret = 0;
2888 	while (logic_start < logic_end) {
2889 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2890 			key.type = BTRFS_METADATA_ITEM_KEY;
2891 		else
2892 			key.type = BTRFS_EXTENT_ITEM_KEY;
2893 		key.objectid = logic_start;
2894 		key.offset = (u64)-1;
2895 
2896 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2897 		if (ret < 0)
2898 			goto out;
2899 
2900 		if (ret > 0) {
2901 			ret = btrfs_previous_extent_item(root, path, 0);
2902 			if (ret < 0)
2903 				goto out;
2904 			if (ret > 0) {
2905 				btrfs_release_path(path);
2906 				ret = btrfs_search_slot(NULL, root, &key,
2907 							path, 0, 0);
2908 				if (ret < 0)
2909 					goto out;
2910 			}
2911 		}
2912 
2913 		stop_loop = 0;
2914 		while (1) {
2915 			u64 bytes;
2916 
2917 			l = path->nodes[0];
2918 			slot = path->slots[0];
2919 			if (slot >= btrfs_header_nritems(l)) {
2920 				ret = btrfs_next_leaf(root, path);
2921 				if (ret == 0)
2922 					continue;
2923 				if (ret < 0)
2924 					goto out;
2925 
2926 				stop_loop = 1;
2927 				break;
2928 			}
2929 			btrfs_item_key_to_cpu(l, &key, slot);
2930 
2931 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2932 			    key.type != BTRFS_METADATA_ITEM_KEY)
2933 				goto next;
2934 
2935 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2936 				bytes = root->nodesize;
2937 			else
2938 				bytes = key.offset;
2939 
2940 			if (key.objectid + bytes <= logic_start)
2941 				goto next;
2942 
2943 			if (key.objectid >= logic_end) {
2944 				stop_loop = 1;
2945 				break;
2946 			}
2947 
2948 			while (key.objectid >= logic_start + map->stripe_len)
2949 				logic_start += map->stripe_len;
2950 
2951 			extent = btrfs_item_ptr(l, slot,
2952 						struct btrfs_extent_item);
2953 			flags = btrfs_extent_flags(l, extent);
2954 			generation = btrfs_extent_generation(l, extent);
2955 
2956 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2957 			    (key.objectid < logic_start ||
2958 			     key.objectid + bytes >
2959 			     logic_start + map->stripe_len)) {
2960 				btrfs_err(fs_info, "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2961 					  key.objectid, logic_start);
2962 				spin_lock(&sctx->stat_lock);
2963 				sctx->stat.uncorrectable_errors++;
2964 				spin_unlock(&sctx->stat_lock);
2965 				goto next;
2966 			}
2967 again:
2968 			extent_logical = key.objectid;
2969 			extent_len = bytes;
2970 
2971 			if (extent_logical < logic_start) {
2972 				extent_len -= logic_start - extent_logical;
2973 				extent_logical = logic_start;
2974 			}
2975 
2976 			if (extent_logical + extent_len >
2977 			    logic_start + map->stripe_len)
2978 				extent_len = logic_start + map->stripe_len -
2979 					     extent_logical;
2980 
2981 			scrub_parity_mark_sectors_data(sparity, extent_logical,
2982 						       extent_len);
2983 
2984 			mapped_length = extent_len;
2985 			bbio = NULL;
2986 			ret = btrfs_map_block(fs_info, READ, extent_logical,
2987 					      &mapped_length, &bbio, 0);
2988 			if (!ret) {
2989 				if (!bbio || mapped_length < extent_len)
2990 					ret = -EIO;
2991 			}
2992 			if (ret) {
2993 				btrfs_put_bbio(bbio);
2994 				goto out;
2995 			}
2996 			extent_physical = bbio->stripes[0].physical;
2997 			extent_mirror_num = bbio->mirror_num;
2998 			extent_dev = bbio->stripes[0].dev;
2999 			btrfs_put_bbio(bbio);
3000 
3001 			ret = btrfs_lookup_csums_range(csum_root,
3002 						extent_logical,
3003 						extent_logical + extent_len - 1,
3004 						&sctx->csum_list, 1);
3005 			if (ret)
3006 				goto out;
3007 
3008 			ret = scrub_extent_for_parity(sparity, extent_logical,
3009 						      extent_len,
3010 						      extent_physical,
3011 						      extent_dev, flags,
3012 						      generation,
3013 						      extent_mirror_num);
3014 
3015 			scrub_free_csums(sctx);
3016 
3017 			if (ret)
3018 				goto out;
3019 
3020 			if (extent_logical + extent_len <
3021 			    key.objectid + bytes) {
3022 				logic_start += map->stripe_len;
3023 
3024 				if (logic_start >= logic_end) {
3025 					stop_loop = 1;
3026 					break;
3027 				}
3028 
3029 				if (logic_start < key.objectid + bytes) {
3030 					cond_resched();
3031 					goto again;
3032 				}
3033 			}
3034 next:
3035 			path->slots[0]++;
3036 		}
3037 
3038 		btrfs_release_path(path);
3039 
3040 		if (stop_loop)
3041 			break;
3042 
3043 		logic_start += map->stripe_len;
3044 	}
3045 out:
3046 	if (ret < 0)
3047 		scrub_parity_mark_sectors_error(sparity, logic_start,
3048 						logic_end - logic_start);
3049 	scrub_parity_put(sparity);
3050 	scrub_submit(sctx);
3051 	mutex_lock(&sctx->wr_ctx.wr_lock);
3052 	scrub_wr_submit(sctx);
3053 	mutex_unlock(&sctx->wr_ctx.wr_lock);
3054 
3055 	btrfs_release_path(path);
3056 	return ret < 0 ? ret : 0;
3057 }
3058 
3059 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3060 					   struct map_lookup *map,
3061 					   struct btrfs_device *scrub_dev,
3062 					   int num, u64 base, u64 length,
3063 					   int is_dev_replace)
3064 {
3065 	struct btrfs_path *path, *ppath;
3066 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3067 	struct btrfs_root *root = fs_info->extent_root;
3068 	struct btrfs_root *csum_root = fs_info->csum_root;
3069 	struct btrfs_extent_item *extent;
3070 	struct blk_plug plug;
3071 	u64 flags;
3072 	int ret;
3073 	int slot;
3074 	u64 nstripes;
3075 	struct extent_buffer *l;
3076 	u64 physical;
3077 	u64 logical;
3078 	u64 logic_end;
3079 	u64 physical_end;
3080 	u64 generation;
3081 	int mirror_num;
3082 	struct reada_control *reada1;
3083 	struct reada_control *reada2;
3084 	struct btrfs_key key;
3085 	struct btrfs_key key_end;
3086 	u64 increment = map->stripe_len;
3087 	u64 offset;
3088 	u64 extent_logical;
3089 	u64 extent_physical;
3090 	u64 extent_len;
3091 	u64 stripe_logical;
3092 	u64 stripe_end;
3093 	struct btrfs_device *extent_dev;
3094 	int extent_mirror_num;
3095 	int stop_loop = 0;
3096 
3097 	physical = map->stripes[num].physical;
3098 	offset = 0;
3099 	nstripes = div_u64(length, map->stripe_len);
3100 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3101 		offset = map->stripe_len * num;
3102 		increment = map->stripe_len * map->num_stripes;
3103 		mirror_num = 1;
3104 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3105 		int factor = map->num_stripes / map->sub_stripes;
3106 		offset = map->stripe_len * (num / map->sub_stripes);
3107 		increment = map->stripe_len * factor;
3108 		mirror_num = num % map->sub_stripes + 1;
3109 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3110 		increment = map->stripe_len;
3111 		mirror_num = num % map->num_stripes + 1;
3112 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3113 		increment = map->stripe_len;
3114 		mirror_num = num % map->num_stripes + 1;
3115 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3116 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3117 		increment = map->stripe_len * nr_data_stripes(map);
3118 		mirror_num = 1;
3119 	} else {
3120 		increment = map->stripe_len;
3121 		mirror_num = 1;
3122 	}
3123 
3124 	path = btrfs_alloc_path();
3125 	if (!path)
3126 		return -ENOMEM;
3127 
3128 	ppath = btrfs_alloc_path();
3129 	if (!ppath) {
3130 		btrfs_free_path(path);
3131 		return -ENOMEM;
3132 	}
3133 
3134 	/*
3135 	 * work on commit root. The related disk blocks are static as
3136 	 * long as COW is applied. This means, it is save to rewrite
3137 	 * them to repair disk errors without any race conditions
3138 	 */
3139 	path->search_commit_root = 1;
3140 	path->skip_locking = 1;
3141 
3142 	ppath->search_commit_root = 1;
3143 	ppath->skip_locking = 1;
3144 	/*
3145 	 * trigger the readahead for extent tree csum tree and wait for
3146 	 * completion. During readahead, the scrub is officially paused
3147 	 * to not hold off transaction commits
3148 	 */
3149 	logical = base + offset;
3150 	physical_end = physical + nstripes * map->stripe_len;
3151 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3152 		get_raid56_logic_offset(physical_end, num,
3153 					map, &logic_end, NULL);
3154 		logic_end += base;
3155 	} else {
3156 		logic_end = logical + increment * nstripes;
3157 	}
3158 	wait_event(sctx->list_wait,
3159 		   atomic_read(&sctx->bios_in_flight) == 0);
3160 	scrub_blocked_if_needed(fs_info);
3161 
3162 	/* FIXME it might be better to start readahead at commit root */
3163 	key.objectid = logical;
3164 	key.type = BTRFS_EXTENT_ITEM_KEY;
3165 	key.offset = (u64)0;
3166 	key_end.objectid = logic_end;
3167 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3168 	key_end.offset = (u64)-1;
3169 	reada1 = btrfs_reada_add(root, &key, &key_end);
3170 
3171 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3172 	key.type = BTRFS_EXTENT_CSUM_KEY;
3173 	key.offset = logical;
3174 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3175 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3176 	key_end.offset = logic_end;
3177 	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3178 
3179 	if (!IS_ERR(reada1))
3180 		btrfs_reada_wait(reada1);
3181 	if (!IS_ERR(reada2))
3182 		btrfs_reada_wait(reada2);
3183 
3184 
3185 	/*
3186 	 * collect all data csums for the stripe to avoid seeking during
3187 	 * the scrub. This might currently (crc32) end up to be about 1MB
3188 	 */
3189 	blk_start_plug(&plug);
3190 
3191 	/*
3192 	 * now find all extents for each stripe and scrub them
3193 	 */
3194 	ret = 0;
3195 	while (physical < physical_end) {
3196 		/*
3197 		 * canceled?
3198 		 */
3199 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3200 		    atomic_read(&sctx->cancel_req)) {
3201 			ret = -ECANCELED;
3202 			goto out;
3203 		}
3204 		/*
3205 		 * check to see if we have to pause
3206 		 */
3207 		if (atomic_read(&fs_info->scrub_pause_req)) {
3208 			/* push queued extents */
3209 			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3210 			scrub_submit(sctx);
3211 			mutex_lock(&sctx->wr_ctx.wr_lock);
3212 			scrub_wr_submit(sctx);
3213 			mutex_unlock(&sctx->wr_ctx.wr_lock);
3214 			wait_event(sctx->list_wait,
3215 				   atomic_read(&sctx->bios_in_flight) == 0);
3216 			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3217 			scrub_blocked_if_needed(fs_info);
3218 		}
3219 
3220 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3221 			ret = get_raid56_logic_offset(physical, num, map,
3222 						      &logical,
3223 						      &stripe_logical);
3224 			logical += base;
3225 			if (ret) {
3226 				/* it is parity strip */
3227 				stripe_logical += base;
3228 				stripe_end = stripe_logical + increment;
3229 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3230 							  ppath, stripe_logical,
3231 							  stripe_end);
3232 				if (ret)
3233 					goto out;
3234 				goto skip;
3235 			}
3236 		}
3237 
3238 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3239 			key.type = BTRFS_METADATA_ITEM_KEY;
3240 		else
3241 			key.type = BTRFS_EXTENT_ITEM_KEY;
3242 		key.objectid = logical;
3243 		key.offset = (u64)-1;
3244 
3245 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3246 		if (ret < 0)
3247 			goto out;
3248 
3249 		if (ret > 0) {
3250 			ret = btrfs_previous_extent_item(root, path, 0);
3251 			if (ret < 0)
3252 				goto out;
3253 			if (ret > 0) {
3254 				/* there's no smaller item, so stick with the
3255 				 * larger one */
3256 				btrfs_release_path(path);
3257 				ret = btrfs_search_slot(NULL, root, &key,
3258 							path, 0, 0);
3259 				if (ret < 0)
3260 					goto out;
3261 			}
3262 		}
3263 
3264 		stop_loop = 0;
3265 		while (1) {
3266 			u64 bytes;
3267 
3268 			l = path->nodes[0];
3269 			slot = path->slots[0];
3270 			if (slot >= btrfs_header_nritems(l)) {
3271 				ret = btrfs_next_leaf(root, path);
3272 				if (ret == 0)
3273 					continue;
3274 				if (ret < 0)
3275 					goto out;
3276 
3277 				stop_loop = 1;
3278 				break;
3279 			}
3280 			btrfs_item_key_to_cpu(l, &key, slot);
3281 
3282 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3283 			    key.type != BTRFS_METADATA_ITEM_KEY)
3284 				goto next;
3285 
3286 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3287 				bytes = root->nodesize;
3288 			else
3289 				bytes = key.offset;
3290 
3291 			if (key.objectid + bytes <= logical)
3292 				goto next;
3293 
3294 			if (key.objectid >= logical + map->stripe_len) {
3295 				/* out of this device extent */
3296 				if (key.objectid >= logic_end)
3297 					stop_loop = 1;
3298 				break;
3299 			}
3300 
3301 			extent = btrfs_item_ptr(l, slot,
3302 						struct btrfs_extent_item);
3303 			flags = btrfs_extent_flags(l, extent);
3304 			generation = btrfs_extent_generation(l, extent);
3305 
3306 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3307 			    (key.objectid < logical ||
3308 			     key.objectid + bytes >
3309 			     logical + map->stripe_len)) {
3310 				btrfs_err(fs_info,
3311 					   "scrub: tree block %llu spanning "
3312 					   "stripes, ignored. logical=%llu",
3313 				       key.objectid, logical);
3314 				spin_lock(&sctx->stat_lock);
3315 				sctx->stat.uncorrectable_errors++;
3316 				spin_unlock(&sctx->stat_lock);
3317 				goto next;
3318 			}
3319 
3320 again:
3321 			extent_logical = key.objectid;
3322 			extent_len = bytes;
3323 
3324 			/*
3325 			 * trim extent to this stripe
3326 			 */
3327 			if (extent_logical < logical) {
3328 				extent_len -= logical - extent_logical;
3329 				extent_logical = logical;
3330 			}
3331 			if (extent_logical + extent_len >
3332 			    logical + map->stripe_len) {
3333 				extent_len = logical + map->stripe_len -
3334 					     extent_logical;
3335 			}
3336 
3337 			extent_physical = extent_logical - logical + physical;
3338 			extent_dev = scrub_dev;
3339 			extent_mirror_num = mirror_num;
3340 			if (is_dev_replace)
3341 				scrub_remap_extent(fs_info, extent_logical,
3342 						   extent_len, &extent_physical,
3343 						   &extent_dev,
3344 						   &extent_mirror_num);
3345 
3346 			ret = btrfs_lookup_csums_range(csum_root,
3347 						       extent_logical,
3348 						       extent_logical +
3349 						       extent_len - 1,
3350 						       &sctx->csum_list, 1);
3351 			if (ret)
3352 				goto out;
3353 
3354 			ret = scrub_extent(sctx, extent_logical, extent_len,
3355 					   extent_physical, extent_dev, flags,
3356 					   generation, extent_mirror_num,
3357 					   extent_logical - logical + physical);
3358 
3359 			scrub_free_csums(sctx);
3360 
3361 			if (ret)
3362 				goto out;
3363 
3364 			if (extent_logical + extent_len <
3365 			    key.objectid + bytes) {
3366 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3367 					/*
3368 					 * loop until we find next data stripe
3369 					 * or we have finished all stripes.
3370 					 */
3371 loop:
3372 					physical += map->stripe_len;
3373 					ret = get_raid56_logic_offset(physical,
3374 							num, map, &logical,
3375 							&stripe_logical);
3376 					logical += base;
3377 
3378 					if (ret && physical < physical_end) {
3379 						stripe_logical += base;
3380 						stripe_end = stripe_logical +
3381 								increment;
3382 						ret = scrub_raid56_parity(sctx,
3383 							map, scrub_dev, ppath,
3384 							stripe_logical,
3385 							stripe_end);
3386 						if (ret)
3387 							goto out;
3388 						goto loop;
3389 					}
3390 				} else {
3391 					physical += map->stripe_len;
3392 					logical += increment;
3393 				}
3394 				if (logical < key.objectid + bytes) {
3395 					cond_resched();
3396 					goto again;
3397 				}
3398 
3399 				if (physical >= physical_end) {
3400 					stop_loop = 1;
3401 					break;
3402 				}
3403 			}
3404 next:
3405 			path->slots[0]++;
3406 		}
3407 		btrfs_release_path(path);
3408 skip:
3409 		logical += increment;
3410 		physical += map->stripe_len;
3411 		spin_lock(&sctx->stat_lock);
3412 		if (stop_loop)
3413 			sctx->stat.last_physical = map->stripes[num].physical +
3414 						   length;
3415 		else
3416 			sctx->stat.last_physical = physical;
3417 		spin_unlock(&sctx->stat_lock);
3418 		if (stop_loop)
3419 			break;
3420 	}
3421 out:
3422 	/* push queued extents */
3423 	scrub_submit(sctx);
3424 	mutex_lock(&sctx->wr_ctx.wr_lock);
3425 	scrub_wr_submit(sctx);
3426 	mutex_unlock(&sctx->wr_ctx.wr_lock);
3427 
3428 	blk_finish_plug(&plug);
3429 	btrfs_free_path(path);
3430 	btrfs_free_path(ppath);
3431 	return ret < 0 ? ret : 0;
3432 }
3433 
3434 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3435 					  struct btrfs_device *scrub_dev,
3436 					  u64 chunk_offset, u64 length,
3437 					  u64 dev_offset,
3438 					  struct btrfs_block_group_cache *cache,
3439 					  int is_dev_replace)
3440 {
3441 	struct btrfs_mapping_tree *map_tree =
3442 		&sctx->dev_root->fs_info->mapping_tree;
3443 	struct map_lookup *map;
3444 	struct extent_map *em;
3445 	int i;
3446 	int ret = 0;
3447 
3448 	read_lock(&map_tree->map_tree.lock);
3449 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3450 	read_unlock(&map_tree->map_tree.lock);
3451 
3452 	if (!em) {
3453 		/*
3454 		 * Might have been an unused block group deleted by the cleaner
3455 		 * kthread or relocation.
3456 		 */
3457 		spin_lock(&cache->lock);
3458 		if (!cache->removed)
3459 			ret = -EINVAL;
3460 		spin_unlock(&cache->lock);
3461 
3462 		return ret;
3463 	}
3464 
3465 	map = em->map_lookup;
3466 	if (em->start != chunk_offset)
3467 		goto out;
3468 
3469 	if (em->len < length)
3470 		goto out;
3471 
3472 	for (i = 0; i < map->num_stripes; ++i) {
3473 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3474 		    map->stripes[i].physical == dev_offset) {
3475 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3476 					   chunk_offset, length,
3477 					   is_dev_replace);
3478 			if (ret)
3479 				goto out;
3480 		}
3481 	}
3482 out:
3483 	free_extent_map(em);
3484 
3485 	return ret;
3486 }
3487 
3488 static noinline_for_stack
3489 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3490 			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3491 			   int is_dev_replace)
3492 {
3493 	struct btrfs_dev_extent *dev_extent = NULL;
3494 	struct btrfs_path *path;
3495 	struct btrfs_root *root = sctx->dev_root;
3496 	struct btrfs_fs_info *fs_info = root->fs_info;
3497 	u64 length;
3498 	u64 chunk_offset;
3499 	int ret = 0;
3500 	int ro_set;
3501 	int slot;
3502 	struct extent_buffer *l;
3503 	struct btrfs_key key;
3504 	struct btrfs_key found_key;
3505 	struct btrfs_block_group_cache *cache;
3506 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3507 
3508 	path = btrfs_alloc_path();
3509 	if (!path)
3510 		return -ENOMEM;
3511 
3512 	path->reada = READA_FORWARD;
3513 	path->search_commit_root = 1;
3514 	path->skip_locking = 1;
3515 
3516 	key.objectid = scrub_dev->devid;
3517 	key.offset = 0ull;
3518 	key.type = BTRFS_DEV_EXTENT_KEY;
3519 
3520 	while (1) {
3521 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3522 		if (ret < 0)
3523 			break;
3524 		if (ret > 0) {
3525 			if (path->slots[0] >=
3526 			    btrfs_header_nritems(path->nodes[0])) {
3527 				ret = btrfs_next_leaf(root, path);
3528 				if (ret < 0)
3529 					break;
3530 				if (ret > 0) {
3531 					ret = 0;
3532 					break;
3533 				}
3534 			} else {
3535 				ret = 0;
3536 			}
3537 		}
3538 
3539 		l = path->nodes[0];
3540 		slot = path->slots[0];
3541 
3542 		btrfs_item_key_to_cpu(l, &found_key, slot);
3543 
3544 		if (found_key.objectid != scrub_dev->devid)
3545 			break;
3546 
3547 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3548 			break;
3549 
3550 		if (found_key.offset >= end)
3551 			break;
3552 
3553 		if (found_key.offset < key.offset)
3554 			break;
3555 
3556 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3557 		length = btrfs_dev_extent_length(l, dev_extent);
3558 
3559 		if (found_key.offset + length <= start)
3560 			goto skip;
3561 
3562 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3563 
3564 		/*
3565 		 * get a reference on the corresponding block group to prevent
3566 		 * the chunk from going away while we scrub it
3567 		 */
3568 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3569 
3570 		/* some chunks are removed but not committed to disk yet,
3571 		 * continue scrubbing */
3572 		if (!cache)
3573 			goto skip;
3574 
3575 		/*
3576 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3577 		 * to avoid deadlock caused by:
3578 		 * btrfs_inc_block_group_ro()
3579 		 * -> btrfs_wait_for_commit()
3580 		 * -> btrfs_commit_transaction()
3581 		 * -> btrfs_scrub_pause()
3582 		 */
3583 		scrub_pause_on(fs_info);
3584 		ret = btrfs_inc_block_group_ro(root, cache);
3585 		if (!ret && is_dev_replace) {
3586 			/*
3587 			 * If we are doing a device replace wait for any tasks
3588 			 * that started dellaloc right before we set the block
3589 			 * group to RO mode, as they might have just allocated
3590 			 * an extent from it or decided they could do a nocow
3591 			 * write. And if any such tasks did that, wait for their
3592 			 * ordered extents to complete and then commit the
3593 			 * current transaction, so that we can later see the new
3594 			 * extent items in the extent tree - the ordered extents
3595 			 * create delayed data references (for cow writes) when
3596 			 * they complete, which will be run and insert the
3597 			 * corresponding extent items into the extent tree when
3598 			 * we commit the transaction they used when running
3599 			 * inode.c:btrfs_finish_ordered_io(). We later use
3600 			 * the commit root of the extent tree to find extents
3601 			 * to copy from the srcdev into the tgtdev, and we don't
3602 			 * want to miss any new extents.
3603 			 */
3604 			btrfs_wait_block_group_reservations(cache);
3605 			btrfs_wait_nocow_writers(cache);
3606 			ret = btrfs_wait_ordered_roots(fs_info, -1,
3607 						       cache->key.objectid,
3608 						       cache->key.offset);
3609 			if (ret > 0) {
3610 				struct btrfs_trans_handle *trans;
3611 
3612 				trans = btrfs_join_transaction(root);
3613 				if (IS_ERR(trans))
3614 					ret = PTR_ERR(trans);
3615 				else
3616 					ret = btrfs_commit_transaction(trans,
3617 								       root);
3618 				if (ret) {
3619 					scrub_pause_off(fs_info);
3620 					btrfs_put_block_group(cache);
3621 					break;
3622 				}
3623 			}
3624 		}
3625 		scrub_pause_off(fs_info);
3626 
3627 		if (ret == 0) {
3628 			ro_set = 1;
3629 		} else if (ret == -ENOSPC) {
3630 			/*
3631 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3632 			 * failed in creating new chunk for metadata.
3633 			 * It is not a problem for scrub/replace, because
3634 			 * metadata are always cowed, and our scrub paused
3635 			 * commit_transactions.
3636 			 */
3637 			ro_set = 0;
3638 		} else {
3639 			btrfs_warn(fs_info, "failed setting block group ro, ret=%d\n",
3640 				   ret);
3641 			btrfs_put_block_group(cache);
3642 			break;
3643 		}
3644 
3645 		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3646 		dev_replace->cursor_right = found_key.offset + length;
3647 		dev_replace->cursor_left = found_key.offset;
3648 		dev_replace->item_needs_writeback = 1;
3649 		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3650 		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3651 				  found_key.offset, cache, is_dev_replace);
3652 
3653 		/*
3654 		 * flush, submit all pending read and write bios, afterwards
3655 		 * wait for them.
3656 		 * Note that in the dev replace case, a read request causes
3657 		 * write requests that are submitted in the read completion
3658 		 * worker. Therefore in the current situation, it is required
3659 		 * that all write requests are flushed, so that all read and
3660 		 * write requests are really completed when bios_in_flight
3661 		 * changes to 0.
3662 		 */
3663 		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3664 		scrub_submit(sctx);
3665 		mutex_lock(&sctx->wr_ctx.wr_lock);
3666 		scrub_wr_submit(sctx);
3667 		mutex_unlock(&sctx->wr_ctx.wr_lock);
3668 
3669 		wait_event(sctx->list_wait,
3670 			   atomic_read(&sctx->bios_in_flight) == 0);
3671 
3672 		scrub_pause_on(fs_info);
3673 
3674 		/*
3675 		 * must be called before we decrease @scrub_paused.
3676 		 * make sure we don't block transaction commit while
3677 		 * we are waiting pending workers finished.
3678 		 */
3679 		wait_event(sctx->list_wait,
3680 			   atomic_read(&sctx->workers_pending) == 0);
3681 		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3682 
3683 		scrub_pause_off(fs_info);
3684 
3685 		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3686 		dev_replace->cursor_left = dev_replace->cursor_right;
3687 		dev_replace->item_needs_writeback = 1;
3688 		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3689 
3690 		if (ro_set)
3691 			btrfs_dec_block_group_ro(root, cache);
3692 
3693 		/*
3694 		 * We might have prevented the cleaner kthread from deleting
3695 		 * this block group if it was already unused because we raced
3696 		 * and set it to RO mode first. So add it back to the unused
3697 		 * list, otherwise it might not ever be deleted unless a manual
3698 		 * balance is triggered or it becomes used and unused again.
3699 		 */
3700 		spin_lock(&cache->lock);
3701 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3702 		    btrfs_block_group_used(&cache->item) == 0) {
3703 			spin_unlock(&cache->lock);
3704 			spin_lock(&fs_info->unused_bgs_lock);
3705 			if (list_empty(&cache->bg_list)) {
3706 				btrfs_get_block_group(cache);
3707 				list_add_tail(&cache->bg_list,
3708 					      &fs_info->unused_bgs);
3709 			}
3710 			spin_unlock(&fs_info->unused_bgs_lock);
3711 		} else {
3712 			spin_unlock(&cache->lock);
3713 		}
3714 
3715 		btrfs_put_block_group(cache);
3716 		if (ret)
3717 			break;
3718 		if (is_dev_replace &&
3719 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3720 			ret = -EIO;
3721 			break;
3722 		}
3723 		if (sctx->stat.malloc_errors > 0) {
3724 			ret = -ENOMEM;
3725 			break;
3726 		}
3727 skip:
3728 		key.offset = found_key.offset + length;
3729 		btrfs_release_path(path);
3730 	}
3731 
3732 	btrfs_free_path(path);
3733 
3734 	return ret;
3735 }
3736 
3737 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3738 					   struct btrfs_device *scrub_dev)
3739 {
3740 	int	i;
3741 	u64	bytenr;
3742 	u64	gen;
3743 	int	ret;
3744 	struct btrfs_root *root = sctx->dev_root;
3745 
3746 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3747 		return -EIO;
3748 
3749 	/* Seed devices of a new filesystem has their own generation. */
3750 	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
3751 		gen = scrub_dev->generation;
3752 	else
3753 		gen = root->fs_info->last_trans_committed;
3754 
3755 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3756 		bytenr = btrfs_sb_offset(i);
3757 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3758 		    scrub_dev->commit_total_bytes)
3759 			break;
3760 
3761 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3762 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3763 				  NULL, 1, bytenr);
3764 		if (ret)
3765 			return ret;
3766 	}
3767 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3768 
3769 	return 0;
3770 }
3771 
3772 /*
3773  * get a reference count on fs_info->scrub_workers. start worker if necessary
3774  */
3775 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3776 						int is_dev_replace)
3777 {
3778 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3779 	int max_active = fs_info->thread_pool_size;
3780 
3781 	if (fs_info->scrub_workers_refcnt == 0) {
3782 		if (is_dev_replace)
3783 			fs_info->scrub_workers =
3784 				btrfs_alloc_workqueue("scrub", flags,
3785 						      1, 4);
3786 		else
3787 			fs_info->scrub_workers =
3788 				btrfs_alloc_workqueue("scrub", flags,
3789 						      max_active, 4);
3790 		if (!fs_info->scrub_workers)
3791 			goto fail_scrub_workers;
3792 
3793 		fs_info->scrub_wr_completion_workers =
3794 			btrfs_alloc_workqueue("scrubwrc", flags,
3795 					      max_active, 2);
3796 		if (!fs_info->scrub_wr_completion_workers)
3797 			goto fail_scrub_wr_completion_workers;
3798 
3799 		fs_info->scrub_nocow_workers =
3800 			btrfs_alloc_workqueue("scrubnc", flags, 1, 0);
3801 		if (!fs_info->scrub_nocow_workers)
3802 			goto fail_scrub_nocow_workers;
3803 		fs_info->scrub_parity_workers =
3804 			btrfs_alloc_workqueue("scrubparity", flags,
3805 					      max_active, 2);
3806 		if (!fs_info->scrub_parity_workers)
3807 			goto fail_scrub_parity_workers;
3808 	}
3809 	++fs_info->scrub_workers_refcnt;
3810 	return 0;
3811 
3812 fail_scrub_parity_workers:
3813 	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3814 fail_scrub_nocow_workers:
3815 	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3816 fail_scrub_wr_completion_workers:
3817 	btrfs_destroy_workqueue(fs_info->scrub_workers);
3818 fail_scrub_workers:
3819 	return -ENOMEM;
3820 }
3821 
3822 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
3823 {
3824 	if (--fs_info->scrub_workers_refcnt == 0) {
3825 		btrfs_destroy_workqueue(fs_info->scrub_workers);
3826 		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3827 		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3828 		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3829 	}
3830 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
3831 }
3832 
3833 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3834 		    u64 end, struct btrfs_scrub_progress *progress,
3835 		    int readonly, int is_dev_replace)
3836 {
3837 	struct scrub_ctx *sctx;
3838 	int ret;
3839 	struct btrfs_device *dev;
3840 	struct rcu_string *name;
3841 
3842 	if (btrfs_fs_closing(fs_info))
3843 		return -EINVAL;
3844 
3845 	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3846 		/*
3847 		 * in this case scrub is unable to calculate the checksum
3848 		 * the way scrub is implemented. Do not handle this
3849 		 * situation at all because it won't ever happen.
3850 		 */
3851 		btrfs_err(fs_info,
3852 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3853 		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3854 		return -EINVAL;
3855 	}
3856 
3857 	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3858 		/* not supported for data w/o checksums */
3859 		btrfs_err(fs_info,
3860 			   "scrub: size assumption sectorsize != PAGE_SIZE "
3861 			   "(%d != %lu) fails",
3862 		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
3863 		return -EINVAL;
3864 	}
3865 
3866 	if (fs_info->chunk_root->nodesize >
3867 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3868 	    fs_info->chunk_root->sectorsize >
3869 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3870 		/*
3871 		 * would exhaust the array bounds of pagev member in
3872 		 * struct scrub_block
3873 		 */
3874 		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
3875 			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3876 		       fs_info->chunk_root->nodesize,
3877 		       SCRUB_MAX_PAGES_PER_BLOCK,
3878 		       fs_info->chunk_root->sectorsize,
3879 		       SCRUB_MAX_PAGES_PER_BLOCK);
3880 		return -EINVAL;
3881 	}
3882 
3883 
3884 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3885 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3886 	if (!dev || (dev->missing && !is_dev_replace)) {
3887 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3888 		return -ENODEV;
3889 	}
3890 
3891 	if (!is_dev_replace && !readonly && !dev->writeable) {
3892 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3893 		rcu_read_lock();
3894 		name = rcu_dereference(dev->name);
3895 		btrfs_err(fs_info, "scrub: device %s is not writable",
3896 			  name->str);
3897 		rcu_read_unlock();
3898 		return -EROFS;
3899 	}
3900 
3901 	mutex_lock(&fs_info->scrub_lock);
3902 	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
3903 		mutex_unlock(&fs_info->scrub_lock);
3904 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3905 		return -EIO;
3906 	}
3907 
3908 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3909 	if (dev->scrub_device ||
3910 	    (!is_dev_replace &&
3911 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3912 		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3913 		mutex_unlock(&fs_info->scrub_lock);
3914 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3915 		return -EINPROGRESS;
3916 	}
3917 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3918 
3919 	ret = scrub_workers_get(fs_info, is_dev_replace);
3920 	if (ret) {
3921 		mutex_unlock(&fs_info->scrub_lock);
3922 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3923 		return ret;
3924 	}
3925 
3926 	sctx = scrub_setup_ctx(dev, is_dev_replace);
3927 	if (IS_ERR(sctx)) {
3928 		mutex_unlock(&fs_info->scrub_lock);
3929 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3930 		scrub_workers_put(fs_info);
3931 		return PTR_ERR(sctx);
3932 	}
3933 	sctx->readonly = readonly;
3934 	dev->scrub_device = sctx;
3935 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3936 
3937 	/*
3938 	 * checking @scrub_pause_req here, we can avoid
3939 	 * race between committing transaction and scrubbing.
3940 	 */
3941 	__scrub_blocked_if_needed(fs_info);
3942 	atomic_inc(&fs_info->scrubs_running);
3943 	mutex_unlock(&fs_info->scrub_lock);
3944 
3945 	if (!is_dev_replace) {
3946 		/*
3947 		 * by holding device list mutex, we can
3948 		 * kick off writing super in log tree sync.
3949 		 */
3950 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3951 		ret = scrub_supers(sctx, dev);
3952 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3953 	}
3954 
3955 	if (!ret)
3956 		ret = scrub_enumerate_chunks(sctx, dev, start, end,
3957 					     is_dev_replace);
3958 
3959 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3960 	atomic_dec(&fs_info->scrubs_running);
3961 	wake_up(&fs_info->scrub_pause_wait);
3962 
3963 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3964 
3965 	if (progress)
3966 		memcpy(progress, &sctx->stat, sizeof(*progress));
3967 
3968 	mutex_lock(&fs_info->scrub_lock);
3969 	dev->scrub_device = NULL;
3970 	scrub_workers_put(fs_info);
3971 	mutex_unlock(&fs_info->scrub_lock);
3972 
3973 	scrub_put_ctx(sctx);
3974 
3975 	return ret;
3976 }
3977 
3978 void btrfs_scrub_pause(struct btrfs_root *root)
3979 {
3980 	struct btrfs_fs_info *fs_info = root->fs_info;
3981 
3982 	mutex_lock(&fs_info->scrub_lock);
3983 	atomic_inc(&fs_info->scrub_pause_req);
3984 	while (atomic_read(&fs_info->scrubs_paused) !=
3985 	       atomic_read(&fs_info->scrubs_running)) {
3986 		mutex_unlock(&fs_info->scrub_lock);
3987 		wait_event(fs_info->scrub_pause_wait,
3988 			   atomic_read(&fs_info->scrubs_paused) ==
3989 			   atomic_read(&fs_info->scrubs_running));
3990 		mutex_lock(&fs_info->scrub_lock);
3991 	}
3992 	mutex_unlock(&fs_info->scrub_lock);
3993 }
3994 
3995 void btrfs_scrub_continue(struct btrfs_root *root)
3996 {
3997 	struct btrfs_fs_info *fs_info = root->fs_info;
3998 
3999 	atomic_dec(&fs_info->scrub_pause_req);
4000 	wake_up(&fs_info->scrub_pause_wait);
4001 }
4002 
4003 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4004 {
4005 	mutex_lock(&fs_info->scrub_lock);
4006 	if (!atomic_read(&fs_info->scrubs_running)) {
4007 		mutex_unlock(&fs_info->scrub_lock);
4008 		return -ENOTCONN;
4009 	}
4010 
4011 	atomic_inc(&fs_info->scrub_cancel_req);
4012 	while (atomic_read(&fs_info->scrubs_running)) {
4013 		mutex_unlock(&fs_info->scrub_lock);
4014 		wait_event(fs_info->scrub_pause_wait,
4015 			   atomic_read(&fs_info->scrubs_running) == 0);
4016 		mutex_lock(&fs_info->scrub_lock);
4017 	}
4018 	atomic_dec(&fs_info->scrub_cancel_req);
4019 	mutex_unlock(&fs_info->scrub_lock);
4020 
4021 	return 0;
4022 }
4023 
4024 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4025 			   struct btrfs_device *dev)
4026 {
4027 	struct scrub_ctx *sctx;
4028 
4029 	mutex_lock(&fs_info->scrub_lock);
4030 	sctx = dev->scrub_device;
4031 	if (!sctx) {
4032 		mutex_unlock(&fs_info->scrub_lock);
4033 		return -ENOTCONN;
4034 	}
4035 	atomic_inc(&sctx->cancel_req);
4036 	while (dev->scrub_device) {
4037 		mutex_unlock(&fs_info->scrub_lock);
4038 		wait_event(fs_info->scrub_pause_wait,
4039 			   dev->scrub_device == NULL);
4040 		mutex_lock(&fs_info->scrub_lock);
4041 	}
4042 	mutex_unlock(&fs_info->scrub_lock);
4043 
4044 	return 0;
4045 }
4046 
4047 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
4048 			 struct btrfs_scrub_progress *progress)
4049 {
4050 	struct btrfs_device *dev;
4051 	struct scrub_ctx *sctx = NULL;
4052 
4053 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
4054 	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
4055 	if (dev)
4056 		sctx = dev->scrub_device;
4057 	if (sctx)
4058 		memcpy(progress, &sctx->stat, sizeof(*progress));
4059 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
4060 
4061 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4062 }
4063 
4064 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4065 			       u64 extent_logical, u64 extent_len,
4066 			       u64 *extent_physical,
4067 			       struct btrfs_device **extent_dev,
4068 			       int *extent_mirror_num)
4069 {
4070 	u64 mapped_length;
4071 	struct btrfs_bio *bbio = NULL;
4072 	int ret;
4073 
4074 	mapped_length = extent_len;
4075 	ret = btrfs_map_block(fs_info, READ, extent_logical,
4076 			      &mapped_length, &bbio, 0);
4077 	if (ret || !bbio || mapped_length < extent_len ||
4078 	    !bbio->stripes[0].dev->bdev) {
4079 		btrfs_put_bbio(bbio);
4080 		return;
4081 	}
4082 
4083 	*extent_physical = bbio->stripes[0].physical;
4084 	*extent_mirror_num = bbio->mirror_num;
4085 	*extent_dev = bbio->stripes[0].dev;
4086 	btrfs_put_bbio(bbio);
4087 }
4088 
4089 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
4090 			      struct scrub_wr_ctx *wr_ctx,
4091 			      struct btrfs_fs_info *fs_info,
4092 			      struct btrfs_device *dev,
4093 			      int is_dev_replace)
4094 {
4095 	WARN_ON(wr_ctx->wr_curr_bio != NULL);
4096 
4097 	mutex_init(&wr_ctx->wr_lock);
4098 	wr_ctx->wr_curr_bio = NULL;
4099 	if (!is_dev_replace)
4100 		return 0;
4101 
4102 	WARN_ON(!dev->bdev);
4103 	wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
4104 	wr_ctx->tgtdev = dev;
4105 	atomic_set(&wr_ctx->flush_all_writes, 0);
4106 	return 0;
4107 }
4108 
4109 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
4110 {
4111 	mutex_lock(&wr_ctx->wr_lock);
4112 	kfree(wr_ctx->wr_curr_bio);
4113 	wr_ctx->wr_curr_bio = NULL;
4114 	mutex_unlock(&wr_ctx->wr_lock);
4115 }
4116 
4117 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4118 			    int mirror_num, u64 physical_for_dev_replace)
4119 {
4120 	struct scrub_copy_nocow_ctx *nocow_ctx;
4121 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
4122 
4123 	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4124 	if (!nocow_ctx) {
4125 		spin_lock(&sctx->stat_lock);
4126 		sctx->stat.malloc_errors++;
4127 		spin_unlock(&sctx->stat_lock);
4128 		return -ENOMEM;
4129 	}
4130 
4131 	scrub_pending_trans_workers_inc(sctx);
4132 
4133 	nocow_ctx->sctx = sctx;
4134 	nocow_ctx->logical = logical;
4135 	nocow_ctx->len = len;
4136 	nocow_ctx->mirror_num = mirror_num;
4137 	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4138 	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4139 			copy_nocow_pages_worker, NULL, NULL);
4140 	INIT_LIST_HEAD(&nocow_ctx->inodes);
4141 	btrfs_queue_work(fs_info->scrub_nocow_workers,
4142 			 &nocow_ctx->work);
4143 
4144 	return 0;
4145 }
4146 
4147 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4148 {
4149 	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4150 	struct scrub_nocow_inode *nocow_inode;
4151 
4152 	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4153 	if (!nocow_inode)
4154 		return -ENOMEM;
4155 	nocow_inode->inum = inum;
4156 	nocow_inode->offset = offset;
4157 	nocow_inode->root = root;
4158 	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4159 	return 0;
4160 }
4161 
4162 #define COPY_COMPLETE 1
4163 
4164 static void copy_nocow_pages_worker(struct btrfs_work *work)
4165 {
4166 	struct scrub_copy_nocow_ctx *nocow_ctx =
4167 		container_of(work, struct scrub_copy_nocow_ctx, work);
4168 	struct scrub_ctx *sctx = nocow_ctx->sctx;
4169 	u64 logical = nocow_ctx->logical;
4170 	u64 len = nocow_ctx->len;
4171 	int mirror_num = nocow_ctx->mirror_num;
4172 	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4173 	int ret;
4174 	struct btrfs_trans_handle *trans = NULL;
4175 	struct btrfs_fs_info *fs_info;
4176 	struct btrfs_path *path;
4177 	struct btrfs_root *root;
4178 	int not_written = 0;
4179 
4180 	fs_info = sctx->dev_root->fs_info;
4181 	root = fs_info->extent_root;
4182 
4183 	path = btrfs_alloc_path();
4184 	if (!path) {
4185 		spin_lock(&sctx->stat_lock);
4186 		sctx->stat.malloc_errors++;
4187 		spin_unlock(&sctx->stat_lock);
4188 		not_written = 1;
4189 		goto out;
4190 	}
4191 
4192 	trans = btrfs_join_transaction(root);
4193 	if (IS_ERR(trans)) {
4194 		not_written = 1;
4195 		goto out;
4196 	}
4197 
4198 	ret = iterate_inodes_from_logical(logical, fs_info, path,
4199 					  record_inode_for_nocow, nocow_ctx);
4200 	if (ret != 0 && ret != -ENOENT) {
4201 		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
4202 			"phys %llu, len %llu, mir %u, ret %d",
4203 			logical, physical_for_dev_replace, len, mirror_num,
4204 			ret);
4205 		not_written = 1;
4206 		goto out;
4207 	}
4208 
4209 	btrfs_end_transaction(trans, root);
4210 	trans = NULL;
4211 	while (!list_empty(&nocow_ctx->inodes)) {
4212 		struct scrub_nocow_inode *entry;
4213 		entry = list_first_entry(&nocow_ctx->inodes,
4214 					 struct scrub_nocow_inode,
4215 					 list);
4216 		list_del_init(&entry->list);
4217 		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4218 						 entry->root, nocow_ctx);
4219 		kfree(entry);
4220 		if (ret == COPY_COMPLETE) {
4221 			ret = 0;
4222 			break;
4223 		} else if (ret) {
4224 			break;
4225 		}
4226 	}
4227 out:
4228 	while (!list_empty(&nocow_ctx->inodes)) {
4229 		struct scrub_nocow_inode *entry;
4230 		entry = list_first_entry(&nocow_ctx->inodes,
4231 					 struct scrub_nocow_inode,
4232 					 list);
4233 		list_del_init(&entry->list);
4234 		kfree(entry);
4235 	}
4236 	if (trans && !IS_ERR(trans))
4237 		btrfs_end_transaction(trans, root);
4238 	if (not_written)
4239 		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4240 					    num_uncorrectable_read_errors);
4241 
4242 	btrfs_free_path(path);
4243 	kfree(nocow_ctx);
4244 
4245 	scrub_pending_trans_workers_dec(sctx);
4246 }
4247 
4248 static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
4249 				 u64 logical)
4250 {
4251 	struct extent_state *cached_state = NULL;
4252 	struct btrfs_ordered_extent *ordered;
4253 	struct extent_io_tree *io_tree;
4254 	struct extent_map *em;
4255 	u64 lockstart = start, lockend = start + len - 1;
4256 	int ret = 0;
4257 
4258 	io_tree = &BTRFS_I(inode)->io_tree;
4259 
4260 	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4261 	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4262 	if (ordered) {
4263 		btrfs_put_ordered_extent(ordered);
4264 		ret = 1;
4265 		goto out_unlock;
4266 	}
4267 
4268 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4269 	if (IS_ERR(em)) {
4270 		ret = PTR_ERR(em);
4271 		goto out_unlock;
4272 	}
4273 
4274 	/*
4275 	 * This extent does not actually cover the logical extent anymore,
4276 	 * move on to the next inode.
4277 	 */
4278 	if (em->block_start > logical ||
4279 	    em->block_start + em->block_len < logical + len) {
4280 		free_extent_map(em);
4281 		ret = 1;
4282 		goto out_unlock;
4283 	}
4284 	free_extent_map(em);
4285 
4286 out_unlock:
4287 	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4288 			     GFP_NOFS);
4289 	return ret;
4290 }
4291 
4292 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4293 				      struct scrub_copy_nocow_ctx *nocow_ctx)
4294 {
4295 	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4296 	struct btrfs_key key;
4297 	struct inode *inode;
4298 	struct page *page;
4299 	struct btrfs_root *local_root;
4300 	struct extent_io_tree *io_tree;
4301 	u64 physical_for_dev_replace;
4302 	u64 nocow_ctx_logical;
4303 	u64 len = nocow_ctx->len;
4304 	unsigned long index;
4305 	int srcu_index;
4306 	int ret = 0;
4307 	int err = 0;
4308 
4309 	key.objectid = root;
4310 	key.type = BTRFS_ROOT_ITEM_KEY;
4311 	key.offset = (u64)-1;
4312 
4313 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4314 
4315 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4316 	if (IS_ERR(local_root)) {
4317 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4318 		return PTR_ERR(local_root);
4319 	}
4320 
4321 	key.type = BTRFS_INODE_ITEM_KEY;
4322 	key.objectid = inum;
4323 	key.offset = 0;
4324 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4325 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4326 	if (IS_ERR(inode))
4327 		return PTR_ERR(inode);
4328 
4329 	/* Avoid truncate/dio/punch hole.. */
4330 	inode_lock(inode);
4331 	inode_dio_wait(inode);
4332 
4333 	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4334 	io_tree = &BTRFS_I(inode)->io_tree;
4335 	nocow_ctx_logical = nocow_ctx->logical;
4336 
4337 	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
4338 	if (ret) {
4339 		ret = ret > 0 ? 0 : ret;
4340 		goto out;
4341 	}
4342 
4343 	while (len >= PAGE_SIZE) {
4344 		index = offset >> PAGE_SHIFT;
4345 again:
4346 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4347 		if (!page) {
4348 			btrfs_err(fs_info, "find_or_create_page() failed");
4349 			ret = -ENOMEM;
4350 			goto out;
4351 		}
4352 
4353 		if (PageUptodate(page)) {
4354 			if (PageDirty(page))
4355 				goto next_page;
4356 		} else {
4357 			ClearPageError(page);
4358 			err = extent_read_full_page(io_tree, page,
4359 							   btrfs_get_extent,
4360 							   nocow_ctx->mirror_num);
4361 			if (err) {
4362 				ret = err;
4363 				goto next_page;
4364 			}
4365 
4366 			lock_page(page);
4367 			/*
4368 			 * If the page has been remove from the page cache,
4369 			 * the data on it is meaningless, because it may be
4370 			 * old one, the new data may be written into the new
4371 			 * page in the page cache.
4372 			 */
4373 			if (page->mapping != inode->i_mapping) {
4374 				unlock_page(page);
4375 				put_page(page);
4376 				goto again;
4377 			}
4378 			if (!PageUptodate(page)) {
4379 				ret = -EIO;
4380 				goto next_page;
4381 			}
4382 		}
4383 
4384 		ret = check_extent_to_block(inode, offset, len,
4385 					    nocow_ctx_logical);
4386 		if (ret) {
4387 			ret = ret > 0 ? 0 : ret;
4388 			goto next_page;
4389 		}
4390 
4391 		err = write_page_nocow(nocow_ctx->sctx,
4392 				       physical_for_dev_replace, page);
4393 		if (err)
4394 			ret = err;
4395 next_page:
4396 		unlock_page(page);
4397 		put_page(page);
4398 
4399 		if (ret)
4400 			break;
4401 
4402 		offset += PAGE_SIZE;
4403 		physical_for_dev_replace += PAGE_SIZE;
4404 		nocow_ctx_logical += PAGE_SIZE;
4405 		len -= PAGE_SIZE;
4406 	}
4407 	ret = COPY_COMPLETE;
4408 out:
4409 	inode_unlock(inode);
4410 	iput(inode);
4411 	return ret;
4412 }
4413 
4414 static int write_page_nocow(struct scrub_ctx *sctx,
4415 			    u64 physical_for_dev_replace, struct page *page)
4416 {
4417 	struct bio *bio;
4418 	struct btrfs_device *dev;
4419 	int ret;
4420 
4421 	dev = sctx->wr_ctx.tgtdev;
4422 	if (!dev)
4423 		return -EIO;
4424 	if (!dev->bdev) {
4425 		btrfs_warn_rl(dev->dev_root->fs_info,
4426 			"scrub write_page_nocow(bdev == NULL) is unexpected");
4427 		return -EIO;
4428 	}
4429 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4430 	if (!bio) {
4431 		spin_lock(&sctx->stat_lock);
4432 		sctx->stat.malloc_errors++;
4433 		spin_unlock(&sctx->stat_lock);
4434 		return -ENOMEM;
4435 	}
4436 	bio->bi_iter.bi_size = 0;
4437 	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4438 	bio->bi_bdev = dev->bdev;
4439 	ret = bio_add_page(bio, page, PAGE_SIZE, 0);
4440 	if (ret != PAGE_SIZE) {
4441 leave_with_eio:
4442 		bio_put(bio);
4443 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4444 		return -EIO;
4445 	}
4446 
4447 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4448 		goto leave_with_eio;
4449 
4450 	bio_put(bio);
4451 	return 0;
4452 }
4453