1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/ratelimit.h> 8 #include <linux/sched/mm.h> 9 #include <crypto/hash.h> 10 #include "ctree.h" 11 #include "discard.h" 12 #include "volumes.h" 13 #include "disk-io.h" 14 #include "ordered-data.h" 15 #include "transaction.h" 16 #include "backref.h" 17 #include "extent_io.h" 18 #include "dev-replace.h" 19 #include "raid56.h" 20 #include "block-group.h" 21 #include "zoned.h" 22 #include "fs.h" 23 #include "accessors.h" 24 #include "file-item.h" 25 #include "scrub.h" 26 #include "raid-stripe-tree.h" 27 28 /* 29 * This is only the first step towards a full-features scrub. It reads all 30 * extent and super block and verifies the checksums. In case a bad checksum 31 * is found or the extent cannot be read, good data will be written back if 32 * any can be found. 33 * 34 * Future enhancements: 35 * - In case an unrepairable extent is encountered, track which files are 36 * affected and report them 37 * - track and record media errors, throw out bad devices 38 * - add a mode to also read unallocated space 39 */ 40 41 struct scrub_ctx; 42 43 /* 44 * The following value only influences the performance. 45 * 46 * This determines how many stripes would be submitted in one go, 47 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP). 48 */ 49 #define SCRUB_STRIPES_PER_GROUP 8 50 51 /* 52 * How many groups we have for each sctx. 53 * 54 * This would be 8M per device, the same value as the old scrub in-flight bios 55 * size limit. 56 */ 57 #define SCRUB_GROUPS_PER_SCTX 16 58 59 #define SCRUB_TOTAL_STRIPES (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP) 60 61 /* 62 * The following value times PAGE_SIZE needs to be large enough to match the 63 * largest node/leaf/sector size that shall be supported. 64 */ 65 #define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K) 66 67 /* Represent one sector and its needed info to verify the content. */ 68 struct scrub_sector_verification { 69 union { 70 /* 71 * Csum pointer for data csum verification. Should point to a 72 * sector csum inside scrub_stripe::csums. 73 * 74 * NULL if this data sector has no csum. 75 */ 76 u8 *csum; 77 78 /* 79 * Extra info for metadata verification. All sectors inside a 80 * tree block share the same generation. 81 */ 82 u64 generation; 83 }; 84 }; 85 86 enum scrub_stripe_flags { 87 /* Set when @mirror_num, @dev, @physical and @logical are set. */ 88 SCRUB_STRIPE_FLAG_INITIALIZED, 89 90 /* Set when the read-repair is finished. */ 91 SCRUB_STRIPE_FLAG_REPAIR_DONE, 92 93 /* 94 * Set for data stripes if it's triggered from P/Q stripe. 95 * During such scrub, we should not report errors in data stripes, nor 96 * update the accounting. 97 */ 98 SCRUB_STRIPE_FLAG_NO_REPORT, 99 }; 100 101 /* 102 * We have multiple bitmaps for one scrub_stripe. 103 * However each bitmap has at most (BTRFS_STRIPE_LEN / blocksize) bits, 104 * which is normally 16, and much smaller than BITS_PER_LONG (32 or 64). 105 * 106 * So to reduce memory usage for each scrub_stripe, we pack those bitmaps 107 * into a larger one. 108 * 109 * These enum records where the sub-bitmap are inside the larger one. 110 * Each subbitmap starts at scrub_bitmap_nr_##name * nr_sectors bit. 111 */ 112 enum { 113 /* Which blocks are covered by extent items. */ 114 scrub_bitmap_nr_has_extent = 0, 115 116 /* Which blocks are metadata. */ 117 scrub_bitmap_nr_is_metadata, 118 119 /* 120 * Which blocks have errors, including IO, csum, and metadata 121 * errors. 122 * This sub-bitmap is the OR results of the next few error related 123 * sub-bitmaps. 124 */ 125 scrub_bitmap_nr_error, 126 scrub_bitmap_nr_io_error, 127 scrub_bitmap_nr_csum_error, 128 scrub_bitmap_nr_meta_error, 129 scrub_bitmap_nr_meta_gen_error, 130 scrub_bitmap_nr_last, 131 }; 132 133 #define SCRUB_STRIPE_MAX_FOLIOS (BTRFS_STRIPE_LEN / PAGE_SIZE) 134 135 /* 136 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN. 137 */ 138 struct scrub_stripe { 139 struct scrub_ctx *sctx; 140 struct btrfs_block_group *bg; 141 142 struct folio *folios[SCRUB_STRIPE_MAX_FOLIOS]; 143 struct scrub_sector_verification *sectors; 144 145 struct btrfs_device *dev; 146 u64 logical; 147 u64 physical; 148 149 u16 mirror_num; 150 151 /* Should be BTRFS_STRIPE_LEN / sectorsize. */ 152 u16 nr_sectors; 153 154 /* 155 * How many data/meta extents are in this stripe. Only for scrub status 156 * reporting purposes. 157 */ 158 u16 nr_data_extents; 159 u16 nr_meta_extents; 160 161 atomic_t pending_io; 162 wait_queue_head_t io_wait; 163 wait_queue_head_t repair_wait; 164 165 /* 166 * Indicate the states of the stripe. Bits are defined in 167 * scrub_stripe_flags enum. 168 */ 169 unsigned long state; 170 171 /* The large bitmap contains all the sub-bitmaps. */ 172 unsigned long bitmaps[BITS_TO_LONGS(scrub_bitmap_nr_last * 173 (BTRFS_STRIPE_LEN / BTRFS_MIN_BLOCKSIZE))]; 174 175 /* 176 * For writeback (repair or replace) error reporting. 177 * This one is protected by a spinlock, thus can not be packed into 178 * the larger bitmap. 179 */ 180 unsigned long write_error_bitmap; 181 182 /* Writeback can be concurrent, thus we need to protect the bitmap. */ 183 spinlock_t write_error_lock; 184 185 /* 186 * Checksum for the whole stripe if this stripe is inside a data block 187 * group. 188 */ 189 u8 *csums; 190 191 struct work_struct work; 192 }; 193 194 struct scrub_ctx { 195 struct scrub_stripe stripes[SCRUB_TOTAL_STRIPES]; 196 struct scrub_stripe *raid56_data_stripes; 197 struct btrfs_fs_info *fs_info; 198 struct btrfs_path extent_path; 199 struct btrfs_path csum_path; 200 int first_free; 201 int cur_stripe; 202 atomic_t cancel_req; 203 int readonly; 204 205 /* State of IO submission throttling affecting the associated device */ 206 ktime_t throttle_deadline; 207 u64 throttle_sent; 208 209 bool is_dev_replace; 210 u64 write_pointer; 211 212 struct mutex wr_lock; 213 struct btrfs_device *wr_tgtdev; 214 215 /* 216 * statistics 217 */ 218 struct btrfs_scrub_progress stat; 219 spinlock_t stat_lock; 220 221 /* 222 * Use a ref counter to avoid use-after-free issues. Scrub workers 223 * decrement bios_in_flight and workers_pending and then do a wakeup 224 * on the list_wait wait queue. We must ensure the main scrub task 225 * doesn't free the scrub context before or while the workers are 226 * doing the wakeup() call. 227 */ 228 refcount_t refs; 229 }; 230 231 #define scrub_calc_start_bit(stripe, name, block_nr) \ 232 ({ \ 233 unsigned int __start_bit; \ 234 \ 235 ASSERT(block_nr < stripe->nr_sectors, \ 236 "nr_sectors=%u block_nr=%u", stripe->nr_sectors, block_nr); \ 237 __start_bit = scrub_bitmap_nr_##name * stripe->nr_sectors + block_nr; \ 238 __start_bit; \ 239 }) 240 241 #define IMPLEMENT_SCRUB_BITMAP_OPS(name) \ 242 static inline void scrub_bitmap_set_##name(struct scrub_stripe *stripe, \ 243 unsigned int block_nr, \ 244 unsigned int nr_blocks) \ 245 { \ 246 const unsigned int start_bit = scrub_calc_start_bit(stripe, \ 247 name, block_nr); \ 248 \ 249 bitmap_set(stripe->bitmaps, start_bit, nr_blocks); \ 250 } \ 251 static inline void scrub_bitmap_clear_##name(struct scrub_stripe *stripe, \ 252 unsigned int block_nr, \ 253 unsigned int nr_blocks) \ 254 { \ 255 const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \ 256 block_nr); \ 257 \ 258 bitmap_clear(stripe->bitmaps, start_bit, nr_blocks); \ 259 } \ 260 static inline bool scrub_bitmap_test_bit_##name(struct scrub_stripe *stripe, \ 261 unsigned int block_nr) \ 262 { \ 263 const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \ 264 block_nr); \ 265 \ 266 return test_bit(start_bit, stripe->bitmaps); \ 267 } \ 268 static inline void scrub_bitmap_set_bit_##name(struct scrub_stripe *stripe, \ 269 unsigned int block_nr) \ 270 { \ 271 const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \ 272 block_nr); \ 273 \ 274 set_bit(start_bit, stripe->bitmaps); \ 275 } \ 276 static inline void scrub_bitmap_clear_bit_##name(struct scrub_stripe *stripe, \ 277 unsigned int block_nr) \ 278 { \ 279 const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \ 280 block_nr); \ 281 \ 282 clear_bit(start_bit, stripe->bitmaps); \ 283 } \ 284 static inline unsigned long scrub_bitmap_read_##name(struct scrub_stripe *stripe) \ 285 { \ 286 const unsigned int nr_blocks = stripe->nr_sectors; \ 287 \ 288 ASSERT(nr_blocks > 0 && nr_blocks <= BITS_PER_LONG, \ 289 "nr_blocks=%u BITS_PER_LONG=%u", \ 290 nr_blocks, BITS_PER_LONG); \ 291 \ 292 return bitmap_read(stripe->bitmaps, nr_blocks * scrub_bitmap_nr_##name, \ 293 stripe->nr_sectors); \ 294 } \ 295 static inline bool scrub_bitmap_empty_##name(struct scrub_stripe *stripe) \ 296 { \ 297 unsigned long bitmap = scrub_bitmap_read_##name(stripe); \ 298 \ 299 return bitmap_empty(&bitmap, stripe->nr_sectors); \ 300 } \ 301 static inline unsigned int scrub_bitmap_weight_##name(struct scrub_stripe *stripe) \ 302 { \ 303 unsigned long bitmap = scrub_bitmap_read_##name(stripe); \ 304 \ 305 return bitmap_weight(&bitmap, stripe->nr_sectors); \ 306 } 307 IMPLEMENT_SCRUB_BITMAP_OPS(has_extent); 308 IMPLEMENT_SCRUB_BITMAP_OPS(is_metadata); 309 IMPLEMENT_SCRUB_BITMAP_OPS(error); 310 IMPLEMENT_SCRUB_BITMAP_OPS(io_error); 311 IMPLEMENT_SCRUB_BITMAP_OPS(csum_error); 312 IMPLEMENT_SCRUB_BITMAP_OPS(meta_error); 313 IMPLEMENT_SCRUB_BITMAP_OPS(meta_gen_error); 314 315 struct scrub_warning { 316 struct btrfs_path *path; 317 u64 extent_item_size; 318 const char *errstr; 319 u64 physical; 320 u64 logical; 321 struct btrfs_device *dev; 322 }; 323 324 struct scrub_error_records { 325 /* 326 * Bitmap recording which blocks hit errors (IO/csum/...) during the 327 * initial read. 328 */ 329 unsigned long init_error_bitmap; 330 331 unsigned int nr_io_errors; 332 unsigned int nr_csum_errors; 333 unsigned int nr_meta_errors; 334 unsigned int nr_meta_gen_errors; 335 }; 336 337 static void release_scrub_stripe(struct scrub_stripe *stripe) 338 { 339 if (!stripe) 340 return; 341 342 for (int i = 0; i < SCRUB_STRIPE_MAX_FOLIOS; i++) { 343 if (stripe->folios[i]) 344 folio_put(stripe->folios[i]); 345 stripe->folios[i] = NULL; 346 } 347 kfree(stripe->sectors); 348 kfree(stripe->csums); 349 stripe->sectors = NULL; 350 stripe->csums = NULL; 351 stripe->sctx = NULL; 352 stripe->state = 0; 353 } 354 355 static int init_scrub_stripe(struct btrfs_fs_info *fs_info, 356 struct scrub_stripe *stripe) 357 { 358 const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order; 359 int ret; 360 361 memset(stripe, 0, sizeof(*stripe)); 362 363 stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; 364 stripe->state = 0; 365 366 init_waitqueue_head(&stripe->io_wait); 367 init_waitqueue_head(&stripe->repair_wait); 368 atomic_set(&stripe->pending_io, 0); 369 spin_lock_init(&stripe->write_error_lock); 370 371 ASSERT(BTRFS_STRIPE_LEN >> min_folio_shift <= SCRUB_STRIPE_MAX_FOLIOS); 372 ret = btrfs_alloc_folio_array(BTRFS_STRIPE_LEN >> min_folio_shift, 373 fs_info->block_min_order, stripe->folios); 374 if (ret < 0) 375 goto error; 376 377 stripe->sectors = kcalloc(stripe->nr_sectors, 378 sizeof(struct scrub_sector_verification), 379 GFP_KERNEL); 380 if (!stripe->sectors) 381 goto error; 382 383 stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits, 384 fs_info->csum_size, GFP_KERNEL); 385 if (!stripe->csums) 386 goto error; 387 return 0; 388 error: 389 release_scrub_stripe(stripe); 390 return -ENOMEM; 391 } 392 393 static void wait_scrub_stripe_io(struct scrub_stripe *stripe) 394 { 395 wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0); 396 } 397 398 static void scrub_put_ctx(struct scrub_ctx *sctx); 399 400 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 401 { 402 while (atomic_read(&fs_info->scrub_pause_req)) { 403 mutex_unlock(&fs_info->scrub_lock); 404 wait_event(fs_info->scrub_pause_wait, 405 atomic_read(&fs_info->scrub_pause_req) == 0); 406 mutex_lock(&fs_info->scrub_lock); 407 } 408 } 409 410 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 411 { 412 atomic_inc(&fs_info->scrubs_paused); 413 wake_up(&fs_info->scrub_pause_wait); 414 } 415 416 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 417 { 418 mutex_lock(&fs_info->scrub_lock); 419 __scrub_blocked_if_needed(fs_info); 420 atomic_dec(&fs_info->scrubs_paused); 421 mutex_unlock(&fs_info->scrub_lock); 422 423 wake_up(&fs_info->scrub_pause_wait); 424 } 425 426 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 427 { 428 scrub_pause_on(fs_info); 429 scrub_pause_off(fs_info); 430 } 431 432 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 433 { 434 int i; 435 436 if (!sctx) 437 return; 438 439 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) 440 release_scrub_stripe(&sctx->stripes[i]); 441 442 kvfree(sctx); 443 } 444 445 static void scrub_put_ctx(struct scrub_ctx *sctx) 446 { 447 if (refcount_dec_and_test(&sctx->refs)) 448 scrub_free_ctx(sctx); 449 } 450 451 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( 452 struct btrfs_fs_info *fs_info, bool is_dev_replace) 453 { 454 struct scrub_ctx *sctx; 455 int i; 456 457 /* Since sctx has inline 128 stripes, it can go beyond 64K easily. Use 458 * kvzalloc(). 459 */ 460 sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL); 461 if (!sctx) 462 goto nomem; 463 refcount_set(&sctx->refs, 1); 464 sctx->is_dev_replace = is_dev_replace; 465 sctx->fs_info = fs_info; 466 sctx->extent_path.search_commit_root = 1; 467 sctx->extent_path.skip_locking = 1; 468 sctx->csum_path.search_commit_root = 1; 469 sctx->csum_path.skip_locking = 1; 470 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) { 471 int ret; 472 473 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]); 474 if (ret < 0) 475 goto nomem; 476 sctx->stripes[i].sctx = sctx; 477 } 478 sctx->first_free = 0; 479 atomic_set(&sctx->cancel_req, 0); 480 481 spin_lock_init(&sctx->stat_lock); 482 sctx->throttle_deadline = 0; 483 484 mutex_init(&sctx->wr_lock); 485 if (is_dev_replace) { 486 WARN_ON(!fs_info->dev_replace.tgtdev); 487 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 488 } 489 490 return sctx; 491 492 nomem: 493 scrub_free_ctx(sctx); 494 return ERR_PTR(-ENOMEM); 495 } 496 497 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 498 u64 root, void *warn_ctx) 499 { 500 u32 nlink; 501 int ret; 502 int i; 503 unsigned nofs_flag; 504 struct extent_buffer *eb; 505 struct btrfs_inode_item *inode_item; 506 struct scrub_warning *swarn = warn_ctx; 507 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 508 struct inode_fs_paths *ipath = NULL; 509 struct btrfs_root *local_root; 510 struct btrfs_key key; 511 512 local_root = btrfs_get_fs_root(fs_info, root, true); 513 if (IS_ERR(local_root)) { 514 ret = PTR_ERR(local_root); 515 goto err; 516 } 517 518 /* 519 * this makes the path point to (inum INODE_ITEM ioff) 520 */ 521 key.objectid = inum; 522 key.type = BTRFS_INODE_ITEM_KEY; 523 key.offset = 0; 524 525 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 526 if (ret) { 527 btrfs_put_root(local_root); 528 btrfs_release_path(swarn->path); 529 goto err; 530 } 531 532 eb = swarn->path->nodes[0]; 533 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 534 struct btrfs_inode_item); 535 nlink = btrfs_inode_nlink(eb, inode_item); 536 btrfs_release_path(swarn->path); 537 538 /* 539 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 540 * uses GFP_NOFS in this context, so we keep it consistent but it does 541 * not seem to be strictly necessary. 542 */ 543 nofs_flag = memalloc_nofs_save(); 544 ipath = init_ipath(4096, local_root, swarn->path); 545 memalloc_nofs_restore(nofs_flag); 546 if (IS_ERR(ipath)) { 547 btrfs_put_root(local_root); 548 ret = PTR_ERR(ipath); 549 ipath = NULL; 550 goto err; 551 } 552 ret = paths_from_inode(inum, ipath); 553 554 if (ret < 0) 555 goto err; 556 557 /* 558 * we deliberately ignore the bit ipath might have been too small to 559 * hold all of the paths here 560 */ 561 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 562 btrfs_warn(fs_info, 563 "scrub: %s at logical %llu on dev %s, physical %llu root %llu inode %llu offset %llu length %u links %u (path: %s)", 564 swarn->errstr, swarn->logical, 565 btrfs_dev_name(swarn->dev), 566 swarn->physical, 567 root, inum, offset, 568 fs_info->sectorsize, nlink, 569 (char *)(unsigned long)ipath->fspath->val[i]); 570 571 btrfs_put_root(local_root); 572 free_ipath(ipath); 573 return 0; 574 575 err: 576 btrfs_warn(fs_info, 577 "scrub: %s at logical %llu on dev %s, physical %llu root %llu inode %llu offset %llu: path resolving failed with ret=%d", 578 swarn->errstr, swarn->logical, 579 btrfs_dev_name(swarn->dev), 580 swarn->physical, 581 root, inum, offset, ret); 582 583 free_ipath(ipath); 584 return 0; 585 } 586 587 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev, 588 bool is_super, u64 logical, u64 physical) 589 { 590 struct btrfs_fs_info *fs_info = dev->fs_info; 591 BTRFS_PATH_AUTO_FREE(path); 592 struct btrfs_key found_key; 593 struct extent_buffer *eb; 594 struct btrfs_extent_item *ei; 595 struct scrub_warning swarn; 596 u64 flags = 0; 597 u32 item_size; 598 int ret; 599 600 /* Super block error, no need to search extent tree. */ 601 if (is_super) { 602 btrfs_warn(fs_info, "scrub: %s on device %s, physical %llu", 603 errstr, btrfs_dev_name(dev), physical); 604 return; 605 } 606 path = btrfs_alloc_path(); 607 if (!path) 608 return; 609 610 swarn.physical = physical; 611 swarn.logical = logical; 612 swarn.errstr = errstr; 613 swarn.dev = NULL; 614 615 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 616 &flags); 617 if (ret < 0) 618 return; 619 620 swarn.extent_item_size = found_key.offset; 621 622 eb = path->nodes[0]; 623 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 624 item_size = btrfs_item_size(eb, path->slots[0]); 625 626 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 627 unsigned long ptr = 0; 628 u8 ref_level; 629 u64 ref_root; 630 631 while (true) { 632 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 633 item_size, &ref_root, 634 &ref_level); 635 if (ret < 0) { 636 btrfs_warn(fs_info, 637 "scrub: failed to resolve tree backref for logical %llu: %d", 638 swarn.logical, ret); 639 break; 640 } 641 if (ret > 0) 642 break; 643 btrfs_warn(fs_info, 644 "scrub: %s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 645 errstr, swarn.logical, btrfs_dev_name(dev), 646 swarn.physical, (ref_level ? "node" : "leaf"), 647 ref_level, ref_root); 648 } 649 btrfs_release_path(path); 650 } else { 651 struct btrfs_backref_walk_ctx ctx = { 0 }; 652 653 btrfs_release_path(path); 654 655 ctx.bytenr = found_key.objectid; 656 ctx.extent_item_pos = swarn.logical - found_key.objectid; 657 ctx.fs_info = fs_info; 658 659 swarn.path = path; 660 swarn.dev = dev; 661 662 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn); 663 } 664 } 665 666 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) 667 { 668 int ret = 0; 669 u64 length; 670 671 if (!btrfs_is_zoned(sctx->fs_info)) 672 return 0; 673 674 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) 675 return 0; 676 677 if (sctx->write_pointer < physical) { 678 length = physical - sctx->write_pointer; 679 680 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev, 681 sctx->write_pointer, length); 682 if (!ret) 683 sctx->write_pointer = physical; 684 } 685 return ret; 686 } 687 688 static void *scrub_stripe_get_kaddr(struct scrub_stripe *stripe, int sector_nr) 689 { 690 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 691 const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order; 692 u32 offset = (sector_nr << fs_info->sectorsize_bits); 693 const struct folio *folio = stripe->folios[offset >> min_folio_shift]; 694 695 /* stripe->folios[] is allocated by us and no highmem is allowed. */ 696 ASSERT(folio); 697 ASSERT(!folio_test_partial_kmap(folio)); 698 return folio_address(folio) + offset_in_folio(folio, offset); 699 } 700 701 static phys_addr_t scrub_stripe_get_paddr(struct scrub_stripe *stripe, int sector_nr) 702 { 703 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 704 const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order; 705 u32 offset = (sector_nr << fs_info->sectorsize_bits); 706 const struct folio *folio = stripe->folios[offset >> min_folio_shift]; 707 708 /* stripe->folios[] is allocated by us and no highmem is allowed. */ 709 ASSERT(folio); 710 ASSERT(!folio_test_partial_kmap(folio)); 711 /* And the range must be contained inside the folio. */ 712 ASSERT(offset_in_folio(folio, offset) + fs_info->sectorsize <= folio_size(folio)); 713 return page_to_phys(folio_page(folio, 0)) + offset_in_folio(folio, offset); 714 } 715 716 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr) 717 { 718 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 719 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 720 const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits); 721 void *first_kaddr = scrub_stripe_get_kaddr(stripe, sector_nr); 722 struct btrfs_header *header = first_kaddr; 723 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 724 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 725 u8 calculated_csum[BTRFS_CSUM_SIZE]; 726 727 /* 728 * Here we don't have a good way to attach the pages (and subpages) 729 * to a dummy extent buffer, thus we have to directly grab the members 730 * from pages. 731 */ 732 memcpy(on_disk_csum, header->csum, fs_info->csum_size); 733 734 if (logical != btrfs_stack_header_bytenr(header)) { 735 scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree); 736 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree); 737 btrfs_warn_rl(fs_info, 738 "scrub: tree block %llu mirror %u has bad bytenr, has %llu want %llu", 739 logical, stripe->mirror_num, 740 btrfs_stack_header_bytenr(header), logical); 741 return; 742 } 743 if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid, 744 BTRFS_FSID_SIZE) != 0) { 745 scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree); 746 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree); 747 btrfs_warn_rl(fs_info, 748 "scrub: tree block %llu mirror %u has bad fsid, has %pU want %pU", 749 logical, stripe->mirror_num, 750 header->fsid, fs_info->fs_devices->fsid); 751 return; 752 } 753 if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid, 754 BTRFS_UUID_SIZE) != 0) { 755 scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree); 756 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree); 757 btrfs_warn_rl(fs_info, 758 "scrub: tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU", 759 logical, stripe->mirror_num, 760 header->chunk_tree_uuid, fs_info->chunk_tree_uuid); 761 return; 762 } 763 764 /* Now check tree block csum. */ 765 shash->tfm = fs_info->csum_shash; 766 crypto_shash_init(shash); 767 crypto_shash_update(shash, first_kaddr + BTRFS_CSUM_SIZE, 768 fs_info->sectorsize - BTRFS_CSUM_SIZE); 769 770 for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) { 771 crypto_shash_update(shash, scrub_stripe_get_kaddr(stripe, i), 772 fs_info->sectorsize); 773 } 774 775 crypto_shash_final(shash, calculated_csum); 776 if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) { 777 scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree); 778 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree); 779 btrfs_warn_rl(fs_info, 780 "scrub: tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT, 781 logical, stripe->mirror_num, 782 CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum), 783 CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum)); 784 return; 785 } 786 if (stripe->sectors[sector_nr].generation != 787 btrfs_stack_header_generation(header)) { 788 scrub_bitmap_set_meta_gen_error(stripe, sector_nr, sectors_per_tree); 789 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree); 790 btrfs_warn_rl(fs_info, 791 "scrub: tree block %llu mirror %u has bad generation, has %llu want %llu", 792 logical, stripe->mirror_num, 793 btrfs_stack_header_generation(header), 794 stripe->sectors[sector_nr].generation); 795 return; 796 } 797 scrub_bitmap_clear_error(stripe, sector_nr, sectors_per_tree); 798 scrub_bitmap_clear_csum_error(stripe, sector_nr, sectors_per_tree); 799 scrub_bitmap_clear_meta_error(stripe, sector_nr, sectors_per_tree); 800 scrub_bitmap_clear_meta_gen_error(stripe, sector_nr, sectors_per_tree); 801 } 802 803 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr) 804 { 805 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 806 struct scrub_sector_verification *sector = &stripe->sectors[sector_nr]; 807 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 808 phys_addr_t paddr = scrub_stripe_get_paddr(stripe, sector_nr); 809 u8 csum_buf[BTRFS_CSUM_SIZE]; 810 int ret; 811 812 ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors); 813 814 /* Sector not utilized, skip it. */ 815 if (!scrub_bitmap_test_bit_has_extent(stripe, sector_nr)) 816 return; 817 818 /* IO error, no need to check. */ 819 if (scrub_bitmap_test_bit_io_error(stripe, sector_nr)) 820 return; 821 822 /* Metadata, verify the full tree block. */ 823 if (scrub_bitmap_test_bit_is_metadata(stripe, sector_nr)) { 824 /* 825 * Check if the tree block crosses the stripe boundary. If 826 * crossed the boundary, we cannot verify it but only give a 827 * warning. 828 * 829 * This can only happen on a very old filesystem where chunks 830 * are not ensured to be stripe aligned. 831 */ 832 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) { 833 btrfs_warn_rl(fs_info, 834 "scrub: tree block at %llu crosses stripe boundary %llu", 835 stripe->logical + 836 (sector_nr << fs_info->sectorsize_bits), 837 stripe->logical); 838 return; 839 } 840 scrub_verify_one_metadata(stripe, sector_nr); 841 return; 842 } 843 844 /* 845 * Data is easier, we just verify the data csum (if we have it). For 846 * cases without csum, we have no other choice but to trust it. 847 */ 848 if (!sector->csum) { 849 scrub_bitmap_clear_bit_error(stripe, sector_nr); 850 return; 851 } 852 853 ret = btrfs_check_block_csum(fs_info, paddr, csum_buf, sector->csum); 854 if (ret < 0) { 855 scrub_bitmap_set_bit_csum_error(stripe, sector_nr); 856 scrub_bitmap_set_bit_error(stripe, sector_nr); 857 } else { 858 scrub_bitmap_clear_bit_csum_error(stripe, sector_nr); 859 scrub_bitmap_clear_bit_error(stripe, sector_nr); 860 } 861 } 862 863 /* Verify specified sectors of a stripe. */ 864 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap) 865 { 866 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 867 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 868 int sector_nr; 869 870 for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) { 871 scrub_verify_one_sector(stripe, sector_nr); 872 if (scrub_bitmap_test_bit_is_metadata(stripe, sector_nr)) 873 sector_nr += sectors_per_tree - 1; 874 } 875 } 876 877 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec) 878 { 879 int i; 880 881 for (i = 0; i < stripe->nr_sectors; i++) { 882 if (scrub_stripe_get_kaddr(stripe, i) == bvec_virt(first_bvec)) 883 break; 884 } 885 ASSERT(i < stripe->nr_sectors); 886 return i; 887 } 888 889 /* 890 * Repair read is different to the regular read: 891 * 892 * - Only reads the failed sectors 893 * - May have extra blocksize limits 894 */ 895 static void scrub_repair_read_endio(struct btrfs_bio *bbio) 896 { 897 struct scrub_stripe *stripe = bbio->private; 898 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 899 struct bio_vec *bvec; 900 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); 901 u32 bio_size = 0; 902 int i; 903 904 ASSERT(sector_nr < stripe->nr_sectors); 905 906 bio_for_each_bvec_all(bvec, &bbio->bio, i) 907 bio_size += bvec->bv_len; 908 909 if (bbio->bio.bi_status) { 910 scrub_bitmap_set_io_error(stripe, sector_nr, 911 bio_size >> fs_info->sectorsize_bits); 912 scrub_bitmap_set_error(stripe, sector_nr, 913 bio_size >> fs_info->sectorsize_bits); 914 } else { 915 scrub_bitmap_clear_io_error(stripe, sector_nr, 916 bio_size >> fs_info->sectorsize_bits); 917 } 918 bio_put(&bbio->bio); 919 if (atomic_dec_and_test(&stripe->pending_io)) 920 wake_up(&stripe->io_wait); 921 } 922 923 static int calc_next_mirror(int mirror, int num_copies) 924 { 925 ASSERT(mirror <= num_copies); 926 return (mirror + 1 > num_copies) ? 1 : mirror + 1; 927 } 928 929 static void scrub_bio_add_sector(struct btrfs_bio *bbio, struct scrub_stripe *stripe, 930 int sector_nr) 931 { 932 void *kaddr = scrub_stripe_get_kaddr(stripe, sector_nr); 933 int ret; 934 935 ret = bio_add_page(&bbio->bio, virt_to_page(kaddr), bbio->fs_info->sectorsize, 936 offset_in_page(kaddr)); 937 /* 938 * Caller should ensure the bbio has enough size. 939 * And we cannot use __bio_add_page(), which doesn't do any merge. 940 * 941 * Meanwhile for scrub_submit_initial_read() we fully rely on the merge 942 * to create the minimal amount of bio vectors, for fs block size < page 943 * size cases. 944 */ 945 ASSERT(ret == bbio->fs_info->sectorsize); 946 } 947 948 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe, 949 int mirror, int blocksize, bool wait) 950 { 951 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 952 struct btrfs_bio *bbio = NULL; 953 const unsigned long old_error_bitmap = scrub_bitmap_read_error(stripe); 954 int i; 955 956 ASSERT(stripe->mirror_num >= 1); 957 ASSERT(atomic_read(&stripe->pending_io) == 0); 958 959 for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) { 960 /* The current sector cannot be merged, submit the bio. */ 961 if (bbio && ((i > 0 && !test_bit(i - 1, &old_error_bitmap)) || 962 bbio->bio.bi_iter.bi_size >= blocksize)) { 963 ASSERT(bbio->bio.bi_iter.bi_size); 964 atomic_inc(&stripe->pending_io); 965 btrfs_submit_bbio(bbio, mirror); 966 if (wait) 967 wait_scrub_stripe_io(stripe); 968 bbio = NULL; 969 } 970 971 if (!bbio) { 972 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ, 973 fs_info, scrub_repair_read_endio, stripe); 974 bbio->bio.bi_iter.bi_sector = (stripe->logical + 975 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT; 976 } 977 978 scrub_bio_add_sector(bbio, stripe, i); 979 } 980 if (bbio) { 981 ASSERT(bbio->bio.bi_iter.bi_size); 982 atomic_inc(&stripe->pending_io); 983 btrfs_submit_bbio(bbio, mirror); 984 if (wait) 985 wait_scrub_stripe_io(stripe); 986 } 987 } 988 989 static void scrub_stripe_report_errors(struct scrub_ctx *sctx, 990 struct scrub_stripe *stripe, 991 const struct scrub_error_records *errors) 992 { 993 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 994 DEFAULT_RATELIMIT_BURST); 995 struct btrfs_fs_info *fs_info = sctx->fs_info; 996 struct btrfs_device *dev = NULL; 997 const unsigned long extent_bitmap = scrub_bitmap_read_has_extent(stripe); 998 const unsigned long error_bitmap = scrub_bitmap_read_error(stripe); 999 u64 physical = 0; 1000 int nr_data_sectors = 0; 1001 int nr_meta_sectors = 0; 1002 int nr_nodatacsum_sectors = 0; 1003 int nr_repaired_sectors = 0; 1004 int sector_nr; 1005 1006 if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state)) 1007 return; 1008 1009 /* 1010 * Init needed infos for error reporting. 1011 * 1012 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio() 1013 * thus no need for dev/physical, error reporting still needs dev and physical. 1014 */ 1015 if (!bitmap_empty(&errors->init_error_bitmap, stripe->nr_sectors)) { 1016 u64 mapped_len = fs_info->sectorsize; 1017 struct btrfs_io_context *bioc = NULL; 1018 int stripe_index = stripe->mirror_num - 1; 1019 int ret; 1020 1021 /* For scrub, our mirror_num should always start at 1. */ 1022 ASSERT(stripe->mirror_num >= 1); 1023 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 1024 stripe->logical, &mapped_len, &bioc, 1025 NULL, NULL); 1026 /* 1027 * If we failed, dev will be NULL, and later detailed reports 1028 * will just be skipped. 1029 */ 1030 if (ret < 0) 1031 goto skip; 1032 physical = bioc->stripes[stripe_index].physical; 1033 dev = bioc->stripes[stripe_index].dev; 1034 btrfs_put_bioc(bioc); 1035 } 1036 1037 skip: 1038 for_each_set_bit(sector_nr, &extent_bitmap, stripe->nr_sectors) { 1039 bool repaired = false; 1040 1041 if (scrub_bitmap_test_bit_is_metadata(stripe, sector_nr)) { 1042 nr_meta_sectors++; 1043 } else { 1044 nr_data_sectors++; 1045 if (!stripe->sectors[sector_nr].csum) 1046 nr_nodatacsum_sectors++; 1047 } 1048 1049 if (test_bit(sector_nr, &errors->init_error_bitmap) && 1050 !test_bit(sector_nr, &error_bitmap)) { 1051 nr_repaired_sectors++; 1052 repaired = true; 1053 } 1054 1055 /* Good sector from the beginning, nothing need to be done. */ 1056 if (!test_bit(sector_nr, &errors->init_error_bitmap)) 1057 continue; 1058 1059 /* 1060 * Report error for the corrupted sectors. If repaired, just 1061 * output the message of repaired message. 1062 */ 1063 if (repaired) { 1064 if (dev) { 1065 btrfs_err_rl(fs_info, 1066 "scrub: fixed up error at logical %llu on dev %s physical %llu", 1067 stripe->logical, btrfs_dev_name(dev), 1068 physical); 1069 } else { 1070 btrfs_err_rl(fs_info, 1071 "scrub: fixed up error at logical %llu on mirror %u", 1072 stripe->logical, stripe->mirror_num); 1073 } 1074 continue; 1075 } 1076 1077 /* The remaining are all for unrepaired. */ 1078 if (dev) { 1079 btrfs_err_rl(fs_info, 1080 "scrub: unable to fixup (regular) error at logical %llu on dev %s physical %llu", 1081 stripe->logical, btrfs_dev_name(dev), 1082 physical); 1083 } else { 1084 btrfs_err_rl(fs_info, 1085 "scrub: unable to fixup (regular) error at logical %llu on mirror %u", 1086 stripe->logical, stripe->mirror_num); 1087 } 1088 1089 if (scrub_bitmap_test_bit_io_error(stripe, sector_nr)) 1090 if (__ratelimit(&rs) && dev) 1091 scrub_print_common_warning("i/o error", dev, false, 1092 stripe->logical, physical); 1093 if (scrub_bitmap_test_bit_csum_error(stripe, sector_nr)) 1094 if (__ratelimit(&rs) && dev) 1095 scrub_print_common_warning("checksum error", dev, false, 1096 stripe->logical, physical); 1097 if (scrub_bitmap_test_bit_meta_error(stripe, sector_nr)) 1098 if (__ratelimit(&rs) && dev) 1099 scrub_print_common_warning("header error", dev, false, 1100 stripe->logical, physical); 1101 if (scrub_bitmap_test_bit_meta_gen_error(stripe, sector_nr)) 1102 if (__ratelimit(&rs) && dev) 1103 scrub_print_common_warning("generation error", dev, false, 1104 stripe->logical, physical); 1105 } 1106 1107 /* Update the device stats. */ 1108 for (int i = 0; i < errors->nr_io_errors; i++) 1109 btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_READ_ERRS); 1110 for (int i = 0; i < errors->nr_csum_errors; i++) 1111 btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 1112 /* Generation mismatch error is based on each metadata, not each block. */ 1113 for (int i = 0; i < errors->nr_meta_gen_errors; 1114 i += (fs_info->nodesize >> fs_info->sectorsize_bits)) 1115 btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_GENERATION_ERRS); 1116 1117 spin_lock(&sctx->stat_lock); 1118 sctx->stat.data_extents_scrubbed += stripe->nr_data_extents; 1119 sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents; 1120 sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits; 1121 sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits; 1122 sctx->stat.no_csum += nr_nodatacsum_sectors; 1123 sctx->stat.read_errors += errors->nr_io_errors; 1124 sctx->stat.csum_errors += errors->nr_csum_errors; 1125 sctx->stat.verify_errors += errors->nr_meta_errors + 1126 errors->nr_meta_gen_errors; 1127 sctx->stat.uncorrectable_errors += 1128 bitmap_weight(&error_bitmap, stripe->nr_sectors); 1129 sctx->stat.corrected_errors += nr_repaired_sectors; 1130 spin_unlock(&sctx->stat_lock); 1131 } 1132 1133 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe, 1134 unsigned long write_bitmap, bool dev_replace); 1135 1136 /* 1137 * The main entrance for all read related scrub work, including: 1138 * 1139 * - Wait for the initial read to finish 1140 * - Verify and locate any bad sectors 1141 * - Go through the remaining mirrors and try to read as large blocksize as 1142 * possible 1143 * - Go through all mirrors (including the failed mirror) sector-by-sector 1144 * - Submit writeback for repaired sectors 1145 * 1146 * Writeback for dev-replace does not happen here, it needs extra 1147 * synchronization for zoned devices. 1148 */ 1149 static void scrub_stripe_read_repair_worker(struct work_struct *work) 1150 { 1151 struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work); 1152 struct scrub_ctx *sctx = stripe->sctx; 1153 struct btrfs_fs_info *fs_info = sctx->fs_info; 1154 struct scrub_error_records errors = { 0 }; 1155 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, 1156 stripe->bg->length); 1157 unsigned long repaired; 1158 unsigned long error; 1159 int mirror; 1160 int i; 1161 1162 ASSERT(stripe->mirror_num > 0); 1163 1164 wait_scrub_stripe_io(stripe); 1165 scrub_verify_one_stripe(stripe, scrub_bitmap_read_has_extent(stripe)); 1166 /* Save the initial failed bitmap for later repair and report usage. */ 1167 errors.init_error_bitmap = scrub_bitmap_read_error(stripe); 1168 errors.nr_io_errors = scrub_bitmap_weight_io_error(stripe); 1169 errors.nr_csum_errors = scrub_bitmap_weight_csum_error(stripe); 1170 errors.nr_meta_errors = scrub_bitmap_weight_meta_error(stripe); 1171 errors.nr_meta_gen_errors = scrub_bitmap_weight_meta_gen_error(stripe); 1172 1173 if (bitmap_empty(&errors.init_error_bitmap, stripe->nr_sectors)) 1174 goto out; 1175 1176 /* 1177 * Try all remaining mirrors. 1178 * 1179 * Here we still try to read as large block as possible, as this is 1180 * faster and we have extra safety nets to rely on. 1181 */ 1182 for (mirror = calc_next_mirror(stripe->mirror_num, num_copies); 1183 mirror != stripe->mirror_num; 1184 mirror = calc_next_mirror(mirror, num_copies)) { 1185 const unsigned long old_error_bitmap = scrub_bitmap_read_error(stripe); 1186 1187 scrub_stripe_submit_repair_read(stripe, mirror, 1188 BTRFS_STRIPE_LEN, false); 1189 wait_scrub_stripe_io(stripe); 1190 scrub_verify_one_stripe(stripe, old_error_bitmap); 1191 if (scrub_bitmap_empty_error(stripe)) 1192 goto out; 1193 } 1194 1195 /* 1196 * Last safety net, try re-checking all mirrors, including the failed 1197 * one, sector-by-sector. 1198 * 1199 * As if one sector failed the drive's internal csum, the whole read 1200 * containing the offending sector would be marked as error. 1201 * Thus here we do sector-by-sector read. 1202 * 1203 * This can be slow, thus we only try it as the last resort. 1204 */ 1205 1206 for (i = 0, mirror = stripe->mirror_num; 1207 i < num_copies; 1208 i++, mirror = calc_next_mirror(mirror, num_copies)) { 1209 const unsigned long old_error_bitmap = scrub_bitmap_read_error(stripe); 1210 1211 scrub_stripe_submit_repair_read(stripe, mirror, 1212 fs_info->sectorsize, true); 1213 wait_scrub_stripe_io(stripe); 1214 scrub_verify_one_stripe(stripe, old_error_bitmap); 1215 if (scrub_bitmap_empty_error(stripe)) 1216 goto out; 1217 } 1218 out: 1219 error = scrub_bitmap_read_error(stripe); 1220 /* 1221 * Submit the repaired sectors. For zoned case, we cannot do repair 1222 * in-place, but queue the bg to be relocated. 1223 */ 1224 bitmap_andnot(&repaired, &errors.init_error_bitmap, &error, 1225 stripe->nr_sectors); 1226 if (!sctx->readonly && !bitmap_empty(&repaired, stripe->nr_sectors)) { 1227 if (btrfs_is_zoned(fs_info)) { 1228 btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start); 1229 } else { 1230 scrub_write_sectors(sctx, stripe, repaired, false); 1231 wait_scrub_stripe_io(stripe); 1232 } 1233 } 1234 1235 scrub_stripe_report_errors(sctx, stripe, &errors); 1236 set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state); 1237 wake_up(&stripe->repair_wait); 1238 } 1239 1240 static void scrub_read_endio(struct btrfs_bio *bbio) 1241 { 1242 struct scrub_stripe *stripe = bbio->private; 1243 struct bio_vec *bvec; 1244 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); 1245 int num_sectors; 1246 u32 bio_size = 0; 1247 int i; 1248 1249 ASSERT(sector_nr < stripe->nr_sectors); 1250 bio_for_each_bvec_all(bvec, &bbio->bio, i) 1251 bio_size += bvec->bv_len; 1252 num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits; 1253 1254 if (bbio->bio.bi_status) { 1255 scrub_bitmap_set_io_error(stripe, sector_nr, num_sectors); 1256 scrub_bitmap_set_error(stripe, sector_nr, num_sectors); 1257 } else { 1258 scrub_bitmap_clear_io_error(stripe, sector_nr, num_sectors); 1259 } 1260 bio_put(&bbio->bio); 1261 if (atomic_dec_and_test(&stripe->pending_io)) { 1262 wake_up(&stripe->io_wait); 1263 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker); 1264 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work); 1265 } 1266 } 1267 1268 static void scrub_write_endio(struct btrfs_bio *bbio) 1269 { 1270 struct scrub_stripe *stripe = bbio->private; 1271 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1272 struct bio_vec *bvec; 1273 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); 1274 u32 bio_size = 0; 1275 int i; 1276 1277 bio_for_each_bvec_all(bvec, &bbio->bio, i) 1278 bio_size += bvec->bv_len; 1279 1280 if (bbio->bio.bi_status) { 1281 unsigned long flags; 1282 1283 spin_lock_irqsave(&stripe->write_error_lock, flags); 1284 bitmap_set(&stripe->write_error_bitmap, sector_nr, 1285 bio_size >> fs_info->sectorsize_bits); 1286 spin_unlock_irqrestore(&stripe->write_error_lock, flags); 1287 for (int i = 0; i < (bio_size >> fs_info->sectorsize_bits); i++) 1288 btrfs_dev_stat_inc_and_print(stripe->dev, 1289 BTRFS_DEV_STAT_WRITE_ERRS); 1290 } 1291 bio_put(&bbio->bio); 1292 1293 if (atomic_dec_and_test(&stripe->pending_io)) 1294 wake_up(&stripe->io_wait); 1295 } 1296 1297 static void scrub_submit_write_bio(struct scrub_ctx *sctx, 1298 struct scrub_stripe *stripe, 1299 struct btrfs_bio *bbio, bool dev_replace) 1300 { 1301 struct btrfs_fs_info *fs_info = sctx->fs_info; 1302 u32 bio_len = bbio->bio.bi_iter.bi_size; 1303 u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) - 1304 stripe->logical; 1305 1306 fill_writer_pointer_gap(sctx, stripe->physical + bio_off); 1307 atomic_inc(&stripe->pending_io); 1308 btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace); 1309 if (!btrfs_is_zoned(fs_info)) 1310 return; 1311 /* 1312 * For zoned writeback, queue depth must be 1, thus we must wait for 1313 * the write to finish before the next write. 1314 */ 1315 wait_scrub_stripe_io(stripe); 1316 1317 /* 1318 * And also need to update the write pointer if write finished 1319 * successfully. 1320 */ 1321 if (!test_bit(bio_off >> fs_info->sectorsize_bits, 1322 &stripe->write_error_bitmap)) 1323 sctx->write_pointer += bio_len; 1324 } 1325 1326 /* 1327 * Submit the write bio(s) for the sectors specified by @write_bitmap. 1328 * 1329 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits: 1330 * 1331 * - Only needs logical bytenr and mirror_num 1332 * Just like the scrub read path 1333 * 1334 * - Would only result in writes to the specified mirror 1335 * Unlike the regular writeback path, which would write back to all stripes 1336 * 1337 * - Handle dev-replace and read-repair writeback differently 1338 */ 1339 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe, 1340 unsigned long write_bitmap, bool dev_replace) 1341 { 1342 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1343 struct btrfs_bio *bbio = NULL; 1344 int sector_nr; 1345 1346 for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) { 1347 /* We should only writeback sectors covered by an extent. */ 1348 ASSERT(scrub_bitmap_test_bit_has_extent(stripe, sector_nr)); 1349 1350 /* Cannot merge with previous sector, submit the current one. */ 1351 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) { 1352 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace); 1353 bbio = NULL; 1354 } 1355 if (!bbio) { 1356 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE, 1357 fs_info, scrub_write_endio, stripe); 1358 bbio->bio.bi_iter.bi_sector = (stripe->logical + 1359 (sector_nr << fs_info->sectorsize_bits)) >> 1360 SECTOR_SHIFT; 1361 } 1362 scrub_bio_add_sector(bbio, stripe, sector_nr); 1363 } 1364 if (bbio) 1365 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace); 1366 } 1367 1368 /* 1369 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1 1370 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max. 1371 */ 1372 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device, 1373 unsigned int bio_size) 1374 { 1375 const int time_slice = 1000; 1376 s64 delta; 1377 ktime_t now; 1378 u32 div; 1379 u64 bwlimit; 1380 1381 bwlimit = READ_ONCE(device->scrub_speed_max); 1382 if (bwlimit == 0) 1383 return; 1384 1385 /* 1386 * Slice is divided into intervals when the IO is submitted, adjust by 1387 * bwlimit and maximum of 64 intervals. 1388 */ 1389 div = clamp(bwlimit / (16 * 1024 * 1024), 1, 64); 1390 1391 /* Start new epoch, set deadline */ 1392 now = ktime_get(); 1393 if (sctx->throttle_deadline == 0) { 1394 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div); 1395 sctx->throttle_sent = 0; 1396 } 1397 1398 /* Still in the time to send? */ 1399 if (ktime_before(now, sctx->throttle_deadline)) { 1400 /* If current bio is within the limit, send it */ 1401 sctx->throttle_sent += bio_size; 1402 if (sctx->throttle_sent <= div_u64(bwlimit, div)) 1403 return; 1404 1405 /* We're over the limit, sleep until the rest of the slice */ 1406 delta = ktime_ms_delta(sctx->throttle_deadline, now); 1407 } else { 1408 /* New request after deadline, start new epoch */ 1409 delta = 0; 1410 } 1411 1412 if (delta) { 1413 long timeout; 1414 1415 timeout = div_u64(delta * HZ, 1000); 1416 schedule_timeout_interruptible(timeout); 1417 } 1418 1419 /* Next call will start the deadline period */ 1420 sctx->throttle_deadline = 0; 1421 } 1422 1423 /* 1424 * Given a physical address, this will calculate it's 1425 * logical offset. if this is a parity stripe, it will return 1426 * the most left data stripe's logical offset. 1427 * 1428 * return 0 if it is a data stripe, 1 means parity stripe. 1429 */ 1430 static int get_raid56_logic_offset(u64 physical, int num, 1431 struct btrfs_chunk_map *map, u64 *offset, 1432 u64 *stripe_start) 1433 { 1434 int i; 1435 int j = 0; 1436 u64 last_offset; 1437 const int data_stripes = nr_data_stripes(map); 1438 1439 last_offset = (physical - map->stripes[num].physical) * data_stripes; 1440 if (stripe_start) 1441 *stripe_start = last_offset; 1442 1443 *offset = last_offset; 1444 for (i = 0; i < data_stripes; i++) { 1445 u32 stripe_nr; 1446 u32 stripe_index; 1447 u32 rot; 1448 1449 *offset = last_offset + btrfs_stripe_nr_to_offset(i); 1450 1451 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes; 1452 1453 /* Work out the disk rotation on this stripe-set */ 1454 rot = stripe_nr % map->num_stripes; 1455 /* calculate which stripe this data locates */ 1456 rot += i; 1457 stripe_index = rot % map->num_stripes; 1458 if (stripe_index == num) 1459 return 0; 1460 if (stripe_index < num) 1461 j++; 1462 } 1463 *offset = last_offset + btrfs_stripe_nr_to_offset(j); 1464 return 1; 1465 } 1466 1467 /* 1468 * Return 0 if the extent item range covers any byte of the range. 1469 * Return <0 if the extent item is before @search_start. 1470 * Return >0 if the extent item is after @start_start + @search_len. 1471 */ 1472 static int compare_extent_item_range(struct btrfs_path *path, 1473 u64 search_start, u64 search_len) 1474 { 1475 struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info; 1476 u64 len; 1477 struct btrfs_key key; 1478 1479 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1480 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY || 1481 key.type == BTRFS_METADATA_ITEM_KEY); 1482 if (key.type == BTRFS_METADATA_ITEM_KEY) 1483 len = fs_info->nodesize; 1484 else 1485 len = key.offset; 1486 1487 if (key.objectid + len <= search_start) 1488 return -1; 1489 if (key.objectid >= search_start + search_len) 1490 return 1; 1491 return 0; 1492 } 1493 1494 /* 1495 * Locate one extent item which covers any byte in range 1496 * [@search_start, @search_start + @search_length) 1497 * 1498 * If the path is not initialized, we will initialize the search by doing 1499 * a btrfs_search_slot(). 1500 * If the path is already initialized, we will use the path as the initial 1501 * slot, to avoid duplicated btrfs_search_slot() calls. 1502 * 1503 * NOTE: If an extent item starts before @search_start, we will still 1504 * return the extent item. This is for data extent crossing stripe boundary. 1505 * 1506 * Return 0 if we found such extent item, and @path will point to the extent item. 1507 * Return >0 if no such extent item can be found, and @path will be released. 1508 * Return <0 if hit fatal error, and @path will be released. 1509 */ 1510 static int find_first_extent_item(struct btrfs_root *extent_root, 1511 struct btrfs_path *path, 1512 u64 search_start, u64 search_len) 1513 { 1514 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1515 struct btrfs_key key; 1516 int ret; 1517 1518 /* Continue using the existing path */ 1519 if (path->nodes[0]) 1520 goto search_forward; 1521 1522 key.objectid = search_start; 1523 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1524 key.type = BTRFS_METADATA_ITEM_KEY; 1525 else 1526 key.type = BTRFS_EXTENT_ITEM_KEY; 1527 key.offset = (u64)-1; 1528 1529 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 1530 if (ret < 0) 1531 return ret; 1532 if (unlikely(ret == 0)) { 1533 /* 1534 * Key with offset -1 found, there would have to exist an extent 1535 * item with such offset, but this is out of the valid range. 1536 */ 1537 btrfs_release_path(path); 1538 return -EUCLEAN; 1539 } 1540 1541 /* 1542 * Here we intentionally pass 0 as @min_objectid, as there could be 1543 * an extent item starting before @search_start. 1544 */ 1545 ret = btrfs_previous_extent_item(extent_root, path, 0); 1546 if (ret < 0) 1547 return ret; 1548 /* 1549 * No matter whether we have found an extent item, the next loop will 1550 * properly do every check on the key. 1551 */ 1552 search_forward: 1553 while (true) { 1554 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1555 if (key.objectid >= search_start + search_len) 1556 break; 1557 if (key.type != BTRFS_METADATA_ITEM_KEY && 1558 key.type != BTRFS_EXTENT_ITEM_KEY) 1559 goto next; 1560 1561 ret = compare_extent_item_range(path, search_start, search_len); 1562 if (ret == 0) 1563 return ret; 1564 if (ret > 0) 1565 break; 1566 next: 1567 ret = btrfs_next_item(extent_root, path); 1568 if (ret) { 1569 /* Either no more items or a fatal error. */ 1570 btrfs_release_path(path); 1571 return ret; 1572 } 1573 } 1574 btrfs_release_path(path); 1575 return 1; 1576 } 1577 1578 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret, 1579 u64 *size_ret, u64 *flags_ret, u64 *generation_ret) 1580 { 1581 struct btrfs_key key; 1582 struct btrfs_extent_item *ei; 1583 1584 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1585 ASSERT(key.type == BTRFS_METADATA_ITEM_KEY || 1586 key.type == BTRFS_EXTENT_ITEM_KEY); 1587 *extent_start_ret = key.objectid; 1588 if (key.type == BTRFS_METADATA_ITEM_KEY) 1589 *size_ret = path->nodes[0]->fs_info->nodesize; 1590 else 1591 *size_ret = key.offset; 1592 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item); 1593 *flags_ret = btrfs_extent_flags(path->nodes[0], ei); 1594 *generation_ret = btrfs_extent_generation(path->nodes[0], ei); 1595 } 1596 1597 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical, 1598 u64 physical, u64 physical_end) 1599 { 1600 struct btrfs_fs_info *fs_info = sctx->fs_info; 1601 int ret = 0; 1602 1603 if (!btrfs_is_zoned(fs_info)) 1604 return 0; 1605 1606 mutex_lock(&sctx->wr_lock); 1607 if (sctx->write_pointer < physical_end) { 1608 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical, 1609 physical, 1610 sctx->write_pointer); 1611 if (ret) 1612 btrfs_err(fs_info, "scrub: zoned: failed to recover write pointer"); 1613 } 1614 mutex_unlock(&sctx->wr_lock); 1615 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical); 1616 1617 return ret; 1618 } 1619 1620 static void fill_one_extent_info(struct btrfs_fs_info *fs_info, 1621 struct scrub_stripe *stripe, 1622 u64 extent_start, u64 extent_len, 1623 u64 extent_flags, u64 extent_gen) 1624 { 1625 for (u64 cur_logical = max(stripe->logical, extent_start); 1626 cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN, 1627 extent_start + extent_len); 1628 cur_logical += fs_info->sectorsize) { 1629 const int nr_sector = (cur_logical - stripe->logical) >> 1630 fs_info->sectorsize_bits; 1631 struct scrub_sector_verification *sector = 1632 &stripe->sectors[nr_sector]; 1633 1634 scrub_bitmap_set_bit_has_extent(stripe, nr_sector); 1635 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1636 scrub_bitmap_set_bit_is_metadata(stripe, nr_sector); 1637 sector->generation = extent_gen; 1638 } 1639 } 1640 } 1641 1642 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe) 1643 { 1644 ASSERT(stripe->nr_sectors); 1645 bitmap_zero(stripe->bitmaps, scrub_bitmap_nr_last * stripe->nr_sectors); 1646 } 1647 1648 /* 1649 * Locate one stripe which has at least one extent in its range. 1650 * 1651 * Return 0 if found such stripe, and store its info into @stripe. 1652 * Return >0 if there is no such stripe in the specified range. 1653 * Return <0 for error. 1654 */ 1655 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg, 1656 struct btrfs_path *extent_path, 1657 struct btrfs_path *csum_path, 1658 struct btrfs_device *dev, u64 physical, 1659 int mirror_num, u64 logical_start, 1660 u32 logical_len, 1661 struct scrub_stripe *stripe) 1662 { 1663 struct btrfs_fs_info *fs_info = bg->fs_info; 1664 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start); 1665 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start); 1666 const u64 logical_end = logical_start + logical_len; 1667 u64 cur_logical = logical_start; 1668 u64 stripe_end; 1669 u64 extent_start; 1670 u64 extent_len; 1671 u64 extent_flags; 1672 u64 extent_gen; 1673 int ret; 1674 1675 if (unlikely(!extent_root || !csum_root)) { 1676 btrfs_err(fs_info, "scrub: no valid extent or csum root found"); 1677 return -EUCLEAN; 1678 } 1679 memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) * 1680 stripe->nr_sectors); 1681 scrub_stripe_reset_bitmaps(stripe); 1682 1683 /* The range must be inside the bg. */ 1684 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); 1685 1686 ret = find_first_extent_item(extent_root, extent_path, logical_start, 1687 logical_len); 1688 /* Either error or not found. */ 1689 if (ret) 1690 goto out; 1691 get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags, 1692 &extent_gen); 1693 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1694 stripe->nr_meta_extents++; 1695 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) 1696 stripe->nr_data_extents++; 1697 cur_logical = max(extent_start, cur_logical); 1698 1699 /* 1700 * Round down to stripe boundary. 1701 * 1702 * The extra calculation against bg->start is to handle block groups 1703 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned. 1704 */ 1705 stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) + 1706 bg->start; 1707 stripe->physical = physical + stripe->logical - logical_start; 1708 stripe->dev = dev; 1709 stripe->bg = bg; 1710 stripe->mirror_num = mirror_num; 1711 stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1; 1712 1713 /* Fill the first extent info into stripe->sectors[] array. */ 1714 fill_one_extent_info(fs_info, stripe, extent_start, extent_len, 1715 extent_flags, extent_gen); 1716 cur_logical = extent_start + extent_len; 1717 1718 /* Fill the extent info for the remaining sectors. */ 1719 while (cur_logical <= stripe_end) { 1720 ret = find_first_extent_item(extent_root, extent_path, cur_logical, 1721 stripe_end - cur_logical + 1); 1722 if (ret < 0) 1723 goto out; 1724 if (ret > 0) { 1725 ret = 0; 1726 break; 1727 } 1728 get_extent_info(extent_path, &extent_start, &extent_len, 1729 &extent_flags, &extent_gen); 1730 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1731 stripe->nr_meta_extents++; 1732 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) 1733 stripe->nr_data_extents++; 1734 fill_one_extent_info(fs_info, stripe, extent_start, extent_len, 1735 extent_flags, extent_gen); 1736 cur_logical = extent_start + extent_len; 1737 } 1738 1739 /* Now fill the data csum. */ 1740 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) { 1741 int sector_nr; 1742 unsigned long csum_bitmap = 0; 1743 1744 /* Csum space should have already been allocated. */ 1745 ASSERT(stripe->csums); 1746 1747 /* 1748 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN 1749 * should contain at most 16 sectors. 1750 */ 1751 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); 1752 1753 ret = btrfs_lookup_csums_bitmap(csum_root, csum_path, 1754 stripe->logical, stripe_end, 1755 stripe->csums, &csum_bitmap); 1756 if (ret < 0) 1757 goto out; 1758 if (ret > 0) 1759 ret = 0; 1760 1761 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) { 1762 stripe->sectors[sector_nr].csum = stripe->csums + 1763 sector_nr * fs_info->csum_size; 1764 } 1765 } 1766 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); 1767 out: 1768 return ret; 1769 } 1770 1771 static void scrub_reset_stripe(struct scrub_stripe *stripe) 1772 { 1773 scrub_stripe_reset_bitmaps(stripe); 1774 1775 stripe->nr_meta_extents = 0; 1776 stripe->nr_data_extents = 0; 1777 stripe->state = 0; 1778 1779 for (int i = 0; i < stripe->nr_sectors; i++) { 1780 stripe->sectors[i].csum = NULL; 1781 stripe->sectors[i].generation = 0; 1782 } 1783 } 1784 1785 static u32 stripe_length(const struct scrub_stripe *stripe) 1786 { 1787 ASSERT(stripe->bg); 1788 1789 return min(BTRFS_STRIPE_LEN, 1790 stripe->bg->start + stripe->bg->length - stripe->logical); 1791 } 1792 1793 static void scrub_submit_extent_sector_read(struct scrub_stripe *stripe) 1794 { 1795 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1796 struct btrfs_bio *bbio = NULL; 1797 unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits; 1798 const unsigned long has_extent = scrub_bitmap_read_has_extent(stripe); 1799 u64 stripe_len = BTRFS_STRIPE_LEN; 1800 int mirror = stripe->mirror_num; 1801 int i; 1802 1803 atomic_inc(&stripe->pending_io); 1804 1805 for_each_set_bit(i, &has_extent, stripe->nr_sectors) { 1806 /* We're beyond the chunk boundary, no need to read anymore. */ 1807 if (i >= nr_sectors) 1808 break; 1809 1810 /* The current sector cannot be merged, submit the bio. */ 1811 if (bbio && 1812 ((i > 0 && !test_bit(i - 1, &has_extent)) || 1813 bbio->bio.bi_iter.bi_size >= stripe_len)) { 1814 ASSERT(bbio->bio.bi_iter.bi_size); 1815 atomic_inc(&stripe->pending_io); 1816 btrfs_submit_bbio(bbio, mirror); 1817 bbio = NULL; 1818 } 1819 1820 if (!bbio) { 1821 struct btrfs_io_stripe io_stripe = {}; 1822 struct btrfs_io_context *bioc = NULL; 1823 const u64 logical = stripe->logical + 1824 (i << fs_info->sectorsize_bits); 1825 int ret; 1826 1827 io_stripe.rst_search_commit_root = true; 1828 stripe_len = (nr_sectors - i) << fs_info->sectorsize_bits; 1829 /* 1830 * For RST cases, we need to manually split the bbio to 1831 * follow the RST boundary. 1832 */ 1833 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 1834 &stripe_len, &bioc, &io_stripe, &mirror); 1835 btrfs_put_bioc(bioc); 1836 if (ret < 0) { 1837 if (ret != -ENODATA) { 1838 /* 1839 * Earlier btrfs_get_raid_extent_offset() 1840 * returned -ENODATA, which means there's 1841 * no entry for the corresponding range 1842 * in the stripe tree. But if it's in 1843 * the extent tree, then it's a preallocated 1844 * extent and not an error. 1845 */ 1846 scrub_bitmap_set_bit_io_error(stripe, i); 1847 scrub_bitmap_set_bit_error(stripe, i); 1848 } 1849 continue; 1850 } 1851 1852 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ, 1853 fs_info, scrub_read_endio, stripe); 1854 bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT; 1855 } 1856 1857 scrub_bio_add_sector(bbio, stripe, i); 1858 } 1859 1860 if (bbio) { 1861 ASSERT(bbio->bio.bi_iter.bi_size); 1862 atomic_inc(&stripe->pending_io); 1863 btrfs_submit_bbio(bbio, mirror); 1864 } 1865 1866 if (atomic_dec_and_test(&stripe->pending_io)) { 1867 wake_up(&stripe->io_wait); 1868 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker); 1869 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work); 1870 } 1871 } 1872 1873 static void scrub_submit_initial_read(struct scrub_ctx *sctx, 1874 struct scrub_stripe *stripe) 1875 { 1876 struct btrfs_fs_info *fs_info = sctx->fs_info; 1877 struct btrfs_bio *bbio; 1878 const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order; 1879 unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits; 1880 int mirror = stripe->mirror_num; 1881 1882 ASSERT(stripe->bg); 1883 ASSERT(stripe->mirror_num > 0); 1884 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state)); 1885 1886 if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) { 1887 scrub_submit_extent_sector_read(stripe); 1888 return; 1889 } 1890 1891 bbio = btrfs_bio_alloc(BTRFS_STRIPE_LEN >> min_folio_shift, REQ_OP_READ, fs_info, 1892 scrub_read_endio, stripe); 1893 1894 bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT; 1895 /* Read the whole range inside the chunk boundary. */ 1896 for (unsigned int cur = 0; cur < nr_sectors; cur++) 1897 scrub_bio_add_sector(bbio, stripe, cur); 1898 atomic_inc(&stripe->pending_io); 1899 1900 /* 1901 * For dev-replace, either user asks to avoid the source dev, or 1902 * the device is missing, we try the next mirror instead. 1903 */ 1904 if (sctx->is_dev_replace && 1905 (fs_info->dev_replace.cont_reading_from_srcdev_mode == 1906 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID || 1907 !stripe->dev->bdev)) { 1908 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, 1909 stripe->bg->length); 1910 1911 mirror = calc_next_mirror(mirror, num_copies); 1912 } 1913 btrfs_submit_bbio(bbio, mirror); 1914 } 1915 1916 static bool stripe_has_metadata_error(struct scrub_stripe *stripe) 1917 { 1918 const unsigned long error = scrub_bitmap_read_error(stripe); 1919 int i; 1920 1921 for_each_set_bit(i, &error, stripe->nr_sectors) { 1922 if (scrub_bitmap_test_bit_is_metadata(stripe, i)) { 1923 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1924 1925 btrfs_err(fs_info, 1926 "scrub: stripe %llu has unrepaired metadata sector at logical %llu", 1927 stripe->logical, 1928 stripe->logical + (i << fs_info->sectorsize_bits)); 1929 return true; 1930 } 1931 } 1932 return false; 1933 } 1934 1935 static void submit_initial_group_read(struct scrub_ctx *sctx, 1936 unsigned int first_slot, 1937 unsigned int nr_stripes) 1938 { 1939 struct blk_plug plug; 1940 1941 ASSERT(first_slot < SCRUB_TOTAL_STRIPES); 1942 ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES); 1943 1944 scrub_throttle_dev_io(sctx, sctx->stripes[0].dev, 1945 btrfs_stripe_nr_to_offset(nr_stripes)); 1946 blk_start_plug(&plug); 1947 for (int i = 0; i < nr_stripes; i++) { 1948 struct scrub_stripe *stripe = &sctx->stripes[first_slot + i]; 1949 1950 /* Those stripes should be initialized. */ 1951 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state)); 1952 scrub_submit_initial_read(sctx, stripe); 1953 } 1954 blk_finish_plug(&plug); 1955 } 1956 1957 static int flush_scrub_stripes(struct scrub_ctx *sctx) 1958 { 1959 struct btrfs_fs_info *fs_info = sctx->fs_info; 1960 struct scrub_stripe *stripe; 1961 const int nr_stripes = sctx->cur_stripe; 1962 int ret = 0; 1963 1964 if (!nr_stripes) 1965 return 0; 1966 1967 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state)); 1968 1969 /* Submit the stripes which are populated but not submitted. */ 1970 if (nr_stripes % SCRUB_STRIPES_PER_GROUP) { 1971 const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP); 1972 1973 submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot); 1974 } 1975 1976 for (int i = 0; i < nr_stripes; i++) { 1977 stripe = &sctx->stripes[i]; 1978 1979 wait_event(stripe->repair_wait, 1980 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); 1981 } 1982 1983 /* Submit for dev-replace. */ 1984 if (sctx->is_dev_replace) { 1985 /* 1986 * For dev-replace, if we know there is something wrong with 1987 * metadata, we should immediately abort. 1988 */ 1989 for (int i = 0; i < nr_stripes; i++) { 1990 if (unlikely(stripe_has_metadata_error(&sctx->stripes[i]))) { 1991 ret = -EIO; 1992 goto out; 1993 } 1994 } 1995 for (int i = 0; i < nr_stripes; i++) { 1996 unsigned long good; 1997 unsigned long has_extent; 1998 unsigned long error; 1999 2000 stripe = &sctx->stripes[i]; 2001 2002 ASSERT(stripe->dev == fs_info->dev_replace.srcdev); 2003 2004 has_extent = scrub_bitmap_read_has_extent(stripe); 2005 error = scrub_bitmap_read_error(stripe); 2006 bitmap_andnot(&good, &has_extent, &error, stripe->nr_sectors); 2007 scrub_write_sectors(sctx, stripe, good, true); 2008 } 2009 } 2010 2011 /* Wait for the above writebacks to finish. */ 2012 for (int i = 0; i < nr_stripes; i++) { 2013 stripe = &sctx->stripes[i]; 2014 2015 wait_scrub_stripe_io(stripe); 2016 spin_lock(&sctx->stat_lock); 2017 sctx->stat.last_physical = stripe->physical + stripe_length(stripe); 2018 spin_unlock(&sctx->stat_lock); 2019 scrub_reset_stripe(stripe); 2020 } 2021 out: 2022 sctx->cur_stripe = 0; 2023 return ret; 2024 } 2025 2026 static void raid56_scrub_wait_endio(struct bio *bio) 2027 { 2028 complete(bio->bi_private); 2029 } 2030 2031 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg, 2032 struct btrfs_device *dev, int mirror_num, 2033 u64 logical, u32 length, u64 physical, 2034 u64 *found_logical_ret) 2035 { 2036 struct scrub_stripe *stripe; 2037 int ret; 2038 2039 /* 2040 * There should always be one slot left, as caller filling the last 2041 * slot should flush them all. 2042 */ 2043 ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES); 2044 2045 /* @found_logical_ret must be specified. */ 2046 ASSERT(found_logical_ret); 2047 2048 stripe = &sctx->stripes[sctx->cur_stripe]; 2049 scrub_reset_stripe(stripe); 2050 ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path, 2051 &sctx->csum_path, dev, physical, 2052 mirror_num, logical, length, stripe); 2053 /* Either >0 as no more extents or <0 for error. */ 2054 if (ret) 2055 return ret; 2056 *found_logical_ret = stripe->logical; 2057 sctx->cur_stripe++; 2058 2059 /* We filled one group, submit it. */ 2060 if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) { 2061 const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP; 2062 2063 submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP); 2064 } 2065 2066 /* Last slot used, flush them all. */ 2067 if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES) 2068 return flush_scrub_stripes(sctx); 2069 return 0; 2070 } 2071 2072 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx, 2073 struct btrfs_device *scrub_dev, 2074 struct btrfs_block_group *bg, 2075 struct btrfs_chunk_map *map, 2076 u64 full_stripe_start) 2077 { 2078 DECLARE_COMPLETION_ONSTACK(io_done); 2079 struct btrfs_fs_info *fs_info = sctx->fs_info; 2080 struct btrfs_raid_bio *rbio; 2081 struct btrfs_io_context *bioc = NULL; 2082 struct btrfs_path extent_path = { 0 }; 2083 struct btrfs_path csum_path = { 0 }; 2084 struct bio *bio; 2085 struct scrub_stripe *stripe; 2086 bool all_empty = true; 2087 const int data_stripes = nr_data_stripes(map); 2088 unsigned long extent_bitmap = 0; 2089 u64 length = btrfs_stripe_nr_to_offset(data_stripes); 2090 int ret; 2091 2092 ASSERT(sctx->raid56_data_stripes); 2093 2094 /* 2095 * For data stripe search, we cannot reuse the same extent/csum paths, 2096 * as the data stripe bytenr may be smaller than previous extent. Thus 2097 * we have to use our own extent/csum paths. 2098 */ 2099 extent_path.search_commit_root = 1; 2100 extent_path.skip_locking = 1; 2101 csum_path.search_commit_root = 1; 2102 csum_path.skip_locking = 1; 2103 2104 for (int i = 0; i < data_stripes; i++) { 2105 int stripe_index; 2106 int rot; 2107 u64 physical; 2108 2109 stripe = &sctx->raid56_data_stripes[i]; 2110 rot = div_u64(full_stripe_start - bg->start, 2111 data_stripes) >> BTRFS_STRIPE_LEN_SHIFT; 2112 stripe_index = (i + rot) % map->num_stripes; 2113 physical = map->stripes[stripe_index].physical + 2114 btrfs_stripe_nr_to_offset(rot); 2115 2116 scrub_reset_stripe(stripe); 2117 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state); 2118 ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path, 2119 map->stripes[stripe_index].dev, physical, 1, 2120 full_stripe_start + btrfs_stripe_nr_to_offset(i), 2121 BTRFS_STRIPE_LEN, stripe); 2122 if (ret < 0) 2123 goto out; 2124 /* 2125 * No extent in this data stripe, need to manually mark them 2126 * initialized to make later read submission happy. 2127 */ 2128 if (ret > 0) { 2129 stripe->logical = full_stripe_start + 2130 btrfs_stripe_nr_to_offset(i); 2131 stripe->dev = map->stripes[stripe_index].dev; 2132 stripe->mirror_num = 1; 2133 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); 2134 } 2135 } 2136 2137 /* Check if all data stripes are empty. */ 2138 for (int i = 0; i < data_stripes; i++) { 2139 stripe = &sctx->raid56_data_stripes[i]; 2140 if (!scrub_bitmap_empty_has_extent(stripe)) { 2141 all_empty = false; 2142 break; 2143 } 2144 } 2145 if (all_empty) { 2146 ret = 0; 2147 goto out; 2148 } 2149 2150 for (int i = 0; i < data_stripes; i++) { 2151 stripe = &sctx->raid56_data_stripes[i]; 2152 scrub_submit_initial_read(sctx, stripe); 2153 } 2154 for (int i = 0; i < data_stripes; i++) { 2155 stripe = &sctx->raid56_data_stripes[i]; 2156 2157 wait_event(stripe->repair_wait, 2158 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); 2159 } 2160 /* For now, no zoned support for RAID56. */ 2161 ASSERT(!btrfs_is_zoned(sctx->fs_info)); 2162 2163 /* 2164 * Now all data stripes are properly verified. Check if we have any 2165 * unrepaired, if so abort immediately or we could further corrupt the 2166 * P/Q stripes. 2167 * 2168 * During the loop, also populate extent_bitmap. 2169 */ 2170 for (int i = 0; i < data_stripes; i++) { 2171 unsigned long error; 2172 unsigned long has_extent; 2173 2174 stripe = &sctx->raid56_data_stripes[i]; 2175 2176 error = scrub_bitmap_read_error(stripe); 2177 has_extent = scrub_bitmap_read_has_extent(stripe); 2178 2179 /* 2180 * We should only check the errors where there is an extent. 2181 * As we may hit an empty data stripe while it's missing. 2182 */ 2183 bitmap_and(&error, &error, &has_extent, stripe->nr_sectors); 2184 if (unlikely(!bitmap_empty(&error, stripe->nr_sectors))) { 2185 btrfs_err(fs_info, 2186 "scrub: unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl", 2187 full_stripe_start, i, stripe->nr_sectors, 2188 &error); 2189 ret = -EIO; 2190 goto out; 2191 } 2192 bitmap_or(&extent_bitmap, &extent_bitmap, &has_extent, 2193 stripe->nr_sectors); 2194 } 2195 2196 /* Now we can check and regenerate the P/Q stripe. */ 2197 bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS); 2198 bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT; 2199 bio->bi_private = &io_done; 2200 bio->bi_end_io = raid56_scrub_wait_endio; 2201 2202 btrfs_bio_counter_inc_blocked(fs_info); 2203 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start, 2204 &length, &bioc, NULL, NULL); 2205 if (ret < 0) { 2206 btrfs_put_bioc(bioc); 2207 btrfs_bio_counter_dec(fs_info); 2208 goto out; 2209 } 2210 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap, 2211 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); 2212 btrfs_put_bioc(bioc); 2213 if (!rbio) { 2214 ret = -ENOMEM; 2215 btrfs_bio_counter_dec(fs_info); 2216 goto out; 2217 } 2218 /* Use the recovered stripes as cache to avoid read them from disk again. */ 2219 for (int i = 0; i < data_stripes; i++) { 2220 stripe = &sctx->raid56_data_stripes[i]; 2221 2222 raid56_parity_cache_data_folios(rbio, stripe->folios, 2223 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT)); 2224 } 2225 raid56_parity_submit_scrub_rbio(rbio); 2226 wait_for_completion_io(&io_done); 2227 ret = blk_status_to_errno(bio->bi_status); 2228 bio_put(bio); 2229 btrfs_bio_counter_dec(fs_info); 2230 2231 btrfs_release_path(&extent_path); 2232 btrfs_release_path(&csum_path); 2233 out: 2234 return ret; 2235 } 2236 2237 /* 2238 * Scrub one range which can only has simple mirror based profile. 2239 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in 2240 * RAID0/RAID10). 2241 * 2242 * Since we may need to handle a subset of block group, we need @logical_start 2243 * and @logical_length parameter. 2244 */ 2245 static int scrub_simple_mirror(struct scrub_ctx *sctx, 2246 struct btrfs_block_group *bg, 2247 u64 logical_start, u64 logical_length, 2248 struct btrfs_device *device, 2249 u64 physical, int mirror_num) 2250 { 2251 struct btrfs_fs_info *fs_info = sctx->fs_info; 2252 const u64 logical_end = logical_start + logical_length; 2253 u64 cur_logical = logical_start; 2254 int ret = 0; 2255 2256 /* The range must be inside the bg */ 2257 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); 2258 2259 /* Go through each extent items inside the logical range */ 2260 while (cur_logical < logical_end) { 2261 u64 found_logical = U64_MAX; 2262 u64 cur_physical = physical + cur_logical - logical_start; 2263 2264 /* Canceled? */ 2265 if (atomic_read(&fs_info->scrub_cancel_req) || 2266 atomic_read(&sctx->cancel_req)) { 2267 ret = -ECANCELED; 2268 break; 2269 } 2270 /* Paused? */ 2271 if (atomic_read(&fs_info->scrub_pause_req)) { 2272 /* Push queued extents */ 2273 scrub_blocked_if_needed(fs_info); 2274 } 2275 /* Block group removed? */ 2276 spin_lock(&bg->lock); 2277 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) { 2278 spin_unlock(&bg->lock); 2279 ret = 0; 2280 break; 2281 } 2282 spin_unlock(&bg->lock); 2283 2284 ret = queue_scrub_stripe(sctx, bg, device, mirror_num, 2285 cur_logical, logical_end - cur_logical, 2286 cur_physical, &found_logical); 2287 if (ret > 0) { 2288 /* No more extent, just update the accounting */ 2289 spin_lock(&sctx->stat_lock); 2290 sctx->stat.last_physical = physical + logical_length; 2291 spin_unlock(&sctx->stat_lock); 2292 ret = 0; 2293 break; 2294 } 2295 if (ret < 0) 2296 break; 2297 2298 /* queue_scrub_stripe() returned 0, @found_logical must be updated. */ 2299 ASSERT(found_logical != U64_MAX); 2300 cur_logical = found_logical + BTRFS_STRIPE_LEN; 2301 2302 /* Don't hold CPU for too long time */ 2303 cond_resched(); 2304 } 2305 return ret; 2306 } 2307 2308 /* Calculate the full stripe length for simple stripe based profiles */ 2309 static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map) 2310 { 2311 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2312 BTRFS_BLOCK_GROUP_RAID10)); 2313 2314 return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes); 2315 } 2316 2317 /* Get the logical bytenr for the stripe */ 2318 static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map, 2319 struct btrfs_block_group *bg, 2320 int stripe_index) 2321 { 2322 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2323 BTRFS_BLOCK_GROUP_RAID10)); 2324 ASSERT(stripe_index < map->num_stripes); 2325 2326 /* 2327 * (stripe_index / sub_stripes) gives how many data stripes we need to 2328 * skip. 2329 */ 2330 return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) + 2331 bg->start; 2332 } 2333 2334 /* Get the mirror number for the stripe */ 2335 static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index) 2336 { 2337 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2338 BTRFS_BLOCK_GROUP_RAID10)); 2339 ASSERT(stripe_index < map->num_stripes); 2340 2341 /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */ 2342 return stripe_index % map->sub_stripes + 1; 2343 } 2344 2345 static int scrub_simple_stripe(struct scrub_ctx *sctx, 2346 struct btrfs_block_group *bg, 2347 struct btrfs_chunk_map *map, 2348 struct btrfs_device *device, 2349 int stripe_index) 2350 { 2351 const u64 logical_increment = simple_stripe_full_stripe_len(map); 2352 const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index); 2353 const u64 orig_physical = map->stripes[stripe_index].physical; 2354 const int mirror_num = simple_stripe_mirror_num(map, stripe_index); 2355 u64 cur_logical = orig_logical; 2356 u64 cur_physical = orig_physical; 2357 int ret = 0; 2358 2359 while (cur_logical < bg->start + bg->length) { 2360 /* 2361 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is 2362 * just RAID1, so we can reuse scrub_simple_mirror() to scrub 2363 * this stripe. 2364 */ 2365 ret = scrub_simple_mirror(sctx, bg, cur_logical, 2366 BTRFS_STRIPE_LEN, device, cur_physical, 2367 mirror_num); 2368 if (ret) 2369 return ret; 2370 /* Skip to next stripe which belongs to the target device */ 2371 cur_logical += logical_increment; 2372 /* For physical offset, we just go to next stripe */ 2373 cur_physical += BTRFS_STRIPE_LEN; 2374 } 2375 return ret; 2376 } 2377 2378 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 2379 struct btrfs_block_group *bg, 2380 struct btrfs_chunk_map *map, 2381 struct btrfs_device *scrub_dev, 2382 int stripe_index) 2383 { 2384 struct btrfs_fs_info *fs_info = sctx->fs_info; 2385 const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; 2386 const u64 chunk_logical = bg->start; 2387 int ret; 2388 int ret2; 2389 u64 physical = map->stripes[stripe_index].physical; 2390 const u64 dev_stripe_len = btrfs_calc_stripe_length(map); 2391 const u64 physical_end = physical + dev_stripe_len; 2392 u64 logical; 2393 u64 logic_end; 2394 /* The logical increment after finishing one stripe */ 2395 u64 increment; 2396 /* Offset inside the chunk */ 2397 u64 offset; 2398 u64 stripe_logical; 2399 2400 /* Extent_path should be released by now. */ 2401 ASSERT(sctx->extent_path.nodes[0] == NULL); 2402 2403 scrub_blocked_if_needed(fs_info); 2404 2405 if (sctx->is_dev_replace && 2406 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) { 2407 mutex_lock(&sctx->wr_lock); 2408 sctx->write_pointer = physical; 2409 mutex_unlock(&sctx->wr_lock); 2410 } 2411 2412 /* Prepare the extra data stripes used by RAID56. */ 2413 if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) { 2414 ASSERT(sctx->raid56_data_stripes == NULL); 2415 2416 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map), 2417 sizeof(struct scrub_stripe), 2418 GFP_KERNEL); 2419 if (!sctx->raid56_data_stripes) { 2420 ret = -ENOMEM; 2421 goto out; 2422 } 2423 for (int i = 0; i < nr_data_stripes(map); i++) { 2424 ret = init_scrub_stripe(fs_info, 2425 &sctx->raid56_data_stripes[i]); 2426 if (ret < 0) 2427 goto out; 2428 sctx->raid56_data_stripes[i].bg = bg; 2429 sctx->raid56_data_stripes[i].sctx = sctx; 2430 } 2431 } 2432 /* 2433 * There used to be a big double loop to handle all profiles using the 2434 * same routine, which grows larger and more gross over time. 2435 * 2436 * So here we handle each profile differently, so simpler profiles 2437 * have simpler scrubbing function. 2438 */ 2439 if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 | 2440 BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2441 /* 2442 * Above check rules out all complex profile, the remaining 2443 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple 2444 * mirrored duplication without stripe. 2445 * 2446 * Only @physical and @mirror_num needs to calculated using 2447 * @stripe_index. 2448 */ 2449 ret = scrub_simple_mirror(sctx, bg, bg->start, bg->length, 2450 scrub_dev, map->stripes[stripe_index].physical, 2451 stripe_index + 1); 2452 offset = 0; 2453 goto out; 2454 } 2455 if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 2456 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index); 2457 offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes); 2458 goto out; 2459 } 2460 2461 /* Only RAID56 goes through the old code */ 2462 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK); 2463 ret = 0; 2464 2465 /* Calculate the logical end of the stripe */ 2466 get_raid56_logic_offset(physical_end, stripe_index, 2467 map, &logic_end, NULL); 2468 logic_end += chunk_logical; 2469 2470 /* Initialize @offset in case we need to go to out: label */ 2471 get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL); 2472 increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 2473 2474 /* 2475 * Due to the rotation, for RAID56 it's better to iterate each stripe 2476 * using their physical offset. 2477 */ 2478 while (physical < physical_end) { 2479 ret = get_raid56_logic_offset(physical, stripe_index, map, 2480 &logical, &stripe_logical); 2481 logical += chunk_logical; 2482 if (ret) { 2483 /* it is parity strip */ 2484 stripe_logical += chunk_logical; 2485 ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg, 2486 map, stripe_logical); 2487 spin_lock(&sctx->stat_lock); 2488 sctx->stat.last_physical = min(physical + BTRFS_STRIPE_LEN, 2489 physical_end); 2490 spin_unlock(&sctx->stat_lock); 2491 if (ret) 2492 goto out; 2493 goto next; 2494 } 2495 2496 /* 2497 * Now we're at a data stripe, scrub each extents in the range. 2498 * 2499 * At this stage, if we ignore the repair part, inside each data 2500 * stripe it is no different than SINGLE profile. 2501 * We can reuse scrub_simple_mirror() here, as the repair part 2502 * is still based on @mirror_num. 2503 */ 2504 ret = scrub_simple_mirror(sctx, bg, logical, BTRFS_STRIPE_LEN, 2505 scrub_dev, physical, 1); 2506 if (ret < 0) 2507 goto out; 2508 next: 2509 logical += increment; 2510 physical += BTRFS_STRIPE_LEN; 2511 spin_lock(&sctx->stat_lock); 2512 sctx->stat.last_physical = physical; 2513 spin_unlock(&sctx->stat_lock); 2514 } 2515 out: 2516 ret2 = flush_scrub_stripes(sctx); 2517 if (!ret) 2518 ret = ret2; 2519 btrfs_release_path(&sctx->extent_path); 2520 btrfs_release_path(&sctx->csum_path); 2521 2522 if (sctx->raid56_data_stripes) { 2523 for (int i = 0; i < nr_data_stripes(map); i++) 2524 release_scrub_stripe(&sctx->raid56_data_stripes[i]); 2525 kfree(sctx->raid56_data_stripes); 2526 sctx->raid56_data_stripes = NULL; 2527 } 2528 2529 if (sctx->is_dev_replace && ret >= 0) { 2530 int ret2; 2531 2532 ret2 = sync_write_pointer_for_zoned(sctx, 2533 chunk_logical + offset, 2534 map->stripes[stripe_index].physical, 2535 physical_end); 2536 if (ret2) 2537 ret = ret2; 2538 } 2539 2540 return ret < 0 ? ret : 0; 2541 } 2542 2543 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 2544 struct btrfs_block_group *bg, 2545 struct btrfs_device *scrub_dev, 2546 u64 dev_offset, 2547 u64 dev_extent_len) 2548 { 2549 struct btrfs_fs_info *fs_info = sctx->fs_info; 2550 struct btrfs_chunk_map *map; 2551 int i; 2552 int ret = 0; 2553 2554 map = btrfs_find_chunk_map(fs_info, bg->start, bg->length); 2555 if (!map) { 2556 /* 2557 * Might have been an unused block group deleted by the cleaner 2558 * kthread or relocation. 2559 */ 2560 spin_lock(&bg->lock); 2561 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) 2562 ret = -EINVAL; 2563 spin_unlock(&bg->lock); 2564 2565 return ret; 2566 } 2567 if (map->start != bg->start) 2568 goto out; 2569 if (map->chunk_len < dev_extent_len) 2570 goto out; 2571 2572 for (i = 0; i < map->num_stripes; ++i) { 2573 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 2574 map->stripes[i].physical == dev_offset) { 2575 ret = scrub_stripe(sctx, bg, map, scrub_dev, i); 2576 if (ret) 2577 goto out; 2578 } 2579 } 2580 out: 2581 btrfs_free_chunk_map(map); 2582 2583 return ret; 2584 } 2585 2586 static int finish_extent_writes_for_zoned(struct btrfs_root *root, 2587 struct btrfs_block_group *cache) 2588 { 2589 struct btrfs_fs_info *fs_info = cache->fs_info; 2590 2591 if (!btrfs_is_zoned(fs_info)) 2592 return 0; 2593 2594 btrfs_wait_block_group_reservations(cache); 2595 btrfs_wait_nocow_writers(cache); 2596 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache); 2597 2598 return btrfs_commit_current_transaction(root); 2599 } 2600 2601 static noinline_for_stack 2602 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 2603 struct btrfs_device *scrub_dev, u64 start, u64 end) 2604 { 2605 struct btrfs_dev_extent *dev_extent = NULL; 2606 BTRFS_PATH_AUTO_FREE(path); 2607 struct btrfs_fs_info *fs_info = sctx->fs_info; 2608 struct btrfs_root *root = fs_info->dev_root; 2609 u64 chunk_offset; 2610 int ret = 0; 2611 int ro_set; 2612 int slot; 2613 struct extent_buffer *l; 2614 struct btrfs_key key; 2615 struct btrfs_key found_key; 2616 struct btrfs_block_group *cache; 2617 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 2618 2619 path = btrfs_alloc_path(); 2620 if (!path) 2621 return -ENOMEM; 2622 2623 path->reada = READA_FORWARD; 2624 path->search_commit_root = 1; 2625 path->skip_locking = 1; 2626 2627 key.objectid = scrub_dev->devid; 2628 key.type = BTRFS_DEV_EXTENT_KEY; 2629 key.offset = 0ull; 2630 2631 while (1) { 2632 u64 dev_extent_len; 2633 2634 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2635 if (ret < 0) 2636 break; 2637 if (ret > 0) { 2638 if (path->slots[0] >= 2639 btrfs_header_nritems(path->nodes[0])) { 2640 ret = btrfs_next_leaf(root, path); 2641 if (ret < 0) 2642 break; 2643 if (ret > 0) { 2644 ret = 0; 2645 break; 2646 } 2647 } else { 2648 ret = 0; 2649 } 2650 } 2651 2652 l = path->nodes[0]; 2653 slot = path->slots[0]; 2654 2655 btrfs_item_key_to_cpu(l, &found_key, slot); 2656 2657 if (found_key.objectid != scrub_dev->devid) 2658 break; 2659 2660 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 2661 break; 2662 2663 if (found_key.offset >= end) 2664 break; 2665 2666 if (found_key.offset < key.offset) 2667 break; 2668 2669 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 2670 dev_extent_len = btrfs_dev_extent_length(l, dev_extent); 2671 2672 if (found_key.offset + dev_extent_len <= start) 2673 goto skip; 2674 2675 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 2676 2677 /* 2678 * get a reference on the corresponding block group to prevent 2679 * the chunk from going away while we scrub it 2680 */ 2681 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2682 2683 /* some chunks are removed but not committed to disk yet, 2684 * continue scrubbing */ 2685 if (!cache) 2686 goto skip; 2687 2688 ASSERT(cache->start <= chunk_offset); 2689 /* 2690 * We are using the commit root to search for device extents, so 2691 * that means we could have found a device extent item from a 2692 * block group that was deleted in the current transaction. The 2693 * logical start offset of the deleted block group, stored at 2694 * @chunk_offset, might be part of the logical address range of 2695 * a new block group (which uses different physical extents). 2696 * In this case btrfs_lookup_block_group() has returned the new 2697 * block group, and its start address is less than @chunk_offset. 2698 * 2699 * We skip such new block groups, because it's pointless to 2700 * process them, as we won't find their extents because we search 2701 * for them using the commit root of the extent tree. For a device 2702 * replace it's also fine to skip it, we won't miss copying them 2703 * to the target device because we have the write duplication 2704 * setup through the regular write path (by btrfs_map_block()), 2705 * and we have committed a transaction when we started the device 2706 * replace, right after setting up the device replace state. 2707 */ 2708 if (cache->start < chunk_offset) { 2709 btrfs_put_block_group(cache); 2710 goto skip; 2711 } 2712 2713 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) { 2714 if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) { 2715 btrfs_put_block_group(cache); 2716 goto skip; 2717 } 2718 } 2719 2720 /* 2721 * Make sure that while we are scrubbing the corresponding block 2722 * group doesn't get its logical address and its device extents 2723 * reused for another block group, which can possibly be of a 2724 * different type and different profile. We do this to prevent 2725 * false error detections and crashes due to bogus attempts to 2726 * repair extents. 2727 */ 2728 spin_lock(&cache->lock); 2729 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) { 2730 spin_unlock(&cache->lock); 2731 btrfs_put_block_group(cache); 2732 goto skip; 2733 } 2734 btrfs_freeze_block_group(cache); 2735 spin_unlock(&cache->lock); 2736 2737 /* 2738 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 2739 * to avoid deadlock caused by: 2740 * btrfs_inc_block_group_ro() 2741 * -> btrfs_wait_for_commit() 2742 * -> btrfs_commit_transaction() 2743 * -> btrfs_scrub_pause() 2744 */ 2745 scrub_pause_on(fs_info); 2746 2747 /* 2748 * Don't do chunk preallocation for scrub. 2749 * 2750 * This is especially important for SYSTEM bgs, or we can hit 2751 * -EFBIG from btrfs_finish_chunk_alloc() like: 2752 * 1. The only SYSTEM bg is marked RO. 2753 * Since SYSTEM bg is small, that's pretty common. 2754 * 2. New SYSTEM bg will be allocated 2755 * Due to regular version will allocate new chunk. 2756 * 3. New SYSTEM bg is empty and will get cleaned up 2757 * Before cleanup really happens, it's marked RO again. 2758 * 4. Empty SYSTEM bg get scrubbed 2759 * We go back to 2. 2760 * 2761 * This can easily boost the amount of SYSTEM chunks if cleaner 2762 * thread can't be triggered fast enough, and use up all space 2763 * of btrfs_super_block::sys_chunk_array 2764 * 2765 * While for dev replace, we need to try our best to mark block 2766 * group RO, to prevent race between: 2767 * - Write duplication 2768 * Contains latest data 2769 * - Scrub copy 2770 * Contains data from commit tree 2771 * 2772 * If target block group is not marked RO, nocow writes can 2773 * be overwritten by scrub copy, causing data corruption. 2774 * So for dev-replace, it's not allowed to continue if a block 2775 * group is not RO. 2776 */ 2777 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); 2778 if (!ret && sctx->is_dev_replace) { 2779 ret = finish_extent_writes_for_zoned(root, cache); 2780 if (ret) { 2781 btrfs_dec_block_group_ro(cache); 2782 scrub_pause_off(fs_info); 2783 btrfs_put_block_group(cache); 2784 break; 2785 } 2786 } 2787 2788 if (ret == 0) { 2789 ro_set = 1; 2790 } else if (ret == -ENOSPC && !sctx->is_dev_replace && 2791 !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) { 2792 /* 2793 * btrfs_inc_block_group_ro return -ENOSPC when it 2794 * failed in creating new chunk for metadata. 2795 * It is not a problem for scrub, because 2796 * metadata are always cowed, and our scrub paused 2797 * commit_transactions. 2798 * 2799 * For RAID56 chunks, we have to mark them read-only 2800 * for scrub, as later we would use our own cache 2801 * out of RAID56 realm. 2802 * Thus we want the RAID56 bg to be marked RO to 2803 * prevent RMW from screwing up out cache. 2804 */ 2805 ro_set = 0; 2806 } else if (ret == -ETXTBSY) { 2807 btrfs_warn(fs_info, 2808 "scrub: skipping scrub of block group %llu due to active swapfile", 2809 cache->start); 2810 scrub_pause_off(fs_info); 2811 ret = 0; 2812 goto skip_unfreeze; 2813 } else { 2814 btrfs_warn(fs_info, "scrub: failed setting block group ro: %d", 2815 ret); 2816 btrfs_unfreeze_block_group(cache); 2817 btrfs_put_block_group(cache); 2818 scrub_pause_off(fs_info); 2819 break; 2820 } 2821 2822 /* 2823 * Now the target block is marked RO, wait for nocow writes to 2824 * finish before dev-replace. 2825 * COW is fine, as COW never overwrites extents in commit tree. 2826 */ 2827 if (sctx->is_dev_replace) { 2828 btrfs_wait_nocow_writers(cache); 2829 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache); 2830 } 2831 2832 scrub_pause_off(fs_info); 2833 down_write(&dev_replace->rwsem); 2834 dev_replace->cursor_right = found_key.offset + dev_extent_len; 2835 dev_replace->cursor_left = found_key.offset; 2836 dev_replace->item_needs_writeback = 1; 2837 up_write(&dev_replace->rwsem); 2838 2839 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset, 2840 dev_extent_len); 2841 if (sctx->is_dev_replace && 2842 !btrfs_finish_block_group_to_copy(dev_replace->srcdev, 2843 cache, found_key.offset)) 2844 ro_set = 0; 2845 2846 down_write(&dev_replace->rwsem); 2847 dev_replace->cursor_left = dev_replace->cursor_right; 2848 dev_replace->item_needs_writeback = 1; 2849 up_write(&dev_replace->rwsem); 2850 2851 if (ro_set) 2852 btrfs_dec_block_group_ro(cache); 2853 2854 /* 2855 * We might have prevented the cleaner kthread from deleting 2856 * this block group if it was already unused because we raced 2857 * and set it to RO mode first. So add it back to the unused 2858 * list, otherwise it might not ever be deleted unless a manual 2859 * balance is triggered or it becomes used and unused again. 2860 */ 2861 spin_lock(&cache->lock); 2862 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) && 2863 !cache->ro && cache->reserved == 0 && cache->used == 0) { 2864 spin_unlock(&cache->lock); 2865 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) 2866 btrfs_discard_queue_work(&fs_info->discard_ctl, 2867 cache); 2868 else 2869 btrfs_mark_bg_unused(cache); 2870 } else { 2871 spin_unlock(&cache->lock); 2872 } 2873 skip_unfreeze: 2874 btrfs_unfreeze_block_group(cache); 2875 btrfs_put_block_group(cache); 2876 if (ret) 2877 break; 2878 if (unlikely(sctx->is_dev_replace && 2879 atomic64_read(&dev_replace->num_write_errors) > 0)) { 2880 ret = -EIO; 2881 break; 2882 } 2883 if (sctx->stat.malloc_errors > 0) { 2884 ret = -ENOMEM; 2885 break; 2886 } 2887 skip: 2888 key.offset = found_key.offset + dev_extent_len; 2889 btrfs_release_path(path); 2890 } 2891 2892 return ret; 2893 } 2894 2895 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev, 2896 struct page *page, u64 physical, u64 generation) 2897 { 2898 struct btrfs_fs_info *fs_info = sctx->fs_info; 2899 struct btrfs_super_block *sb = page_address(page); 2900 int ret; 2901 2902 ret = bdev_rw_virt(dev->bdev, physical >> SECTOR_SHIFT, sb, 2903 BTRFS_SUPER_INFO_SIZE, REQ_OP_READ); 2904 if (ret < 0) 2905 return ret; 2906 ret = btrfs_check_super_csum(fs_info, sb); 2907 if (unlikely(ret != 0)) { 2908 btrfs_err_rl(fs_info, 2909 "scrub: super block at physical %llu devid %llu has bad csum", 2910 physical, dev->devid); 2911 return -EIO; 2912 } 2913 if (unlikely(btrfs_super_generation(sb) != generation)) { 2914 btrfs_err_rl(fs_info, 2915 "scrub: super block at physical %llu devid %llu has bad generation %llu expect %llu", 2916 physical, dev->devid, 2917 btrfs_super_generation(sb), generation); 2918 return -EUCLEAN; 2919 } 2920 2921 return btrfs_validate_super(fs_info, sb, -1); 2922 } 2923 2924 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 2925 struct btrfs_device *scrub_dev) 2926 { 2927 int i; 2928 u64 bytenr; 2929 u64 gen; 2930 int ret = 0; 2931 struct page *page; 2932 struct btrfs_fs_info *fs_info = sctx->fs_info; 2933 2934 if (BTRFS_FS_ERROR(fs_info)) 2935 return -EROFS; 2936 2937 page = alloc_page(GFP_KERNEL); 2938 if (!page) { 2939 spin_lock(&sctx->stat_lock); 2940 sctx->stat.malloc_errors++; 2941 spin_unlock(&sctx->stat_lock); 2942 return -ENOMEM; 2943 } 2944 2945 /* Seed devices of a new filesystem has their own generation. */ 2946 if (scrub_dev->fs_devices != fs_info->fs_devices) 2947 gen = scrub_dev->generation; 2948 else 2949 gen = btrfs_get_last_trans_committed(fs_info); 2950 2951 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2952 ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr); 2953 if (ret == -ENOENT) 2954 break; 2955 2956 if (ret) { 2957 spin_lock(&sctx->stat_lock); 2958 sctx->stat.super_errors++; 2959 spin_unlock(&sctx->stat_lock); 2960 continue; 2961 } 2962 2963 if (bytenr + BTRFS_SUPER_INFO_SIZE > 2964 scrub_dev->commit_total_bytes) 2965 break; 2966 if (!btrfs_check_super_location(scrub_dev, bytenr)) 2967 continue; 2968 2969 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen); 2970 if (ret) { 2971 spin_lock(&sctx->stat_lock); 2972 sctx->stat.super_errors++; 2973 spin_unlock(&sctx->stat_lock); 2974 } 2975 } 2976 __free_page(page); 2977 return 0; 2978 } 2979 2980 static void scrub_workers_put(struct btrfs_fs_info *fs_info) 2981 { 2982 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, 2983 &fs_info->scrub_lock)) { 2984 struct workqueue_struct *scrub_workers = fs_info->scrub_workers; 2985 2986 fs_info->scrub_workers = NULL; 2987 mutex_unlock(&fs_info->scrub_lock); 2988 2989 if (scrub_workers) 2990 destroy_workqueue(scrub_workers); 2991 } 2992 } 2993 2994 /* 2995 * get a reference count on fs_info->scrub_workers. start worker if necessary 2996 */ 2997 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info) 2998 { 2999 struct workqueue_struct *scrub_workers = NULL; 3000 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 3001 int max_active = fs_info->thread_pool_size; 3002 int ret = -ENOMEM; 3003 3004 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) 3005 return 0; 3006 3007 scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active); 3008 if (!scrub_workers) 3009 return -ENOMEM; 3010 3011 mutex_lock(&fs_info->scrub_lock); 3012 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { 3013 ASSERT(fs_info->scrub_workers == NULL); 3014 fs_info->scrub_workers = scrub_workers; 3015 refcount_set(&fs_info->scrub_workers_refcnt, 1); 3016 mutex_unlock(&fs_info->scrub_lock); 3017 return 0; 3018 } 3019 /* Other thread raced in and created the workers for us */ 3020 refcount_inc(&fs_info->scrub_workers_refcnt); 3021 mutex_unlock(&fs_info->scrub_lock); 3022 3023 ret = 0; 3024 3025 destroy_workqueue(scrub_workers); 3026 return ret; 3027 } 3028 3029 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3030 u64 end, struct btrfs_scrub_progress *progress, 3031 bool readonly, bool is_dev_replace) 3032 { 3033 struct btrfs_dev_lookup_args args = { .devid = devid }; 3034 struct scrub_ctx *sctx; 3035 int ret; 3036 struct btrfs_device *dev; 3037 unsigned int nofs_flag; 3038 bool need_commit = false; 3039 3040 if (btrfs_fs_closing(fs_info)) 3041 return -EAGAIN; 3042 3043 /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */ 3044 ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN); 3045 3046 /* 3047 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible 3048 * value (max nodesize / min sectorsize), thus nodesize should always 3049 * be fine. 3050 */ 3051 ASSERT(fs_info->nodesize <= 3052 SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits); 3053 3054 /* Allocate outside of device_list_mutex */ 3055 sctx = scrub_setup_ctx(fs_info, is_dev_replace); 3056 if (IS_ERR(sctx)) 3057 return PTR_ERR(sctx); 3058 3059 ret = scrub_workers_get(fs_info); 3060 if (ret) 3061 goto out_free_ctx; 3062 3063 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3064 dev = btrfs_find_device(fs_info->fs_devices, &args); 3065 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 3066 !is_dev_replace)) { 3067 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3068 ret = -ENODEV; 3069 goto out; 3070 } 3071 3072 if (!is_dev_replace && !readonly && 3073 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 3074 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3075 btrfs_err(fs_info, 3076 "scrub: devid %llu: filesystem on %s is not writable", 3077 devid, btrfs_dev_name(dev)); 3078 ret = -EROFS; 3079 goto out; 3080 } 3081 3082 mutex_lock(&fs_info->scrub_lock); 3083 if (unlikely(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3084 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state))) { 3085 mutex_unlock(&fs_info->scrub_lock); 3086 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3087 ret = -EIO; 3088 goto out; 3089 } 3090 3091 down_read(&fs_info->dev_replace.rwsem); 3092 if (dev->scrub_ctx || 3093 (!is_dev_replace && 3094 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 3095 up_read(&fs_info->dev_replace.rwsem); 3096 mutex_unlock(&fs_info->scrub_lock); 3097 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3098 ret = -EINPROGRESS; 3099 goto out; 3100 } 3101 up_read(&fs_info->dev_replace.rwsem); 3102 3103 sctx->readonly = readonly; 3104 dev->scrub_ctx = sctx; 3105 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3106 3107 /* 3108 * checking @scrub_pause_req here, we can avoid 3109 * race between committing transaction and scrubbing. 3110 */ 3111 __scrub_blocked_if_needed(fs_info); 3112 atomic_inc(&fs_info->scrubs_running); 3113 mutex_unlock(&fs_info->scrub_lock); 3114 3115 /* 3116 * In order to avoid deadlock with reclaim when there is a transaction 3117 * trying to pause scrub, make sure we use GFP_NOFS for all the 3118 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity() 3119 * invoked by our callees. The pausing request is done when the 3120 * transaction commit starts, and it blocks the transaction until scrub 3121 * is paused (done at specific points at scrub_stripe() or right above 3122 * before incrementing fs_info->scrubs_running). 3123 */ 3124 nofs_flag = memalloc_nofs_save(); 3125 if (!is_dev_replace) { 3126 u64 old_super_errors; 3127 3128 spin_lock(&sctx->stat_lock); 3129 old_super_errors = sctx->stat.super_errors; 3130 spin_unlock(&sctx->stat_lock); 3131 3132 btrfs_info(fs_info, "scrub: started on devid %llu", devid); 3133 /* 3134 * by holding device list mutex, we can 3135 * kick off writing super in log tree sync. 3136 */ 3137 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3138 ret = scrub_supers(sctx, dev); 3139 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3140 3141 spin_lock(&sctx->stat_lock); 3142 /* 3143 * Super block errors found, but we can not commit transaction 3144 * at current context, since btrfs_commit_transaction() needs 3145 * to pause the current running scrub (hold by ourselves). 3146 */ 3147 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly) 3148 need_commit = true; 3149 spin_unlock(&sctx->stat_lock); 3150 } 3151 3152 if (!ret) 3153 ret = scrub_enumerate_chunks(sctx, dev, start, end); 3154 memalloc_nofs_restore(nofs_flag); 3155 3156 atomic_dec(&fs_info->scrubs_running); 3157 wake_up(&fs_info->scrub_pause_wait); 3158 3159 if (progress) 3160 memcpy(progress, &sctx->stat, sizeof(*progress)); 3161 3162 if (!is_dev_replace) 3163 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", 3164 ret ? "not finished" : "finished", devid, ret); 3165 3166 mutex_lock(&fs_info->scrub_lock); 3167 dev->scrub_ctx = NULL; 3168 mutex_unlock(&fs_info->scrub_lock); 3169 3170 scrub_workers_put(fs_info); 3171 scrub_put_ctx(sctx); 3172 3173 /* 3174 * We found some super block errors before, now try to force a 3175 * transaction commit, as scrub has finished. 3176 */ 3177 if (need_commit) { 3178 struct btrfs_trans_handle *trans; 3179 3180 trans = btrfs_start_transaction(fs_info->tree_root, 0); 3181 if (IS_ERR(trans)) { 3182 ret = PTR_ERR(trans); 3183 btrfs_err(fs_info, 3184 "scrub: failed to start transaction to fix super block errors: %d", ret); 3185 return ret; 3186 } 3187 ret = btrfs_commit_transaction(trans); 3188 if (ret < 0) 3189 btrfs_err(fs_info, 3190 "scrub: failed to commit transaction to fix super block errors: %d", ret); 3191 } 3192 return ret; 3193 out: 3194 scrub_workers_put(fs_info); 3195 out_free_ctx: 3196 scrub_free_ctx(sctx); 3197 3198 return ret; 3199 } 3200 3201 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 3202 { 3203 mutex_lock(&fs_info->scrub_lock); 3204 atomic_inc(&fs_info->scrub_pause_req); 3205 while (atomic_read(&fs_info->scrubs_paused) != 3206 atomic_read(&fs_info->scrubs_running)) { 3207 mutex_unlock(&fs_info->scrub_lock); 3208 wait_event(fs_info->scrub_pause_wait, 3209 atomic_read(&fs_info->scrubs_paused) == 3210 atomic_read(&fs_info->scrubs_running)); 3211 mutex_lock(&fs_info->scrub_lock); 3212 } 3213 mutex_unlock(&fs_info->scrub_lock); 3214 } 3215 3216 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 3217 { 3218 atomic_dec(&fs_info->scrub_pause_req); 3219 wake_up(&fs_info->scrub_pause_wait); 3220 } 3221 3222 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 3223 { 3224 mutex_lock(&fs_info->scrub_lock); 3225 if (!atomic_read(&fs_info->scrubs_running)) { 3226 mutex_unlock(&fs_info->scrub_lock); 3227 return -ENOTCONN; 3228 } 3229 3230 atomic_inc(&fs_info->scrub_cancel_req); 3231 while (atomic_read(&fs_info->scrubs_running)) { 3232 mutex_unlock(&fs_info->scrub_lock); 3233 wait_event(fs_info->scrub_pause_wait, 3234 atomic_read(&fs_info->scrubs_running) == 0); 3235 mutex_lock(&fs_info->scrub_lock); 3236 } 3237 atomic_dec(&fs_info->scrub_cancel_req); 3238 mutex_unlock(&fs_info->scrub_lock); 3239 3240 return 0; 3241 } 3242 3243 int btrfs_scrub_cancel_dev(struct btrfs_device *dev) 3244 { 3245 struct btrfs_fs_info *fs_info = dev->fs_info; 3246 struct scrub_ctx *sctx; 3247 3248 mutex_lock(&fs_info->scrub_lock); 3249 sctx = dev->scrub_ctx; 3250 if (!sctx) { 3251 mutex_unlock(&fs_info->scrub_lock); 3252 return -ENOTCONN; 3253 } 3254 atomic_inc(&sctx->cancel_req); 3255 while (dev->scrub_ctx) { 3256 mutex_unlock(&fs_info->scrub_lock); 3257 wait_event(fs_info->scrub_pause_wait, 3258 dev->scrub_ctx == NULL); 3259 mutex_lock(&fs_info->scrub_lock); 3260 } 3261 mutex_unlock(&fs_info->scrub_lock); 3262 3263 return 0; 3264 } 3265 3266 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3267 struct btrfs_scrub_progress *progress) 3268 { 3269 struct btrfs_dev_lookup_args args = { .devid = devid }; 3270 struct btrfs_device *dev; 3271 struct scrub_ctx *sctx = NULL; 3272 3273 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3274 dev = btrfs_find_device(fs_info->fs_devices, &args); 3275 if (dev) 3276 sctx = dev->scrub_ctx; 3277 if (sctx) 3278 memcpy(progress, &sctx->stat, sizeof(*progress)); 3279 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3280 3281 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 3282 } 3283