xref: /linux/fs/btrfs/scrub.c (revision 03f7c1d2a49acd30e38789cd809d3300721e9b0e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "rcu-string.h"
21 #include "raid56.h"
22 #include "block-group.h"
23 #include "zoned.h"
24 
25 /*
26  * This is only the first step towards a full-features scrub. It reads all
27  * extent and super block and verifies the checksums. In case a bad checksum
28  * is found or the extent cannot be read, good data will be written back if
29  * any can be found.
30  *
31  * Future enhancements:
32  *  - In case an unrepairable extent is encountered, track which files are
33  *    affected and report them
34  *  - track and record media errors, throw out bad devices
35  *  - add a mode to also read unallocated space
36  */
37 
38 struct scrub_block;
39 struct scrub_ctx;
40 
41 /*
42  * The following three values only influence the performance.
43  *
44  * The last one configures the number of parallel and outstanding I/O
45  * operations. The first one configures an upper limit for the number
46  * of (dynamically allocated) pages that are added to a bio.
47  */
48 #define SCRUB_SECTORS_PER_BIO	32	/* 128KiB per bio for 4KiB pages */
49 #define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for 4KiB pages */
50 
51 /*
52  * The following value times PAGE_SIZE needs to be large enough to match the
53  * largest node/leaf/sector size that shall be supported.
54  */
55 #define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
56 
57 #define SCRUB_MAX_PAGES			(DIV_ROUND_UP(BTRFS_MAX_METADATA_BLOCKSIZE, PAGE_SIZE))
58 
59 struct scrub_recover {
60 	refcount_t		refs;
61 	struct btrfs_io_context	*bioc;
62 	u64			map_length;
63 };
64 
65 struct scrub_sector {
66 	struct scrub_block	*sblock;
67 	struct list_head	list;
68 	u64			flags;  /* extent flags */
69 	u64			generation;
70 	/* Offset in bytes to @sblock. */
71 	u32			offset;
72 	atomic_t		refs;
73 	unsigned int		have_csum:1;
74 	unsigned int		io_error:1;
75 	u8			csum[BTRFS_CSUM_SIZE];
76 
77 	struct scrub_recover	*recover;
78 };
79 
80 struct scrub_bio {
81 	int			index;
82 	struct scrub_ctx	*sctx;
83 	struct btrfs_device	*dev;
84 	struct bio		*bio;
85 	blk_status_t		status;
86 	u64			logical;
87 	u64			physical;
88 	struct scrub_sector	*sectors[SCRUB_SECTORS_PER_BIO];
89 	int			sector_count;
90 	int			next_free;
91 	struct work_struct	work;
92 };
93 
94 struct scrub_block {
95 	/*
96 	 * Each page will have its page::private used to record the logical
97 	 * bytenr.
98 	 */
99 	struct page		*pages[SCRUB_MAX_PAGES];
100 	struct scrub_sector	*sectors[SCRUB_MAX_SECTORS_PER_BLOCK];
101 	struct btrfs_device	*dev;
102 	/* Logical bytenr of the sblock */
103 	u64			logical;
104 	u64			physical;
105 	u64			physical_for_dev_replace;
106 	/* Length of sblock in bytes */
107 	u32			len;
108 	int			sector_count;
109 	int			mirror_num;
110 
111 	atomic_t		outstanding_sectors;
112 	refcount_t		refs; /* free mem on transition to zero */
113 	struct scrub_ctx	*sctx;
114 	struct scrub_parity	*sparity;
115 	struct {
116 		unsigned int	header_error:1;
117 		unsigned int	checksum_error:1;
118 		unsigned int	no_io_error_seen:1;
119 		unsigned int	generation_error:1; /* also sets header_error */
120 
121 		/* The following is for the data used to check parity */
122 		/* It is for the data with checksum */
123 		unsigned int	data_corrected:1;
124 	};
125 	struct work_struct	work;
126 };
127 
128 /* Used for the chunks with parity stripe such RAID5/6 */
129 struct scrub_parity {
130 	struct scrub_ctx	*sctx;
131 
132 	struct btrfs_device	*scrub_dev;
133 
134 	u64			logic_start;
135 
136 	u64			logic_end;
137 
138 	int			nsectors;
139 
140 	u32			stripe_len;
141 
142 	refcount_t		refs;
143 
144 	struct list_head	sectors_list;
145 
146 	/* Work of parity check and repair */
147 	struct work_struct	work;
148 
149 	/* Mark the parity blocks which have data */
150 	unsigned long		dbitmap;
151 
152 	/*
153 	 * Mark the parity blocks which have data, but errors happen when
154 	 * read data or check data
155 	 */
156 	unsigned long		ebitmap;
157 };
158 
159 struct scrub_ctx {
160 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
161 	struct btrfs_fs_info	*fs_info;
162 	int			first_free;
163 	int			curr;
164 	atomic_t		bios_in_flight;
165 	atomic_t		workers_pending;
166 	spinlock_t		list_lock;
167 	wait_queue_head_t	list_wait;
168 	struct list_head	csum_list;
169 	atomic_t		cancel_req;
170 	int			readonly;
171 	int			sectors_per_bio;
172 
173 	/* State of IO submission throttling affecting the associated device */
174 	ktime_t			throttle_deadline;
175 	u64			throttle_sent;
176 
177 	int			is_dev_replace;
178 	u64			write_pointer;
179 
180 	struct scrub_bio        *wr_curr_bio;
181 	struct mutex            wr_lock;
182 	struct btrfs_device     *wr_tgtdev;
183 	bool                    flush_all_writes;
184 
185 	/*
186 	 * statistics
187 	 */
188 	struct btrfs_scrub_progress stat;
189 	spinlock_t		stat_lock;
190 
191 	/*
192 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
193 	 * decrement bios_in_flight and workers_pending and then do a wakeup
194 	 * on the list_wait wait queue. We must ensure the main scrub task
195 	 * doesn't free the scrub context before or while the workers are
196 	 * doing the wakeup() call.
197 	 */
198 	refcount_t              refs;
199 };
200 
201 struct scrub_warning {
202 	struct btrfs_path	*path;
203 	u64			extent_item_size;
204 	const char		*errstr;
205 	u64			physical;
206 	u64			logical;
207 	struct btrfs_device	*dev;
208 };
209 
210 struct full_stripe_lock {
211 	struct rb_node node;
212 	u64 logical;
213 	u64 refs;
214 	struct mutex mutex;
215 };
216 
217 #ifndef CONFIG_64BIT
218 /* This structure is for archtectures whose (void *) is smaller than u64 */
219 struct scrub_page_private {
220 	u64 logical;
221 };
222 #endif
223 
224 static int attach_scrub_page_private(struct page *page, u64 logical)
225 {
226 #ifdef CONFIG_64BIT
227 	attach_page_private(page, (void *)logical);
228 	return 0;
229 #else
230 	struct scrub_page_private *spp;
231 
232 	spp = kmalloc(sizeof(*spp), GFP_KERNEL);
233 	if (!spp)
234 		return -ENOMEM;
235 	spp->logical = logical;
236 	attach_page_private(page, (void *)spp);
237 	return 0;
238 #endif
239 }
240 
241 static void detach_scrub_page_private(struct page *page)
242 {
243 #ifdef CONFIG_64BIT
244 	detach_page_private(page);
245 	return;
246 #else
247 	struct scrub_page_private *spp;
248 
249 	spp = detach_page_private(page);
250 	kfree(spp);
251 	return;
252 #endif
253 }
254 
255 static struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx,
256 					     struct btrfs_device *dev,
257 					     u64 logical, u64 physical,
258 					     u64 physical_for_dev_replace,
259 					     int mirror_num)
260 {
261 	struct scrub_block *sblock;
262 
263 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
264 	if (!sblock)
265 		return NULL;
266 	refcount_set(&sblock->refs, 1);
267 	sblock->sctx = sctx;
268 	sblock->logical = logical;
269 	sblock->physical = physical;
270 	sblock->physical_for_dev_replace = physical_for_dev_replace;
271 	sblock->dev = dev;
272 	sblock->mirror_num = mirror_num;
273 	sblock->no_io_error_seen = 1;
274 	/*
275 	 * Scrub_block::pages will be allocated at alloc_scrub_sector() when
276 	 * the corresponding page is not allocated.
277 	 */
278 	return sblock;
279 }
280 
281 /*
282  * Allocate a new scrub sector and attach it to @sblock.
283  *
284  * Will also allocate new pages for @sblock if needed.
285  */
286 static struct scrub_sector *alloc_scrub_sector(struct scrub_block *sblock,
287 					       u64 logical, gfp_t gfp)
288 {
289 	const pgoff_t page_index = (logical - sblock->logical) >> PAGE_SHIFT;
290 	struct scrub_sector *ssector;
291 
292 	/* We must never have scrub_block exceed U32_MAX in size. */
293 	ASSERT(logical - sblock->logical < U32_MAX);
294 
295 	ssector = kzalloc(sizeof(*ssector), gfp);
296 	if (!ssector)
297 		return NULL;
298 
299 	/* Allocate a new page if the slot is not allocated */
300 	if (!sblock->pages[page_index]) {
301 		int ret;
302 
303 		sblock->pages[page_index] = alloc_page(gfp);
304 		if (!sblock->pages[page_index]) {
305 			kfree(ssector);
306 			return NULL;
307 		}
308 		ret = attach_scrub_page_private(sblock->pages[page_index],
309 				sblock->logical + (page_index << PAGE_SHIFT));
310 		if (ret < 0) {
311 			kfree(ssector);
312 			__free_page(sblock->pages[page_index]);
313 			sblock->pages[page_index] = NULL;
314 			return NULL;
315 		}
316 	}
317 
318 	atomic_set(&ssector->refs, 1);
319 	ssector->sblock = sblock;
320 	/* The sector to be added should not be used */
321 	ASSERT(sblock->sectors[sblock->sector_count] == NULL);
322 	ssector->offset = logical - sblock->logical;
323 
324 	/* The sector count must be smaller than the limit */
325 	ASSERT(sblock->sector_count < SCRUB_MAX_SECTORS_PER_BLOCK);
326 
327 	sblock->sectors[sblock->sector_count] = ssector;
328 	sblock->sector_count++;
329 	sblock->len += sblock->sctx->fs_info->sectorsize;
330 
331 	return ssector;
332 }
333 
334 static struct page *scrub_sector_get_page(struct scrub_sector *ssector)
335 {
336 	struct scrub_block *sblock = ssector->sblock;
337 	pgoff_t index;
338 	/*
339 	 * When calling this function, ssector must be alreaday attached to the
340 	 * parent sblock.
341 	 */
342 	ASSERT(sblock);
343 
344 	/* The range should be inside the sblock range */
345 	ASSERT(ssector->offset < sblock->len);
346 
347 	index = ssector->offset >> PAGE_SHIFT;
348 	ASSERT(index < SCRUB_MAX_PAGES);
349 	ASSERT(sblock->pages[index]);
350 	ASSERT(PagePrivate(sblock->pages[index]));
351 	return sblock->pages[index];
352 }
353 
354 static unsigned int scrub_sector_get_page_offset(struct scrub_sector *ssector)
355 {
356 	struct scrub_block *sblock = ssector->sblock;
357 
358 	/*
359 	 * When calling this function, ssector must be already attached to the
360 	 * parent sblock.
361 	 */
362 	ASSERT(sblock);
363 
364 	/* The range should be inside the sblock range */
365 	ASSERT(ssector->offset < sblock->len);
366 
367 	return offset_in_page(ssector->offset);
368 }
369 
370 static char *scrub_sector_get_kaddr(struct scrub_sector *ssector)
371 {
372 	return page_address(scrub_sector_get_page(ssector)) +
373 	       scrub_sector_get_page_offset(ssector);
374 }
375 
376 static int bio_add_scrub_sector(struct bio *bio, struct scrub_sector *ssector,
377 				unsigned int len)
378 {
379 	return bio_add_page(bio, scrub_sector_get_page(ssector), len,
380 			    scrub_sector_get_page_offset(ssector));
381 }
382 
383 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
384 				     struct scrub_block *sblocks_for_recheck[]);
385 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
386 				struct scrub_block *sblock,
387 				int retry_failed_mirror);
388 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
389 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
390 					     struct scrub_block *sblock_good);
391 static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
392 					    struct scrub_block *sblock_good,
393 					    int sector_num, int force_write);
394 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
395 static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock,
396 					     int sector_num);
397 static int scrub_checksum_data(struct scrub_block *sblock);
398 static int scrub_checksum_tree_block(struct scrub_block *sblock);
399 static int scrub_checksum_super(struct scrub_block *sblock);
400 static void scrub_block_put(struct scrub_block *sblock);
401 static void scrub_sector_get(struct scrub_sector *sector);
402 static void scrub_sector_put(struct scrub_sector *sector);
403 static void scrub_parity_get(struct scrub_parity *sparity);
404 static void scrub_parity_put(struct scrub_parity *sparity);
405 static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
406 			 u64 physical, struct btrfs_device *dev, u64 flags,
407 			 u64 gen, int mirror_num, u8 *csum,
408 			 u64 physical_for_dev_replace);
409 static void scrub_bio_end_io(struct bio *bio);
410 static void scrub_bio_end_io_worker(struct work_struct *work);
411 static void scrub_block_complete(struct scrub_block *sblock);
412 static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
413 				 u64 extent_logical, u32 extent_len,
414 				 u64 *extent_physical,
415 				 struct btrfs_device **extent_dev,
416 				 int *extent_mirror_num);
417 static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
418 				      struct scrub_sector *sector);
419 static void scrub_wr_submit(struct scrub_ctx *sctx);
420 static void scrub_wr_bio_end_io(struct bio *bio);
421 static void scrub_wr_bio_end_io_worker(struct work_struct *work);
422 static void scrub_put_ctx(struct scrub_ctx *sctx);
423 
424 static inline int scrub_is_page_on_raid56(struct scrub_sector *sector)
425 {
426 	return sector->recover &&
427 	       (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
428 }
429 
430 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
431 {
432 	refcount_inc(&sctx->refs);
433 	atomic_inc(&sctx->bios_in_flight);
434 }
435 
436 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
437 {
438 	atomic_dec(&sctx->bios_in_flight);
439 	wake_up(&sctx->list_wait);
440 	scrub_put_ctx(sctx);
441 }
442 
443 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
444 {
445 	while (atomic_read(&fs_info->scrub_pause_req)) {
446 		mutex_unlock(&fs_info->scrub_lock);
447 		wait_event(fs_info->scrub_pause_wait,
448 		   atomic_read(&fs_info->scrub_pause_req) == 0);
449 		mutex_lock(&fs_info->scrub_lock);
450 	}
451 }
452 
453 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
454 {
455 	atomic_inc(&fs_info->scrubs_paused);
456 	wake_up(&fs_info->scrub_pause_wait);
457 }
458 
459 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
460 {
461 	mutex_lock(&fs_info->scrub_lock);
462 	__scrub_blocked_if_needed(fs_info);
463 	atomic_dec(&fs_info->scrubs_paused);
464 	mutex_unlock(&fs_info->scrub_lock);
465 
466 	wake_up(&fs_info->scrub_pause_wait);
467 }
468 
469 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
470 {
471 	scrub_pause_on(fs_info);
472 	scrub_pause_off(fs_info);
473 }
474 
475 /*
476  * Insert new full stripe lock into full stripe locks tree
477  *
478  * Return pointer to existing or newly inserted full_stripe_lock structure if
479  * everything works well.
480  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
481  *
482  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
483  * function
484  */
485 static struct full_stripe_lock *insert_full_stripe_lock(
486 		struct btrfs_full_stripe_locks_tree *locks_root,
487 		u64 fstripe_logical)
488 {
489 	struct rb_node **p;
490 	struct rb_node *parent = NULL;
491 	struct full_stripe_lock *entry;
492 	struct full_stripe_lock *ret;
493 
494 	lockdep_assert_held(&locks_root->lock);
495 
496 	p = &locks_root->root.rb_node;
497 	while (*p) {
498 		parent = *p;
499 		entry = rb_entry(parent, struct full_stripe_lock, node);
500 		if (fstripe_logical < entry->logical) {
501 			p = &(*p)->rb_left;
502 		} else if (fstripe_logical > entry->logical) {
503 			p = &(*p)->rb_right;
504 		} else {
505 			entry->refs++;
506 			return entry;
507 		}
508 	}
509 
510 	/*
511 	 * Insert new lock.
512 	 */
513 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
514 	if (!ret)
515 		return ERR_PTR(-ENOMEM);
516 	ret->logical = fstripe_logical;
517 	ret->refs = 1;
518 	mutex_init(&ret->mutex);
519 
520 	rb_link_node(&ret->node, parent, p);
521 	rb_insert_color(&ret->node, &locks_root->root);
522 	return ret;
523 }
524 
525 /*
526  * Search for a full stripe lock of a block group
527  *
528  * Return pointer to existing full stripe lock if found
529  * Return NULL if not found
530  */
531 static struct full_stripe_lock *search_full_stripe_lock(
532 		struct btrfs_full_stripe_locks_tree *locks_root,
533 		u64 fstripe_logical)
534 {
535 	struct rb_node *node;
536 	struct full_stripe_lock *entry;
537 
538 	lockdep_assert_held(&locks_root->lock);
539 
540 	node = locks_root->root.rb_node;
541 	while (node) {
542 		entry = rb_entry(node, struct full_stripe_lock, node);
543 		if (fstripe_logical < entry->logical)
544 			node = node->rb_left;
545 		else if (fstripe_logical > entry->logical)
546 			node = node->rb_right;
547 		else
548 			return entry;
549 	}
550 	return NULL;
551 }
552 
553 /*
554  * Helper to get full stripe logical from a normal bytenr.
555  *
556  * Caller must ensure @cache is a RAID56 block group.
557  */
558 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
559 {
560 	u64 ret;
561 
562 	/*
563 	 * Due to chunk item size limit, full stripe length should not be
564 	 * larger than U32_MAX. Just a sanity check here.
565 	 */
566 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
567 
568 	/*
569 	 * round_down() can only handle power of 2, while RAID56 full
570 	 * stripe length can be 64KiB * n, so we need to manually round down.
571 	 */
572 	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
573 			cache->full_stripe_len + cache->start;
574 	return ret;
575 }
576 
577 /*
578  * Lock a full stripe to avoid concurrency of recovery and read
579  *
580  * It's only used for profiles with parities (RAID5/6), for other profiles it
581  * does nothing.
582  *
583  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
584  * So caller must call unlock_full_stripe() at the same context.
585  *
586  * Return <0 if encounters error.
587  */
588 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
589 			    bool *locked_ret)
590 {
591 	struct btrfs_block_group *bg_cache;
592 	struct btrfs_full_stripe_locks_tree *locks_root;
593 	struct full_stripe_lock *existing;
594 	u64 fstripe_start;
595 	int ret = 0;
596 
597 	*locked_ret = false;
598 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
599 	if (!bg_cache) {
600 		ASSERT(0);
601 		return -ENOENT;
602 	}
603 
604 	/* Profiles not based on parity don't need full stripe lock */
605 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
606 		goto out;
607 	locks_root = &bg_cache->full_stripe_locks_root;
608 
609 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
610 
611 	/* Now insert the full stripe lock */
612 	mutex_lock(&locks_root->lock);
613 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
614 	mutex_unlock(&locks_root->lock);
615 	if (IS_ERR(existing)) {
616 		ret = PTR_ERR(existing);
617 		goto out;
618 	}
619 	mutex_lock(&existing->mutex);
620 	*locked_ret = true;
621 out:
622 	btrfs_put_block_group(bg_cache);
623 	return ret;
624 }
625 
626 /*
627  * Unlock a full stripe.
628  *
629  * NOTE: Caller must ensure it's the same context calling corresponding
630  * lock_full_stripe().
631  *
632  * Return 0 if we unlock full stripe without problem.
633  * Return <0 for error
634  */
635 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
636 			      bool locked)
637 {
638 	struct btrfs_block_group *bg_cache;
639 	struct btrfs_full_stripe_locks_tree *locks_root;
640 	struct full_stripe_lock *fstripe_lock;
641 	u64 fstripe_start;
642 	bool freeit = false;
643 	int ret = 0;
644 
645 	/* If we didn't acquire full stripe lock, no need to continue */
646 	if (!locked)
647 		return 0;
648 
649 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
650 	if (!bg_cache) {
651 		ASSERT(0);
652 		return -ENOENT;
653 	}
654 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
655 		goto out;
656 
657 	locks_root = &bg_cache->full_stripe_locks_root;
658 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
659 
660 	mutex_lock(&locks_root->lock);
661 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
662 	/* Unpaired unlock_full_stripe() detected */
663 	if (!fstripe_lock) {
664 		WARN_ON(1);
665 		ret = -ENOENT;
666 		mutex_unlock(&locks_root->lock);
667 		goto out;
668 	}
669 
670 	if (fstripe_lock->refs == 0) {
671 		WARN_ON(1);
672 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
673 			fstripe_lock->logical);
674 	} else {
675 		fstripe_lock->refs--;
676 	}
677 
678 	if (fstripe_lock->refs == 0) {
679 		rb_erase(&fstripe_lock->node, &locks_root->root);
680 		freeit = true;
681 	}
682 	mutex_unlock(&locks_root->lock);
683 
684 	mutex_unlock(&fstripe_lock->mutex);
685 	if (freeit)
686 		kfree(fstripe_lock);
687 out:
688 	btrfs_put_block_group(bg_cache);
689 	return ret;
690 }
691 
692 static void scrub_free_csums(struct scrub_ctx *sctx)
693 {
694 	while (!list_empty(&sctx->csum_list)) {
695 		struct btrfs_ordered_sum *sum;
696 		sum = list_first_entry(&sctx->csum_list,
697 				       struct btrfs_ordered_sum, list);
698 		list_del(&sum->list);
699 		kfree(sum);
700 	}
701 }
702 
703 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
704 {
705 	int i;
706 
707 	if (!sctx)
708 		return;
709 
710 	/* this can happen when scrub is cancelled */
711 	if (sctx->curr != -1) {
712 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
713 
714 		for (i = 0; i < sbio->sector_count; i++)
715 			scrub_block_put(sbio->sectors[i]->sblock);
716 		bio_put(sbio->bio);
717 	}
718 
719 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
720 		struct scrub_bio *sbio = sctx->bios[i];
721 
722 		if (!sbio)
723 			break;
724 		kfree(sbio);
725 	}
726 
727 	kfree(sctx->wr_curr_bio);
728 	scrub_free_csums(sctx);
729 	kfree(sctx);
730 }
731 
732 static void scrub_put_ctx(struct scrub_ctx *sctx)
733 {
734 	if (refcount_dec_and_test(&sctx->refs))
735 		scrub_free_ctx(sctx);
736 }
737 
738 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
739 		struct btrfs_fs_info *fs_info, int is_dev_replace)
740 {
741 	struct scrub_ctx *sctx;
742 	int		i;
743 
744 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
745 	if (!sctx)
746 		goto nomem;
747 	refcount_set(&sctx->refs, 1);
748 	sctx->is_dev_replace = is_dev_replace;
749 	sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
750 	sctx->curr = -1;
751 	sctx->fs_info = fs_info;
752 	INIT_LIST_HEAD(&sctx->csum_list);
753 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
754 		struct scrub_bio *sbio;
755 
756 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
757 		if (!sbio)
758 			goto nomem;
759 		sctx->bios[i] = sbio;
760 
761 		sbio->index = i;
762 		sbio->sctx = sctx;
763 		sbio->sector_count = 0;
764 		INIT_WORK(&sbio->work, scrub_bio_end_io_worker);
765 
766 		if (i != SCRUB_BIOS_PER_SCTX - 1)
767 			sctx->bios[i]->next_free = i + 1;
768 		else
769 			sctx->bios[i]->next_free = -1;
770 	}
771 	sctx->first_free = 0;
772 	atomic_set(&sctx->bios_in_flight, 0);
773 	atomic_set(&sctx->workers_pending, 0);
774 	atomic_set(&sctx->cancel_req, 0);
775 
776 	spin_lock_init(&sctx->list_lock);
777 	spin_lock_init(&sctx->stat_lock);
778 	init_waitqueue_head(&sctx->list_wait);
779 	sctx->throttle_deadline = 0;
780 
781 	WARN_ON(sctx->wr_curr_bio != NULL);
782 	mutex_init(&sctx->wr_lock);
783 	sctx->wr_curr_bio = NULL;
784 	if (is_dev_replace) {
785 		WARN_ON(!fs_info->dev_replace.tgtdev);
786 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
787 		sctx->flush_all_writes = false;
788 	}
789 
790 	return sctx;
791 
792 nomem:
793 	scrub_free_ctx(sctx);
794 	return ERR_PTR(-ENOMEM);
795 }
796 
797 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
798 				     void *warn_ctx)
799 {
800 	u32 nlink;
801 	int ret;
802 	int i;
803 	unsigned nofs_flag;
804 	struct extent_buffer *eb;
805 	struct btrfs_inode_item *inode_item;
806 	struct scrub_warning *swarn = warn_ctx;
807 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
808 	struct inode_fs_paths *ipath = NULL;
809 	struct btrfs_root *local_root;
810 	struct btrfs_key key;
811 
812 	local_root = btrfs_get_fs_root(fs_info, root, true);
813 	if (IS_ERR(local_root)) {
814 		ret = PTR_ERR(local_root);
815 		goto err;
816 	}
817 
818 	/*
819 	 * this makes the path point to (inum INODE_ITEM ioff)
820 	 */
821 	key.objectid = inum;
822 	key.type = BTRFS_INODE_ITEM_KEY;
823 	key.offset = 0;
824 
825 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
826 	if (ret) {
827 		btrfs_put_root(local_root);
828 		btrfs_release_path(swarn->path);
829 		goto err;
830 	}
831 
832 	eb = swarn->path->nodes[0];
833 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
834 					struct btrfs_inode_item);
835 	nlink = btrfs_inode_nlink(eb, inode_item);
836 	btrfs_release_path(swarn->path);
837 
838 	/*
839 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
840 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
841 	 * not seem to be strictly necessary.
842 	 */
843 	nofs_flag = memalloc_nofs_save();
844 	ipath = init_ipath(4096, local_root, swarn->path);
845 	memalloc_nofs_restore(nofs_flag);
846 	if (IS_ERR(ipath)) {
847 		btrfs_put_root(local_root);
848 		ret = PTR_ERR(ipath);
849 		ipath = NULL;
850 		goto err;
851 	}
852 	ret = paths_from_inode(inum, ipath);
853 
854 	if (ret < 0)
855 		goto err;
856 
857 	/*
858 	 * we deliberately ignore the bit ipath might have been too small to
859 	 * hold all of the paths here
860 	 */
861 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
862 		btrfs_warn_in_rcu(fs_info,
863 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
864 				  swarn->errstr, swarn->logical,
865 				  rcu_str_deref(swarn->dev->name),
866 				  swarn->physical,
867 				  root, inum, offset,
868 				  fs_info->sectorsize, nlink,
869 				  (char *)(unsigned long)ipath->fspath->val[i]);
870 
871 	btrfs_put_root(local_root);
872 	free_ipath(ipath);
873 	return 0;
874 
875 err:
876 	btrfs_warn_in_rcu(fs_info,
877 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
878 			  swarn->errstr, swarn->logical,
879 			  rcu_str_deref(swarn->dev->name),
880 			  swarn->physical,
881 			  root, inum, offset, ret);
882 
883 	free_ipath(ipath);
884 	return 0;
885 }
886 
887 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
888 {
889 	struct btrfs_device *dev;
890 	struct btrfs_fs_info *fs_info;
891 	struct btrfs_path *path;
892 	struct btrfs_key found_key;
893 	struct extent_buffer *eb;
894 	struct btrfs_extent_item *ei;
895 	struct scrub_warning swarn;
896 	unsigned long ptr = 0;
897 	u64 extent_item_pos;
898 	u64 flags = 0;
899 	u64 ref_root;
900 	u32 item_size;
901 	u8 ref_level = 0;
902 	int ret;
903 
904 	WARN_ON(sblock->sector_count < 1);
905 	dev = sblock->dev;
906 	fs_info = sblock->sctx->fs_info;
907 
908 	/* Super block error, no need to search extent tree. */
909 	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
910 		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
911 			errstr, rcu_str_deref(dev->name),
912 			sblock->physical);
913 		return;
914 	}
915 	path = btrfs_alloc_path();
916 	if (!path)
917 		return;
918 
919 	swarn.physical = sblock->physical;
920 	swarn.logical = sblock->logical;
921 	swarn.errstr = errstr;
922 	swarn.dev = NULL;
923 
924 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
925 				  &flags);
926 	if (ret < 0)
927 		goto out;
928 
929 	extent_item_pos = swarn.logical - found_key.objectid;
930 	swarn.extent_item_size = found_key.offset;
931 
932 	eb = path->nodes[0];
933 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
934 	item_size = btrfs_item_size(eb, path->slots[0]);
935 
936 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
937 		do {
938 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
939 						      item_size, &ref_root,
940 						      &ref_level);
941 			btrfs_warn_in_rcu(fs_info,
942 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
943 				errstr, swarn.logical,
944 				rcu_str_deref(dev->name),
945 				swarn.physical,
946 				ref_level ? "node" : "leaf",
947 				ret < 0 ? -1 : ref_level,
948 				ret < 0 ? -1 : ref_root);
949 		} while (ret != 1);
950 		btrfs_release_path(path);
951 	} else {
952 		btrfs_release_path(path);
953 		swarn.path = path;
954 		swarn.dev = dev;
955 		iterate_extent_inodes(fs_info, found_key.objectid,
956 					extent_item_pos, 1,
957 					scrub_print_warning_inode, &swarn, false);
958 	}
959 
960 out:
961 	btrfs_free_path(path);
962 }
963 
964 static inline void scrub_get_recover(struct scrub_recover *recover)
965 {
966 	refcount_inc(&recover->refs);
967 }
968 
969 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
970 				     struct scrub_recover *recover)
971 {
972 	if (refcount_dec_and_test(&recover->refs)) {
973 		btrfs_bio_counter_dec(fs_info);
974 		btrfs_put_bioc(recover->bioc);
975 		kfree(recover);
976 	}
977 }
978 
979 /*
980  * scrub_handle_errored_block gets called when either verification of the
981  * sectors failed or the bio failed to read, e.g. with EIO. In the latter
982  * case, this function handles all sectors in the bio, even though only one
983  * may be bad.
984  * The goal of this function is to repair the errored block by using the
985  * contents of one of the mirrors.
986  */
987 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
988 {
989 	struct scrub_ctx *sctx = sblock_to_check->sctx;
990 	struct btrfs_device *dev = sblock_to_check->dev;
991 	struct btrfs_fs_info *fs_info;
992 	u64 logical;
993 	unsigned int failed_mirror_index;
994 	unsigned int is_metadata;
995 	unsigned int have_csum;
996 	/* One scrub_block for each mirror */
997 	struct scrub_block *sblocks_for_recheck[BTRFS_MAX_MIRRORS] = { 0 };
998 	struct scrub_block *sblock_bad;
999 	int ret;
1000 	int mirror_index;
1001 	int sector_num;
1002 	int success;
1003 	bool full_stripe_locked;
1004 	unsigned int nofs_flag;
1005 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1006 				      DEFAULT_RATELIMIT_BURST);
1007 
1008 	BUG_ON(sblock_to_check->sector_count < 1);
1009 	fs_info = sctx->fs_info;
1010 	if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1011 		/*
1012 		 * If we find an error in a super block, we just report it.
1013 		 * They will get written with the next transaction commit
1014 		 * anyway
1015 		 */
1016 		scrub_print_warning("super block error", sblock_to_check);
1017 		spin_lock(&sctx->stat_lock);
1018 		++sctx->stat.super_errors;
1019 		spin_unlock(&sctx->stat_lock);
1020 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
1021 		return 0;
1022 	}
1023 	logical = sblock_to_check->logical;
1024 	ASSERT(sblock_to_check->mirror_num);
1025 	failed_mirror_index = sblock_to_check->mirror_num - 1;
1026 	is_metadata = !(sblock_to_check->sectors[0]->flags &
1027 			BTRFS_EXTENT_FLAG_DATA);
1028 	have_csum = sblock_to_check->sectors[0]->have_csum;
1029 
1030 	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
1031 		return 0;
1032 
1033 	/*
1034 	 * We must use GFP_NOFS because the scrub task might be waiting for a
1035 	 * worker task executing this function and in turn a transaction commit
1036 	 * might be waiting the scrub task to pause (which needs to wait for all
1037 	 * the worker tasks to complete before pausing).
1038 	 * We do allocations in the workers through insert_full_stripe_lock()
1039 	 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of
1040 	 * this function.
1041 	 */
1042 	nofs_flag = memalloc_nofs_save();
1043 	/*
1044 	 * For RAID5/6, race can happen for a different device scrub thread.
1045 	 * For data corruption, Parity and Data threads will both try
1046 	 * to recovery the data.
1047 	 * Race can lead to doubly added csum error, or even unrecoverable
1048 	 * error.
1049 	 */
1050 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1051 	if (ret < 0) {
1052 		memalloc_nofs_restore(nofs_flag);
1053 		spin_lock(&sctx->stat_lock);
1054 		if (ret == -ENOMEM)
1055 			sctx->stat.malloc_errors++;
1056 		sctx->stat.read_errors++;
1057 		sctx->stat.uncorrectable_errors++;
1058 		spin_unlock(&sctx->stat_lock);
1059 		return ret;
1060 	}
1061 
1062 	/*
1063 	 * read all mirrors one after the other. This includes to
1064 	 * re-read the extent or metadata block that failed (that was
1065 	 * the cause that this fixup code is called) another time,
1066 	 * sector by sector this time in order to know which sectors
1067 	 * caused I/O errors and which ones are good (for all mirrors).
1068 	 * It is the goal to handle the situation when more than one
1069 	 * mirror contains I/O errors, but the errors do not
1070 	 * overlap, i.e. the data can be repaired by selecting the
1071 	 * sectors from those mirrors without I/O error on the
1072 	 * particular sectors. One example (with blocks >= 2 * sectorsize)
1073 	 * would be that mirror #1 has an I/O error on the first sector,
1074 	 * the second sector is good, and mirror #2 has an I/O error on
1075 	 * the second sector, but the first sector is good.
1076 	 * Then the first sector of the first mirror can be repaired by
1077 	 * taking the first sector of the second mirror, and the
1078 	 * second sector of the second mirror can be repaired by
1079 	 * copying the contents of the 2nd sector of the 1st mirror.
1080 	 * One more note: if the sectors of one mirror contain I/O
1081 	 * errors, the checksum cannot be verified. In order to get
1082 	 * the best data for repairing, the first attempt is to find
1083 	 * a mirror without I/O errors and with a validated checksum.
1084 	 * Only if this is not possible, the sectors are picked from
1085 	 * mirrors with I/O errors without considering the checksum.
1086 	 * If the latter is the case, at the end, the checksum of the
1087 	 * repaired area is verified in order to correctly maintain
1088 	 * the statistics.
1089 	 */
1090 	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1091 		/*
1092 		 * Note: the two members refs and outstanding_sectors are not
1093 		 * used in the blocks that are used for the recheck procedure.
1094 		 *
1095 		 * But alloc_scrub_block() will initialize sblock::ref anyway,
1096 		 * so we can use scrub_block_put() to clean them up.
1097 		 *
1098 		 * And here we don't setup the physical/dev for the sblock yet,
1099 		 * they will be correctly initialized in scrub_setup_recheck_block().
1100 		 */
1101 		sblocks_for_recheck[mirror_index] = alloc_scrub_block(sctx, NULL,
1102 							logical, 0, 0, mirror_index);
1103 		if (!sblocks_for_recheck[mirror_index]) {
1104 			spin_lock(&sctx->stat_lock);
1105 			sctx->stat.malloc_errors++;
1106 			sctx->stat.read_errors++;
1107 			sctx->stat.uncorrectable_errors++;
1108 			spin_unlock(&sctx->stat_lock);
1109 			btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1110 			goto out;
1111 		}
1112 	}
1113 
1114 	/* Setup the context, map the logical blocks and alloc the sectors */
1115 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1116 	if (ret) {
1117 		spin_lock(&sctx->stat_lock);
1118 		sctx->stat.read_errors++;
1119 		sctx->stat.uncorrectable_errors++;
1120 		spin_unlock(&sctx->stat_lock);
1121 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1122 		goto out;
1123 	}
1124 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1125 	sblock_bad = sblocks_for_recheck[failed_mirror_index];
1126 
1127 	/* build and submit the bios for the failed mirror, check checksums */
1128 	scrub_recheck_block(fs_info, sblock_bad, 1);
1129 
1130 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1131 	    sblock_bad->no_io_error_seen) {
1132 		/*
1133 		 * The error disappeared after reading sector by sector, or
1134 		 * the area was part of a huge bio and other parts of the
1135 		 * bio caused I/O errors, or the block layer merged several
1136 		 * read requests into one and the error is caused by a
1137 		 * different bio (usually one of the two latter cases is
1138 		 * the cause)
1139 		 */
1140 		spin_lock(&sctx->stat_lock);
1141 		sctx->stat.unverified_errors++;
1142 		sblock_to_check->data_corrected = 1;
1143 		spin_unlock(&sctx->stat_lock);
1144 
1145 		if (sctx->is_dev_replace)
1146 			scrub_write_block_to_dev_replace(sblock_bad);
1147 		goto out;
1148 	}
1149 
1150 	if (!sblock_bad->no_io_error_seen) {
1151 		spin_lock(&sctx->stat_lock);
1152 		sctx->stat.read_errors++;
1153 		spin_unlock(&sctx->stat_lock);
1154 		if (__ratelimit(&rs))
1155 			scrub_print_warning("i/o error", sblock_to_check);
1156 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1157 	} else if (sblock_bad->checksum_error) {
1158 		spin_lock(&sctx->stat_lock);
1159 		sctx->stat.csum_errors++;
1160 		spin_unlock(&sctx->stat_lock);
1161 		if (__ratelimit(&rs))
1162 			scrub_print_warning("checksum error", sblock_to_check);
1163 		btrfs_dev_stat_inc_and_print(dev,
1164 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1165 	} else if (sblock_bad->header_error) {
1166 		spin_lock(&sctx->stat_lock);
1167 		sctx->stat.verify_errors++;
1168 		spin_unlock(&sctx->stat_lock);
1169 		if (__ratelimit(&rs))
1170 			scrub_print_warning("checksum/header error",
1171 					    sblock_to_check);
1172 		if (sblock_bad->generation_error)
1173 			btrfs_dev_stat_inc_and_print(dev,
1174 				BTRFS_DEV_STAT_GENERATION_ERRS);
1175 		else
1176 			btrfs_dev_stat_inc_and_print(dev,
1177 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1178 	}
1179 
1180 	if (sctx->readonly) {
1181 		ASSERT(!sctx->is_dev_replace);
1182 		goto out;
1183 	}
1184 
1185 	/*
1186 	 * now build and submit the bios for the other mirrors, check
1187 	 * checksums.
1188 	 * First try to pick the mirror which is completely without I/O
1189 	 * errors and also does not have a checksum error.
1190 	 * If one is found, and if a checksum is present, the full block
1191 	 * that is known to contain an error is rewritten. Afterwards
1192 	 * the block is known to be corrected.
1193 	 * If a mirror is found which is completely correct, and no
1194 	 * checksum is present, only those sectors are rewritten that had
1195 	 * an I/O error in the block to be repaired, since it cannot be
1196 	 * determined, which copy of the other sectors is better (and it
1197 	 * could happen otherwise that a correct sector would be
1198 	 * overwritten by a bad one).
1199 	 */
1200 	for (mirror_index = 0; ;mirror_index++) {
1201 		struct scrub_block *sblock_other;
1202 
1203 		if (mirror_index == failed_mirror_index)
1204 			continue;
1205 
1206 		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1207 		if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1208 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1209 				break;
1210 			if (!sblocks_for_recheck[mirror_index]->sector_count)
1211 				break;
1212 
1213 			sblock_other = sblocks_for_recheck[mirror_index];
1214 		} else {
1215 			struct scrub_recover *r = sblock_bad->sectors[0]->recover;
1216 			int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1217 
1218 			if (mirror_index >= max_allowed)
1219 				break;
1220 			if (!sblocks_for_recheck[1]->sector_count)
1221 				break;
1222 
1223 			ASSERT(failed_mirror_index == 0);
1224 			sblock_other = sblocks_for_recheck[1];
1225 			sblock_other->mirror_num = 1 + mirror_index;
1226 		}
1227 
1228 		/* build and submit the bios, check checksums */
1229 		scrub_recheck_block(fs_info, sblock_other, 0);
1230 
1231 		if (!sblock_other->header_error &&
1232 		    !sblock_other->checksum_error &&
1233 		    sblock_other->no_io_error_seen) {
1234 			if (sctx->is_dev_replace) {
1235 				scrub_write_block_to_dev_replace(sblock_other);
1236 				goto corrected_error;
1237 			} else {
1238 				ret = scrub_repair_block_from_good_copy(
1239 						sblock_bad, sblock_other);
1240 				if (!ret)
1241 					goto corrected_error;
1242 			}
1243 		}
1244 	}
1245 
1246 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1247 		goto did_not_correct_error;
1248 
1249 	/*
1250 	 * In case of I/O errors in the area that is supposed to be
1251 	 * repaired, continue by picking good copies of those sectors.
1252 	 * Select the good sectors from mirrors to rewrite bad sectors from
1253 	 * the area to fix. Afterwards verify the checksum of the block
1254 	 * that is supposed to be repaired. This verification step is
1255 	 * only done for the purpose of statistic counting and for the
1256 	 * final scrub report, whether errors remain.
1257 	 * A perfect algorithm could make use of the checksum and try
1258 	 * all possible combinations of sectors from the different mirrors
1259 	 * until the checksum verification succeeds. For example, when
1260 	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1261 	 * of mirror #2 is readable but the final checksum test fails,
1262 	 * then the 2nd sector of mirror #3 could be tried, whether now
1263 	 * the final checksum succeeds. But this would be a rare
1264 	 * exception and is therefore not implemented. At least it is
1265 	 * avoided that the good copy is overwritten.
1266 	 * A more useful improvement would be to pick the sectors
1267 	 * without I/O error based on sector sizes (512 bytes on legacy
1268 	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1269 	 * mirror could be repaired by taking 512 byte of a different
1270 	 * mirror, even if other 512 byte sectors in the same sectorsize
1271 	 * area are unreadable.
1272 	 */
1273 	success = 1;
1274 	for (sector_num = 0; sector_num < sblock_bad->sector_count;
1275 	     sector_num++) {
1276 		struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1277 		struct scrub_block *sblock_other = NULL;
1278 
1279 		/* Skip no-io-error sectors in scrub */
1280 		if (!sector_bad->io_error && !sctx->is_dev_replace)
1281 			continue;
1282 
1283 		if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1284 			/*
1285 			 * In case of dev replace, if raid56 rebuild process
1286 			 * didn't work out correct data, then copy the content
1287 			 * in sblock_bad to make sure target device is identical
1288 			 * to source device, instead of writing garbage data in
1289 			 * sblock_for_recheck array to target device.
1290 			 */
1291 			sblock_other = NULL;
1292 		} else if (sector_bad->io_error) {
1293 			/* Try to find no-io-error sector in mirrors */
1294 			for (mirror_index = 0;
1295 			     mirror_index < BTRFS_MAX_MIRRORS &&
1296 			     sblocks_for_recheck[mirror_index]->sector_count > 0;
1297 			     mirror_index++) {
1298 				if (!sblocks_for_recheck[mirror_index]->
1299 				    sectors[sector_num]->io_error) {
1300 					sblock_other = sblocks_for_recheck[mirror_index];
1301 					break;
1302 				}
1303 			}
1304 			if (!sblock_other)
1305 				success = 0;
1306 		}
1307 
1308 		if (sctx->is_dev_replace) {
1309 			/*
1310 			 * Did not find a mirror to fetch the sector from.
1311 			 * scrub_write_sector_to_dev_replace() handles this
1312 			 * case (sector->io_error), by filling the block with
1313 			 * zeros before submitting the write request
1314 			 */
1315 			if (!sblock_other)
1316 				sblock_other = sblock_bad;
1317 
1318 			if (scrub_write_sector_to_dev_replace(sblock_other,
1319 							      sector_num) != 0) {
1320 				atomic64_inc(
1321 					&fs_info->dev_replace.num_write_errors);
1322 				success = 0;
1323 			}
1324 		} else if (sblock_other) {
1325 			ret = scrub_repair_sector_from_good_copy(sblock_bad,
1326 								 sblock_other,
1327 								 sector_num, 0);
1328 			if (0 == ret)
1329 				sector_bad->io_error = 0;
1330 			else
1331 				success = 0;
1332 		}
1333 	}
1334 
1335 	if (success && !sctx->is_dev_replace) {
1336 		if (is_metadata || have_csum) {
1337 			/*
1338 			 * need to verify the checksum now that all
1339 			 * sectors on disk are repaired (the write
1340 			 * request for data to be repaired is on its way).
1341 			 * Just be lazy and use scrub_recheck_block()
1342 			 * which re-reads the data before the checksum
1343 			 * is verified, but most likely the data comes out
1344 			 * of the page cache.
1345 			 */
1346 			scrub_recheck_block(fs_info, sblock_bad, 1);
1347 			if (!sblock_bad->header_error &&
1348 			    !sblock_bad->checksum_error &&
1349 			    sblock_bad->no_io_error_seen)
1350 				goto corrected_error;
1351 			else
1352 				goto did_not_correct_error;
1353 		} else {
1354 corrected_error:
1355 			spin_lock(&sctx->stat_lock);
1356 			sctx->stat.corrected_errors++;
1357 			sblock_to_check->data_corrected = 1;
1358 			spin_unlock(&sctx->stat_lock);
1359 			btrfs_err_rl_in_rcu(fs_info,
1360 				"fixed up error at logical %llu on dev %s",
1361 				logical, rcu_str_deref(dev->name));
1362 		}
1363 	} else {
1364 did_not_correct_error:
1365 		spin_lock(&sctx->stat_lock);
1366 		sctx->stat.uncorrectable_errors++;
1367 		spin_unlock(&sctx->stat_lock);
1368 		btrfs_err_rl_in_rcu(fs_info,
1369 			"unable to fixup (regular) error at logical %llu on dev %s",
1370 			logical, rcu_str_deref(dev->name));
1371 	}
1372 
1373 out:
1374 	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1375 		struct scrub_block *sblock = sblocks_for_recheck[mirror_index];
1376 		struct scrub_recover *recover;
1377 		int sector_index;
1378 
1379 		/* Not allocated, continue checking the next mirror */
1380 		if (!sblock)
1381 			continue;
1382 
1383 		for (sector_index = 0; sector_index < sblock->sector_count;
1384 		     sector_index++) {
1385 			/*
1386 			 * Here we just cleanup the recover, each sector will be
1387 			 * properly cleaned up by later scrub_block_put()
1388 			 */
1389 			recover = sblock->sectors[sector_index]->recover;
1390 			if (recover) {
1391 				scrub_put_recover(fs_info, recover);
1392 				sblock->sectors[sector_index]->recover = NULL;
1393 			}
1394 		}
1395 		scrub_block_put(sblock);
1396 	}
1397 
1398 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1399 	memalloc_nofs_restore(nofs_flag);
1400 	if (ret < 0)
1401 		return ret;
1402 	return 0;
1403 }
1404 
1405 static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1406 {
1407 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
1408 		return 2;
1409 	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
1410 		return 3;
1411 	else
1412 		return (int)bioc->num_stripes;
1413 }
1414 
1415 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1416 						 u64 *raid_map,
1417 						 int nstripes, int mirror,
1418 						 int *stripe_index,
1419 						 u64 *stripe_offset)
1420 {
1421 	int i;
1422 
1423 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1424 		/* RAID5/6 */
1425 		for (i = 0; i < nstripes; i++) {
1426 			if (raid_map[i] == RAID6_Q_STRIPE ||
1427 			    raid_map[i] == RAID5_P_STRIPE)
1428 				continue;
1429 
1430 			if (logical >= raid_map[i] &&
1431 			    logical < raid_map[i] + BTRFS_STRIPE_LEN)
1432 				break;
1433 		}
1434 
1435 		*stripe_index = i;
1436 		*stripe_offset = logical - raid_map[i];
1437 	} else {
1438 		/* The other RAID type */
1439 		*stripe_index = mirror;
1440 		*stripe_offset = 0;
1441 	}
1442 }
1443 
1444 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1445 				     struct scrub_block *sblocks_for_recheck[])
1446 {
1447 	struct scrub_ctx *sctx = original_sblock->sctx;
1448 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1449 	u64 logical = original_sblock->logical;
1450 	u64 length = original_sblock->sector_count << fs_info->sectorsize_bits;
1451 	u64 generation = original_sblock->sectors[0]->generation;
1452 	u64 flags = original_sblock->sectors[0]->flags;
1453 	u64 have_csum = original_sblock->sectors[0]->have_csum;
1454 	struct scrub_recover *recover;
1455 	struct btrfs_io_context *bioc;
1456 	u64 sublen;
1457 	u64 mapped_length;
1458 	u64 stripe_offset;
1459 	int stripe_index;
1460 	int sector_index = 0;
1461 	int mirror_index;
1462 	int nmirrors;
1463 	int ret;
1464 
1465 	while (length > 0) {
1466 		sublen = min_t(u64, length, fs_info->sectorsize);
1467 		mapped_length = sublen;
1468 		bioc = NULL;
1469 
1470 		/*
1471 		 * With a length of sectorsize, each returned stripe represents
1472 		 * one mirror
1473 		 */
1474 		btrfs_bio_counter_inc_blocked(fs_info);
1475 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1476 				       logical, &mapped_length, &bioc);
1477 		if (ret || !bioc || mapped_length < sublen) {
1478 			btrfs_put_bioc(bioc);
1479 			btrfs_bio_counter_dec(fs_info);
1480 			return -EIO;
1481 		}
1482 
1483 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1484 		if (!recover) {
1485 			btrfs_put_bioc(bioc);
1486 			btrfs_bio_counter_dec(fs_info);
1487 			return -ENOMEM;
1488 		}
1489 
1490 		refcount_set(&recover->refs, 1);
1491 		recover->bioc = bioc;
1492 		recover->map_length = mapped_length;
1493 
1494 		ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK);
1495 
1496 		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
1497 
1498 		for (mirror_index = 0; mirror_index < nmirrors;
1499 		     mirror_index++) {
1500 			struct scrub_block *sblock;
1501 			struct scrub_sector *sector;
1502 
1503 			sblock = sblocks_for_recheck[mirror_index];
1504 			sblock->sctx = sctx;
1505 
1506 			sector = alloc_scrub_sector(sblock, logical, GFP_NOFS);
1507 			if (!sector) {
1508 				spin_lock(&sctx->stat_lock);
1509 				sctx->stat.malloc_errors++;
1510 				spin_unlock(&sctx->stat_lock);
1511 				scrub_put_recover(fs_info, recover);
1512 				return -ENOMEM;
1513 			}
1514 			sector->flags = flags;
1515 			sector->generation = generation;
1516 			sector->have_csum = have_csum;
1517 			if (have_csum)
1518 				memcpy(sector->csum,
1519 				       original_sblock->sectors[0]->csum,
1520 				       sctx->fs_info->csum_size);
1521 
1522 			scrub_stripe_index_and_offset(logical,
1523 						      bioc->map_type,
1524 						      bioc->raid_map,
1525 						      bioc->num_stripes -
1526 						      bioc->num_tgtdevs,
1527 						      mirror_index,
1528 						      &stripe_index,
1529 						      &stripe_offset);
1530 			/*
1531 			 * We're at the first sector, also populate @sblock
1532 			 * physical and dev.
1533 			 */
1534 			if (sector_index == 0) {
1535 				sblock->physical =
1536 					bioc->stripes[stripe_index].physical +
1537 					stripe_offset;
1538 				sblock->dev = bioc->stripes[stripe_index].dev;
1539 				sblock->physical_for_dev_replace =
1540 					original_sblock->physical_for_dev_replace;
1541 			}
1542 
1543 			BUG_ON(sector_index >= original_sblock->sector_count);
1544 			scrub_get_recover(recover);
1545 			sector->recover = recover;
1546 		}
1547 		scrub_put_recover(fs_info, recover);
1548 		length -= sublen;
1549 		logical += sublen;
1550 		sector_index++;
1551 	}
1552 
1553 	return 0;
1554 }
1555 
1556 static void scrub_bio_wait_endio(struct bio *bio)
1557 {
1558 	complete(bio->bi_private);
1559 }
1560 
1561 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1562 					struct bio *bio,
1563 					struct scrub_sector *sector)
1564 {
1565 	DECLARE_COMPLETION_ONSTACK(done);
1566 
1567 	bio->bi_iter.bi_sector = (sector->offset + sector->sblock->logical) >>
1568 				 SECTOR_SHIFT;
1569 	bio->bi_private = &done;
1570 	bio->bi_end_io = scrub_bio_wait_endio;
1571 	raid56_parity_recover(bio, sector->recover->bioc, sector->sblock->mirror_num);
1572 
1573 	wait_for_completion_io(&done);
1574 	return blk_status_to_errno(bio->bi_status);
1575 }
1576 
1577 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1578 					  struct scrub_block *sblock)
1579 {
1580 	struct scrub_sector *first_sector = sblock->sectors[0];
1581 	struct bio *bio;
1582 	int i;
1583 
1584 	/* All sectors in sblock belong to the same stripe on the same device. */
1585 	ASSERT(sblock->dev);
1586 	if (!sblock->dev->bdev)
1587 		goto out;
1588 
1589 	bio = bio_alloc(sblock->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
1590 
1591 	for (i = 0; i < sblock->sector_count; i++) {
1592 		struct scrub_sector *sector = sblock->sectors[i];
1593 
1594 		bio_add_scrub_sector(bio, sector, fs_info->sectorsize);
1595 	}
1596 
1597 	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) {
1598 		bio_put(bio);
1599 		goto out;
1600 	}
1601 
1602 	bio_put(bio);
1603 
1604 	scrub_recheck_block_checksum(sblock);
1605 
1606 	return;
1607 out:
1608 	for (i = 0; i < sblock->sector_count; i++)
1609 		sblock->sectors[i]->io_error = 1;
1610 
1611 	sblock->no_io_error_seen = 0;
1612 }
1613 
1614 /*
1615  * This function will check the on disk data for checksum errors, header errors
1616  * and read I/O errors. If any I/O errors happen, the exact sectors which are
1617  * errored are marked as being bad. The goal is to enable scrub to take those
1618  * sectors that are not errored from all the mirrors so that the sectors that
1619  * are errored in the just handled mirror can be repaired.
1620  */
1621 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1622 				struct scrub_block *sblock,
1623 				int retry_failed_mirror)
1624 {
1625 	int i;
1626 
1627 	sblock->no_io_error_seen = 1;
1628 
1629 	/* short cut for raid56 */
1630 	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0]))
1631 		return scrub_recheck_block_on_raid56(fs_info, sblock);
1632 
1633 	for (i = 0; i < sblock->sector_count; i++) {
1634 		struct scrub_sector *sector = sblock->sectors[i];
1635 		struct bio bio;
1636 		struct bio_vec bvec;
1637 
1638 		if (sblock->dev->bdev == NULL) {
1639 			sector->io_error = 1;
1640 			sblock->no_io_error_seen = 0;
1641 			continue;
1642 		}
1643 
1644 		bio_init(&bio, sblock->dev->bdev, &bvec, 1, REQ_OP_READ);
1645 		bio_add_scrub_sector(&bio, sector, fs_info->sectorsize);
1646 		bio.bi_iter.bi_sector = (sblock->physical + sector->offset) >>
1647 					SECTOR_SHIFT;
1648 
1649 		btrfsic_check_bio(&bio);
1650 		if (submit_bio_wait(&bio)) {
1651 			sector->io_error = 1;
1652 			sblock->no_io_error_seen = 0;
1653 		}
1654 
1655 		bio_uninit(&bio);
1656 	}
1657 
1658 	if (sblock->no_io_error_seen)
1659 		scrub_recheck_block_checksum(sblock);
1660 }
1661 
1662 static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector)
1663 {
1664 	struct btrfs_fs_devices *fs_devices = sector->sblock->dev->fs_devices;
1665 	int ret;
1666 
1667 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1668 	return !ret;
1669 }
1670 
1671 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1672 {
1673 	sblock->header_error = 0;
1674 	sblock->checksum_error = 0;
1675 	sblock->generation_error = 0;
1676 
1677 	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1678 		scrub_checksum_data(sblock);
1679 	else
1680 		scrub_checksum_tree_block(sblock);
1681 }
1682 
1683 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1684 					     struct scrub_block *sblock_good)
1685 {
1686 	int i;
1687 	int ret = 0;
1688 
1689 	for (i = 0; i < sblock_bad->sector_count; i++) {
1690 		int ret_sub;
1691 
1692 		ret_sub = scrub_repair_sector_from_good_copy(sblock_bad,
1693 							     sblock_good, i, 1);
1694 		if (ret_sub)
1695 			ret = ret_sub;
1696 	}
1697 
1698 	return ret;
1699 }
1700 
1701 static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
1702 					      struct scrub_block *sblock_good,
1703 					      int sector_num, int force_write)
1704 {
1705 	struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1706 	struct scrub_sector *sector_good = sblock_good->sectors[sector_num];
1707 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1708 	const u32 sectorsize = fs_info->sectorsize;
1709 
1710 	if (force_write || sblock_bad->header_error ||
1711 	    sblock_bad->checksum_error || sector_bad->io_error) {
1712 		struct bio bio;
1713 		struct bio_vec bvec;
1714 		int ret;
1715 
1716 		if (!sblock_bad->dev->bdev) {
1717 			btrfs_warn_rl(fs_info,
1718 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1719 			return -EIO;
1720 		}
1721 
1722 		bio_init(&bio, sblock_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE);
1723 		bio.bi_iter.bi_sector = (sblock_bad->physical +
1724 					 sector_bad->offset) >> SECTOR_SHIFT;
1725 		ret = bio_add_scrub_sector(&bio, sector_good, sectorsize);
1726 
1727 		btrfsic_check_bio(&bio);
1728 		ret = submit_bio_wait(&bio);
1729 		bio_uninit(&bio);
1730 
1731 		if (ret) {
1732 			btrfs_dev_stat_inc_and_print(sblock_bad->dev,
1733 				BTRFS_DEV_STAT_WRITE_ERRS);
1734 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1735 			return -EIO;
1736 		}
1737 	}
1738 
1739 	return 0;
1740 }
1741 
1742 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1743 {
1744 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1745 	int i;
1746 
1747 	/*
1748 	 * This block is used for the check of the parity on the source device,
1749 	 * so the data needn't be written into the destination device.
1750 	 */
1751 	if (sblock->sparity)
1752 		return;
1753 
1754 	for (i = 0; i < sblock->sector_count; i++) {
1755 		int ret;
1756 
1757 		ret = scrub_write_sector_to_dev_replace(sblock, i);
1758 		if (ret)
1759 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1760 	}
1761 }
1762 
1763 static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num)
1764 {
1765 	const u32 sectorsize = sblock->sctx->fs_info->sectorsize;
1766 	struct scrub_sector *sector = sblock->sectors[sector_num];
1767 
1768 	if (sector->io_error)
1769 		memset(scrub_sector_get_kaddr(sector), 0, sectorsize);
1770 
1771 	return scrub_add_sector_to_wr_bio(sblock->sctx, sector);
1772 }
1773 
1774 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
1775 {
1776 	int ret = 0;
1777 	u64 length;
1778 
1779 	if (!btrfs_is_zoned(sctx->fs_info))
1780 		return 0;
1781 
1782 	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
1783 		return 0;
1784 
1785 	if (sctx->write_pointer < physical) {
1786 		length = physical - sctx->write_pointer;
1787 
1788 		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
1789 						sctx->write_pointer, length);
1790 		if (!ret)
1791 			sctx->write_pointer = physical;
1792 	}
1793 	return ret;
1794 }
1795 
1796 static void scrub_block_get(struct scrub_block *sblock)
1797 {
1798 	refcount_inc(&sblock->refs);
1799 }
1800 
1801 static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
1802 				      struct scrub_sector *sector)
1803 {
1804 	struct scrub_block *sblock = sector->sblock;
1805 	struct scrub_bio *sbio;
1806 	int ret;
1807 	const u32 sectorsize = sctx->fs_info->sectorsize;
1808 
1809 	mutex_lock(&sctx->wr_lock);
1810 again:
1811 	if (!sctx->wr_curr_bio) {
1812 		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1813 					      GFP_KERNEL);
1814 		if (!sctx->wr_curr_bio) {
1815 			mutex_unlock(&sctx->wr_lock);
1816 			return -ENOMEM;
1817 		}
1818 		sctx->wr_curr_bio->sctx = sctx;
1819 		sctx->wr_curr_bio->sector_count = 0;
1820 	}
1821 	sbio = sctx->wr_curr_bio;
1822 	if (sbio->sector_count == 0) {
1823 		ret = fill_writer_pointer_gap(sctx, sector->offset +
1824 					      sblock->physical_for_dev_replace);
1825 		if (ret) {
1826 			mutex_unlock(&sctx->wr_lock);
1827 			return ret;
1828 		}
1829 
1830 		sbio->physical = sblock->physical_for_dev_replace + sector->offset;
1831 		sbio->logical = sblock->logical + sector->offset;
1832 		sbio->dev = sctx->wr_tgtdev;
1833 		if (!sbio->bio) {
1834 			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
1835 					      REQ_OP_WRITE, GFP_NOFS);
1836 		}
1837 		sbio->bio->bi_private = sbio;
1838 		sbio->bio->bi_end_io = scrub_wr_bio_end_io;
1839 		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
1840 		sbio->status = 0;
1841 	} else if (sbio->physical + sbio->sector_count * sectorsize !=
1842 		   sblock->physical_for_dev_replace + sector->offset ||
1843 		   sbio->logical + sbio->sector_count * sectorsize !=
1844 		   sblock->logical + sector->offset) {
1845 		scrub_wr_submit(sctx);
1846 		goto again;
1847 	}
1848 
1849 	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
1850 	if (ret != sectorsize) {
1851 		if (sbio->sector_count < 1) {
1852 			bio_put(sbio->bio);
1853 			sbio->bio = NULL;
1854 			mutex_unlock(&sctx->wr_lock);
1855 			return -EIO;
1856 		}
1857 		scrub_wr_submit(sctx);
1858 		goto again;
1859 	}
1860 
1861 	sbio->sectors[sbio->sector_count] = sector;
1862 	scrub_sector_get(sector);
1863 	/*
1864 	 * Since ssector no longer holds a page, but uses sblock::pages, we
1865 	 * have to ensure the sblock had not been freed before our write bio
1866 	 * finished.
1867 	 */
1868 	scrub_block_get(sector->sblock);
1869 
1870 	sbio->sector_count++;
1871 	if (sbio->sector_count == sctx->sectors_per_bio)
1872 		scrub_wr_submit(sctx);
1873 	mutex_unlock(&sctx->wr_lock);
1874 
1875 	return 0;
1876 }
1877 
1878 static void scrub_wr_submit(struct scrub_ctx *sctx)
1879 {
1880 	struct scrub_bio *sbio;
1881 
1882 	if (!sctx->wr_curr_bio)
1883 		return;
1884 
1885 	sbio = sctx->wr_curr_bio;
1886 	sctx->wr_curr_bio = NULL;
1887 	scrub_pending_bio_inc(sctx);
1888 	/* process all writes in a single worker thread. Then the block layer
1889 	 * orders the requests before sending them to the driver which
1890 	 * doubled the write performance on spinning disks when measured
1891 	 * with Linux 3.5 */
1892 	btrfsic_check_bio(sbio->bio);
1893 	submit_bio(sbio->bio);
1894 
1895 	if (btrfs_is_zoned(sctx->fs_info))
1896 		sctx->write_pointer = sbio->physical + sbio->sector_count *
1897 			sctx->fs_info->sectorsize;
1898 }
1899 
1900 static void scrub_wr_bio_end_io(struct bio *bio)
1901 {
1902 	struct scrub_bio *sbio = bio->bi_private;
1903 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1904 
1905 	sbio->status = bio->bi_status;
1906 	sbio->bio = bio;
1907 
1908 	INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker);
1909 	queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1910 }
1911 
1912 static void scrub_wr_bio_end_io_worker(struct work_struct *work)
1913 {
1914 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1915 	struct scrub_ctx *sctx = sbio->sctx;
1916 	int i;
1917 
1918 	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
1919 	if (sbio->status) {
1920 		struct btrfs_dev_replace *dev_replace =
1921 			&sbio->sctx->fs_info->dev_replace;
1922 
1923 		for (i = 0; i < sbio->sector_count; i++) {
1924 			struct scrub_sector *sector = sbio->sectors[i];
1925 
1926 			sector->io_error = 1;
1927 			atomic64_inc(&dev_replace->num_write_errors);
1928 		}
1929 	}
1930 
1931 	/*
1932 	 * In scrub_add_sector_to_wr_bio() we grab extra ref for sblock, now in
1933 	 * endio we should put the sblock.
1934 	 */
1935 	for (i = 0; i < sbio->sector_count; i++) {
1936 		scrub_block_put(sbio->sectors[i]->sblock);
1937 		scrub_sector_put(sbio->sectors[i]);
1938 	}
1939 
1940 	bio_put(sbio->bio);
1941 	kfree(sbio);
1942 	scrub_pending_bio_dec(sctx);
1943 }
1944 
1945 static int scrub_checksum(struct scrub_block *sblock)
1946 {
1947 	u64 flags;
1948 	int ret;
1949 
1950 	/*
1951 	 * No need to initialize these stats currently,
1952 	 * because this function only use return value
1953 	 * instead of these stats value.
1954 	 *
1955 	 * Todo:
1956 	 * always use stats
1957 	 */
1958 	sblock->header_error = 0;
1959 	sblock->generation_error = 0;
1960 	sblock->checksum_error = 0;
1961 
1962 	WARN_ON(sblock->sector_count < 1);
1963 	flags = sblock->sectors[0]->flags;
1964 	ret = 0;
1965 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1966 		ret = scrub_checksum_data(sblock);
1967 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1968 		ret = scrub_checksum_tree_block(sblock);
1969 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1970 		ret = scrub_checksum_super(sblock);
1971 	else
1972 		WARN_ON(1);
1973 	if (ret)
1974 		scrub_handle_errored_block(sblock);
1975 
1976 	return ret;
1977 }
1978 
1979 static int scrub_checksum_data(struct scrub_block *sblock)
1980 {
1981 	struct scrub_ctx *sctx = sblock->sctx;
1982 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1983 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1984 	u8 csum[BTRFS_CSUM_SIZE];
1985 	struct scrub_sector *sector;
1986 	char *kaddr;
1987 
1988 	BUG_ON(sblock->sector_count < 1);
1989 	sector = sblock->sectors[0];
1990 	if (!sector->have_csum)
1991 		return 0;
1992 
1993 	kaddr = scrub_sector_get_kaddr(sector);
1994 
1995 	shash->tfm = fs_info->csum_shash;
1996 	crypto_shash_init(shash);
1997 
1998 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
1999 
2000 	if (memcmp(csum, sector->csum, fs_info->csum_size))
2001 		sblock->checksum_error = 1;
2002 	return sblock->checksum_error;
2003 }
2004 
2005 static int scrub_checksum_tree_block(struct scrub_block *sblock)
2006 {
2007 	struct scrub_ctx *sctx = sblock->sctx;
2008 	struct btrfs_header *h;
2009 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2010 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2011 	u8 calculated_csum[BTRFS_CSUM_SIZE];
2012 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2013 	/*
2014 	 * This is done in sectorsize steps even for metadata as there's a
2015 	 * constraint for nodesize to be aligned to sectorsize. This will need
2016 	 * to change so we don't misuse data and metadata units like that.
2017 	 */
2018 	const u32 sectorsize = sctx->fs_info->sectorsize;
2019 	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
2020 	int i;
2021 	struct scrub_sector *sector;
2022 	char *kaddr;
2023 
2024 	BUG_ON(sblock->sector_count < 1);
2025 
2026 	/* Each member in sectors is just one sector */
2027 	ASSERT(sblock->sector_count == num_sectors);
2028 
2029 	sector = sblock->sectors[0];
2030 	kaddr = scrub_sector_get_kaddr(sector);
2031 	h = (struct btrfs_header *)kaddr;
2032 	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
2033 
2034 	/*
2035 	 * we don't use the getter functions here, as we
2036 	 * a) don't have an extent buffer and
2037 	 * b) the page is already kmapped
2038 	 */
2039 	if (sblock->logical != btrfs_stack_header_bytenr(h))
2040 		sblock->header_error = 1;
2041 
2042 	if (sector->generation != btrfs_stack_header_generation(h)) {
2043 		sblock->header_error = 1;
2044 		sblock->generation_error = 1;
2045 	}
2046 
2047 	if (!scrub_check_fsid(h->fsid, sector))
2048 		sblock->header_error = 1;
2049 
2050 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
2051 		   BTRFS_UUID_SIZE))
2052 		sblock->header_error = 1;
2053 
2054 	shash->tfm = fs_info->csum_shash;
2055 	crypto_shash_init(shash);
2056 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
2057 			    sectorsize - BTRFS_CSUM_SIZE);
2058 
2059 	for (i = 1; i < num_sectors; i++) {
2060 		kaddr = scrub_sector_get_kaddr(sblock->sectors[i]);
2061 		crypto_shash_update(shash, kaddr, sectorsize);
2062 	}
2063 
2064 	crypto_shash_final(shash, calculated_csum);
2065 	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
2066 		sblock->checksum_error = 1;
2067 
2068 	return sblock->header_error || sblock->checksum_error;
2069 }
2070 
2071 static int scrub_checksum_super(struct scrub_block *sblock)
2072 {
2073 	struct btrfs_super_block *s;
2074 	struct scrub_ctx *sctx = sblock->sctx;
2075 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2076 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2077 	u8 calculated_csum[BTRFS_CSUM_SIZE];
2078 	struct scrub_sector *sector;
2079 	char *kaddr;
2080 	int fail_gen = 0;
2081 	int fail_cor = 0;
2082 
2083 	BUG_ON(sblock->sector_count < 1);
2084 	sector = sblock->sectors[0];
2085 	kaddr = scrub_sector_get_kaddr(sector);
2086 	s = (struct btrfs_super_block *)kaddr;
2087 
2088 	if (sblock->logical != btrfs_super_bytenr(s))
2089 		++fail_cor;
2090 
2091 	if (sector->generation != btrfs_super_generation(s))
2092 		++fail_gen;
2093 
2094 	if (!scrub_check_fsid(s->fsid, sector))
2095 		++fail_cor;
2096 
2097 	shash->tfm = fs_info->csum_shash;
2098 	crypto_shash_init(shash);
2099 	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
2100 			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
2101 
2102 	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
2103 		++fail_cor;
2104 
2105 	return fail_cor + fail_gen;
2106 }
2107 
2108 static void scrub_block_put(struct scrub_block *sblock)
2109 {
2110 	if (refcount_dec_and_test(&sblock->refs)) {
2111 		int i;
2112 
2113 		if (sblock->sparity)
2114 			scrub_parity_put(sblock->sparity);
2115 
2116 		for (i = 0; i < sblock->sector_count; i++)
2117 			scrub_sector_put(sblock->sectors[i]);
2118 		for (i = 0; i < DIV_ROUND_UP(sblock->len, PAGE_SIZE); i++) {
2119 			if (sblock->pages[i]) {
2120 				detach_scrub_page_private(sblock->pages[i]);
2121 				__free_page(sblock->pages[i]);
2122 			}
2123 		}
2124 		kfree(sblock);
2125 	}
2126 }
2127 
2128 static void scrub_sector_get(struct scrub_sector *sector)
2129 {
2130 	atomic_inc(&sector->refs);
2131 }
2132 
2133 static void scrub_sector_put(struct scrub_sector *sector)
2134 {
2135 	if (atomic_dec_and_test(&sector->refs))
2136 		kfree(sector);
2137 }
2138 
2139 /*
2140  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
2141  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
2142  */
2143 static void scrub_throttle(struct scrub_ctx *sctx)
2144 {
2145 	const int time_slice = 1000;
2146 	struct scrub_bio *sbio;
2147 	struct btrfs_device *device;
2148 	s64 delta;
2149 	ktime_t now;
2150 	u32 div;
2151 	u64 bwlimit;
2152 
2153 	sbio = sctx->bios[sctx->curr];
2154 	device = sbio->dev;
2155 	bwlimit = READ_ONCE(device->scrub_speed_max);
2156 	if (bwlimit == 0)
2157 		return;
2158 
2159 	/*
2160 	 * Slice is divided into intervals when the IO is submitted, adjust by
2161 	 * bwlimit and maximum of 64 intervals.
2162 	 */
2163 	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
2164 	div = min_t(u32, 64, div);
2165 
2166 	/* Start new epoch, set deadline */
2167 	now = ktime_get();
2168 	if (sctx->throttle_deadline == 0) {
2169 		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
2170 		sctx->throttle_sent = 0;
2171 	}
2172 
2173 	/* Still in the time to send? */
2174 	if (ktime_before(now, sctx->throttle_deadline)) {
2175 		/* If current bio is within the limit, send it */
2176 		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
2177 		if (sctx->throttle_sent <= div_u64(bwlimit, div))
2178 			return;
2179 
2180 		/* We're over the limit, sleep until the rest of the slice */
2181 		delta = ktime_ms_delta(sctx->throttle_deadline, now);
2182 	} else {
2183 		/* New request after deadline, start new epoch */
2184 		delta = 0;
2185 	}
2186 
2187 	if (delta) {
2188 		long timeout;
2189 
2190 		timeout = div_u64(delta * HZ, 1000);
2191 		schedule_timeout_interruptible(timeout);
2192 	}
2193 
2194 	/* Next call will start the deadline period */
2195 	sctx->throttle_deadline = 0;
2196 }
2197 
2198 static void scrub_submit(struct scrub_ctx *sctx)
2199 {
2200 	struct scrub_bio *sbio;
2201 
2202 	if (sctx->curr == -1)
2203 		return;
2204 
2205 	scrub_throttle(sctx);
2206 
2207 	sbio = sctx->bios[sctx->curr];
2208 	sctx->curr = -1;
2209 	scrub_pending_bio_inc(sctx);
2210 	btrfsic_check_bio(sbio->bio);
2211 	submit_bio(sbio->bio);
2212 }
2213 
2214 static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx,
2215 				      struct scrub_sector *sector)
2216 {
2217 	struct scrub_block *sblock = sector->sblock;
2218 	struct scrub_bio *sbio;
2219 	const u32 sectorsize = sctx->fs_info->sectorsize;
2220 	int ret;
2221 
2222 again:
2223 	/*
2224 	 * grab a fresh bio or wait for one to become available
2225 	 */
2226 	while (sctx->curr == -1) {
2227 		spin_lock(&sctx->list_lock);
2228 		sctx->curr = sctx->first_free;
2229 		if (sctx->curr != -1) {
2230 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2231 			sctx->bios[sctx->curr]->next_free = -1;
2232 			sctx->bios[sctx->curr]->sector_count = 0;
2233 			spin_unlock(&sctx->list_lock);
2234 		} else {
2235 			spin_unlock(&sctx->list_lock);
2236 			wait_event(sctx->list_wait, sctx->first_free != -1);
2237 		}
2238 	}
2239 	sbio = sctx->bios[sctx->curr];
2240 	if (sbio->sector_count == 0) {
2241 		sbio->physical = sblock->physical + sector->offset;
2242 		sbio->logical = sblock->logical + sector->offset;
2243 		sbio->dev = sblock->dev;
2244 		if (!sbio->bio) {
2245 			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
2246 					      REQ_OP_READ, GFP_NOFS);
2247 		}
2248 		sbio->bio->bi_private = sbio;
2249 		sbio->bio->bi_end_io = scrub_bio_end_io;
2250 		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
2251 		sbio->status = 0;
2252 	} else if (sbio->physical + sbio->sector_count * sectorsize !=
2253 		   sblock->physical + sector->offset ||
2254 		   sbio->logical + sbio->sector_count * sectorsize !=
2255 		   sblock->logical + sector->offset ||
2256 		   sbio->dev != sblock->dev) {
2257 		scrub_submit(sctx);
2258 		goto again;
2259 	}
2260 
2261 	sbio->sectors[sbio->sector_count] = sector;
2262 	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
2263 	if (ret != sectorsize) {
2264 		if (sbio->sector_count < 1) {
2265 			bio_put(sbio->bio);
2266 			sbio->bio = NULL;
2267 			return -EIO;
2268 		}
2269 		scrub_submit(sctx);
2270 		goto again;
2271 	}
2272 
2273 	scrub_block_get(sblock); /* one for the page added to the bio */
2274 	atomic_inc(&sblock->outstanding_sectors);
2275 	sbio->sector_count++;
2276 	if (sbio->sector_count == sctx->sectors_per_bio)
2277 		scrub_submit(sctx);
2278 
2279 	return 0;
2280 }
2281 
2282 static void scrub_missing_raid56_end_io(struct bio *bio)
2283 {
2284 	struct scrub_block *sblock = bio->bi_private;
2285 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2286 
2287 	btrfs_bio_counter_dec(fs_info);
2288 	if (bio->bi_status)
2289 		sblock->no_io_error_seen = 0;
2290 
2291 	bio_put(bio);
2292 
2293 	queue_work(fs_info->scrub_workers, &sblock->work);
2294 }
2295 
2296 static void scrub_missing_raid56_worker(struct work_struct *work)
2297 {
2298 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2299 	struct scrub_ctx *sctx = sblock->sctx;
2300 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2301 	u64 logical;
2302 	struct btrfs_device *dev;
2303 
2304 	logical = sblock->logical;
2305 	dev = sblock->dev;
2306 
2307 	if (sblock->no_io_error_seen)
2308 		scrub_recheck_block_checksum(sblock);
2309 
2310 	if (!sblock->no_io_error_seen) {
2311 		spin_lock(&sctx->stat_lock);
2312 		sctx->stat.read_errors++;
2313 		spin_unlock(&sctx->stat_lock);
2314 		btrfs_err_rl_in_rcu(fs_info,
2315 			"IO error rebuilding logical %llu for dev %s",
2316 			logical, rcu_str_deref(dev->name));
2317 	} else if (sblock->header_error || sblock->checksum_error) {
2318 		spin_lock(&sctx->stat_lock);
2319 		sctx->stat.uncorrectable_errors++;
2320 		spin_unlock(&sctx->stat_lock);
2321 		btrfs_err_rl_in_rcu(fs_info,
2322 			"failed to rebuild valid logical %llu for dev %s",
2323 			logical, rcu_str_deref(dev->name));
2324 	} else {
2325 		scrub_write_block_to_dev_replace(sblock);
2326 	}
2327 
2328 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2329 		mutex_lock(&sctx->wr_lock);
2330 		scrub_wr_submit(sctx);
2331 		mutex_unlock(&sctx->wr_lock);
2332 	}
2333 
2334 	scrub_block_put(sblock);
2335 	scrub_pending_bio_dec(sctx);
2336 }
2337 
2338 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2339 {
2340 	struct scrub_ctx *sctx = sblock->sctx;
2341 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2342 	u64 length = sblock->sector_count << fs_info->sectorsize_bits;
2343 	u64 logical = sblock->logical;
2344 	struct btrfs_io_context *bioc = NULL;
2345 	struct bio *bio;
2346 	struct btrfs_raid_bio *rbio;
2347 	int ret;
2348 	int i;
2349 
2350 	btrfs_bio_counter_inc_blocked(fs_info);
2351 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2352 			       &length, &bioc);
2353 	if (ret || !bioc || !bioc->raid_map)
2354 		goto bioc_out;
2355 
2356 	if (WARN_ON(!sctx->is_dev_replace ||
2357 		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2358 		/*
2359 		 * We shouldn't be scrubbing a missing device. Even for dev
2360 		 * replace, we should only get here for RAID 5/6. We either
2361 		 * managed to mount something with no mirrors remaining or
2362 		 * there's a bug in scrub_find_good_copy()/btrfs_map_block().
2363 		 */
2364 		goto bioc_out;
2365 	}
2366 
2367 	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2368 	bio->bi_iter.bi_sector = logical >> 9;
2369 	bio->bi_private = sblock;
2370 	bio->bi_end_io = scrub_missing_raid56_end_io;
2371 
2372 	rbio = raid56_alloc_missing_rbio(bio, bioc);
2373 	if (!rbio)
2374 		goto rbio_out;
2375 
2376 	for (i = 0; i < sblock->sector_count; i++) {
2377 		struct scrub_sector *sector = sblock->sectors[i];
2378 
2379 		raid56_add_scrub_pages(rbio, scrub_sector_get_page(sector),
2380 				       scrub_sector_get_page_offset(sector),
2381 				       sector->offset + sector->sblock->logical);
2382 	}
2383 
2384 	INIT_WORK(&sblock->work, scrub_missing_raid56_worker);
2385 	scrub_block_get(sblock);
2386 	scrub_pending_bio_inc(sctx);
2387 	raid56_submit_missing_rbio(rbio);
2388 	btrfs_put_bioc(bioc);
2389 	return;
2390 
2391 rbio_out:
2392 	bio_put(bio);
2393 bioc_out:
2394 	btrfs_bio_counter_dec(fs_info);
2395 	btrfs_put_bioc(bioc);
2396 	spin_lock(&sctx->stat_lock);
2397 	sctx->stat.malloc_errors++;
2398 	spin_unlock(&sctx->stat_lock);
2399 }
2400 
2401 static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
2402 		       u64 physical, struct btrfs_device *dev, u64 flags,
2403 		       u64 gen, int mirror_num, u8 *csum,
2404 		       u64 physical_for_dev_replace)
2405 {
2406 	struct scrub_block *sblock;
2407 	const u32 sectorsize = sctx->fs_info->sectorsize;
2408 	int index;
2409 
2410 	sblock = alloc_scrub_block(sctx, dev, logical, physical,
2411 				   physical_for_dev_replace, mirror_num);
2412 	if (!sblock) {
2413 		spin_lock(&sctx->stat_lock);
2414 		sctx->stat.malloc_errors++;
2415 		spin_unlock(&sctx->stat_lock);
2416 		return -ENOMEM;
2417 	}
2418 
2419 	for (index = 0; len > 0; index++) {
2420 		struct scrub_sector *sector;
2421 		/*
2422 		 * Here we will allocate one page for one sector to scrub.
2423 		 * This is fine if PAGE_SIZE == sectorsize, but will cost
2424 		 * more memory for PAGE_SIZE > sectorsize case.
2425 		 */
2426 		u32 l = min(sectorsize, len);
2427 
2428 		sector = alloc_scrub_sector(sblock, logical, GFP_KERNEL);
2429 		if (!sector) {
2430 			spin_lock(&sctx->stat_lock);
2431 			sctx->stat.malloc_errors++;
2432 			spin_unlock(&sctx->stat_lock);
2433 			scrub_block_put(sblock);
2434 			return -ENOMEM;
2435 		}
2436 		sector->flags = flags;
2437 		sector->generation = gen;
2438 		if (csum) {
2439 			sector->have_csum = 1;
2440 			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2441 		} else {
2442 			sector->have_csum = 0;
2443 		}
2444 		len -= l;
2445 		logical += l;
2446 		physical += l;
2447 		physical_for_dev_replace += l;
2448 	}
2449 
2450 	WARN_ON(sblock->sector_count == 0);
2451 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2452 		/*
2453 		 * This case should only be hit for RAID 5/6 device replace. See
2454 		 * the comment in scrub_missing_raid56_pages() for details.
2455 		 */
2456 		scrub_missing_raid56_pages(sblock);
2457 	} else {
2458 		for (index = 0; index < sblock->sector_count; index++) {
2459 			struct scrub_sector *sector = sblock->sectors[index];
2460 			int ret;
2461 
2462 			ret = scrub_add_sector_to_rd_bio(sctx, sector);
2463 			if (ret) {
2464 				scrub_block_put(sblock);
2465 				return ret;
2466 			}
2467 		}
2468 
2469 		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2470 			scrub_submit(sctx);
2471 	}
2472 
2473 	/* last one frees, either here or in bio completion for last page */
2474 	scrub_block_put(sblock);
2475 	return 0;
2476 }
2477 
2478 static void scrub_bio_end_io(struct bio *bio)
2479 {
2480 	struct scrub_bio *sbio = bio->bi_private;
2481 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2482 
2483 	sbio->status = bio->bi_status;
2484 	sbio->bio = bio;
2485 
2486 	queue_work(fs_info->scrub_workers, &sbio->work);
2487 }
2488 
2489 static void scrub_bio_end_io_worker(struct work_struct *work)
2490 {
2491 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2492 	struct scrub_ctx *sctx = sbio->sctx;
2493 	int i;
2494 
2495 	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
2496 	if (sbio->status) {
2497 		for (i = 0; i < sbio->sector_count; i++) {
2498 			struct scrub_sector *sector = sbio->sectors[i];
2499 
2500 			sector->io_error = 1;
2501 			sector->sblock->no_io_error_seen = 0;
2502 		}
2503 	}
2504 
2505 	/* Now complete the scrub_block items that have all pages completed */
2506 	for (i = 0; i < sbio->sector_count; i++) {
2507 		struct scrub_sector *sector = sbio->sectors[i];
2508 		struct scrub_block *sblock = sector->sblock;
2509 
2510 		if (atomic_dec_and_test(&sblock->outstanding_sectors))
2511 			scrub_block_complete(sblock);
2512 		scrub_block_put(sblock);
2513 	}
2514 
2515 	bio_put(sbio->bio);
2516 	sbio->bio = NULL;
2517 	spin_lock(&sctx->list_lock);
2518 	sbio->next_free = sctx->first_free;
2519 	sctx->first_free = sbio->index;
2520 	spin_unlock(&sctx->list_lock);
2521 
2522 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2523 		mutex_lock(&sctx->wr_lock);
2524 		scrub_wr_submit(sctx);
2525 		mutex_unlock(&sctx->wr_lock);
2526 	}
2527 
2528 	scrub_pending_bio_dec(sctx);
2529 }
2530 
2531 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2532 				       unsigned long *bitmap,
2533 				       u64 start, u32 len)
2534 {
2535 	u64 offset;
2536 	u32 nsectors;
2537 	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2538 
2539 	if (len >= sparity->stripe_len) {
2540 		bitmap_set(bitmap, 0, sparity->nsectors);
2541 		return;
2542 	}
2543 
2544 	start -= sparity->logic_start;
2545 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2546 	offset = offset >> sectorsize_bits;
2547 	nsectors = len >> sectorsize_bits;
2548 
2549 	if (offset + nsectors <= sparity->nsectors) {
2550 		bitmap_set(bitmap, offset, nsectors);
2551 		return;
2552 	}
2553 
2554 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2555 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2556 }
2557 
2558 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2559 						   u64 start, u32 len)
2560 {
2561 	__scrub_mark_bitmap(sparity, &sparity->ebitmap, start, len);
2562 }
2563 
2564 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2565 						  u64 start, u32 len)
2566 {
2567 	__scrub_mark_bitmap(sparity, &sparity->dbitmap, start, len);
2568 }
2569 
2570 static void scrub_block_complete(struct scrub_block *sblock)
2571 {
2572 	int corrupted = 0;
2573 
2574 	if (!sblock->no_io_error_seen) {
2575 		corrupted = 1;
2576 		scrub_handle_errored_block(sblock);
2577 	} else {
2578 		/*
2579 		 * if has checksum error, write via repair mechanism in
2580 		 * dev replace case, otherwise write here in dev replace
2581 		 * case.
2582 		 */
2583 		corrupted = scrub_checksum(sblock);
2584 		if (!corrupted && sblock->sctx->is_dev_replace)
2585 			scrub_write_block_to_dev_replace(sblock);
2586 	}
2587 
2588 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2589 		u64 start = sblock->logical;
2590 		u64 end = sblock->logical +
2591 			  sblock->sectors[sblock->sector_count - 1]->offset +
2592 			  sblock->sctx->fs_info->sectorsize;
2593 
2594 		ASSERT(end - start <= U32_MAX);
2595 		scrub_parity_mark_sectors_error(sblock->sparity,
2596 						start, end - start);
2597 	}
2598 }
2599 
2600 static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
2601 {
2602 	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
2603 	list_del(&sum->list);
2604 	kfree(sum);
2605 }
2606 
2607 /*
2608  * Find the desired csum for range [logical, logical + sectorsize), and store
2609  * the csum into @csum.
2610  *
2611  * The search source is sctx->csum_list, which is a pre-populated list
2612  * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2613  * that is before @logical.
2614  *
2615  * Return 0 if there is no csum for the range.
2616  * Return 1 if there is csum for the range and copied to @csum.
2617  */
2618 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2619 {
2620 	bool found = false;
2621 
2622 	while (!list_empty(&sctx->csum_list)) {
2623 		struct btrfs_ordered_sum *sum = NULL;
2624 		unsigned long index;
2625 		unsigned long num_sectors;
2626 
2627 		sum = list_first_entry(&sctx->csum_list,
2628 				       struct btrfs_ordered_sum, list);
2629 		/* The current csum range is beyond our range, no csum found */
2630 		if (sum->bytenr > logical)
2631 			break;
2632 
2633 		/*
2634 		 * The current sum is before our bytenr, since scrub is always
2635 		 * done in bytenr order, the csum will never be used anymore,
2636 		 * clean it up so that later calls won't bother with the range,
2637 		 * and continue search the next range.
2638 		 */
2639 		if (sum->bytenr + sum->len <= logical) {
2640 			drop_csum_range(sctx, sum);
2641 			continue;
2642 		}
2643 
2644 		/* Now the csum range covers our bytenr, copy the csum */
2645 		found = true;
2646 		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
2647 		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2648 
2649 		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
2650 		       sctx->fs_info->csum_size);
2651 
2652 		/* Cleanup the range if we're at the end of the csum range */
2653 		if (index == num_sectors - 1)
2654 			drop_csum_range(sctx, sum);
2655 		break;
2656 	}
2657 	if (!found)
2658 		return 0;
2659 	return 1;
2660 }
2661 
2662 /* scrub extent tries to collect up to 64 kB for each bio */
2663 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2664 			u64 logical, u32 len,
2665 			u64 physical, struct btrfs_device *dev, u64 flags,
2666 			u64 gen, int mirror_num)
2667 {
2668 	struct btrfs_device *src_dev = dev;
2669 	u64 src_physical = physical;
2670 	int src_mirror = mirror_num;
2671 	int ret;
2672 	u8 csum[BTRFS_CSUM_SIZE];
2673 	u32 blocksize;
2674 
2675 	/*
2676 	 * Block size determines how many scrub_block will be allocated.  Here
2677 	 * we use BTRFS_STRIPE_LEN (64KiB) as default limit, so we won't
2678 	 * allocate too many scrub_block, while still won't cause too large
2679 	 * bios for large extents.
2680 	 */
2681 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2682 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2683 			blocksize = map->stripe_len;
2684 		else
2685 			blocksize = BTRFS_STRIPE_LEN;
2686 		spin_lock(&sctx->stat_lock);
2687 		sctx->stat.data_extents_scrubbed++;
2688 		sctx->stat.data_bytes_scrubbed += len;
2689 		spin_unlock(&sctx->stat_lock);
2690 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2691 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2692 			blocksize = map->stripe_len;
2693 		else
2694 			blocksize = sctx->fs_info->nodesize;
2695 		spin_lock(&sctx->stat_lock);
2696 		sctx->stat.tree_extents_scrubbed++;
2697 		sctx->stat.tree_bytes_scrubbed += len;
2698 		spin_unlock(&sctx->stat_lock);
2699 	} else {
2700 		blocksize = sctx->fs_info->sectorsize;
2701 		WARN_ON(1);
2702 	}
2703 
2704 	/*
2705 	 * For dev-replace case, we can have @dev being a missing device.
2706 	 * Regular scrub will avoid its execution on missing device at all,
2707 	 * as that would trigger tons of read error.
2708 	 *
2709 	 * Reading from missing device will cause read error counts to
2710 	 * increase unnecessarily.
2711 	 * So here we change the read source to a good mirror.
2712 	 */
2713 	if (sctx->is_dev_replace && !dev->bdev)
2714 		scrub_find_good_copy(sctx->fs_info, logical, len, &src_physical,
2715 				     &src_dev, &src_mirror);
2716 	while (len) {
2717 		u32 l = min(len, blocksize);
2718 		int have_csum = 0;
2719 
2720 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2721 			/* push csums to sbio */
2722 			have_csum = scrub_find_csum(sctx, logical, csum);
2723 			if (have_csum == 0)
2724 				++sctx->stat.no_csum;
2725 		}
2726 		ret = scrub_sectors(sctx, logical, l, src_physical, src_dev,
2727 				    flags, gen, src_mirror,
2728 				    have_csum ? csum : NULL, physical);
2729 		if (ret)
2730 			return ret;
2731 		len -= l;
2732 		logical += l;
2733 		physical += l;
2734 		src_physical += l;
2735 	}
2736 	return 0;
2737 }
2738 
2739 static int scrub_sectors_for_parity(struct scrub_parity *sparity,
2740 				  u64 logical, u32 len,
2741 				  u64 physical, struct btrfs_device *dev,
2742 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2743 {
2744 	struct scrub_ctx *sctx = sparity->sctx;
2745 	struct scrub_block *sblock;
2746 	const u32 sectorsize = sctx->fs_info->sectorsize;
2747 	int index;
2748 
2749 	ASSERT(IS_ALIGNED(len, sectorsize));
2750 
2751 	sblock = alloc_scrub_block(sctx, dev, logical, physical, physical, mirror_num);
2752 	if (!sblock) {
2753 		spin_lock(&sctx->stat_lock);
2754 		sctx->stat.malloc_errors++;
2755 		spin_unlock(&sctx->stat_lock);
2756 		return -ENOMEM;
2757 	}
2758 
2759 	sblock->sparity = sparity;
2760 	scrub_parity_get(sparity);
2761 
2762 	for (index = 0; len > 0; index++) {
2763 		struct scrub_sector *sector;
2764 
2765 		sector = alloc_scrub_sector(sblock, logical, GFP_KERNEL);
2766 		if (!sector) {
2767 			spin_lock(&sctx->stat_lock);
2768 			sctx->stat.malloc_errors++;
2769 			spin_unlock(&sctx->stat_lock);
2770 			scrub_block_put(sblock);
2771 			return -ENOMEM;
2772 		}
2773 		sblock->sectors[index] = sector;
2774 		/* For scrub parity */
2775 		scrub_sector_get(sector);
2776 		list_add_tail(&sector->list, &sparity->sectors_list);
2777 		sector->flags = flags;
2778 		sector->generation = gen;
2779 		if (csum) {
2780 			sector->have_csum = 1;
2781 			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2782 		} else {
2783 			sector->have_csum = 0;
2784 		}
2785 
2786 		/* Iterate over the stripe range in sectorsize steps */
2787 		len -= sectorsize;
2788 		logical += sectorsize;
2789 		physical += sectorsize;
2790 	}
2791 
2792 	WARN_ON(sblock->sector_count == 0);
2793 	for (index = 0; index < sblock->sector_count; index++) {
2794 		struct scrub_sector *sector = sblock->sectors[index];
2795 		int ret;
2796 
2797 		ret = scrub_add_sector_to_rd_bio(sctx, sector);
2798 		if (ret) {
2799 			scrub_block_put(sblock);
2800 			return ret;
2801 		}
2802 	}
2803 
2804 	/* Last one frees, either here or in bio completion for last sector */
2805 	scrub_block_put(sblock);
2806 	return 0;
2807 }
2808 
2809 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2810 				   u64 logical, u32 len,
2811 				   u64 physical, struct btrfs_device *dev,
2812 				   u64 flags, u64 gen, int mirror_num)
2813 {
2814 	struct scrub_ctx *sctx = sparity->sctx;
2815 	int ret;
2816 	u8 csum[BTRFS_CSUM_SIZE];
2817 	u32 blocksize;
2818 
2819 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2820 		scrub_parity_mark_sectors_error(sparity, logical, len);
2821 		return 0;
2822 	}
2823 
2824 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2825 		blocksize = sparity->stripe_len;
2826 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2827 		blocksize = sparity->stripe_len;
2828 	} else {
2829 		blocksize = sctx->fs_info->sectorsize;
2830 		WARN_ON(1);
2831 	}
2832 
2833 	while (len) {
2834 		u32 l = min(len, blocksize);
2835 		int have_csum = 0;
2836 
2837 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2838 			/* push csums to sbio */
2839 			have_csum = scrub_find_csum(sctx, logical, csum);
2840 			if (have_csum == 0)
2841 				goto skip;
2842 		}
2843 		ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev,
2844 					     flags, gen, mirror_num,
2845 					     have_csum ? csum : NULL);
2846 		if (ret)
2847 			return ret;
2848 skip:
2849 		len -= l;
2850 		logical += l;
2851 		physical += l;
2852 	}
2853 	return 0;
2854 }
2855 
2856 /*
2857  * Given a physical address, this will calculate it's
2858  * logical offset. if this is a parity stripe, it will return
2859  * the most left data stripe's logical offset.
2860  *
2861  * return 0 if it is a data stripe, 1 means parity stripe.
2862  */
2863 static int get_raid56_logic_offset(u64 physical, int num,
2864 				   struct map_lookup *map, u64 *offset,
2865 				   u64 *stripe_start)
2866 {
2867 	int i;
2868 	int j = 0;
2869 	u64 stripe_nr;
2870 	u64 last_offset;
2871 	u32 stripe_index;
2872 	u32 rot;
2873 	const int data_stripes = nr_data_stripes(map);
2874 
2875 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2876 	if (stripe_start)
2877 		*stripe_start = last_offset;
2878 
2879 	*offset = last_offset;
2880 	for (i = 0; i < data_stripes; i++) {
2881 		*offset = last_offset + i * map->stripe_len;
2882 
2883 		stripe_nr = div64_u64(*offset, map->stripe_len);
2884 		stripe_nr = div_u64(stripe_nr, data_stripes);
2885 
2886 		/* Work out the disk rotation on this stripe-set */
2887 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2888 		/* calculate which stripe this data locates */
2889 		rot += i;
2890 		stripe_index = rot % map->num_stripes;
2891 		if (stripe_index == num)
2892 			return 0;
2893 		if (stripe_index < num)
2894 			j++;
2895 	}
2896 	*offset = last_offset + j * map->stripe_len;
2897 	return 1;
2898 }
2899 
2900 static void scrub_free_parity(struct scrub_parity *sparity)
2901 {
2902 	struct scrub_ctx *sctx = sparity->sctx;
2903 	struct scrub_sector *curr, *next;
2904 	int nbits;
2905 
2906 	nbits = bitmap_weight(&sparity->ebitmap, sparity->nsectors);
2907 	if (nbits) {
2908 		spin_lock(&sctx->stat_lock);
2909 		sctx->stat.read_errors += nbits;
2910 		sctx->stat.uncorrectable_errors += nbits;
2911 		spin_unlock(&sctx->stat_lock);
2912 	}
2913 
2914 	list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) {
2915 		list_del_init(&curr->list);
2916 		scrub_sector_put(curr);
2917 	}
2918 
2919 	kfree(sparity);
2920 }
2921 
2922 static void scrub_parity_bio_endio_worker(struct work_struct *work)
2923 {
2924 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2925 						    work);
2926 	struct scrub_ctx *sctx = sparity->sctx;
2927 
2928 	btrfs_bio_counter_dec(sctx->fs_info);
2929 	scrub_free_parity(sparity);
2930 	scrub_pending_bio_dec(sctx);
2931 }
2932 
2933 static void scrub_parity_bio_endio(struct bio *bio)
2934 {
2935 	struct scrub_parity *sparity = bio->bi_private;
2936 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2937 
2938 	if (bio->bi_status)
2939 		bitmap_or(&sparity->ebitmap, &sparity->ebitmap,
2940 			  &sparity->dbitmap, sparity->nsectors);
2941 
2942 	bio_put(bio);
2943 
2944 	INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker);
2945 	queue_work(fs_info->scrub_parity_workers, &sparity->work);
2946 }
2947 
2948 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2949 {
2950 	struct scrub_ctx *sctx = sparity->sctx;
2951 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2952 	struct bio *bio;
2953 	struct btrfs_raid_bio *rbio;
2954 	struct btrfs_io_context *bioc = NULL;
2955 	u64 length;
2956 	int ret;
2957 
2958 	if (!bitmap_andnot(&sparity->dbitmap, &sparity->dbitmap,
2959 			   &sparity->ebitmap, sparity->nsectors))
2960 		goto out;
2961 
2962 	length = sparity->logic_end - sparity->logic_start;
2963 
2964 	btrfs_bio_counter_inc_blocked(fs_info);
2965 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2966 			       &length, &bioc);
2967 	if (ret || !bioc || !bioc->raid_map)
2968 		goto bioc_out;
2969 
2970 	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2971 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2972 	bio->bi_private = sparity;
2973 	bio->bi_end_io = scrub_parity_bio_endio;
2974 
2975 	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc,
2976 					      sparity->scrub_dev,
2977 					      &sparity->dbitmap,
2978 					      sparity->nsectors);
2979 	btrfs_put_bioc(bioc);
2980 	if (!rbio)
2981 		goto rbio_out;
2982 
2983 	scrub_pending_bio_inc(sctx);
2984 	raid56_parity_submit_scrub_rbio(rbio);
2985 	return;
2986 
2987 rbio_out:
2988 	bio_put(bio);
2989 bioc_out:
2990 	btrfs_bio_counter_dec(fs_info);
2991 	bitmap_or(&sparity->ebitmap, &sparity->ebitmap, &sparity->dbitmap,
2992 		  sparity->nsectors);
2993 	spin_lock(&sctx->stat_lock);
2994 	sctx->stat.malloc_errors++;
2995 	spin_unlock(&sctx->stat_lock);
2996 out:
2997 	scrub_free_parity(sparity);
2998 }
2999 
3000 static void scrub_parity_get(struct scrub_parity *sparity)
3001 {
3002 	refcount_inc(&sparity->refs);
3003 }
3004 
3005 static void scrub_parity_put(struct scrub_parity *sparity)
3006 {
3007 	if (!refcount_dec_and_test(&sparity->refs))
3008 		return;
3009 
3010 	scrub_parity_check_and_repair(sparity);
3011 }
3012 
3013 /*
3014  * Return 0 if the extent item range covers any byte of the range.
3015  * Return <0 if the extent item is before @search_start.
3016  * Return >0 if the extent item is after @start_start + @search_len.
3017  */
3018 static int compare_extent_item_range(struct btrfs_path *path,
3019 				     u64 search_start, u64 search_len)
3020 {
3021 	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
3022 	u64 len;
3023 	struct btrfs_key key;
3024 
3025 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3026 	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
3027 	       key.type == BTRFS_METADATA_ITEM_KEY);
3028 	if (key.type == BTRFS_METADATA_ITEM_KEY)
3029 		len = fs_info->nodesize;
3030 	else
3031 		len = key.offset;
3032 
3033 	if (key.objectid + len <= search_start)
3034 		return -1;
3035 	if (key.objectid >= search_start + search_len)
3036 		return 1;
3037 	return 0;
3038 }
3039 
3040 /*
3041  * Locate one extent item which covers any byte in range
3042  * [@search_start, @search_start + @search_length)
3043  *
3044  * If the path is not initialized, we will initialize the search by doing
3045  * a btrfs_search_slot().
3046  * If the path is already initialized, we will use the path as the initial
3047  * slot, to avoid duplicated btrfs_search_slot() calls.
3048  *
3049  * NOTE: If an extent item starts before @search_start, we will still
3050  * return the extent item. This is for data extent crossing stripe boundary.
3051  *
3052  * Return 0 if we found such extent item, and @path will point to the extent item.
3053  * Return >0 if no such extent item can be found, and @path will be released.
3054  * Return <0 if hit fatal error, and @path will be released.
3055  */
3056 static int find_first_extent_item(struct btrfs_root *extent_root,
3057 				  struct btrfs_path *path,
3058 				  u64 search_start, u64 search_len)
3059 {
3060 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3061 	struct btrfs_key key;
3062 	int ret;
3063 
3064 	/* Continue using the existing path */
3065 	if (path->nodes[0])
3066 		goto search_forward;
3067 
3068 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3069 		key.type = BTRFS_METADATA_ITEM_KEY;
3070 	else
3071 		key.type = BTRFS_EXTENT_ITEM_KEY;
3072 	key.objectid = search_start;
3073 	key.offset = (u64)-1;
3074 
3075 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3076 	if (ret < 0)
3077 		return ret;
3078 
3079 	ASSERT(ret > 0);
3080 	/*
3081 	 * Here we intentionally pass 0 as @min_objectid, as there could be
3082 	 * an extent item starting before @search_start.
3083 	 */
3084 	ret = btrfs_previous_extent_item(extent_root, path, 0);
3085 	if (ret < 0)
3086 		return ret;
3087 	/*
3088 	 * No matter whether we have found an extent item, the next loop will
3089 	 * properly do every check on the key.
3090 	 */
3091 search_forward:
3092 	while (true) {
3093 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3094 		if (key.objectid >= search_start + search_len)
3095 			break;
3096 		if (key.type != BTRFS_METADATA_ITEM_KEY &&
3097 		    key.type != BTRFS_EXTENT_ITEM_KEY)
3098 			goto next;
3099 
3100 		ret = compare_extent_item_range(path, search_start, search_len);
3101 		if (ret == 0)
3102 			return ret;
3103 		if (ret > 0)
3104 			break;
3105 next:
3106 		path->slots[0]++;
3107 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3108 			ret = btrfs_next_leaf(extent_root, path);
3109 			if (ret) {
3110 				/* Either no more item or fatal error */
3111 				btrfs_release_path(path);
3112 				return ret;
3113 			}
3114 		}
3115 	}
3116 	btrfs_release_path(path);
3117 	return 1;
3118 }
3119 
3120 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
3121 			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
3122 {
3123 	struct btrfs_key key;
3124 	struct btrfs_extent_item *ei;
3125 
3126 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3127 	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
3128 	       key.type == BTRFS_EXTENT_ITEM_KEY);
3129 	*extent_start_ret = key.objectid;
3130 	if (key.type == BTRFS_METADATA_ITEM_KEY)
3131 		*size_ret = path->nodes[0]->fs_info->nodesize;
3132 	else
3133 		*size_ret = key.offset;
3134 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
3135 	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
3136 	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
3137 }
3138 
3139 static bool does_range_cross_boundary(u64 extent_start, u64 extent_len,
3140 				      u64 boundary_start, u64 boudary_len)
3141 {
3142 	return (extent_start < boundary_start &&
3143 		extent_start + extent_len > boundary_start) ||
3144 	       (extent_start < boundary_start + boudary_len &&
3145 		extent_start + extent_len > boundary_start + boudary_len);
3146 }
3147 
3148 static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx,
3149 					       struct scrub_parity *sparity,
3150 					       struct map_lookup *map,
3151 					       struct btrfs_device *sdev,
3152 					       struct btrfs_path *path,
3153 					       u64 logical)
3154 {
3155 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3156 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
3157 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical);
3158 	u64 cur_logical = logical;
3159 	int ret;
3160 
3161 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
3162 
3163 	/* Path must not be populated */
3164 	ASSERT(!path->nodes[0]);
3165 
3166 	while (cur_logical < logical + map->stripe_len) {
3167 		struct btrfs_io_context *bioc = NULL;
3168 		struct btrfs_device *extent_dev;
3169 		u64 extent_start;
3170 		u64 extent_size;
3171 		u64 mapped_length;
3172 		u64 extent_flags;
3173 		u64 extent_gen;
3174 		u64 extent_physical;
3175 		u64 extent_mirror_num;
3176 
3177 		ret = find_first_extent_item(extent_root, path, cur_logical,
3178 					     logical + map->stripe_len - cur_logical);
3179 		/* No more extent item in this data stripe */
3180 		if (ret > 0) {
3181 			ret = 0;
3182 			break;
3183 		}
3184 		if (ret < 0)
3185 			break;
3186 		get_extent_info(path, &extent_start, &extent_size, &extent_flags,
3187 				&extent_gen);
3188 
3189 		/* Metadata should not cross stripe boundaries */
3190 		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3191 		    does_range_cross_boundary(extent_start, extent_size,
3192 					      logical, map->stripe_len)) {
3193 			btrfs_err(fs_info,
3194 	"scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3195 				  extent_start, logical);
3196 			spin_lock(&sctx->stat_lock);
3197 			sctx->stat.uncorrectable_errors++;
3198 			spin_unlock(&sctx->stat_lock);
3199 			cur_logical += extent_size;
3200 			continue;
3201 		}
3202 
3203 		/* Skip hole range which doesn't have any extent */
3204 		cur_logical = max(extent_start, cur_logical);
3205 
3206 		/* Truncate the range inside this data stripe */
3207 		extent_size = min(extent_start + extent_size,
3208 				  logical + map->stripe_len) - cur_logical;
3209 		extent_start = cur_logical;
3210 		ASSERT(extent_size <= U32_MAX);
3211 
3212 		scrub_parity_mark_sectors_data(sparity, extent_start, extent_size);
3213 
3214 		mapped_length = extent_size;
3215 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start,
3216 				      &mapped_length, &bioc, 0);
3217 		if (!ret && (!bioc || mapped_length < extent_size))
3218 			ret = -EIO;
3219 		if (ret) {
3220 			btrfs_put_bioc(bioc);
3221 			scrub_parity_mark_sectors_error(sparity, extent_start,
3222 							extent_size);
3223 			break;
3224 		}
3225 		extent_physical = bioc->stripes[0].physical;
3226 		extent_mirror_num = bioc->mirror_num;
3227 		extent_dev = bioc->stripes[0].dev;
3228 		btrfs_put_bioc(bioc);
3229 
3230 		ret = btrfs_lookup_csums_range(csum_root, extent_start,
3231 					       extent_start + extent_size - 1,
3232 					       &sctx->csum_list, 1, false);
3233 		if (ret) {
3234 			scrub_parity_mark_sectors_error(sparity, extent_start,
3235 							extent_size);
3236 			break;
3237 		}
3238 
3239 		ret = scrub_extent_for_parity(sparity, extent_start,
3240 					      extent_size, extent_physical,
3241 					      extent_dev, extent_flags,
3242 					      extent_gen, extent_mirror_num);
3243 		scrub_free_csums(sctx);
3244 
3245 		if (ret) {
3246 			scrub_parity_mark_sectors_error(sparity, extent_start,
3247 							extent_size);
3248 			break;
3249 		}
3250 
3251 		cond_resched();
3252 		cur_logical += extent_size;
3253 	}
3254 	btrfs_release_path(path);
3255 	return ret;
3256 }
3257 
3258 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3259 						  struct map_lookup *map,
3260 						  struct btrfs_device *sdev,
3261 						  u64 logic_start,
3262 						  u64 logic_end)
3263 {
3264 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3265 	struct btrfs_path *path;
3266 	u64 cur_logical;
3267 	int ret;
3268 	struct scrub_parity *sparity;
3269 	int nsectors;
3270 
3271 	path = btrfs_alloc_path();
3272 	if (!path) {
3273 		spin_lock(&sctx->stat_lock);
3274 		sctx->stat.malloc_errors++;
3275 		spin_unlock(&sctx->stat_lock);
3276 		return -ENOMEM;
3277 	}
3278 	path->search_commit_root = 1;
3279 	path->skip_locking = 1;
3280 
3281 	ASSERT(map->stripe_len <= U32_MAX);
3282 	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
3283 	ASSERT(nsectors <= BITS_PER_LONG);
3284 	sparity = kzalloc(sizeof(struct scrub_parity), GFP_NOFS);
3285 	if (!sparity) {
3286 		spin_lock(&sctx->stat_lock);
3287 		sctx->stat.malloc_errors++;
3288 		spin_unlock(&sctx->stat_lock);
3289 		btrfs_free_path(path);
3290 		return -ENOMEM;
3291 	}
3292 
3293 	ASSERT(map->stripe_len <= U32_MAX);
3294 	sparity->stripe_len = map->stripe_len;
3295 	sparity->nsectors = nsectors;
3296 	sparity->sctx = sctx;
3297 	sparity->scrub_dev = sdev;
3298 	sparity->logic_start = logic_start;
3299 	sparity->logic_end = logic_end;
3300 	refcount_set(&sparity->refs, 1);
3301 	INIT_LIST_HEAD(&sparity->sectors_list);
3302 
3303 	ret = 0;
3304 	for (cur_logical = logic_start; cur_logical < logic_end;
3305 	     cur_logical += map->stripe_len) {
3306 		ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map,
3307 							  sdev, path, cur_logical);
3308 		if (ret < 0)
3309 			break;
3310 	}
3311 
3312 	scrub_parity_put(sparity);
3313 	scrub_submit(sctx);
3314 	mutex_lock(&sctx->wr_lock);
3315 	scrub_wr_submit(sctx);
3316 	mutex_unlock(&sctx->wr_lock);
3317 
3318 	btrfs_free_path(path);
3319 	return ret < 0 ? ret : 0;
3320 }
3321 
3322 static void sync_replace_for_zoned(struct scrub_ctx *sctx)
3323 {
3324 	if (!btrfs_is_zoned(sctx->fs_info))
3325 		return;
3326 
3327 	sctx->flush_all_writes = true;
3328 	scrub_submit(sctx);
3329 	mutex_lock(&sctx->wr_lock);
3330 	scrub_wr_submit(sctx);
3331 	mutex_unlock(&sctx->wr_lock);
3332 
3333 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3334 }
3335 
3336 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
3337 					u64 physical, u64 physical_end)
3338 {
3339 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3340 	int ret = 0;
3341 
3342 	if (!btrfs_is_zoned(fs_info))
3343 		return 0;
3344 
3345 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3346 
3347 	mutex_lock(&sctx->wr_lock);
3348 	if (sctx->write_pointer < physical_end) {
3349 		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
3350 						    physical,
3351 						    sctx->write_pointer);
3352 		if (ret)
3353 			btrfs_err(fs_info,
3354 				  "zoned: failed to recover write pointer");
3355 	}
3356 	mutex_unlock(&sctx->wr_lock);
3357 	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
3358 
3359 	return ret;
3360 }
3361 
3362 /*
3363  * Scrub one range which can only has simple mirror based profile.
3364  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
3365  *  RAID0/RAID10).
3366  *
3367  * Since we may need to handle a subset of block group, we need @logical_start
3368  * and @logical_length parameter.
3369  */
3370 static int scrub_simple_mirror(struct scrub_ctx *sctx,
3371 			       struct btrfs_root *extent_root,
3372 			       struct btrfs_root *csum_root,
3373 			       struct btrfs_block_group *bg,
3374 			       struct map_lookup *map,
3375 			       u64 logical_start, u64 logical_length,
3376 			       struct btrfs_device *device,
3377 			       u64 physical, int mirror_num)
3378 {
3379 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3380 	const u64 logical_end = logical_start + logical_length;
3381 	/* An artificial limit, inherit from old scrub behavior */
3382 	const u32 max_length = SZ_64K;
3383 	struct btrfs_path path = { 0 };
3384 	u64 cur_logical = logical_start;
3385 	int ret;
3386 
3387 	/* The range must be inside the bg */
3388 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
3389 
3390 	path.search_commit_root = 1;
3391 	path.skip_locking = 1;
3392 	/* Go through each extent items inside the logical range */
3393 	while (cur_logical < logical_end) {
3394 		u64 extent_start;
3395 		u64 extent_len;
3396 		u64 extent_flags;
3397 		u64 extent_gen;
3398 		u64 scrub_len;
3399 
3400 		/* Canceled? */
3401 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3402 		    atomic_read(&sctx->cancel_req)) {
3403 			ret = -ECANCELED;
3404 			break;
3405 		}
3406 		/* Paused? */
3407 		if (atomic_read(&fs_info->scrub_pause_req)) {
3408 			/* Push queued extents */
3409 			sctx->flush_all_writes = true;
3410 			scrub_submit(sctx);
3411 			mutex_lock(&sctx->wr_lock);
3412 			scrub_wr_submit(sctx);
3413 			mutex_unlock(&sctx->wr_lock);
3414 			wait_event(sctx->list_wait,
3415 				   atomic_read(&sctx->bios_in_flight) == 0);
3416 			sctx->flush_all_writes = false;
3417 			scrub_blocked_if_needed(fs_info);
3418 		}
3419 		/* Block group removed? */
3420 		spin_lock(&bg->lock);
3421 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
3422 			spin_unlock(&bg->lock);
3423 			ret = 0;
3424 			break;
3425 		}
3426 		spin_unlock(&bg->lock);
3427 
3428 		ret = find_first_extent_item(extent_root, &path, cur_logical,
3429 					     logical_end - cur_logical);
3430 		if (ret > 0) {
3431 			/* No more extent, just update the accounting */
3432 			sctx->stat.last_physical = physical + logical_length;
3433 			ret = 0;
3434 			break;
3435 		}
3436 		if (ret < 0)
3437 			break;
3438 		get_extent_info(&path, &extent_start, &extent_len,
3439 				&extent_flags, &extent_gen);
3440 		/* Skip hole range which doesn't have any extent */
3441 		cur_logical = max(extent_start, cur_logical);
3442 
3443 		/*
3444 		 * Scrub len has three limits:
3445 		 * - Extent size limit
3446 		 * - Scrub range limit
3447 		 *   This is especially imporatant for RAID0/RAID10 to reuse
3448 		 *   this function
3449 		 * - Max scrub size limit
3450 		 */
3451 		scrub_len = min(min(extent_start + extent_len,
3452 				    logical_end), cur_logical + max_length) -
3453 			    cur_logical;
3454 
3455 		if (extent_flags & BTRFS_EXTENT_FLAG_DATA) {
3456 			ret = btrfs_lookup_csums_range(csum_root, cur_logical,
3457 					cur_logical + scrub_len - 1,
3458 					&sctx->csum_list, 1, false);
3459 			if (ret)
3460 				break;
3461 		}
3462 		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3463 		    does_range_cross_boundary(extent_start, extent_len,
3464 					      logical_start, logical_length)) {
3465 			btrfs_err(fs_info,
3466 "scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)",
3467 				  extent_start, logical_start, logical_end);
3468 			spin_lock(&sctx->stat_lock);
3469 			sctx->stat.uncorrectable_errors++;
3470 			spin_unlock(&sctx->stat_lock);
3471 			cur_logical += scrub_len;
3472 			continue;
3473 		}
3474 		ret = scrub_extent(sctx, map, cur_logical, scrub_len,
3475 				   cur_logical - logical_start + physical,
3476 				   device, extent_flags, extent_gen,
3477 				   mirror_num);
3478 		scrub_free_csums(sctx);
3479 		if (ret)
3480 			break;
3481 		if (sctx->is_dev_replace)
3482 			sync_replace_for_zoned(sctx);
3483 		cur_logical += scrub_len;
3484 		/* Don't hold CPU for too long time */
3485 		cond_resched();
3486 	}
3487 	btrfs_release_path(&path);
3488 	return ret;
3489 }
3490 
3491 /* Calculate the full stripe length for simple stripe based profiles */
3492 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
3493 {
3494 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3495 			    BTRFS_BLOCK_GROUP_RAID10));
3496 
3497 	return map->num_stripes / map->sub_stripes * map->stripe_len;
3498 }
3499 
3500 /* Get the logical bytenr for the stripe */
3501 static u64 simple_stripe_get_logical(struct map_lookup *map,
3502 				     struct btrfs_block_group *bg,
3503 				     int stripe_index)
3504 {
3505 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3506 			    BTRFS_BLOCK_GROUP_RAID10));
3507 	ASSERT(stripe_index < map->num_stripes);
3508 
3509 	/*
3510 	 * (stripe_index / sub_stripes) gives how many data stripes we need to
3511 	 * skip.
3512 	 */
3513 	return (stripe_index / map->sub_stripes) * map->stripe_len + bg->start;
3514 }
3515 
3516 /* Get the mirror number for the stripe */
3517 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
3518 {
3519 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3520 			    BTRFS_BLOCK_GROUP_RAID10));
3521 	ASSERT(stripe_index < map->num_stripes);
3522 
3523 	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
3524 	return stripe_index % map->sub_stripes + 1;
3525 }
3526 
3527 static int scrub_simple_stripe(struct scrub_ctx *sctx,
3528 			       struct btrfs_root *extent_root,
3529 			       struct btrfs_root *csum_root,
3530 			       struct btrfs_block_group *bg,
3531 			       struct map_lookup *map,
3532 			       struct btrfs_device *device,
3533 			       int stripe_index)
3534 {
3535 	const u64 logical_increment = simple_stripe_full_stripe_len(map);
3536 	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
3537 	const u64 orig_physical = map->stripes[stripe_index].physical;
3538 	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
3539 	u64 cur_logical = orig_logical;
3540 	u64 cur_physical = orig_physical;
3541 	int ret = 0;
3542 
3543 	while (cur_logical < bg->start + bg->length) {
3544 		/*
3545 		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
3546 		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
3547 		 * this stripe.
3548 		 */
3549 		ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map,
3550 					  cur_logical, map->stripe_len, device,
3551 					  cur_physical, mirror_num);
3552 		if (ret)
3553 			return ret;
3554 		/* Skip to next stripe which belongs to the target device */
3555 		cur_logical += logical_increment;
3556 		/* For physical offset, we just go to next stripe */
3557 		cur_physical += map->stripe_len;
3558 	}
3559 	return ret;
3560 }
3561 
3562 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3563 					   struct btrfs_block_group *bg,
3564 					   struct extent_map *em,
3565 					   struct btrfs_device *scrub_dev,
3566 					   int stripe_index)
3567 {
3568 	struct btrfs_path *path;
3569 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3570 	struct btrfs_root *root;
3571 	struct btrfs_root *csum_root;
3572 	struct blk_plug plug;
3573 	struct map_lookup *map = em->map_lookup;
3574 	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3575 	const u64 chunk_logical = bg->start;
3576 	int ret;
3577 	u64 physical = map->stripes[stripe_index].physical;
3578 	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
3579 	const u64 physical_end = physical + dev_stripe_len;
3580 	u64 logical;
3581 	u64 logic_end;
3582 	/* The logical increment after finishing one stripe */
3583 	u64 increment;
3584 	/* Offset inside the chunk */
3585 	u64 offset;
3586 	u64 stripe_logical;
3587 	u64 stripe_end;
3588 	int stop_loop = 0;
3589 
3590 	path = btrfs_alloc_path();
3591 	if (!path)
3592 		return -ENOMEM;
3593 
3594 	/*
3595 	 * work on commit root. The related disk blocks are static as
3596 	 * long as COW is applied. This means, it is save to rewrite
3597 	 * them to repair disk errors without any race conditions
3598 	 */
3599 	path->search_commit_root = 1;
3600 	path->skip_locking = 1;
3601 	path->reada = READA_FORWARD;
3602 
3603 	wait_event(sctx->list_wait,
3604 		   atomic_read(&sctx->bios_in_flight) == 0);
3605 	scrub_blocked_if_needed(fs_info);
3606 
3607 	root = btrfs_extent_root(fs_info, bg->start);
3608 	csum_root = btrfs_csum_root(fs_info, bg->start);
3609 
3610 	/*
3611 	 * collect all data csums for the stripe to avoid seeking during
3612 	 * the scrub. This might currently (crc32) end up to be about 1MB
3613 	 */
3614 	blk_start_plug(&plug);
3615 
3616 	if (sctx->is_dev_replace &&
3617 	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
3618 		mutex_lock(&sctx->wr_lock);
3619 		sctx->write_pointer = physical;
3620 		mutex_unlock(&sctx->wr_lock);
3621 		sctx->flush_all_writes = true;
3622 	}
3623 
3624 	/*
3625 	 * There used to be a big double loop to handle all profiles using the
3626 	 * same routine, which grows larger and more gross over time.
3627 	 *
3628 	 * So here we handle each profile differently, so simpler profiles
3629 	 * have simpler scrubbing function.
3630 	 */
3631 	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
3632 			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
3633 		/*
3634 		 * Above check rules out all complex profile, the remaining
3635 		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
3636 		 * mirrored duplication without stripe.
3637 		 *
3638 		 * Only @physical and @mirror_num needs to calculated using
3639 		 * @stripe_index.
3640 		 */
3641 		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
3642 				bg->start, bg->length, scrub_dev,
3643 				map->stripes[stripe_index].physical,
3644 				stripe_index + 1);
3645 		offset = 0;
3646 		goto out;
3647 	}
3648 	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3649 		ret = scrub_simple_stripe(sctx, root, csum_root, bg, map,
3650 					  scrub_dev, stripe_index);
3651 		offset = map->stripe_len * (stripe_index / map->sub_stripes);
3652 		goto out;
3653 	}
3654 
3655 	/* Only RAID56 goes through the old code */
3656 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
3657 	ret = 0;
3658 
3659 	/* Calculate the logical end of the stripe */
3660 	get_raid56_logic_offset(physical_end, stripe_index,
3661 				map, &logic_end, NULL);
3662 	logic_end += chunk_logical;
3663 
3664 	/* Initialize @offset in case we need to go to out: label */
3665 	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
3666 	increment = map->stripe_len * nr_data_stripes(map);
3667 
3668 	/*
3669 	 * Due to the rotation, for RAID56 it's better to iterate each stripe
3670 	 * using their physical offset.
3671 	 */
3672 	while (physical < physical_end) {
3673 		ret = get_raid56_logic_offset(physical, stripe_index, map,
3674 					      &logical, &stripe_logical);
3675 		logical += chunk_logical;
3676 		if (ret) {
3677 			/* it is parity strip */
3678 			stripe_logical += chunk_logical;
3679 			stripe_end = stripe_logical + increment;
3680 			ret = scrub_raid56_parity(sctx, map, scrub_dev,
3681 						  stripe_logical,
3682 						  stripe_end);
3683 			if (ret)
3684 				goto out;
3685 			goto next;
3686 		}
3687 
3688 		/*
3689 		 * Now we're at a data stripe, scrub each extents in the range.
3690 		 *
3691 		 * At this stage, if we ignore the repair part, inside each data
3692 		 * stripe it is no different than SINGLE profile.
3693 		 * We can reuse scrub_simple_mirror() here, as the repair part
3694 		 * is still based on @mirror_num.
3695 		 */
3696 		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
3697 					  logical, map->stripe_len,
3698 					  scrub_dev, physical, 1);
3699 		if (ret < 0)
3700 			goto out;
3701 next:
3702 		logical += increment;
3703 		physical += map->stripe_len;
3704 		spin_lock(&sctx->stat_lock);
3705 		if (stop_loop)
3706 			sctx->stat.last_physical =
3707 				map->stripes[stripe_index].physical + dev_stripe_len;
3708 		else
3709 			sctx->stat.last_physical = physical;
3710 		spin_unlock(&sctx->stat_lock);
3711 		if (stop_loop)
3712 			break;
3713 	}
3714 out:
3715 	/* push queued extents */
3716 	scrub_submit(sctx);
3717 	mutex_lock(&sctx->wr_lock);
3718 	scrub_wr_submit(sctx);
3719 	mutex_unlock(&sctx->wr_lock);
3720 
3721 	blk_finish_plug(&plug);
3722 	btrfs_free_path(path);
3723 
3724 	if (sctx->is_dev_replace && ret >= 0) {
3725 		int ret2;
3726 
3727 		ret2 = sync_write_pointer_for_zoned(sctx,
3728 				chunk_logical + offset,
3729 				map->stripes[stripe_index].physical,
3730 				physical_end);
3731 		if (ret2)
3732 			ret = ret2;
3733 	}
3734 
3735 	return ret < 0 ? ret : 0;
3736 }
3737 
3738 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3739 					  struct btrfs_block_group *bg,
3740 					  struct btrfs_device *scrub_dev,
3741 					  u64 dev_offset,
3742 					  u64 dev_extent_len)
3743 {
3744 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3745 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3746 	struct map_lookup *map;
3747 	struct extent_map *em;
3748 	int i;
3749 	int ret = 0;
3750 
3751 	read_lock(&map_tree->lock);
3752 	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
3753 	read_unlock(&map_tree->lock);
3754 
3755 	if (!em) {
3756 		/*
3757 		 * Might have been an unused block group deleted by the cleaner
3758 		 * kthread or relocation.
3759 		 */
3760 		spin_lock(&bg->lock);
3761 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
3762 			ret = -EINVAL;
3763 		spin_unlock(&bg->lock);
3764 
3765 		return ret;
3766 	}
3767 	if (em->start != bg->start)
3768 		goto out;
3769 	if (em->len < dev_extent_len)
3770 		goto out;
3771 
3772 	map = em->map_lookup;
3773 	for (i = 0; i < map->num_stripes; ++i) {
3774 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3775 		    map->stripes[i].physical == dev_offset) {
3776 			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
3777 			if (ret)
3778 				goto out;
3779 		}
3780 	}
3781 out:
3782 	free_extent_map(em);
3783 
3784 	return ret;
3785 }
3786 
3787 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
3788 					  struct btrfs_block_group *cache)
3789 {
3790 	struct btrfs_fs_info *fs_info = cache->fs_info;
3791 	struct btrfs_trans_handle *trans;
3792 
3793 	if (!btrfs_is_zoned(fs_info))
3794 		return 0;
3795 
3796 	btrfs_wait_block_group_reservations(cache);
3797 	btrfs_wait_nocow_writers(cache);
3798 	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
3799 
3800 	trans = btrfs_join_transaction(root);
3801 	if (IS_ERR(trans))
3802 		return PTR_ERR(trans);
3803 	return btrfs_commit_transaction(trans);
3804 }
3805 
3806 static noinline_for_stack
3807 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3808 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
3809 {
3810 	struct btrfs_dev_extent *dev_extent = NULL;
3811 	struct btrfs_path *path;
3812 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3813 	struct btrfs_root *root = fs_info->dev_root;
3814 	u64 chunk_offset;
3815 	int ret = 0;
3816 	int ro_set;
3817 	int slot;
3818 	struct extent_buffer *l;
3819 	struct btrfs_key key;
3820 	struct btrfs_key found_key;
3821 	struct btrfs_block_group *cache;
3822 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3823 
3824 	path = btrfs_alloc_path();
3825 	if (!path)
3826 		return -ENOMEM;
3827 
3828 	path->reada = READA_FORWARD;
3829 	path->search_commit_root = 1;
3830 	path->skip_locking = 1;
3831 
3832 	key.objectid = scrub_dev->devid;
3833 	key.offset = 0ull;
3834 	key.type = BTRFS_DEV_EXTENT_KEY;
3835 
3836 	while (1) {
3837 		u64 dev_extent_len;
3838 
3839 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3840 		if (ret < 0)
3841 			break;
3842 		if (ret > 0) {
3843 			if (path->slots[0] >=
3844 			    btrfs_header_nritems(path->nodes[0])) {
3845 				ret = btrfs_next_leaf(root, path);
3846 				if (ret < 0)
3847 					break;
3848 				if (ret > 0) {
3849 					ret = 0;
3850 					break;
3851 				}
3852 			} else {
3853 				ret = 0;
3854 			}
3855 		}
3856 
3857 		l = path->nodes[0];
3858 		slot = path->slots[0];
3859 
3860 		btrfs_item_key_to_cpu(l, &found_key, slot);
3861 
3862 		if (found_key.objectid != scrub_dev->devid)
3863 			break;
3864 
3865 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3866 			break;
3867 
3868 		if (found_key.offset >= end)
3869 			break;
3870 
3871 		if (found_key.offset < key.offset)
3872 			break;
3873 
3874 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3875 		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
3876 
3877 		if (found_key.offset + dev_extent_len <= start)
3878 			goto skip;
3879 
3880 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3881 
3882 		/*
3883 		 * get a reference on the corresponding block group to prevent
3884 		 * the chunk from going away while we scrub it
3885 		 */
3886 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3887 
3888 		/* some chunks are removed but not committed to disk yet,
3889 		 * continue scrubbing */
3890 		if (!cache)
3891 			goto skip;
3892 
3893 		ASSERT(cache->start <= chunk_offset);
3894 		/*
3895 		 * We are using the commit root to search for device extents, so
3896 		 * that means we could have found a device extent item from a
3897 		 * block group that was deleted in the current transaction. The
3898 		 * logical start offset of the deleted block group, stored at
3899 		 * @chunk_offset, might be part of the logical address range of
3900 		 * a new block group (which uses different physical extents).
3901 		 * In this case btrfs_lookup_block_group() has returned the new
3902 		 * block group, and its start address is less than @chunk_offset.
3903 		 *
3904 		 * We skip such new block groups, because it's pointless to
3905 		 * process them, as we won't find their extents because we search
3906 		 * for them using the commit root of the extent tree. For a device
3907 		 * replace it's also fine to skip it, we won't miss copying them
3908 		 * to the target device because we have the write duplication
3909 		 * setup through the regular write path (by btrfs_map_block()),
3910 		 * and we have committed a transaction when we started the device
3911 		 * replace, right after setting up the device replace state.
3912 		 */
3913 		if (cache->start < chunk_offset) {
3914 			btrfs_put_block_group(cache);
3915 			goto skip;
3916 		}
3917 
3918 		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3919 			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
3920 				spin_unlock(&cache->lock);
3921 				btrfs_put_block_group(cache);
3922 				goto skip;
3923 			}
3924 		}
3925 
3926 		/*
3927 		 * Make sure that while we are scrubbing the corresponding block
3928 		 * group doesn't get its logical address and its device extents
3929 		 * reused for another block group, which can possibly be of a
3930 		 * different type and different profile. We do this to prevent
3931 		 * false error detections and crashes due to bogus attempts to
3932 		 * repair extents.
3933 		 */
3934 		spin_lock(&cache->lock);
3935 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
3936 			spin_unlock(&cache->lock);
3937 			btrfs_put_block_group(cache);
3938 			goto skip;
3939 		}
3940 		btrfs_freeze_block_group(cache);
3941 		spin_unlock(&cache->lock);
3942 
3943 		/*
3944 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3945 		 * to avoid deadlock caused by:
3946 		 * btrfs_inc_block_group_ro()
3947 		 * -> btrfs_wait_for_commit()
3948 		 * -> btrfs_commit_transaction()
3949 		 * -> btrfs_scrub_pause()
3950 		 */
3951 		scrub_pause_on(fs_info);
3952 
3953 		/*
3954 		 * Don't do chunk preallocation for scrub.
3955 		 *
3956 		 * This is especially important for SYSTEM bgs, or we can hit
3957 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
3958 		 * 1. The only SYSTEM bg is marked RO.
3959 		 *    Since SYSTEM bg is small, that's pretty common.
3960 		 * 2. New SYSTEM bg will be allocated
3961 		 *    Due to regular version will allocate new chunk.
3962 		 * 3. New SYSTEM bg is empty and will get cleaned up
3963 		 *    Before cleanup really happens, it's marked RO again.
3964 		 * 4. Empty SYSTEM bg get scrubbed
3965 		 *    We go back to 2.
3966 		 *
3967 		 * This can easily boost the amount of SYSTEM chunks if cleaner
3968 		 * thread can't be triggered fast enough, and use up all space
3969 		 * of btrfs_super_block::sys_chunk_array
3970 		 *
3971 		 * While for dev replace, we need to try our best to mark block
3972 		 * group RO, to prevent race between:
3973 		 * - Write duplication
3974 		 *   Contains latest data
3975 		 * - Scrub copy
3976 		 *   Contains data from commit tree
3977 		 *
3978 		 * If target block group is not marked RO, nocow writes can
3979 		 * be overwritten by scrub copy, causing data corruption.
3980 		 * So for dev-replace, it's not allowed to continue if a block
3981 		 * group is not RO.
3982 		 */
3983 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3984 		if (!ret && sctx->is_dev_replace) {
3985 			ret = finish_extent_writes_for_zoned(root, cache);
3986 			if (ret) {
3987 				btrfs_dec_block_group_ro(cache);
3988 				scrub_pause_off(fs_info);
3989 				btrfs_put_block_group(cache);
3990 				break;
3991 			}
3992 		}
3993 
3994 		if (ret == 0) {
3995 			ro_set = 1;
3996 		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3997 			/*
3998 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3999 			 * failed in creating new chunk for metadata.
4000 			 * It is not a problem for scrub, because
4001 			 * metadata are always cowed, and our scrub paused
4002 			 * commit_transactions.
4003 			 */
4004 			ro_set = 0;
4005 		} else if (ret == -ETXTBSY) {
4006 			btrfs_warn(fs_info,
4007 		   "skipping scrub of block group %llu due to active swapfile",
4008 				   cache->start);
4009 			scrub_pause_off(fs_info);
4010 			ret = 0;
4011 			goto skip_unfreeze;
4012 		} else {
4013 			btrfs_warn(fs_info,
4014 				   "failed setting block group ro: %d", ret);
4015 			btrfs_unfreeze_block_group(cache);
4016 			btrfs_put_block_group(cache);
4017 			scrub_pause_off(fs_info);
4018 			break;
4019 		}
4020 
4021 		/*
4022 		 * Now the target block is marked RO, wait for nocow writes to
4023 		 * finish before dev-replace.
4024 		 * COW is fine, as COW never overwrites extents in commit tree.
4025 		 */
4026 		if (sctx->is_dev_replace) {
4027 			btrfs_wait_nocow_writers(cache);
4028 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
4029 					cache->length);
4030 		}
4031 
4032 		scrub_pause_off(fs_info);
4033 		down_write(&dev_replace->rwsem);
4034 		dev_replace->cursor_right = found_key.offset + dev_extent_len;
4035 		dev_replace->cursor_left = found_key.offset;
4036 		dev_replace->item_needs_writeback = 1;
4037 		up_write(&dev_replace->rwsem);
4038 
4039 		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
4040 				  dev_extent_len);
4041 
4042 		/*
4043 		 * flush, submit all pending read and write bios, afterwards
4044 		 * wait for them.
4045 		 * Note that in the dev replace case, a read request causes
4046 		 * write requests that are submitted in the read completion
4047 		 * worker. Therefore in the current situation, it is required
4048 		 * that all write requests are flushed, so that all read and
4049 		 * write requests are really completed when bios_in_flight
4050 		 * changes to 0.
4051 		 */
4052 		sctx->flush_all_writes = true;
4053 		scrub_submit(sctx);
4054 		mutex_lock(&sctx->wr_lock);
4055 		scrub_wr_submit(sctx);
4056 		mutex_unlock(&sctx->wr_lock);
4057 
4058 		wait_event(sctx->list_wait,
4059 			   atomic_read(&sctx->bios_in_flight) == 0);
4060 
4061 		scrub_pause_on(fs_info);
4062 
4063 		/*
4064 		 * must be called before we decrease @scrub_paused.
4065 		 * make sure we don't block transaction commit while
4066 		 * we are waiting pending workers finished.
4067 		 */
4068 		wait_event(sctx->list_wait,
4069 			   atomic_read(&sctx->workers_pending) == 0);
4070 		sctx->flush_all_writes = false;
4071 
4072 		scrub_pause_off(fs_info);
4073 
4074 		if (sctx->is_dev_replace &&
4075 		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
4076 						      cache, found_key.offset))
4077 			ro_set = 0;
4078 
4079 		down_write(&dev_replace->rwsem);
4080 		dev_replace->cursor_left = dev_replace->cursor_right;
4081 		dev_replace->item_needs_writeback = 1;
4082 		up_write(&dev_replace->rwsem);
4083 
4084 		if (ro_set)
4085 			btrfs_dec_block_group_ro(cache);
4086 
4087 		/*
4088 		 * We might have prevented the cleaner kthread from deleting
4089 		 * this block group if it was already unused because we raced
4090 		 * and set it to RO mode first. So add it back to the unused
4091 		 * list, otherwise it might not ever be deleted unless a manual
4092 		 * balance is triggered or it becomes used and unused again.
4093 		 */
4094 		spin_lock(&cache->lock);
4095 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
4096 		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
4097 			spin_unlock(&cache->lock);
4098 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
4099 				btrfs_discard_queue_work(&fs_info->discard_ctl,
4100 							 cache);
4101 			else
4102 				btrfs_mark_bg_unused(cache);
4103 		} else {
4104 			spin_unlock(&cache->lock);
4105 		}
4106 skip_unfreeze:
4107 		btrfs_unfreeze_block_group(cache);
4108 		btrfs_put_block_group(cache);
4109 		if (ret)
4110 			break;
4111 		if (sctx->is_dev_replace &&
4112 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
4113 			ret = -EIO;
4114 			break;
4115 		}
4116 		if (sctx->stat.malloc_errors > 0) {
4117 			ret = -ENOMEM;
4118 			break;
4119 		}
4120 skip:
4121 		key.offset = found_key.offset + dev_extent_len;
4122 		btrfs_release_path(path);
4123 	}
4124 
4125 	btrfs_free_path(path);
4126 
4127 	return ret;
4128 }
4129 
4130 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
4131 					   struct btrfs_device *scrub_dev)
4132 {
4133 	int	i;
4134 	u64	bytenr;
4135 	u64	gen;
4136 	int	ret;
4137 	struct btrfs_fs_info *fs_info = sctx->fs_info;
4138 
4139 	if (BTRFS_FS_ERROR(fs_info))
4140 		return -EROFS;
4141 
4142 	/* Seed devices of a new filesystem has their own generation. */
4143 	if (scrub_dev->fs_devices != fs_info->fs_devices)
4144 		gen = scrub_dev->generation;
4145 	else
4146 		gen = fs_info->last_trans_committed;
4147 
4148 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
4149 		bytenr = btrfs_sb_offset(i);
4150 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
4151 		    scrub_dev->commit_total_bytes)
4152 			break;
4153 		if (!btrfs_check_super_location(scrub_dev, bytenr))
4154 			continue;
4155 
4156 		ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4157 				    scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4158 				    NULL, bytenr);
4159 		if (ret)
4160 			return ret;
4161 	}
4162 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4163 
4164 	return 0;
4165 }
4166 
4167 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
4168 {
4169 	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
4170 					&fs_info->scrub_lock)) {
4171 		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
4172 		struct workqueue_struct *scrub_wr_comp =
4173 						fs_info->scrub_wr_completion_workers;
4174 		struct workqueue_struct *scrub_parity =
4175 						fs_info->scrub_parity_workers;
4176 
4177 		fs_info->scrub_workers = NULL;
4178 		fs_info->scrub_wr_completion_workers = NULL;
4179 		fs_info->scrub_parity_workers = NULL;
4180 		mutex_unlock(&fs_info->scrub_lock);
4181 
4182 		if (scrub_workers)
4183 			destroy_workqueue(scrub_workers);
4184 		if (scrub_wr_comp)
4185 			destroy_workqueue(scrub_wr_comp);
4186 		if (scrub_parity)
4187 			destroy_workqueue(scrub_parity);
4188 	}
4189 }
4190 
4191 /*
4192  * get a reference count on fs_info->scrub_workers. start worker if necessary
4193  */
4194 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4195 						int is_dev_replace)
4196 {
4197 	struct workqueue_struct *scrub_workers = NULL;
4198 	struct workqueue_struct *scrub_wr_comp = NULL;
4199 	struct workqueue_struct *scrub_parity = NULL;
4200 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4201 	int max_active = fs_info->thread_pool_size;
4202 	int ret = -ENOMEM;
4203 
4204 	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
4205 		return 0;
4206 
4207 	scrub_workers = alloc_workqueue("btrfs-scrub", flags,
4208 					is_dev_replace ? 1 : max_active);
4209 	if (!scrub_workers)
4210 		goto fail_scrub_workers;
4211 
4212 	scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
4213 	if (!scrub_wr_comp)
4214 		goto fail_scrub_wr_completion_workers;
4215 
4216 	scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active);
4217 	if (!scrub_parity)
4218 		goto fail_scrub_parity_workers;
4219 
4220 	mutex_lock(&fs_info->scrub_lock);
4221 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
4222 		ASSERT(fs_info->scrub_workers == NULL &&
4223 		       fs_info->scrub_wr_completion_workers == NULL &&
4224 		       fs_info->scrub_parity_workers == NULL);
4225 		fs_info->scrub_workers = scrub_workers;
4226 		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
4227 		fs_info->scrub_parity_workers = scrub_parity;
4228 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4229 		mutex_unlock(&fs_info->scrub_lock);
4230 		return 0;
4231 	}
4232 	/* Other thread raced in and created the workers for us */
4233 	refcount_inc(&fs_info->scrub_workers_refcnt);
4234 	mutex_unlock(&fs_info->scrub_lock);
4235 
4236 	ret = 0;
4237 	destroy_workqueue(scrub_parity);
4238 fail_scrub_parity_workers:
4239 	destroy_workqueue(scrub_wr_comp);
4240 fail_scrub_wr_completion_workers:
4241 	destroy_workqueue(scrub_workers);
4242 fail_scrub_workers:
4243 	return ret;
4244 }
4245 
4246 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4247 		    u64 end, struct btrfs_scrub_progress *progress,
4248 		    int readonly, int is_dev_replace)
4249 {
4250 	struct btrfs_dev_lookup_args args = { .devid = devid };
4251 	struct scrub_ctx *sctx;
4252 	int ret;
4253 	struct btrfs_device *dev;
4254 	unsigned int nofs_flag;
4255 	bool need_commit = false;
4256 
4257 	if (btrfs_fs_closing(fs_info))
4258 		return -EAGAIN;
4259 
4260 	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
4261 	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
4262 
4263 	/*
4264 	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
4265 	 * value (max nodesize / min sectorsize), thus nodesize should always
4266 	 * be fine.
4267 	 */
4268 	ASSERT(fs_info->nodesize <=
4269 	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
4270 
4271 	/* Allocate outside of device_list_mutex */
4272 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
4273 	if (IS_ERR(sctx))
4274 		return PTR_ERR(sctx);
4275 
4276 	ret = scrub_workers_get(fs_info, is_dev_replace);
4277 	if (ret)
4278 		goto out_free_ctx;
4279 
4280 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4281 	dev = btrfs_find_device(fs_info->fs_devices, &args);
4282 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4283 		     !is_dev_replace)) {
4284 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4285 		ret = -ENODEV;
4286 		goto out;
4287 	}
4288 
4289 	if (!is_dev_replace && !readonly &&
4290 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4291 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4292 		btrfs_err_in_rcu(fs_info,
4293 			"scrub on devid %llu: filesystem on %s is not writable",
4294 				 devid, rcu_str_deref(dev->name));
4295 		ret = -EROFS;
4296 		goto out;
4297 	}
4298 
4299 	mutex_lock(&fs_info->scrub_lock);
4300 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4301 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4302 		mutex_unlock(&fs_info->scrub_lock);
4303 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4304 		ret = -EIO;
4305 		goto out;
4306 	}
4307 
4308 	down_read(&fs_info->dev_replace.rwsem);
4309 	if (dev->scrub_ctx ||
4310 	    (!is_dev_replace &&
4311 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4312 		up_read(&fs_info->dev_replace.rwsem);
4313 		mutex_unlock(&fs_info->scrub_lock);
4314 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4315 		ret = -EINPROGRESS;
4316 		goto out;
4317 	}
4318 	up_read(&fs_info->dev_replace.rwsem);
4319 
4320 	sctx->readonly = readonly;
4321 	dev->scrub_ctx = sctx;
4322 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4323 
4324 	/*
4325 	 * checking @scrub_pause_req here, we can avoid
4326 	 * race between committing transaction and scrubbing.
4327 	 */
4328 	__scrub_blocked_if_needed(fs_info);
4329 	atomic_inc(&fs_info->scrubs_running);
4330 	mutex_unlock(&fs_info->scrub_lock);
4331 
4332 	/*
4333 	 * In order to avoid deadlock with reclaim when there is a transaction
4334 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4335 	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
4336 	 * invoked by our callees. The pausing request is done when the
4337 	 * transaction commit starts, and it blocks the transaction until scrub
4338 	 * is paused (done at specific points at scrub_stripe() or right above
4339 	 * before incrementing fs_info->scrubs_running).
4340 	 */
4341 	nofs_flag = memalloc_nofs_save();
4342 	if (!is_dev_replace) {
4343 		u64 old_super_errors;
4344 
4345 		spin_lock(&sctx->stat_lock);
4346 		old_super_errors = sctx->stat.super_errors;
4347 		spin_unlock(&sctx->stat_lock);
4348 
4349 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4350 		/*
4351 		 * by holding device list mutex, we can
4352 		 * kick off writing super in log tree sync.
4353 		 */
4354 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4355 		ret = scrub_supers(sctx, dev);
4356 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4357 
4358 		spin_lock(&sctx->stat_lock);
4359 		/*
4360 		 * Super block errors found, but we can not commit transaction
4361 		 * at current context, since btrfs_commit_transaction() needs
4362 		 * to pause the current running scrub (hold by ourselves).
4363 		 */
4364 		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
4365 			need_commit = true;
4366 		spin_unlock(&sctx->stat_lock);
4367 	}
4368 
4369 	if (!ret)
4370 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4371 	memalloc_nofs_restore(nofs_flag);
4372 
4373 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4374 	atomic_dec(&fs_info->scrubs_running);
4375 	wake_up(&fs_info->scrub_pause_wait);
4376 
4377 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4378 
4379 	if (progress)
4380 		memcpy(progress, &sctx->stat, sizeof(*progress));
4381 
4382 	if (!is_dev_replace)
4383 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
4384 			ret ? "not finished" : "finished", devid, ret);
4385 
4386 	mutex_lock(&fs_info->scrub_lock);
4387 	dev->scrub_ctx = NULL;
4388 	mutex_unlock(&fs_info->scrub_lock);
4389 
4390 	scrub_workers_put(fs_info);
4391 	scrub_put_ctx(sctx);
4392 
4393 	/*
4394 	 * We found some super block errors before, now try to force a
4395 	 * transaction commit, as scrub has finished.
4396 	 */
4397 	if (need_commit) {
4398 		struct btrfs_trans_handle *trans;
4399 
4400 		trans = btrfs_start_transaction(fs_info->tree_root, 0);
4401 		if (IS_ERR(trans)) {
4402 			ret = PTR_ERR(trans);
4403 			btrfs_err(fs_info,
4404 	"scrub: failed to start transaction to fix super block errors: %d", ret);
4405 			return ret;
4406 		}
4407 		ret = btrfs_commit_transaction(trans);
4408 		if (ret < 0)
4409 			btrfs_err(fs_info,
4410 	"scrub: failed to commit transaction to fix super block errors: %d", ret);
4411 	}
4412 	return ret;
4413 out:
4414 	scrub_workers_put(fs_info);
4415 out_free_ctx:
4416 	scrub_free_ctx(sctx);
4417 
4418 	return ret;
4419 }
4420 
4421 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4422 {
4423 	mutex_lock(&fs_info->scrub_lock);
4424 	atomic_inc(&fs_info->scrub_pause_req);
4425 	while (atomic_read(&fs_info->scrubs_paused) !=
4426 	       atomic_read(&fs_info->scrubs_running)) {
4427 		mutex_unlock(&fs_info->scrub_lock);
4428 		wait_event(fs_info->scrub_pause_wait,
4429 			   atomic_read(&fs_info->scrubs_paused) ==
4430 			   atomic_read(&fs_info->scrubs_running));
4431 		mutex_lock(&fs_info->scrub_lock);
4432 	}
4433 	mutex_unlock(&fs_info->scrub_lock);
4434 }
4435 
4436 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4437 {
4438 	atomic_dec(&fs_info->scrub_pause_req);
4439 	wake_up(&fs_info->scrub_pause_wait);
4440 }
4441 
4442 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4443 {
4444 	mutex_lock(&fs_info->scrub_lock);
4445 	if (!atomic_read(&fs_info->scrubs_running)) {
4446 		mutex_unlock(&fs_info->scrub_lock);
4447 		return -ENOTCONN;
4448 	}
4449 
4450 	atomic_inc(&fs_info->scrub_cancel_req);
4451 	while (atomic_read(&fs_info->scrubs_running)) {
4452 		mutex_unlock(&fs_info->scrub_lock);
4453 		wait_event(fs_info->scrub_pause_wait,
4454 			   atomic_read(&fs_info->scrubs_running) == 0);
4455 		mutex_lock(&fs_info->scrub_lock);
4456 	}
4457 	atomic_dec(&fs_info->scrub_cancel_req);
4458 	mutex_unlock(&fs_info->scrub_lock);
4459 
4460 	return 0;
4461 }
4462 
4463 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4464 {
4465 	struct btrfs_fs_info *fs_info = dev->fs_info;
4466 	struct scrub_ctx *sctx;
4467 
4468 	mutex_lock(&fs_info->scrub_lock);
4469 	sctx = dev->scrub_ctx;
4470 	if (!sctx) {
4471 		mutex_unlock(&fs_info->scrub_lock);
4472 		return -ENOTCONN;
4473 	}
4474 	atomic_inc(&sctx->cancel_req);
4475 	while (dev->scrub_ctx) {
4476 		mutex_unlock(&fs_info->scrub_lock);
4477 		wait_event(fs_info->scrub_pause_wait,
4478 			   dev->scrub_ctx == NULL);
4479 		mutex_lock(&fs_info->scrub_lock);
4480 	}
4481 	mutex_unlock(&fs_info->scrub_lock);
4482 
4483 	return 0;
4484 }
4485 
4486 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4487 			 struct btrfs_scrub_progress *progress)
4488 {
4489 	struct btrfs_dev_lookup_args args = { .devid = devid };
4490 	struct btrfs_device *dev;
4491 	struct scrub_ctx *sctx = NULL;
4492 
4493 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4494 	dev = btrfs_find_device(fs_info->fs_devices, &args);
4495 	if (dev)
4496 		sctx = dev->scrub_ctx;
4497 	if (sctx)
4498 		memcpy(progress, &sctx->stat, sizeof(*progress));
4499 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4500 
4501 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4502 }
4503 
4504 static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
4505 				 u64 extent_logical, u32 extent_len,
4506 				 u64 *extent_physical,
4507 				 struct btrfs_device **extent_dev,
4508 				 int *extent_mirror_num)
4509 {
4510 	u64 mapped_length;
4511 	struct btrfs_io_context *bioc = NULL;
4512 	int ret;
4513 
4514 	mapped_length = extent_len;
4515 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4516 			      &mapped_length, &bioc, 0);
4517 	if (ret || !bioc || mapped_length < extent_len ||
4518 	    !bioc->stripes[0].dev->bdev) {
4519 		btrfs_put_bioc(bioc);
4520 		return;
4521 	}
4522 
4523 	*extent_physical = bioc->stripes[0].physical;
4524 	*extent_mirror_num = bioc->mirror_num;
4525 	*extent_dev = bioc->stripes[0].dev;
4526 	btrfs_put_bioc(bioc);
4527 }
4528