1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/err.h> 20 #include <linux/uuid.h> 21 #include "ctree.h" 22 #include "transaction.h" 23 #include "disk-io.h" 24 #include "print-tree.h" 25 26 /* 27 * Read a root item from the tree. In case we detect a root item smaller then 28 * sizeof(root_item), we know it's an old version of the root structure and 29 * initialize all new fields to zero. The same happens if we detect mismatching 30 * generation numbers as then we know the root was once mounted with an older 31 * kernel that was not aware of the root item structure change. 32 */ 33 static void btrfs_read_root_item(struct extent_buffer *eb, int slot, 34 struct btrfs_root_item *item) 35 { 36 uuid_le uuid; 37 int len; 38 int need_reset = 0; 39 40 len = btrfs_item_size_nr(eb, slot); 41 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot), 42 min_t(int, len, (int)sizeof(*item))); 43 if (len < sizeof(*item)) 44 need_reset = 1; 45 if (!need_reset && btrfs_root_generation(item) 46 != btrfs_root_generation_v2(item)) { 47 if (btrfs_root_generation_v2(item) != 0) { 48 btrfs_warn(eb->fs_info, 49 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields."); 50 } 51 need_reset = 1; 52 } 53 if (need_reset) { 54 memset(&item->generation_v2, 0, 55 sizeof(*item) - offsetof(struct btrfs_root_item, 56 generation_v2)); 57 58 uuid_le_gen(&uuid); 59 memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE); 60 } 61 } 62 63 /* 64 * btrfs_find_root - lookup the root by the key. 65 * root: the root of the root tree 66 * search_key: the key to search 67 * path: the path we search 68 * root_item: the root item of the tree we look for 69 * root_key: the root key of the tree we look for 70 * 71 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset 72 * of the search key, just lookup the root with the highest offset for a 73 * given objectid. 74 * 75 * If we find something return 0, otherwise > 0, < 0 on error. 76 */ 77 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 78 struct btrfs_path *path, struct btrfs_root_item *root_item, 79 struct btrfs_key *root_key) 80 { 81 struct btrfs_key found_key; 82 struct extent_buffer *l; 83 int ret; 84 int slot; 85 86 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0); 87 if (ret < 0) 88 return ret; 89 90 if (search_key->offset != -1ULL) { /* the search key is exact */ 91 if (ret > 0) 92 goto out; 93 } else { 94 BUG_ON(ret == 0); /* Logical error */ 95 if (path->slots[0] == 0) 96 goto out; 97 path->slots[0]--; 98 ret = 0; 99 } 100 101 l = path->nodes[0]; 102 slot = path->slots[0]; 103 104 btrfs_item_key_to_cpu(l, &found_key, slot); 105 if (found_key.objectid != search_key->objectid || 106 found_key.type != BTRFS_ROOT_ITEM_KEY) { 107 ret = 1; 108 goto out; 109 } 110 111 if (root_item) 112 btrfs_read_root_item(l, slot, root_item); 113 if (root_key) 114 memcpy(root_key, &found_key, sizeof(found_key)); 115 out: 116 btrfs_release_path(path); 117 return ret; 118 } 119 120 void btrfs_set_root_node(struct btrfs_root_item *item, 121 struct extent_buffer *node) 122 { 123 btrfs_set_root_bytenr(item, node->start); 124 btrfs_set_root_level(item, btrfs_header_level(node)); 125 btrfs_set_root_generation(item, btrfs_header_generation(node)); 126 } 127 128 /* 129 * copy the data in 'item' into the btree 130 */ 131 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root 132 *root, struct btrfs_key *key, struct btrfs_root_item 133 *item) 134 { 135 struct btrfs_fs_info *fs_info = root->fs_info; 136 struct btrfs_path *path; 137 struct extent_buffer *l; 138 int ret; 139 int slot; 140 unsigned long ptr; 141 u32 old_len; 142 143 path = btrfs_alloc_path(); 144 if (!path) 145 return -ENOMEM; 146 147 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 148 if (ret < 0) { 149 btrfs_abort_transaction(trans, ret); 150 goto out; 151 } 152 153 if (ret != 0) { 154 btrfs_print_leaf(path->nodes[0]); 155 btrfs_crit(fs_info, "unable to update root key %llu %u %llu", 156 key->objectid, key->type, key->offset); 157 BUG_ON(1); 158 } 159 160 l = path->nodes[0]; 161 slot = path->slots[0]; 162 ptr = btrfs_item_ptr_offset(l, slot); 163 old_len = btrfs_item_size_nr(l, slot); 164 165 /* 166 * If this is the first time we update the root item which originated 167 * from an older kernel, we need to enlarge the item size to make room 168 * for the added fields. 169 */ 170 if (old_len < sizeof(*item)) { 171 btrfs_release_path(path); 172 ret = btrfs_search_slot(trans, root, key, path, 173 -1, 1); 174 if (ret < 0) { 175 btrfs_abort_transaction(trans, ret); 176 goto out; 177 } 178 179 ret = btrfs_del_item(trans, root, path); 180 if (ret < 0) { 181 btrfs_abort_transaction(trans, ret); 182 goto out; 183 } 184 btrfs_release_path(path); 185 ret = btrfs_insert_empty_item(trans, root, path, 186 key, sizeof(*item)); 187 if (ret < 0) { 188 btrfs_abort_transaction(trans, ret); 189 goto out; 190 } 191 l = path->nodes[0]; 192 slot = path->slots[0]; 193 ptr = btrfs_item_ptr_offset(l, slot); 194 } 195 196 /* 197 * Update generation_v2 so at the next mount we know the new root 198 * fields are valid. 199 */ 200 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 201 202 write_extent_buffer(l, item, ptr, sizeof(*item)); 203 btrfs_mark_buffer_dirty(path->nodes[0]); 204 out: 205 btrfs_free_path(path); 206 return ret; 207 } 208 209 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 210 const struct btrfs_key *key, struct btrfs_root_item *item) 211 { 212 /* 213 * Make sure generation v1 and v2 match. See update_root for details. 214 */ 215 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 216 return btrfs_insert_item(trans, root, key, item, sizeof(*item)); 217 } 218 219 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info) 220 { 221 struct btrfs_root *tree_root = fs_info->tree_root; 222 struct extent_buffer *leaf; 223 struct btrfs_path *path; 224 struct btrfs_key key; 225 struct btrfs_key root_key; 226 struct btrfs_root *root; 227 int err = 0; 228 int ret; 229 230 path = btrfs_alloc_path(); 231 if (!path) 232 return -ENOMEM; 233 234 key.objectid = BTRFS_ORPHAN_OBJECTID; 235 key.type = BTRFS_ORPHAN_ITEM_KEY; 236 key.offset = 0; 237 238 root_key.type = BTRFS_ROOT_ITEM_KEY; 239 root_key.offset = (u64)-1; 240 241 while (1) { 242 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 243 if (ret < 0) { 244 err = ret; 245 break; 246 } 247 248 leaf = path->nodes[0]; 249 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 250 ret = btrfs_next_leaf(tree_root, path); 251 if (ret < 0) 252 err = ret; 253 if (ret != 0) 254 break; 255 leaf = path->nodes[0]; 256 } 257 258 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 259 btrfs_release_path(path); 260 261 if (key.objectid != BTRFS_ORPHAN_OBJECTID || 262 key.type != BTRFS_ORPHAN_ITEM_KEY) 263 break; 264 265 root_key.objectid = key.offset; 266 key.offset++; 267 268 /* 269 * The root might have been inserted already, as before we look 270 * for orphan roots, log replay might have happened, which 271 * triggers a transaction commit and qgroup accounting, which 272 * in turn reads and inserts fs roots while doing backref 273 * walking. 274 */ 275 root = btrfs_lookup_fs_root(fs_info, root_key.objectid); 276 if (root) { 277 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 278 &root->state)); 279 if (btrfs_root_refs(&root->root_item) == 0) 280 btrfs_add_dead_root(root); 281 continue; 282 } 283 284 root = btrfs_read_fs_root(tree_root, &root_key); 285 err = PTR_ERR_OR_ZERO(root); 286 if (err && err != -ENOENT) { 287 break; 288 } else if (err == -ENOENT) { 289 struct btrfs_trans_handle *trans; 290 291 btrfs_release_path(path); 292 293 trans = btrfs_join_transaction(tree_root); 294 if (IS_ERR(trans)) { 295 err = PTR_ERR(trans); 296 btrfs_handle_fs_error(fs_info, err, 297 "Failed to start trans to delete orphan item"); 298 break; 299 } 300 err = btrfs_del_orphan_item(trans, tree_root, 301 root_key.objectid); 302 btrfs_end_transaction(trans); 303 if (err) { 304 btrfs_handle_fs_error(fs_info, err, 305 "Failed to delete root orphan item"); 306 break; 307 } 308 continue; 309 } 310 311 err = btrfs_init_fs_root(root); 312 if (err) { 313 btrfs_free_fs_root(root); 314 break; 315 } 316 317 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 318 319 err = btrfs_insert_fs_root(fs_info, root); 320 if (err) { 321 BUG_ON(err == -EEXIST); 322 btrfs_free_fs_root(root); 323 break; 324 } 325 326 if (btrfs_root_refs(&root->root_item) == 0) 327 btrfs_add_dead_root(root); 328 } 329 330 btrfs_free_path(path); 331 return err; 332 } 333 334 /* drop the root item for 'key' from the tree root */ 335 int btrfs_del_root(struct btrfs_trans_handle *trans, 336 struct btrfs_fs_info *fs_info, const struct btrfs_key *key) 337 { 338 struct btrfs_root *root = fs_info->tree_root; 339 struct btrfs_path *path; 340 int ret; 341 342 path = btrfs_alloc_path(); 343 if (!path) 344 return -ENOMEM; 345 ret = btrfs_search_slot(trans, root, key, path, -1, 1); 346 if (ret < 0) 347 goto out; 348 349 BUG_ON(ret != 0); 350 351 ret = btrfs_del_item(trans, root, path); 352 out: 353 btrfs_free_path(path); 354 return ret; 355 } 356 357 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, 358 struct btrfs_fs_info *fs_info, 359 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence, 360 const char *name, int name_len) 361 362 { 363 struct btrfs_root *tree_root = fs_info->tree_root; 364 struct btrfs_path *path; 365 struct btrfs_root_ref *ref; 366 struct extent_buffer *leaf; 367 struct btrfs_key key; 368 unsigned long ptr; 369 int err = 0; 370 int ret; 371 372 path = btrfs_alloc_path(); 373 if (!path) 374 return -ENOMEM; 375 376 key.objectid = root_id; 377 key.type = BTRFS_ROOT_BACKREF_KEY; 378 key.offset = ref_id; 379 again: 380 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 381 BUG_ON(ret < 0); 382 if (ret == 0) { 383 leaf = path->nodes[0]; 384 ref = btrfs_item_ptr(leaf, path->slots[0], 385 struct btrfs_root_ref); 386 387 WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid); 388 WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len); 389 ptr = (unsigned long)(ref + 1); 390 ret = btrfs_is_name_len_valid(leaf, path->slots[0], ptr, 391 name_len); 392 if (!ret) { 393 err = -EIO; 394 goto out; 395 } 396 397 WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len)); 398 *sequence = btrfs_root_ref_sequence(leaf, ref); 399 400 ret = btrfs_del_item(trans, tree_root, path); 401 if (ret) { 402 err = ret; 403 goto out; 404 } 405 } else 406 err = -ENOENT; 407 408 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 409 btrfs_release_path(path); 410 key.objectid = ref_id; 411 key.type = BTRFS_ROOT_REF_KEY; 412 key.offset = root_id; 413 goto again; 414 } 415 416 out: 417 btrfs_free_path(path); 418 return err; 419 } 420 421 /* 422 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY 423 * or BTRFS_ROOT_BACKREF_KEY. 424 * 425 * The dirid, sequence, name and name_len refer to the directory entry 426 * that is referencing the root. 427 * 428 * For a forward ref, the root_id is the id of the tree referencing 429 * the root and ref_id is the id of the subvol or snapshot. 430 * 431 * For a back ref the root_id is the id of the subvol or snapshot and 432 * ref_id is the id of the tree referencing it. 433 * 434 * Will return 0, -ENOMEM, or anything from the CoW path 435 */ 436 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, 437 struct btrfs_fs_info *fs_info, 438 u64 root_id, u64 ref_id, u64 dirid, u64 sequence, 439 const char *name, int name_len) 440 { 441 struct btrfs_root *tree_root = fs_info->tree_root; 442 struct btrfs_key key; 443 int ret; 444 struct btrfs_path *path; 445 struct btrfs_root_ref *ref; 446 struct extent_buffer *leaf; 447 unsigned long ptr; 448 449 path = btrfs_alloc_path(); 450 if (!path) 451 return -ENOMEM; 452 453 key.objectid = root_id; 454 key.type = BTRFS_ROOT_BACKREF_KEY; 455 key.offset = ref_id; 456 again: 457 ret = btrfs_insert_empty_item(trans, tree_root, path, &key, 458 sizeof(*ref) + name_len); 459 if (ret) { 460 btrfs_abort_transaction(trans, ret); 461 btrfs_free_path(path); 462 return ret; 463 } 464 465 leaf = path->nodes[0]; 466 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 467 btrfs_set_root_ref_dirid(leaf, ref, dirid); 468 btrfs_set_root_ref_sequence(leaf, ref, sequence); 469 btrfs_set_root_ref_name_len(leaf, ref, name_len); 470 ptr = (unsigned long)(ref + 1); 471 write_extent_buffer(leaf, name, ptr, name_len); 472 btrfs_mark_buffer_dirty(leaf); 473 474 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 475 btrfs_release_path(path); 476 key.objectid = ref_id; 477 key.type = BTRFS_ROOT_REF_KEY; 478 key.offset = root_id; 479 goto again; 480 } 481 482 btrfs_free_path(path); 483 return 0; 484 } 485 486 /* 487 * Old btrfs forgets to init root_item->flags and root_item->byte_limit 488 * for subvolumes. To work around this problem, we steal a bit from 489 * root_item->inode_item->flags, and use it to indicate if those fields 490 * have been properly initialized. 491 */ 492 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item) 493 { 494 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode); 495 496 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) { 497 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT; 498 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags); 499 btrfs_set_root_flags(root_item, 0); 500 btrfs_set_root_limit(root_item, 0); 501 } 502 } 503 504 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 505 struct btrfs_root *root) 506 { 507 struct btrfs_root_item *item = &root->root_item; 508 struct timespec ct; 509 510 ktime_get_real_ts(&ct); 511 spin_lock(&root->root_item_lock); 512 btrfs_set_root_ctransid(item, trans->transid); 513 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec); 514 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec); 515 spin_unlock(&root->root_item_lock); 516 } 517