1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/err.h> 7 #include <linux/uuid.h> 8 #include "ctree.h" 9 #include "fs.h" 10 #include "messages.h" 11 #include "transaction.h" 12 #include "disk-io.h" 13 #include "qgroup.h" 14 #include "space-info.h" 15 #include "accessors.h" 16 #include "root-tree.h" 17 #include "orphan.h" 18 19 /* 20 * Read a root item from the tree. In case we detect a root item smaller then 21 * sizeof(root_item), we know it's an old version of the root structure and 22 * initialize all new fields to zero. The same happens if we detect mismatching 23 * generation numbers as then we know the root was once mounted with an older 24 * kernel that was not aware of the root item structure change. 25 */ 26 static void btrfs_read_root_item(struct extent_buffer *eb, int slot, 27 struct btrfs_root_item *item) 28 { 29 u32 len; 30 int need_reset = 0; 31 32 len = btrfs_item_size(eb, slot); 33 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot), 34 min_t(u32, len, sizeof(*item))); 35 if (len < sizeof(*item)) 36 need_reset = 1; 37 if (!need_reset && btrfs_root_generation(item) 38 != btrfs_root_generation_v2(item)) { 39 if (btrfs_root_generation_v2(item) != 0) { 40 btrfs_warn(eb->fs_info, 41 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields."); 42 } 43 need_reset = 1; 44 } 45 if (need_reset) { 46 /* Clear all members from generation_v2 onwards. */ 47 memset_startat(item, 0, generation_v2); 48 generate_random_guid(item->uuid); 49 } 50 } 51 52 /* 53 * Lookup the root by the key. 54 * 55 * root: the root of the root tree 56 * search_key: the key to search 57 * path: the path we search 58 * root_item: the root item of the tree we look for 59 * root_key: the root key of the tree we look for 60 * 61 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset 62 * of the search key, just lookup the root with the highest offset for a 63 * given objectid. 64 * 65 * If we find something return 0, otherwise > 0, < 0 on error. 66 */ 67 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 68 struct btrfs_path *path, struct btrfs_root_item *root_item, 69 struct btrfs_key *root_key) 70 { 71 struct btrfs_key found_key; 72 struct extent_buffer *l; 73 int ret; 74 int slot; 75 76 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0); 77 if (ret < 0) 78 return ret; 79 80 if (search_key->offset != -1ULL) { /* the search key is exact */ 81 if (ret > 0) 82 goto out; 83 } else { 84 /* 85 * Key with offset -1 found, there would have to exist a root 86 * with such id, but this is out of the valid range. 87 */ 88 if (ret == 0) { 89 ret = -EUCLEAN; 90 goto out; 91 } 92 if (path->slots[0] == 0) 93 goto out; 94 path->slots[0]--; 95 ret = 0; 96 } 97 98 l = path->nodes[0]; 99 slot = path->slots[0]; 100 101 btrfs_item_key_to_cpu(l, &found_key, slot); 102 if (found_key.objectid != search_key->objectid || 103 found_key.type != BTRFS_ROOT_ITEM_KEY) { 104 ret = 1; 105 goto out; 106 } 107 108 if (root_item) 109 btrfs_read_root_item(l, slot, root_item); 110 if (root_key) 111 memcpy(root_key, &found_key, sizeof(found_key)); 112 out: 113 btrfs_release_path(path); 114 return ret; 115 } 116 117 void btrfs_set_root_node(struct btrfs_root_item *item, 118 struct extent_buffer *node) 119 { 120 btrfs_set_root_bytenr(item, node->start); 121 btrfs_set_root_level(item, btrfs_header_level(node)); 122 btrfs_set_root_generation(item, btrfs_header_generation(node)); 123 } 124 125 /* 126 * copy the data in 'item' into the btree 127 */ 128 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root 129 *root, struct btrfs_key *key, struct btrfs_root_item 130 *item) 131 { 132 struct btrfs_fs_info *fs_info = root->fs_info; 133 struct btrfs_path *path; 134 struct extent_buffer *l; 135 int ret; 136 int slot; 137 unsigned long ptr; 138 u32 old_len; 139 140 path = btrfs_alloc_path(); 141 if (!path) 142 return -ENOMEM; 143 144 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 145 if (ret < 0) 146 goto out; 147 148 if (ret > 0) { 149 btrfs_crit(fs_info, 150 "unable to find root key (%llu %u %llu) in tree %llu", 151 key->objectid, key->type, key->offset, btrfs_root_id(root)); 152 ret = -EUCLEAN; 153 btrfs_abort_transaction(trans, ret); 154 goto out; 155 } 156 157 l = path->nodes[0]; 158 slot = path->slots[0]; 159 ptr = btrfs_item_ptr_offset(l, slot); 160 old_len = btrfs_item_size(l, slot); 161 162 /* 163 * If this is the first time we update the root item which originated 164 * from an older kernel, we need to enlarge the item size to make room 165 * for the added fields. 166 */ 167 if (old_len < sizeof(*item)) { 168 btrfs_release_path(path); 169 ret = btrfs_search_slot(trans, root, key, path, 170 -1, 1); 171 if (ret < 0) { 172 btrfs_abort_transaction(trans, ret); 173 goto out; 174 } 175 176 ret = btrfs_del_item(trans, root, path); 177 if (ret < 0) { 178 btrfs_abort_transaction(trans, ret); 179 goto out; 180 } 181 btrfs_release_path(path); 182 ret = btrfs_insert_empty_item(trans, root, path, 183 key, sizeof(*item)); 184 if (ret < 0) { 185 btrfs_abort_transaction(trans, ret); 186 goto out; 187 } 188 l = path->nodes[0]; 189 slot = path->slots[0]; 190 ptr = btrfs_item_ptr_offset(l, slot); 191 } 192 193 /* 194 * Update generation_v2 so at the next mount we know the new root 195 * fields are valid. 196 */ 197 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 198 199 write_extent_buffer(l, item, ptr, sizeof(*item)); 200 out: 201 btrfs_free_path(path); 202 return ret; 203 } 204 205 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 206 const struct btrfs_key *key, struct btrfs_root_item *item) 207 { 208 /* 209 * Make sure generation v1 and v2 match. See update_root for details. 210 */ 211 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 212 return btrfs_insert_item(trans, root, key, item, sizeof(*item)); 213 } 214 215 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info) 216 { 217 struct btrfs_root *tree_root = fs_info->tree_root; 218 struct extent_buffer *leaf; 219 struct btrfs_path *path; 220 struct btrfs_key key; 221 struct btrfs_root *root; 222 int err = 0; 223 int ret; 224 225 path = btrfs_alloc_path(); 226 if (!path) 227 return -ENOMEM; 228 229 key.objectid = BTRFS_ORPHAN_OBJECTID; 230 key.type = BTRFS_ORPHAN_ITEM_KEY; 231 key.offset = 0; 232 233 while (1) { 234 u64 root_objectid; 235 236 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 237 if (ret < 0) { 238 err = ret; 239 break; 240 } 241 242 leaf = path->nodes[0]; 243 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 244 ret = btrfs_next_leaf(tree_root, path); 245 if (ret < 0) 246 err = ret; 247 if (ret != 0) 248 break; 249 leaf = path->nodes[0]; 250 } 251 252 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 253 btrfs_release_path(path); 254 255 if (key.objectid != BTRFS_ORPHAN_OBJECTID || 256 key.type != BTRFS_ORPHAN_ITEM_KEY) 257 break; 258 259 root_objectid = key.offset; 260 key.offset++; 261 262 root = btrfs_get_fs_root(fs_info, root_objectid, false); 263 err = PTR_ERR_OR_ZERO(root); 264 if (err && err != -ENOENT) { 265 break; 266 } else if (err == -ENOENT) { 267 struct btrfs_trans_handle *trans; 268 269 btrfs_release_path(path); 270 271 trans = btrfs_join_transaction(tree_root); 272 if (IS_ERR(trans)) { 273 err = PTR_ERR(trans); 274 btrfs_handle_fs_error(fs_info, err, 275 "Failed to start trans to delete orphan item"); 276 break; 277 } 278 err = btrfs_del_orphan_item(trans, tree_root, 279 root_objectid); 280 btrfs_end_transaction(trans); 281 if (err) { 282 btrfs_handle_fs_error(fs_info, err, 283 "Failed to delete root orphan item"); 284 break; 285 } 286 continue; 287 } 288 289 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)); 290 if (btrfs_root_refs(&root->root_item) == 0) { 291 struct btrfs_key drop_key; 292 293 btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress); 294 /* 295 * If we have a non-zero drop_progress then we know we 296 * made it partly through deleting this snapshot, and 297 * thus we need to make sure we block any balance from 298 * happening until this snapshot is completely dropped. 299 */ 300 if (drop_key.objectid != 0 || drop_key.type != 0 || 301 drop_key.offset != 0) { 302 set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags); 303 set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 304 } 305 306 set_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 307 btrfs_add_dead_root(root); 308 } 309 btrfs_put_root(root); 310 } 311 312 btrfs_free_path(path); 313 return err; 314 } 315 316 /* drop the root item for 'key' from the tree root */ 317 int btrfs_del_root(struct btrfs_trans_handle *trans, 318 const struct btrfs_key *key) 319 { 320 struct btrfs_root *root = trans->fs_info->tree_root; 321 struct btrfs_path *path; 322 int ret; 323 324 path = btrfs_alloc_path(); 325 if (!path) 326 return -ENOMEM; 327 ret = btrfs_search_slot(trans, root, key, path, -1, 1); 328 if (ret < 0) 329 goto out; 330 if (ret != 0) { 331 /* The root must exist but we did not find it by the key. */ 332 ret = -EUCLEAN; 333 goto out; 334 } 335 336 ret = btrfs_del_item(trans, root, path); 337 out: 338 btrfs_free_path(path); 339 return ret; 340 } 341 342 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 343 u64 ref_id, u64 dirid, u64 *sequence, 344 const struct fscrypt_str *name) 345 { 346 struct btrfs_root *tree_root = trans->fs_info->tree_root; 347 struct btrfs_path *path; 348 struct btrfs_root_ref *ref; 349 struct extent_buffer *leaf; 350 struct btrfs_key key; 351 unsigned long ptr; 352 int ret; 353 354 path = btrfs_alloc_path(); 355 if (!path) 356 return -ENOMEM; 357 358 key.objectid = root_id; 359 key.type = BTRFS_ROOT_BACKREF_KEY; 360 key.offset = ref_id; 361 again: 362 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 363 if (ret < 0) { 364 goto out; 365 } else if (ret == 0) { 366 leaf = path->nodes[0]; 367 ref = btrfs_item_ptr(leaf, path->slots[0], 368 struct btrfs_root_ref); 369 ptr = (unsigned long)(ref + 1); 370 if ((btrfs_root_ref_dirid(leaf, ref) != dirid) || 371 (btrfs_root_ref_name_len(leaf, ref) != name->len) || 372 memcmp_extent_buffer(leaf, name->name, ptr, name->len)) { 373 ret = -ENOENT; 374 goto out; 375 } 376 *sequence = btrfs_root_ref_sequence(leaf, ref); 377 378 ret = btrfs_del_item(trans, tree_root, path); 379 if (ret) 380 goto out; 381 } else { 382 ret = -ENOENT; 383 goto out; 384 } 385 386 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 387 btrfs_release_path(path); 388 key.objectid = ref_id; 389 key.type = BTRFS_ROOT_REF_KEY; 390 key.offset = root_id; 391 goto again; 392 } 393 394 out: 395 btrfs_free_path(path); 396 return ret; 397 } 398 399 /* 400 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY 401 * or BTRFS_ROOT_BACKREF_KEY. 402 * 403 * The dirid, sequence, name and name_len refer to the directory entry 404 * that is referencing the root. 405 * 406 * For a forward ref, the root_id is the id of the tree referencing 407 * the root and ref_id is the id of the subvol or snapshot. 408 * 409 * For a back ref the root_id is the id of the subvol or snapshot and 410 * ref_id is the id of the tree referencing it. 411 * 412 * Will return 0, -ENOMEM, or anything from the CoW path 413 */ 414 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 415 u64 ref_id, u64 dirid, u64 sequence, 416 const struct fscrypt_str *name) 417 { 418 struct btrfs_root *tree_root = trans->fs_info->tree_root; 419 struct btrfs_key key; 420 int ret; 421 struct btrfs_path *path; 422 struct btrfs_root_ref *ref; 423 struct extent_buffer *leaf; 424 unsigned long ptr; 425 426 path = btrfs_alloc_path(); 427 if (!path) 428 return -ENOMEM; 429 430 key.objectid = root_id; 431 key.type = BTRFS_ROOT_BACKREF_KEY; 432 key.offset = ref_id; 433 again: 434 ret = btrfs_insert_empty_item(trans, tree_root, path, &key, 435 sizeof(*ref) + name->len); 436 if (ret) { 437 btrfs_abort_transaction(trans, ret); 438 btrfs_free_path(path); 439 return ret; 440 } 441 442 leaf = path->nodes[0]; 443 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 444 btrfs_set_root_ref_dirid(leaf, ref, dirid); 445 btrfs_set_root_ref_sequence(leaf, ref, sequence); 446 btrfs_set_root_ref_name_len(leaf, ref, name->len); 447 ptr = (unsigned long)(ref + 1); 448 write_extent_buffer(leaf, name->name, ptr, name->len); 449 450 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 451 btrfs_release_path(path); 452 key.objectid = ref_id; 453 key.type = BTRFS_ROOT_REF_KEY; 454 key.offset = root_id; 455 goto again; 456 } 457 458 btrfs_free_path(path); 459 return 0; 460 } 461 462 /* 463 * Old btrfs forgets to init root_item->flags and root_item->byte_limit 464 * for subvolumes. To work around this problem, we steal a bit from 465 * root_item->inode_item->flags, and use it to indicate if those fields 466 * have been properly initialized. 467 */ 468 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item) 469 { 470 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode); 471 472 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) { 473 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT; 474 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags); 475 btrfs_set_root_flags(root_item, 0); 476 btrfs_set_root_limit(root_item, 0); 477 } 478 } 479 480 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 481 struct btrfs_root *root) 482 { 483 struct btrfs_root_item *item = &root->root_item; 484 struct timespec64 ct; 485 486 ktime_get_real_ts64(&ct); 487 spin_lock(&root->root_item_lock); 488 btrfs_set_root_ctransid(item, trans->transid); 489 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec); 490 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec); 491 spin_unlock(&root->root_item_lock); 492 } 493 494 /* 495 * Reserve space for subvolume operation. 496 * 497 * root: the root of the parent directory 498 * rsv: block reservation 499 * items: the number of items that we need do reservation 500 * use_global_rsv: allow fallback to the global block reservation 501 * 502 * This function is used to reserve the space for snapshot/subvolume 503 * creation and deletion. Those operations are different with the 504 * common file/directory operations, they change two fs/file trees 505 * and root tree, the number of items that the qgroup reserves is 506 * different with the free space reservation. So we can not use 507 * the space reservation mechanism in start_transaction(). 508 */ 509 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 510 struct btrfs_block_rsv *rsv, int items, 511 bool use_global_rsv) 512 { 513 u64 qgroup_num_bytes = 0; 514 u64 num_bytes; 515 int ret; 516 struct btrfs_fs_info *fs_info = root->fs_info; 517 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 518 519 if (btrfs_qgroup_enabled(fs_info)) { 520 /* One for parent inode, two for dir entries */ 521 qgroup_num_bytes = 3 * fs_info->nodesize; 522 ret = btrfs_qgroup_reserve_meta_prealloc(root, 523 qgroup_num_bytes, true, 524 false); 525 if (ret) 526 return ret; 527 } 528 529 num_bytes = btrfs_calc_insert_metadata_size(fs_info, items); 530 rsv->space_info = btrfs_find_space_info(fs_info, 531 BTRFS_BLOCK_GROUP_METADATA); 532 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, 533 BTRFS_RESERVE_FLUSH_ALL); 534 535 if (ret == -ENOSPC && use_global_rsv) 536 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true); 537 538 if (ret && qgroup_num_bytes) 539 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes); 540 541 if (!ret) { 542 spin_lock(&rsv->lock); 543 rsv->qgroup_rsv_reserved += qgroup_num_bytes; 544 spin_unlock(&rsv->lock); 545 } 546 return ret; 547 } 548