xref: /linux/fs/btrfs/root-tree.c (revision c02ce1735b150cf7c3b43790b48e23dcd17c0d46)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/err.h>
7 #include <linux/uuid.h>
8 #include "ctree.h"
9 #include "fs.h"
10 #include "messages.h"
11 #include "transaction.h"
12 #include "disk-io.h"
13 #include "qgroup.h"
14 #include "space-info.h"
15 #include "accessors.h"
16 #include "root-tree.h"
17 #include "orphan.h"
18 
19 /*
20  * Read a root item from the tree. In case we detect a root item smaller then
21  * sizeof(root_item), we know it's an old version of the root structure and
22  * initialize all new fields to zero. The same happens if we detect mismatching
23  * generation numbers as then we know the root was once mounted with an older
24  * kernel that was not aware of the root item structure change.
25  */
26 static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
27 				struct btrfs_root_item *item)
28 {
29 	u32 len;
30 	int need_reset = 0;
31 
32 	len = btrfs_item_size(eb, slot);
33 	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
34 			   min_t(u32, len, sizeof(*item)));
35 	if (len < sizeof(*item))
36 		need_reset = 1;
37 	if (!need_reset && btrfs_root_generation(item)
38 		!= btrfs_root_generation_v2(item)) {
39 		if (btrfs_root_generation_v2(item) != 0) {
40 			btrfs_warn(eb->fs_info,
41 					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
42 		}
43 		need_reset = 1;
44 	}
45 	if (need_reset) {
46 		/* Clear all members from generation_v2 onwards. */
47 		memset_startat(item, 0, generation_v2);
48 		generate_random_guid(item->uuid);
49 	}
50 }
51 
52 /*
53  * Lookup the root by the key.
54  *
55  * root: the root of the root tree
56  * search_key: the key to search
57  * path: the path we search
58  * root_item: the root item of the tree we look for
59  * root_key: the root key of the tree we look for
60  *
61  * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
62  * of the search key, just lookup the root with the highest offset for a
63  * given objectid.
64  *
65  * If we find something return 0, otherwise > 0, < 0 on error.
66  */
67 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
68 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
69 		    struct btrfs_key *root_key)
70 {
71 	struct btrfs_key found_key;
72 	struct extent_buffer *l;
73 	int ret;
74 	int slot;
75 
76 	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
77 	if (ret < 0)
78 		return ret;
79 
80 	if (search_key->offset != -1ULL) {	/* the search key is exact */
81 		if (ret > 0)
82 			goto out;
83 	} else {
84 		/*
85 		 * Key with offset -1 found, there would have to exist a root
86 		 * with such id, but this is out of the valid range.
87 		 */
88 		if (ret == 0) {
89 			ret = -EUCLEAN;
90 			goto out;
91 		}
92 		if (path->slots[0] == 0)
93 			goto out;
94 		path->slots[0]--;
95 		ret = 0;
96 	}
97 
98 	l = path->nodes[0];
99 	slot = path->slots[0];
100 
101 	btrfs_item_key_to_cpu(l, &found_key, slot);
102 	if (found_key.objectid != search_key->objectid ||
103 	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
104 		ret = 1;
105 		goto out;
106 	}
107 
108 	if (root_item)
109 		btrfs_read_root_item(l, slot, root_item);
110 	if (root_key)
111 		memcpy(root_key, &found_key, sizeof(found_key));
112 out:
113 	btrfs_release_path(path);
114 	return ret;
115 }
116 
117 void btrfs_set_root_node(struct btrfs_root_item *item,
118 			 struct extent_buffer *node)
119 {
120 	btrfs_set_root_bytenr(item, node->start);
121 	btrfs_set_root_level(item, btrfs_header_level(node));
122 	btrfs_set_root_generation(item, btrfs_header_generation(node));
123 }
124 
125 /*
126  * copy the data in 'item' into the btree
127  */
128 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
129 		      *root, struct btrfs_key *key, struct btrfs_root_item
130 		      *item)
131 {
132 	struct btrfs_fs_info *fs_info = root->fs_info;
133 	struct btrfs_path *path;
134 	struct extent_buffer *l;
135 	int ret;
136 	int slot;
137 	unsigned long ptr;
138 	u32 old_len;
139 
140 	path = btrfs_alloc_path();
141 	if (!path)
142 		return -ENOMEM;
143 
144 	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
145 	if (ret < 0)
146 		goto out;
147 
148 	if (ret > 0) {
149 		btrfs_crit(fs_info,
150 			"unable to find root key (%llu %u %llu) in tree %llu",
151 			key->objectid, key->type, key->offset,
152 			root->root_key.objectid);
153 		ret = -EUCLEAN;
154 		btrfs_abort_transaction(trans, ret);
155 		goto out;
156 	}
157 
158 	l = path->nodes[0];
159 	slot = path->slots[0];
160 	ptr = btrfs_item_ptr_offset(l, slot);
161 	old_len = btrfs_item_size(l, slot);
162 
163 	/*
164 	 * If this is the first time we update the root item which originated
165 	 * from an older kernel, we need to enlarge the item size to make room
166 	 * for the added fields.
167 	 */
168 	if (old_len < sizeof(*item)) {
169 		btrfs_release_path(path);
170 		ret = btrfs_search_slot(trans, root, key, path,
171 				-1, 1);
172 		if (ret < 0) {
173 			btrfs_abort_transaction(trans, ret);
174 			goto out;
175 		}
176 
177 		ret = btrfs_del_item(trans, root, path);
178 		if (ret < 0) {
179 			btrfs_abort_transaction(trans, ret);
180 			goto out;
181 		}
182 		btrfs_release_path(path);
183 		ret = btrfs_insert_empty_item(trans, root, path,
184 				key, sizeof(*item));
185 		if (ret < 0) {
186 			btrfs_abort_transaction(trans, ret);
187 			goto out;
188 		}
189 		l = path->nodes[0];
190 		slot = path->slots[0];
191 		ptr = btrfs_item_ptr_offset(l, slot);
192 	}
193 
194 	/*
195 	 * Update generation_v2 so at the next mount we know the new root
196 	 * fields are valid.
197 	 */
198 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
199 
200 	write_extent_buffer(l, item, ptr, sizeof(*item));
201 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
202 out:
203 	btrfs_free_path(path);
204 	return ret;
205 }
206 
207 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
208 		      const struct btrfs_key *key, struct btrfs_root_item *item)
209 {
210 	/*
211 	 * Make sure generation v1 and v2 match. See update_root for details.
212 	 */
213 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
214 	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
215 }
216 
217 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
218 {
219 	struct btrfs_root *tree_root = fs_info->tree_root;
220 	struct extent_buffer *leaf;
221 	struct btrfs_path *path;
222 	struct btrfs_key key;
223 	struct btrfs_root *root;
224 	int err = 0;
225 	int ret;
226 
227 	path = btrfs_alloc_path();
228 	if (!path)
229 		return -ENOMEM;
230 
231 	key.objectid = BTRFS_ORPHAN_OBJECTID;
232 	key.type = BTRFS_ORPHAN_ITEM_KEY;
233 	key.offset = 0;
234 
235 	while (1) {
236 		u64 root_objectid;
237 
238 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
239 		if (ret < 0) {
240 			err = ret;
241 			break;
242 		}
243 
244 		leaf = path->nodes[0];
245 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
246 			ret = btrfs_next_leaf(tree_root, path);
247 			if (ret < 0)
248 				err = ret;
249 			if (ret != 0)
250 				break;
251 			leaf = path->nodes[0];
252 		}
253 
254 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
255 		btrfs_release_path(path);
256 
257 		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
258 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
259 			break;
260 
261 		root_objectid = key.offset;
262 		key.offset++;
263 
264 		root = btrfs_get_fs_root(fs_info, root_objectid, false);
265 		err = PTR_ERR_OR_ZERO(root);
266 		if (err && err != -ENOENT) {
267 			break;
268 		} else if (err == -ENOENT) {
269 			struct btrfs_trans_handle *trans;
270 
271 			btrfs_release_path(path);
272 
273 			trans = btrfs_join_transaction(tree_root);
274 			if (IS_ERR(trans)) {
275 				err = PTR_ERR(trans);
276 				btrfs_handle_fs_error(fs_info, err,
277 					    "Failed to start trans to delete orphan item");
278 				break;
279 			}
280 			err = btrfs_del_orphan_item(trans, tree_root,
281 						    root_objectid);
282 			btrfs_end_transaction(trans);
283 			if (err) {
284 				btrfs_handle_fs_error(fs_info, err,
285 					    "Failed to delete root orphan item");
286 				break;
287 			}
288 			continue;
289 		}
290 
291 		WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state));
292 		if (btrfs_root_refs(&root->root_item) == 0) {
293 			struct btrfs_key drop_key;
294 
295 			btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress);
296 			/*
297 			 * If we have a non-zero drop_progress then we know we
298 			 * made it partly through deleting this snapshot, and
299 			 * thus we need to make sure we block any balance from
300 			 * happening until this snapshot is completely dropped.
301 			 */
302 			if (drop_key.objectid != 0 || drop_key.type != 0 ||
303 			    drop_key.offset != 0) {
304 				set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
305 				set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
306 			}
307 
308 			set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
309 			btrfs_add_dead_root(root);
310 		}
311 		btrfs_put_root(root);
312 	}
313 
314 	btrfs_free_path(path);
315 	return err;
316 }
317 
318 /* drop the root item for 'key' from the tree root */
319 int btrfs_del_root(struct btrfs_trans_handle *trans,
320 		   const struct btrfs_key *key)
321 {
322 	struct btrfs_root *root = trans->fs_info->tree_root;
323 	struct btrfs_path *path;
324 	int ret;
325 
326 	path = btrfs_alloc_path();
327 	if (!path)
328 		return -ENOMEM;
329 	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
330 	if (ret < 0)
331 		goto out;
332 	if (ret != 0) {
333 		/* The root must exist but we did not find it by the key. */
334 		ret = -EUCLEAN;
335 		goto out;
336 	}
337 
338 	ret = btrfs_del_item(trans, root, path);
339 out:
340 	btrfs_free_path(path);
341 	return ret;
342 }
343 
344 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
345 		       u64 ref_id, u64 dirid, u64 *sequence,
346 		       const struct fscrypt_str *name)
347 {
348 	struct btrfs_root *tree_root = trans->fs_info->tree_root;
349 	struct btrfs_path *path;
350 	struct btrfs_root_ref *ref;
351 	struct extent_buffer *leaf;
352 	struct btrfs_key key;
353 	unsigned long ptr;
354 	int ret;
355 
356 	path = btrfs_alloc_path();
357 	if (!path)
358 		return -ENOMEM;
359 
360 	key.objectid = root_id;
361 	key.type = BTRFS_ROOT_BACKREF_KEY;
362 	key.offset = ref_id;
363 again:
364 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
365 	if (ret < 0) {
366 		goto out;
367 	} else if (ret == 0) {
368 		leaf = path->nodes[0];
369 		ref = btrfs_item_ptr(leaf, path->slots[0],
370 				     struct btrfs_root_ref);
371 		ptr = (unsigned long)(ref + 1);
372 		if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
373 		    (btrfs_root_ref_name_len(leaf, ref) != name->len) ||
374 		    memcmp_extent_buffer(leaf, name->name, ptr, name->len)) {
375 			ret = -ENOENT;
376 			goto out;
377 		}
378 		*sequence = btrfs_root_ref_sequence(leaf, ref);
379 
380 		ret = btrfs_del_item(trans, tree_root, path);
381 		if (ret)
382 			goto out;
383 	} else {
384 		ret = -ENOENT;
385 		goto out;
386 	}
387 
388 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
389 		btrfs_release_path(path);
390 		key.objectid = ref_id;
391 		key.type = BTRFS_ROOT_REF_KEY;
392 		key.offset = root_id;
393 		goto again;
394 	}
395 
396 out:
397 	btrfs_free_path(path);
398 	return ret;
399 }
400 
401 /*
402  * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
403  * or BTRFS_ROOT_BACKREF_KEY.
404  *
405  * The dirid, sequence, name and name_len refer to the directory entry
406  * that is referencing the root.
407  *
408  * For a forward ref, the root_id is the id of the tree referencing
409  * the root and ref_id is the id of the subvol  or snapshot.
410  *
411  * For a back ref the root_id is the id of the subvol or snapshot and
412  * ref_id is the id of the tree referencing it.
413  *
414  * Will return 0, -ENOMEM, or anything from the CoW path
415  */
416 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
417 		       u64 ref_id, u64 dirid, u64 sequence,
418 		       const struct fscrypt_str *name)
419 {
420 	struct btrfs_root *tree_root = trans->fs_info->tree_root;
421 	struct btrfs_key key;
422 	int ret;
423 	struct btrfs_path *path;
424 	struct btrfs_root_ref *ref;
425 	struct extent_buffer *leaf;
426 	unsigned long ptr;
427 
428 	path = btrfs_alloc_path();
429 	if (!path)
430 		return -ENOMEM;
431 
432 	key.objectid = root_id;
433 	key.type = BTRFS_ROOT_BACKREF_KEY;
434 	key.offset = ref_id;
435 again:
436 	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
437 				      sizeof(*ref) + name->len);
438 	if (ret) {
439 		btrfs_abort_transaction(trans, ret);
440 		btrfs_free_path(path);
441 		return ret;
442 	}
443 
444 	leaf = path->nodes[0];
445 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
446 	btrfs_set_root_ref_dirid(leaf, ref, dirid);
447 	btrfs_set_root_ref_sequence(leaf, ref, sequence);
448 	btrfs_set_root_ref_name_len(leaf, ref, name->len);
449 	ptr = (unsigned long)(ref + 1);
450 	write_extent_buffer(leaf, name->name, ptr, name->len);
451 	btrfs_mark_buffer_dirty(trans, leaf);
452 
453 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
454 		btrfs_release_path(path);
455 		key.objectid = ref_id;
456 		key.type = BTRFS_ROOT_REF_KEY;
457 		key.offset = root_id;
458 		goto again;
459 	}
460 
461 	btrfs_free_path(path);
462 	return 0;
463 }
464 
465 /*
466  * Old btrfs forgets to init root_item->flags and root_item->byte_limit
467  * for subvolumes. To work around this problem, we steal a bit from
468  * root_item->inode_item->flags, and use it to indicate if those fields
469  * have been properly initialized.
470  */
471 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
472 {
473 	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
474 
475 	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
476 		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
477 		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
478 		btrfs_set_root_flags(root_item, 0);
479 		btrfs_set_root_limit(root_item, 0);
480 	}
481 }
482 
483 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
484 			     struct btrfs_root *root)
485 {
486 	struct btrfs_root_item *item = &root->root_item;
487 	struct timespec64 ct;
488 
489 	ktime_get_real_ts64(&ct);
490 	spin_lock(&root->root_item_lock);
491 	btrfs_set_root_ctransid(item, trans->transid);
492 	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
493 	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
494 	spin_unlock(&root->root_item_lock);
495 }
496 
497 /*
498  * Reserve space for subvolume operation.
499  *
500  * root: the root of the parent directory
501  * rsv: block reservation
502  * items: the number of items that we need do reservation
503  * use_global_rsv: allow fallback to the global block reservation
504  *
505  * This function is used to reserve the space for snapshot/subvolume
506  * creation and deletion. Those operations are different with the
507  * common file/directory operations, they change two fs/file trees
508  * and root tree, the number of items that the qgroup reserves is
509  * different with the free space reservation. So we can not use
510  * the space reservation mechanism in start_transaction().
511  */
512 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
513 				     struct btrfs_block_rsv *rsv, int items,
514 				     bool use_global_rsv)
515 {
516 	u64 qgroup_num_bytes = 0;
517 	u64 num_bytes;
518 	int ret;
519 	struct btrfs_fs_info *fs_info = root->fs_info;
520 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
521 
522 	if (btrfs_qgroup_enabled(fs_info)) {
523 		/* One for parent inode, two for dir entries */
524 		qgroup_num_bytes = 3 * fs_info->nodesize;
525 		ret = btrfs_qgroup_reserve_meta_prealloc(root,
526 							 qgroup_num_bytes, true,
527 							 false);
528 		if (ret)
529 			return ret;
530 	}
531 
532 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
533 	rsv->space_info = btrfs_find_space_info(fs_info,
534 					    BTRFS_BLOCK_GROUP_METADATA);
535 	ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes,
536 				  BTRFS_RESERVE_FLUSH_ALL);
537 
538 	if (ret == -ENOSPC && use_global_rsv)
539 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
540 
541 	if (ret && qgroup_num_bytes)
542 		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
543 
544 	if (!ret) {
545 		spin_lock(&rsv->lock);
546 		rsv->qgroup_rsv_reserved += qgroup_num_bytes;
547 		spin_unlock(&rsv->lock);
548 	}
549 	return ret;
550 }
551 
552 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
553 				      struct btrfs_block_rsv *rsv)
554 {
555 	struct btrfs_fs_info *fs_info = root->fs_info;
556 	u64 qgroup_to_release;
557 
558 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, &qgroup_to_release);
559 	btrfs_qgroup_convert_reserved_meta(root, qgroup_to_release);
560 }
561