xref: /linux/fs/btrfs/root-tree.c (revision b9ef12eaa0039f383099c7b3a4798c5090679714)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/err.h>
7 #include <linux/uuid.h>
8 #include "ctree.h"
9 #include "fs.h"
10 #include "messages.h"
11 #include "transaction.h"
12 #include "disk-io.h"
13 #include "print-tree.h"
14 #include "qgroup.h"
15 #include "space-info.h"
16 #include "accessors.h"
17 #include "root-tree.h"
18 #include "orphan.h"
19 
20 /*
21  * Read a root item from the tree. In case we detect a root item smaller then
22  * sizeof(root_item), we know it's an old version of the root structure and
23  * initialize all new fields to zero. The same happens if we detect mismatching
24  * generation numbers as then we know the root was once mounted with an older
25  * kernel that was not aware of the root item structure change.
26  */
27 static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
28 				struct btrfs_root_item *item)
29 {
30 	u32 len;
31 	int need_reset = 0;
32 
33 	len = btrfs_item_size(eb, slot);
34 	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
35 			   min_t(u32, len, sizeof(*item)));
36 	if (len < sizeof(*item))
37 		need_reset = 1;
38 	if (!need_reset && btrfs_root_generation(item)
39 		!= btrfs_root_generation_v2(item)) {
40 		if (btrfs_root_generation_v2(item) != 0) {
41 			btrfs_warn(eb->fs_info,
42 					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
43 		}
44 		need_reset = 1;
45 	}
46 	if (need_reset) {
47 		/* Clear all members from generation_v2 onwards. */
48 		memset_startat(item, 0, generation_v2);
49 		generate_random_guid(item->uuid);
50 	}
51 }
52 
53 /*
54  * btrfs_find_root - lookup the root by the key.
55  * root: the root of the root tree
56  * search_key: the key to search
57  * path: the path we search
58  * root_item: the root item of the tree we look for
59  * root_key: the root key of the tree we look for
60  *
61  * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
62  * of the search key, just lookup the root with the highest offset for a
63  * given objectid.
64  *
65  * If we find something return 0, otherwise > 0, < 0 on error.
66  */
67 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
68 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
69 		    struct btrfs_key *root_key)
70 {
71 	struct btrfs_key found_key;
72 	struct extent_buffer *l;
73 	int ret;
74 	int slot;
75 
76 	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
77 	if (ret < 0)
78 		return ret;
79 
80 	if (search_key->offset != -1ULL) {	/* the search key is exact */
81 		if (ret > 0)
82 			goto out;
83 	} else {
84 		BUG_ON(ret == 0);		/* Logical error */
85 		if (path->slots[0] == 0)
86 			goto out;
87 		path->slots[0]--;
88 		ret = 0;
89 	}
90 
91 	l = path->nodes[0];
92 	slot = path->slots[0];
93 
94 	btrfs_item_key_to_cpu(l, &found_key, slot);
95 	if (found_key.objectid != search_key->objectid ||
96 	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
97 		ret = 1;
98 		goto out;
99 	}
100 
101 	if (root_item)
102 		btrfs_read_root_item(l, slot, root_item);
103 	if (root_key)
104 		memcpy(root_key, &found_key, sizeof(found_key));
105 out:
106 	btrfs_release_path(path);
107 	return ret;
108 }
109 
110 void btrfs_set_root_node(struct btrfs_root_item *item,
111 			 struct extent_buffer *node)
112 {
113 	btrfs_set_root_bytenr(item, node->start);
114 	btrfs_set_root_level(item, btrfs_header_level(node));
115 	btrfs_set_root_generation(item, btrfs_header_generation(node));
116 }
117 
118 /*
119  * copy the data in 'item' into the btree
120  */
121 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
122 		      *root, struct btrfs_key *key, struct btrfs_root_item
123 		      *item)
124 {
125 	struct btrfs_fs_info *fs_info = root->fs_info;
126 	struct btrfs_path *path;
127 	struct extent_buffer *l;
128 	int ret;
129 	int slot;
130 	unsigned long ptr;
131 	u32 old_len;
132 
133 	path = btrfs_alloc_path();
134 	if (!path)
135 		return -ENOMEM;
136 
137 	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
138 	if (ret < 0)
139 		goto out;
140 
141 	if (ret > 0) {
142 		btrfs_crit(fs_info,
143 			"unable to find root key (%llu %u %llu) in tree %llu",
144 			key->objectid, key->type, key->offset,
145 			root->root_key.objectid);
146 		ret = -EUCLEAN;
147 		btrfs_abort_transaction(trans, ret);
148 		goto out;
149 	}
150 
151 	l = path->nodes[0];
152 	slot = path->slots[0];
153 	ptr = btrfs_item_ptr_offset(l, slot);
154 	old_len = btrfs_item_size(l, slot);
155 
156 	/*
157 	 * If this is the first time we update the root item which originated
158 	 * from an older kernel, we need to enlarge the item size to make room
159 	 * for the added fields.
160 	 */
161 	if (old_len < sizeof(*item)) {
162 		btrfs_release_path(path);
163 		ret = btrfs_search_slot(trans, root, key, path,
164 				-1, 1);
165 		if (ret < 0) {
166 			btrfs_abort_transaction(trans, ret);
167 			goto out;
168 		}
169 
170 		ret = btrfs_del_item(trans, root, path);
171 		if (ret < 0) {
172 			btrfs_abort_transaction(trans, ret);
173 			goto out;
174 		}
175 		btrfs_release_path(path);
176 		ret = btrfs_insert_empty_item(trans, root, path,
177 				key, sizeof(*item));
178 		if (ret < 0) {
179 			btrfs_abort_transaction(trans, ret);
180 			goto out;
181 		}
182 		l = path->nodes[0];
183 		slot = path->slots[0];
184 		ptr = btrfs_item_ptr_offset(l, slot);
185 	}
186 
187 	/*
188 	 * Update generation_v2 so at the next mount we know the new root
189 	 * fields are valid.
190 	 */
191 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
192 
193 	write_extent_buffer(l, item, ptr, sizeof(*item));
194 	btrfs_mark_buffer_dirty(path->nodes[0]);
195 out:
196 	btrfs_free_path(path);
197 	return ret;
198 }
199 
200 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
201 		      const struct btrfs_key *key, struct btrfs_root_item *item)
202 {
203 	/*
204 	 * Make sure generation v1 and v2 match. See update_root for details.
205 	 */
206 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
207 	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
208 }
209 
210 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
211 {
212 	struct btrfs_root *tree_root = fs_info->tree_root;
213 	struct extent_buffer *leaf;
214 	struct btrfs_path *path;
215 	struct btrfs_key key;
216 	struct btrfs_root *root;
217 	int err = 0;
218 	int ret;
219 
220 	path = btrfs_alloc_path();
221 	if (!path)
222 		return -ENOMEM;
223 
224 	key.objectid = BTRFS_ORPHAN_OBJECTID;
225 	key.type = BTRFS_ORPHAN_ITEM_KEY;
226 	key.offset = 0;
227 
228 	while (1) {
229 		u64 root_objectid;
230 
231 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
232 		if (ret < 0) {
233 			err = ret;
234 			break;
235 		}
236 
237 		leaf = path->nodes[0];
238 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
239 			ret = btrfs_next_leaf(tree_root, path);
240 			if (ret < 0)
241 				err = ret;
242 			if (ret != 0)
243 				break;
244 			leaf = path->nodes[0];
245 		}
246 
247 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
248 		btrfs_release_path(path);
249 
250 		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
251 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
252 			break;
253 
254 		root_objectid = key.offset;
255 		key.offset++;
256 
257 		root = btrfs_get_fs_root(fs_info, root_objectid, false);
258 		err = PTR_ERR_OR_ZERO(root);
259 		if (err && err != -ENOENT) {
260 			break;
261 		} else if (err == -ENOENT) {
262 			struct btrfs_trans_handle *trans;
263 
264 			btrfs_release_path(path);
265 
266 			trans = btrfs_join_transaction(tree_root);
267 			if (IS_ERR(trans)) {
268 				err = PTR_ERR(trans);
269 				btrfs_handle_fs_error(fs_info, err,
270 					    "Failed to start trans to delete orphan item");
271 				break;
272 			}
273 			err = btrfs_del_orphan_item(trans, tree_root,
274 						    root_objectid);
275 			btrfs_end_transaction(trans);
276 			if (err) {
277 				btrfs_handle_fs_error(fs_info, err,
278 					    "Failed to delete root orphan item");
279 				break;
280 			}
281 			continue;
282 		}
283 
284 		WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state));
285 		if (btrfs_root_refs(&root->root_item) == 0) {
286 			struct btrfs_key drop_key;
287 
288 			btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress);
289 			/*
290 			 * If we have a non-zero drop_progress then we know we
291 			 * made it partly through deleting this snapshot, and
292 			 * thus we need to make sure we block any balance from
293 			 * happening until this snapshot is completely dropped.
294 			 */
295 			if (drop_key.objectid != 0 || drop_key.type != 0 ||
296 			    drop_key.offset != 0) {
297 				set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
298 				set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
299 			}
300 
301 			set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
302 			btrfs_add_dead_root(root);
303 		}
304 		btrfs_put_root(root);
305 	}
306 
307 	btrfs_free_path(path);
308 	return err;
309 }
310 
311 /* drop the root item for 'key' from the tree root */
312 int btrfs_del_root(struct btrfs_trans_handle *trans,
313 		   const struct btrfs_key *key)
314 {
315 	struct btrfs_root *root = trans->fs_info->tree_root;
316 	struct btrfs_path *path;
317 	int ret;
318 
319 	path = btrfs_alloc_path();
320 	if (!path)
321 		return -ENOMEM;
322 	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
323 	if (ret < 0)
324 		goto out;
325 
326 	BUG_ON(ret != 0);
327 
328 	ret = btrfs_del_item(trans, root, path);
329 out:
330 	btrfs_free_path(path);
331 	return ret;
332 }
333 
334 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
335 		       u64 ref_id, u64 dirid, u64 *sequence,
336 		       const struct fscrypt_str *name)
337 {
338 	struct btrfs_root *tree_root = trans->fs_info->tree_root;
339 	struct btrfs_path *path;
340 	struct btrfs_root_ref *ref;
341 	struct extent_buffer *leaf;
342 	struct btrfs_key key;
343 	unsigned long ptr;
344 	int ret;
345 
346 	path = btrfs_alloc_path();
347 	if (!path)
348 		return -ENOMEM;
349 
350 	key.objectid = root_id;
351 	key.type = BTRFS_ROOT_BACKREF_KEY;
352 	key.offset = ref_id;
353 again:
354 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
355 	if (ret < 0) {
356 		goto out;
357 	} else if (ret == 0) {
358 		leaf = path->nodes[0];
359 		ref = btrfs_item_ptr(leaf, path->slots[0],
360 				     struct btrfs_root_ref);
361 		ptr = (unsigned long)(ref + 1);
362 		if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
363 		    (btrfs_root_ref_name_len(leaf, ref) != name->len) ||
364 		    memcmp_extent_buffer(leaf, name->name, ptr, name->len)) {
365 			ret = -ENOENT;
366 			goto out;
367 		}
368 		*sequence = btrfs_root_ref_sequence(leaf, ref);
369 
370 		ret = btrfs_del_item(trans, tree_root, path);
371 		if (ret)
372 			goto out;
373 	} else {
374 		ret = -ENOENT;
375 		goto out;
376 	}
377 
378 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
379 		btrfs_release_path(path);
380 		key.objectid = ref_id;
381 		key.type = BTRFS_ROOT_REF_KEY;
382 		key.offset = root_id;
383 		goto again;
384 	}
385 
386 out:
387 	btrfs_free_path(path);
388 	return ret;
389 }
390 
391 /*
392  * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
393  * or BTRFS_ROOT_BACKREF_KEY.
394  *
395  * The dirid, sequence, name and name_len refer to the directory entry
396  * that is referencing the root.
397  *
398  * For a forward ref, the root_id is the id of the tree referencing
399  * the root and ref_id is the id of the subvol  or snapshot.
400  *
401  * For a back ref the root_id is the id of the subvol or snapshot and
402  * ref_id is the id of the tree referencing it.
403  *
404  * Will return 0, -ENOMEM, or anything from the CoW path
405  */
406 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
407 		       u64 ref_id, u64 dirid, u64 sequence,
408 		       const struct fscrypt_str *name)
409 {
410 	struct btrfs_root *tree_root = trans->fs_info->tree_root;
411 	struct btrfs_key key;
412 	int ret;
413 	struct btrfs_path *path;
414 	struct btrfs_root_ref *ref;
415 	struct extent_buffer *leaf;
416 	unsigned long ptr;
417 
418 	path = btrfs_alloc_path();
419 	if (!path)
420 		return -ENOMEM;
421 
422 	key.objectid = root_id;
423 	key.type = BTRFS_ROOT_BACKREF_KEY;
424 	key.offset = ref_id;
425 again:
426 	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
427 				      sizeof(*ref) + name->len);
428 	if (ret) {
429 		btrfs_abort_transaction(trans, ret);
430 		btrfs_free_path(path);
431 		return ret;
432 	}
433 
434 	leaf = path->nodes[0];
435 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
436 	btrfs_set_root_ref_dirid(leaf, ref, dirid);
437 	btrfs_set_root_ref_sequence(leaf, ref, sequence);
438 	btrfs_set_root_ref_name_len(leaf, ref, name->len);
439 	ptr = (unsigned long)(ref + 1);
440 	write_extent_buffer(leaf, name->name, ptr, name->len);
441 	btrfs_mark_buffer_dirty(leaf);
442 
443 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
444 		btrfs_release_path(path);
445 		key.objectid = ref_id;
446 		key.type = BTRFS_ROOT_REF_KEY;
447 		key.offset = root_id;
448 		goto again;
449 	}
450 
451 	btrfs_free_path(path);
452 	return 0;
453 }
454 
455 /*
456  * Old btrfs forgets to init root_item->flags and root_item->byte_limit
457  * for subvolumes. To work around this problem, we steal a bit from
458  * root_item->inode_item->flags, and use it to indicate if those fields
459  * have been properly initialized.
460  */
461 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
462 {
463 	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
464 
465 	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
466 		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
467 		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
468 		btrfs_set_root_flags(root_item, 0);
469 		btrfs_set_root_limit(root_item, 0);
470 	}
471 }
472 
473 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
474 			     struct btrfs_root *root)
475 {
476 	struct btrfs_root_item *item = &root->root_item;
477 	struct timespec64 ct;
478 
479 	ktime_get_real_ts64(&ct);
480 	spin_lock(&root->root_item_lock);
481 	btrfs_set_root_ctransid(item, trans->transid);
482 	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
483 	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
484 	spin_unlock(&root->root_item_lock);
485 }
486 
487 /*
488  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
489  * root: the root of the parent directory
490  * rsv: block reservation
491  * items: the number of items that we need do reservation
492  * use_global_rsv: allow fallback to the global block reservation
493  *
494  * This function is used to reserve the space for snapshot/subvolume
495  * creation and deletion. Those operations are different with the
496  * common file/directory operations, they change two fs/file trees
497  * and root tree, the number of items that the qgroup reserves is
498  * different with the free space reservation. So we can not use
499  * the space reservation mechanism in start_transaction().
500  */
501 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
502 				     struct btrfs_block_rsv *rsv, int items,
503 				     bool use_global_rsv)
504 {
505 	u64 qgroup_num_bytes = 0;
506 	u64 num_bytes;
507 	int ret;
508 	struct btrfs_fs_info *fs_info = root->fs_info;
509 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
510 
511 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
512 		/* One for parent inode, two for dir entries */
513 		qgroup_num_bytes = 3 * fs_info->nodesize;
514 		ret = btrfs_qgroup_reserve_meta_prealloc(root,
515 							 qgroup_num_bytes, true,
516 							 false);
517 		if (ret)
518 			return ret;
519 	}
520 
521 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
522 	rsv->space_info = btrfs_find_space_info(fs_info,
523 					    BTRFS_BLOCK_GROUP_METADATA);
524 	ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes,
525 				  BTRFS_RESERVE_FLUSH_ALL);
526 
527 	if (ret == -ENOSPC && use_global_rsv)
528 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
529 
530 	if (ret && qgroup_num_bytes)
531 		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
532 
533 	if (!ret) {
534 		spin_lock(&rsv->lock);
535 		rsv->qgroup_rsv_reserved += qgroup_num_bytes;
536 		spin_unlock(&rsv->lock);
537 	}
538 	return ret;
539 }
540 
541 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
542 				      struct btrfs_block_rsv *rsv)
543 {
544 	struct btrfs_fs_info *fs_info = root->fs_info;
545 	u64 qgroup_to_release;
546 
547 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, &qgroup_to_release);
548 	btrfs_qgroup_convert_reserved_meta(root, qgroup_to_release);
549 }
550