1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/err.h> 7 #include <linux/uuid.h> 8 #include "ctree.h" 9 #include "transaction.h" 10 #include "disk-io.h" 11 #include "print-tree.h" 12 #include "qgroup.h" 13 #include "space-info.h" 14 15 /* 16 * Read a root item from the tree. In case we detect a root item smaller then 17 * sizeof(root_item), we know it's an old version of the root structure and 18 * initialize all new fields to zero. The same happens if we detect mismatching 19 * generation numbers as then we know the root was once mounted with an older 20 * kernel that was not aware of the root item structure change. 21 */ 22 static void btrfs_read_root_item(struct extent_buffer *eb, int slot, 23 struct btrfs_root_item *item) 24 { 25 u32 len; 26 int need_reset = 0; 27 28 len = btrfs_item_size_nr(eb, slot); 29 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot), 30 min_t(u32, len, sizeof(*item))); 31 if (len < sizeof(*item)) 32 need_reset = 1; 33 if (!need_reset && btrfs_root_generation(item) 34 != btrfs_root_generation_v2(item)) { 35 if (btrfs_root_generation_v2(item) != 0) { 36 btrfs_warn(eb->fs_info, 37 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields."); 38 } 39 need_reset = 1; 40 } 41 if (need_reset) { 42 memset(&item->generation_v2, 0, 43 sizeof(*item) - offsetof(struct btrfs_root_item, 44 generation_v2)); 45 46 generate_random_guid(item->uuid); 47 } 48 } 49 50 /* 51 * btrfs_find_root - lookup the root by the key. 52 * root: the root of the root tree 53 * search_key: the key to search 54 * path: the path we search 55 * root_item: the root item of the tree we look for 56 * root_key: the root key of the tree we look for 57 * 58 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset 59 * of the search key, just lookup the root with the highest offset for a 60 * given objectid. 61 * 62 * If we find something return 0, otherwise > 0, < 0 on error. 63 */ 64 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 65 struct btrfs_path *path, struct btrfs_root_item *root_item, 66 struct btrfs_key *root_key) 67 { 68 struct btrfs_key found_key; 69 struct extent_buffer *l; 70 int ret; 71 int slot; 72 73 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0); 74 if (ret < 0) 75 return ret; 76 77 if (search_key->offset != -1ULL) { /* the search key is exact */ 78 if (ret > 0) 79 goto out; 80 } else { 81 BUG_ON(ret == 0); /* Logical error */ 82 if (path->slots[0] == 0) 83 goto out; 84 path->slots[0]--; 85 ret = 0; 86 } 87 88 l = path->nodes[0]; 89 slot = path->slots[0]; 90 91 btrfs_item_key_to_cpu(l, &found_key, slot); 92 if (found_key.objectid != search_key->objectid || 93 found_key.type != BTRFS_ROOT_ITEM_KEY) { 94 ret = 1; 95 goto out; 96 } 97 98 if (root_item) 99 btrfs_read_root_item(l, slot, root_item); 100 if (root_key) 101 memcpy(root_key, &found_key, sizeof(found_key)); 102 out: 103 btrfs_release_path(path); 104 return ret; 105 } 106 107 void btrfs_set_root_node(struct btrfs_root_item *item, 108 struct extent_buffer *node) 109 { 110 btrfs_set_root_bytenr(item, node->start); 111 btrfs_set_root_level(item, btrfs_header_level(node)); 112 btrfs_set_root_generation(item, btrfs_header_generation(node)); 113 } 114 115 /* 116 * copy the data in 'item' into the btree 117 */ 118 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root 119 *root, struct btrfs_key *key, struct btrfs_root_item 120 *item) 121 { 122 struct btrfs_fs_info *fs_info = root->fs_info; 123 struct btrfs_path *path; 124 struct extent_buffer *l; 125 int ret; 126 int slot; 127 unsigned long ptr; 128 u32 old_len; 129 130 path = btrfs_alloc_path(); 131 if (!path) 132 return -ENOMEM; 133 134 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 135 if (ret < 0) 136 goto out; 137 138 if (ret > 0) { 139 btrfs_crit(fs_info, 140 "unable to find root key (%llu %u %llu) in tree %llu", 141 key->objectid, key->type, key->offset, 142 root->root_key.objectid); 143 ret = -EUCLEAN; 144 btrfs_abort_transaction(trans, ret); 145 goto out; 146 } 147 148 l = path->nodes[0]; 149 slot = path->slots[0]; 150 ptr = btrfs_item_ptr_offset(l, slot); 151 old_len = btrfs_item_size_nr(l, slot); 152 153 /* 154 * If this is the first time we update the root item which originated 155 * from an older kernel, we need to enlarge the item size to make room 156 * for the added fields. 157 */ 158 if (old_len < sizeof(*item)) { 159 btrfs_release_path(path); 160 ret = btrfs_search_slot(trans, root, key, path, 161 -1, 1); 162 if (ret < 0) { 163 btrfs_abort_transaction(trans, ret); 164 goto out; 165 } 166 167 ret = btrfs_del_item(trans, root, path); 168 if (ret < 0) { 169 btrfs_abort_transaction(trans, ret); 170 goto out; 171 } 172 btrfs_release_path(path); 173 ret = btrfs_insert_empty_item(trans, root, path, 174 key, sizeof(*item)); 175 if (ret < 0) { 176 btrfs_abort_transaction(trans, ret); 177 goto out; 178 } 179 l = path->nodes[0]; 180 slot = path->slots[0]; 181 ptr = btrfs_item_ptr_offset(l, slot); 182 } 183 184 /* 185 * Update generation_v2 so at the next mount we know the new root 186 * fields are valid. 187 */ 188 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 189 190 write_extent_buffer(l, item, ptr, sizeof(*item)); 191 btrfs_mark_buffer_dirty(path->nodes[0]); 192 out: 193 btrfs_free_path(path); 194 return ret; 195 } 196 197 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 198 const struct btrfs_key *key, struct btrfs_root_item *item) 199 { 200 /* 201 * Make sure generation v1 and v2 match. See update_root for details. 202 */ 203 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 204 return btrfs_insert_item(trans, root, key, item, sizeof(*item)); 205 } 206 207 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info) 208 { 209 struct btrfs_root *tree_root = fs_info->tree_root; 210 struct extent_buffer *leaf; 211 struct btrfs_path *path; 212 struct btrfs_key key; 213 struct btrfs_root *root; 214 int err = 0; 215 int ret; 216 217 path = btrfs_alloc_path(); 218 if (!path) 219 return -ENOMEM; 220 221 key.objectid = BTRFS_ORPHAN_OBJECTID; 222 key.type = BTRFS_ORPHAN_ITEM_KEY; 223 key.offset = 0; 224 225 while (1) { 226 u64 root_objectid; 227 228 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 229 if (ret < 0) { 230 err = ret; 231 break; 232 } 233 234 leaf = path->nodes[0]; 235 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 236 ret = btrfs_next_leaf(tree_root, path); 237 if (ret < 0) 238 err = ret; 239 if (ret != 0) 240 break; 241 leaf = path->nodes[0]; 242 } 243 244 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 245 btrfs_release_path(path); 246 247 if (key.objectid != BTRFS_ORPHAN_OBJECTID || 248 key.type != BTRFS_ORPHAN_ITEM_KEY) 249 break; 250 251 root_objectid = key.offset; 252 key.offset++; 253 254 root = btrfs_get_fs_root(fs_info, root_objectid, false); 255 err = PTR_ERR_OR_ZERO(root); 256 if (err && err != -ENOENT) { 257 break; 258 } else if (err == -ENOENT) { 259 struct btrfs_trans_handle *trans; 260 261 btrfs_release_path(path); 262 263 trans = btrfs_join_transaction(tree_root); 264 if (IS_ERR(trans)) { 265 err = PTR_ERR(trans); 266 btrfs_handle_fs_error(fs_info, err, 267 "Failed to start trans to delete orphan item"); 268 break; 269 } 270 err = btrfs_del_orphan_item(trans, tree_root, 271 root_objectid); 272 btrfs_end_transaction(trans); 273 if (err) { 274 btrfs_handle_fs_error(fs_info, err, 275 "Failed to delete root orphan item"); 276 break; 277 } 278 continue; 279 } 280 281 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)); 282 if (btrfs_root_refs(&root->root_item) == 0) { 283 set_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 284 btrfs_add_dead_root(root); 285 } 286 btrfs_put_root(root); 287 } 288 289 btrfs_free_path(path); 290 return err; 291 } 292 293 /* drop the root item for 'key' from the tree root */ 294 int btrfs_del_root(struct btrfs_trans_handle *trans, 295 const struct btrfs_key *key) 296 { 297 struct btrfs_root *root = trans->fs_info->tree_root; 298 struct btrfs_path *path; 299 int ret; 300 301 path = btrfs_alloc_path(); 302 if (!path) 303 return -ENOMEM; 304 ret = btrfs_search_slot(trans, root, key, path, -1, 1); 305 if (ret < 0) 306 goto out; 307 308 BUG_ON(ret != 0); 309 310 ret = btrfs_del_item(trans, root, path); 311 out: 312 btrfs_free_path(path); 313 return ret; 314 } 315 316 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 317 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 318 int name_len) 319 320 { 321 struct btrfs_root *tree_root = trans->fs_info->tree_root; 322 struct btrfs_path *path; 323 struct btrfs_root_ref *ref; 324 struct extent_buffer *leaf; 325 struct btrfs_key key; 326 unsigned long ptr; 327 int err = 0; 328 int ret; 329 330 path = btrfs_alloc_path(); 331 if (!path) 332 return -ENOMEM; 333 334 key.objectid = root_id; 335 key.type = BTRFS_ROOT_BACKREF_KEY; 336 key.offset = ref_id; 337 again: 338 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 339 BUG_ON(ret < 0); 340 if (ret == 0) { 341 leaf = path->nodes[0]; 342 ref = btrfs_item_ptr(leaf, path->slots[0], 343 struct btrfs_root_ref); 344 ptr = (unsigned long)(ref + 1); 345 if ((btrfs_root_ref_dirid(leaf, ref) != dirid) || 346 (btrfs_root_ref_name_len(leaf, ref) != name_len) || 347 memcmp_extent_buffer(leaf, name, ptr, name_len)) { 348 err = -ENOENT; 349 goto out; 350 } 351 *sequence = btrfs_root_ref_sequence(leaf, ref); 352 353 ret = btrfs_del_item(trans, tree_root, path); 354 if (ret) { 355 err = ret; 356 goto out; 357 } 358 } else 359 err = -ENOENT; 360 361 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 362 btrfs_release_path(path); 363 key.objectid = ref_id; 364 key.type = BTRFS_ROOT_REF_KEY; 365 key.offset = root_id; 366 goto again; 367 } 368 369 out: 370 btrfs_free_path(path); 371 return err; 372 } 373 374 /* 375 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY 376 * or BTRFS_ROOT_BACKREF_KEY. 377 * 378 * The dirid, sequence, name and name_len refer to the directory entry 379 * that is referencing the root. 380 * 381 * For a forward ref, the root_id is the id of the tree referencing 382 * the root and ref_id is the id of the subvol or snapshot. 383 * 384 * For a back ref the root_id is the id of the subvol or snapshot and 385 * ref_id is the id of the tree referencing it. 386 * 387 * Will return 0, -ENOMEM, or anything from the CoW path 388 */ 389 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 390 u64 ref_id, u64 dirid, u64 sequence, const char *name, 391 int name_len) 392 { 393 struct btrfs_root *tree_root = trans->fs_info->tree_root; 394 struct btrfs_key key; 395 int ret; 396 struct btrfs_path *path; 397 struct btrfs_root_ref *ref; 398 struct extent_buffer *leaf; 399 unsigned long ptr; 400 401 path = btrfs_alloc_path(); 402 if (!path) 403 return -ENOMEM; 404 405 key.objectid = root_id; 406 key.type = BTRFS_ROOT_BACKREF_KEY; 407 key.offset = ref_id; 408 again: 409 ret = btrfs_insert_empty_item(trans, tree_root, path, &key, 410 sizeof(*ref) + name_len); 411 if (ret) { 412 btrfs_abort_transaction(trans, ret); 413 btrfs_free_path(path); 414 return ret; 415 } 416 417 leaf = path->nodes[0]; 418 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 419 btrfs_set_root_ref_dirid(leaf, ref, dirid); 420 btrfs_set_root_ref_sequence(leaf, ref, sequence); 421 btrfs_set_root_ref_name_len(leaf, ref, name_len); 422 ptr = (unsigned long)(ref + 1); 423 write_extent_buffer(leaf, name, ptr, name_len); 424 btrfs_mark_buffer_dirty(leaf); 425 426 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 427 btrfs_release_path(path); 428 key.objectid = ref_id; 429 key.type = BTRFS_ROOT_REF_KEY; 430 key.offset = root_id; 431 goto again; 432 } 433 434 btrfs_free_path(path); 435 return 0; 436 } 437 438 /* 439 * Old btrfs forgets to init root_item->flags and root_item->byte_limit 440 * for subvolumes. To work around this problem, we steal a bit from 441 * root_item->inode_item->flags, and use it to indicate if those fields 442 * have been properly initialized. 443 */ 444 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item) 445 { 446 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode); 447 448 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) { 449 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT; 450 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags); 451 btrfs_set_root_flags(root_item, 0); 452 btrfs_set_root_limit(root_item, 0); 453 } 454 } 455 456 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 457 struct btrfs_root *root) 458 { 459 struct btrfs_root_item *item = &root->root_item; 460 struct timespec64 ct; 461 462 ktime_get_real_ts64(&ct); 463 spin_lock(&root->root_item_lock); 464 btrfs_set_root_ctransid(item, trans->transid); 465 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec); 466 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec); 467 spin_unlock(&root->root_item_lock); 468 } 469 470 /* 471 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 472 * root: the root of the parent directory 473 * rsv: block reservation 474 * items: the number of items that we need do reservation 475 * use_global_rsv: allow fallback to the global block reservation 476 * 477 * This function is used to reserve the space for snapshot/subvolume 478 * creation and deletion. Those operations are different with the 479 * common file/directory operations, they change two fs/file trees 480 * and root tree, the number of items that the qgroup reserves is 481 * different with the free space reservation. So we can not use 482 * the space reservation mechanism in start_transaction(). 483 */ 484 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 485 struct btrfs_block_rsv *rsv, int items, 486 bool use_global_rsv) 487 { 488 u64 qgroup_num_bytes = 0; 489 u64 num_bytes; 490 int ret; 491 struct btrfs_fs_info *fs_info = root->fs_info; 492 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 493 494 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 495 /* One for parent inode, two for dir entries */ 496 qgroup_num_bytes = 3 * fs_info->nodesize; 497 ret = btrfs_qgroup_reserve_meta_prealloc(root, 498 qgroup_num_bytes, true); 499 if (ret) 500 return ret; 501 } 502 503 num_bytes = btrfs_calc_insert_metadata_size(fs_info, items); 504 rsv->space_info = btrfs_find_space_info(fs_info, 505 BTRFS_BLOCK_GROUP_METADATA); 506 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 507 BTRFS_RESERVE_FLUSH_ALL); 508 509 if (ret == -ENOSPC && use_global_rsv) 510 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true); 511 512 if (ret && qgroup_num_bytes) 513 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes); 514 515 if (!ret) { 516 spin_lock(&rsv->lock); 517 rsv->qgroup_rsv_reserved += qgroup_num_bytes; 518 spin_unlock(&rsv->lock); 519 } 520 return ret; 521 } 522 523 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 524 struct btrfs_block_rsv *rsv) 525 { 526 struct btrfs_fs_info *fs_info = root->fs_info; 527 u64 qgroup_to_release; 528 529 btrfs_block_rsv_release(fs_info, rsv, (u64)-1, &qgroup_to_release); 530 btrfs_qgroup_convert_reserved_meta(root, qgroup_to_release); 531 } 532