1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/err.h> 7 #include <linux/uuid.h> 8 #include "ctree.h" 9 #include "transaction.h" 10 #include "disk-io.h" 11 #include "print-tree.h" 12 #include "qgroup.h" 13 #include "space-info.h" 14 15 /* 16 * Read a root item from the tree. In case we detect a root item smaller then 17 * sizeof(root_item), we know it's an old version of the root structure and 18 * initialize all new fields to zero. The same happens if we detect mismatching 19 * generation numbers as then we know the root was once mounted with an older 20 * kernel that was not aware of the root item structure change. 21 */ 22 static void btrfs_read_root_item(struct extent_buffer *eb, int slot, 23 struct btrfs_root_item *item) 24 { 25 u32 len; 26 int need_reset = 0; 27 28 len = btrfs_item_size(eb, slot); 29 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot), 30 min_t(u32, len, sizeof(*item))); 31 if (len < sizeof(*item)) 32 need_reset = 1; 33 if (!need_reset && btrfs_root_generation(item) 34 != btrfs_root_generation_v2(item)) { 35 if (btrfs_root_generation_v2(item) != 0) { 36 btrfs_warn(eb->fs_info, 37 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields."); 38 } 39 need_reset = 1; 40 } 41 if (need_reset) { 42 /* Clear all members from generation_v2 onwards. */ 43 memset_startat(item, 0, generation_v2); 44 generate_random_guid(item->uuid); 45 } 46 } 47 48 /* 49 * btrfs_find_root - lookup the root by the key. 50 * root: the root of the root tree 51 * search_key: the key to search 52 * path: the path we search 53 * root_item: the root item of the tree we look for 54 * root_key: the root key of the tree we look for 55 * 56 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset 57 * of the search key, just lookup the root with the highest offset for a 58 * given objectid. 59 * 60 * If we find something return 0, otherwise > 0, < 0 on error. 61 */ 62 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 63 struct btrfs_path *path, struct btrfs_root_item *root_item, 64 struct btrfs_key *root_key) 65 { 66 struct btrfs_key found_key; 67 struct extent_buffer *l; 68 int ret; 69 int slot; 70 71 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0); 72 if (ret < 0) 73 return ret; 74 75 if (search_key->offset != -1ULL) { /* the search key is exact */ 76 if (ret > 0) 77 goto out; 78 } else { 79 BUG_ON(ret == 0); /* Logical error */ 80 if (path->slots[0] == 0) 81 goto out; 82 path->slots[0]--; 83 ret = 0; 84 } 85 86 l = path->nodes[0]; 87 slot = path->slots[0]; 88 89 btrfs_item_key_to_cpu(l, &found_key, slot); 90 if (found_key.objectid != search_key->objectid || 91 found_key.type != BTRFS_ROOT_ITEM_KEY) { 92 ret = 1; 93 goto out; 94 } 95 96 if (root_item) 97 btrfs_read_root_item(l, slot, root_item); 98 if (root_key) 99 memcpy(root_key, &found_key, sizeof(found_key)); 100 out: 101 btrfs_release_path(path); 102 return ret; 103 } 104 105 void btrfs_set_root_node(struct btrfs_root_item *item, 106 struct extent_buffer *node) 107 { 108 btrfs_set_root_bytenr(item, node->start); 109 btrfs_set_root_level(item, btrfs_header_level(node)); 110 btrfs_set_root_generation(item, btrfs_header_generation(node)); 111 } 112 113 /* 114 * copy the data in 'item' into the btree 115 */ 116 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root 117 *root, struct btrfs_key *key, struct btrfs_root_item 118 *item) 119 { 120 struct btrfs_fs_info *fs_info = root->fs_info; 121 struct btrfs_path *path; 122 struct extent_buffer *l; 123 int ret; 124 int slot; 125 unsigned long ptr; 126 u32 old_len; 127 128 path = btrfs_alloc_path(); 129 if (!path) 130 return -ENOMEM; 131 132 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 133 if (ret < 0) 134 goto out; 135 136 if (ret > 0) { 137 btrfs_crit(fs_info, 138 "unable to find root key (%llu %u %llu) in tree %llu", 139 key->objectid, key->type, key->offset, 140 root->root_key.objectid); 141 ret = -EUCLEAN; 142 btrfs_abort_transaction(trans, ret); 143 goto out; 144 } 145 146 l = path->nodes[0]; 147 slot = path->slots[0]; 148 ptr = btrfs_item_ptr_offset(l, slot); 149 old_len = btrfs_item_size(l, slot); 150 151 /* 152 * If this is the first time we update the root item which originated 153 * from an older kernel, we need to enlarge the item size to make room 154 * for the added fields. 155 */ 156 if (old_len < sizeof(*item)) { 157 btrfs_release_path(path); 158 ret = btrfs_search_slot(trans, root, key, path, 159 -1, 1); 160 if (ret < 0) { 161 btrfs_abort_transaction(trans, ret); 162 goto out; 163 } 164 165 ret = btrfs_del_item(trans, root, path); 166 if (ret < 0) { 167 btrfs_abort_transaction(trans, ret); 168 goto out; 169 } 170 btrfs_release_path(path); 171 ret = btrfs_insert_empty_item(trans, root, path, 172 key, sizeof(*item)); 173 if (ret < 0) { 174 btrfs_abort_transaction(trans, ret); 175 goto out; 176 } 177 l = path->nodes[0]; 178 slot = path->slots[0]; 179 ptr = btrfs_item_ptr_offset(l, slot); 180 } 181 182 /* 183 * Update generation_v2 so at the next mount we know the new root 184 * fields are valid. 185 */ 186 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 187 188 write_extent_buffer(l, item, ptr, sizeof(*item)); 189 btrfs_mark_buffer_dirty(path->nodes[0]); 190 out: 191 btrfs_free_path(path); 192 return ret; 193 } 194 195 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 196 const struct btrfs_key *key, struct btrfs_root_item *item) 197 { 198 /* 199 * Make sure generation v1 and v2 match. See update_root for details. 200 */ 201 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 202 return btrfs_insert_item(trans, root, key, item, sizeof(*item)); 203 } 204 205 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info) 206 { 207 struct btrfs_root *tree_root = fs_info->tree_root; 208 struct extent_buffer *leaf; 209 struct btrfs_path *path; 210 struct btrfs_key key; 211 struct btrfs_root *root; 212 int err = 0; 213 int ret; 214 215 path = btrfs_alloc_path(); 216 if (!path) 217 return -ENOMEM; 218 219 key.objectid = BTRFS_ORPHAN_OBJECTID; 220 key.type = BTRFS_ORPHAN_ITEM_KEY; 221 key.offset = 0; 222 223 while (1) { 224 u64 root_objectid; 225 226 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 227 if (ret < 0) { 228 err = ret; 229 break; 230 } 231 232 leaf = path->nodes[0]; 233 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 234 ret = btrfs_next_leaf(tree_root, path); 235 if (ret < 0) 236 err = ret; 237 if (ret != 0) 238 break; 239 leaf = path->nodes[0]; 240 } 241 242 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 243 btrfs_release_path(path); 244 245 if (key.objectid != BTRFS_ORPHAN_OBJECTID || 246 key.type != BTRFS_ORPHAN_ITEM_KEY) 247 break; 248 249 root_objectid = key.offset; 250 key.offset++; 251 252 root = btrfs_get_fs_root(fs_info, root_objectid, false); 253 err = PTR_ERR_OR_ZERO(root); 254 if (err && err != -ENOENT) { 255 break; 256 } else if (err == -ENOENT) { 257 struct btrfs_trans_handle *trans; 258 259 btrfs_release_path(path); 260 261 trans = btrfs_join_transaction(tree_root); 262 if (IS_ERR(trans)) { 263 err = PTR_ERR(trans); 264 btrfs_handle_fs_error(fs_info, err, 265 "Failed to start trans to delete orphan item"); 266 break; 267 } 268 err = btrfs_del_orphan_item(trans, tree_root, 269 root_objectid); 270 btrfs_end_transaction(trans); 271 if (err) { 272 btrfs_handle_fs_error(fs_info, err, 273 "Failed to delete root orphan item"); 274 break; 275 } 276 continue; 277 } 278 279 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)); 280 if (btrfs_root_refs(&root->root_item) == 0) { 281 struct btrfs_key drop_key; 282 283 btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress); 284 /* 285 * If we have a non-zero drop_progress then we know we 286 * made it partly through deleting this snapshot, and 287 * thus we need to make sure we block any balance from 288 * happening until this snapshot is completely dropped. 289 */ 290 if (drop_key.objectid != 0 || drop_key.type != 0 || 291 drop_key.offset != 0) { 292 set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags); 293 set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 294 } 295 296 set_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 297 btrfs_add_dead_root(root); 298 } 299 btrfs_put_root(root); 300 } 301 302 btrfs_free_path(path); 303 return err; 304 } 305 306 /* drop the root item for 'key' from the tree root */ 307 int btrfs_del_root(struct btrfs_trans_handle *trans, 308 const struct btrfs_key *key) 309 { 310 struct btrfs_root *root = trans->fs_info->tree_root; 311 struct btrfs_path *path; 312 int ret; 313 314 path = btrfs_alloc_path(); 315 if (!path) 316 return -ENOMEM; 317 ret = btrfs_search_slot(trans, root, key, path, -1, 1); 318 if (ret < 0) 319 goto out; 320 321 BUG_ON(ret != 0); 322 323 ret = btrfs_del_item(trans, root, path); 324 out: 325 btrfs_free_path(path); 326 return ret; 327 } 328 329 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 330 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 331 int name_len) 332 333 { 334 struct btrfs_root *tree_root = trans->fs_info->tree_root; 335 struct btrfs_path *path; 336 struct btrfs_root_ref *ref; 337 struct extent_buffer *leaf; 338 struct btrfs_key key; 339 unsigned long ptr; 340 int ret; 341 342 path = btrfs_alloc_path(); 343 if (!path) 344 return -ENOMEM; 345 346 key.objectid = root_id; 347 key.type = BTRFS_ROOT_BACKREF_KEY; 348 key.offset = ref_id; 349 again: 350 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 351 if (ret < 0) { 352 goto out; 353 } else if (ret == 0) { 354 leaf = path->nodes[0]; 355 ref = btrfs_item_ptr(leaf, path->slots[0], 356 struct btrfs_root_ref); 357 ptr = (unsigned long)(ref + 1); 358 if ((btrfs_root_ref_dirid(leaf, ref) != dirid) || 359 (btrfs_root_ref_name_len(leaf, ref) != name_len) || 360 memcmp_extent_buffer(leaf, name, ptr, name_len)) { 361 ret = -ENOENT; 362 goto out; 363 } 364 *sequence = btrfs_root_ref_sequence(leaf, ref); 365 366 ret = btrfs_del_item(trans, tree_root, path); 367 if (ret) 368 goto out; 369 } else { 370 ret = -ENOENT; 371 goto out; 372 } 373 374 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 375 btrfs_release_path(path); 376 key.objectid = ref_id; 377 key.type = BTRFS_ROOT_REF_KEY; 378 key.offset = root_id; 379 goto again; 380 } 381 382 out: 383 btrfs_free_path(path); 384 return ret; 385 } 386 387 /* 388 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY 389 * or BTRFS_ROOT_BACKREF_KEY. 390 * 391 * The dirid, sequence, name and name_len refer to the directory entry 392 * that is referencing the root. 393 * 394 * For a forward ref, the root_id is the id of the tree referencing 395 * the root and ref_id is the id of the subvol or snapshot. 396 * 397 * For a back ref the root_id is the id of the subvol or snapshot and 398 * ref_id is the id of the tree referencing it. 399 * 400 * Will return 0, -ENOMEM, or anything from the CoW path 401 */ 402 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 403 u64 ref_id, u64 dirid, u64 sequence, const char *name, 404 int name_len) 405 { 406 struct btrfs_root *tree_root = trans->fs_info->tree_root; 407 struct btrfs_key key; 408 int ret; 409 struct btrfs_path *path; 410 struct btrfs_root_ref *ref; 411 struct extent_buffer *leaf; 412 unsigned long ptr; 413 414 path = btrfs_alloc_path(); 415 if (!path) 416 return -ENOMEM; 417 418 key.objectid = root_id; 419 key.type = BTRFS_ROOT_BACKREF_KEY; 420 key.offset = ref_id; 421 again: 422 ret = btrfs_insert_empty_item(trans, tree_root, path, &key, 423 sizeof(*ref) + name_len); 424 if (ret) { 425 btrfs_abort_transaction(trans, ret); 426 btrfs_free_path(path); 427 return ret; 428 } 429 430 leaf = path->nodes[0]; 431 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 432 btrfs_set_root_ref_dirid(leaf, ref, dirid); 433 btrfs_set_root_ref_sequence(leaf, ref, sequence); 434 btrfs_set_root_ref_name_len(leaf, ref, name_len); 435 ptr = (unsigned long)(ref + 1); 436 write_extent_buffer(leaf, name, ptr, name_len); 437 btrfs_mark_buffer_dirty(leaf); 438 439 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 440 btrfs_release_path(path); 441 key.objectid = ref_id; 442 key.type = BTRFS_ROOT_REF_KEY; 443 key.offset = root_id; 444 goto again; 445 } 446 447 btrfs_free_path(path); 448 return 0; 449 } 450 451 /* 452 * Old btrfs forgets to init root_item->flags and root_item->byte_limit 453 * for subvolumes. To work around this problem, we steal a bit from 454 * root_item->inode_item->flags, and use it to indicate if those fields 455 * have been properly initialized. 456 */ 457 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item) 458 { 459 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode); 460 461 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) { 462 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT; 463 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags); 464 btrfs_set_root_flags(root_item, 0); 465 btrfs_set_root_limit(root_item, 0); 466 } 467 } 468 469 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 470 struct btrfs_root *root) 471 { 472 struct btrfs_root_item *item = &root->root_item; 473 struct timespec64 ct; 474 475 ktime_get_real_ts64(&ct); 476 spin_lock(&root->root_item_lock); 477 btrfs_set_root_ctransid(item, trans->transid); 478 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec); 479 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec); 480 spin_unlock(&root->root_item_lock); 481 } 482 483 /* 484 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 485 * root: the root of the parent directory 486 * rsv: block reservation 487 * items: the number of items that we need do reservation 488 * use_global_rsv: allow fallback to the global block reservation 489 * 490 * This function is used to reserve the space for snapshot/subvolume 491 * creation and deletion. Those operations are different with the 492 * common file/directory operations, they change two fs/file trees 493 * and root tree, the number of items that the qgroup reserves is 494 * different with the free space reservation. So we can not use 495 * the space reservation mechanism in start_transaction(). 496 */ 497 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 498 struct btrfs_block_rsv *rsv, int items, 499 bool use_global_rsv) 500 { 501 u64 qgroup_num_bytes = 0; 502 u64 num_bytes; 503 int ret; 504 struct btrfs_fs_info *fs_info = root->fs_info; 505 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 506 507 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 508 /* One for parent inode, two for dir entries */ 509 qgroup_num_bytes = 3 * fs_info->nodesize; 510 ret = btrfs_qgroup_reserve_meta_prealloc(root, 511 qgroup_num_bytes, true, 512 false); 513 if (ret) 514 return ret; 515 } 516 517 num_bytes = btrfs_calc_insert_metadata_size(fs_info, items); 518 rsv->space_info = btrfs_find_space_info(fs_info, 519 BTRFS_BLOCK_GROUP_METADATA); 520 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, 521 BTRFS_RESERVE_FLUSH_ALL); 522 523 if (ret == -ENOSPC && use_global_rsv) 524 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true); 525 526 if (ret && qgroup_num_bytes) 527 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes); 528 529 if (!ret) { 530 spin_lock(&rsv->lock); 531 rsv->qgroup_rsv_reserved += qgroup_num_bytes; 532 spin_unlock(&rsv->lock); 533 } 534 return ret; 535 } 536 537 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 538 struct btrfs_block_rsv *rsv) 539 { 540 struct btrfs_fs_info *fs_info = root->fs_info; 541 u64 qgroup_to_release; 542 543 btrfs_block_rsv_release(fs_info, rsv, (u64)-1, &qgroup_to_release); 544 btrfs_qgroup_convert_reserved_meta(root, qgroup_to_release); 545 } 546