1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/uuid.h> 20 #include "ctree.h" 21 #include "transaction.h" 22 #include "disk-io.h" 23 #include "print-tree.h" 24 25 /* 26 * Read a root item from the tree. In case we detect a root item smaller then 27 * sizeof(root_item), we know it's an old version of the root structure and 28 * initialize all new fields to zero. The same happens if we detect mismatching 29 * generation numbers as then we know the root was once mounted with an older 30 * kernel that was not aware of the root item structure change. 31 */ 32 void btrfs_read_root_item(struct btrfs_root *root, 33 struct extent_buffer *eb, int slot, 34 struct btrfs_root_item *item) 35 { 36 uuid_le uuid; 37 int len; 38 int need_reset = 0; 39 40 len = btrfs_item_size_nr(eb, slot); 41 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot), 42 min_t(int, len, (int)sizeof(*item))); 43 if (len < sizeof(*item)) 44 need_reset = 1; 45 if (!need_reset && btrfs_root_generation(item) 46 != btrfs_root_generation_v2(item)) { 47 if (btrfs_root_generation_v2(item) != 0) { 48 printk(KERN_WARNING "btrfs: mismatching " 49 "generation and generation_v2 " 50 "found in root item. This root " 51 "was probably mounted with an " 52 "older kernel. Resetting all " 53 "new fields.\n"); 54 } 55 need_reset = 1; 56 } 57 if (need_reset) { 58 memset(&item->generation_v2, 0, 59 sizeof(*item) - offsetof(struct btrfs_root_item, 60 generation_v2)); 61 62 uuid_le_gen(&uuid); 63 memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE); 64 } 65 } 66 67 /* 68 * lookup the root with the highest offset for a given objectid. The key we do 69 * find is copied into 'key'. If we find something return 0, otherwise 1, < 0 70 * on error. 71 */ 72 int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, 73 struct btrfs_root_item *item, struct btrfs_key *key) 74 { 75 struct btrfs_path *path; 76 struct btrfs_key search_key; 77 struct btrfs_key found_key; 78 struct extent_buffer *l; 79 int ret; 80 int slot; 81 82 search_key.objectid = objectid; 83 search_key.type = BTRFS_ROOT_ITEM_KEY; 84 search_key.offset = (u64)-1; 85 86 path = btrfs_alloc_path(); 87 if (!path) 88 return -ENOMEM; 89 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 90 if (ret < 0) 91 goto out; 92 93 BUG_ON(ret == 0); 94 if (path->slots[0] == 0) { 95 ret = 1; 96 goto out; 97 } 98 l = path->nodes[0]; 99 slot = path->slots[0] - 1; 100 btrfs_item_key_to_cpu(l, &found_key, slot); 101 if (found_key.objectid != objectid || 102 found_key.type != BTRFS_ROOT_ITEM_KEY) { 103 ret = 1; 104 goto out; 105 } 106 if (item) 107 btrfs_read_root_item(root, l, slot, item); 108 if (key) 109 memcpy(key, &found_key, sizeof(found_key)); 110 111 ret = 0; 112 out: 113 btrfs_free_path(path); 114 return ret; 115 } 116 117 void btrfs_set_root_node(struct btrfs_root_item *item, 118 struct extent_buffer *node) 119 { 120 btrfs_set_root_bytenr(item, node->start); 121 btrfs_set_root_level(item, btrfs_header_level(node)); 122 btrfs_set_root_generation(item, btrfs_header_generation(node)); 123 } 124 125 /* 126 * copy the data in 'item' into the btree 127 */ 128 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root 129 *root, struct btrfs_key *key, struct btrfs_root_item 130 *item) 131 { 132 struct btrfs_path *path; 133 struct extent_buffer *l; 134 int ret; 135 int slot; 136 unsigned long ptr; 137 int old_len; 138 139 path = btrfs_alloc_path(); 140 if (!path) 141 return -ENOMEM; 142 143 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 144 if (ret < 0) 145 goto out_abort; 146 147 if (ret != 0) { 148 btrfs_print_leaf(root, path->nodes[0]); 149 printk(KERN_CRIT "unable to update root key %llu %u %llu\n", 150 (unsigned long long)key->objectid, key->type, 151 (unsigned long long)key->offset); 152 BUG_ON(1); 153 } 154 155 l = path->nodes[0]; 156 slot = path->slots[0]; 157 ptr = btrfs_item_ptr_offset(l, slot); 158 old_len = btrfs_item_size_nr(l, slot); 159 160 /* 161 * If this is the first time we update the root item which originated 162 * from an older kernel, we need to enlarge the item size to make room 163 * for the added fields. 164 */ 165 if (old_len < sizeof(*item)) { 166 btrfs_release_path(path); 167 ret = btrfs_search_slot(trans, root, key, path, 168 -1, 1); 169 if (ret < 0) 170 goto out_abort; 171 ret = btrfs_del_item(trans, root, path); 172 if (ret < 0) 173 goto out_abort; 174 btrfs_release_path(path); 175 ret = btrfs_insert_empty_item(trans, root, path, 176 key, sizeof(*item)); 177 if (ret < 0) 178 goto out_abort; 179 l = path->nodes[0]; 180 slot = path->slots[0]; 181 ptr = btrfs_item_ptr_offset(l, slot); 182 } 183 184 /* 185 * Update generation_v2 so at the next mount we know the new root 186 * fields are valid. 187 */ 188 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 189 190 write_extent_buffer(l, item, ptr, sizeof(*item)); 191 btrfs_mark_buffer_dirty(path->nodes[0]); 192 out: 193 btrfs_free_path(path); 194 return ret; 195 196 out_abort: 197 btrfs_abort_transaction(trans, root, ret); 198 goto out; 199 } 200 201 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 202 struct btrfs_key *key, struct btrfs_root_item *item) 203 { 204 /* 205 * Make sure generation v1 and v2 match. See update_root for details. 206 */ 207 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 208 return btrfs_insert_item(trans, root, key, item, sizeof(*item)); 209 } 210 211 /* 212 * at mount time we want to find all the old transaction snapshots that were in 213 * the process of being deleted if we crashed. This is any root item with an 214 * offset lower than the latest root. They need to be queued for deletion to 215 * finish what was happening when we crashed. 216 */ 217 int btrfs_find_dead_roots(struct btrfs_root *root, u64 objectid) 218 { 219 struct btrfs_root *dead_root; 220 struct btrfs_root_item *ri; 221 struct btrfs_key key; 222 struct btrfs_key found_key; 223 struct btrfs_path *path; 224 int ret; 225 u32 nritems; 226 struct extent_buffer *leaf; 227 int slot; 228 229 key.objectid = objectid; 230 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 231 key.offset = 0; 232 path = btrfs_alloc_path(); 233 if (!path) 234 return -ENOMEM; 235 236 again: 237 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 238 if (ret < 0) 239 goto err; 240 while (1) { 241 leaf = path->nodes[0]; 242 nritems = btrfs_header_nritems(leaf); 243 slot = path->slots[0]; 244 if (slot >= nritems) { 245 ret = btrfs_next_leaf(root, path); 246 if (ret) 247 break; 248 leaf = path->nodes[0]; 249 nritems = btrfs_header_nritems(leaf); 250 slot = path->slots[0]; 251 } 252 btrfs_item_key_to_cpu(leaf, &key, slot); 253 if (btrfs_key_type(&key) != BTRFS_ROOT_ITEM_KEY) 254 goto next; 255 256 if (key.objectid < objectid) 257 goto next; 258 259 if (key.objectid > objectid) 260 break; 261 262 ri = btrfs_item_ptr(leaf, slot, struct btrfs_root_item); 263 if (btrfs_disk_root_refs(leaf, ri) != 0) 264 goto next; 265 266 memcpy(&found_key, &key, sizeof(key)); 267 key.offset++; 268 btrfs_release_path(path); 269 dead_root = 270 btrfs_read_fs_root_no_radix(root->fs_info->tree_root, 271 &found_key); 272 if (IS_ERR(dead_root)) { 273 ret = PTR_ERR(dead_root); 274 goto err; 275 } 276 277 ret = btrfs_add_dead_root(dead_root); 278 if (ret) 279 goto err; 280 goto again; 281 next: 282 slot++; 283 path->slots[0]++; 284 } 285 ret = 0; 286 err: 287 btrfs_free_path(path); 288 return ret; 289 } 290 291 int btrfs_find_orphan_roots(struct btrfs_root *tree_root) 292 { 293 struct extent_buffer *leaf; 294 struct btrfs_path *path; 295 struct btrfs_key key; 296 struct btrfs_key root_key; 297 struct btrfs_root *root; 298 int err = 0; 299 int ret; 300 301 path = btrfs_alloc_path(); 302 if (!path) 303 return -ENOMEM; 304 305 key.objectid = BTRFS_ORPHAN_OBJECTID; 306 key.type = BTRFS_ORPHAN_ITEM_KEY; 307 key.offset = 0; 308 309 root_key.type = BTRFS_ROOT_ITEM_KEY; 310 root_key.offset = (u64)-1; 311 312 while (1) { 313 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 314 if (ret < 0) { 315 err = ret; 316 break; 317 } 318 319 leaf = path->nodes[0]; 320 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 321 ret = btrfs_next_leaf(tree_root, path); 322 if (ret < 0) 323 err = ret; 324 if (ret != 0) 325 break; 326 leaf = path->nodes[0]; 327 } 328 329 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 330 btrfs_release_path(path); 331 332 if (key.objectid != BTRFS_ORPHAN_OBJECTID || 333 key.type != BTRFS_ORPHAN_ITEM_KEY) 334 break; 335 336 root_key.objectid = key.offset; 337 key.offset++; 338 339 root = btrfs_read_fs_root_no_name(tree_root->fs_info, 340 &root_key); 341 if (!IS_ERR(root)) 342 continue; 343 344 ret = PTR_ERR(root); 345 if (ret != -ENOENT) { 346 err = ret; 347 break; 348 } 349 350 ret = btrfs_find_dead_roots(tree_root, root_key.objectid); 351 if (ret) { 352 err = ret; 353 break; 354 } 355 } 356 357 btrfs_free_path(path); 358 return err; 359 } 360 361 /* drop the root item for 'key' from 'root' */ 362 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 363 struct btrfs_key *key) 364 { 365 struct btrfs_path *path; 366 int ret; 367 struct btrfs_root_item *ri; 368 struct extent_buffer *leaf; 369 370 path = btrfs_alloc_path(); 371 if (!path) 372 return -ENOMEM; 373 ret = btrfs_search_slot(trans, root, key, path, -1, 1); 374 if (ret < 0) 375 goto out; 376 377 BUG_ON(ret != 0); 378 leaf = path->nodes[0]; 379 ri = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_item); 380 381 ret = btrfs_del_item(trans, root, path); 382 out: 383 btrfs_free_path(path); 384 return ret; 385 } 386 387 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, 388 struct btrfs_root *tree_root, 389 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence, 390 const char *name, int name_len) 391 392 { 393 struct btrfs_path *path; 394 struct btrfs_root_ref *ref; 395 struct extent_buffer *leaf; 396 struct btrfs_key key; 397 unsigned long ptr; 398 int err = 0; 399 int ret; 400 401 path = btrfs_alloc_path(); 402 if (!path) 403 return -ENOMEM; 404 405 key.objectid = root_id; 406 key.type = BTRFS_ROOT_BACKREF_KEY; 407 key.offset = ref_id; 408 again: 409 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 410 BUG_ON(ret < 0); 411 if (ret == 0) { 412 leaf = path->nodes[0]; 413 ref = btrfs_item_ptr(leaf, path->slots[0], 414 struct btrfs_root_ref); 415 416 WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid); 417 WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len); 418 ptr = (unsigned long)(ref + 1); 419 WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len)); 420 *sequence = btrfs_root_ref_sequence(leaf, ref); 421 422 ret = btrfs_del_item(trans, tree_root, path); 423 if (ret) { 424 err = ret; 425 goto out; 426 } 427 } else 428 err = -ENOENT; 429 430 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 431 btrfs_release_path(path); 432 key.objectid = ref_id; 433 key.type = BTRFS_ROOT_REF_KEY; 434 key.offset = root_id; 435 goto again; 436 } 437 438 out: 439 btrfs_free_path(path); 440 return err; 441 } 442 443 int btrfs_find_root_ref(struct btrfs_root *tree_root, 444 struct btrfs_path *path, 445 u64 root_id, u64 ref_id) 446 { 447 struct btrfs_key key; 448 int ret; 449 450 key.objectid = root_id; 451 key.type = BTRFS_ROOT_REF_KEY; 452 key.offset = ref_id; 453 454 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 455 return ret; 456 } 457 458 /* 459 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY 460 * or BTRFS_ROOT_BACKREF_KEY. 461 * 462 * The dirid, sequence, name and name_len refer to the directory entry 463 * that is referencing the root. 464 * 465 * For a forward ref, the root_id is the id of the tree referencing 466 * the root and ref_id is the id of the subvol or snapshot. 467 * 468 * For a back ref the root_id is the id of the subvol or snapshot and 469 * ref_id is the id of the tree referencing it. 470 * 471 * Will return 0, -ENOMEM, or anything from the CoW path 472 */ 473 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, 474 struct btrfs_root *tree_root, 475 u64 root_id, u64 ref_id, u64 dirid, u64 sequence, 476 const char *name, int name_len) 477 { 478 struct btrfs_key key; 479 int ret; 480 struct btrfs_path *path; 481 struct btrfs_root_ref *ref; 482 struct extent_buffer *leaf; 483 unsigned long ptr; 484 485 path = btrfs_alloc_path(); 486 if (!path) 487 return -ENOMEM; 488 489 key.objectid = root_id; 490 key.type = BTRFS_ROOT_BACKREF_KEY; 491 key.offset = ref_id; 492 again: 493 ret = btrfs_insert_empty_item(trans, tree_root, path, &key, 494 sizeof(*ref) + name_len); 495 if (ret) { 496 btrfs_abort_transaction(trans, tree_root, ret); 497 btrfs_free_path(path); 498 return ret; 499 } 500 501 leaf = path->nodes[0]; 502 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 503 btrfs_set_root_ref_dirid(leaf, ref, dirid); 504 btrfs_set_root_ref_sequence(leaf, ref, sequence); 505 btrfs_set_root_ref_name_len(leaf, ref, name_len); 506 ptr = (unsigned long)(ref + 1); 507 write_extent_buffer(leaf, name, ptr, name_len); 508 btrfs_mark_buffer_dirty(leaf); 509 510 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 511 btrfs_release_path(path); 512 key.objectid = ref_id; 513 key.type = BTRFS_ROOT_REF_KEY; 514 key.offset = root_id; 515 goto again; 516 } 517 518 btrfs_free_path(path); 519 return 0; 520 } 521 522 /* 523 * Old btrfs forgets to init root_item->flags and root_item->byte_limit 524 * for subvolumes. To work around this problem, we steal a bit from 525 * root_item->inode_item->flags, and use it to indicate if those fields 526 * have been properly initialized. 527 */ 528 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item) 529 { 530 u64 inode_flags = le64_to_cpu(root_item->inode.flags); 531 532 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) { 533 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT; 534 root_item->inode.flags = cpu_to_le64(inode_flags); 535 root_item->flags = 0; 536 root_item->byte_limit = 0; 537 } 538 } 539 540 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 541 struct btrfs_root *root) 542 { 543 struct btrfs_root_item *item = &root->root_item; 544 struct timespec ct = CURRENT_TIME; 545 546 spin_lock(&root->root_times_lock); 547 item->ctransid = trans->transid; 548 item->ctime.sec = cpu_to_le64(ct.tv_sec); 549 item->ctime.nsec = cpu_to_le64(ct.tv_nsec); 550 spin_unlock(&root->root_times_lock); 551 } 552