1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/err.h> 7 #include <linux/uuid.h> 8 #include "ctree.h" 9 #include "fs.h" 10 #include "messages.h" 11 #include "transaction.h" 12 #include "disk-io.h" 13 #include "qgroup.h" 14 #include "space-info.h" 15 #include "accessors.h" 16 #include "root-tree.h" 17 #include "orphan.h" 18 19 /* 20 * Read a root item from the tree. In case we detect a root item smaller then 21 * sizeof(root_item), we know it's an old version of the root structure and 22 * initialize all new fields to zero. The same happens if we detect mismatching 23 * generation numbers as then we know the root was once mounted with an older 24 * kernel that was not aware of the root item structure change. 25 */ 26 static void btrfs_read_root_item(struct extent_buffer *eb, int slot, 27 struct btrfs_root_item *item) 28 { 29 u32 len; 30 int need_reset = 0; 31 32 len = btrfs_item_size(eb, slot); 33 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot), 34 min_t(u32, len, sizeof(*item))); 35 if (len < sizeof(*item)) 36 need_reset = 1; 37 if (!need_reset && btrfs_root_generation(item) 38 != btrfs_root_generation_v2(item)) { 39 if (btrfs_root_generation_v2(item) != 0) { 40 btrfs_warn(eb->fs_info, 41 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields."); 42 } 43 need_reset = 1; 44 } 45 if (need_reset) { 46 /* Clear all members from generation_v2 onwards. */ 47 memset_startat(item, 0, generation_v2); 48 generate_random_guid(item->uuid); 49 } 50 } 51 52 /* 53 * Lookup the root by the key. 54 * 55 * root: the root of the root tree 56 * search_key: the key to search 57 * path: the path we search 58 * root_item: the root item of the tree we look for 59 * root_key: the root key of the tree we look for 60 * 61 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset 62 * of the search key, just lookup the root with the highest offset for a 63 * given objectid. 64 * 65 * If we find something return 0, otherwise > 0, < 0 on error. 66 */ 67 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 68 struct btrfs_path *path, struct btrfs_root_item *root_item, 69 struct btrfs_key *root_key) 70 { 71 struct btrfs_key found_key; 72 struct extent_buffer *l; 73 int ret; 74 int slot; 75 76 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0); 77 if (ret < 0) 78 return ret; 79 80 if (search_key->offset != -1ULL) { /* the search key is exact */ 81 if (ret > 0) 82 goto out; 83 } else { 84 /* 85 * Key with offset -1 found, there would have to exist a root 86 * with such id, but this is out of the valid range. 87 */ 88 if (ret == 0) { 89 ret = -EUCLEAN; 90 goto out; 91 } 92 if (path->slots[0] == 0) 93 goto out; 94 path->slots[0]--; 95 ret = 0; 96 } 97 98 l = path->nodes[0]; 99 slot = path->slots[0]; 100 101 btrfs_item_key_to_cpu(l, &found_key, slot); 102 if (found_key.objectid != search_key->objectid || 103 found_key.type != BTRFS_ROOT_ITEM_KEY) { 104 ret = 1; 105 goto out; 106 } 107 108 if (root_item) 109 btrfs_read_root_item(l, slot, root_item); 110 if (root_key) 111 memcpy(root_key, &found_key, sizeof(found_key)); 112 out: 113 btrfs_release_path(path); 114 return ret; 115 } 116 117 void btrfs_set_root_node(struct btrfs_root_item *item, 118 struct extent_buffer *node) 119 { 120 btrfs_set_root_bytenr(item, node->start); 121 btrfs_set_root_level(item, btrfs_header_level(node)); 122 btrfs_set_root_generation(item, btrfs_header_generation(node)); 123 } 124 125 /* 126 * copy the data in 'item' into the btree 127 */ 128 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root 129 *root, struct btrfs_key *key, struct btrfs_root_item 130 *item) 131 { 132 struct btrfs_fs_info *fs_info = root->fs_info; 133 struct btrfs_path *path; 134 struct extent_buffer *l; 135 int ret; 136 int slot; 137 unsigned long ptr; 138 u32 old_len; 139 140 path = btrfs_alloc_path(); 141 if (!path) 142 return -ENOMEM; 143 144 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 145 if (ret < 0) 146 goto out; 147 148 if (ret > 0) { 149 btrfs_crit(fs_info, 150 "unable to find root key (%llu %u %llu) in tree %llu", 151 key->objectid, key->type, key->offset, btrfs_root_id(root)); 152 ret = -EUCLEAN; 153 btrfs_abort_transaction(trans, ret); 154 goto out; 155 } 156 157 l = path->nodes[0]; 158 slot = path->slots[0]; 159 ptr = btrfs_item_ptr_offset(l, slot); 160 old_len = btrfs_item_size(l, slot); 161 162 /* 163 * If this is the first time we update the root item which originated 164 * from an older kernel, we need to enlarge the item size to make room 165 * for the added fields. 166 */ 167 if (old_len < sizeof(*item)) { 168 btrfs_release_path(path); 169 ret = btrfs_search_slot(trans, root, key, path, 170 -1, 1); 171 if (ret < 0) { 172 btrfs_abort_transaction(trans, ret); 173 goto out; 174 } 175 176 ret = btrfs_del_item(trans, root, path); 177 if (ret < 0) { 178 btrfs_abort_transaction(trans, ret); 179 goto out; 180 } 181 btrfs_release_path(path); 182 ret = btrfs_insert_empty_item(trans, root, path, 183 key, sizeof(*item)); 184 if (ret < 0) { 185 btrfs_abort_transaction(trans, ret); 186 goto out; 187 } 188 l = path->nodes[0]; 189 slot = path->slots[0]; 190 ptr = btrfs_item_ptr_offset(l, slot); 191 } 192 193 /* 194 * Update generation_v2 so at the next mount we know the new root 195 * fields are valid. 196 */ 197 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 198 199 write_extent_buffer(l, item, ptr, sizeof(*item)); 200 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 201 out: 202 btrfs_free_path(path); 203 return ret; 204 } 205 206 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 207 const struct btrfs_key *key, struct btrfs_root_item *item) 208 { 209 /* 210 * Make sure generation v1 and v2 match. See update_root for details. 211 */ 212 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 213 return btrfs_insert_item(trans, root, key, item, sizeof(*item)); 214 } 215 216 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info) 217 { 218 struct btrfs_root *tree_root = fs_info->tree_root; 219 struct extent_buffer *leaf; 220 struct btrfs_path *path; 221 struct btrfs_key key; 222 struct btrfs_root *root; 223 int err = 0; 224 int ret; 225 226 path = btrfs_alloc_path(); 227 if (!path) 228 return -ENOMEM; 229 230 key.objectid = BTRFS_ORPHAN_OBJECTID; 231 key.type = BTRFS_ORPHAN_ITEM_KEY; 232 key.offset = 0; 233 234 while (1) { 235 u64 root_objectid; 236 237 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 238 if (ret < 0) { 239 err = ret; 240 break; 241 } 242 243 leaf = path->nodes[0]; 244 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 245 ret = btrfs_next_leaf(tree_root, path); 246 if (ret < 0) 247 err = ret; 248 if (ret != 0) 249 break; 250 leaf = path->nodes[0]; 251 } 252 253 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 254 btrfs_release_path(path); 255 256 if (key.objectid != BTRFS_ORPHAN_OBJECTID || 257 key.type != BTRFS_ORPHAN_ITEM_KEY) 258 break; 259 260 root_objectid = key.offset; 261 key.offset++; 262 263 root = btrfs_get_fs_root(fs_info, root_objectid, false); 264 err = PTR_ERR_OR_ZERO(root); 265 if (err && err != -ENOENT) { 266 break; 267 } else if (err == -ENOENT) { 268 struct btrfs_trans_handle *trans; 269 270 btrfs_release_path(path); 271 272 trans = btrfs_join_transaction(tree_root); 273 if (IS_ERR(trans)) { 274 err = PTR_ERR(trans); 275 btrfs_handle_fs_error(fs_info, err, 276 "Failed to start trans to delete orphan item"); 277 break; 278 } 279 err = btrfs_del_orphan_item(trans, tree_root, 280 root_objectid); 281 btrfs_end_transaction(trans); 282 if (err) { 283 btrfs_handle_fs_error(fs_info, err, 284 "Failed to delete root orphan item"); 285 break; 286 } 287 continue; 288 } 289 290 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)); 291 if (btrfs_root_refs(&root->root_item) == 0) { 292 struct btrfs_key drop_key; 293 294 btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress); 295 /* 296 * If we have a non-zero drop_progress then we know we 297 * made it partly through deleting this snapshot, and 298 * thus we need to make sure we block any balance from 299 * happening until this snapshot is completely dropped. 300 */ 301 if (drop_key.objectid != 0 || drop_key.type != 0 || 302 drop_key.offset != 0) { 303 set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags); 304 set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 305 } 306 307 set_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 308 btrfs_add_dead_root(root); 309 } 310 btrfs_put_root(root); 311 } 312 313 btrfs_free_path(path); 314 return err; 315 } 316 317 /* drop the root item for 'key' from the tree root */ 318 int btrfs_del_root(struct btrfs_trans_handle *trans, 319 const struct btrfs_key *key) 320 { 321 struct btrfs_root *root = trans->fs_info->tree_root; 322 struct btrfs_path *path; 323 int ret; 324 325 path = btrfs_alloc_path(); 326 if (!path) 327 return -ENOMEM; 328 ret = btrfs_search_slot(trans, root, key, path, -1, 1); 329 if (ret < 0) 330 goto out; 331 if (ret != 0) { 332 /* The root must exist but we did not find it by the key. */ 333 ret = -EUCLEAN; 334 goto out; 335 } 336 337 ret = btrfs_del_item(trans, root, path); 338 out: 339 btrfs_free_path(path); 340 return ret; 341 } 342 343 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 344 u64 ref_id, u64 dirid, u64 *sequence, 345 const struct fscrypt_str *name) 346 { 347 struct btrfs_root *tree_root = trans->fs_info->tree_root; 348 struct btrfs_path *path; 349 struct btrfs_root_ref *ref; 350 struct extent_buffer *leaf; 351 struct btrfs_key key; 352 unsigned long ptr; 353 int ret; 354 355 path = btrfs_alloc_path(); 356 if (!path) 357 return -ENOMEM; 358 359 key.objectid = root_id; 360 key.type = BTRFS_ROOT_BACKREF_KEY; 361 key.offset = ref_id; 362 again: 363 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 364 if (ret < 0) { 365 goto out; 366 } else if (ret == 0) { 367 leaf = path->nodes[0]; 368 ref = btrfs_item_ptr(leaf, path->slots[0], 369 struct btrfs_root_ref); 370 ptr = (unsigned long)(ref + 1); 371 if ((btrfs_root_ref_dirid(leaf, ref) != dirid) || 372 (btrfs_root_ref_name_len(leaf, ref) != name->len) || 373 memcmp_extent_buffer(leaf, name->name, ptr, name->len)) { 374 ret = -ENOENT; 375 goto out; 376 } 377 *sequence = btrfs_root_ref_sequence(leaf, ref); 378 379 ret = btrfs_del_item(trans, tree_root, path); 380 if (ret) 381 goto out; 382 } else { 383 ret = -ENOENT; 384 goto out; 385 } 386 387 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 388 btrfs_release_path(path); 389 key.objectid = ref_id; 390 key.type = BTRFS_ROOT_REF_KEY; 391 key.offset = root_id; 392 goto again; 393 } 394 395 out: 396 btrfs_free_path(path); 397 return ret; 398 } 399 400 /* 401 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY 402 * or BTRFS_ROOT_BACKREF_KEY. 403 * 404 * The dirid, sequence, name and name_len refer to the directory entry 405 * that is referencing the root. 406 * 407 * For a forward ref, the root_id is the id of the tree referencing 408 * the root and ref_id is the id of the subvol or snapshot. 409 * 410 * For a back ref the root_id is the id of the subvol or snapshot and 411 * ref_id is the id of the tree referencing it. 412 * 413 * Will return 0, -ENOMEM, or anything from the CoW path 414 */ 415 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 416 u64 ref_id, u64 dirid, u64 sequence, 417 const struct fscrypt_str *name) 418 { 419 struct btrfs_root *tree_root = trans->fs_info->tree_root; 420 struct btrfs_key key; 421 int ret; 422 struct btrfs_path *path; 423 struct btrfs_root_ref *ref; 424 struct extent_buffer *leaf; 425 unsigned long ptr; 426 427 path = btrfs_alloc_path(); 428 if (!path) 429 return -ENOMEM; 430 431 key.objectid = root_id; 432 key.type = BTRFS_ROOT_BACKREF_KEY; 433 key.offset = ref_id; 434 again: 435 ret = btrfs_insert_empty_item(trans, tree_root, path, &key, 436 sizeof(*ref) + name->len); 437 if (ret) { 438 btrfs_abort_transaction(trans, ret); 439 btrfs_free_path(path); 440 return ret; 441 } 442 443 leaf = path->nodes[0]; 444 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 445 btrfs_set_root_ref_dirid(leaf, ref, dirid); 446 btrfs_set_root_ref_sequence(leaf, ref, sequence); 447 btrfs_set_root_ref_name_len(leaf, ref, name->len); 448 ptr = (unsigned long)(ref + 1); 449 write_extent_buffer(leaf, name->name, ptr, name->len); 450 btrfs_mark_buffer_dirty(trans, leaf); 451 452 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 453 btrfs_release_path(path); 454 key.objectid = ref_id; 455 key.type = BTRFS_ROOT_REF_KEY; 456 key.offset = root_id; 457 goto again; 458 } 459 460 btrfs_free_path(path); 461 return 0; 462 } 463 464 /* 465 * Old btrfs forgets to init root_item->flags and root_item->byte_limit 466 * for subvolumes. To work around this problem, we steal a bit from 467 * root_item->inode_item->flags, and use it to indicate if those fields 468 * have been properly initialized. 469 */ 470 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item) 471 { 472 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode); 473 474 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) { 475 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT; 476 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags); 477 btrfs_set_root_flags(root_item, 0); 478 btrfs_set_root_limit(root_item, 0); 479 } 480 } 481 482 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 483 struct btrfs_root *root) 484 { 485 struct btrfs_root_item *item = &root->root_item; 486 struct timespec64 ct; 487 488 ktime_get_real_ts64(&ct); 489 spin_lock(&root->root_item_lock); 490 btrfs_set_root_ctransid(item, trans->transid); 491 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec); 492 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec); 493 spin_unlock(&root->root_item_lock); 494 } 495 496 /* 497 * Reserve space for subvolume operation. 498 * 499 * root: the root of the parent directory 500 * rsv: block reservation 501 * items: the number of items that we need do reservation 502 * use_global_rsv: allow fallback to the global block reservation 503 * 504 * This function is used to reserve the space for snapshot/subvolume 505 * creation and deletion. Those operations are different with the 506 * common file/directory operations, they change two fs/file trees 507 * and root tree, the number of items that the qgroup reserves is 508 * different with the free space reservation. So we can not use 509 * the space reservation mechanism in start_transaction(). 510 */ 511 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 512 struct btrfs_block_rsv *rsv, int items, 513 bool use_global_rsv) 514 { 515 u64 qgroup_num_bytes = 0; 516 u64 num_bytes; 517 int ret; 518 struct btrfs_fs_info *fs_info = root->fs_info; 519 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 520 521 if (btrfs_qgroup_enabled(fs_info)) { 522 /* One for parent inode, two for dir entries */ 523 qgroup_num_bytes = 3 * fs_info->nodesize; 524 ret = btrfs_qgroup_reserve_meta_prealloc(root, 525 qgroup_num_bytes, true, 526 false); 527 if (ret) 528 return ret; 529 } 530 531 num_bytes = btrfs_calc_insert_metadata_size(fs_info, items); 532 rsv->space_info = btrfs_find_space_info(fs_info, 533 BTRFS_BLOCK_GROUP_METADATA); 534 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, 535 BTRFS_RESERVE_FLUSH_ALL); 536 537 if (ret == -ENOSPC && use_global_rsv) 538 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true); 539 540 if (ret && qgroup_num_bytes) 541 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes); 542 543 if (!ret) { 544 spin_lock(&rsv->lock); 545 rsv->qgroup_rsv_reserved += qgroup_num_bytes; 546 spin_unlock(&rsv->lock); 547 } 548 return ret; 549 } 550