xref: /linux/fs/btrfs/root-tree.c (revision 23b0f90ba871f096474e1c27c3d14f455189d2d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/err.h>
7 #include <linux/uuid.h>
8 #include "ctree.h"
9 #include "fs.h"
10 #include "messages.h"
11 #include "transaction.h"
12 #include "disk-io.h"
13 #include "qgroup.h"
14 #include "space-info.h"
15 #include "accessors.h"
16 #include "root-tree.h"
17 #include "orphan.h"
18 
19 /*
20  * Read a root item from the tree. In case we detect a root item smaller then
21  * sizeof(root_item), we know it's an old version of the root structure and
22  * initialize all new fields to zero. The same happens if we detect mismatching
23  * generation numbers as then we know the root was once mounted with an older
24  * kernel that was not aware of the root item structure change.
25  */
26 static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
27 				struct btrfs_root_item *item)
28 {
29 	u32 len;
30 	int need_reset = 0;
31 
32 	len = btrfs_item_size(eb, slot);
33 	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
34 			   min_t(u32, len, sizeof(*item)));
35 	if (len < sizeof(*item))
36 		need_reset = 1;
37 	if (!need_reset && btrfs_root_generation(item)
38 		!= btrfs_root_generation_v2(item)) {
39 		if (btrfs_root_generation_v2(item) != 0) {
40 			btrfs_warn(eb->fs_info,
41 					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
42 		}
43 		need_reset = 1;
44 	}
45 	if (need_reset) {
46 		/* Clear all members from generation_v2 onwards. */
47 		memset_startat(item, 0, generation_v2);
48 		generate_random_guid(item->uuid);
49 	}
50 }
51 
52 /*
53  * Lookup the root by the key.
54  *
55  * root: the root of the root tree
56  * search_key: the key to search
57  * path: the path we search
58  * root_item: the root item of the tree we look for
59  * root_key: the root key of the tree we look for
60  *
61  * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
62  * of the search key, just lookup the root with the highest offset for a
63  * given objectid.
64  *
65  * If we find something return 0, otherwise > 0, < 0 on error.
66  */
67 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
68 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
69 		    struct btrfs_key *root_key)
70 {
71 	struct btrfs_key found_key;
72 	struct extent_buffer *l;
73 	int ret;
74 	int slot;
75 
76 	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
77 	if (ret < 0)
78 		return ret;
79 
80 	if (search_key->offset != -1ULL) {	/* the search key is exact */
81 		if (ret > 0)
82 			goto out;
83 	} else {
84 		/*
85 		 * Key with offset -1 found, there would have to exist a root
86 		 * with such id, but this is out of the valid range.
87 		 */
88 		if (unlikely(ret == 0)) {
89 			ret = -EUCLEAN;
90 			goto out;
91 		}
92 		if (path->slots[0] == 0)
93 			goto out;
94 		path->slots[0]--;
95 		ret = 0;
96 	}
97 
98 	l = path->nodes[0];
99 	slot = path->slots[0];
100 
101 	btrfs_item_key_to_cpu(l, &found_key, slot);
102 	if (found_key.objectid != search_key->objectid ||
103 	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
104 		ret = 1;
105 		goto out;
106 	}
107 
108 	if (root_item)
109 		btrfs_read_root_item(l, slot, root_item);
110 	if (root_key)
111 		memcpy(root_key, &found_key, sizeof(found_key));
112 out:
113 	btrfs_release_path(path);
114 	return ret;
115 }
116 
117 void btrfs_set_root_node(struct btrfs_root_item *item,
118 			 struct extent_buffer *node)
119 {
120 	btrfs_set_root_bytenr(item, node->start);
121 	btrfs_set_root_level(item, btrfs_header_level(node));
122 	btrfs_set_root_generation(item, btrfs_header_generation(node));
123 }
124 
125 /*
126  * copy the data in 'item' into the btree
127  */
128 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
129 		      *root, struct btrfs_key *key, struct btrfs_root_item
130 		      *item)
131 {
132 	struct btrfs_fs_info *fs_info = root->fs_info;
133 	BTRFS_PATH_AUTO_FREE(path);
134 	struct extent_buffer *l;
135 	int ret;
136 	int slot;
137 	unsigned long ptr;
138 	u32 old_len;
139 
140 	path = btrfs_alloc_path();
141 	if (!path)
142 		return -ENOMEM;
143 
144 	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
145 	if (ret < 0)
146 		return ret;
147 
148 	if (unlikely(ret > 0)) {
149 		btrfs_crit(fs_info,
150 			   "unable to find root key " BTRFS_KEY_FMT " in tree %llu",
151 			   BTRFS_KEY_FMT_VALUE(key), btrfs_root_id(root));
152 		ret = -EUCLEAN;
153 		btrfs_abort_transaction(trans, ret);
154 		return ret;
155 	}
156 
157 	l = path->nodes[0];
158 	slot = path->slots[0];
159 	ptr = btrfs_item_ptr_offset(l, slot);
160 	old_len = btrfs_item_size(l, slot);
161 
162 	/*
163 	 * If this is the first time we update the root item which originated
164 	 * from an older kernel, we need to enlarge the item size to make room
165 	 * for the added fields.
166 	 */
167 	if (old_len < sizeof(*item)) {
168 		btrfs_release_path(path);
169 		ret = btrfs_search_slot(trans, root, key, path,
170 				-1, 1);
171 		if (unlikely(ret < 0)) {
172 			btrfs_abort_transaction(trans, ret);
173 			return ret;
174 		}
175 
176 		ret = btrfs_del_item(trans, root, path);
177 		if (unlikely(ret < 0)) {
178 			btrfs_abort_transaction(trans, ret);
179 			return ret;
180 		}
181 		btrfs_release_path(path);
182 		ret = btrfs_insert_empty_item(trans, root, path,
183 				key, sizeof(*item));
184 		if (unlikely(ret < 0)) {
185 			btrfs_abort_transaction(trans, ret);
186 			return ret;
187 		}
188 		l = path->nodes[0];
189 		slot = path->slots[0];
190 		ptr = btrfs_item_ptr_offset(l, slot);
191 	}
192 
193 	/*
194 	 * Update generation_v2 so at the next mount we know the new root
195 	 * fields are valid.
196 	 */
197 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
198 
199 	write_extent_buffer(l, item, ptr, sizeof(*item));
200 	return ret;
201 }
202 
203 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
204 		      const struct btrfs_key *key, struct btrfs_root_item *item)
205 {
206 	/*
207 	 * Make sure generation v1 and v2 match. See update_root for details.
208 	 */
209 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
210 	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
211 }
212 
213 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
214 {
215 	struct btrfs_root *tree_root = fs_info->tree_root;
216 	struct extent_buffer *leaf;
217 	BTRFS_PATH_AUTO_FREE(path);
218 	struct btrfs_key key;
219 	struct btrfs_root *root;
220 
221 	path = btrfs_alloc_path();
222 	if (!path)
223 		return -ENOMEM;
224 
225 	key.objectid = BTRFS_ORPHAN_OBJECTID;
226 	key.type = BTRFS_ORPHAN_ITEM_KEY;
227 	key.offset = 0;
228 
229 	while (1) {
230 		u64 root_objectid;
231 		int ret;
232 
233 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
234 		if (ret < 0)
235 			return ret;
236 
237 		leaf = path->nodes[0];
238 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
239 			ret = btrfs_next_leaf(tree_root, path);
240 			if (ret < 0)
241 				return ret;
242 			else if (ret > 0)
243 				return 0;
244 			leaf = path->nodes[0];
245 		}
246 
247 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
248 		btrfs_release_path(path);
249 
250 		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
251 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
252 			return 0;
253 
254 		root_objectid = key.offset;
255 		key.offset++;
256 
257 		root = btrfs_get_fs_root(fs_info, root_objectid, false);
258 		ret = PTR_ERR_OR_ZERO(root);
259 		if (ret && ret != -ENOENT) {
260 			break;
261 		} else if (ret == -ENOENT) {
262 			struct btrfs_trans_handle *trans;
263 
264 			trans = btrfs_join_transaction(tree_root);
265 			if (IS_ERR(trans)) {
266 				ret = PTR_ERR(trans);
267 				btrfs_err(fs_info,
268 			  "failed to join transaction to delete orphan item: %d",
269 					  ret);
270 				return ret;
271 			}
272 			ret = btrfs_del_orphan_item(trans, tree_root, root_objectid);
273 			btrfs_end_transaction(trans);
274 			if (ret) {
275 				btrfs_err(fs_info,
276 				  "failed to delete root orphan item: %d", ret);
277 				return ret;
278 			}
279 			continue;
280 		}
281 
282 		WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state));
283 		if (btrfs_root_refs(&root->root_item) == 0) {
284 			struct btrfs_key drop_key;
285 
286 			btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress);
287 			/*
288 			 * If we have a non-zero drop_progress then we know we
289 			 * made it partly through deleting this snapshot, and
290 			 * thus we need to make sure we block any balance from
291 			 * happening until this snapshot is completely dropped.
292 			 */
293 			if (drop_key.objectid != 0 || drop_key.type != 0 ||
294 			    drop_key.offset != 0) {
295 				set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
296 				set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
297 			}
298 
299 			set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
300 			btrfs_add_dead_root(root);
301 		}
302 		btrfs_put_root(root);
303 	}
304 
305 	return 0;
306 }
307 
308 /* drop the root item for 'key' from the tree root */
309 int btrfs_del_root(struct btrfs_trans_handle *trans,
310 		   const struct btrfs_key *key)
311 {
312 	struct btrfs_root *root = trans->fs_info->tree_root;
313 	BTRFS_PATH_AUTO_FREE(path);
314 	int ret;
315 
316 	path = btrfs_alloc_path();
317 	if (!path)
318 		return -ENOMEM;
319 	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
320 	if (ret < 0)
321 		return ret;
322 	if (unlikely(ret > 0))
323 		/* The root must exist but we did not find it by the key. */
324 		return -EUCLEAN;
325 
326 	return btrfs_del_item(trans, root, path);
327 }
328 
329 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
330 		       u64 ref_id, u64 dirid, u64 *sequence,
331 		       const struct fscrypt_str *name)
332 {
333 	struct btrfs_root *tree_root = trans->fs_info->tree_root;
334 	BTRFS_PATH_AUTO_FREE(path);
335 	struct btrfs_root_ref *ref;
336 	struct extent_buffer *leaf;
337 	struct btrfs_key key;
338 	unsigned long ptr;
339 	int ret;
340 
341 	path = btrfs_alloc_path();
342 	if (!path)
343 		return -ENOMEM;
344 
345 	key.objectid = root_id;
346 	key.type = BTRFS_ROOT_BACKREF_KEY;
347 	key.offset = ref_id;
348 again:
349 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
350 	if (ret < 0) {
351 		return ret;
352 	} else if (ret == 0) {
353 		leaf = path->nodes[0];
354 		ref = btrfs_item_ptr(leaf, path->slots[0],
355 				     struct btrfs_root_ref);
356 		ptr = (unsigned long)(ref + 1);
357 		if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
358 		    (btrfs_root_ref_name_len(leaf, ref) != name->len) ||
359 		    memcmp_extent_buffer(leaf, name->name, ptr, name->len))
360 			return -ENOENT;
361 
362 		*sequence = btrfs_root_ref_sequence(leaf, ref);
363 
364 		ret = btrfs_del_item(trans, tree_root, path);
365 		if (ret)
366 			return ret;
367 	} else {
368 		return -ENOENT;
369 	}
370 
371 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
372 		btrfs_release_path(path);
373 		key.objectid = ref_id;
374 		key.type = BTRFS_ROOT_REF_KEY;
375 		key.offset = root_id;
376 		goto again;
377 	}
378 
379 	return ret;
380 }
381 
382 /*
383  * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
384  * or BTRFS_ROOT_BACKREF_KEY.
385  *
386  * The dirid, sequence, name and name_len refer to the directory entry
387  * that is referencing the root.
388  *
389  * For a forward ref, the root_id is the id of the tree referencing
390  * the root and ref_id is the id of the subvol  or snapshot.
391  *
392  * For a back ref the root_id is the id of the subvol or snapshot and
393  * ref_id is the id of the tree referencing it.
394  *
395  * Will return 0, -ENOMEM, or anything from the CoW path
396  */
397 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
398 		       u64 ref_id, u64 dirid, u64 sequence,
399 		       const struct fscrypt_str *name)
400 {
401 	struct btrfs_root *tree_root = trans->fs_info->tree_root;
402 	struct btrfs_key key;
403 	int ret;
404 	BTRFS_PATH_AUTO_FREE(path);
405 	struct btrfs_root_ref *ref;
406 	struct extent_buffer *leaf;
407 	unsigned long ptr;
408 
409 	path = btrfs_alloc_path();
410 	if (!path)
411 		return -ENOMEM;
412 
413 	key.objectid = root_id;
414 	key.type = BTRFS_ROOT_BACKREF_KEY;
415 	key.offset = ref_id;
416 again:
417 	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
418 				      sizeof(*ref) + name->len);
419 	if (unlikely(ret)) {
420 		btrfs_abort_transaction(trans, ret);
421 		return ret;
422 	}
423 
424 	leaf = path->nodes[0];
425 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
426 	btrfs_set_root_ref_dirid(leaf, ref, dirid);
427 	btrfs_set_root_ref_sequence(leaf, ref, sequence);
428 	btrfs_set_root_ref_name_len(leaf, ref, name->len);
429 	ptr = (unsigned long)(ref + 1);
430 	write_extent_buffer(leaf, name->name, ptr, name->len);
431 
432 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
433 		btrfs_release_path(path);
434 		key.objectid = ref_id;
435 		key.type = BTRFS_ROOT_REF_KEY;
436 		key.offset = root_id;
437 		goto again;
438 	}
439 
440 	return 0;
441 }
442 
443 /*
444  * Old btrfs forgets to init root_item->flags and root_item->byte_limit
445  * for subvolumes. To work around this problem, we steal a bit from
446  * root_item->inode_item->flags, and use it to indicate if those fields
447  * have been properly initialized.
448  */
449 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
450 {
451 	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
452 
453 	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
454 		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
455 		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
456 		btrfs_set_root_flags(root_item, 0);
457 		btrfs_set_root_limit(root_item, 0);
458 	}
459 }
460 
461 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
462 			     struct btrfs_root *root)
463 {
464 	struct btrfs_root_item *item = &root->root_item;
465 	struct timespec64 ct;
466 
467 	ktime_get_real_ts64(&ct);
468 	spin_lock(&root->root_item_lock);
469 	btrfs_set_root_ctransid(item, trans->transid);
470 	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
471 	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
472 	spin_unlock(&root->root_item_lock);
473 }
474 
475 /*
476  * Reserve space for subvolume operation.
477  *
478  * root: the root of the parent directory
479  * rsv: block reservation
480  * items: the number of items that we need do reservation
481  * use_global_rsv: allow fallback to the global block reservation
482  *
483  * This function is used to reserve the space for snapshot/subvolume
484  * creation and deletion. Those operations are different with the
485  * common file/directory operations, they change two fs/file trees
486  * and root tree, the number of items that the qgroup reserves is
487  * different with the free space reservation. So we can not use
488  * the space reservation mechanism in start_transaction().
489  */
490 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
491 				     struct btrfs_block_rsv *rsv, int items,
492 				     bool use_global_rsv)
493 {
494 	u64 qgroup_num_bytes = 0;
495 	u64 num_bytes;
496 	int ret;
497 	struct btrfs_fs_info *fs_info = root->fs_info;
498 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
499 
500 	if (btrfs_qgroup_enabled(fs_info)) {
501 		/* One for parent inode, two for dir entries */
502 		qgroup_num_bytes = 3 * fs_info->nodesize;
503 		ret = btrfs_qgroup_reserve_meta_prealloc(root,
504 							 qgroup_num_bytes, true,
505 							 false);
506 		if (ret)
507 			return ret;
508 	}
509 
510 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
511 	rsv->space_info = btrfs_find_space_info(fs_info,
512 					    BTRFS_BLOCK_GROUP_METADATA);
513 	ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes,
514 				  BTRFS_RESERVE_FLUSH_ALL);
515 
516 	if (ret == -ENOSPC && use_global_rsv)
517 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
518 
519 	if (ret && qgroup_num_bytes)
520 		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
521 
522 	if (!ret) {
523 		spin_lock(&rsv->lock);
524 		rsv->qgroup_rsv_reserved += qgroup_num_bytes;
525 		spin_unlock(&rsv->lock);
526 	}
527 	return ret;
528 }
529