1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/err.h> 7 #include <linux/uuid.h> 8 #include "ctree.h" 9 #include "fs.h" 10 #include "messages.h" 11 #include "transaction.h" 12 #include "disk-io.h" 13 #include "qgroup.h" 14 #include "space-info.h" 15 #include "accessors.h" 16 #include "root-tree.h" 17 #include "orphan.h" 18 19 /* 20 * Read a root item from the tree. In case we detect a root item smaller then 21 * sizeof(root_item), we know it's an old version of the root structure and 22 * initialize all new fields to zero. The same happens if we detect mismatching 23 * generation numbers as then we know the root was once mounted with an older 24 * kernel that was not aware of the root item structure change. 25 */ 26 static void btrfs_read_root_item(struct extent_buffer *eb, int slot, 27 struct btrfs_root_item *item) 28 { 29 u32 len; 30 int need_reset = 0; 31 32 len = btrfs_item_size(eb, slot); 33 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot), 34 min_t(u32, len, sizeof(*item))); 35 if (len < sizeof(*item)) 36 need_reset = 1; 37 if (!need_reset && btrfs_root_generation(item) 38 != btrfs_root_generation_v2(item)) { 39 if (btrfs_root_generation_v2(item) != 0) { 40 btrfs_warn(eb->fs_info, 41 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields."); 42 } 43 need_reset = 1; 44 } 45 if (need_reset) { 46 /* Clear all members from generation_v2 onwards. */ 47 memset_startat(item, 0, generation_v2); 48 generate_random_guid(item->uuid); 49 } 50 } 51 52 /* 53 * Lookup the root by the key. 54 * 55 * root: the root of the root tree 56 * search_key: the key to search 57 * path: the path we search 58 * root_item: the root item of the tree we look for 59 * root_key: the root key of the tree we look for 60 * 61 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset 62 * of the search key, just lookup the root with the highest offset for a 63 * given objectid. 64 * 65 * If we find something return 0, otherwise > 0, < 0 on error. 66 */ 67 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 68 struct btrfs_path *path, struct btrfs_root_item *root_item, 69 struct btrfs_key *root_key) 70 { 71 struct btrfs_key found_key; 72 struct extent_buffer *l; 73 int ret; 74 int slot; 75 76 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0); 77 if (ret < 0) 78 return ret; 79 80 if (search_key->offset != -1ULL) { /* the search key is exact */ 81 if (ret > 0) 82 goto out; 83 } else { 84 /* 85 * Key with offset -1 found, there would have to exist a root 86 * with such id, but this is out of the valid range. 87 */ 88 if (unlikely(ret == 0)) { 89 ret = -EUCLEAN; 90 goto out; 91 } 92 if (path->slots[0] == 0) 93 goto out; 94 path->slots[0]--; 95 ret = 0; 96 } 97 98 l = path->nodes[0]; 99 slot = path->slots[0]; 100 101 btrfs_item_key_to_cpu(l, &found_key, slot); 102 if (found_key.objectid != search_key->objectid || 103 found_key.type != BTRFS_ROOT_ITEM_KEY) { 104 ret = 1; 105 goto out; 106 } 107 108 if (root_item) 109 btrfs_read_root_item(l, slot, root_item); 110 if (root_key) 111 memcpy(root_key, &found_key, sizeof(found_key)); 112 out: 113 btrfs_release_path(path); 114 return ret; 115 } 116 117 void btrfs_set_root_node(struct btrfs_root_item *item, 118 struct extent_buffer *node) 119 { 120 btrfs_set_root_bytenr(item, node->start); 121 btrfs_set_root_level(item, btrfs_header_level(node)); 122 btrfs_set_root_generation(item, btrfs_header_generation(node)); 123 } 124 125 /* 126 * copy the data in 'item' into the btree 127 */ 128 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root 129 *root, struct btrfs_key *key, struct btrfs_root_item 130 *item) 131 { 132 struct btrfs_fs_info *fs_info = root->fs_info; 133 BTRFS_PATH_AUTO_FREE(path); 134 struct extent_buffer *l; 135 int ret; 136 int slot; 137 unsigned long ptr; 138 u32 old_len; 139 140 path = btrfs_alloc_path(); 141 if (!path) 142 return -ENOMEM; 143 144 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 145 if (ret < 0) 146 return ret; 147 148 if (unlikely(ret > 0)) { 149 btrfs_crit(fs_info, 150 "unable to find root key " BTRFS_KEY_FMT " in tree %llu", 151 BTRFS_KEY_FMT_VALUE(key), btrfs_root_id(root)); 152 ret = -EUCLEAN; 153 btrfs_abort_transaction(trans, ret); 154 return ret; 155 } 156 157 l = path->nodes[0]; 158 slot = path->slots[0]; 159 ptr = btrfs_item_ptr_offset(l, slot); 160 old_len = btrfs_item_size(l, slot); 161 162 /* 163 * If this is the first time we update the root item which originated 164 * from an older kernel, we need to enlarge the item size to make room 165 * for the added fields. 166 */ 167 if (old_len < sizeof(*item)) { 168 btrfs_release_path(path); 169 ret = btrfs_search_slot(trans, root, key, path, 170 -1, 1); 171 if (unlikely(ret < 0)) { 172 btrfs_abort_transaction(trans, ret); 173 return ret; 174 } 175 176 ret = btrfs_del_item(trans, root, path); 177 if (unlikely(ret < 0)) { 178 btrfs_abort_transaction(trans, ret); 179 return ret; 180 } 181 btrfs_release_path(path); 182 ret = btrfs_insert_empty_item(trans, root, path, 183 key, sizeof(*item)); 184 if (unlikely(ret < 0)) { 185 btrfs_abort_transaction(trans, ret); 186 return ret; 187 } 188 l = path->nodes[0]; 189 slot = path->slots[0]; 190 ptr = btrfs_item_ptr_offset(l, slot); 191 } 192 193 /* 194 * Update generation_v2 so at the next mount we know the new root 195 * fields are valid. 196 */ 197 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 198 199 write_extent_buffer(l, item, ptr, sizeof(*item)); 200 return ret; 201 } 202 203 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 204 const struct btrfs_key *key, struct btrfs_root_item *item) 205 { 206 /* 207 * Make sure generation v1 and v2 match. See update_root for details. 208 */ 209 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 210 return btrfs_insert_item(trans, root, key, item, sizeof(*item)); 211 } 212 213 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info) 214 { 215 struct btrfs_root *tree_root = fs_info->tree_root; 216 struct extent_buffer *leaf; 217 BTRFS_PATH_AUTO_FREE(path); 218 struct btrfs_key key; 219 struct btrfs_root *root; 220 221 path = btrfs_alloc_path(); 222 if (!path) 223 return -ENOMEM; 224 225 key.objectid = BTRFS_ORPHAN_OBJECTID; 226 key.type = BTRFS_ORPHAN_ITEM_KEY; 227 key.offset = 0; 228 229 while (1) { 230 u64 root_objectid; 231 int ret; 232 233 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 234 if (ret < 0) 235 return ret; 236 237 leaf = path->nodes[0]; 238 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 239 ret = btrfs_next_leaf(tree_root, path); 240 if (ret < 0) 241 return ret; 242 else if (ret > 0) 243 return 0; 244 leaf = path->nodes[0]; 245 } 246 247 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 248 btrfs_release_path(path); 249 250 if (key.objectid != BTRFS_ORPHAN_OBJECTID || 251 key.type != BTRFS_ORPHAN_ITEM_KEY) 252 return 0; 253 254 root_objectid = key.offset; 255 key.offset++; 256 257 root = btrfs_get_fs_root(fs_info, root_objectid, false); 258 ret = PTR_ERR_OR_ZERO(root); 259 if (ret && ret != -ENOENT) { 260 break; 261 } else if (ret == -ENOENT) { 262 struct btrfs_trans_handle *trans; 263 264 trans = btrfs_join_transaction(tree_root); 265 if (IS_ERR(trans)) { 266 ret = PTR_ERR(trans); 267 btrfs_err(fs_info, 268 "failed to join transaction to delete orphan item: %d", 269 ret); 270 return ret; 271 } 272 ret = btrfs_del_orphan_item(trans, tree_root, root_objectid); 273 btrfs_end_transaction(trans); 274 if (ret) { 275 btrfs_err(fs_info, 276 "failed to delete root orphan item: %d", ret); 277 return ret; 278 } 279 continue; 280 } 281 282 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)); 283 if (btrfs_root_refs(&root->root_item) == 0) { 284 struct btrfs_key drop_key; 285 286 btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress); 287 /* 288 * If we have a non-zero drop_progress then we know we 289 * made it partly through deleting this snapshot, and 290 * thus we need to make sure we block any balance from 291 * happening until this snapshot is completely dropped. 292 */ 293 if (drop_key.objectid != 0 || drop_key.type != 0 || 294 drop_key.offset != 0) { 295 set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags); 296 set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 297 } 298 299 set_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 300 btrfs_add_dead_root(root); 301 } 302 btrfs_put_root(root); 303 } 304 305 return 0; 306 } 307 308 /* drop the root item for 'key' from the tree root */ 309 int btrfs_del_root(struct btrfs_trans_handle *trans, 310 const struct btrfs_key *key) 311 { 312 struct btrfs_root *root = trans->fs_info->tree_root; 313 BTRFS_PATH_AUTO_FREE(path); 314 int ret; 315 316 path = btrfs_alloc_path(); 317 if (!path) 318 return -ENOMEM; 319 ret = btrfs_search_slot(trans, root, key, path, -1, 1); 320 if (ret < 0) 321 return ret; 322 if (unlikely(ret > 0)) 323 /* The root must exist but we did not find it by the key. */ 324 return -EUCLEAN; 325 326 return btrfs_del_item(trans, root, path); 327 } 328 329 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 330 u64 ref_id, u64 dirid, u64 *sequence, 331 const struct fscrypt_str *name) 332 { 333 struct btrfs_root *tree_root = trans->fs_info->tree_root; 334 BTRFS_PATH_AUTO_FREE(path); 335 struct btrfs_root_ref *ref; 336 struct extent_buffer *leaf; 337 struct btrfs_key key; 338 unsigned long ptr; 339 int ret; 340 341 path = btrfs_alloc_path(); 342 if (!path) 343 return -ENOMEM; 344 345 key.objectid = root_id; 346 key.type = BTRFS_ROOT_BACKREF_KEY; 347 key.offset = ref_id; 348 again: 349 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 350 if (ret < 0) { 351 return ret; 352 } else if (ret == 0) { 353 leaf = path->nodes[0]; 354 ref = btrfs_item_ptr(leaf, path->slots[0], 355 struct btrfs_root_ref); 356 ptr = (unsigned long)(ref + 1); 357 if ((btrfs_root_ref_dirid(leaf, ref) != dirid) || 358 (btrfs_root_ref_name_len(leaf, ref) != name->len) || 359 memcmp_extent_buffer(leaf, name->name, ptr, name->len)) 360 return -ENOENT; 361 362 *sequence = btrfs_root_ref_sequence(leaf, ref); 363 364 ret = btrfs_del_item(trans, tree_root, path); 365 if (ret) 366 return ret; 367 } else { 368 return -ENOENT; 369 } 370 371 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 372 btrfs_release_path(path); 373 key.objectid = ref_id; 374 key.type = BTRFS_ROOT_REF_KEY; 375 key.offset = root_id; 376 goto again; 377 } 378 379 return ret; 380 } 381 382 /* 383 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY 384 * or BTRFS_ROOT_BACKREF_KEY. 385 * 386 * The dirid, sequence, name and name_len refer to the directory entry 387 * that is referencing the root. 388 * 389 * For a forward ref, the root_id is the id of the tree referencing 390 * the root and ref_id is the id of the subvol or snapshot. 391 * 392 * For a back ref the root_id is the id of the subvol or snapshot and 393 * ref_id is the id of the tree referencing it. 394 * 395 * Will return 0, -ENOMEM, or anything from the CoW path 396 */ 397 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 398 u64 ref_id, u64 dirid, u64 sequence, 399 const struct fscrypt_str *name) 400 { 401 struct btrfs_root *tree_root = trans->fs_info->tree_root; 402 struct btrfs_key key; 403 int ret; 404 BTRFS_PATH_AUTO_FREE(path); 405 struct btrfs_root_ref *ref; 406 struct extent_buffer *leaf; 407 unsigned long ptr; 408 409 path = btrfs_alloc_path(); 410 if (!path) 411 return -ENOMEM; 412 413 key.objectid = root_id; 414 key.type = BTRFS_ROOT_BACKREF_KEY; 415 key.offset = ref_id; 416 again: 417 ret = btrfs_insert_empty_item(trans, tree_root, path, &key, 418 sizeof(*ref) + name->len); 419 if (unlikely(ret)) { 420 btrfs_abort_transaction(trans, ret); 421 return ret; 422 } 423 424 leaf = path->nodes[0]; 425 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 426 btrfs_set_root_ref_dirid(leaf, ref, dirid); 427 btrfs_set_root_ref_sequence(leaf, ref, sequence); 428 btrfs_set_root_ref_name_len(leaf, ref, name->len); 429 ptr = (unsigned long)(ref + 1); 430 write_extent_buffer(leaf, name->name, ptr, name->len); 431 432 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 433 btrfs_release_path(path); 434 key.objectid = ref_id; 435 key.type = BTRFS_ROOT_REF_KEY; 436 key.offset = root_id; 437 goto again; 438 } 439 440 return 0; 441 } 442 443 /* 444 * Old btrfs forgets to init root_item->flags and root_item->byte_limit 445 * for subvolumes. To work around this problem, we steal a bit from 446 * root_item->inode_item->flags, and use it to indicate if those fields 447 * have been properly initialized. 448 */ 449 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item) 450 { 451 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode); 452 453 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) { 454 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT; 455 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags); 456 btrfs_set_root_flags(root_item, 0); 457 btrfs_set_root_limit(root_item, 0); 458 } 459 } 460 461 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 462 struct btrfs_root *root) 463 { 464 struct btrfs_root_item *item = &root->root_item; 465 struct timespec64 ct; 466 467 ktime_get_real_ts64(&ct); 468 spin_lock(&root->root_item_lock); 469 btrfs_set_root_ctransid(item, trans->transid); 470 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec); 471 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec); 472 spin_unlock(&root->root_item_lock); 473 } 474 475 /* 476 * Reserve space for subvolume operation. 477 * 478 * root: the root of the parent directory 479 * rsv: block reservation 480 * items: the number of items that we need do reservation 481 * use_global_rsv: allow fallback to the global block reservation 482 * 483 * This function is used to reserve the space for snapshot/subvolume 484 * creation and deletion. Those operations are different with the 485 * common file/directory operations, they change two fs/file trees 486 * and root tree, the number of items that the qgroup reserves is 487 * different with the free space reservation. So we can not use 488 * the space reservation mechanism in start_transaction(). 489 */ 490 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 491 struct btrfs_block_rsv *rsv, int items, 492 bool use_global_rsv) 493 { 494 u64 qgroup_num_bytes = 0; 495 u64 num_bytes; 496 int ret; 497 struct btrfs_fs_info *fs_info = root->fs_info; 498 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 499 500 if (btrfs_qgroup_enabled(fs_info)) { 501 /* One for parent inode, two for dir entries */ 502 qgroup_num_bytes = 3 * fs_info->nodesize; 503 ret = btrfs_qgroup_reserve_meta_prealloc(root, 504 qgroup_num_bytes, true, 505 false); 506 if (ret) 507 return ret; 508 } 509 510 num_bytes = btrfs_calc_insert_metadata_size(fs_info, items); 511 rsv->space_info = btrfs_find_space_info(fs_info, 512 BTRFS_BLOCK_GROUP_METADATA); 513 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, 514 BTRFS_RESERVE_FLUSH_ALL); 515 516 if (ret == -ENOSPC && use_global_rsv) 517 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true); 518 519 if (ret && qgroup_num_bytes) 520 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes); 521 522 if (!ret) { 523 spin_lock(&rsv->lock); 524 rsv->qgroup_rsv_reserved += qgroup_num_bytes; 525 spin_unlock(&rsv->lock); 526 } 527 return ret; 528 } 529