1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/err.h> 7 #include <linux/uuid.h> 8 #include "ctree.h" 9 #include "fs.h" 10 #include "messages.h" 11 #include "transaction.h" 12 #include "disk-io.h" 13 #include "qgroup.h" 14 #include "space-info.h" 15 #include "accessors.h" 16 #include "root-tree.h" 17 #include "orphan.h" 18 19 /* 20 * Read a root item from the tree. In case we detect a root item smaller then 21 * sizeof(root_item), we know it's an old version of the root structure and 22 * initialize all new fields to zero. The same happens if we detect mismatching 23 * generation numbers as then we know the root was once mounted with an older 24 * kernel that was not aware of the root item structure change. 25 */ 26 static void btrfs_read_root_item(struct extent_buffer *eb, int slot, 27 struct btrfs_root_item *item) 28 { 29 u32 len; 30 int need_reset = 0; 31 32 len = btrfs_item_size(eb, slot); 33 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot), 34 min_t(u32, len, sizeof(*item))); 35 if (len < sizeof(*item)) 36 need_reset = 1; 37 if (!need_reset && btrfs_root_generation(item) 38 != btrfs_root_generation_v2(item)) { 39 if (btrfs_root_generation_v2(item) != 0) { 40 btrfs_warn(eb->fs_info, 41 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields."); 42 } 43 need_reset = 1; 44 } 45 if (need_reset) { 46 /* Clear all members from generation_v2 onwards. */ 47 memset_startat(item, 0, generation_v2); 48 generate_random_guid(item->uuid); 49 } 50 } 51 52 /* 53 * Lookup the root by the key. 54 * 55 * root: the root of the root tree 56 * search_key: the key to search 57 * path: the path we search 58 * root_item: the root item of the tree we look for 59 * root_key: the root key of the tree we look for 60 * 61 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset 62 * of the search key, just lookup the root with the highest offset for a 63 * given objectid. 64 * 65 * If we find something return 0, otherwise > 0, < 0 on error. 66 */ 67 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 68 struct btrfs_path *path, struct btrfs_root_item *root_item, 69 struct btrfs_key *root_key) 70 { 71 struct btrfs_key found_key; 72 struct extent_buffer *l; 73 int ret; 74 int slot; 75 76 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0); 77 if (ret < 0) 78 return ret; 79 80 if (search_key->offset != -1ULL) { /* the search key is exact */ 81 if (ret > 0) 82 goto out; 83 } else { 84 /* 85 * Key with offset -1 found, there would have to exist a root 86 * with such id, but this is out of the valid range. 87 */ 88 if (ret == 0) { 89 ret = -EUCLEAN; 90 goto out; 91 } 92 if (path->slots[0] == 0) 93 goto out; 94 path->slots[0]--; 95 ret = 0; 96 } 97 98 l = path->nodes[0]; 99 slot = path->slots[0]; 100 101 btrfs_item_key_to_cpu(l, &found_key, slot); 102 if (found_key.objectid != search_key->objectid || 103 found_key.type != BTRFS_ROOT_ITEM_KEY) { 104 ret = 1; 105 goto out; 106 } 107 108 if (root_item) 109 btrfs_read_root_item(l, slot, root_item); 110 if (root_key) 111 memcpy(root_key, &found_key, sizeof(found_key)); 112 out: 113 btrfs_release_path(path); 114 return ret; 115 } 116 117 void btrfs_set_root_node(struct btrfs_root_item *item, 118 struct extent_buffer *node) 119 { 120 btrfs_set_root_bytenr(item, node->start); 121 btrfs_set_root_level(item, btrfs_header_level(node)); 122 btrfs_set_root_generation(item, btrfs_header_generation(node)); 123 } 124 125 /* 126 * copy the data in 'item' into the btree 127 */ 128 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root 129 *root, struct btrfs_key *key, struct btrfs_root_item 130 *item) 131 { 132 struct btrfs_fs_info *fs_info = root->fs_info; 133 struct btrfs_path *path; 134 struct extent_buffer *l; 135 int ret; 136 int slot; 137 unsigned long ptr; 138 u32 old_len; 139 140 path = btrfs_alloc_path(); 141 if (!path) 142 return -ENOMEM; 143 144 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 145 if (ret < 0) 146 goto out; 147 148 if (ret > 0) { 149 btrfs_crit(fs_info, 150 "unable to find root key (%llu %u %llu) in tree %llu", 151 key->objectid, key->type, key->offset, 152 root->root_key.objectid); 153 ret = -EUCLEAN; 154 btrfs_abort_transaction(trans, ret); 155 goto out; 156 } 157 158 l = path->nodes[0]; 159 slot = path->slots[0]; 160 ptr = btrfs_item_ptr_offset(l, slot); 161 old_len = btrfs_item_size(l, slot); 162 163 /* 164 * If this is the first time we update the root item which originated 165 * from an older kernel, we need to enlarge the item size to make room 166 * for the added fields. 167 */ 168 if (old_len < sizeof(*item)) { 169 btrfs_release_path(path); 170 ret = btrfs_search_slot(trans, root, key, path, 171 -1, 1); 172 if (ret < 0) { 173 btrfs_abort_transaction(trans, ret); 174 goto out; 175 } 176 177 ret = btrfs_del_item(trans, root, path); 178 if (ret < 0) { 179 btrfs_abort_transaction(trans, ret); 180 goto out; 181 } 182 btrfs_release_path(path); 183 ret = btrfs_insert_empty_item(trans, root, path, 184 key, sizeof(*item)); 185 if (ret < 0) { 186 btrfs_abort_transaction(trans, ret); 187 goto out; 188 } 189 l = path->nodes[0]; 190 slot = path->slots[0]; 191 ptr = btrfs_item_ptr_offset(l, slot); 192 } 193 194 /* 195 * Update generation_v2 so at the next mount we know the new root 196 * fields are valid. 197 */ 198 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 199 200 write_extent_buffer(l, item, ptr, sizeof(*item)); 201 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 202 out: 203 btrfs_free_path(path); 204 return ret; 205 } 206 207 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 208 const struct btrfs_key *key, struct btrfs_root_item *item) 209 { 210 /* 211 * Make sure generation v1 and v2 match. See update_root for details. 212 */ 213 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 214 return btrfs_insert_item(trans, root, key, item, sizeof(*item)); 215 } 216 217 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info) 218 { 219 struct btrfs_root *tree_root = fs_info->tree_root; 220 struct extent_buffer *leaf; 221 struct btrfs_path *path; 222 struct btrfs_key key; 223 struct btrfs_root *root; 224 int err = 0; 225 int ret; 226 227 path = btrfs_alloc_path(); 228 if (!path) 229 return -ENOMEM; 230 231 key.objectid = BTRFS_ORPHAN_OBJECTID; 232 key.type = BTRFS_ORPHAN_ITEM_KEY; 233 key.offset = 0; 234 235 while (1) { 236 u64 root_objectid; 237 238 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 239 if (ret < 0) { 240 err = ret; 241 break; 242 } 243 244 leaf = path->nodes[0]; 245 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 246 ret = btrfs_next_leaf(tree_root, path); 247 if (ret < 0) 248 err = ret; 249 if (ret != 0) 250 break; 251 leaf = path->nodes[0]; 252 } 253 254 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 255 btrfs_release_path(path); 256 257 if (key.objectid != BTRFS_ORPHAN_OBJECTID || 258 key.type != BTRFS_ORPHAN_ITEM_KEY) 259 break; 260 261 root_objectid = key.offset; 262 key.offset++; 263 264 root = btrfs_get_fs_root(fs_info, root_objectid, false); 265 err = PTR_ERR_OR_ZERO(root); 266 if (err && err != -ENOENT) { 267 break; 268 } else if (err == -ENOENT) { 269 struct btrfs_trans_handle *trans; 270 271 btrfs_release_path(path); 272 273 trans = btrfs_join_transaction(tree_root); 274 if (IS_ERR(trans)) { 275 err = PTR_ERR(trans); 276 btrfs_handle_fs_error(fs_info, err, 277 "Failed to start trans to delete orphan item"); 278 break; 279 } 280 err = btrfs_del_orphan_item(trans, tree_root, 281 root_objectid); 282 btrfs_end_transaction(trans); 283 if (err) { 284 btrfs_handle_fs_error(fs_info, err, 285 "Failed to delete root orphan item"); 286 break; 287 } 288 continue; 289 } 290 291 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)); 292 if (btrfs_root_refs(&root->root_item) == 0) { 293 struct btrfs_key drop_key; 294 295 btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress); 296 /* 297 * If we have a non-zero drop_progress then we know we 298 * made it partly through deleting this snapshot, and 299 * thus we need to make sure we block any balance from 300 * happening until this snapshot is completely dropped. 301 */ 302 if (drop_key.objectid != 0 || drop_key.type != 0 || 303 drop_key.offset != 0) { 304 set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags); 305 set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 306 } 307 308 set_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 309 btrfs_add_dead_root(root); 310 } 311 btrfs_put_root(root); 312 } 313 314 btrfs_free_path(path); 315 return err; 316 } 317 318 /* drop the root item for 'key' from the tree root */ 319 int btrfs_del_root(struct btrfs_trans_handle *trans, 320 const struct btrfs_key *key) 321 { 322 struct btrfs_root *root = trans->fs_info->tree_root; 323 struct btrfs_path *path; 324 int ret; 325 326 path = btrfs_alloc_path(); 327 if (!path) 328 return -ENOMEM; 329 ret = btrfs_search_slot(trans, root, key, path, -1, 1); 330 if (ret < 0) 331 goto out; 332 if (ret != 0) { 333 /* The root must exist but we did not find it by the key. */ 334 ret = -EUCLEAN; 335 goto out; 336 } 337 338 ret = btrfs_del_item(trans, root, path); 339 out: 340 btrfs_free_path(path); 341 return ret; 342 } 343 344 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 345 u64 ref_id, u64 dirid, u64 *sequence, 346 const struct fscrypt_str *name) 347 { 348 struct btrfs_root *tree_root = trans->fs_info->tree_root; 349 struct btrfs_path *path; 350 struct btrfs_root_ref *ref; 351 struct extent_buffer *leaf; 352 struct btrfs_key key; 353 unsigned long ptr; 354 int ret; 355 356 path = btrfs_alloc_path(); 357 if (!path) 358 return -ENOMEM; 359 360 key.objectid = root_id; 361 key.type = BTRFS_ROOT_BACKREF_KEY; 362 key.offset = ref_id; 363 again: 364 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 365 if (ret < 0) { 366 goto out; 367 } else if (ret == 0) { 368 leaf = path->nodes[0]; 369 ref = btrfs_item_ptr(leaf, path->slots[0], 370 struct btrfs_root_ref); 371 ptr = (unsigned long)(ref + 1); 372 if ((btrfs_root_ref_dirid(leaf, ref) != dirid) || 373 (btrfs_root_ref_name_len(leaf, ref) != name->len) || 374 memcmp_extent_buffer(leaf, name->name, ptr, name->len)) { 375 ret = -ENOENT; 376 goto out; 377 } 378 *sequence = btrfs_root_ref_sequence(leaf, ref); 379 380 ret = btrfs_del_item(trans, tree_root, path); 381 if (ret) 382 goto out; 383 } else { 384 ret = -ENOENT; 385 goto out; 386 } 387 388 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 389 btrfs_release_path(path); 390 key.objectid = ref_id; 391 key.type = BTRFS_ROOT_REF_KEY; 392 key.offset = root_id; 393 goto again; 394 } 395 396 out: 397 btrfs_free_path(path); 398 return ret; 399 } 400 401 /* 402 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY 403 * or BTRFS_ROOT_BACKREF_KEY. 404 * 405 * The dirid, sequence, name and name_len refer to the directory entry 406 * that is referencing the root. 407 * 408 * For a forward ref, the root_id is the id of the tree referencing 409 * the root and ref_id is the id of the subvol or snapshot. 410 * 411 * For a back ref the root_id is the id of the subvol or snapshot and 412 * ref_id is the id of the tree referencing it. 413 * 414 * Will return 0, -ENOMEM, or anything from the CoW path 415 */ 416 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 417 u64 ref_id, u64 dirid, u64 sequence, 418 const struct fscrypt_str *name) 419 { 420 struct btrfs_root *tree_root = trans->fs_info->tree_root; 421 struct btrfs_key key; 422 int ret; 423 struct btrfs_path *path; 424 struct btrfs_root_ref *ref; 425 struct extent_buffer *leaf; 426 unsigned long ptr; 427 428 path = btrfs_alloc_path(); 429 if (!path) 430 return -ENOMEM; 431 432 key.objectid = root_id; 433 key.type = BTRFS_ROOT_BACKREF_KEY; 434 key.offset = ref_id; 435 again: 436 ret = btrfs_insert_empty_item(trans, tree_root, path, &key, 437 sizeof(*ref) + name->len); 438 if (ret) { 439 btrfs_abort_transaction(trans, ret); 440 btrfs_free_path(path); 441 return ret; 442 } 443 444 leaf = path->nodes[0]; 445 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 446 btrfs_set_root_ref_dirid(leaf, ref, dirid); 447 btrfs_set_root_ref_sequence(leaf, ref, sequence); 448 btrfs_set_root_ref_name_len(leaf, ref, name->len); 449 ptr = (unsigned long)(ref + 1); 450 write_extent_buffer(leaf, name->name, ptr, name->len); 451 btrfs_mark_buffer_dirty(trans, leaf); 452 453 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 454 btrfs_release_path(path); 455 key.objectid = ref_id; 456 key.type = BTRFS_ROOT_REF_KEY; 457 key.offset = root_id; 458 goto again; 459 } 460 461 btrfs_free_path(path); 462 return 0; 463 } 464 465 /* 466 * Old btrfs forgets to init root_item->flags and root_item->byte_limit 467 * for subvolumes. To work around this problem, we steal a bit from 468 * root_item->inode_item->flags, and use it to indicate if those fields 469 * have been properly initialized. 470 */ 471 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item) 472 { 473 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode); 474 475 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) { 476 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT; 477 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags); 478 btrfs_set_root_flags(root_item, 0); 479 btrfs_set_root_limit(root_item, 0); 480 } 481 } 482 483 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 484 struct btrfs_root *root) 485 { 486 struct btrfs_root_item *item = &root->root_item; 487 struct timespec64 ct; 488 489 ktime_get_real_ts64(&ct); 490 spin_lock(&root->root_item_lock); 491 btrfs_set_root_ctransid(item, trans->transid); 492 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec); 493 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec); 494 spin_unlock(&root->root_item_lock); 495 } 496 497 /* 498 * Reserve space for subvolume operation. 499 * 500 * root: the root of the parent directory 501 * rsv: block reservation 502 * items: the number of items that we need do reservation 503 * use_global_rsv: allow fallback to the global block reservation 504 * 505 * This function is used to reserve the space for snapshot/subvolume 506 * creation and deletion. Those operations are different with the 507 * common file/directory operations, they change two fs/file trees 508 * and root tree, the number of items that the qgroup reserves is 509 * different with the free space reservation. So we can not use 510 * the space reservation mechanism in start_transaction(). 511 */ 512 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 513 struct btrfs_block_rsv *rsv, int items, 514 bool use_global_rsv) 515 { 516 u64 qgroup_num_bytes = 0; 517 u64 num_bytes; 518 int ret; 519 struct btrfs_fs_info *fs_info = root->fs_info; 520 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 521 522 if (btrfs_qgroup_enabled(fs_info)) { 523 /* One for parent inode, two for dir entries */ 524 qgroup_num_bytes = 3 * fs_info->nodesize; 525 ret = btrfs_qgroup_reserve_meta_prealloc(root, 526 qgroup_num_bytes, true, 527 false); 528 if (ret) 529 return ret; 530 } 531 532 num_bytes = btrfs_calc_insert_metadata_size(fs_info, items); 533 rsv->space_info = btrfs_find_space_info(fs_info, 534 BTRFS_BLOCK_GROUP_METADATA); 535 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, 536 BTRFS_RESERVE_FLUSH_ALL); 537 538 if (ret == -ENOSPC && use_global_rsv) 539 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true); 540 541 if (ret && qgroup_num_bytes) 542 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes); 543 544 if (!ret) { 545 spin_lock(&rsv->lock); 546 rsv->qgroup_rsv_reserved += qgroup_num_bytes; 547 spin_unlock(&rsv->lock); 548 } 549 return ret; 550 } 551