xref: /linux/fs/btrfs/root-tree.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/err.h>
7 #include <linux/uuid.h>
8 #include "ctree.h"
9 #include "fs.h"
10 #include "messages.h"
11 #include "transaction.h"
12 #include "disk-io.h"
13 #include "print-tree.h"
14 #include "qgroup.h"
15 #include "space-info.h"
16 #include "accessors.h"
17 #include "root-tree.h"
18 #include "orphan.h"
19 
20 /*
21  * Read a root item from the tree. In case we detect a root item smaller then
22  * sizeof(root_item), we know it's an old version of the root structure and
23  * initialize all new fields to zero. The same happens if we detect mismatching
24  * generation numbers as then we know the root was once mounted with an older
25  * kernel that was not aware of the root item structure change.
26  */
27 static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
28 				struct btrfs_root_item *item)
29 {
30 	u32 len;
31 	int need_reset = 0;
32 
33 	len = btrfs_item_size(eb, slot);
34 	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
35 			   min_t(u32, len, sizeof(*item)));
36 	if (len < sizeof(*item))
37 		need_reset = 1;
38 	if (!need_reset && btrfs_root_generation(item)
39 		!= btrfs_root_generation_v2(item)) {
40 		if (btrfs_root_generation_v2(item) != 0) {
41 			btrfs_warn(eb->fs_info,
42 					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
43 		}
44 		need_reset = 1;
45 	}
46 	if (need_reset) {
47 		/* Clear all members from generation_v2 onwards. */
48 		memset_startat(item, 0, generation_v2);
49 		generate_random_guid(item->uuid);
50 	}
51 }
52 
53 /*
54  * Lookup the root by the key.
55  *
56  * root: the root of the root tree
57  * search_key: the key to search
58  * path: the path we search
59  * root_item: the root item of the tree we look for
60  * root_key: the root key of the tree we look for
61  *
62  * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
63  * of the search key, just lookup the root with the highest offset for a
64  * given objectid.
65  *
66  * If we find something return 0, otherwise > 0, < 0 on error.
67  */
68 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
69 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
70 		    struct btrfs_key *root_key)
71 {
72 	struct btrfs_key found_key;
73 	struct extent_buffer *l;
74 	int ret;
75 	int slot;
76 
77 	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
78 	if (ret < 0)
79 		return ret;
80 
81 	if (search_key->offset != -1ULL) {	/* the search key is exact */
82 		if (ret > 0)
83 			goto out;
84 	} else {
85 		BUG_ON(ret == 0);		/* Logical error */
86 		if (path->slots[0] == 0)
87 			goto out;
88 		path->slots[0]--;
89 		ret = 0;
90 	}
91 
92 	l = path->nodes[0];
93 	slot = path->slots[0];
94 
95 	btrfs_item_key_to_cpu(l, &found_key, slot);
96 	if (found_key.objectid != search_key->objectid ||
97 	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
98 		ret = 1;
99 		goto out;
100 	}
101 
102 	if (root_item)
103 		btrfs_read_root_item(l, slot, root_item);
104 	if (root_key)
105 		memcpy(root_key, &found_key, sizeof(found_key));
106 out:
107 	btrfs_release_path(path);
108 	return ret;
109 }
110 
111 void btrfs_set_root_node(struct btrfs_root_item *item,
112 			 struct extent_buffer *node)
113 {
114 	btrfs_set_root_bytenr(item, node->start);
115 	btrfs_set_root_level(item, btrfs_header_level(node));
116 	btrfs_set_root_generation(item, btrfs_header_generation(node));
117 }
118 
119 /*
120  * copy the data in 'item' into the btree
121  */
122 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
123 		      *root, struct btrfs_key *key, struct btrfs_root_item
124 		      *item)
125 {
126 	struct btrfs_fs_info *fs_info = root->fs_info;
127 	struct btrfs_path *path;
128 	struct extent_buffer *l;
129 	int ret;
130 	int slot;
131 	unsigned long ptr;
132 	u32 old_len;
133 
134 	path = btrfs_alloc_path();
135 	if (!path)
136 		return -ENOMEM;
137 
138 	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
139 	if (ret < 0)
140 		goto out;
141 
142 	if (ret > 0) {
143 		btrfs_crit(fs_info,
144 			"unable to find root key (%llu %u %llu) in tree %llu",
145 			key->objectid, key->type, key->offset,
146 			root->root_key.objectid);
147 		ret = -EUCLEAN;
148 		btrfs_abort_transaction(trans, ret);
149 		goto out;
150 	}
151 
152 	l = path->nodes[0];
153 	slot = path->slots[0];
154 	ptr = btrfs_item_ptr_offset(l, slot);
155 	old_len = btrfs_item_size(l, slot);
156 
157 	/*
158 	 * If this is the first time we update the root item which originated
159 	 * from an older kernel, we need to enlarge the item size to make room
160 	 * for the added fields.
161 	 */
162 	if (old_len < sizeof(*item)) {
163 		btrfs_release_path(path);
164 		ret = btrfs_search_slot(trans, root, key, path,
165 				-1, 1);
166 		if (ret < 0) {
167 			btrfs_abort_transaction(trans, ret);
168 			goto out;
169 		}
170 
171 		ret = btrfs_del_item(trans, root, path);
172 		if (ret < 0) {
173 			btrfs_abort_transaction(trans, ret);
174 			goto out;
175 		}
176 		btrfs_release_path(path);
177 		ret = btrfs_insert_empty_item(trans, root, path,
178 				key, sizeof(*item));
179 		if (ret < 0) {
180 			btrfs_abort_transaction(trans, ret);
181 			goto out;
182 		}
183 		l = path->nodes[0];
184 		slot = path->slots[0];
185 		ptr = btrfs_item_ptr_offset(l, slot);
186 	}
187 
188 	/*
189 	 * Update generation_v2 so at the next mount we know the new root
190 	 * fields are valid.
191 	 */
192 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
193 
194 	write_extent_buffer(l, item, ptr, sizeof(*item));
195 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
196 out:
197 	btrfs_free_path(path);
198 	return ret;
199 }
200 
201 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
202 		      const struct btrfs_key *key, struct btrfs_root_item *item)
203 {
204 	/*
205 	 * Make sure generation v1 and v2 match. See update_root for details.
206 	 */
207 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
208 	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
209 }
210 
211 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
212 {
213 	struct btrfs_root *tree_root = fs_info->tree_root;
214 	struct extent_buffer *leaf;
215 	struct btrfs_path *path;
216 	struct btrfs_key key;
217 	struct btrfs_root *root;
218 	int err = 0;
219 	int ret;
220 
221 	path = btrfs_alloc_path();
222 	if (!path)
223 		return -ENOMEM;
224 
225 	key.objectid = BTRFS_ORPHAN_OBJECTID;
226 	key.type = BTRFS_ORPHAN_ITEM_KEY;
227 	key.offset = 0;
228 
229 	while (1) {
230 		u64 root_objectid;
231 
232 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
233 		if (ret < 0) {
234 			err = ret;
235 			break;
236 		}
237 
238 		leaf = path->nodes[0];
239 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
240 			ret = btrfs_next_leaf(tree_root, path);
241 			if (ret < 0)
242 				err = ret;
243 			if (ret != 0)
244 				break;
245 			leaf = path->nodes[0];
246 		}
247 
248 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
249 		btrfs_release_path(path);
250 
251 		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
252 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
253 			break;
254 
255 		root_objectid = key.offset;
256 		key.offset++;
257 
258 		root = btrfs_get_fs_root(fs_info, root_objectid, false);
259 		err = PTR_ERR_OR_ZERO(root);
260 		if (err && err != -ENOENT) {
261 			break;
262 		} else if (err == -ENOENT) {
263 			struct btrfs_trans_handle *trans;
264 
265 			btrfs_release_path(path);
266 
267 			trans = btrfs_join_transaction(tree_root);
268 			if (IS_ERR(trans)) {
269 				err = PTR_ERR(trans);
270 				btrfs_handle_fs_error(fs_info, err,
271 					    "Failed to start trans to delete orphan item");
272 				break;
273 			}
274 			err = btrfs_del_orphan_item(trans, tree_root,
275 						    root_objectid);
276 			btrfs_end_transaction(trans);
277 			if (err) {
278 				btrfs_handle_fs_error(fs_info, err,
279 					    "Failed to delete root orphan item");
280 				break;
281 			}
282 			continue;
283 		}
284 
285 		WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state));
286 		if (btrfs_root_refs(&root->root_item) == 0) {
287 			struct btrfs_key drop_key;
288 
289 			btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress);
290 			/*
291 			 * If we have a non-zero drop_progress then we know we
292 			 * made it partly through deleting this snapshot, and
293 			 * thus we need to make sure we block any balance from
294 			 * happening until this snapshot is completely dropped.
295 			 */
296 			if (drop_key.objectid != 0 || drop_key.type != 0 ||
297 			    drop_key.offset != 0) {
298 				set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
299 				set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
300 			}
301 
302 			set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
303 			btrfs_add_dead_root(root);
304 		}
305 		btrfs_put_root(root);
306 	}
307 
308 	btrfs_free_path(path);
309 	return err;
310 }
311 
312 /* drop the root item for 'key' from the tree root */
313 int btrfs_del_root(struct btrfs_trans_handle *trans,
314 		   const struct btrfs_key *key)
315 {
316 	struct btrfs_root *root = trans->fs_info->tree_root;
317 	struct btrfs_path *path;
318 	int ret;
319 
320 	path = btrfs_alloc_path();
321 	if (!path)
322 		return -ENOMEM;
323 	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
324 	if (ret < 0)
325 		goto out;
326 
327 	BUG_ON(ret != 0);
328 
329 	ret = btrfs_del_item(trans, root, path);
330 out:
331 	btrfs_free_path(path);
332 	return ret;
333 }
334 
335 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
336 		       u64 ref_id, u64 dirid, u64 *sequence,
337 		       const struct fscrypt_str *name)
338 {
339 	struct btrfs_root *tree_root = trans->fs_info->tree_root;
340 	struct btrfs_path *path;
341 	struct btrfs_root_ref *ref;
342 	struct extent_buffer *leaf;
343 	struct btrfs_key key;
344 	unsigned long ptr;
345 	int ret;
346 
347 	path = btrfs_alloc_path();
348 	if (!path)
349 		return -ENOMEM;
350 
351 	key.objectid = root_id;
352 	key.type = BTRFS_ROOT_BACKREF_KEY;
353 	key.offset = ref_id;
354 again:
355 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
356 	if (ret < 0) {
357 		goto out;
358 	} else if (ret == 0) {
359 		leaf = path->nodes[0];
360 		ref = btrfs_item_ptr(leaf, path->slots[0],
361 				     struct btrfs_root_ref);
362 		ptr = (unsigned long)(ref + 1);
363 		if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
364 		    (btrfs_root_ref_name_len(leaf, ref) != name->len) ||
365 		    memcmp_extent_buffer(leaf, name->name, ptr, name->len)) {
366 			ret = -ENOENT;
367 			goto out;
368 		}
369 		*sequence = btrfs_root_ref_sequence(leaf, ref);
370 
371 		ret = btrfs_del_item(trans, tree_root, path);
372 		if (ret)
373 			goto out;
374 	} else {
375 		ret = -ENOENT;
376 		goto out;
377 	}
378 
379 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
380 		btrfs_release_path(path);
381 		key.objectid = ref_id;
382 		key.type = BTRFS_ROOT_REF_KEY;
383 		key.offset = root_id;
384 		goto again;
385 	}
386 
387 out:
388 	btrfs_free_path(path);
389 	return ret;
390 }
391 
392 /*
393  * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
394  * or BTRFS_ROOT_BACKREF_KEY.
395  *
396  * The dirid, sequence, name and name_len refer to the directory entry
397  * that is referencing the root.
398  *
399  * For a forward ref, the root_id is the id of the tree referencing
400  * the root and ref_id is the id of the subvol  or snapshot.
401  *
402  * For a back ref the root_id is the id of the subvol or snapshot and
403  * ref_id is the id of the tree referencing it.
404  *
405  * Will return 0, -ENOMEM, or anything from the CoW path
406  */
407 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
408 		       u64 ref_id, u64 dirid, u64 sequence,
409 		       const struct fscrypt_str *name)
410 {
411 	struct btrfs_root *tree_root = trans->fs_info->tree_root;
412 	struct btrfs_key key;
413 	int ret;
414 	struct btrfs_path *path;
415 	struct btrfs_root_ref *ref;
416 	struct extent_buffer *leaf;
417 	unsigned long ptr;
418 
419 	path = btrfs_alloc_path();
420 	if (!path)
421 		return -ENOMEM;
422 
423 	key.objectid = root_id;
424 	key.type = BTRFS_ROOT_BACKREF_KEY;
425 	key.offset = ref_id;
426 again:
427 	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
428 				      sizeof(*ref) + name->len);
429 	if (ret) {
430 		btrfs_abort_transaction(trans, ret);
431 		btrfs_free_path(path);
432 		return ret;
433 	}
434 
435 	leaf = path->nodes[0];
436 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
437 	btrfs_set_root_ref_dirid(leaf, ref, dirid);
438 	btrfs_set_root_ref_sequence(leaf, ref, sequence);
439 	btrfs_set_root_ref_name_len(leaf, ref, name->len);
440 	ptr = (unsigned long)(ref + 1);
441 	write_extent_buffer(leaf, name->name, ptr, name->len);
442 	btrfs_mark_buffer_dirty(trans, leaf);
443 
444 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
445 		btrfs_release_path(path);
446 		key.objectid = ref_id;
447 		key.type = BTRFS_ROOT_REF_KEY;
448 		key.offset = root_id;
449 		goto again;
450 	}
451 
452 	btrfs_free_path(path);
453 	return 0;
454 }
455 
456 /*
457  * Old btrfs forgets to init root_item->flags and root_item->byte_limit
458  * for subvolumes. To work around this problem, we steal a bit from
459  * root_item->inode_item->flags, and use it to indicate if those fields
460  * have been properly initialized.
461  */
462 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
463 {
464 	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
465 
466 	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
467 		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
468 		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
469 		btrfs_set_root_flags(root_item, 0);
470 		btrfs_set_root_limit(root_item, 0);
471 	}
472 }
473 
474 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
475 			     struct btrfs_root *root)
476 {
477 	struct btrfs_root_item *item = &root->root_item;
478 	struct timespec64 ct;
479 
480 	ktime_get_real_ts64(&ct);
481 	spin_lock(&root->root_item_lock);
482 	btrfs_set_root_ctransid(item, trans->transid);
483 	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
484 	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
485 	spin_unlock(&root->root_item_lock);
486 }
487 
488 /*
489  * Reserve space for subvolume operation.
490  *
491  * root: the root of the parent directory
492  * rsv: block reservation
493  * items: the number of items that we need do reservation
494  * use_global_rsv: allow fallback to the global block reservation
495  *
496  * This function is used to reserve the space for snapshot/subvolume
497  * creation and deletion. Those operations are different with the
498  * common file/directory operations, they change two fs/file trees
499  * and root tree, the number of items that the qgroup reserves is
500  * different with the free space reservation. So we can not use
501  * the space reservation mechanism in start_transaction().
502  */
503 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
504 				     struct btrfs_block_rsv *rsv, int items,
505 				     bool use_global_rsv)
506 {
507 	u64 qgroup_num_bytes = 0;
508 	u64 num_bytes;
509 	int ret;
510 	struct btrfs_fs_info *fs_info = root->fs_info;
511 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
512 
513 	if (btrfs_qgroup_enabled(fs_info)) {
514 		/* One for parent inode, two for dir entries */
515 		qgroup_num_bytes = 3 * fs_info->nodesize;
516 		ret = btrfs_qgroup_reserve_meta_prealloc(root,
517 							 qgroup_num_bytes, true,
518 							 false);
519 		if (ret)
520 			return ret;
521 	}
522 
523 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
524 	rsv->space_info = btrfs_find_space_info(fs_info,
525 					    BTRFS_BLOCK_GROUP_METADATA);
526 	ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes,
527 				  BTRFS_RESERVE_FLUSH_ALL);
528 
529 	if (ret == -ENOSPC && use_global_rsv)
530 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
531 
532 	if (ret && qgroup_num_bytes)
533 		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
534 
535 	if (!ret) {
536 		spin_lock(&rsv->lock);
537 		rsv->qgroup_rsv_reserved += qgroup_num_bytes;
538 		spin_unlock(&rsv->lock);
539 	}
540 	return ret;
541 }
542 
543 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
544 				      struct btrfs_block_rsv *rsv)
545 {
546 	struct btrfs_fs_info *fs_info = root->fs_info;
547 	u64 qgroup_to_release;
548 
549 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, &qgroup_to_release);
550 	btrfs_qgroup_convert_reserved_meta(root, qgroup_to_release);
551 }
552