1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/err.h> 7 #include <linux/uuid.h> 8 #include "ctree.h" 9 #include "transaction.h" 10 #include "disk-io.h" 11 #include "print-tree.h" 12 #include "qgroup.h" 13 #include "space-info.h" 14 15 /* 16 * Read a root item from the tree. In case we detect a root item smaller then 17 * sizeof(root_item), we know it's an old version of the root structure and 18 * initialize all new fields to zero. The same happens if we detect mismatching 19 * generation numbers as then we know the root was once mounted with an older 20 * kernel that was not aware of the root item structure change. 21 */ 22 static void btrfs_read_root_item(struct extent_buffer *eb, int slot, 23 struct btrfs_root_item *item) 24 { 25 uuid_le uuid; 26 u32 len; 27 int need_reset = 0; 28 29 len = btrfs_item_size_nr(eb, slot); 30 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot), 31 min_t(u32, len, sizeof(*item))); 32 if (len < sizeof(*item)) 33 need_reset = 1; 34 if (!need_reset && btrfs_root_generation(item) 35 != btrfs_root_generation_v2(item)) { 36 if (btrfs_root_generation_v2(item) != 0) { 37 btrfs_warn(eb->fs_info, 38 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields."); 39 } 40 need_reset = 1; 41 } 42 if (need_reset) { 43 memset(&item->generation_v2, 0, 44 sizeof(*item) - offsetof(struct btrfs_root_item, 45 generation_v2)); 46 47 uuid_le_gen(&uuid); 48 memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE); 49 } 50 } 51 52 /* 53 * btrfs_find_root - lookup the root by the key. 54 * root: the root of the root tree 55 * search_key: the key to search 56 * path: the path we search 57 * root_item: the root item of the tree we look for 58 * root_key: the root key of the tree we look for 59 * 60 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset 61 * of the search key, just lookup the root with the highest offset for a 62 * given objectid. 63 * 64 * If we find something return 0, otherwise > 0, < 0 on error. 65 */ 66 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 67 struct btrfs_path *path, struct btrfs_root_item *root_item, 68 struct btrfs_key *root_key) 69 { 70 struct btrfs_key found_key; 71 struct extent_buffer *l; 72 int ret; 73 int slot; 74 75 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0); 76 if (ret < 0) 77 return ret; 78 79 if (search_key->offset != -1ULL) { /* the search key is exact */ 80 if (ret > 0) 81 goto out; 82 } else { 83 BUG_ON(ret == 0); /* Logical error */ 84 if (path->slots[0] == 0) 85 goto out; 86 path->slots[0]--; 87 ret = 0; 88 } 89 90 l = path->nodes[0]; 91 slot = path->slots[0]; 92 93 btrfs_item_key_to_cpu(l, &found_key, slot); 94 if (found_key.objectid != search_key->objectid || 95 found_key.type != BTRFS_ROOT_ITEM_KEY) { 96 ret = 1; 97 goto out; 98 } 99 100 if (root_item) 101 btrfs_read_root_item(l, slot, root_item); 102 if (root_key) 103 memcpy(root_key, &found_key, sizeof(found_key)); 104 out: 105 btrfs_release_path(path); 106 return ret; 107 } 108 109 void btrfs_set_root_node(struct btrfs_root_item *item, 110 struct extent_buffer *node) 111 { 112 btrfs_set_root_bytenr(item, node->start); 113 btrfs_set_root_level(item, btrfs_header_level(node)); 114 btrfs_set_root_generation(item, btrfs_header_generation(node)); 115 } 116 117 /* 118 * copy the data in 'item' into the btree 119 */ 120 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root 121 *root, struct btrfs_key *key, struct btrfs_root_item 122 *item) 123 { 124 struct btrfs_fs_info *fs_info = root->fs_info; 125 struct btrfs_path *path; 126 struct extent_buffer *l; 127 int ret; 128 int slot; 129 unsigned long ptr; 130 u32 old_len; 131 132 path = btrfs_alloc_path(); 133 if (!path) 134 return -ENOMEM; 135 136 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 137 if (ret < 0) 138 goto out; 139 140 if (ret > 0) { 141 btrfs_crit(fs_info, 142 "unable to find root key (%llu %u %llu) in tree %llu", 143 key->objectid, key->type, key->offset, 144 root->root_key.objectid); 145 ret = -EUCLEAN; 146 btrfs_abort_transaction(trans, ret); 147 goto out; 148 } 149 150 l = path->nodes[0]; 151 slot = path->slots[0]; 152 ptr = btrfs_item_ptr_offset(l, slot); 153 old_len = btrfs_item_size_nr(l, slot); 154 155 /* 156 * If this is the first time we update the root item which originated 157 * from an older kernel, we need to enlarge the item size to make room 158 * for the added fields. 159 */ 160 if (old_len < sizeof(*item)) { 161 btrfs_release_path(path); 162 ret = btrfs_search_slot(trans, root, key, path, 163 -1, 1); 164 if (ret < 0) { 165 btrfs_abort_transaction(trans, ret); 166 goto out; 167 } 168 169 ret = btrfs_del_item(trans, root, path); 170 if (ret < 0) { 171 btrfs_abort_transaction(trans, ret); 172 goto out; 173 } 174 btrfs_release_path(path); 175 ret = btrfs_insert_empty_item(trans, root, path, 176 key, sizeof(*item)); 177 if (ret < 0) { 178 btrfs_abort_transaction(trans, ret); 179 goto out; 180 } 181 l = path->nodes[0]; 182 slot = path->slots[0]; 183 ptr = btrfs_item_ptr_offset(l, slot); 184 } 185 186 /* 187 * Update generation_v2 so at the next mount we know the new root 188 * fields are valid. 189 */ 190 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 191 192 write_extent_buffer(l, item, ptr, sizeof(*item)); 193 btrfs_mark_buffer_dirty(path->nodes[0]); 194 out: 195 btrfs_free_path(path); 196 return ret; 197 } 198 199 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 200 const struct btrfs_key *key, struct btrfs_root_item *item) 201 { 202 /* 203 * Make sure generation v1 and v2 match. See update_root for details. 204 */ 205 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 206 return btrfs_insert_item(trans, root, key, item, sizeof(*item)); 207 } 208 209 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info) 210 { 211 struct btrfs_root *tree_root = fs_info->tree_root; 212 struct extent_buffer *leaf; 213 struct btrfs_path *path; 214 struct btrfs_key key; 215 struct btrfs_key root_key; 216 struct btrfs_root *root; 217 int err = 0; 218 int ret; 219 220 path = btrfs_alloc_path(); 221 if (!path) 222 return -ENOMEM; 223 224 key.objectid = BTRFS_ORPHAN_OBJECTID; 225 key.type = BTRFS_ORPHAN_ITEM_KEY; 226 key.offset = 0; 227 228 root_key.type = BTRFS_ROOT_ITEM_KEY; 229 root_key.offset = (u64)-1; 230 231 while (1) { 232 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 233 if (ret < 0) { 234 err = ret; 235 break; 236 } 237 238 leaf = path->nodes[0]; 239 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 240 ret = btrfs_next_leaf(tree_root, path); 241 if (ret < 0) 242 err = ret; 243 if (ret != 0) 244 break; 245 leaf = path->nodes[0]; 246 } 247 248 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 249 btrfs_release_path(path); 250 251 if (key.objectid != BTRFS_ORPHAN_OBJECTID || 252 key.type != BTRFS_ORPHAN_ITEM_KEY) 253 break; 254 255 root_key.objectid = key.offset; 256 key.offset++; 257 258 /* 259 * The root might have been inserted already, as before we look 260 * for orphan roots, log replay might have happened, which 261 * triggers a transaction commit and qgroup accounting, which 262 * in turn reads and inserts fs roots while doing backref 263 * walking. 264 */ 265 root = btrfs_lookup_fs_root(fs_info, root_key.objectid); 266 if (root) { 267 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 268 &root->state)); 269 if (btrfs_root_refs(&root->root_item) == 0) { 270 set_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 271 btrfs_add_dead_root(root); 272 } 273 continue; 274 } 275 276 root = btrfs_read_fs_root(tree_root, &root_key); 277 err = PTR_ERR_OR_ZERO(root); 278 if (err && err != -ENOENT) { 279 break; 280 } else if (err == -ENOENT) { 281 struct btrfs_trans_handle *trans; 282 283 btrfs_release_path(path); 284 285 trans = btrfs_join_transaction(tree_root); 286 if (IS_ERR(trans)) { 287 err = PTR_ERR(trans); 288 btrfs_handle_fs_error(fs_info, err, 289 "Failed to start trans to delete orphan item"); 290 break; 291 } 292 err = btrfs_del_orphan_item(trans, tree_root, 293 root_key.objectid); 294 btrfs_end_transaction(trans); 295 if (err) { 296 btrfs_handle_fs_error(fs_info, err, 297 "Failed to delete root orphan item"); 298 break; 299 } 300 continue; 301 } 302 303 err = btrfs_init_fs_root(root); 304 if (err) { 305 btrfs_free_fs_root(root); 306 break; 307 } 308 309 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 310 311 err = btrfs_insert_fs_root(fs_info, root); 312 if (err) { 313 BUG_ON(err == -EEXIST); 314 btrfs_free_fs_root(root); 315 break; 316 } 317 318 if (btrfs_root_refs(&root->root_item) == 0) { 319 set_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 320 btrfs_add_dead_root(root); 321 } 322 } 323 324 btrfs_free_path(path); 325 return err; 326 } 327 328 /* drop the root item for 'key' from the tree root */ 329 int btrfs_del_root(struct btrfs_trans_handle *trans, 330 const struct btrfs_key *key) 331 { 332 struct btrfs_root *root = trans->fs_info->tree_root; 333 struct btrfs_path *path; 334 int ret; 335 336 path = btrfs_alloc_path(); 337 if (!path) 338 return -ENOMEM; 339 ret = btrfs_search_slot(trans, root, key, path, -1, 1); 340 if (ret < 0) 341 goto out; 342 343 BUG_ON(ret != 0); 344 345 ret = btrfs_del_item(trans, root, path); 346 out: 347 btrfs_free_path(path); 348 return ret; 349 } 350 351 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 352 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 353 int name_len) 354 355 { 356 struct btrfs_root *tree_root = trans->fs_info->tree_root; 357 struct btrfs_path *path; 358 struct btrfs_root_ref *ref; 359 struct extent_buffer *leaf; 360 struct btrfs_key key; 361 unsigned long ptr; 362 int err = 0; 363 int ret; 364 365 path = btrfs_alloc_path(); 366 if (!path) 367 return -ENOMEM; 368 369 key.objectid = root_id; 370 key.type = BTRFS_ROOT_BACKREF_KEY; 371 key.offset = ref_id; 372 again: 373 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 374 BUG_ON(ret < 0); 375 if (ret == 0) { 376 leaf = path->nodes[0]; 377 ref = btrfs_item_ptr(leaf, path->slots[0], 378 struct btrfs_root_ref); 379 380 WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid); 381 WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len); 382 ptr = (unsigned long)(ref + 1); 383 WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len)); 384 *sequence = btrfs_root_ref_sequence(leaf, ref); 385 386 ret = btrfs_del_item(trans, tree_root, path); 387 if (ret) { 388 err = ret; 389 goto out; 390 } 391 } else 392 err = -ENOENT; 393 394 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 395 btrfs_release_path(path); 396 key.objectid = ref_id; 397 key.type = BTRFS_ROOT_REF_KEY; 398 key.offset = root_id; 399 goto again; 400 } 401 402 out: 403 btrfs_free_path(path); 404 return err; 405 } 406 407 /* 408 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY 409 * or BTRFS_ROOT_BACKREF_KEY. 410 * 411 * The dirid, sequence, name and name_len refer to the directory entry 412 * that is referencing the root. 413 * 414 * For a forward ref, the root_id is the id of the tree referencing 415 * the root and ref_id is the id of the subvol or snapshot. 416 * 417 * For a back ref the root_id is the id of the subvol or snapshot and 418 * ref_id is the id of the tree referencing it. 419 * 420 * Will return 0, -ENOMEM, or anything from the CoW path 421 */ 422 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 423 u64 ref_id, u64 dirid, u64 sequence, const char *name, 424 int name_len) 425 { 426 struct btrfs_root *tree_root = trans->fs_info->tree_root; 427 struct btrfs_key key; 428 int ret; 429 struct btrfs_path *path; 430 struct btrfs_root_ref *ref; 431 struct extent_buffer *leaf; 432 unsigned long ptr; 433 434 path = btrfs_alloc_path(); 435 if (!path) 436 return -ENOMEM; 437 438 key.objectid = root_id; 439 key.type = BTRFS_ROOT_BACKREF_KEY; 440 key.offset = ref_id; 441 again: 442 ret = btrfs_insert_empty_item(trans, tree_root, path, &key, 443 sizeof(*ref) + name_len); 444 if (ret) { 445 btrfs_abort_transaction(trans, ret); 446 btrfs_free_path(path); 447 return ret; 448 } 449 450 leaf = path->nodes[0]; 451 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 452 btrfs_set_root_ref_dirid(leaf, ref, dirid); 453 btrfs_set_root_ref_sequence(leaf, ref, sequence); 454 btrfs_set_root_ref_name_len(leaf, ref, name_len); 455 ptr = (unsigned long)(ref + 1); 456 write_extent_buffer(leaf, name, ptr, name_len); 457 btrfs_mark_buffer_dirty(leaf); 458 459 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 460 btrfs_release_path(path); 461 key.objectid = ref_id; 462 key.type = BTRFS_ROOT_REF_KEY; 463 key.offset = root_id; 464 goto again; 465 } 466 467 btrfs_free_path(path); 468 return 0; 469 } 470 471 /* 472 * Old btrfs forgets to init root_item->flags and root_item->byte_limit 473 * for subvolumes. To work around this problem, we steal a bit from 474 * root_item->inode_item->flags, and use it to indicate if those fields 475 * have been properly initialized. 476 */ 477 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item) 478 { 479 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode); 480 481 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) { 482 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT; 483 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags); 484 btrfs_set_root_flags(root_item, 0); 485 btrfs_set_root_limit(root_item, 0); 486 } 487 } 488 489 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 490 struct btrfs_root *root) 491 { 492 struct btrfs_root_item *item = &root->root_item; 493 struct timespec64 ct; 494 495 ktime_get_real_ts64(&ct); 496 spin_lock(&root->root_item_lock); 497 btrfs_set_root_ctransid(item, trans->transid); 498 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec); 499 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec); 500 spin_unlock(&root->root_item_lock); 501 } 502 503 /* 504 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 505 * root: the root of the parent directory 506 * rsv: block reservation 507 * items: the number of items that we need do reservation 508 * use_global_rsv: allow fallback to the global block reservation 509 * 510 * This function is used to reserve the space for snapshot/subvolume 511 * creation and deletion. Those operations are different with the 512 * common file/directory operations, they change two fs/file trees 513 * and root tree, the number of items that the qgroup reserves is 514 * different with the free space reservation. So we can not use 515 * the space reservation mechanism in start_transaction(). 516 */ 517 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 518 struct btrfs_block_rsv *rsv, int items, 519 bool use_global_rsv) 520 { 521 u64 qgroup_num_bytes = 0; 522 u64 num_bytes; 523 int ret; 524 struct btrfs_fs_info *fs_info = root->fs_info; 525 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 526 527 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 528 /* One for parent inode, two for dir entries */ 529 qgroup_num_bytes = 3 * fs_info->nodesize; 530 ret = btrfs_qgroup_reserve_meta_prealloc(root, 531 qgroup_num_bytes, true); 532 if (ret) 533 return ret; 534 } 535 536 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items); 537 rsv->space_info = btrfs_find_space_info(fs_info, 538 BTRFS_BLOCK_GROUP_METADATA); 539 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 540 BTRFS_RESERVE_FLUSH_ALL); 541 542 if (ret == -ENOSPC && use_global_rsv) 543 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true); 544 545 if (ret && qgroup_num_bytes) 546 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes); 547 548 return ret; 549 } 550 551 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info, 552 struct btrfs_block_rsv *rsv) 553 { 554 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 555 } 556