1 /* 2 * Copyright (C) 2009 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/rbtree.h> 24 #include <linux/slab.h> 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "volumes.h" 29 #include "locking.h" 30 #include "btrfs_inode.h" 31 #include "async-thread.h" 32 #include "free-space-cache.h" 33 #include "inode-map.h" 34 35 /* 36 * backref_node, mapping_node and tree_block start with this 37 */ 38 struct tree_entry { 39 struct rb_node rb_node; 40 u64 bytenr; 41 }; 42 43 /* 44 * present a tree block in the backref cache 45 */ 46 struct backref_node { 47 struct rb_node rb_node; 48 u64 bytenr; 49 50 u64 new_bytenr; 51 /* objectid of tree block owner, can be not uptodate */ 52 u64 owner; 53 /* link to pending, changed or detached list */ 54 struct list_head list; 55 /* list of upper level blocks reference this block */ 56 struct list_head upper; 57 /* list of child blocks in the cache */ 58 struct list_head lower; 59 /* NULL if this node is not tree root */ 60 struct btrfs_root *root; 61 /* extent buffer got by COW the block */ 62 struct extent_buffer *eb; 63 /* level of tree block */ 64 unsigned int level:8; 65 /* is the block in non-reference counted tree */ 66 unsigned int cowonly:1; 67 /* 1 if no child node in the cache */ 68 unsigned int lowest:1; 69 /* is the extent buffer locked */ 70 unsigned int locked:1; 71 /* has the block been processed */ 72 unsigned int processed:1; 73 /* have backrefs of this block been checked */ 74 unsigned int checked:1; 75 /* 76 * 1 if corresponding block has been cowed but some upper 77 * level block pointers may not point to the new location 78 */ 79 unsigned int pending:1; 80 /* 81 * 1 if the backref node isn't connected to any other 82 * backref node. 83 */ 84 unsigned int detached:1; 85 }; 86 87 /* 88 * present a block pointer in the backref cache 89 */ 90 struct backref_edge { 91 struct list_head list[2]; 92 struct backref_node *node[2]; 93 }; 94 95 #define LOWER 0 96 #define UPPER 1 97 98 struct backref_cache { 99 /* red black tree of all backref nodes in the cache */ 100 struct rb_root rb_root; 101 /* for passing backref nodes to btrfs_reloc_cow_block */ 102 struct backref_node *path[BTRFS_MAX_LEVEL]; 103 /* 104 * list of blocks that have been cowed but some block 105 * pointers in upper level blocks may not reflect the 106 * new location 107 */ 108 struct list_head pending[BTRFS_MAX_LEVEL]; 109 /* list of backref nodes with no child node */ 110 struct list_head leaves; 111 /* list of blocks that have been cowed in current transaction */ 112 struct list_head changed; 113 /* list of detached backref node. */ 114 struct list_head detached; 115 116 u64 last_trans; 117 118 int nr_nodes; 119 int nr_edges; 120 }; 121 122 /* 123 * map address of tree root to tree 124 */ 125 struct mapping_node { 126 struct rb_node rb_node; 127 u64 bytenr; 128 void *data; 129 }; 130 131 struct mapping_tree { 132 struct rb_root rb_root; 133 spinlock_t lock; 134 }; 135 136 /* 137 * present a tree block to process 138 */ 139 struct tree_block { 140 struct rb_node rb_node; 141 u64 bytenr; 142 struct btrfs_key key; 143 unsigned int level:8; 144 unsigned int key_ready:1; 145 }; 146 147 #define MAX_EXTENTS 128 148 149 struct file_extent_cluster { 150 u64 start; 151 u64 end; 152 u64 boundary[MAX_EXTENTS]; 153 unsigned int nr; 154 }; 155 156 struct reloc_control { 157 /* block group to relocate */ 158 struct btrfs_block_group_cache *block_group; 159 /* extent tree */ 160 struct btrfs_root *extent_root; 161 /* inode for moving data */ 162 struct inode *data_inode; 163 164 struct btrfs_block_rsv *block_rsv; 165 166 struct backref_cache backref_cache; 167 168 struct file_extent_cluster cluster; 169 /* tree blocks have been processed */ 170 struct extent_io_tree processed_blocks; 171 /* map start of tree root to corresponding reloc tree */ 172 struct mapping_tree reloc_root_tree; 173 /* list of reloc trees */ 174 struct list_head reloc_roots; 175 /* size of metadata reservation for merging reloc trees */ 176 u64 merging_rsv_size; 177 /* size of relocated tree nodes */ 178 u64 nodes_relocated; 179 180 u64 search_start; 181 u64 extents_found; 182 183 unsigned int stage:8; 184 unsigned int create_reloc_tree:1; 185 unsigned int merge_reloc_tree:1; 186 unsigned int found_file_extent:1; 187 unsigned int commit_transaction:1; 188 }; 189 190 /* stages of data relocation */ 191 #define MOVE_DATA_EXTENTS 0 192 #define UPDATE_DATA_PTRS 1 193 194 static void remove_backref_node(struct backref_cache *cache, 195 struct backref_node *node); 196 static void __mark_block_processed(struct reloc_control *rc, 197 struct backref_node *node); 198 199 static void mapping_tree_init(struct mapping_tree *tree) 200 { 201 tree->rb_root = RB_ROOT; 202 spin_lock_init(&tree->lock); 203 } 204 205 static void backref_cache_init(struct backref_cache *cache) 206 { 207 int i; 208 cache->rb_root = RB_ROOT; 209 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 210 INIT_LIST_HEAD(&cache->pending[i]); 211 INIT_LIST_HEAD(&cache->changed); 212 INIT_LIST_HEAD(&cache->detached); 213 INIT_LIST_HEAD(&cache->leaves); 214 } 215 216 static void backref_cache_cleanup(struct backref_cache *cache) 217 { 218 struct backref_node *node; 219 int i; 220 221 while (!list_empty(&cache->detached)) { 222 node = list_entry(cache->detached.next, 223 struct backref_node, list); 224 remove_backref_node(cache, node); 225 } 226 227 while (!list_empty(&cache->leaves)) { 228 node = list_entry(cache->leaves.next, 229 struct backref_node, lower); 230 remove_backref_node(cache, node); 231 } 232 233 cache->last_trans = 0; 234 235 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 236 BUG_ON(!list_empty(&cache->pending[i])); 237 BUG_ON(!list_empty(&cache->changed)); 238 BUG_ON(!list_empty(&cache->detached)); 239 BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root)); 240 BUG_ON(cache->nr_nodes); 241 BUG_ON(cache->nr_edges); 242 } 243 244 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 245 { 246 struct backref_node *node; 247 248 node = kzalloc(sizeof(*node), GFP_NOFS); 249 if (node) { 250 INIT_LIST_HEAD(&node->list); 251 INIT_LIST_HEAD(&node->upper); 252 INIT_LIST_HEAD(&node->lower); 253 RB_CLEAR_NODE(&node->rb_node); 254 cache->nr_nodes++; 255 } 256 return node; 257 } 258 259 static void free_backref_node(struct backref_cache *cache, 260 struct backref_node *node) 261 { 262 if (node) { 263 cache->nr_nodes--; 264 kfree(node); 265 } 266 } 267 268 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 269 { 270 struct backref_edge *edge; 271 272 edge = kzalloc(sizeof(*edge), GFP_NOFS); 273 if (edge) 274 cache->nr_edges++; 275 return edge; 276 } 277 278 static void free_backref_edge(struct backref_cache *cache, 279 struct backref_edge *edge) 280 { 281 if (edge) { 282 cache->nr_edges--; 283 kfree(edge); 284 } 285 } 286 287 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 288 struct rb_node *node) 289 { 290 struct rb_node **p = &root->rb_node; 291 struct rb_node *parent = NULL; 292 struct tree_entry *entry; 293 294 while (*p) { 295 parent = *p; 296 entry = rb_entry(parent, struct tree_entry, rb_node); 297 298 if (bytenr < entry->bytenr) 299 p = &(*p)->rb_left; 300 else if (bytenr > entry->bytenr) 301 p = &(*p)->rb_right; 302 else 303 return parent; 304 } 305 306 rb_link_node(node, parent, p); 307 rb_insert_color(node, root); 308 return NULL; 309 } 310 311 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 312 { 313 struct rb_node *n = root->rb_node; 314 struct tree_entry *entry; 315 316 while (n) { 317 entry = rb_entry(n, struct tree_entry, rb_node); 318 319 if (bytenr < entry->bytenr) 320 n = n->rb_left; 321 else if (bytenr > entry->bytenr) 322 n = n->rb_right; 323 else 324 return n; 325 } 326 return NULL; 327 } 328 329 /* 330 * walk up backref nodes until reach node presents tree root 331 */ 332 static struct backref_node *walk_up_backref(struct backref_node *node, 333 struct backref_edge *edges[], 334 int *index) 335 { 336 struct backref_edge *edge; 337 int idx = *index; 338 339 while (!list_empty(&node->upper)) { 340 edge = list_entry(node->upper.next, 341 struct backref_edge, list[LOWER]); 342 edges[idx++] = edge; 343 node = edge->node[UPPER]; 344 } 345 BUG_ON(node->detached); 346 *index = idx; 347 return node; 348 } 349 350 /* 351 * walk down backref nodes to find start of next reference path 352 */ 353 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 354 int *index) 355 { 356 struct backref_edge *edge; 357 struct backref_node *lower; 358 int idx = *index; 359 360 while (idx > 0) { 361 edge = edges[idx - 1]; 362 lower = edge->node[LOWER]; 363 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 364 idx--; 365 continue; 366 } 367 edge = list_entry(edge->list[LOWER].next, 368 struct backref_edge, list[LOWER]); 369 edges[idx - 1] = edge; 370 *index = idx; 371 return edge->node[UPPER]; 372 } 373 *index = 0; 374 return NULL; 375 } 376 377 static void unlock_node_buffer(struct backref_node *node) 378 { 379 if (node->locked) { 380 btrfs_tree_unlock(node->eb); 381 node->locked = 0; 382 } 383 } 384 385 static void drop_node_buffer(struct backref_node *node) 386 { 387 if (node->eb) { 388 unlock_node_buffer(node); 389 free_extent_buffer(node->eb); 390 node->eb = NULL; 391 } 392 } 393 394 static void drop_backref_node(struct backref_cache *tree, 395 struct backref_node *node) 396 { 397 BUG_ON(!list_empty(&node->upper)); 398 399 drop_node_buffer(node); 400 list_del(&node->list); 401 list_del(&node->lower); 402 if (!RB_EMPTY_NODE(&node->rb_node)) 403 rb_erase(&node->rb_node, &tree->rb_root); 404 free_backref_node(tree, node); 405 } 406 407 /* 408 * remove a backref node from the backref cache 409 */ 410 static void remove_backref_node(struct backref_cache *cache, 411 struct backref_node *node) 412 { 413 struct backref_node *upper; 414 struct backref_edge *edge; 415 416 if (!node) 417 return; 418 419 BUG_ON(!node->lowest && !node->detached); 420 while (!list_empty(&node->upper)) { 421 edge = list_entry(node->upper.next, struct backref_edge, 422 list[LOWER]); 423 upper = edge->node[UPPER]; 424 list_del(&edge->list[LOWER]); 425 list_del(&edge->list[UPPER]); 426 free_backref_edge(cache, edge); 427 428 if (RB_EMPTY_NODE(&upper->rb_node)) { 429 BUG_ON(!list_empty(&node->upper)); 430 drop_backref_node(cache, node); 431 node = upper; 432 node->lowest = 1; 433 continue; 434 } 435 /* 436 * add the node to leaf node list if no other 437 * child block cached. 438 */ 439 if (list_empty(&upper->lower)) { 440 list_add_tail(&upper->lower, &cache->leaves); 441 upper->lowest = 1; 442 } 443 } 444 445 drop_backref_node(cache, node); 446 } 447 448 static void update_backref_node(struct backref_cache *cache, 449 struct backref_node *node, u64 bytenr) 450 { 451 struct rb_node *rb_node; 452 rb_erase(&node->rb_node, &cache->rb_root); 453 node->bytenr = bytenr; 454 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 455 BUG_ON(rb_node); 456 } 457 458 /* 459 * update backref cache after a transaction commit 460 */ 461 static int update_backref_cache(struct btrfs_trans_handle *trans, 462 struct backref_cache *cache) 463 { 464 struct backref_node *node; 465 int level = 0; 466 467 if (cache->last_trans == 0) { 468 cache->last_trans = trans->transid; 469 return 0; 470 } 471 472 if (cache->last_trans == trans->transid) 473 return 0; 474 475 /* 476 * detached nodes are used to avoid unnecessary backref 477 * lookup. transaction commit changes the extent tree. 478 * so the detached nodes are no longer useful. 479 */ 480 while (!list_empty(&cache->detached)) { 481 node = list_entry(cache->detached.next, 482 struct backref_node, list); 483 remove_backref_node(cache, node); 484 } 485 486 while (!list_empty(&cache->changed)) { 487 node = list_entry(cache->changed.next, 488 struct backref_node, list); 489 list_del_init(&node->list); 490 BUG_ON(node->pending); 491 update_backref_node(cache, node, node->new_bytenr); 492 } 493 494 /* 495 * some nodes can be left in the pending list if there were 496 * errors during processing the pending nodes. 497 */ 498 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 499 list_for_each_entry(node, &cache->pending[level], list) { 500 BUG_ON(!node->pending); 501 if (node->bytenr == node->new_bytenr) 502 continue; 503 update_backref_node(cache, node, node->new_bytenr); 504 } 505 } 506 507 cache->last_trans = 0; 508 return 1; 509 } 510 511 512 static int should_ignore_root(struct btrfs_root *root) 513 { 514 struct btrfs_root *reloc_root; 515 516 if (!root->ref_cows) 517 return 0; 518 519 reloc_root = root->reloc_root; 520 if (!reloc_root) 521 return 0; 522 523 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 524 root->fs_info->running_transaction->transid - 1) 525 return 0; 526 /* 527 * if there is reloc tree and it was created in previous 528 * transaction backref lookup can find the reloc tree, 529 * so backref node for the fs tree root is useless for 530 * relocation. 531 */ 532 return 1; 533 } 534 /* 535 * find reloc tree by address of tree root 536 */ 537 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 538 u64 bytenr) 539 { 540 struct rb_node *rb_node; 541 struct mapping_node *node; 542 struct btrfs_root *root = NULL; 543 544 spin_lock(&rc->reloc_root_tree.lock); 545 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 546 if (rb_node) { 547 node = rb_entry(rb_node, struct mapping_node, rb_node); 548 root = (struct btrfs_root *)node->data; 549 } 550 spin_unlock(&rc->reloc_root_tree.lock); 551 return root; 552 } 553 554 static int is_cowonly_root(u64 root_objectid) 555 { 556 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 557 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 558 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 559 root_objectid == BTRFS_DEV_TREE_OBJECTID || 560 root_objectid == BTRFS_TREE_LOG_OBJECTID || 561 root_objectid == BTRFS_CSUM_TREE_OBJECTID) 562 return 1; 563 return 0; 564 } 565 566 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 567 u64 root_objectid) 568 { 569 struct btrfs_key key; 570 571 key.objectid = root_objectid; 572 key.type = BTRFS_ROOT_ITEM_KEY; 573 if (is_cowonly_root(root_objectid)) 574 key.offset = 0; 575 else 576 key.offset = (u64)-1; 577 578 return btrfs_read_fs_root_no_name(fs_info, &key); 579 } 580 581 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 582 static noinline_for_stack 583 struct btrfs_root *find_tree_root(struct reloc_control *rc, 584 struct extent_buffer *leaf, 585 struct btrfs_extent_ref_v0 *ref0) 586 { 587 struct btrfs_root *root; 588 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0); 589 u64 generation = btrfs_ref_generation_v0(leaf, ref0); 590 591 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID); 592 593 root = read_fs_root(rc->extent_root->fs_info, root_objectid); 594 BUG_ON(IS_ERR(root)); 595 596 if (root->ref_cows && 597 generation != btrfs_root_generation(&root->root_item)) 598 return NULL; 599 600 return root; 601 } 602 #endif 603 604 static noinline_for_stack 605 int find_inline_backref(struct extent_buffer *leaf, int slot, 606 unsigned long *ptr, unsigned long *end) 607 { 608 struct btrfs_extent_item *ei; 609 struct btrfs_tree_block_info *bi; 610 u32 item_size; 611 612 item_size = btrfs_item_size_nr(leaf, slot); 613 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 614 if (item_size < sizeof(*ei)) { 615 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 616 return 1; 617 } 618 #endif 619 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 620 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 621 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 622 623 if (item_size <= sizeof(*ei) + sizeof(*bi)) { 624 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 625 return 1; 626 } 627 628 bi = (struct btrfs_tree_block_info *)(ei + 1); 629 *ptr = (unsigned long)(bi + 1); 630 *end = (unsigned long)ei + item_size; 631 return 0; 632 } 633 634 /* 635 * build backref tree for a given tree block. root of the backref tree 636 * corresponds the tree block, leaves of the backref tree correspond 637 * roots of b-trees that reference the tree block. 638 * 639 * the basic idea of this function is check backrefs of a given block 640 * to find upper level blocks that refernece the block, and then check 641 * bakcrefs of these upper level blocks recursively. the recursion stop 642 * when tree root is reached or backrefs for the block is cached. 643 * 644 * NOTE: if we find backrefs for a block are cached, we know backrefs 645 * for all upper level blocks that directly/indirectly reference the 646 * block are also cached. 647 */ 648 static noinline_for_stack 649 struct backref_node *build_backref_tree(struct reloc_control *rc, 650 struct btrfs_key *node_key, 651 int level, u64 bytenr) 652 { 653 struct backref_cache *cache = &rc->backref_cache; 654 struct btrfs_path *path1; 655 struct btrfs_path *path2; 656 struct extent_buffer *eb; 657 struct btrfs_root *root; 658 struct backref_node *cur; 659 struct backref_node *upper; 660 struct backref_node *lower; 661 struct backref_node *node = NULL; 662 struct backref_node *exist = NULL; 663 struct backref_edge *edge; 664 struct rb_node *rb_node; 665 struct btrfs_key key; 666 unsigned long end; 667 unsigned long ptr; 668 LIST_HEAD(list); 669 LIST_HEAD(useless); 670 int cowonly; 671 int ret; 672 int err = 0; 673 674 path1 = btrfs_alloc_path(); 675 path2 = btrfs_alloc_path(); 676 if (!path1 || !path2) { 677 err = -ENOMEM; 678 goto out; 679 } 680 path1->reada = 1; 681 path2->reada = 2; 682 683 node = alloc_backref_node(cache); 684 if (!node) { 685 err = -ENOMEM; 686 goto out; 687 } 688 689 node->bytenr = bytenr; 690 node->level = level; 691 node->lowest = 1; 692 cur = node; 693 again: 694 end = 0; 695 ptr = 0; 696 key.objectid = cur->bytenr; 697 key.type = BTRFS_EXTENT_ITEM_KEY; 698 key.offset = (u64)-1; 699 700 path1->search_commit_root = 1; 701 path1->skip_locking = 1; 702 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 703 0, 0); 704 if (ret < 0) { 705 err = ret; 706 goto out; 707 } 708 BUG_ON(!ret || !path1->slots[0]); 709 710 path1->slots[0]--; 711 712 WARN_ON(cur->checked); 713 if (!list_empty(&cur->upper)) { 714 /* 715 * the backref was added previously when processing 716 * backref of type BTRFS_TREE_BLOCK_REF_KEY 717 */ 718 BUG_ON(!list_is_singular(&cur->upper)); 719 edge = list_entry(cur->upper.next, struct backref_edge, 720 list[LOWER]); 721 BUG_ON(!list_empty(&edge->list[UPPER])); 722 exist = edge->node[UPPER]; 723 /* 724 * add the upper level block to pending list if we need 725 * check its backrefs 726 */ 727 if (!exist->checked) 728 list_add_tail(&edge->list[UPPER], &list); 729 } else { 730 exist = NULL; 731 } 732 733 while (1) { 734 cond_resched(); 735 eb = path1->nodes[0]; 736 737 if (ptr >= end) { 738 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 739 ret = btrfs_next_leaf(rc->extent_root, path1); 740 if (ret < 0) { 741 err = ret; 742 goto out; 743 } 744 if (ret > 0) 745 break; 746 eb = path1->nodes[0]; 747 } 748 749 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 750 if (key.objectid != cur->bytenr) { 751 WARN_ON(exist); 752 break; 753 } 754 755 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 756 ret = find_inline_backref(eb, path1->slots[0], 757 &ptr, &end); 758 if (ret) 759 goto next; 760 } 761 } 762 763 if (ptr < end) { 764 /* update key for inline back ref */ 765 struct btrfs_extent_inline_ref *iref; 766 iref = (struct btrfs_extent_inline_ref *)ptr; 767 key.type = btrfs_extent_inline_ref_type(eb, iref); 768 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 769 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 770 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 771 } 772 773 if (exist && 774 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 775 exist->owner == key.offset) || 776 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 777 exist->bytenr == key.offset))) { 778 exist = NULL; 779 goto next; 780 } 781 782 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 783 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY || 784 key.type == BTRFS_EXTENT_REF_V0_KEY) { 785 if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 786 struct btrfs_extent_ref_v0 *ref0; 787 ref0 = btrfs_item_ptr(eb, path1->slots[0], 788 struct btrfs_extent_ref_v0); 789 if (key.objectid == key.offset) { 790 root = find_tree_root(rc, eb, ref0); 791 if (root && !should_ignore_root(root)) 792 cur->root = root; 793 else 794 list_add(&cur->list, &useless); 795 break; 796 } 797 if (is_cowonly_root(btrfs_ref_root_v0(eb, 798 ref0))) 799 cur->cowonly = 1; 800 } 801 #else 802 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 803 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 804 #endif 805 if (key.objectid == key.offset) { 806 /* 807 * only root blocks of reloc trees use 808 * backref of this type. 809 */ 810 root = find_reloc_root(rc, cur->bytenr); 811 BUG_ON(!root); 812 cur->root = root; 813 break; 814 } 815 816 edge = alloc_backref_edge(cache); 817 if (!edge) { 818 err = -ENOMEM; 819 goto out; 820 } 821 rb_node = tree_search(&cache->rb_root, key.offset); 822 if (!rb_node) { 823 upper = alloc_backref_node(cache); 824 if (!upper) { 825 free_backref_edge(cache, edge); 826 err = -ENOMEM; 827 goto out; 828 } 829 upper->bytenr = key.offset; 830 upper->level = cur->level + 1; 831 /* 832 * backrefs for the upper level block isn't 833 * cached, add the block to pending list 834 */ 835 list_add_tail(&edge->list[UPPER], &list); 836 } else { 837 upper = rb_entry(rb_node, struct backref_node, 838 rb_node); 839 BUG_ON(!upper->checked); 840 INIT_LIST_HEAD(&edge->list[UPPER]); 841 } 842 list_add_tail(&edge->list[LOWER], &cur->upper); 843 edge->node[LOWER] = cur; 844 edge->node[UPPER] = upper; 845 846 goto next; 847 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 848 goto next; 849 } 850 851 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */ 852 root = read_fs_root(rc->extent_root->fs_info, key.offset); 853 if (IS_ERR(root)) { 854 err = PTR_ERR(root); 855 goto out; 856 } 857 858 if (!root->ref_cows) 859 cur->cowonly = 1; 860 861 if (btrfs_root_level(&root->root_item) == cur->level) { 862 /* tree root */ 863 BUG_ON(btrfs_root_bytenr(&root->root_item) != 864 cur->bytenr); 865 if (should_ignore_root(root)) 866 list_add(&cur->list, &useless); 867 else 868 cur->root = root; 869 break; 870 } 871 872 level = cur->level + 1; 873 874 /* 875 * searching the tree to find upper level blocks 876 * reference the block. 877 */ 878 path2->search_commit_root = 1; 879 path2->skip_locking = 1; 880 path2->lowest_level = level; 881 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 882 path2->lowest_level = 0; 883 if (ret < 0) { 884 err = ret; 885 goto out; 886 } 887 if (ret > 0 && path2->slots[level] > 0) 888 path2->slots[level]--; 889 890 eb = path2->nodes[level]; 891 WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) != 892 cur->bytenr); 893 894 lower = cur; 895 for (; level < BTRFS_MAX_LEVEL; level++) { 896 if (!path2->nodes[level]) { 897 BUG_ON(btrfs_root_bytenr(&root->root_item) != 898 lower->bytenr); 899 if (should_ignore_root(root)) 900 list_add(&lower->list, &useless); 901 else 902 lower->root = root; 903 break; 904 } 905 906 edge = alloc_backref_edge(cache); 907 if (!edge) { 908 err = -ENOMEM; 909 goto out; 910 } 911 912 eb = path2->nodes[level]; 913 rb_node = tree_search(&cache->rb_root, eb->start); 914 if (!rb_node) { 915 upper = alloc_backref_node(cache); 916 if (!upper) { 917 free_backref_edge(cache, edge); 918 err = -ENOMEM; 919 goto out; 920 } 921 upper->bytenr = eb->start; 922 upper->owner = btrfs_header_owner(eb); 923 upper->level = lower->level + 1; 924 if (!root->ref_cows) 925 upper->cowonly = 1; 926 927 /* 928 * if we know the block isn't shared 929 * we can void checking its backrefs. 930 */ 931 if (btrfs_block_can_be_shared(root, eb)) 932 upper->checked = 0; 933 else 934 upper->checked = 1; 935 936 /* 937 * add the block to pending list if we 938 * need check its backrefs. only block 939 * at 'cur->level + 1' is added to the 940 * tail of pending list. this guarantees 941 * we check backrefs from lower level 942 * blocks to upper level blocks. 943 */ 944 if (!upper->checked && 945 level == cur->level + 1) { 946 list_add_tail(&edge->list[UPPER], 947 &list); 948 } else 949 INIT_LIST_HEAD(&edge->list[UPPER]); 950 } else { 951 upper = rb_entry(rb_node, struct backref_node, 952 rb_node); 953 BUG_ON(!upper->checked); 954 INIT_LIST_HEAD(&edge->list[UPPER]); 955 if (!upper->owner) 956 upper->owner = btrfs_header_owner(eb); 957 } 958 list_add_tail(&edge->list[LOWER], &lower->upper); 959 edge->node[LOWER] = lower; 960 edge->node[UPPER] = upper; 961 962 if (rb_node) 963 break; 964 lower = upper; 965 upper = NULL; 966 } 967 btrfs_release_path(path2); 968 next: 969 if (ptr < end) { 970 ptr += btrfs_extent_inline_ref_size(key.type); 971 if (ptr >= end) { 972 WARN_ON(ptr > end); 973 ptr = 0; 974 end = 0; 975 } 976 } 977 if (ptr >= end) 978 path1->slots[0]++; 979 } 980 btrfs_release_path(path1); 981 982 cur->checked = 1; 983 WARN_ON(exist); 984 985 /* the pending list isn't empty, take the first block to process */ 986 if (!list_empty(&list)) { 987 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 988 list_del_init(&edge->list[UPPER]); 989 cur = edge->node[UPPER]; 990 goto again; 991 } 992 993 /* 994 * everything goes well, connect backref nodes and insert backref nodes 995 * into the cache. 996 */ 997 BUG_ON(!node->checked); 998 cowonly = node->cowonly; 999 if (!cowonly) { 1000 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1001 &node->rb_node); 1002 BUG_ON(rb_node); 1003 list_add_tail(&node->lower, &cache->leaves); 1004 } 1005 1006 list_for_each_entry(edge, &node->upper, list[LOWER]) 1007 list_add_tail(&edge->list[UPPER], &list); 1008 1009 while (!list_empty(&list)) { 1010 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1011 list_del_init(&edge->list[UPPER]); 1012 upper = edge->node[UPPER]; 1013 if (upper->detached) { 1014 list_del(&edge->list[LOWER]); 1015 lower = edge->node[LOWER]; 1016 free_backref_edge(cache, edge); 1017 if (list_empty(&lower->upper)) 1018 list_add(&lower->list, &useless); 1019 continue; 1020 } 1021 1022 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1023 if (upper->lowest) { 1024 list_del_init(&upper->lower); 1025 upper->lowest = 0; 1026 } 1027 1028 list_add_tail(&edge->list[UPPER], &upper->lower); 1029 continue; 1030 } 1031 1032 BUG_ON(!upper->checked); 1033 BUG_ON(cowonly != upper->cowonly); 1034 if (!cowonly) { 1035 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1036 &upper->rb_node); 1037 BUG_ON(rb_node); 1038 } 1039 1040 list_add_tail(&edge->list[UPPER], &upper->lower); 1041 1042 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1043 list_add_tail(&edge->list[UPPER], &list); 1044 } 1045 /* 1046 * process useless backref nodes. backref nodes for tree leaves 1047 * are deleted from the cache. backref nodes for upper level 1048 * tree blocks are left in the cache to avoid unnecessary backref 1049 * lookup. 1050 */ 1051 while (!list_empty(&useless)) { 1052 upper = list_entry(useless.next, struct backref_node, list); 1053 list_del_init(&upper->list); 1054 BUG_ON(!list_empty(&upper->upper)); 1055 if (upper == node) 1056 node = NULL; 1057 if (upper->lowest) { 1058 list_del_init(&upper->lower); 1059 upper->lowest = 0; 1060 } 1061 while (!list_empty(&upper->lower)) { 1062 edge = list_entry(upper->lower.next, 1063 struct backref_edge, list[UPPER]); 1064 list_del(&edge->list[UPPER]); 1065 list_del(&edge->list[LOWER]); 1066 lower = edge->node[LOWER]; 1067 free_backref_edge(cache, edge); 1068 1069 if (list_empty(&lower->upper)) 1070 list_add(&lower->list, &useless); 1071 } 1072 __mark_block_processed(rc, upper); 1073 if (upper->level > 0) { 1074 list_add(&upper->list, &cache->detached); 1075 upper->detached = 1; 1076 } else { 1077 rb_erase(&upper->rb_node, &cache->rb_root); 1078 free_backref_node(cache, upper); 1079 } 1080 } 1081 out: 1082 btrfs_free_path(path1); 1083 btrfs_free_path(path2); 1084 if (err) { 1085 while (!list_empty(&useless)) { 1086 lower = list_entry(useless.next, 1087 struct backref_node, upper); 1088 list_del_init(&lower->upper); 1089 } 1090 upper = node; 1091 INIT_LIST_HEAD(&list); 1092 while (upper) { 1093 if (RB_EMPTY_NODE(&upper->rb_node)) { 1094 list_splice_tail(&upper->upper, &list); 1095 free_backref_node(cache, upper); 1096 } 1097 1098 if (list_empty(&list)) 1099 break; 1100 1101 edge = list_entry(list.next, struct backref_edge, 1102 list[LOWER]); 1103 list_del(&edge->list[LOWER]); 1104 upper = edge->node[UPPER]; 1105 free_backref_edge(cache, edge); 1106 } 1107 return ERR_PTR(err); 1108 } 1109 BUG_ON(node && node->detached); 1110 return node; 1111 } 1112 1113 /* 1114 * helper to add backref node for the newly created snapshot. 1115 * the backref node is created by cloning backref node that 1116 * corresponds to root of source tree 1117 */ 1118 static int clone_backref_node(struct btrfs_trans_handle *trans, 1119 struct reloc_control *rc, 1120 struct btrfs_root *src, 1121 struct btrfs_root *dest) 1122 { 1123 struct btrfs_root *reloc_root = src->reloc_root; 1124 struct backref_cache *cache = &rc->backref_cache; 1125 struct backref_node *node = NULL; 1126 struct backref_node *new_node; 1127 struct backref_edge *edge; 1128 struct backref_edge *new_edge; 1129 struct rb_node *rb_node; 1130 1131 if (cache->last_trans > 0) 1132 update_backref_cache(trans, cache); 1133 1134 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1135 if (rb_node) { 1136 node = rb_entry(rb_node, struct backref_node, rb_node); 1137 if (node->detached) 1138 node = NULL; 1139 else 1140 BUG_ON(node->new_bytenr != reloc_root->node->start); 1141 } 1142 1143 if (!node) { 1144 rb_node = tree_search(&cache->rb_root, 1145 reloc_root->commit_root->start); 1146 if (rb_node) { 1147 node = rb_entry(rb_node, struct backref_node, 1148 rb_node); 1149 BUG_ON(node->detached); 1150 } 1151 } 1152 1153 if (!node) 1154 return 0; 1155 1156 new_node = alloc_backref_node(cache); 1157 if (!new_node) 1158 return -ENOMEM; 1159 1160 new_node->bytenr = dest->node->start; 1161 new_node->level = node->level; 1162 new_node->lowest = node->lowest; 1163 new_node->checked = 1; 1164 new_node->root = dest; 1165 1166 if (!node->lowest) { 1167 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1168 new_edge = alloc_backref_edge(cache); 1169 if (!new_edge) 1170 goto fail; 1171 1172 new_edge->node[UPPER] = new_node; 1173 new_edge->node[LOWER] = edge->node[LOWER]; 1174 list_add_tail(&new_edge->list[UPPER], 1175 &new_node->lower); 1176 } 1177 } else { 1178 list_add_tail(&new_node->lower, &cache->leaves); 1179 } 1180 1181 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1182 &new_node->rb_node); 1183 BUG_ON(rb_node); 1184 1185 if (!new_node->lowest) { 1186 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1187 list_add_tail(&new_edge->list[LOWER], 1188 &new_edge->node[LOWER]->upper); 1189 } 1190 } 1191 return 0; 1192 fail: 1193 while (!list_empty(&new_node->lower)) { 1194 new_edge = list_entry(new_node->lower.next, 1195 struct backref_edge, list[UPPER]); 1196 list_del(&new_edge->list[UPPER]); 1197 free_backref_edge(cache, new_edge); 1198 } 1199 free_backref_node(cache, new_node); 1200 return -ENOMEM; 1201 } 1202 1203 /* 1204 * helper to add 'address of tree root -> reloc tree' mapping 1205 */ 1206 static int __add_reloc_root(struct btrfs_root *root) 1207 { 1208 struct rb_node *rb_node; 1209 struct mapping_node *node; 1210 struct reloc_control *rc = root->fs_info->reloc_ctl; 1211 1212 node = kmalloc(sizeof(*node), GFP_NOFS); 1213 BUG_ON(!node); 1214 1215 node->bytenr = root->node->start; 1216 node->data = root; 1217 1218 spin_lock(&rc->reloc_root_tree.lock); 1219 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1220 node->bytenr, &node->rb_node); 1221 spin_unlock(&rc->reloc_root_tree.lock); 1222 BUG_ON(rb_node); 1223 1224 list_add_tail(&root->root_list, &rc->reloc_roots); 1225 return 0; 1226 } 1227 1228 /* 1229 * helper to update/delete the 'address of tree root -> reloc tree' 1230 * mapping 1231 */ 1232 static int __update_reloc_root(struct btrfs_root *root, int del) 1233 { 1234 struct rb_node *rb_node; 1235 struct mapping_node *node = NULL; 1236 struct reloc_control *rc = root->fs_info->reloc_ctl; 1237 1238 spin_lock(&rc->reloc_root_tree.lock); 1239 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1240 root->commit_root->start); 1241 if (rb_node) { 1242 node = rb_entry(rb_node, struct mapping_node, rb_node); 1243 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1244 } 1245 spin_unlock(&rc->reloc_root_tree.lock); 1246 1247 BUG_ON((struct btrfs_root *)node->data != root); 1248 1249 if (!del) { 1250 spin_lock(&rc->reloc_root_tree.lock); 1251 node->bytenr = root->node->start; 1252 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1253 node->bytenr, &node->rb_node); 1254 spin_unlock(&rc->reloc_root_tree.lock); 1255 BUG_ON(rb_node); 1256 } else { 1257 list_del_init(&root->root_list); 1258 kfree(node); 1259 } 1260 return 0; 1261 } 1262 1263 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1264 struct btrfs_root *root, u64 objectid) 1265 { 1266 struct btrfs_root *reloc_root; 1267 struct extent_buffer *eb; 1268 struct btrfs_root_item *root_item; 1269 struct btrfs_key root_key; 1270 int ret; 1271 1272 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1273 BUG_ON(!root_item); 1274 1275 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1276 root_key.type = BTRFS_ROOT_ITEM_KEY; 1277 root_key.offset = objectid; 1278 1279 if (root->root_key.objectid == objectid) { 1280 /* called by btrfs_init_reloc_root */ 1281 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1282 BTRFS_TREE_RELOC_OBJECTID); 1283 BUG_ON(ret); 1284 1285 btrfs_set_root_last_snapshot(&root->root_item, 1286 trans->transid - 1); 1287 } else { 1288 /* 1289 * called by btrfs_reloc_post_snapshot_hook. 1290 * the source tree is a reloc tree, all tree blocks 1291 * modified after it was created have RELOC flag 1292 * set in their headers. so it's OK to not update 1293 * the 'last_snapshot'. 1294 */ 1295 ret = btrfs_copy_root(trans, root, root->node, &eb, 1296 BTRFS_TREE_RELOC_OBJECTID); 1297 BUG_ON(ret); 1298 } 1299 1300 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1301 btrfs_set_root_bytenr(root_item, eb->start); 1302 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1303 btrfs_set_root_generation(root_item, trans->transid); 1304 1305 if (root->root_key.objectid == objectid) { 1306 btrfs_set_root_refs(root_item, 0); 1307 memset(&root_item->drop_progress, 0, 1308 sizeof(struct btrfs_disk_key)); 1309 root_item->drop_level = 0; 1310 } 1311 1312 btrfs_tree_unlock(eb); 1313 free_extent_buffer(eb); 1314 1315 ret = btrfs_insert_root(trans, root->fs_info->tree_root, 1316 &root_key, root_item); 1317 BUG_ON(ret); 1318 kfree(root_item); 1319 1320 reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root, 1321 &root_key); 1322 BUG_ON(IS_ERR(reloc_root)); 1323 reloc_root->last_trans = trans->transid; 1324 return reloc_root; 1325 } 1326 1327 /* 1328 * create reloc tree for a given fs tree. reloc tree is just a 1329 * snapshot of the fs tree with special root objectid. 1330 */ 1331 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1332 struct btrfs_root *root) 1333 { 1334 struct btrfs_root *reloc_root; 1335 struct reloc_control *rc = root->fs_info->reloc_ctl; 1336 int clear_rsv = 0; 1337 1338 if (root->reloc_root) { 1339 reloc_root = root->reloc_root; 1340 reloc_root->last_trans = trans->transid; 1341 return 0; 1342 } 1343 1344 if (!rc || !rc->create_reloc_tree || 1345 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1346 return 0; 1347 1348 if (!trans->block_rsv) { 1349 trans->block_rsv = rc->block_rsv; 1350 clear_rsv = 1; 1351 } 1352 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1353 if (clear_rsv) 1354 trans->block_rsv = NULL; 1355 1356 __add_reloc_root(reloc_root); 1357 root->reloc_root = reloc_root; 1358 return 0; 1359 } 1360 1361 /* 1362 * update root item of reloc tree 1363 */ 1364 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1365 struct btrfs_root *root) 1366 { 1367 struct btrfs_root *reloc_root; 1368 struct btrfs_root_item *root_item; 1369 int del = 0; 1370 int ret; 1371 1372 if (!root->reloc_root) 1373 goto out; 1374 1375 reloc_root = root->reloc_root; 1376 root_item = &reloc_root->root_item; 1377 1378 if (root->fs_info->reloc_ctl->merge_reloc_tree && 1379 btrfs_root_refs(root_item) == 0) { 1380 root->reloc_root = NULL; 1381 del = 1; 1382 } 1383 1384 __update_reloc_root(reloc_root, del); 1385 1386 if (reloc_root->commit_root != reloc_root->node) { 1387 btrfs_set_root_node(root_item, reloc_root->node); 1388 free_extent_buffer(reloc_root->commit_root); 1389 reloc_root->commit_root = btrfs_root_node(reloc_root); 1390 } 1391 1392 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1393 &reloc_root->root_key, root_item); 1394 BUG_ON(ret); 1395 1396 out: 1397 return 0; 1398 } 1399 1400 /* 1401 * helper to find first cached inode with inode number >= objectid 1402 * in a subvolume 1403 */ 1404 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1405 { 1406 struct rb_node *node; 1407 struct rb_node *prev; 1408 struct btrfs_inode *entry; 1409 struct inode *inode; 1410 1411 spin_lock(&root->inode_lock); 1412 again: 1413 node = root->inode_tree.rb_node; 1414 prev = NULL; 1415 while (node) { 1416 prev = node; 1417 entry = rb_entry(node, struct btrfs_inode, rb_node); 1418 1419 if (objectid < btrfs_ino(&entry->vfs_inode)) 1420 node = node->rb_left; 1421 else if (objectid > btrfs_ino(&entry->vfs_inode)) 1422 node = node->rb_right; 1423 else 1424 break; 1425 } 1426 if (!node) { 1427 while (prev) { 1428 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1429 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 1430 node = prev; 1431 break; 1432 } 1433 prev = rb_next(prev); 1434 } 1435 } 1436 while (node) { 1437 entry = rb_entry(node, struct btrfs_inode, rb_node); 1438 inode = igrab(&entry->vfs_inode); 1439 if (inode) { 1440 spin_unlock(&root->inode_lock); 1441 return inode; 1442 } 1443 1444 objectid = btrfs_ino(&entry->vfs_inode) + 1; 1445 if (cond_resched_lock(&root->inode_lock)) 1446 goto again; 1447 1448 node = rb_next(node); 1449 } 1450 spin_unlock(&root->inode_lock); 1451 return NULL; 1452 } 1453 1454 static int in_block_group(u64 bytenr, 1455 struct btrfs_block_group_cache *block_group) 1456 { 1457 if (bytenr >= block_group->key.objectid && 1458 bytenr < block_group->key.objectid + block_group->key.offset) 1459 return 1; 1460 return 0; 1461 } 1462 1463 /* 1464 * get new location of data 1465 */ 1466 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1467 u64 bytenr, u64 num_bytes) 1468 { 1469 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1470 struct btrfs_path *path; 1471 struct btrfs_file_extent_item *fi; 1472 struct extent_buffer *leaf; 1473 int ret; 1474 1475 path = btrfs_alloc_path(); 1476 if (!path) 1477 return -ENOMEM; 1478 1479 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1480 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode), 1481 bytenr, 0); 1482 if (ret < 0) 1483 goto out; 1484 if (ret > 0) { 1485 ret = -ENOENT; 1486 goto out; 1487 } 1488 1489 leaf = path->nodes[0]; 1490 fi = btrfs_item_ptr(leaf, path->slots[0], 1491 struct btrfs_file_extent_item); 1492 1493 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1494 btrfs_file_extent_compression(leaf, fi) || 1495 btrfs_file_extent_encryption(leaf, fi) || 1496 btrfs_file_extent_other_encoding(leaf, fi)); 1497 1498 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1499 ret = 1; 1500 goto out; 1501 } 1502 1503 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1504 ret = 0; 1505 out: 1506 btrfs_free_path(path); 1507 return ret; 1508 } 1509 1510 /* 1511 * update file extent items in the tree leaf to point to 1512 * the new locations. 1513 */ 1514 static noinline_for_stack 1515 int replace_file_extents(struct btrfs_trans_handle *trans, 1516 struct reloc_control *rc, 1517 struct btrfs_root *root, 1518 struct extent_buffer *leaf) 1519 { 1520 struct btrfs_key key; 1521 struct btrfs_file_extent_item *fi; 1522 struct inode *inode = NULL; 1523 u64 parent; 1524 u64 bytenr; 1525 u64 new_bytenr = 0; 1526 u64 num_bytes; 1527 u64 end; 1528 u32 nritems; 1529 u32 i; 1530 int ret; 1531 int first = 1; 1532 int dirty = 0; 1533 1534 if (rc->stage != UPDATE_DATA_PTRS) 1535 return 0; 1536 1537 /* reloc trees always use full backref */ 1538 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1539 parent = leaf->start; 1540 else 1541 parent = 0; 1542 1543 nritems = btrfs_header_nritems(leaf); 1544 for (i = 0; i < nritems; i++) { 1545 cond_resched(); 1546 btrfs_item_key_to_cpu(leaf, &key, i); 1547 if (key.type != BTRFS_EXTENT_DATA_KEY) 1548 continue; 1549 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1550 if (btrfs_file_extent_type(leaf, fi) == 1551 BTRFS_FILE_EXTENT_INLINE) 1552 continue; 1553 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1554 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1555 if (bytenr == 0) 1556 continue; 1557 if (!in_block_group(bytenr, rc->block_group)) 1558 continue; 1559 1560 /* 1561 * if we are modifying block in fs tree, wait for readpage 1562 * to complete and drop the extent cache 1563 */ 1564 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1565 if (first) { 1566 inode = find_next_inode(root, key.objectid); 1567 first = 0; 1568 } else if (inode && btrfs_ino(inode) < key.objectid) { 1569 btrfs_add_delayed_iput(inode); 1570 inode = find_next_inode(root, key.objectid); 1571 } 1572 if (inode && btrfs_ino(inode) == key.objectid) { 1573 end = key.offset + 1574 btrfs_file_extent_num_bytes(leaf, fi); 1575 WARN_ON(!IS_ALIGNED(key.offset, 1576 root->sectorsize)); 1577 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 1578 end--; 1579 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1580 key.offset, end, 1581 GFP_NOFS); 1582 if (!ret) 1583 continue; 1584 1585 btrfs_drop_extent_cache(inode, key.offset, end, 1586 1); 1587 unlock_extent(&BTRFS_I(inode)->io_tree, 1588 key.offset, end, GFP_NOFS); 1589 } 1590 } 1591 1592 ret = get_new_location(rc->data_inode, &new_bytenr, 1593 bytenr, num_bytes); 1594 if (ret > 0) { 1595 WARN_ON(1); 1596 continue; 1597 } 1598 BUG_ON(ret < 0); 1599 1600 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1601 dirty = 1; 1602 1603 key.offset -= btrfs_file_extent_offset(leaf, fi); 1604 ret = btrfs_inc_extent_ref(trans, root, new_bytenr, 1605 num_bytes, parent, 1606 btrfs_header_owner(leaf), 1607 key.objectid, key.offset); 1608 BUG_ON(ret); 1609 1610 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1611 parent, btrfs_header_owner(leaf), 1612 key.objectid, key.offset); 1613 BUG_ON(ret); 1614 } 1615 if (dirty) 1616 btrfs_mark_buffer_dirty(leaf); 1617 if (inode) 1618 btrfs_add_delayed_iput(inode); 1619 return 0; 1620 } 1621 1622 static noinline_for_stack 1623 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1624 struct btrfs_path *path, int level) 1625 { 1626 struct btrfs_disk_key key1; 1627 struct btrfs_disk_key key2; 1628 btrfs_node_key(eb, &key1, slot); 1629 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1630 return memcmp(&key1, &key2, sizeof(key1)); 1631 } 1632 1633 /* 1634 * try to replace tree blocks in fs tree with the new blocks 1635 * in reloc tree. tree blocks haven't been modified since the 1636 * reloc tree was create can be replaced. 1637 * 1638 * if a block was replaced, level of the block + 1 is returned. 1639 * if no block got replaced, 0 is returned. if there are other 1640 * errors, a negative error number is returned. 1641 */ 1642 static noinline_for_stack 1643 int replace_path(struct btrfs_trans_handle *trans, 1644 struct btrfs_root *dest, struct btrfs_root *src, 1645 struct btrfs_path *path, struct btrfs_key *next_key, 1646 int lowest_level, int max_level) 1647 { 1648 struct extent_buffer *eb; 1649 struct extent_buffer *parent; 1650 struct btrfs_key key; 1651 u64 old_bytenr; 1652 u64 new_bytenr; 1653 u64 old_ptr_gen; 1654 u64 new_ptr_gen; 1655 u64 last_snapshot; 1656 u32 blocksize; 1657 int cow = 0; 1658 int level; 1659 int ret; 1660 int slot; 1661 1662 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1663 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1664 1665 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1666 again: 1667 slot = path->slots[lowest_level]; 1668 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1669 1670 eb = btrfs_lock_root_node(dest); 1671 btrfs_set_lock_blocking(eb); 1672 level = btrfs_header_level(eb); 1673 1674 if (level < lowest_level) { 1675 btrfs_tree_unlock(eb); 1676 free_extent_buffer(eb); 1677 return 0; 1678 } 1679 1680 if (cow) { 1681 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1682 BUG_ON(ret); 1683 } 1684 btrfs_set_lock_blocking(eb); 1685 1686 if (next_key) { 1687 next_key->objectid = (u64)-1; 1688 next_key->type = (u8)-1; 1689 next_key->offset = (u64)-1; 1690 } 1691 1692 parent = eb; 1693 while (1) { 1694 level = btrfs_header_level(parent); 1695 BUG_ON(level < lowest_level); 1696 1697 ret = btrfs_bin_search(parent, &key, level, &slot); 1698 if (ret && slot > 0) 1699 slot--; 1700 1701 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1702 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1703 1704 old_bytenr = btrfs_node_blockptr(parent, slot); 1705 blocksize = btrfs_level_size(dest, level - 1); 1706 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1707 1708 if (level <= max_level) { 1709 eb = path->nodes[level]; 1710 new_bytenr = btrfs_node_blockptr(eb, 1711 path->slots[level]); 1712 new_ptr_gen = btrfs_node_ptr_generation(eb, 1713 path->slots[level]); 1714 } else { 1715 new_bytenr = 0; 1716 new_ptr_gen = 0; 1717 } 1718 1719 if (new_bytenr > 0 && new_bytenr == old_bytenr) { 1720 WARN_ON(1); 1721 ret = level; 1722 break; 1723 } 1724 1725 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1726 memcmp_node_keys(parent, slot, path, level)) { 1727 if (level <= lowest_level) { 1728 ret = 0; 1729 break; 1730 } 1731 1732 eb = read_tree_block(dest, old_bytenr, blocksize, 1733 old_ptr_gen); 1734 BUG_ON(!eb); 1735 btrfs_tree_lock(eb); 1736 if (cow) { 1737 ret = btrfs_cow_block(trans, dest, eb, parent, 1738 slot, &eb); 1739 BUG_ON(ret); 1740 } 1741 btrfs_set_lock_blocking(eb); 1742 1743 btrfs_tree_unlock(parent); 1744 free_extent_buffer(parent); 1745 1746 parent = eb; 1747 continue; 1748 } 1749 1750 if (!cow) { 1751 btrfs_tree_unlock(parent); 1752 free_extent_buffer(parent); 1753 cow = 1; 1754 goto again; 1755 } 1756 1757 btrfs_node_key_to_cpu(path->nodes[level], &key, 1758 path->slots[level]); 1759 btrfs_release_path(path); 1760 1761 path->lowest_level = level; 1762 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1763 path->lowest_level = 0; 1764 BUG_ON(ret); 1765 1766 /* 1767 * swap blocks in fs tree and reloc tree. 1768 */ 1769 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1770 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1771 btrfs_mark_buffer_dirty(parent); 1772 1773 btrfs_set_node_blockptr(path->nodes[level], 1774 path->slots[level], old_bytenr); 1775 btrfs_set_node_ptr_generation(path->nodes[level], 1776 path->slots[level], old_ptr_gen); 1777 btrfs_mark_buffer_dirty(path->nodes[level]); 1778 1779 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize, 1780 path->nodes[level]->start, 1781 src->root_key.objectid, level - 1, 0); 1782 BUG_ON(ret); 1783 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize, 1784 0, dest->root_key.objectid, level - 1, 1785 0); 1786 BUG_ON(ret); 1787 1788 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize, 1789 path->nodes[level]->start, 1790 src->root_key.objectid, level - 1, 0); 1791 BUG_ON(ret); 1792 1793 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize, 1794 0, dest->root_key.objectid, level - 1, 1795 0); 1796 BUG_ON(ret); 1797 1798 btrfs_unlock_up_safe(path, 0); 1799 1800 ret = level; 1801 break; 1802 } 1803 btrfs_tree_unlock(parent); 1804 free_extent_buffer(parent); 1805 return ret; 1806 } 1807 1808 /* 1809 * helper to find next relocated block in reloc tree 1810 */ 1811 static noinline_for_stack 1812 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1813 int *level) 1814 { 1815 struct extent_buffer *eb; 1816 int i; 1817 u64 last_snapshot; 1818 u32 nritems; 1819 1820 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1821 1822 for (i = 0; i < *level; i++) { 1823 free_extent_buffer(path->nodes[i]); 1824 path->nodes[i] = NULL; 1825 } 1826 1827 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1828 eb = path->nodes[i]; 1829 nritems = btrfs_header_nritems(eb); 1830 while (path->slots[i] + 1 < nritems) { 1831 path->slots[i]++; 1832 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1833 last_snapshot) 1834 continue; 1835 1836 *level = i; 1837 return 0; 1838 } 1839 free_extent_buffer(path->nodes[i]); 1840 path->nodes[i] = NULL; 1841 } 1842 return 1; 1843 } 1844 1845 /* 1846 * walk down reloc tree to find relocated block of lowest level 1847 */ 1848 static noinline_for_stack 1849 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1850 int *level) 1851 { 1852 struct extent_buffer *eb = NULL; 1853 int i; 1854 u64 bytenr; 1855 u64 ptr_gen = 0; 1856 u64 last_snapshot; 1857 u32 blocksize; 1858 u32 nritems; 1859 1860 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1861 1862 for (i = *level; i > 0; i--) { 1863 eb = path->nodes[i]; 1864 nritems = btrfs_header_nritems(eb); 1865 while (path->slots[i] < nritems) { 1866 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1867 if (ptr_gen > last_snapshot) 1868 break; 1869 path->slots[i]++; 1870 } 1871 if (path->slots[i] >= nritems) { 1872 if (i == *level) 1873 break; 1874 *level = i + 1; 1875 return 0; 1876 } 1877 if (i == 1) { 1878 *level = i; 1879 return 0; 1880 } 1881 1882 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 1883 blocksize = btrfs_level_size(root, i - 1); 1884 eb = read_tree_block(root, bytenr, blocksize, ptr_gen); 1885 BUG_ON(btrfs_header_level(eb) != i - 1); 1886 path->nodes[i - 1] = eb; 1887 path->slots[i - 1] = 0; 1888 } 1889 return 1; 1890 } 1891 1892 /* 1893 * invalidate extent cache for file extents whose key in range of 1894 * [min_key, max_key) 1895 */ 1896 static int invalidate_extent_cache(struct btrfs_root *root, 1897 struct btrfs_key *min_key, 1898 struct btrfs_key *max_key) 1899 { 1900 struct inode *inode = NULL; 1901 u64 objectid; 1902 u64 start, end; 1903 u64 ino; 1904 1905 objectid = min_key->objectid; 1906 while (1) { 1907 cond_resched(); 1908 iput(inode); 1909 1910 if (objectid > max_key->objectid) 1911 break; 1912 1913 inode = find_next_inode(root, objectid); 1914 if (!inode) 1915 break; 1916 ino = btrfs_ino(inode); 1917 1918 if (ino > max_key->objectid) { 1919 iput(inode); 1920 break; 1921 } 1922 1923 objectid = ino + 1; 1924 if (!S_ISREG(inode->i_mode)) 1925 continue; 1926 1927 if (unlikely(min_key->objectid == ino)) { 1928 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1929 continue; 1930 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1931 start = 0; 1932 else { 1933 start = min_key->offset; 1934 WARN_ON(!IS_ALIGNED(start, root->sectorsize)); 1935 } 1936 } else { 1937 start = 0; 1938 } 1939 1940 if (unlikely(max_key->objectid == ino)) { 1941 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1942 continue; 1943 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1944 end = (u64)-1; 1945 } else { 1946 if (max_key->offset == 0) 1947 continue; 1948 end = max_key->offset; 1949 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 1950 end--; 1951 } 1952 } else { 1953 end = (u64)-1; 1954 } 1955 1956 /* the lock_extent waits for readpage to complete */ 1957 lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS); 1958 btrfs_drop_extent_cache(inode, start, end, 1); 1959 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS); 1960 } 1961 return 0; 1962 } 1963 1964 static int find_next_key(struct btrfs_path *path, int level, 1965 struct btrfs_key *key) 1966 1967 { 1968 while (level < BTRFS_MAX_LEVEL) { 1969 if (!path->nodes[level]) 1970 break; 1971 if (path->slots[level] + 1 < 1972 btrfs_header_nritems(path->nodes[level])) { 1973 btrfs_node_key_to_cpu(path->nodes[level], key, 1974 path->slots[level] + 1); 1975 return 0; 1976 } 1977 level++; 1978 } 1979 return 1; 1980 } 1981 1982 /* 1983 * merge the relocated tree blocks in reloc tree with corresponding 1984 * fs tree. 1985 */ 1986 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 1987 struct btrfs_root *root) 1988 { 1989 LIST_HEAD(inode_list); 1990 struct btrfs_key key; 1991 struct btrfs_key next_key; 1992 struct btrfs_trans_handle *trans; 1993 struct btrfs_root *reloc_root; 1994 struct btrfs_root_item *root_item; 1995 struct btrfs_path *path; 1996 struct extent_buffer *leaf; 1997 unsigned long nr; 1998 int level; 1999 int max_level; 2000 int replaced = 0; 2001 int ret; 2002 int err = 0; 2003 u32 min_reserved; 2004 2005 path = btrfs_alloc_path(); 2006 if (!path) 2007 return -ENOMEM; 2008 path->reada = 1; 2009 2010 reloc_root = root->reloc_root; 2011 root_item = &reloc_root->root_item; 2012 2013 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2014 level = btrfs_root_level(root_item); 2015 extent_buffer_get(reloc_root->node); 2016 path->nodes[level] = reloc_root->node; 2017 path->slots[level] = 0; 2018 } else { 2019 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2020 2021 level = root_item->drop_level; 2022 BUG_ON(level == 0); 2023 path->lowest_level = level; 2024 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2025 path->lowest_level = 0; 2026 if (ret < 0) { 2027 btrfs_free_path(path); 2028 return ret; 2029 } 2030 2031 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2032 path->slots[level]); 2033 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2034 2035 btrfs_unlock_up_safe(path, 0); 2036 } 2037 2038 min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2039 memset(&next_key, 0, sizeof(next_key)); 2040 2041 while (1) { 2042 trans = btrfs_start_transaction(root, 0); 2043 BUG_ON(IS_ERR(trans)); 2044 trans->block_rsv = rc->block_rsv; 2045 2046 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved); 2047 if (ret) { 2048 BUG_ON(ret != -EAGAIN); 2049 ret = btrfs_commit_transaction(trans, root); 2050 BUG_ON(ret); 2051 continue; 2052 } 2053 2054 replaced = 0; 2055 max_level = level; 2056 2057 ret = walk_down_reloc_tree(reloc_root, path, &level); 2058 if (ret < 0) { 2059 err = ret; 2060 goto out; 2061 } 2062 if (ret > 0) 2063 break; 2064 2065 if (!find_next_key(path, level, &key) && 2066 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2067 ret = 0; 2068 } else { 2069 ret = replace_path(trans, root, reloc_root, path, 2070 &next_key, level, max_level); 2071 } 2072 if (ret < 0) { 2073 err = ret; 2074 goto out; 2075 } 2076 2077 if (ret > 0) { 2078 level = ret; 2079 btrfs_node_key_to_cpu(path->nodes[level], &key, 2080 path->slots[level]); 2081 replaced = 1; 2082 } 2083 2084 ret = walk_up_reloc_tree(reloc_root, path, &level); 2085 if (ret > 0) 2086 break; 2087 2088 BUG_ON(level == 0); 2089 /* 2090 * save the merging progress in the drop_progress. 2091 * this is OK since root refs == 1 in this case. 2092 */ 2093 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2094 path->slots[level]); 2095 root_item->drop_level = level; 2096 2097 nr = trans->blocks_used; 2098 btrfs_end_transaction_throttle(trans, root); 2099 2100 btrfs_btree_balance_dirty(root, nr); 2101 2102 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2103 invalidate_extent_cache(root, &key, &next_key); 2104 } 2105 2106 /* 2107 * handle the case only one block in the fs tree need to be 2108 * relocated and the block is tree root. 2109 */ 2110 leaf = btrfs_lock_root_node(root); 2111 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2112 btrfs_tree_unlock(leaf); 2113 free_extent_buffer(leaf); 2114 if (ret < 0) 2115 err = ret; 2116 out: 2117 btrfs_free_path(path); 2118 2119 if (err == 0) { 2120 memset(&root_item->drop_progress, 0, 2121 sizeof(root_item->drop_progress)); 2122 root_item->drop_level = 0; 2123 btrfs_set_root_refs(root_item, 0); 2124 btrfs_update_reloc_root(trans, root); 2125 } 2126 2127 nr = trans->blocks_used; 2128 btrfs_end_transaction_throttle(trans, root); 2129 2130 btrfs_btree_balance_dirty(root, nr); 2131 2132 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2133 invalidate_extent_cache(root, &key, &next_key); 2134 2135 return err; 2136 } 2137 2138 static noinline_for_stack 2139 int prepare_to_merge(struct reloc_control *rc, int err) 2140 { 2141 struct btrfs_root *root = rc->extent_root; 2142 struct btrfs_root *reloc_root; 2143 struct btrfs_trans_handle *trans; 2144 LIST_HEAD(reloc_roots); 2145 u64 num_bytes = 0; 2146 int ret; 2147 2148 mutex_lock(&root->fs_info->reloc_mutex); 2149 rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2150 rc->merging_rsv_size += rc->nodes_relocated * 2; 2151 mutex_unlock(&root->fs_info->reloc_mutex); 2152 2153 again: 2154 if (!err) { 2155 num_bytes = rc->merging_rsv_size; 2156 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes); 2157 if (ret) 2158 err = ret; 2159 } 2160 2161 trans = btrfs_join_transaction(rc->extent_root); 2162 if (IS_ERR(trans)) { 2163 if (!err) 2164 btrfs_block_rsv_release(rc->extent_root, 2165 rc->block_rsv, num_bytes); 2166 return PTR_ERR(trans); 2167 } 2168 2169 if (!err) { 2170 if (num_bytes != rc->merging_rsv_size) { 2171 btrfs_end_transaction(trans, rc->extent_root); 2172 btrfs_block_rsv_release(rc->extent_root, 2173 rc->block_rsv, num_bytes); 2174 goto again; 2175 } 2176 } 2177 2178 rc->merge_reloc_tree = 1; 2179 2180 while (!list_empty(&rc->reloc_roots)) { 2181 reloc_root = list_entry(rc->reloc_roots.next, 2182 struct btrfs_root, root_list); 2183 list_del_init(&reloc_root->root_list); 2184 2185 root = read_fs_root(reloc_root->fs_info, 2186 reloc_root->root_key.offset); 2187 BUG_ON(IS_ERR(root)); 2188 BUG_ON(root->reloc_root != reloc_root); 2189 2190 /* 2191 * set reference count to 1, so btrfs_recover_relocation 2192 * knows it should resumes merging 2193 */ 2194 if (!err) 2195 btrfs_set_root_refs(&reloc_root->root_item, 1); 2196 btrfs_update_reloc_root(trans, root); 2197 2198 list_add(&reloc_root->root_list, &reloc_roots); 2199 } 2200 2201 list_splice(&reloc_roots, &rc->reloc_roots); 2202 2203 if (!err) 2204 btrfs_commit_transaction(trans, rc->extent_root); 2205 else 2206 btrfs_end_transaction(trans, rc->extent_root); 2207 return err; 2208 } 2209 2210 static noinline_for_stack 2211 int merge_reloc_roots(struct reloc_control *rc) 2212 { 2213 struct btrfs_root *root; 2214 struct btrfs_root *reloc_root; 2215 LIST_HEAD(reloc_roots); 2216 int found = 0; 2217 int ret; 2218 again: 2219 root = rc->extent_root; 2220 2221 /* 2222 * this serializes us with btrfs_record_root_in_transaction, 2223 * we have to make sure nobody is in the middle of 2224 * adding their roots to the list while we are 2225 * doing this splice 2226 */ 2227 mutex_lock(&root->fs_info->reloc_mutex); 2228 list_splice_init(&rc->reloc_roots, &reloc_roots); 2229 mutex_unlock(&root->fs_info->reloc_mutex); 2230 2231 while (!list_empty(&reloc_roots)) { 2232 found = 1; 2233 reloc_root = list_entry(reloc_roots.next, 2234 struct btrfs_root, root_list); 2235 2236 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2237 root = read_fs_root(reloc_root->fs_info, 2238 reloc_root->root_key.offset); 2239 BUG_ON(IS_ERR(root)); 2240 BUG_ON(root->reloc_root != reloc_root); 2241 2242 ret = merge_reloc_root(rc, root); 2243 BUG_ON(ret); 2244 } else { 2245 list_del_init(&reloc_root->root_list); 2246 } 2247 btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0); 2248 } 2249 2250 if (found) { 2251 found = 0; 2252 goto again; 2253 } 2254 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2255 return 0; 2256 } 2257 2258 static void free_block_list(struct rb_root *blocks) 2259 { 2260 struct tree_block *block; 2261 struct rb_node *rb_node; 2262 while ((rb_node = rb_first(blocks))) { 2263 block = rb_entry(rb_node, struct tree_block, rb_node); 2264 rb_erase(rb_node, blocks); 2265 kfree(block); 2266 } 2267 } 2268 2269 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2270 struct btrfs_root *reloc_root) 2271 { 2272 struct btrfs_root *root; 2273 2274 if (reloc_root->last_trans == trans->transid) 2275 return 0; 2276 2277 root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset); 2278 BUG_ON(IS_ERR(root)); 2279 BUG_ON(root->reloc_root != reloc_root); 2280 2281 return btrfs_record_root_in_trans(trans, root); 2282 } 2283 2284 static noinline_for_stack 2285 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2286 struct reloc_control *rc, 2287 struct backref_node *node, 2288 struct backref_edge *edges[], int *nr) 2289 { 2290 struct backref_node *next; 2291 struct btrfs_root *root; 2292 int index = 0; 2293 2294 next = node; 2295 while (1) { 2296 cond_resched(); 2297 next = walk_up_backref(next, edges, &index); 2298 root = next->root; 2299 BUG_ON(!root); 2300 BUG_ON(!root->ref_cows); 2301 2302 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2303 record_reloc_root_in_trans(trans, root); 2304 break; 2305 } 2306 2307 btrfs_record_root_in_trans(trans, root); 2308 root = root->reloc_root; 2309 2310 if (next->new_bytenr != root->node->start) { 2311 BUG_ON(next->new_bytenr); 2312 BUG_ON(!list_empty(&next->list)); 2313 next->new_bytenr = root->node->start; 2314 next->root = root; 2315 list_add_tail(&next->list, 2316 &rc->backref_cache.changed); 2317 __mark_block_processed(rc, next); 2318 break; 2319 } 2320 2321 WARN_ON(1); 2322 root = NULL; 2323 next = walk_down_backref(edges, &index); 2324 if (!next || next->level <= node->level) 2325 break; 2326 } 2327 if (!root) 2328 return NULL; 2329 2330 *nr = index; 2331 next = node; 2332 /* setup backref node path for btrfs_reloc_cow_block */ 2333 while (1) { 2334 rc->backref_cache.path[next->level] = next; 2335 if (--index < 0) 2336 break; 2337 next = edges[index]->node[UPPER]; 2338 } 2339 return root; 2340 } 2341 2342 /* 2343 * select a tree root for relocation. return NULL if the block 2344 * is reference counted. we should use do_relocation() in this 2345 * case. return a tree root pointer if the block isn't reference 2346 * counted. return -ENOENT if the block is root of reloc tree. 2347 */ 2348 static noinline_for_stack 2349 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans, 2350 struct backref_node *node) 2351 { 2352 struct backref_node *next; 2353 struct btrfs_root *root; 2354 struct btrfs_root *fs_root = NULL; 2355 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2356 int index = 0; 2357 2358 next = node; 2359 while (1) { 2360 cond_resched(); 2361 next = walk_up_backref(next, edges, &index); 2362 root = next->root; 2363 BUG_ON(!root); 2364 2365 /* no other choice for non-references counted tree */ 2366 if (!root->ref_cows) 2367 return root; 2368 2369 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2370 fs_root = root; 2371 2372 if (next != node) 2373 return NULL; 2374 2375 next = walk_down_backref(edges, &index); 2376 if (!next || next->level <= node->level) 2377 break; 2378 } 2379 2380 if (!fs_root) 2381 return ERR_PTR(-ENOENT); 2382 return fs_root; 2383 } 2384 2385 static noinline_for_stack 2386 u64 calcu_metadata_size(struct reloc_control *rc, 2387 struct backref_node *node, int reserve) 2388 { 2389 struct backref_node *next = node; 2390 struct backref_edge *edge; 2391 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2392 u64 num_bytes = 0; 2393 int index = 0; 2394 2395 BUG_ON(reserve && node->processed); 2396 2397 while (next) { 2398 cond_resched(); 2399 while (1) { 2400 if (next->processed && (reserve || next != node)) 2401 break; 2402 2403 num_bytes += btrfs_level_size(rc->extent_root, 2404 next->level); 2405 2406 if (list_empty(&next->upper)) 2407 break; 2408 2409 edge = list_entry(next->upper.next, 2410 struct backref_edge, list[LOWER]); 2411 edges[index++] = edge; 2412 next = edge->node[UPPER]; 2413 } 2414 next = walk_down_backref(edges, &index); 2415 } 2416 return num_bytes; 2417 } 2418 2419 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2420 struct reloc_control *rc, 2421 struct backref_node *node) 2422 { 2423 struct btrfs_root *root = rc->extent_root; 2424 u64 num_bytes; 2425 int ret; 2426 2427 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2428 2429 trans->block_rsv = rc->block_rsv; 2430 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes); 2431 if (ret) { 2432 if (ret == -EAGAIN) 2433 rc->commit_transaction = 1; 2434 return ret; 2435 } 2436 2437 return 0; 2438 } 2439 2440 static void release_metadata_space(struct reloc_control *rc, 2441 struct backref_node *node) 2442 { 2443 u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2; 2444 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes); 2445 } 2446 2447 /* 2448 * relocate a block tree, and then update pointers in upper level 2449 * blocks that reference the block to point to the new location. 2450 * 2451 * if called by link_to_upper, the block has already been relocated. 2452 * in that case this function just updates pointers. 2453 */ 2454 static int do_relocation(struct btrfs_trans_handle *trans, 2455 struct reloc_control *rc, 2456 struct backref_node *node, 2457 struct btrfs_key *key, 2458 struct btrfs_path *path, int lowest) 2459 { 2460 struct backref_node *upper; 2461 struct backref_edge *edge; 2462 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2463 struct btrfs_root *root; 2464 struct extent_buffer *eb; 2465 u32 blocksize; 2466 u64 bytenr; 2467 u64 generation; 2468 int nr; 2469 int slot; 2470 int ret; 2471 int err = 0; 2472 2473 BUG_ON(lowest && node->eb); 2474 2475 path->lowest_level = node->level + 1; 2476 rc->backref_cache.path[node->level] = node; 2477 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2478 cond_resched(); 2479 2480 upper = edge->node[UPPER]; 2481 root = select_reloc_root(trans, rc, upper, edges, &nr); 2482 BUG_ON(!root); 2483 2484 if (upper->eb && !upper->locked) { 2485 if (!lowest) { 2486 ret = btrfs_bin_search(upper->eb, key, 2487 upper->level, &slot); 2488 BUG_ON(ret); 2489 bytenr = btrfs_node_blockptr(upper->eb, slot); 2490 if (node->eb->start == bytenr) 2491 goto next; 2492 } 2493 drop_node_buffer(upper); 2494 } 2495 2496 if (!upper->eb) { 2497 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2498 if (ret < 0) { 2499 err = ret; 2500 break; 2501 } 2502 BUG_ON(ret > 0); 2503 2504 if (!upper->eb) { 2505 upper->eb = path->nodes[upper->level]; 2506 path->nodes[upper->level] = NULL; 2507 } else { 2508 BUG_ON(upper->eb != path->nodes[upper->level]); 2509 } 2510 2511 upper->locked = 1; 2512 path->locks[upper->level] = 0; 2513 2514 slot = path->slots[upper->level]; 2515 btrfs_release_path(path); 2516 } else { 2517 ret = btrfs_bin_search(upper->eb, key, upper->level, 2518 &slot); 2519 BUG_ON(ret); 2520 } 2521 2522 bytenr = btrfs_node_blockptr(upper->eb, slot); 2523 if (lowest) { 2524 BUG_ON(bytenr != node->bytenr); 2525 } else { 2526 if (node->eb->start == bytenr) 2527 goto next; 2528 } 2529 2530 blocksize = btrfs_level_size(root, node->level); 2531 generation = btrfs_node_ptr_generation(upper->eb, slot); 2532 eb = read_tree_block(root, bytenr, blocksize, generation); 2533 if (!eb) { 2534 err = -EIO; 2535 goto next; 2536 } 2537 btrfs_tree_lock(eb); 2538 btrfs_set_lock_blocking(eb); 2539 2540 if (!node->eb) { 2541 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2542 slot, &eb); 2543 btrfs_tree_unlock(eb); 2544 free_extent_buffer(eb); 2545 if (ret < 0) { 2546 err = ret; 2547 goto next; 2548 } 2549 BUG_ON(node->eb != eb); 2550 } else { 2551 btrfs_set_node_blockptr(upper->eb, slot, 2552 node->eb->start); 2553 btrfs_set_node_ptr_generation(upper->eb, slot, 2554 trans->transid); 2555 btrfs_mark_buffer_dirty(upper->eb); 2556 2557 ret = btrfs_inc_extent_ref(trans, root, 2558 node->eb->start, blocksize, 2559 upper->eb->start, 2560 btrfs_header_owner(upper->eb), 2561 node->level, 0); 2562 BUG_ON(ret); 2563 2564 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2565 BUG_ON(ret); 2566 } 2567 next: 2568 if (!upper->pending) 2569 drop_node_buffer(upper); 2570 else 2571 unlock_node_buffer(upper); 2572 if (err) 2573 break; 2574 } 2575 2576 if (!err && node->pending) { 2577 drop_node_buffer(node); 2578 list_move_tail(&node->list, &rc->backref_cache.changed); 2579 node->pending = 0; 2580 } 2581 2582 path->lowest_level = 0; 2583 BUG_ON(err == -ENOSPC); 2584 return err; 2585 } 2586 2587 static int link_to_upper(struct btrfs_trans_handle *trans, 2588 struct reloc_control *rc, 2589 struct backref_node *node, 2590 struct btrfs_path *path) 2591 { 2592 struct btrfs_key key; 2593 2594 btrfs_node_key_to_cpu(node->eb, &key, 0); 2595 return do_relocation(trans, rc, node, &key, path, 0); 2596 } 2597 2598 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2599 struct reloc_control *rc, 2600 struct btrfs_path *path, int err) 2601 { 2602 LIST_HEAD(list); 2603 struct backref_cache *cache = &rc->backref_cache; 2604 struct backref_node *node; 2605 int level; 2606 int ret; 2607 2608 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2609 while (!list_empty(&cache->pending[level])) { 2610 node = list_entry(cache->pending[level].next, 2611 struct backref_node, list); 2612 list_move_tail(&node->list, &list); 2613 BUG_ON(!node->pending); 2614 2615 if (!err) { 2616 ret = link_to_upper(trans, rc, node, path); 2617 if (ret < 0) 2618 err = ret; 2619 } 2620 } 2621 list_splice_init(&list, &cache->pending[level]); 2622 } 2623 return err; 2624 } 2625 2626 static void mark_block_processed(struct reloc_control *rc, 2627 u64 bytenr, u32 blocksize) 2628 { 2629 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2630 EXTENT_DIRTY, GFP_NOFS); 2631 } 2632 2633 static void __mark_block_processed(struct reloc_control *rc, 2634 struct backref_node *node) 2635 { 2636 u32 blocksize; 2637 if (node->level == 0 || 2638 in_block_group(node->bytenr, rc->block_group)) { 2639 blocksize = btrfs_level_size(rc->extent_root, node->level); 2640 mark_block_processed(rc, node->bytenr, blocksize); 2641 } 2642 node->processed = 1; 2643 } 2644 2645 /* 2646 * mark a block and all blocks directly/indirectly reference the block 2647 * as processed. 2648 */ 2649 static void update_processed_blocks(struct reloc_control *rc, 2650 struct backref_node *node) 2651 { 2652 struct backref_node *next = node; 2653 struct backref_edge *edge; 2654 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2655 int index = 0; 2656 2657 while (next) { 2658 cond_resched(); 2659 while (1) { 2660 if (next->processed) 2661 break; 2662 2663 __mark_block_processed(rc, next); 2664 2665 if (list_empty(&next->upper)) 2666 break; 2667 2668 edge = list_entry(next->upper.next, 2669 struct backref_edge, list[LOWER]); 2670 edges[index++] = edge; 2671 next = edge->node[UPPER]; 2672 } 2673 next = walk_down_backref(edges, &index); 2674 } 2675 } 2676 2677 static int tree_block_processed(u64 bytenr, u32 blocksize, 2678 struct reloc_control *rc) 2679 { 2680 if (test_range_bit(&rc->processed_blocks, bytenr, 2681 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2682 return 1; 2683 return 0; 2684 } 2685 2686 static int get_tree_block_key(struct reloc_control *rc, 2687 struct tree_block *block) 2688 { 2689 struct extent_buffer *eb; 2690 2691 BUG_ON(block->key_ready); 2692 eb = read_tree_block(rc->extent_root, block->bytenr, 2693 block->key.objectid, block->key.offset); 2694 BUG_ON(!eb); 2695 WARN_ON(btrfs_header_level(eb) != block->level); 2696 if (block->level == 0) 2697 btrfs_item_key_to_cpu(eb, &block->key, 0); 2698 else 2699 btrfs_node_key_to_cpu(eb, &block->key, 0); 2700 free_extent_buffer(eb); 2701 block->key_ready = 1; 2702 return 0; 2703 } 2704 2705 static int reada_tree_block(struct reloc_control *rc, 2706 struct tree_block *block) 2707 { 2708 BUG_ON(block->key_ready); 2709 readahead_tree_block(rc->extent_root, block->bytenr, 2710 block->key.objectid, block->key.offset); 2711 return 0; 2712 } 2713 2714 /* 2715 * helper function to relocate a tree block 2716 */ 2717 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2718 struct reloc_control *rc, 2719 struct backref_node *node, 2720 struct btrfs_key *key, 2721 struct btrfs_path *path) 2722 { 2723 struct btrfs_root *root; 2724 int release = 0; 2725 int ret = 0; 2726 2727 if (!node) 2728 return 0; 2729 2730 BUG_ON(node->processed); 2731 root = select_one_root(trans, node); 2732 if (root == ERR_PTR(-ENOENT)) { 2733 update_processed_blocks(rc, node); 2734 goto out; 2735 } 2736 2737 if (!root || root->ref_cows) { 2738 ret = reserve_metadata_space(trans, rc, node); 2739 if (ret) 2740 goto out; 2741 release = 1; 2742 } 2743 2744 if (root) { 2745 if (root->ref_cows) { 2746 BUG_ON(node->new_bytenr); 2747 BUG_ON(!list_empty(&node->list)); 2748 btrfs_record_root_in_trans(trans, root); 2749 root = root->reloc_root; 2750 node->new_bytenr = root->node->start; 2751 node->root = root; 2752 list_add_tail(&node->list, &rc->backref_cache.changed); 2753 } else { 2754 path->lowest_level = node->level; 2755 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2756 btrfs_release_path(path); 2757 if (ret > 0) 2758 ret = 0; 2759 } 2760 if (!ret) 2761 update_processed_blocks(rc, node); 2762 } else { 2763 ret = do_relocation(trans, rc, node, key, path, 1); 2764 } 2765 out: 2766 if (ret || node->level == 0 || node->cowonly) { 2767 if (release) 2768 release_metadata_space(rc, node); 2769 remove_backref_node(&rc->backref_cache, node); 2770 } 2771 return ret; 2772 } 2773 2774 /* 2775 * relocate a list of blocks 2776 */ 2777 static noinline_for_stack 2778 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2779 struct reloc_control *rc, struct rb_root *blocks) 2780 { 2781 struct backref_node *node; 2782 struct btrfs_path *path; 2783 struct tree_block *block; 2784 struct rb_node *rb_node; 2785 int ret; 2786 int err = 0; 2787 2788 path = btrfs_alloc_path(); 2789 if (!path) 2790 return -ENOMEM; 2791 2792 rb_node = rb_first(blocks); 2793 while (rb_node) { 2794 block = rb_entry(rb_node, struct tree_block, rb_node); 2795 if (!block->key_ready) 2796 reada_tree_block(rc, block); 2797 rb_node = rb_next(rb_node); 2798 } 2799 2800 rb_node = rb_first(blocks); 2801 while (rb_node) { 2802 block = rb_entry(rb_node, struct tree_block, rb_node); 2803 if (!block->key_ready) 2804 get_tree_block_key(rc, block); 2805 rb_node = rb_next(rb_node); 2806 } 2807 2808 rb_node = rb_first(blocks); 2809 while (rb_node) { 2810 block = rb_entry(rb_node, struct tree_block, rb_node); 2811 2812 node = build_backref_tree(rc, &block->key, 2813 block->level, block->bytenr); 2814 if (IS_ERR(node)) { 2815 err = PTR_ERR(node); 2816 goto out; 2817 } 2818 2819 ret = relocate_tree_block(trans, rc, node, &block->key, 2820 path); 2821 if (ret < 0) { 2822 if (ret != -EAGAIN || rb_node == rb_first(blocks)) 2823 err = ret; 2824 goto out; 2825 } 2826 rb_node = rb_next(rb_node); 2827 } 2828 out: 2829 free_block_list(blocks); 2830 err = finish_pending_nodes(trans, rc, path, err); 2831 2832 btrfs_free_path(path); 2833 return err; 2834 } 2835 2836 static noinline_for_stack 2837 int prealloc_file_extent_cluster(struct inode *inode, 2838 struct file_extent_cluster *cluster) 2839 { 2840 u64 alloc_hint = 0; 2841 u64 start; 2842 u64 end; 2843 u64 offset = BTRFS_I(inode)->index_cnt; 2844 u64 num_bytes; 2845 int nr = 0; 2846 int ret = 0; 2847 2848 BUG_ON(cluster->start != cluster->boundary[0]); 2849 mutex_lock(&inode->i_mutex); 2850 2851 ret = btrfs_check_data_free_space(inode, cluster->end + 2852 1 - cluster->start); 2853 if (ret) 2854 goto out; 2855 2856 while (nr < cluster->nr) { 2857 start = cluster->boundary[nr] - offset; 2858 if (nr + 1 < cluster->nr) 2859 end = cluster->boundary[nr + 1] - 1 - offset; 2860 else 2861 end = cluster->end - offset; 2862 2863 lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS); 2864 num_bytes = end + 1 - start; 2865 ret = btrfs_prealloc_file_range(inode, 0, start, 2866 num_bytes, num_bytes, 2867 end + 1, &alloc_hint); 2868 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS); 2869 if (ret) 2870 break; 2871 nr++; 2872 } 2873 btrfs_free_reserved_data_space(inode, cluster->end + 2874 1 - cluster->start); 2875 out: 2876 mutex_unlock(&inode->i_mutex); 2877 return ret; 2878 } 2879 2880 static noinline_for_stack 2881 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 2882 u64 block_start) 2883 { 2884 struct btrfs_root *root = BTRFS_I(inode)->root; 2885 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2886 struct extent_map *em; 2887 int ret = 0; 2888 2889 em = alloc_extent_map(); 2890 if (!em) 2891 return -ENOMEM; 2892 2893 em->start = start; 2894 em->len = end + 1 - start; 2895 em->block_len = em->len; 2896 em->block_start = block_start; 2897 em->bdev = root->fs_info->fs_devices->latest_bdev; 2898 set_bit(EXTENT_FLAG_PINNED, &em->flags); 2899 2900 lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS); 2901 while (1) { 2902 write_lock(&em_tree->lock); 2903 ret = add_extent_mapping(em_tree, em); 2904 write_unlock(&em_tree->lock); 2905 if (ret != -EEXIST) { 2906 free_extent_map(em); 2907 break; 2908 } 2909 btrfs_drop_extent_cache(inode, start, end, 0); 2910 } 2911 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS); 2912 return ret; 2913 } 2914 2915 static int relocate_file_extent_cluster(struct inode *inode, 2916 struct file_extent_cluster *cluster) 2917 { 2918 u64 page_start; 2919 u64 page_end; 2920 u64 offset = BTRFS_I(inode)->index_cnt; 2921 unsigned long index; 2922 unsigned long last_index; 2923 struct page *page; 2924 struct file_ra_state *ra; 2925 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2926 int nr = 0; 2927 int ret = 0; 2928 2929 if (!cluster->nr) 2930 return 0; 2931 2932 ra = kzalloc(sizeof(*ra), GFP_NOFS); 2933 if (!ra) 2934 return -ENOMEM; 2935 2936 ret = prealloc_file_extent_cluster(inode, cluster); 2937 if (ret) 2938 goto out; 2939 2940 file_ra_state_init(ra, inode->i_mapping); 2941 2942 ret = setup_extent_mapping(inode, cluster->start - offset, 2943 cluster->end - offset, cluster->start); 2944 if (ret) 2945 goto out; 2946 2947 index = (cluster->start - offset) >> PAGE_CACHE_SHIFT; 2948 last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT; 2949 while (index <= last_index) { 2950 ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE); 2951 if (ret) 2952 goto out; 2953 2954 page = find_lock_page(inode->i_mapping, index); 2955 if (!page) { 2956 page_cache_sync_readahead(inode->i_mapping, 2957 ra, NULL, index, 2958 last_index + 1 - index); 2959 page = find_or_create_page(inode->i_mapping, index, 2960 mask); 2961 if (!page) { 2962 btrfs_delalloc_release_metadata(inode, 2963 PAGE_CACHE_SIZE); 2964 ret = -ENOMEM; 2965 goto out; 2966 } 2967 } 2968 2969 if (PageReadahead(page)) { 2970 page_cache_async_readahead(inode->i_mapping, 2971 ra, NULL, page, index, 2972 last_index + 1 - index); 2973 } 2974 2975 if (!PageUptodate(page)) { 2976 btrfs_readpage(NULL, page); 2977 lock_page(page); 2978 if (!PageUptodate(page)) { 2979 unlock_page(page); 2980 page_cache_release(page); 2981 btrfs_delalloc_release_metadata(inode, 2982 PAGE_CACHE_SIZE); 2983 ret = -EIO; 2984 goto out; 2985 } 2986 } 2987 2988 page_start = (u64)page->index << PAGE_CACHE_SHIFT; 2989 page_end = page_start + PAGE_CACHE_SIZE - 1; 2990 2991 lock_extent(&BTRFS_I(inode)->io_tree, 2992 page_start, page_end, GFP_NOFS); 2993 2994 set_page_extent_mapped(page); 2995 2996 if (nr < cluster->nr && 2997 page_start + offset == cluster->boundary[nr]) { 2998 set_extent_bits(&BTRFS_I(inode)->io_tree, 2999 page_start, page_end, 3000 EXTENT_BOUNDARY, GFP_NOFS); 3001 nr++; 3002 } 3003 3004 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL); 3005 set_page_dirty(page); 3006 3007 unlock_extent(&BTRFS_I(inode)->io_tree, 3008 page_start, page_end, GFP_NOFS); 3009 unlock_page(page); 3010 page_cache_release(page); 3011 3012 index++; 3013 balance_dirty_pages_ratelimited(inode->i_mapping); 3014 btrfs_throttle(BTRFS_I(inode)->root); 3015 } 3016 WARN_ON(nr != cluster->nr); 3017 out: 3018 kfree(ra); 3019 return ret; 3020 } 3021 3022 static noinline_for_stack 3023 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3024 struct file_extent_cluster *cluster) 3025 { 3026 int ret; 3027 3028 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3029 ret = relocate_file_extent_cluster(inode, cluster); 3030 if (ret) 3031 return ret; 3032 cluster->nr = 0; 3033 } 3034 3035 if (!cluster->nr) 3036 cluster->start = extent_key->objectid; 3037 else 3038 BUG_ON(cluster->nr >= MAX_EXTENTS); 3039 cluster->end = extent_key->objectid + extent_key->offset - 1; 3040 cluster->boundary[cluster->nr] = extent_key->objectid; 3041 cluster->nr++; 3042 3043 if (cluster->nr >= MAX_EXTENTS) { 3044 ret = relocate_file_extent_cluster(inode, cluster); 3045 if (ret) 3046 return ret; 3047 cluster->nr = 0; 3048 } 3049 return 0; 3050 } 3051 3052 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3053 static int get_ref_objectid_v0(struct reloc_control *rc, 3054 struct btrfs_path *path, 3055 struct btrfs_key *extent_key, 3056 u64 *ref_objectid, int *path_change) 3057 { 3058 struct btrfs_key key; 3059 struct extent_buffer *leaf; 3060 struct btrfs_extent_ref_v0 *ref0; 3061 int ret; 3062 int slot; 3063 3064 leaf = path->nodes[0]; 3065 slot = path->slots[0]; 3066 while (1) { 3067 if (slot >= btrfs_header_nritems(leaf)) { 3068 ret = btrfs_next_leaf(rc->extent_root, path); 3069 if (ret < 0) 3070 return ret; 3071 BUG_ON(ret > 0); 3072 leaf = path->nodes[0]; 3073 slot = path->slots[0]; 3074 if (path_change) 3075 *path_change = 1; 3076 } 3077 btrfs_item_key_to_cpu(leaf, &key, slot); 3078 if (key.objectid != extent_key->objectid) 3079 return -ENOENT; 3080 3081 if (key.type != BTRFS_EXTENT_REF_V0_KEY) { 3082 slot++; 3083 continue; 3084 } 3085 ref0 = btrfs_item_ptr(leaf, slot, 3086 struct btrfs_extent_ref_v0); 3087 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0); 3088 break; 3089 } 3090 return 0; 3091 } 3092 #endif 3093 3094 /* 3095 * helper to add a tree block to the list. 3096 * the major work is getting the generation and level of the block 3097 */ 3098 static int add_tree_block(struct reloc_control *rc, 3099 struct btrfs_key *extent_key, 3100 struct btrfs_path *path, 3101 struct rb_root *blocks) 3102 { 3103 struct extent_buffer *eb; 3104 struct btrfs_extent_item *ei; 3105 struct btrfs_tree_block_info *bi; 3106 struct tree_block *block; 3107 struct rb_node *rb_node; 3108 u32 item_size; 3109 int level = -1; 3110 int generation; 3111 3112 eb = path->nodes[0]; 3113 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3114 3115 if (item_size >= sizeof(*ei) + sizeof(*bi)) { 3116 ei = btrfs_item_ptr(eb, path->slots[0], 3117 struct btrfs_extent_item); 3118 bi = (struct btrfs_tree_block_info *)(ei + 1); 3119 generation = btrfs_extent_generation(eb, ei); 3120 level = btrfs_tree_block_level(eb, bi); 3121 } else { 3122 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3123 u64 ref_owner; 3124 int ret; 3125 3126 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3127 ret = get_ref_objectid_v0(rc, path, extent_key, 3128 &ref_owner, NULL); 3129 if (ret < 0) 3130 return ret; 3131 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL); 3132 level = (int)ref_owner; 3133 /* FIXME: get real generation */ 3134 generation = 0; 3135 #else 3136 BUG(); 3137 #endif 3138 } 3139 3140 btrfs_release_path(path); 3141 3142 BUG_ON(level == -1); 3143 3144 block = kmalloc(sizeof(*block), GFP_NOFS); 3145 if (!block) 3146 return -ENOMEM; 3147 3148 block->bytenr = extent_key->objectid; 3149 block->key.objectid = extent_key->offset; 3150 block->key.offset = generation; 3151 block->level = level; 3152 block->key_ready = 0; 3153 3154 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3155 BUG_ON(rb_node); 3156 3157 return 0; 3158 } 3159 3160 /* 3161 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3162 */ 3163 static int __add_tree_block(struct reloc_control *rc, 3164 u64 bytenr, u32 blocksize, 3165 struct rb_root *blocks) 3166 { 3167 struct btrfs_path *path; 3168 struct btrfs_key key; 3169 int ret; 3170 3171 if (tree_block_processed(bytenr, blocksize, rc)) 3172 return 0; 3173 3174 if (tree_search(blocks, bytenr)) 3175 return 0; 3176 3177 path = btrfs_alloc_path(); 3178 if (!path) 3179 return -ENOMEM; 3180 3181 key.objectid = bytenr; 3182 key.type = BTRFS_EXTENT_ITEM_KEY; 3183 key.offset = blocksize; 3184 3185 path->search_commit_root = 1; 3186 path->skip_locking = 1; 3187 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3188 if (ret < 0) 3189 goto out; 3190 BUG_ON(ret); 3191 3192 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3193 ret = add_tree_block(rc, &key, path, blocks); 3194 out: 3195 btrfs_free_path(path); 3196 return ret; 3197 } 3198 3199 /* 3200 * helper to check if the block use full backrefs for pointers in it 3201 */ 3202 static int block_use_full_backref(struct reloc_control *rc, 3203 struct extent_buffer *eb) 3204 { 3205 u64 flags; 3206 int ret; 3207 3208 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3209 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3210 return 1; 3211 3212 ret = btrfs_lookup_extent_info(NULL, rc->extent_root, 3213 eb->start, eb->len, NULL, &flags); 3214 BUG_ON(ret); 3215 3216 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3217 ret = 1; 3218 else 3219 ret = 0; 3220 return ret; 3221 } 3222 3223 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3224 struct inode *inode, u64 ino) 3225 { 3226 struct btrfs_key key; 3227 struct btrfs_path *path; 3228 struct btrfs_root *root = fs_info->tree_root; 3229 struct btrfs_trans_handle *trans; 3230 unsigned long nr; 3231 int ret = 0; 3232 3233 if (inode) 3234 goto truncate; 3235 3236 key.objectid = ino; 3237 key.type = BTRFS_INODE_ITEM_KEY; 3238 key.offset = 0; 3239 3240 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3241 if (IS_ERR_OR_NULL(inode) || is_bad_inode(inode)) { 3242 if (inode && !IS_ERR(inode)) 3243 iput(inode); 3244 return -ENOENT; 3245 } 3246 3247 truncate: 3248 path = btrfs_alloc_path(); 3249 if (!path) { 3250 ret = -ENOMEM; 3251 goto out; 3252 } 3253 3254 trans = btrfs_join_transaction(root); 3255 if (IS_ERR(trans)) { 3256 btrfs_free_path(path); 3257 ret = PTR_ERR(trans); 3258 goto out; 3259 } 3260 3261 ret = btrfs_truncate_free_space_cache(root, trans, path, inode); 3262 3263 btrfs_free_path(path); 3264 nr = trans->blocks_used; 3265 btrfs_end_transaction(trans, root); 3266 btrfs_btree_balance_dirty(root, nr); 3267 out: 3268 iput(inode); 3269 return ret; 3270 } 3271 3272 /* 3273 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3274 * this function scans fs tree to find blocks reference the data extent 3275 */ 3276 static int find_data_references(struct reloc_control *rc, 3277 struct btrfs_key *extent_key, 3278 struct extent_buffer *leaf, 3279 struct btrfs_extent_data_ref *ref, 3280 struct rb_root *blocks) 3281 { 3282 struct btrfs_path *path; 3283 struct tree_block *block; 3284 struct btrfs_root *root; 3285 struct btrfs_file_extent_item *fi; 3286 struct rb_node *rb_node; 3287 struct btrfs_key key; 3288 u64 ref_root; 3289 u64 ref_objectid; 3290 u64 ref_offset; 3291 u32 ref_count; 3292 u32 nritems; 3293 int err = 0; 3294 int added = 0; 3295 int counted; 3296 int ret; 3297 3298 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3299 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3300 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3301 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3302 3303 /* 3304 * This is an extent belonging to the free space cache, lets just delete 3305 * it and redo the search. 3306 */ 3307 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3308 ret = delete_block_group_cache(rc->extent_root->fs_info, 3309 NULL, ref_objectid); 3310 if (ret != -ENOENT) 3311 return ret; 3312 ret = 0; 3313 } 3314 3315 path = btrfs_alloc_path(); 3316 if (!path) 3317 return -ENOMEM; 3318 path->reada = 1; 3319 3320 root = read_fs_root(rc->extent_root->fs_info, ref_root); 3321 if (IS_ERR(root)) { 3322 err = PTR_ERR(root); 3323 goto out; 3324 } 3325 3326 key.objectid = ref_objectid; 3327 key.type = BTRFS_EXTENT_DATA_KEY; 3328 if (ref_offset > ((u64)-1 << 32)) 3329 key.offset = 0; 3330 else 3331 key.offset = ref_offset; 3332 3333 path->search_commit_root = 1; 3334 path->skip_locking = 1; 3335 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3336 if (ret < 0) { 3337 err = ret; 3338 goto out; 3339 } 3340 3341 leaf = path->nodes[0]; 3342 nritems = btrfs_header_nritems(leaf); 3343 /* 3344 * the references in tree blocks that use full backrefs 3345 * are not counted in 3346 */ 3347 if (block_use_full_backref(rc, leaf)) 3348 counted = 0; 3349 else 3350 counted = 1; 3351 rb_node = tree_search(blocks, leaf->start); 3352 if (rb_node) { 3353 if (counted) 3354 added = 1; 3355 else 3356 path->slots[0] = nritems; 3357 } 3358 3359 while (ref_count > 0) { 3360 while (path->slots[0] >= nritems) { 3361 ret = btrfs_next_leaf(root, path); 3362 if (ret < 0) { 3363 err = ret; 3364 goto out; 3365 } 3366 if (ret > 0) { 3367 WARN_ON(1); 3368 goto out; 3369 } 3370 3371 leaf = path->nodes[0]; 3372 nritems = btrfs_header_nritems(leaf); 3373 added = 0; 3374 3375 if (block_use_full_backref(rc, leaf)) 3376 counted = 0; 3377 else 3378 counted = 1; 3379 rb_node = tree_search(blocks, leaf->start); 3380 if (rb_node) { 3381 if (counted) 3382 added = 1; 3383 else 3384 path->slots[0] = nritems; 3385 } 3386 } 3387 3388 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3389 if (key.objectid != ref_objectid || 3390 key.type != BTRFS_EXTENT_DATA_KEY) { 3391 WARN_ON(1); 3392 break; 3393 } 3394 3395 fi = btrfs_item_ptr(leaf, path->slots[0], 3396 struct btrfs_file_extent_item); 3397 3398 if (btrfs_file_extent_type(leaf, fi) == 3399 BTRFS_FILE_EXTENT_INLINE) 3400 goto next; 3401 3402 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3403 extent_key->objectid) 3404 goto next; 3405 3406 key.offset -= btrfs_file_extent_offset(leaf, fi); 3407 if (key.offset != ref_offset) 3408 goto next; 3409 3410 if (counted) 3411 ref_count--; 3412 if (added) 3413 goto next; 3414 3415 if (!tree_block_processed(leaf->start, leaf->len, rc)) { 3416 block = kmalloc(sizeof(*block), GFP_NOFS); 3417 if (!block) { 3418 err = -ENOMEM; 3419 break; 3420 } 3421 block->bytenr = leaf->start; 3422 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3423 block->level = 0; 3424 block->key_ready = 1; 3425 rb_node = tree_insert(blocks, block->bytenr, 3426 &block->rb_node); 3427 BUG_ON(rb_node); 3428 } 3429 if (counted) 3430 added = 1; 3431 else 3432 path->slots[0] = nritems; 3433 next: 3434 path->slots[0]++; 3435 3436 } 3437 out: 3438 btrfs_free_path(path); 3439 return err; 3440 } 3441 3442 /* 3443 * hepler to find all tree blocks that reference a given data extent 3444 */ 3445 static noinline_for_stack 3446 int add_data_references(struct reloc_control *rc, 3447 struct btrfs_key *extent_key, 3448 struct btrfs_path *path, 3449 struct rb_root *blocks) 3450 { 3451 struct btrfs_key key; 3452 struct extent_buffer *eb; 3453 struct btrfs_extent_data_ref *dref; 3454 struct btrfs_extent_inline_ref *iref; 3455 unsigned long ptr; 3456 unsigned long end; 3457 u32 blocksize = btrfs_level_size(rc->extent_root, 0); 3458 int ret; 3459 int err = 0; 3460 3461 eb = path->nodes[0]; 3462 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3463 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3464 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3465 if (ptr + sizeof(struct btrfs_extent_item_v0) == end) 3466 ptr = end; 3467 else 3468 #endif 3469 ptr += sizeof(struct btrfs_extent_item); 3470 3471 while (ptr < end) { 3472 iref = (struct btrfs_extent_inline_ref *)ptr; 3473 key.type = btrfs_extent_inline_ref_type(eb, iref); 3474 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3475 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3476 ret = __add_tree_block(rc, key.offset, blocksize, 3477 blocks); 3478 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3479 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3480 ret = find_data_references(rc, extent_key, 3481 eb, dref, blocks); 3482 } else { 3483 BUG(); 3484 } 3485 ptr += btrfs_extent_inline_ref_size(key.type); 3486 } 3487 WARN_ON(ptr > end); 3488 3489 while (1) { 3490 cond_resched(); 3491 eb = path->nodes[0]; 3492 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3493 ret = btrfs_next_leaf(rc->extent_root, path); 3494 if (ret < 0) { 3495 err = ret; 3496 break; 3497 } 3498 if (ret > 0) 3499 break; 3500 eb = path->nodes[0]; 3501 } 3502 3503 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3504 if (key.objectid != extent_key->objectid) 3505 break; 3506 3507 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3508 if (key.type == BTRFS_SHARED_DATA_REF_KEY || 3509 key.type == BTRFS_EXTENT_REF_V0_KEY) { 3510 #else 3511 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 3512 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3513 #endif 3514 ret = __add_tree_block(rc, key.offset, blocksize, 3515 blocks); 3516 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3517 dref = btrfs_item_ptr(eb, path->slots[0], 3518 struct btrfs_extent_data_ref); 3519 ret = find_data_references(rc, extent_key, 3520 eb, dref, blocks); 3521 } else { 3522 ret = 0; 3523 } 3524 if (ret) { 3525 err = ret; 3526 break; 3527 } 3528 path->slots[0]++; 3529 } 3530 btrfs_release_path(path); 3531 if (err) 3532 free_block_list(blocks); 3533 return err; 3534 } 3535 3536 /* 3537 * hepler to find next unprocessed extent 3538 */ 3539 static noinline_for_stack 3540 int find_next_extent(struct btrfs_trans_handle *trans, 3541 struct reloc_control *rc, struct btrfs_path *path, 3542 struct btrfs_key *extent_key) 3543 { 3544 struct btrfs_key key; 3545 struct extent_buffer *leaf; 3546 u64 start, end, last; 3547 int ret; 3548 3549 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3550 while (1) { 3551 cond_resched(); 3552 if (rc->search_start >= last) { 3553 ret = 1; 3554 break; 3555 } 3556 3557 key.objectid = rc->search_start; 3558 key.type = BTRFS_EXTENT_ITEM_KEY; 3559 key.offset = 0; 3560 3561 path->search_commit_root = 1; 3562 path->skip_locking = 1; 3563 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3564 0, 0); 3565 if (ret < 0) 3566 break; 3567 next: 3568 leaf = path->nodes[0]; 3569 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3570 ret = btrfs_next_leaf(rc->extent_root, path); 3571 if (ret != 0) 3572 break; 3573 leaf = path->nodes[0]; 3574 } 3575 3576 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3577 if (key.objectid >= last) { 3578 ret = 1; 3579 break; 3580 } 3581 3582 if (key.type != BTRFS_EXTENT_ITEM_KEY || 3583 key.objectid + key.offset <= rc->search_start) { 3584 path->slots[0]++; 3585 goto next; 3586 } 3587 3588 ret = find_first_extent_bit(&rc->processed_blocks, 3589 key.objectid, &start, &end, 3590 EXTENT_DIRTY); 3591 3592 if (ret == 0 && start <= key.objectid) { 3593 btrfs_release_path(path); 3594 rc->search_start = end + 1; 3595 } else { 3596 rc->search_start = key.objectid + key.offset; 3597 memcpy(extent_key, &key, sizeof(key)); 3598 return 0; 3599 } 3600 } 3601 btrfs_release_path(path); 3602 return ret; 3603 } 3604 3605 static void set_reloc_control(struct reloc_control *rc) 3606 { 3607 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3608 3609 mutex_lock(&fs_info->reloc_mutex); 3610 fs_info->reloc_ctl = rc; 3611 mutex_unlock(&fs_info->reloc_mutex); 3612 } 3613 3614 static void unset_reloc_control(struct reloc_control *rc) 3615 { 3616 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3617 3618 mutex_lock(&fs_info->reloc_mutex); 3619 fs_info->reloc_ctl = NULL; 3620 mutex_unlock(&fs_info->reloc_mutex); 3621 } 3622 3623 static int check_extent_flags(u64 flags) 3624 { 3625 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3626 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3627 return 1; 3628 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3629 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3630 return 1; 3631 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3632 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3633 return 1; 3634 return 0; 3635 } 3636 3637 static noinline_for_stack 3638 int prepare_to_relocate(struct reloc_control *rc) 3639 { 3640 struct btrfs_trans_handle *trans; 3641 int ret; 3642 3643 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root); 3644 if (!rc->block_rsv) 3645 return -ENOMEM; 3646 3647 /* 3648 * reserve some space for creating reloc trees. 3649 * btrfs_init_reloc_root will use them when there 3650 * is no reservation in transaction handle. 3651 */ 3652 ret = btrfs_block_rsv_add(rc->extent_root, rc->block_rsv, 3653 rc->extent_root->nodesize * 256); 3654 if (ret) 3655 return ret; 3656 3657 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3658 rc->search_start = rc->block_group->key.objectid; 3659 rc->extents_found = 0; 3660 rc->nodes_relocated = 0; 3661 rc->merging_rsv_size = 0; 3662 3663 rc->create_reloc_tree = 1; 3664 set_reloc_control(rc); 3665 3666 trans = btrfs_join_transaction(rc->extent_root); 3667 BUG_ON(IS_ERR(trans)); 3668 btrfs_commit_transaction(trans, rc->extent_root); 3669 return 0; 3670 } 3671 3672 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3673 { 3674 struct rb_root blocks = RB_ROOT; 3675 struct btrfs_key key; 3676 struct btrfs_trans_handle *trans = NULL; 3677 struct btrfs_path *path; 3678 struct btrfs_extent_item *ei; 3679 unsigned long nr; 3680 u64 flags; 3681 u32 item_size; 3682 int ret; 3683 int err = 0; 3684 int progress = 0; 3685 3686 path = btrfs_alloc_path(); 3687 if (!path) 3688 return -ENOMEM; 3689 path->reada = 1; 3690 3691 ret = prepare_to_relocate(rc); 3692 if (ret) { 3693 err = ret; 3694 goto out_free; 3695 } 3696 3697 while (1) { 3698 progress++; 3699 trans = btrfs_start_transaction(rc->extent_root, 0); 3700 BUG_ON(IS_ERR(trans)); 3701 restart: 3702 if (update_backref_cache(trans, &rc->backref_cache)) { 3703 btrfs_end_transaction(trans, rc->extent_root); 3704 continue; 3705 } 3706 3707 ret = find_next_extent(trans, rc, path, &key); 3708 if (ret < 0) 3709 err = ret; 3710 if (ret != 0) 3711 break; 3712 3713 rc->extents_found++; 3714 3715 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3716 struct btrfs_extent_item); 3717 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 3718 if (item_size >= sizeof(*ei)) { 3719 flags = btrfs_extent_flags(path->nodes[0], ei); 3720 ret = check_extent_flags(flags); 3721 BUG_ON(ret); 3722 3723 } else { 3724 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3725 u64 ref_owner; 3726 int path_change = 0; 3727 3728 BUG_ON(item_size != 3729 sizeof(struct btrfs_extent_item_v0)); 3730 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner, 3731 &path_change); 3732 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID) 3733 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK; 3734 else 3735 flags = BTRFS_EXTENT_FLAG_DATA; 3736 3737 if (path_change) { 3738 btrfs_release_path(path); 3739 3740 path->search_commit_root = 1; 3741 path->skip_locking = 1; 3742 ret = btrfs_search_slot(NULL, rc->extent_root, 3743 &key, path, 0, 0); 3744 if (ret < 0) { 3745 err = ret; 3746 break; 3747 } 3748 BUG_ON(ret > 0); 3749 } 3750 #else 3751 BUG(); 3752 #endif 3753 } 3754 3755 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3756 ret = add_tree_block(rc, &key, path, &blocks); 3757 } else if (rc->stage == UPDATE_DATA_PTRS && 3758 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3759 ret = add_data_references(rc, &key, path, &blocks); 3760 } else { 3761 btrfs_release_path(path); 3762 ret = 0; 3763 } 3764 if (ret < 0) { 3765 err = ret; 3766 break; 3767 } 3768 3769 if (!RB_EMPTY_ROOT(&blocks)) { 3770 ret = relocate_tree_blocks(trans, rc, &blocks); 3771 if (ret < 0) { 3772 if (ret != -EAGAIN) { 3773 err = ret; 3774 break; 3775 } 3776 rc->extents_found--; 3777 rc->search_start = key.objectid; 3778 } 3779 } 3780 3781 ret = btrfs_block_rsv_check(rc->extent_root, rc->block_rsv, 5); 3782 if (ret < 0) { 3783 if (ret != -EAGAIN) { 3784 err = ret; 3785 WARN_ON(1); 3786 break; 3787 } 3788 rc->commit_transaction = 1; 3789 } 3790 3791 if (rc->commit_transaction) { 3792 rc->commit_transaction = 0; 3793 ret = btrfs_commit_transaction(trans, rc->extent_root); 3794 BUG_ON(ret); 3795 } else { 3796 nr = trans->blocks_used; 3797 btrfs_end_transaction_throttle(trans, rc->extent_root); 3798 btrfs_btree_balance_dirty(rc->extent_root, nr); 3799 } 3800 trans = NULL; 3801 3802 if (rc->stage == MOVE_DATA_EXTENTS && 3803 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3804 rc->found_file_extent = 1; 3805 ret = relocate_data_extent(rc->data_inode, 3806 &key, &rc->cluster); 3807 if (ret < 0) { 3808 err = ret; 3809 break; 3810 } 3811 } 3812 } 3813 if (trans && progress && err == -ENOSPC) { 3814 ret = btrfs_force_chunk_alloc(trans, rc->extent_root, 3815 rc->block_group->flags); 3816 if (ret == 0) { 3817 err = 0; 3818 progress = 0; 3819 goto restart; 3820 } 3821 } 3822 3823 btrfs_release_path(path); 3824 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY, 3825 GFP_NOFS); 3826 3827 if (trans) { 3828 nr = trans->blocks_used; 3829 btrfs_end_transaction_throttle(trans, rc->extent_root); 3830 btrfs_btree_balance_dirty(rc->extent_root, nr); 3831 } 3832 3833 if (!err) { 3834 ret = relocate_file_extent_cluster(rc->data_inode, 3835 &rc->cluster); 3836 if (ret < 0) 3837 err = ret; 3838 } 3839 3840 rc->create_reloc_tree = 0; 3841 set_reloc_control(rc); 3842 3843 backref_cache_cleanup(&rc->backref_cache); 3844 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 3845 3846 err = prepare_to_merge(rc, err); 3847 3848 merge_reloc_roots(rc); 3849 3850 rc->merge_reloc_tree = 0; 3851 unset_reloc_control(rc); 3852 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 3853 3854 /* get rid of pinned extents */ 3855 trans = btrfs_join_transaction(rc->extent_root); 3856 if (IS_ERR(trans)) 3857 err = PTR_ERR(trans); 3858 else 3859 btrfs_commit_transaction(trans, rc->extent_root); 3860 out_free: 3861 btrfs_free_block_rsv(rc->extent_root, rc->block_rsv); 3862 btrfs_free_path(path); 3863 return err; 3864 } 3865 3866 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3867 struct btrfs_root *root, u64 objectid) 3868 { 3869 struct btrfs_path *path; 3870 struct btrfs_inode_item *item; 3871 struct extent_buffer *leaf; 3872 int ret; 3873 3874 path = btrfs_alloc_path(); 3875 if (!path) 3876 return -ENOMEM; 3877 3878 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3879 if (ret) 3880 goto out; 3881 3882 leaf = path->nodes[0]; 3883 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3884 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 3885 btrfs_set_inode_generation(leaf, item, 1); 3886 btrfs_set_inode_size(leaf, item, 0); 3887 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3888 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 3889 BTRFS_INODE_PREALLOC); 3890 btrfs_mark_buffer_dirty(leaf); 3891 btrfs_release_path(path); 3892 out: 3893 btrfs_free_path(path); 3894 return ret; 3895 } 3896 3897 /* 3898 * helper to create inode for data relocation. 3899 * the inode is in data relocation tree and its link count is 0 3900 */ 3901 static noinline_for_stack 3902 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 3903 struct btrfs_block_group_cache *group) 3904 { 3905 struct inode *inode = NULL; 3906 struct btrfs_trans_handle *trans; 3907 struct btrfs_root *root; 3908 struct btrfs_key key; 3909 unsigned long nr; 3910 u64 objectid = BTRFS_FIRST_FREE_OBJECTID; 3911 int err = 0; 3912 3913 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 3914 if (IS_ERR(root)) 3915 return ERR_CAST(root); 3916 3917 trans = btrfs_start_transaction(root, 6); 3918 if (IS_ERR(trans)) 3919 return ERR_CAST(trans); 3920 3921 err = btrfs_find_free_objectid(root, &objectid); 3922 if (err) 3923 goto out; 3924 3925 err = __insert_orphan_inode(trans, root, objectid); 3926 BUG_ON(err); 3927 3928 key.objectid = objectid; 3929 key.type = BTRFS_INODE_ITEM_KEY; 3930 key.offset = 0; 3931 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 3932 BUG_ON(IS_ERR(inode) || is_bad_inode(inode)); 3933 BTRFS_I(inode)->index_cnt = group->key.objectid; 3934 3935 err = btrfs_orphan_add(trans, inode); 3936 out: 3937 nr = trans->blocks_used; 3938 btrfs_end_transaction(trans, root); 3939 btrfs_btree_balance_dirty(root, nr); 3940 if (err) { 3941 if (inode) 3942 iput(inode); 3943 inode = ERR_PTR(err); 3944 } 3945 return inode; 3946 } 3947 3948 static struct reloc_control *alloc_reloc_control(void) 3949 { 3950 struct reloc_control *rc; 3951 3952 rc = kzalloc(sizeof(*rc), GFP_NOFS); 3953 if (!rc) 3954 return NULL; 3955 3956 INIT_LIST_HEAD(&rc->reloc_roots); 3957 backref_cache_init(&rc->backref_cache); 3958 mapping_tree_init(&rc->reloc_root_tree); 3959 extent_io_tree_init(&rc->processed_blocks, NULL); 3960 return rc; 3961 } 3962 3963 /* 3964 * function to relocate all extents in a block group. 3965 */ 3966 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start) 3967 { 3968 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3969 struct reloc_control *rc; 3970 struct inode *inode; 3971 struct btrfs_path *path; 3972 int ret; 3973 int rw = 0; 3974 int err = 0; 3975 3976 rc = alloc_reloc_control(); 3977 if (!rc) 3978 return -ENOMEM; 3979 3980 rc->extent_root = extent_root; 3981 3982 rc->block_group = btrfs_lookup_block_group(fs_info, group_start); 3983 BUG_ON(!rc->block_group); 3984 3985 if (!rc->block_group->ro) { 3986 ret = btrfs_set_block_group_ro(extent_root, rc->block_group); 3987 if (ret) { 3988 err = ret; 3989 goto out; 3990 } 3991 rw = 1; 3992 } 3993 3994 path = btrfs_alloc_path(); 3995 if (!path) { 3996 err = -ENOMEM; 3997 goto out; 3998 } 3999 4000 inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group, 4001 path); 4002 btrfs_free_path(path); 4003 4004 if (!IS_ERR(inode)) 4005 ret = delete_block_group_cache(fs_info, inode, 0); 4006 else 4007 ret = PTR_ERR(inode); 4008 4009 if (ret && ret != -ENOENT) { 4010 err = ret; 4011 goto out; 4012 } 4013 4014 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4015 if (IS_ERR(rc->data_inode)) { 4016 err = PTR_ERR(rc->data_inode); 4017 rc->data_inode = NULL; 4018 goto out; 4019 } 4020 4021 printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n", 4022 (unsigned long long)rc->block_group->key.objectid, 4023 (unsigned long long)rc->block_group->flags); 4024 4025 btrfs_start_delalloc_inodes(fs_info->tree_root, 0); 4026 btrfs_wait_ordered_extents(fs_info->tree_root, 0, 0); 4027 4028 while (1) { 4029 mutex_lock(&fs_info->cleaner_mutex); 4030 4031 btrfs_clean_old_snapshots(fs_info->tree_root); 4032 ret = relocate_block_group(rc); 4033 4034 mutex_unlock(&fs_info->cleaner_mutex); 4035 if (ret < 0) { 4036 err = ret; 4037 goto out; 4038 } 4039 4040 if (rc->extents_found == 0) 4041 break; 4042 4043 printk(KERN_INFO "btrfs: found %llu extents\n", 4044 (unsigned long long)rc->extents_found); 4045 4046 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4047 btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1); 4048 invalidate_mapping_pages(rc->data_inode->i_mapping, 4049 0, -1); 4050 rc->stage = UPDATE_DATA_PTRS; 4051 } 4052 } 4053 4054 filemap_write_and_wait_range(fs_info->btree_inode->i_mapping, 4055 rc->block_group->key.objectid, 4056 rc->block_group->key.objectid + 4057 rc->block_group->key.offset - 1); 4058 4059 WARN_ON(rc->block_group->pinned > 0); 4060 WARN_ON(rc->block_group->reserved > 0); 4061 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4062 out: 4063 if (err && rw) 4064 btrfs_set_block_group_rw(extent_root, rc->block_group); 4065 iput(rc->data_inode); 4066 btrfs_put_block_group(rc->block_group); 4067 kfree(rc); 4068 return err; 4069 } 4070 4071 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4072 { 4073 struct btrfs_trans_handle *trans; 4074 int ret; 4075 4076 trans = btrfs_start_transaction(root->fs_info->tree_root, 0); 4077 BUG_ON(IS_ERR(trans)); 4078 4079 memset(&root->root_item.drop_progress, 0, 4080 sizeof(root->root_item.drop_progress)); 4081 root->root_item.drop_level = 0; 4082 btrfs_set_root_refs(&root->root_item, 0); 4083 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4084 &root->root_key, &root->root_item); 4085 BUG_ON(ret); 4086 4087 ret = btrfs_end_transaction(trans, root->fs_info->tree_root); 4088 BUG_ON(ret); 4089 return 0; 4090 } 4091 4092 /* 4093 * recover relocation interrupted by system crash. 4094 * 4095 * this function resumes merging reloc trees with corresponding fs trees. 4096 * this is important for keeping the sharing of tree blocks 4097 */ 4098 int btrfs_recover_relocation(struct btrfs_root *root) 4099 { 4100 LIST_HEAD(reloc_roots); 4101 struct btrfs_key key; 4102 struct btrfs_root *fs_root; 4103 struct btrfs_root *reloc_root; 4104 struct btrfs_path *path; 4105 struct extent_buffer *leaf; 4106 struct reloc_control *rc = NULL; 4107 struct btrfs_trans_handle *trans; 4108 int ret; 4109 int err = 0; 4110 4111 path = btrfs_alloc_path(); 4112 if (!path) 4113 return -ENOMEM; 4114 path->reada = -1; 4115 4116 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4117 key.type = BTRFS_ROOT_ITEM_KEY; 4118 key.offset = (u64)-1; 4119 4120 while (1) { 4121 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, 4122 path, 0, 0); 4123 if (ret < 0) { 4124 err = ret; 4125 goto out; 4126 } 4127 if (ret > 0) { 4128 if (path->slots[0] == 0) 4129 break; 4130 path->slots[0]--; 4131 } 4132 leaf = path->nodes[0]; 4133 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4134 btrfs_release_path(path); 4135 4136 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4137 key.type != BTRFS_ROOT_ITEM_KEY) 4138 break; 4139 4140 reloc_root = btrfs_read_fs_root_no_radix(root, &key); 4141 if (IS_ERR(reloc_root)) { 4142 err = PTR_ERR(reloc_root); 4143 goto out; 4144 } 4145 4146 list_add(&reloc_root->root_list, &reloc_roots); 4147 4148 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4149 fs_root = read_fs_root(root->fs_info, 4150 reloc_root->root_key.offset); 4151 if (IS_ERR(fs_root)) { 4152 ret = PTR_ERR(fs_root); 4153 if (ret != -ENOENT) { 4154 err = ret; 4155 goto out; 4156 } 4157 mark_garbage_root(reloc_root); 4158 } 4159 } 4160 4161 if (key.offset == 0) 4162 break; 4163 4164 key.offset--; 4165 } 4166 btrfs_release_path(path); 4167 4168 if (list_empty(&reloc_roots)) 4169 goto out; 4170 4171 rc = alloc_reloc_control(); 4172 if (!rc) { 4173 err = -ENOMEM; 4174 goto out; 4175 } 4176 4177 rc->extent_root = root->fs_info->extent_root; 4178 4179 set_reloc_control(rc); 4180 4181 trans = btrfs_join_transaction(rc->extent_root); 4182 if (IS_ERR(trans)) { 4183 unset_reloc_control(rc); 4184 err = PTR_ERR(trans); 4185 goto out_free; 4186 } 4187 4188 rc->merge_reloc_tree = 1; 4189 4190 while (!list_empty(&reloc_roots)) { 4191 reloc_root = list_entry(reloc_roots.next, 4192 struct btrfs_root, root_list); 4193 list_del(&reloc_root->root_list); 4194 4195 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4196 list_add_tail(&reloc_root->root_list, 4197 &rc->reloc_roots); 4198 continue; 4199 } 4200 4201 fs_root = read_fs_root(root->fs_info, 4202 reloc_root->root_key.offset); 4203 BUG_ON(IS_ERR(fs_root)); 4204 4205 __add_reloc_root(reloc_root); 4206 fs_root->reloc_root = reloc_root; 4207 } 4208 4209 btrfs_commit_transaction(trans, rc->extent_root); 4210 4211 merge_reloc_roots(rc); 4212 4213 unset_reloc_control(rc); 4214 4215 trans = btrfs_join_transaction(rc->extent_root); 4216 if (IS_ERR(trans)) 4217 err = PTR_ERR(trans); 4218 else 4219 btrfs_commit_transaction(trans, rc->extent_root); 4220 out_free: 4221 kfree(rc); 4222 out: 4223 while (!list_empty(&reloc_roots)) { 4224 reloc_root = list_entry(reloc_roots.next, 4225 struct btrfs_root, root_list); 4226 list_del(&reloc_root->root_list); 4227 free_extent_buffer(reloc_root->node); 4228 free_extent_buffer(reloc_root->commit_root); 4229 kfree(reloc_root); 4230 } 4231 btrfs_free_path(path); 4232 4233 if (err == 0) { 4234 /* cleanup orphan inode in data relocation tree */ 4235 fs_root = read_fs_root(root->fs_info, 4236 BTRFS_DATA_RELOC_TREE_OBJECTID); 4237 if (IS_ERR(fs_root)) 4238 err = PTR_ERR(fs_root); 4239 else 4240 err = btrfs_orphan_cleanup(fs_root); 4241 } 4242 return err; 4243 } 4244 4245 /* 4246 * helper to add ordered checksum for data relocation. 4247 * 4248 * cloning checksum properly handles the nodatasum extents. 4249 * it also saves CPU time to re-calculate the checksum. 4250 */ 4251 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4252 { 4253 struct btrfs_ordered_sum *sums; 4254 struct btrfs_sector_sum *sector_sum; 4255 struct btrfs_ordered_extent *ordered; 4256 struct btrfs_root *root = BTRFS_I(inode)->root; 4257 size_t offset; 4258 int ret; 4259 u64 disk_bytenr; 4260 LIST_HEAD(list); 4261 4262 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4263 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4264 4265 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4266 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr, 4267 disk_bytenr + len - 1, &list, 0); 4268 4269 while (!list_empty(&list)) { 4270 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4271 list_del_init(&sums->list); 4272 4273 sector_sum = sums->sums; 4274 sums->bytenr = ordered->start; 4275 4276 offset = 0; 4277 while (offset < sums->len) { 4278 sector_sum->bytenr += ordered->start - disk_bytenr; 4279 sector_sum++; 4280 offset += root->sectorsize; 4281 } 4282 4283 btrfs_add_ordered_sum(inode, ordered, sums); 4284 } 4285 btrfs_put_ordered_extent(ordered); 4286 return ret; 4287 } 4288 4289 void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4290 struct btrfs_root *root, struct extent_buffer *buf, 4291 struct extent_buffer *cow) 4292 { 4293 struct reloc_control *rc; 4294 struct backref_node *node; 4295 int first_cow = 0; 4296 int level; 4297 int ret; 4298 4299 rc = root->fs_info->reloc_ctl; 4300 if (!rc) 4301 return; 4302 4303 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4304 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4305 4306 level = btrfs_header_level(buf); 4307 if (btrfs_header_generation(buf) <= 4308 btrfs_root_last_snapshot(&root->root_item)) 4309 first_cow = 1; 4310 4311 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4312 rc->create_reloc_tree) { 4313 WARN_ON(!first_cow && level == 0); 4314 4315 node = rc->backref_cache.path[level]; 4316 BUG_ON(node->bytenr != buf->start && 4317 node->new_bytenr != buf->start); 4318 4319 drop_node_buffer(node); 4320 extent_buffer_get(cow); 4321 node->eb = cow; 4322 node->new_bytenr = cow->start; 4323 4324 if (!node->pending) { 4325 list_move_tail(&node->list, 4326 &rc->backref_cache.pending[level]); 4327 node->pending = 1; 4328 } 4329 4330 if (first_cow) 4331 __mark_block_processed(rc, node); 4332 4333 if (first_cow && level > 0) 4334 rc->nodes_relocated += buf->len; 4335 } 4336 4337 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) { 4338 ret = replace_file_extents(trans, rc, root, cow); 4339 BUG_ON(ret); 4340 } 4341 } 4342 4343 /* 4344 * called before creating snapshot. it calculates metadata reservation 4345 * requried for relocating tree blocks in the snapshot 4346 */ 4347 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans, 4348 struct btrfs_pending_snapshot *pending, 4349 u64 *bytes_to_reserve) 4350 { 4351 struct btrfs_root *root; 4352 struct reloc_control *rc; 4353 4354 root = pending->root; 4355 if (!root->reloc_root) 4356 return; 4357 4358 rc = root->fs_info->reloc_ctl; 4359 if (!rc->merge_reloc_tree) 4360 return; 4361 4362 root = root->reloc_root; 4363 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4364 /* 4365 * relocation is in the stage of merging trees. the space 4366 * used by merging a reloc tree is twice the size of 4367 * relocated tree nodes in the worst case. half for cowing 4368 * the reloc tree, half for cowing the fs tree. the space 4369 * used by cowing the reloc tree will be freed after the 4370 * tree is dropped. if we create snapshot, cowing the fs 4371 * tree may use more space than it frees. so we need 4372 * reserve extra space. 4373 */ 4374 *bytes_to_reserve += rc->nodes_relocated; 4375 } 4376 4377 /* 4378 * called after snapshot is created. migrate block reservation 4379 * and create reloc root for the newly created snapshot 4380 */ 4381 void btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4382 struct btrfs_pending_snapshot *pending) 4383 { 4384 struct btrfs_root *root = pending->root; 4385 struct btrfs_root *reloc_root; 4386 struct btrfs_root *new_root; 4387 struct reloc_control *rc; 4388 int ret; 4389 4390 if (!root->reloc_root) 4391 return; 4392 4393 rc = root->fs_info->reloc_ctl; 4394 rc->merging_rsv_size += rc->nodes_relocated; 4395 4396 if (rc->merge_reloc_tree) { 4397 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4398 rc->block_rsv, 4399 rc->nodes_relocated); 4400 BUG_ON(ret); 4401 } 4402 4403 new_root = pending->snap; 4404 reloc_root = create_reloc_root(trans, root->reloc_root, 4405 new_root->root_key.objectid); 4406 4407 __add_reloc_root(reloc_root); 4408 new_root->reloc_root = reloc_root; 4409 4410 if (rc->create_reloc_tree) { 4411 ret = clone_backref_node(trans, rc, root, reloc_root); 4412 BUG_ON(ret); 4413 } 4414 } 4415