1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include <linux/error-injection.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "locking.h" 18 #include "btrfs_inode.h" 19 #include "async-thread.h" 20 #include "free-space-cache.h" 21 #include "qgroup.h" 22 #include "print-tree.h" 23 #include "delalloc-space.h" 24 #include "block-group.h" 25 #include "backref.h" 26 #include "misc.h" 27 #include "subpage.h" 28 #include "zoned.h" 29 #include "inode-item.h" 30 #include "space-info.h" 31 #include "fs.h" 32 #include "accessors.h" 33 #include "extent-tree.h" 34 #include "root-tree.h" 35 #include "file-item.h" 36 #include "relocation.h" 37 #include "super.h" 38 #include "tree-checker.h" 39 40 /* 41 * Relocation overview 42 * 43 * [What does relocation do] 44 * 45 * The objective of relocation is to relocate all extents of the target block 46 * group to other block groups. 47 * This is utilized by resize (shrink only), profile converting, compacting 48 * space, or balance routine to spread chunks over devices. 49 * 50 * Before | After 51 * ------------------------------------------------------------------ 52 * BG A: 10 data extents | BG A: deleted 53 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated) 54 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated) 55 * 56 * [How does relocation work] 57 * 58 * 1. Mark the target block group read-only 59 * New extents won't be allocated from the target block group. 60 * 61 * 2.1 Record each extent in the target block group 62 * To build a proper map of extents to be relocated. 63 * 64 * 2.2 Build data reloc tree and reloc trees 65 * Data reloc tree will contain an inode, recording all newly relocated 66 * data extents. 67 * There will be only one data reloc tree for one data block group. 68 * 69 * Reloc tree will be a special snapshot of its source tree, containing 70 * relocated tree blocks. 71 * Each tree referring to a tree block in target block group will get its 72 * reloc tree built. 73 * 74 * 2.3 Swap source tree with its corresponding reloc tree 75 * Each involved tree only refers to new extents after swap. 76 * 77 * 3. Cleanup reloc trees and data reloc tree. 78 * As old extents in the target block group are still referenced by reloc 79 * trees, we need to clean them up before really freeing the target block 80 * group. 81 * 82 * The main complexity is in steps 2.2 and 2.3. 83 * 84 * The entry point of relocation is relocate_block_group() function. 85 */ 86 87 #define RELOCATION_RESERVED_NODES 256 88 /* 89 * map address of tree root to tree 90 */ 91 struct mapping_node { 92 struct { 93 struct rb_node rb_node; 94 u64 bytenr; 95 }; /* Use rb_simle_node for search/insert */ 96 void *data; 97 }; 98 99 struct mapping_tree { 100 struct rb_root rb_root; 101 spinlock_t lock; 102 }; 103 104 /* 105 * present a tree block to process 106 */ 107 struct tree_block { 108 struct { 109 struct rb_node rb_node; 110 u64 bytenr; 111 }; /* Use rb_simple_node for search/insert */ 112 u64 owner; 113 struct btrfs_key key; 114 unsigned int level:8; 115 unsigned int key_ready:1; 116 }; 117 118 #define MAX_EXTENTS 128 119 120 struct file_extent_cluster { 121 u64 start; 122 u64 end; 123 u64 boundary[MAX_EXTENTS]; 124 unsigned int nr; 125 }; 126 127 struct reloc_control { 128 /* block group to relocate */ 129 struct btrfs_block_group *block_group; 130 /* extent tree */ 131 struct btrfs_root *extent_root; 132 /* inode for moving data */ 133 struct inode *data_inode; 134 135 struct btrfs_block_rsv *block_rsv; 136 137 struct btrfs_backref_cache backref_cache; 138 139 struct file_extent_cluster cluster; 140 /* tree blocks have been processed */ 141 struct extent_io_tree processed_blocks; 142 /* map start of tree root to corresponding reloc tree */ 143 struct mapping_tree reloc_root_tree; 144 /* list of reloc trees */ 145 struct list_head reloc_roots; 146 /* list of subvolume trees that get relocated */ 147 struct list_head dirty_subvol_roots; 148 /* size of metadata reservation for merging reloc trees */ 149 u64 merging_rsv_size; 150 /* size of relocated tree nodes */ 151 u64 nodes_relocated; 152 /* reserved size for block group relocation*/ 153 u64 reserved_bytes; 154 155 u64 search_start; 156 u64 extents_found; 157 158 unsigned int stage:8; 159 unsigned int create_reloc_tree:1; 160 unsigned int merge_reloc_tree:1; 161 unsigned int found_file_extent:1; 162 }; 163 164 /* stages of data relocation */ 165 #define MOVE_DATA_EXTENTS 0 166 #define UPDATE_DATA_PTRS 1 167 168 static void mark_block_processed(struct reloc_control *rc, 169 struct btrfs_backref_node *node) 170 { 171 u32 blocksize; 172 173 if (node->level == 0 || 174 in_range(node->bytenr, rc->block_group->start, 175 rc->block_group->length)) { 176 blocksize = rc->extent_root->fs_info->nodesize; 177 set_extent_bits(&rc->processed_blocks, node->bytenr, 178 node->bytenr + blocksize - 1, EXTENT_DIRTY); 179 } 180 node->processed = 1; 181 } 182 183 184 static void mapping_tree_init(struct mapping_tree *tree) 185 { 186 tree->rb_root = RB_ROOT; 187 spin_lock_init(&tree->lock); 188 } 189 190 /* 191 * walk up backref nodes until reach node presents tree root 192 */ 193 static struct btrfs_backref_node *walk_up_backref( 194 struct btrfs_backref_node *node, 195 struct btrfs_backref_edge *edges[], int *index) 196 { 197 struct btrfs_backref_edge *edge; 198 int idx = *index; 199 200 while (!list_empty(&node->upper)) { 201 edge = list_entry(node->upper.next, 202 struct btrfs_backref_edge, list[LOWER]); 203 edges[idx++] = edge; 204 node = edge->node[UPPER]; 205 } 206 BUG_ON(node->detached); 207 *index = idx; 208 return node; 209 } 210 211 /* 212 * walk down backref nodes to find start of next reference path 213 */ 214 static struct btrfs_backref_node *walk_down_backref( 215 struct btrfs_backref_edge *edges[], int *index) 216 { 217 struct btrfs_backref_edge *edge; 218 struct btrfs_backref_node *lower; 219 int idx = *index; 220 221 while (idx > 0) { 222 edge = edges[idx - 1]; 223 lower = edge->node[LOWER]; 224 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 225 idx--; 226 continue; 227 } 228 edge = list_entry(edge->list[LOWER].next, 229 struct btrfs_backref_edge, list[LOWER]); 230 edges[idx - 1] = edge; 231 *index = idx; 232 return edge->node[UPPER]; 233 } 234 *index = 0; 235 return NULL; 236 } 237 238 static void update_backref_node(struct btrfs_backref_cache *cache, 239 struct btrfs_backref_node *node, u64 bytenr) 240 { 241 struct rb_node *rb_node; 242 rb_erase(&node->rb_node, &cache->rb_root); 243 node->bytenr = bytenr; 244 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node); 245 if (rb_node) 246 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST); 247 } 248 249 /* 250 * update backref cache after a transaction commit 251 */ 252 static int update_backref_cache(struct btrfs_trans_handle *trans, 253 struct btrfs_backref_cache *cache) 254 { 255 struct btrfs_backref_node *node; 256 int level = 0; 257 258 if (cache->last_trans == 0) { 259 cache->last_trans = trans->transid; 260 return 0; 261 } 262 263 if (cache->last_trans == trans->transid) 264 return 0; 265 266 /* 267 * detached nodes are used to avoid unnecessary backref 268 * lookup. transaction commit changes the extent tree. 269 * so the detached nodes are no longer useful. 270 */ 271 while (!list_empty(&cache->detached)) { 272 node = list_entry(cache->detached.next, 273 struct btrfs_backref_node, list); 274 btrfs_backref_cleanup_node(cache, node); 275 } 276 277 while (!list_empty(&cache->changed)) { 278 node = list_entry(cache->changed.next, 279 struct btrfs_backref_node, list); 280 list_del_init(&node->list); 281 BUG_ON(node->pending); 282 update_backref_node(cache, node, node->new_bytenr); 283 } 284 285 /* 286 * some nodes can be left in the pending list if there were 287 * errors during processing the pending nodes. 288 */ 289 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 290 list_for_each_entry(node, &cache->pending[level], list) { 291 BUG_ON(!node->pending); 292 if (node->bytenr == node->new_bytenr) 293 continue; 294 update_backref_node(cache, node, node->new_bytenr); 295 } 296 } 297 298 cache->last_trans = 0; 299 return 1; 300 } 301 302 static bool reloc_root_is_dead(struct btrfs_root *root) 303 { 304 /* 305 * Pair with set_bit/clear_bit in clean_dirty_subvols and 306 * btrfs_update_reloc_root. We need to see the updated bit before 307 * trying to access reloc_root 308 */ 309 smp_rmb(); 310 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) 311 return true; 312 return false; 313 } 314 315 /* 316 * Check if this subvolume tree has valid reloc tree. 317 * 318 * Reloc tree after swap is considered dead, thus not considered as valid. 319 * This is enough for most callers, as they don't distinguish dead reloc root 320 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a 321 * special case. 322 */ 323 static bool have_reloc_root(struct btrfs_root *root) 324 { 325 if (reloc_root_is_dead(root)) 326 return false; 327 if (!root->reloc_root) 328 return false; 329 return true; 330 } 331 332 int btrfs_should_ignore_reloc_root(struct btrfs_root *root) 333 { 334 struct btrfs_root *reloc_root; 335 336 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 337 return 0; 338 339 /* This root has been merged with its reloc tree, we can ignore it */ 340 if (reloc_root_is_dead(root)) 341 return 1; 342 343 reloc_root = root->reloc_root; 344 if (!reloc_root) 345 return 0; 346 347 if (btrfs_header_generation(reloc_root->commit_root) == 348 root->fs_info->running_transaction->transid) 349 return 0; 350 /* 351 * if there is reloc tree and it was created in previous 352 * transaction backref lookup can find the reloc tree, 353 * so backref node for the fs tree root is useless for 354 * relocation. 355 */ 356 return 1; 357 } 358 359 /* 360 * find reloc tree by address of tree root 361 */ 362 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr) 363 { 364 struct reloc_control *rc = fs_info->reloc_ctl; 365 struct rb_node *rb_node; 366 struct mapping_node *node; 367 struct btrfs_root *root = NULL; 368 369 ASSERT(rc); 370 spin_lock(&rc->reloc_root_tree.lock); 371 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr); 372 if (rb_node) { 373 node = rb_entry(rb_node, struct mapping_node, rb_node); 374 root = node->data; 375 } 376 spin_unlock(&rc->reloc_root_tree.lock); 377 return btrfs_grab_root(root); 378 } 379 380 /* 381 * For useless nodes, do two major clean ups: 382 * 383 * - Cleanup the children edges and nodes 384 * If child node is also orphan (no parent) during cleanup, then the child 385 * node will also be cleaned up. 386 * 387 * - Freeing up leaves (level 0), keeps nodes detached 388 * For nodes, the node is still cached as "detached" 389 * 390 * Return false if @node is not in the @useless_nodes list. 391 * Return true if @node is in the @useless_nodes list. 392 */ 393 static bool handle_useless_nodes(struct reloc_control *rc, 394 struct btrfs_backref_node *node) 395 { 396 struct btrfs_backref_cache *cache = &rc->backref_cache; 397 struct list_head *useless_node = &cache->useless_node; 398 bool ret = false; 399 400 while (!list_empty(useless_node)) { 401 struct btrfs_backref_node *cur; 402 403 cur = list_first_entry(useless_node, struct btrfs_backref_node, 404 list); 405 list_del_init(&cur->list); 406 407 /* Only tree root nodes can be added to @useless_nodes */ 408 ASSERT(list_empty(&cur->upper)); 409 410 if (cur == node) 411 ret = true; 412 413 /* The node is the lowest node */ 414 if (cur->lowest) { 415 list_del_init(&cur->lower); 416 cur->lowest = 0; 417 } 418 419 /* Cleanup the lower edges */ 420 while (!list_empty(&cur->lower)) { 421 struct btrfs_backref_edge *edge; 422 struct btrfs_backref_node *lower; 423 424 edge = list_entry(cur->lower.next, 425 struct btrfs_backref_edge, list[UPPER]); 426 list_del(&edge->list[UPPER]); 427 list_del(&edge->list[LOWER]); 428 lower = edge->node[LOWER]; 429 btrfs_backref_free_edge(cache, edge); 430 431 /* Child node is also orphan, queue for cleanup */ 432 if (list_empty(&lower->upper)) 433 list_add(&lower->list, useless_node); 434 } 435 /* Mark this block processed for relocation */ 436 mark_block_processed(rc, cur); 437 438 /* 439 * Backref nodes for tree leaves are deleted from the cache. 440 * Backref nodes for upper level tree blocks are left in the 441 * cache to avoid unnecessary backref lookup. 442 */ 443 if (cur->level > 0) { 444 list_add(&cur->list, &cache->detached); 445 cur->detached = 1; 446 } else { 447 rb_erase(&cur->rb_node, &cache->rb_root); 448 btrfs_backref_free_node(cache, cur); 449 } 450 } 451 return ret; 452 } 453 454 /* 455 * Build backref tree for a given tree block. Root of the backref tree 456 * corresponds the tree block, leaves of the backref tree correspond roots of 457 * b-trees that reference the tree block. 458 * 459 * The basic idea of this function is check backrefs of a given block to find 460 * upper level blocks that reference the block, and then check backrefs of 461 * these upper level blocks recursively. The recursion stops when tree root is 462 * reached or backrefs for the block is cached. 463 * 464 * NOTE: if we find that backrefs for a block are cached, we know backrefs for 465 * all upper level blocks that directly/indirectly reference the block are also 466 * cached. 467 */ 468 static noinline_for_stack struct btrfs_backref_node *build_backref_tree( 469 struct reloc_control *rc, struct btrfs_key *node_key, 470 int level, u64 bytenr) 471 { 472 struct btrfs_backref_iter *iter; 473 struct btrfs_backref_cache *cache = &rc->backref_cache; 474 /* For searching parent of TREE_BLOCK_REF */ 475 struct btrfs_path *path; 476 struct btrfs_backref_node *cur; 477 struct btrfs_backref_node *node = NULL; 478 struct btrfs_backref_edge *edge; 479 int ret; 480 int err = 0; 481 482 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info); 483 if (!iter) 484 return ERR_PTR(-ENOMEM); 485 path = btrfs_alloc_path(); 486 if (!path) { 487 err = -ENOMEM; 488 goto out; 489 } 490 491 node = btrfs_backref_alloc_node(cache, bytenr, level); 492 if (!node) { 493 err = -ENOMEM; 494 goto out; 495 } 496 497 node->lowest = 1; 498 cur = node; 499 500 /* Breadth-first search to build backref cache */ 501 do { 502 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key, 503 cur); 504 if (ret < 0) { 505 err = ret; 506 goto out; 507 } 508 edge = list_first_entry_or_null(&cache->pending_edge, 509 struct btrfs_backref_edge, list[UPPER]); 510 /* 511 * The pending list isn't empty, take the first block to 512 * process 513 */ 514 if (edge) { 515 list_del_init(&edge->list[UPPER]); 516 cur = edge->node[UPPER]; 517 } 518 } while (edge); 519 520 /* Finish the upper linkage of newly added edges/nodes */ 521 ret = btrfs_backref_finish_upper_links(cache, node); 522 if (ret < 0) { 523 err = ret; 524 goto out; 525 } 526 527 if (handle_useless_nodes(rc, node)) 528 node = NULL; 529 out: 530 btrfs_backref_iter_free(iter); 531 btrfs_free_path(path); 532 if (err) { 533 btrfs_backref_error_cleanup(cache, node); 534 return ERR_PTR(err); 535 } 536 ASSERT(!node || !node->detached); 537 ASSERT(list_empty(&cache->useless_node) && 538 list_empty(&cache->pending_edge)); 539 return node; 540 } 541 542 /* 543 * helper to add backref node for the newly created snapshot. 544 * the backref node is created by cloning backref node that 545 * corresponds to root of source tree 546 */ 547 static int clone_backref_node(struct btrfs_trans_handle *trans, 548 struct reloc_control *rc, 549 struct btrfs_root *src, 550 struct btrfs_root *dest) 551 { 552 struct btrfs_root *reloc_root = src->reloc_root; 553 struct btrfs_backref_cache *cache = &rc->backref_cache; 554 struct btrfs_backref_node *node = NULL; 555 struct btrfs_backref_node *new_node; 556 struct btrfs_backref_edge *edge; 557 struct btrfs_backref_edge *new_edge; 558 struct rb_node *rb_node; 559 560 if (cache->last_trans > 0) 561 update_backref_cache(trans, cache); 562 563 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start); 564 if (rb_node) { 565 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 566 if (node->detached) 567 node = NULL; 568 else 569 BUG_ON(node->new_bytenr != reloc_root->node->start); 570 } 571 572 if (!node) { 573 rb_node = rb_simple_search(&cache->rb_root, 574 reloc_root->commit_root->start); 575 if (rb_node) { 576 node = rb_entry(rb_node, struct btrfs_backref_node, 577 rb_node); 578 BUG_ON(node->detached); 579 } 580 } 581 582 if (!node) 583 return 0; 584 585 new_node = btrfs_backref_alloc_node(cache, dest->node->start, 586 node->level); 587 if (!new_node) 588 return -ENOMEM; 589 590 new_node->lowest = node->lowest; 591 new_node->checked = 1; 592 new_node->root = btrfs_grab_root(dest); 593 ASSERT(new_node->root); 594 595 if (!node->lowest) { 596 list_for_each_entry(edge, &node->lower, list[UPPER]) { 597 new_edge = btrfs_backref_alloc_edge(cache); 598 if (!new_edge) 599 goto fail; 600 601 btrfs_backref_link_edge(new_edge, edge->node[LOWER], 602 new_node, LINK_UPPER); 603 } 604 } else { 605 list_add_tail(&new_node->lower, &cache->leaves); 606 } 607 608 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr, 609 &new_node->rb_node); 610 if (rb_node) 611 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST); 612 613 if (!new_node->lowest) { 614 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 615 list_add_tail(&new_edge->list[LOWER], 616 &new_edge->node[LOWER]->upper); 617 } 618 } 619 return 0; 620 fail: 621 while (!list_empty(&new_node->lower)) { 622 new_edge = list_entry(new_node->lower.next, 623 struct btrfs_backref_edge, list[UPPER]); 624 list_del(&new_edge->list[UPPER]); 625 btrfs_backref_free_edge(cache, new_edge); 626 } 627 btrfs_backref_free_node(cache, new_node); 628 return -ENOMEM; 629 } 630 631 /* 632 * helper to add 'address of tree root -> reloc tree' mapping 633 */ 634 static int __must_check __add_reloc_root(struct btrfs_root *root) 635 { 636 struct btrfs_fs_info *fs_info = root->fs_info; 637 struct rb_node *rb_node; 638 struct mapping_node *node; 639 struct reloc_control *rc = fs_info->reloc_ctl; 640 641 node = kmalloc(sizeof(*node), GFP_NOFS); 642 if (!node) 643 return -ENOMEM; 644 645 node->bytenr = root->commit_root->start; 646 node->data = root; 647 648 spin_lock(&rc->reloc_root_tree.lock); 649 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 650 node->bytenr, &node->rb_node); 651 spin_unlock(&rc->reloc_root_tree.lock); 652 if (rb_node) { 653 btrfs_err(fs_info, 654 "Duplicate root found for start=%llu while inserting into relocation tree", 655 node->bytenr); 656 return -EEXIST; 657 } 658 659 list_add_tail(&root->root_list, &rc->reloc_roots); 660 return 0; 661 } 662 663 /* 664 * helper to delete the 'address of tree root -> reloc tree' 665 * mapping 666 */ 667 static void __del_reloc_root(struct btrfs_root *root) 668 { 669 struct btrfs_fs_info *fs_info = root->fs_info; 670 struct rb_node *rb_node; 671 struct mapping_node *node = NULL; 672 struct reloc_control *rc = fs_info->reloc_ctl; 673 bool put_ref = false; 674 675 if (rc && root->node) { 676 spin_lock(&rc->reloc_root_tree.lock); 677 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 678 root->commit_root->start); 679 if (rb_node) { 680 node = rb_entry(rb_node, struct mapping_node, rb_node); 681 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 682 RB_CLEAR_NODE(&node->rb_node); 683 } 684 spin_unlock(&rc->reloc_root_tree.lock); 685 ASSERT(!node || (struct btrfs_root *)node->data == root); 686 } 687 688 /* 689 * We only put the reloc root here if it's on the list. There's a lot 690 * of places where the pattern is to splice the rc->reloc_roots, process 691 * the reloc roots, and then add the reloc root back onto 692 * rc->reloc_roots. If we call __del_reloc_root while it's off of the 693 * list we don't want the reference being dropped, because the guy 694 * messing with the list is in charge of the reference. 695 */ 696 spin_lock(&fs_info->trans_lock); 697 if (!list_empty(&root->root_list)) { 698 put_ref = true; 699 list_del_init(&root->root_list); 700 } 701 spin_unlock(&fs_info->trans_lock); 702 if (put_ref) 703 btrfs_put_root(root); 704 kfree(node); 705 } 706 707 /* 708 * helper to update the 'address of tree root -> reloc tree' 709 * mapping 710 */ 711 static int __update_reloc_root(struct btrfs_root *root) 712 { 713 struct btrfs_fs_info *fs_info = root->fs_info; 714 struct rb_node *rb_node; 715 struct mapping_node *node = NULL; 716 struct reloc_control *rc = fs_info->reloc_ctl; 717 718 spin_lock(&rc->reloc_root_tree.lock); 719 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 720 root->commit_root->start); 721 if (rb_node) { 722 node = rb_entry(rb_node, struct mapping_node, rb_node); 723 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 724 } 725 spin_unlock(&rc->reloc_root_tree.lock); 726 727 if (!node) 728 return 0; 729 BUG_ON((struct btrfs_root *)node->data != root); 730 731 spin_lock(&rc->reloc_root_tree.lock); 732 node->bytenr = root->node->start; 733 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 734 node->bytenr, &node->rb_node); 735 spin_unlock(&rc->reloc_root_tree.lock); 736 if (rb_node) 737 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST); 738 return 0; 739 } 740 741 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 742 struct btrfs_root *root, u64 objectid) 743 { 744 struct btrfs_fs_info *fs_info = root->fs_info; 745 struct btrfs_root *reloc_root; 746 struct extent_buffer *eb; 747 struct btrfs_root_item *root_item; 748 struct btrfs_key root_key; 749 int ret = 0; 750 bool must_abort = false; 751 752 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 753 if (!root_item) 754 return ERR_PTR(-ENOMEM); 755 756 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 757 root_key.type = BTRFS_ROOT_ITEM_KEY; 758 root_key.offset = objectid; 759 760 if (root->root_key.objectid == objectid) { 761 u64 commit_root_gen; 762 763 /* called by btrfs_init_reloc_root */ 764 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 765 BTRFS_TREE_RELOC_OBJECTID); 766 if (ret) 767 goto fail; 768 769 /* 770 * Set the last_snapshot field to the generation of the commit 771 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 772 * correctly (returns true) when the relocation root is created 773 * either inside the critical section of a transaction commit 774 * (through transaction.c:qgroup_account_snapshot()) and when 775 * it's created before the transaction commit is started. 776 */ 777 commit_root_gen = btrfs_header_generation(root->commit_root); 778 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 779 } else { 780 /* 781 * called by btrfs_reloc_post_snapshot_hook. 782 * the source tree is a reloc tree, all tree blocks 783 * modified after it was created have RELOC flag 784 * set in their headers. so it's OK to not update 785 * the 'last_snapshot'. 786 */ 787 ret = btrfs_copy_root(trans, root, root->node, &eb, 788 BTRFS_TREE_RELOC_OBJECTID); 789 if (ret) 790 goto fail; 791 } 792 793 /* 794 * We have changed references at this point, we must abort the 795 * transaction if anything fails. 796 */ 797 must_abort = true; 798 799 memcpy(root_item, &root->root_item, sizeof(*root_item)); 800 btrfs_set_root_bytenr(root_item, eb->start); 801 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 802 btrfs_set_root_generation(root_item, trans->transid); 803 804 if (root->root_key.objectid == objectid) { 805 btrfs_set_root_refs(root_item, 0); 806 memset(&root_item->drop_progress, 0, 807 sizeof(struct btrfs_disk_key)); 808 btrfs_set_root_drop_level(root_item, 0); 809 } 810 811 btrfs_tree_unlock(eb); 812 free_extent_buffer(eb); 813 814 ret = btrfs_insert_root(trans, fs_info->tree_root, 815 &root_key, root_item); 816 if (ret) 817 goto fail; 818 819 kfree(root_item); 820 821 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); 822 if (IS_ERR(reloc_root)) { 823 ret = PTR_ERR(reloc_root); 824 goto abort; 825 } 826 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 827 reloc_root->last_trans = trans->transid; 828 return reloc_root; 829 fail: 830 kfree(root_item); 831 abort: 832 if (must_abort) 833 btrfs_abort_transaction(trans, ret); 834 return ERR_PTR(ret); 835 } 836 837 /* 838 * create reloc tree for a given fs tree. reloc tree is just a 839 * snapshot of the fs tree with special root objectid. 840 * 841 * The reloc_root comes out of here with two references, one for 842 * root->reloc_root, and another for being on the rc->reloc_roots list. 843 */ 844 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 845 struct btrfs_root *root) 846 { 847 struct btrfs_fs_info *fs_info = root->fs_info; 848 struct btrfs_root *reloc_root; 849 struct reloc_control *rc = fs_info->reloc_ctl; 850 struct btrfs_block_rsv *rsv; 851 int clear_rsv = 0; 852 int ret; 853 854 if (!rc) 855 return 0; 856 857 /* 858 * The subvolume has reloc tree but the swap is finished, no need to 859 * create/update the dead reloc tree 860 */ 861 if (reloc_root_is_dead(root)) 862 return 0; 863 864 /* 865 * This is subtle but important. We do not do 866 * record_root_in_transaction for reloc roots, instead we record their 867 * corresponding fs root, and then here we update the last trans for the 868 * reloc root. This means that we have to do this for the entire life 869 * of the reloc root, regardless of which stage of the relocation we are 870 * in. 871 */ 872 if (root->reloc_root) { 873 reloc_root = root->reloc_root; 874 reloc_root->last_trans = trans->transid; 875 return 0; 876 } 877 878 /* 879 * We are merging reloc roots, we do not need new reloc trees. Also 880 * reloc trees never need their own reloc tree. 881 */ 882 if (!rc->create_reloc_tree || 883 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 884 return 0; 885 886 if (!trans->reloc_reserved) { 887 rsv = trans->block_rsv; 888 trans->block_rsv = rc->block_rsv; 889 clear_rsv = 1; 890 } 891 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 892 if (clear_rsv) 893 trans->block_rsv = rsv; 894 if (IS_ERR(reloc_root)) 895 return PTR_ERR(reloc_root); 896 897 ret = __add_reloc_root(reloc_root); 898 ASSERT(ret != -EEXIST); 899 if (ret) { 900 /* Pairs with create_reloc_root */ 901 btrfs_put_root(reloc_root); 902 return ret; 903 } 904 root->reloc_root = btrfs_grab_root(reloc_root); 905 return 0; 906 } 907 908 /* 909 * update root item of reloc tree 910 */ 911 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 912 struct btrfs_root *root) 913 { 914 struct btrfs_fs_info *fs_info = root->fs_info; 915 struct btrfs_root *reloc_root; 916 struct btrfs_root_item *root_item; 917 int ret; 918 919 if (!have_reloc_root(root)) 920 return 0; 921 922 reloc_root = root->reloc_root; 923 root_item = &reloc_root->root_item; 924 925 /* 926 * We are probably ok here, but __del_reloc_root() will drop its ref of 927 * the root. We have the ref for root->reloc_root, but just in case 928 * hold it while we update the reloc root. 929 */ 930 btrfs_grab_root(reloc_root); 931 932 /* root->reloc_root will stay until current relocation finished */ 933 if (fs_info->reloc_ctl->merge_reloc_tree && 934 btrfs_root_refs(root_item) == 0) { 935 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 936 /* 937 * Mark the tree as dead before we change reloc_root so 938 * have_reloc_root will not touch it from now on. 939 */ 940 smp_wmb(); 941 __del_reloc_root(reloc_root); 942 } 943 944 if (reloc_root->commit_root != reloc_root->node) { 945 __update_reloc_root(reloc_root); 946 btrfs_set_root_node(root_item, reloc_root->node); 947 free_extent_buffer(reloc_root->commit_root); 948 reloc_root->commit_root = btrfs_root_node(reloc_root); 949 } 950 951 ret = btrfs_update_root(trans, fs_info->tree_root, 952 &reloc_root->root_key, root_item); 953 btrfs_put_root(reloc_root); 954 return ret; 955 } 956 957 /* 958 * helper to find first cached inode with inode number >= objectid 959 * in a subvolume 960 */ 961 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 962 { 963 struct rb_node *node; 964 struct rb_node *prev; 965 struct btrfs_inode *entry; 966 struct inode *inode; 967 968 spin_lock(&root->inode_lock); 969 again: 970 node = root->inode_tree.rb_node; 971 prev = NULL; 972 while (node) { 973 prev = node; 974 entry = rb_entry(node, struct btrfs_inode, rb_node); 975 976 if (objectid < btrfs_ino(entry)) 977 node = node->rb_left; 978 else if (objectid > btrfs_ino(entry)) 979 node = node->rb_right; 980 else 981 break; 982 } 983 if (!node) { 984 while (prev) { 985 entry = rb_entry(prev, struct btrfs_inode, rb_node); 986 if (objectid <= btrfs_ino(entry)) { 987 node = prev; 988 break; 989 } 990 prev = rb_next(prev); 991 } 992 } 993 while (node) { 994 entry = rb_entry(node, struct btrfs_inode, rb_node); 995 inode = igrab(&entry->vfs_inode); 996 if (inode) { 997 spin_unlock(&root->inode_lock); 998 return inode; 999 } 1000 1001 objectid = btrfs_ino(entry) + 1; 1002 if (cond_resched_lock(&root->inode_lock)) 1003 goto again; 1004 1005 node = rb_next(node); 1006 } 1007 spin_unlock(&root->inode_lock); 1008 return NULL; 1009 } 1010 1011 /* 1012 * get new location of data 1013 */ 1014 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1015 u64 bytenr, u64 num_bytes) 1016 { 1017 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1018 struct btrfs_path *path; 1019 struct btrfs_file_extent_item *fi; 1020 struct extent_buffer *leaf; 1021 int ret; 1022 1023 path = btrfs_alloc_path(); 1024 if (!path) 1025 return -ENOMEM; 1026 1027 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1028 ret = btrfs_lookup_file_extent(NULL, root, path, 1029 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 1030 if (ret < 0) 1031 goto out; 1032 if (ret > 0) { 1033 ret = -ENOENT; 1034 goto out; 1035 } 1036 1037 leaf = path->nodes[0]; 1038 fi = btrfs_item_ptr(leaf, path->slots[0], 1039 struct btrfs_file_extent_item); 1040 1041 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1042 btrfs_file_extent_compression(leaf, fi) || 1043 btrfs_file_extent_encryption(leaf, fi) || 1044 btrfs_file_extent_other_encoding(leaf, fi)); 1045 1046 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1047 ret = -EINVAL; 1048 goto out; 1049 } 1050 1051 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1052 ret = 0; 1053 out: 1054 btrfs_free_path(path); 1055 return ret; 1056 } 1057 1058 /* 1059 * update file extent items in the tree leaf to point to 1060 * the new locations. 1061 */ 1062 static noinline_for_stack 1063 int replace_file_extents(struct btrfs_trans_handle *trans, 1064 struct reloc_control *rc, 1065 struct btrfs_root *root, 1066 struct extent_buffer *leaf) 1067 { 1068 struct btrfs_fs_info *fs_info = root->fs_info; 1069 struct btrfs_key key; 1070 struct btrfs_file_extent_item *fi; 1071 struct inode *inode = NULL; 1072 u64 parent; 1073 u64 bytenr; 1074 u64 new_bytenr = 0; 1075 u64 num_bytes; 1076 u64 end; 1077 u32 nritems; 1078 u32 i; 1079 int ret = 0; 1080 int first = 1; 1081 int dirty = 0; 1082 1083 if (rc->stage != UPDATE_DATA_PTRS) 1084 return 0; 1085 1086 /* reloc trees always use full backref */ 1087 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1088 parent = leaf->start; 1089 else 1090 parent = 0; 1091 1092 nritems = btrfs_header_nritems(leaf); 1093 for (i = 0; i < nritems; i++) { 1094 struct btrfs_ref ref = { 0 }; 1095 1096 cond_resched(); 1097 btrfs_item_key_to_cpu(leaf, &key, i); 1098 if (key.type != BTRFS_EXTENT_DATA_KEY) 1099 continue; 1100 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1101 if (btrfs_file_extent_type(leaf, fi) == 1102 BTRFS_FILE_EXTENT_INLINE) 1103 continue; 1104 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1105 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1106 if (bytenr == 0) 1107 continue; 1108 if (!in_range(bytenr, rc->block_group->start, 1109 rc->block_group->length)) 1110 continue; 1111 1112 /* 1113 * if we are modifying block in fs tree, wait for read_folio 1114 * to complete and drop the extent cache 1115 */ 1116 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1117 if (first) { 1118 inode = find_next_inode(root, key.objectid); 1119 first = 0; 1120 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1121 btrfs_add_delayed_iput(BTRFS_I(inode)); 1122 inode = find_next_inode(root, key.objectid); 1123 } 1124 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1125 struct extent_state *cached_state = NULL; 1126 1127 end = key.offset + 1128 btrfs_file_extent_num_bytes(leaf, fi); 1129 WARN_ON(!IS_ALIGNED(key.offset, 1130 fs_info->sectorsize)); 1131 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1132 end--; 1133 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1134 key.offset, end, 1135 &cached_state); 1136 if (!ret) 1137 continue; 1138 1139 btrfs_drop_extent_map_range(BTRFS_I(inode), 1140 key.offset, end, true); 1141 unlock_extent(&BTRFS_I(inode)->io_tree, 1142 key.offset, end, &cached_state); 1143 } 1144 } 1145 1146 ret = get_new_location(rc->data_inode, &new_bytenr, 1147 bytenr, num_bytes); 1148 if (ret) { 1149 /* 1150 * Don't have to abort since we've not changed anything 1151 * in the file extent yet. 1152 */ 1153 break; 1154 } 1155 1156 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1157 dirty = 1; 1158 1159 key.offset -= btrfs_file_extent_offset(leaf, fi); 1160 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1161 num_bytes, parent); 1162 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1163 key.objectid, key.offset, 1164 root->root_key.objectid, false); 1165 ret = btrfs_inc_extent_ref(trans, &ref); 1166 if (ret) { 1167 btrfs_abort_transaction(trans, ret); 1168 break; 1169 } 1170 1171 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1172 num_bytes, parent); 1173 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1174 key.objectid, key.offset, 1175 root->root_key.objectid, false); 1176 ret = btrfs_free_extent(trans, &ref); 1177 if (ret) { 1178 btrfs_abort_transaction(trans, ret); 1179 break; 1180 } 1181 } 1182 if (dirty) 1183 btrfs_mark_buffer_dirty(leaf); 1184 if (inode) 1185 btrfs_add_delayed_iput(BTRFS_I(inode)); 1186 return ret; 1187 } 1188 1189 static noinline_for_stack 1190 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1191 struct btrfs_path *path, int level) 1192 { 1193 struct btrfs_disk_key key1; 1194 struct btrfs_disk_key key2; 1195 btrfs_node_key(eb, &key1, slot); 1196 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1197 return memcmp(&key1, &key2, sizeof(key1)); 1198 } 1199 1200 /* 1201 * try to replace tree blocks in fs tree with the new blocks 1202 * in reloc tree. tree blocks haven't been modified since the 1203 * reloc tree was create can be replaced. 1204 * 1205 * if a block was replaced, level of the block + 1 is returned. 1206 * if no block got replaced, 0 is returned. if there are other 1207 * errors, a negative error number is returned. 1208 */ 1209 static noinline_for_stack 1210 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1211 struct btrfs_root *dest, struct btrfs_root *src, 1212 struct btrfs_path *path, struct btrfs_key *next_key, 1213 int lowest_level, int max_level) 1214 { 1215 struct btrfs_fs_info *fs_info = dest->fs_info; 1216 struct extent_buffer *eb; 1217 struct extent_buffer *parent; 1218 struct btrfs_ref ref = { 0 }; 1219 struct btrfs_key key; 1220 u64 old_bytenr; 1221 u64 new_bytenr; 1222 u64 old_ptr_gen; 1223 u64 new_ptr_gen; 1224 u64 last_snapshot; 1225 u32 blocksize; 1226 int cow = 0; 1227 int level; 1228 int ret; 1229 int slot; 1230 1231 ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1232 ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1233 1234 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1235 again: 1236 slot = path->slots[lowest_level]; 1237 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1238 1239 eb = btrfs_lock_root_node(dest); 1240 level = btrfs_header_level(eb); 1241 1242 if (level < lowest_level) { 1243 btrfs_tree_unlock(eb); 1244 free_extent_buffer(eb); 1245 return 0; 1246 } 1247 1248 if (cow) { 1249 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb, 1250 BTRFS_NESTING_COW); 1251 if (ret) { 1252 btrfs_tree_unlock(eb); 1253 free_extent_buffer(eb); 1254 return ret; 1255 } 1256 } 1257 1258 if (next_key) { 1259 next_key->objectid = (u64)-1; 1260 next_key->type = (u8)-1; 1261 next_key->offset = (u64)-1; 1262 } 1263 1264 parent = eb; 1265 while (1) { 1266 level = btrfs_header_level(parent); 1267 ASSERT(level >= lowest_level); 1268 1269 ret = btrfs_bin_search(parent, &key, &slot); 1270 if (ret < 0) 1271 break; 1272 if (ret && slot > 0) 1273 slot--; 1274 1275 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1276 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1277 1278 old_bytenr = btrfs_node_blockptr(parent, slot); 1279 blocksize = fs_info->nodesize; 1280 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1281 1282 if (level <= max_level) { 1283 eb = path->nodes[level]; 1284 new_bytenr = btrfs_node_blockptr(eb, 1285 path->slots[level]); 1286 new_ptr_gen = btrfs_node_ptr_generation(eb, 1287 path->slots[level]); 1288 } else { 1289 new_bytenr = 0; 1290 new_ptr_gen = 0; 1291 } 1292 1293 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1294 ret = level; 1295 break; 1296 } 1297 1298 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1299 memcmp_node_keys(parent, slot, path, level)) { 1300 if (level <= lowest_level) { 1301 ret = 0; 1302 break; 1303 } 1304 1305 eb = btrfs_read_node_slot(parent, slot); 1306 if (IS_ERR(eb)) { 1307 ret = PTR_ERR(eb); 1308 break; 1309 } 1310 btrfs_tree_lock(eb); 1311 if (cow) { 1312 ret = btrfs_cow_block(trans, dest, eb, parent, 1313 slot, &eb, 1314 BTRFS_NESTING_COW); 1315 if (ret) { 1316 btrfs_tree_unlock(eb); 1317 free_extent_buffer(eb); 1318 break; 1319 } 1320 } 1321 1322 btrfs_tree_unlock(parent); 1323 free_extent_buffer(parent); 1324 1325 parent = eb; 1326 continue; 1327 } 1328 1329 if (!cow) { 1330 btrfs_tree_unlock(parent); 1331 free_extent_buffer(parent); 1332 cow = 1; 1333 goto again; 1334 } 1335 1336 btrfs_node_key_to_cpu(path->nodes[level], &key, 1337 path->slots[level]); 1338 btrfs_release_path(path); 1339 1340 path->lowest_level = level; 1341 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); 1342 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1343 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); 1344 path->lowest_level = 0; 1345 if (ret) { 1346 if (ret > 0) 1347 ret = -ENOENT; 1348 break; 1349 } 1350 1351 /* 1352 * Info qgroup to trace both subtrees. 1353 * 1354 * We must trace both trees. 1355 * 1) Tree reloc subtree 1356 * If not traced, we will leak data numbers 1357 * 2) Fs subtree 1358 * If not traced, we will double count old data 1359 * 1360 * We don't scan the subtree right now, but only record 1361 * the swapped tree blocks. 1362 * The real subtree rescan is delayed until we have new 1363 * CoW on the subtree root node before transaction commit. 1364 */ 1365 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 1366 rc->block_group, parent, slot, 1367 path->nodes[level], path->slots[level], 1368 last_snapshot); 1369 if (ret < 0) 1370 break; 1371 /* 1372 * swap blocks in fs tree and reloc tree. 1373 */ 1374 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1375 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1376 btrfs_mark_buffer_dirty(parent); 1377 1378 btrfs_set_node_blockptr(path->nodes[level], 1379 path->slots[level], old_bytenr); 1380 btrfs_set_node_ptr_generation(path->nodes[level], 1381 path->slots[level], old_ptr_gen); 1382 btrfs_mark_buffer_dirty(path->nodes[level]); 1383 1384 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, 1385 blocksize, path->nodes[level]->start); 1386 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid, 1387 0, true); 1388 ret = btrfs_inc_extent_ref(trans, &ref); 1389 if (ret) { 1390 btrfs_abort_transaction(trans, ret); 1391 break; 1392 } 1393 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1394 blocksize, 0); 1395 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0, 1396 true); 1397 ret = btrfs_inc_extent_ref(trans, &ref); 1398 if (ret) { 1399 btrfs_abort_transaction(trans, ret); 1400 break; 1401 } 1402 1403 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, 1404 blocksize, path->nodes[level]->start); 1405 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid, 1406 0, true); 1407 ret = btrfs_free_extent(trans, &ref); 1408 if (ret) { 1409 btrfs_abort_transaction(trans, ret); 1410 break; 1411 } 1412 1413 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, 1414 blocksize, 0); 1415 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 1416 0, true); 1417 ret = btrfs_free_extent(trans, &ref); 1418 if (ret) { 1419 btrfs_abort_transaction(trans, ret); 1420 break; 1421 } 1422 1423 btrfs_unlock_up_safe(path, 0); 1424 1425 ret = level; 1426 break; 1427 } 1428 btrfs_tree_unlock(parent); 1429 free_extent_buffer(parent); 1430 return ret; 1431 } 1432 1433 /* 1434 * helper to find next relocated block in reloc tree 1435 */ 1436 static noinline_for_stack 1437 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1438 int *level) 1439 { 1440 struct extent_buffer *eb; 1441 int i; 1442 u64 last_snapshot; 1443 u32 nritems; 1444 1445 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1446 1447 for (i = 0; i < *level; i++) { 1448 free_extent_buffer(path->nodes[i]); 1449 path->nodes[i] = NULL; 1450 } 1451 1452 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1453 eb = path->nodes[i]; 1454 nritems = btrfs_header_nritems(eb); 1455 while (path->slots[i] + 1 < nritems) { 1456 path->slots[i]++; 1457 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1458 last_snapshot) 1459 continue; 1460 1461 *level = i; 1462 return 0; 1463 } 1464 free_extent_buffer(path->nodes[i]); 1465 path->nodes[i] = NULL; 1466 } 1467 return 1; 1468 } 1469 1470 /* 1471 * walk down reloc tree to find relocated block of lowest level 1472 */ 1473 static noinline_for_stack 1474 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1475 int *level) 1476 { 1477 struct extent_buffer *eb = NULL; 1478 int i; 1479 u64 ptr_gen = 0; 1480 u64 last_snapshot; 1481 u32 nritems; 1482 1483 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1484 1485 for (i = *level; i > 0; i--) { 1486 eb = path->nodes[i]; 1487 nritems = btrfs_header_nritems(eb); 1488 while (path->slots[i] < nritems) { 1489 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1490 if (ptr_gen > last_snapshot) 1491 break; 1492 path->slots[i]++; 1493 } 1494 if (path->slots[i] >= nritems) { 1495 if (i == *level) 1496 break; 1497 *level = i + 1; 1498 return 0; 1499 } 1500 if (i == 1) { 1501 *level = i; 1502 return 0; 1503 } 1504 1505 eb = btrfs_read_node_slot(eb, path->slots[i]); 1506 if (IS_ERR(eb)) 1507 return PTR_ERR(eb); 1508 BUG_ON(btrfs_header_level(eb) != i - 1); 1509 path->nodes[i - 1] = eb; 1510 path->slots[i - 1] = 0; 1511 } 1512 return 1; 1513 } 1514 1515 /* 1516 * invalidate extent cache for file extents whose key in range of 1517 * [min_key, max_key) 1518 */ 1519 static int invalidate_extent_cache(struct btrfs_root *root, 1520 struct btrfs_key *min_key, 1521 struct btrfs_key *max_key) 1522 { 1523 struct btrfs_fs_info *fs_info = root->fs_info; 1524 struct inode *inode = NULL; 1525 u64 objectid; 1526 u64 start, end; 1527 u64 ino; 1528 1529 objectid = min_key->objectid; 1530 while (1) { 1531 struct extent_state *cached_state = NULL; 1532 1533 cond_resched(); 1534 iput(inode); 1535 1536 if (objectid > max_key->objectid) 1537 break; 1538 1539 inode = find_next_inode(root, objectid); 1540 if (!inode) 1541 break; 1542 ino = btrfs_ino(BTRFS_I(inode)); 1543 1544 if (ino > max_key->objectid) { 1545 iput(inode); 1546 break; 1547 } 1548 1549 objectid = ino + 1; 1550 if (!S_ISREG(inode->i_mode)) 1551 continue; 1552 1553 if (unlikely(min_key->objectid == ino)) { 1554 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1555 continue; 1556 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1557 start = 0; 1558 else { 1559 start = min_key->offset; 1560 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 1561 } 1562 } else { 1563 start = 0; 1564 } 1565 1566 if (unlikely(max_key->objectid == ino)) { 1567 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1568 continue; 1569 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1570 end = (u64)-1; 1571 } else { 1572 if (max_key->offset == 0) 1573 continue; 1574 end = max_key->offset; 1575 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1576 end--; 1577 } 1578 } else { 1579 end = (u64)-1; 1580 } 1581 1582 /* the lock_extent waits for read_folio to complete */ 1583 lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state); 1584 btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true); 1585 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state); 1586 } 1587 return 0; 1588 } 1589 1590 static int find_next_key(struct btrfs_path *path, int level, 1591 struct btrfs_key *key) 1592 1593 { 1594 while (level < BTRFS_MAX_LEVEL) { 1595 if (!path->nodes[level]) 1596 break; 1597 if (path->slots[level] + 1 < 1598 btrfs_header_nritems(path->nodes[level])) { 1599 btrfs_node_key_to_cpu(path->nodes[level], key, 1600 path->slots[level] + 1); 1601 return 0; 1602 } 1603 level++; 1604 } 1605 return 1; 1606 } 1607 1608 /* 1609 * Insert current subvolume into reloc_control::dirty_subvol_roots 1610 */ 1611 static int insert_dirty_subvol(struct btrfs_trans_handle *trans, 1612 struct reloc_control *rc, 1613 struct btrfs_root *root) 1614 { 1615 struct btrfs_root *reloc_root = root->reloc_root; 1616 struct btrfs_root_item *reloc_root_item; 1617 int ret; 1618 1619 /* @root must be a subvolume tree root with a valid reloc tree */ 1620 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1621 ASSERT(reloc_root); 1622 1623 reloc_root_item = &reloc_root->root_item; 1624 memset(&reloc_root_item->drop_progress, 0, 1625 sizeof(reloc_root_item->drop_progress)); 1626 btrfs_set_root_drop_level(reloc_root_item, 0); 1627 btrfs_set_root_refs(reloc_root_item, 0); 1628 ret = btrfs_update_reloc_root(trans, root); 1629 if (ret) 1630 return ret; 1631 1632 if (list_empty(&root->reloc_dirty_list)) { 1633 btrfs_grab_root(root); 1634 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 1635 } 1636 1637 return 0; 1638 } 1639 1640 static int clean_dirty_subvols(struct reloc_control *rc) 1641 { 1642 struct btrfs_root *root; 1643 struct btrfs_root *next; 1644 int ret = 0; 1645 int ret2; 1646 1647 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 1648 reloc_dirty_list) { 1649 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1650 /* Merged subvolume, cleanup its reloc root */ 1651 struct btrfs_root *reloc_root = root->reloc_root; 1652 1653 list_del_init(&root->reloc_dirty_list); 1654 root->reloc_root = NULL; 1655 /* 1656 * Need barrier to ensure clear_bit() only happens after 1657 * root->reloc_root = NULL. Pairs with have_reloc_root. 1658 */ 1659 smp_wmb(); 1660 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1661 if (reloc_root) { 1662 /* 1663 * btrfs_drop_snapshot drops our ref we hold for 1664 * ->reloc_root. If it fails however we must 1665 * drop the ref ourselves. 1666 */ 1667 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1); 1668 if (ret2 < 0) { 1669 btrfs_put_root(reloc_root); 1670 if (!ret) 1671 ret = ret2; 1672 } 1673 } 1674 btrfs_put_root(root); 1675 } else { 1676 /* Orphan reloc tree, just clean it up */ 1677 ret2 = btrfs_drop_snapshot(root, 0, 1); 1678 if (ret2 < 0) { 1679 btrfs_put_root(root); 1680 if (!ret) 1681 ret = ret2; 1682 } 1683 } 1684 } 1685 return ret; 1686 } 1687 1688 /* 1689 * merge the relocated tree blocks in reloc tree with corresponding 1690 * fs tree. 1691 */ 1692 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 1693 struct btrfs_root *root) 1694 { 1695 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1696 struct btrfs_key key; 1697 struct btrfs_key next_key; 1698 struct btrfs_trans_handle *trans = NULL; 1699 struct btrfs_root *reloc_root; 1700 struct btrfs_root_item *root_item; 1701 struct btrfs_path *path; 1702 struct extent_buffer *leaf; 1703 int reserve_level; 1704 int level; 1705 int max_level; 1706 int replaced = 0; 1707 int ret = 0; 1708 u32 min_reserved; 1709 1710 path = btrfs_alloc_path(); 1711 if (!path) 1712 return -ENOMEM; 1713 path->reada = READA_FORWARD; 1714 1715 reloc_root = root->reloc_root; 1716 root_item = &reloc_root->root_item; 1717 1718 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 1719 level = btrfs_root_level(root_item); 1720 atomic_inc(&reloc_root->node->refs); 1721 path->nodes[level] = reloc_root->node; 1722 path->slots[level] = 0; 1723 } else { 1724 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 1725 1726 level = btrfs_root_drop_level(root_item); 1727 BUG_ON(level == 0); 1728 path->lowest_level = level; 1729 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 1730 path->lowest_level = 0; 1731 if (ret < 0) { 1732 btrfs_free_path(path); 1733 return ret; 1734 } 1735 1736 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 1737 path->slots[level]); 1738 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 1739 1740 btrfs_unlock_up_safe(path, 0); 1741 } 1742 1743 /* 1744 * In merge_reloc_root(), we modify the upper level pointer to swap the 1745 * tree blocks between reloc tree and subvolume tree. Thus for tree 1746 * block COW, we COW at most from level 1 to root level for each tree. 1747 * 1748 * Thus the needed metadata size is at most root_level * nodesize, 1749 * and * 2 since we have two trees to COW. 1750 */ 1751 reserve_level = max_t(int, 1, btrfs_root_level(root_item)); 1752 min_reserved = fs_info->nodesize * reserve_level * 2; 1753 memset(&next_key, 0, sizeof(next_key)); 1754 1755 while (1) { 1756 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, 1757 min_reserved, 1758 BTRFS_RESERVE_FLUSH_LIMIT); 1759 if (ret) 1760 goto out; 1761 trans = btrfs_start_transaction(root, 0); 1762 if (IS_ERR(trans)) { 1763 ret = PTR_ERR(trans); 1764 trans = NULL; 1765 goto out; 1766 } 1767 1768 /* 1769 * At this point we no longer have a reloc_control, so we can't 1770 * depend on btrfs_init_reloc_root to update our last_trans. 1771 * 1772 * But that's ok, we started the trans handle on our 1773 * corresponding fs_root, which means it's been added to the 1774 * dirty list. At commit time we'll still call 1775 * btrfs_update_reloc_root() and update our root item 1776 * appropriately. 1777 */ 1778 reloc_root->last_trans = trans->transid; 1779 trans->block_rsv = rc->block_rsv; 1780 1781 replaced = 0; 1782 max_level = level; 1783 1784 ret = walk_down_reloc_tree(reloc_root, path, &level); 1785 if (ret < 0) 1786 goto out; 1787 if (ret > 0) 1788 break; 1789 1790 if (!find_next_key(path, level, &key) && 1791 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 1792 ret = 0; 1793 } else { 1794 ret = replace_path(trans, rc, root, reloc_root, path, 1795 &next_key, level, max_level); 1796 } 1797 if (ret < 0) 1798 goto out; 1799 if (ret > 0) { 1800 level = ret; 1801 btrfs_node_key_to_cpu(path->nodes[level], &key, 1802 path->slots[level]); 1803 replaced = 1; 1804 } 1805 1806 ret = walk_up_reloc_tree(reloc_root, path, &level); 1807 if (ret > 0) 1808 break; 1809 1810 BUG_ON(level == 0); 1811 /* 1812 * save the merging progress in the drop_progress. 1813 * this is OK since root refs == 1 in this case. 1814 */ 1815 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 1816 path->slots[level]); 1817 btrfs_set_root_drop_level(root_item, level); 1818 1819 btrfs_end_transaction_throttle(trans); 1820 trans = NULL; 1821 1822 btrfs_btree_balance_dirty(fs_info); 1823 1824 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1825 invalidate_extent_cache(root, &key, &next_key); 1826 } 1827 1828 /* 1829 * handle the case only one block in the fs tree need to be 1830 * relocated and the block is tree root. 1831 */ 1832 leaf = btrfs_lock_root_node(root); 1833 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf, 1834 BTRFS_NESTING_COW); 1835 btrfs_tree_unlock(leaf); 1836 free_extent_buffer(leaf); 1837 out: 1838 btrfs_free_path(path); 1839 1840 if (ret == 0) { 1841 ret = insert_dirty_subvol(trans, rc, root); 1842 if (ret) 1843 btrfs_abort_transaction(trans, ret); 1844 } 1845 1846 if (trans) 1847 btrfs_end_transaction_throttle(trans); 1848 1849 btrfs_btree_balance_dirty(fs_info); 1850 1851 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1852 invalidate_extent_cache(root, &key, &next_key); 1853 1854 return ret; 1855 } 1856 1857 static noinline_for_stack 1858 int prepare_to_merge(struct reloc_control *rc, int err) 1859 { 1860 struct btrfs_root *root = rc->extent_root; 1861 struct btrfs_fs_info *fs_info = root->fs_info; 1862 struct btrfs_root *reloc_root; 1863 struct btrfs_trans_handle *trans; 1864 LIST_HEAD(reloc_roots); 1865 u64 num_bytes = 0; 1866 int ret; 1867 1868 mutex_lock(&fs_info->reloc_mutex); 1869 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 1870 rc->merging_rsv_size += rc->nodes_relocated * 2; 1871 mutex_unlock(&fs_info->reloc_mutex); 1872 1873 again: 1874 if (!err) { 1875 num_bytes = rc->merging_rsv_size; 1876 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes, 1877 BTRFS_RESERVE_FLUSH_ALL); 1878 if (ret) 1879 err = ret; 1880 } 1881 1882 trans = btrfs_join_transaction(rc->extent_root); 1883 if (IS_ERR(trans)) { 1884 if (!err) 1885 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1886 num_bytes, NULL); 1887 return PTR_ERR(trans); 1888 } 1889 1890 if (!err) { 1891 if (num_bytes != rc->merging_rsv_size) { 1892 btrfs_end_transaction(trans); 1893 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1894 num_bytes, NULL); 1895 goto again; 1896 } 1897 } 1898 1899 rc->merge_reloc_tree = 1; 1900 1901 while (!list_empty(&rc->reloc_roots)) { 1902 reloc_root = list_entry(rc->reloc_roots.next, 1903 struct btrfs_root, root_list); 1904 list_del_init(&reloc_root->root_list); 1905 1906 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1907 false); 1908 if (IS_ERR(root)) { 1909 /* 1910 * Even if we have an error we need this reloc root 1911 * back on our list so we can clean up properly. 1912 */ 1913 list_add(&reloc_root->root_list, &reloc_roots); 1914 btrfs_abort_transaction(trans, (int)PTR_ERR(root)); 1915 if (!err) 1916 err = PTR_ERR(root); 1917 break; 1918 } 1919 ASSERT(root->reloc_root == reloc_root); 1920 1921 /* 1922 * set reference count to 1, so btrfs_recover_relocation 1923 * knows it should resumes merging 1924 */ 1925 if (!err) 1926 btrfs_set_root_refs(&reloc_root->root_item, 1); 1927 ret = btrfs_update_reloc_root(trans, root); 1928 1929 /* 1930 * Even if we have an error we need this reloc root back on our 1931 * list so we can clean up properly. 1932 */ 1933 list_add(&reloc_root->root_list, &reloc_roots); 1934 btrfs_put_root(root); 1935 1936 if (ret) { 1937 btrfs_abort_transaction(trans, ret); 1938 if (!err) 1939 err = ret; 1940 break; 1941 } 1942 } 1943 1944 list_splice(&reloc_roots, &rc->reloc_roots); 1945 1946 if (!err) 1947 err = btrfs_commit_transaction(trans); 1948 else 1949 btrfs_end_transaction(trans); 1950 return err; 1951 } 1952 1953 static noinline_for_stack 1954 void free_reloc_roots(struct list_head *list) 1955 { 1956 struct btrfs_root *reloc_root, *tmp; 1957 1958 list_for_each_entry_safe(reloc_root, tmp, list, root_list) 1959 __del_reloc_root(reloc_root); 1960 } 1961 1962 static noinline_for_stack 1963 void merge_reloc_roots(struct reloc_control *rc) 1964 { 1965 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1966 struct btrfs_root *root; 1967 struct btrfs_root *reloc_root; 1968 LIST_HEAD(reloc_roots); 1969 int found = 0; 1970 int ret = 0; 1971 again: 1972 root = rc->extent_root; 1973 1974 /* 1975 * this serializes us with btrfs_record_root_in_transaction, 1976 * we have to make sure nobody is in the middle of 1977 * adding their roots to the list while we are 1978 * doing this splice 1979 */ 1980 mutex_lock(&fs_info->reloc_mutex); 1981 list_splice_init(&rc->reloc_roots, &reloc_roots); 1982 mutex_unlock(&fs_info->reloc_mutex); 1983 1984 while (!list_empty(&reloc_roots)) { 1985 found = 1; 1986 reloc_root = list_entry(reloc_roots.next, 1987 struct btrfs_root, root_list); 1988 1989 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1990 false); 1991 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 1992 if (IS_ERR(root)) { 1993 /* 1994 * For recovery we read the fs roots on mount, 1995 * and if we didn't find the root then we marked 1996 * the reloc root as a garbage root. For normal 1997 * relocation obviously the root should exist in 1998 * memory. However there's no reason we can't 1999 * handle the error properly here just in case. 2000 */ 2001 ASSERT(0); 2002 ret = PTR_ERR(root); 2003 goto out; 2004 } 2005 if (root->reloc_root != reloc_root) { 2006 /* 2007 * This is actually impossible without something 2008 * going really wrong (like weird race condition 2009 * or cosmic rays). 2010 */ 2011 ASSERT(0); 2012 ret = -EINVAL; 2013 goto out; 2014 } 2015 ret = merge_reloc_root(rc, root); 2016 btrfs_put_root(root); 2017 if (ret) { 2018 if (list_empty(&reloc_root->root_list)) 2019 list_add_tail(&reloc_root->root_list, 2020 &reloc_roots); 2021 goto out; 2022 } 2023 } else { 2024 if (!IS_ERR(root)) { 2025 if (root->reloc_root == reloc_root) { 2026 root->reloc_root = NULL; 2027 btrfs_put_root(reloc_root); 2028 } 2029 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, 2030 &root->state); 2031 btrfs_put_root(root); 2032 } 2033 2034 list_del_init(&reloc_root->root_list); 2035 /* Don't forget to queue this reloc root for cleanup */ 2036 list_add_tail(&reloc_root->reloc_dirty_list, 2037 &rc->dirty_subvol_roots); 2038 } 2039 } 2040 2041 if (found) { 2042 found = 0; 2043 goto again; 2044 } 2045 out: 2046 if (ret) { 2047 btrfs_handle_fs_error(fs_info, ret, NULL); 2048 free_reloc_roots(&reloc_roots); 2049 2050 /* new reloc root may be added */ 2051 mutex_lock(&fs_info->reloc_mutex); 2052 list_splice_init(&rc->reloc_roots, &reloc_roots); 2053 mutex_unlock(&fs_info->reloc_mutex); 2054 free_reloc_roots(&reloc_roots); 2055 } 2056 2057 /* 2058 * We used to have 2059 * 2060 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2061 * 2062 * here, but it's wrong. If we fail to start the transaction in 2063 * prepare_to_merge() we will have only 0 ref reloc roots, none of which 2064 * have actually been removed from the reloc_root_tree rb tree. This is 2065 * fine because we're bailing here, and we hold a reference on the root 2066 * for the list that holds it, so these roots will be cleaned up when we 2067 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root 2068 * will be cleaned up on unmount. 2069 * 2070 * The remaining nodes will be cleaned up by free_reloc_control. 2071 */ 2072 } 2073 2074 static void free_block_list(struct rb_root *blocks) 2075 { 2076 struct tree_block *block; 2077 struct rb_node *rb_node; 2078 while ((rb_node = rb_first(blocks))) { 2079 block = rb_entry(rb_node, struct tree_block, rb_node); 2080 rb_erase(rb_node, blocks); 2081 kfree(block); 2082 } 2083 } 2084 2085 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2086 struct btrfs_root *reloc_root) 2087 { 2088 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 2089 struct btrfs_root *root; 2090 int ret; 2091 2092 if (reloc_root->last_trans == trans->transid) 2093 return 0; 2094 2095 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false); 2096 2097 /* 2098 * This should succeed, since we can't have a reloc root without having 2099 * already looked up the actual root and created the reloc root for this 2100 * root. 2101 * 2102 * However if there's some sort of corruption where we have a ref to a 2103 * reloc root without a corresponding root this could return ENOENT. 2104 */ 2105 if (IS_ERR(root)) { 2106 ASSERT(0); 2107 return PTR_ERR(root); 2108 } 2109 if (root->reloc_root != reloc_root) { 2110 ASSERT(0); 2111 btrfs_err(fs_info, 2112 "root %llu has two reloc roots associated with it", 2113 reloc_root->root_key.offset); 2114 btrfs_put_root(root); 2115 return -EUCLEAN; 2116 } 2117 ret = btrfs_record_root_in_trans(trans, root); 2118 btrfs_put_root(root); 2119 2120 return ret; 2121 } 2122 2123 static noinline_for_stack 2124 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2125 struct reloc_control *rc, 2126 struct btrfs_backref_node *node, 2127 struct btrfs_backref_edge *edges[]) 2128 { 2129 struct btrfs_backref_node *next; 2130 struct btrfs_root *root; 2131 int index = 0; 2132 int ret; 2133 2134 next = node; 2135 while (1) { 2136 cond_resched(); 2137 next = walk_up_backref(next, edges, &index); 2138 root = next->root; 2139 2140 /* 2141 * If there is no root, then our references for this block are 2142 * incomplete, as we should be able to walk all the way up to a 2143 * block that is owned by a root. 2144 * 2145 * This path is only for SHAREABLE roots, so if we come upon a 2146 * non-SHAREABLE root then we have backrefs that resolve 2147 * improperly. 2148 * 2149 * Both of these cases indicate file system corruption, or a bug 2150 * in the backref walking code. 2151 */ 2152 if (!root) { 2153 ASSERT(0); 2154 btrfs_err(trans->fs_info, 2155 "bytenr %llu doesn't have a backref path ending in a root", 2156 node->bytenr); 2157 return ERR_PTR(-EUCLEAN); 2158 } 2159 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2160 ASSERT(0); 2161 btrfs_err(trans->fs_info, 2162 "bytenr %llu has multiple refs with one ending in a non-shareable root", 2163 node->bytenr); 2164 return ERR_PTR(-EUCLEAN); 2165 } 2166 2167 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2168 ret = record_reloc_root_in_trans(trans, root); 2169 if (ret) 2170 return ERR_PTR(ret); 2171 break; 2172 } 2173 2174 ret = btrfs_record_root_in_trans(trans, root); 2175 if (ret) 2176 return ERR_PTR(ret); 2177 root = root->reloc_root; 2178 2179 /* 2180 * We could have raced with another thread which failed, so 2181 * root->reloc_root may not be set, return ENOENT in this case. 2182 */ 2183 if (!root) 2184 return ERR_PTR(-ENOENT); 2185 2186 if (next->new_bytenr != root->node->start) { 2187 /* 2188 * We just created the reloc root, so we shouldn't have 2189 * ->new_bytenr set and this shouldn't be in the changed 2190 * list. If it is then we have multiple roots pointing 2191 * at the same bytenr which indicates corruption, or 2192 * we've made a mistake in the backref walking code. 2193 */ 2194 ASSERT(next->new_bytenr == 0); 2195 ASSERT(list_empty(&next->list)); 2196 if (next->new_bytenr || !list_empty(&next->list)) { 2197 btrfs_err(trans->fs_info, 2198 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu", 2199 node->bytenr, next->bytenr); 2200 return ERR_PTR(-EUCLEAN); 2201 } 2202 2203 next->new_bytenr = root->node->start; 2204 btrfs_put_root(next->root); 2205 next->root = btrfs_grab_root(root); 2206 ASSERT(next->root); 2207 list_add_tail(&next->list, 2208 &rc->backref_cache.changed); 2209 mark_block_processed(rc, next); 2210 break; 2211 } 2212 2213 WARN_ON(1); 2214 root = NULL; 2215 next = walk_down_backref(edges, &index); 2216 if (!next || next->level <= node->level) 2217 break; 2218 } 2219 if (!root) { 2220 /* 2221 * This can happen if there's fs corruption or if there's a bug 2222 * in the backref lookup code. 2223 */ 2224 ASSERT(0); 2225 return ERR_PTR(-ENOENT); 2226 } 2227 2228 next = node; 2229 /* setup backref node path for btrfs_reloc_cow_block */ 2230 while (1) { 2231 rc->backref_cache.path[next->level] = next; 2232 if (--index < 0) 2233 break; 2234 next = edges[index]->node[UPPER]; 2235 } 2236 return root; 2237 } 2238 2239 /* 2240 * Select a tree root for relocation. 2241 * 2242 * Return NULL if the block is not shareable. We should use do_relocation() in 2243 * this case. 2244 * 2245 * Return a tree root pointer if the block is shareable. 2246 * Return -ENOENT if the block is root of reloc tree. 2247 */ 2248 static noinline_for_stack 2249 struct btrfs_root *select_one_root(struct btrfs_backref_node *node) 2250 { 2251 struct btrfs_backref_node *next; 2252 struct btrfs_root *root; 2253 struct btrfs_root *fs_root = NULL; 2254 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2255 int index = 0; 2256 2257 next = node; 2258 while (1) { 2259 cond_resched(); 2260 next = walk_up_backref(next, edges, &index); 2261 root = next->root; 2262 2263 /* 2264 * This can occur if we have incomplete extent refs leading all 2265 * the way up a particular path, in this case return -EUCLEAN. 2266 */ 2267 if (!root) 2268 return ERR_PTR(-EUCLEAN); 2269 2270 /* No other choice for non-shareable tree */ 2271 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2272 return root; 2273 2274 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2275 fs_root = root; 2276 2277 if (next != node) 2278 return NULL; 2279 2280 next = walk_down_backref(edges, &index); 2281 if (!next || next->level <= node->level) 2282 break; 2283 } 2284 2285 if (!fs_root) 2286 return ERR_PTR(-ENOENT); 2287 return fs_root; 2288 } 2289 2290 static noinline_for_stack 2291 u64 calcu_metadata_size(struct reloc_control *rc, 2292 struct btrfs_backref_node *node, int reserve) 2293 { 2294 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2295 struct btrfs_backref_node *next = node; 2296 struct btrfs_backref_edge *edge; 2297 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2298 u64 num_bytes = 0; 2299 int index = 0; 2300 2301 BUG_ON(reserve && node->processed); 2302 2303 while (next) { 2304 cond_resched(); 2305 while (1) { 2306 if (next->processed && (reserve || next != node)) 2307 break; 2308 2309 num_bytes += fs_info->nodesize; 2310 2311 if (list_empty(&next->upper)) 2312 break; 2313 2314 edge = list_entry(next->upper.next, 2315 struct btrfs_backref_edge, list[LOWER]); 2316 edges[index++] = edge; 2317 next = edge->node[UPPER]; 2318 } 2319 next = walk_down_backref(edges, &index); 2320 } 2321 return num_bytes; 2322 } 2323 2324 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2325 struct reloc_control *rc, 2326 struct btrfs_backref_node *node) 2327 { 2328 struct btrfs_root *root = rc->extent_root; 2329 struct btrfs_fs_info *fs_info = root->fs_info; 2330 u64 num_bytes; 2331 int ret; 2332 u64 tmp; 2333 2334 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2335 2336 trans->block_rsv = rc->block_rsv; 2337 rc->reserved_bytes += num_bytes; 2338 2339 /* 2340 * We are under a transaction here so we can only do limited flushing. 2341 * If we get an enospc just kick back -EAGAIN so we know to drop the 2342 * transaction and try to refill when we can flush all the things. 2343 */ 2344 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes, 2345 BTRFS_RESERVE_FLUSH_LIMIT); 2346 if (ret) { 2347 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2348 while (tmp <= rc->reserved_bytes) 2349 tmp <<= 1; 2350 /* 2351 * only one thread can access block_rsv at this point, 2352 * so we don't need hold lock to protect block_rsv. 2353 * we expand more reservation size here to allow enough 2354 * space for relocation and we will return earlier in 2355 * enospc case. 2356 */ 2357 rc->block_rsv->size = tmp + fs_info->nodesize * 2358 RELOCATION_RESERVED_NODES; 2359 return -EAGAIN; 2360 } 2361 2362 return 0; 2363 } 2364 2365 /* 2366 * relocate a block tree, and then update pointers in upper level 2367 * blocks that reference the block to point to the new location. 2368 * 2369 * if called by link_to_upper, the block has already been relocated. 2370 * in that case this function just updates pointers. 2371 */ 2372 static int do_relocation(struct btrfs_trans_handle *trans, 2373 struct reloc_control *rc, 2374 struct btrfs_backref_node *node, 2375 struct btrfs_key *key, 2376 struct btrfs_path *path, int lowest) 2377 { 2378 struct btrfs_backref_node *upper; 2379 struct btrfs_backref_edge *edge; 2380 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2381 struct btrfs_root *root; 2382 struct extent_buffer *eb; 2383 u32 blocksize; 2384 u64 bytenr; 2385 int slot; 2386 int ret = 0; 2387 2388 /* 2389 * If we are lowest then this is the first time we're processing this 2390 * block, and thus shouldn't have an eb associated with it yet. 2391 */ 2392 ASSERT(!lowest || !node->eb); 2393 2394 path->lowest_level = node->level + 1; 2395 rc->backref_cache.path[node->level] = node; 2396 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2397 struct btrfs_ref ref = { 0 }; 2398 2399 cond_resched(); 2400 2401 upper = edge->node[UPPER]; 2402 root = select_reloc_root(trans, rc, upper, edges); 2403 if (IS_ERR(root)) { 2404 ret = PTR_ERR(root); 2405 goto next; 2406 } 2407 2408 if (upper->eb && !upper->locked) { 2409 if (!lowest) { 2410 ret = btrfs_bin_search(upper->eb, key, &slot); 2411 if (ret < 0) 2412 goto next; 2413 BUG_ON(ret); 2414 bytenr = btrfs_node_blockptr(upper->eb, slot); 2415 if (node->eb->start == bytenr) 2416 goto next; 2417 } 2418 btrfs_backref_drop_node_buffer(upper); 2419 } 2420 2421 if (!upper->eb) { 2422 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2423 if (ret) { 2424 if (ret > 0) 2425 ret = -ENOENT; 2426 2427 btrfs_release_path(path); 2428 break; 2429 } 2430 2431 if (!upper->eb) { 2432 upper->eb = path->nodes[upper->level]; 2433 path->nodes[upper->level] = NULL; 2434 } else { 2435 BUG_ON(upper->eb != path->nodes[upper->level]); 2436 } 2437 2438 upper->locked = 1; 2439 path->locks[upper->level] = 0; 2440 2441 slot = path->slots[upper->level]; 2442 btrfs_release_path(path); 2443 } else { 2444 ret = btrfs_bin_search(upper->eb, key, &slot); 2445 if (ret < 0) 2446 goto next; 2447 BUG_ON(ret); 2448 } 2449 2450 bytenr = btrfs_node_blockptr(upper->eb, slot); 2451 if (lowest) { 2452 if (bytenr != node->bytenr) { 2453 btrfs_err(root->fs_info, 2454 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2455 bytenr, node->bytenr, slot, 2456 upper->eb->start); 2457 ret = -EIO; 2458 goto next; 2459 } 2460 } else { 2461 if (node->eb->start == bytenr) 2462 goto next; 2463 } 2464 2465 blocksize = root->fs_info->nodesize; 2466 eb = btrfs_read_node_slot(upper->eb, slot); 2467 if (IS_ERR(eb)) { 2468 ret = PTR_ERR(eb); 2469 goto next; 2470 } 2471 btrfs_tree_lock(eb); 2472 2473 if (!node->eb) { 2474 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2475 slot, &eb, BTRFS_NESTING_COW); 2476 btrfs_tree_unlock(eb); 2477 free_extent_buffer(eb); 2478 if (ret < 0) 2479 goto next; 2480 /* 2481 * We've just COWed this block, it should have updated 2482 * the correct backref node entry. 2483 */ 2484 ASSERT(node->eb == eb); 2485 } else { 2486 btrfs_set_node_blockptr(upper->eb, slot, 2487 node->eb->start); 2488 btrfs_set_node_ptr_generation(upper->eb, slot, 2489 trans->transid); 2490 btrfs_mark_buffer_dirty(upper->eb); 2491 2492 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2493 node->eb->start, blocksize, 2494 upper->eb->start); 2495 btrfs_init_tree_ref(&ref, node->level, 2496 btrfs_header_owner(upper->eb), 2497 root->root_key.objectid, false); 2498 ret = btrfs_inc_extent_ref(trans, &ref); 2499 if (!ret) 2500 ret = btrfs_drop_subtree(trans, root, eb, 2501 upper->eb); 2502 if (ret) 2503 btrfs_abort_transaction(trans, ret); 2504 } 2505 next: 2506 if (!upper->pending) 2507 btrfs_backref_drop_node_buffer(upper); 2508 else 2509 btrfs_backref_unlock_node_buffer(upper); 2510 if (ret) 2511 break; 2512 } 2513 2514 if (!ret && node->pending) { 2515 btrfs_backref_drop_node_buffer(node); 2516 list_move_tail(&node->list, &rc->backref_cache.changed); 2517 node->pending = 0; 2518 } 2519 2520 path->lowest_level = 0; 2521 2522 /* 2523 * We should have allocated all of our space in the block rsv and thus 2524 * shouldn't ENOSPC. 2525 */ 2526 ASSERT(ret != -ENOSPC); 2527 return ret; 2528 } 2529 2530 static int link_to_upper(struct btrfs_trans_handle *trans, 2531 struct reloc_control *rc, 2532 struct btrfs_backref_node *node, 2533 struct btrfs_path *path) 2534 { 2535 struct btrfs_key key; 2536 2537 btrfs_node_key_to_cpu(node->eb, &key, 0); 2538 return do_relocation(trans, rc, node, &key, path, 0); 2539 } 2540 2541 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2542 struct reloc_control *rc, 2543 struct btrfs_path *path, int err) 2544 { 2545 LIST_HEAD(list); 2546 struct btrfs_backref_cache *cache = &rc->backref_cache; 2547 struct btrfs_backref_node *node; 2548 int level; 2549 int ret; 2550 2551 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2552 while (!list_empty(&cache->pending[level])) { 2553 node = list_entry(cache->pending[level].next, 2554 struct btrfs_backref_node, list); 2555 list_move_tail(&node->list, &list); 2556 BUG_ON(!node->pending); 2557 2558 if (!err) { 2559 ret = link_to_upper(trans, rc, node, path); 2560 if (ret < 0) 2561 err = ret; 2562 } 2563 } 2564 list_splice_init(&list, &cache->pending[level]); 2565 } 2566 return err; 2567 } 2568 2569 /* 2570 * mark a block and all blocks directly/indirectly reference the block 2571 * as processed. 2572 */ 2573 static void update_processed_blocks(struct reloc_control *rc, 2574 struct btrfs_backref_node *node) 2575 { 2576 struct btrfs_backref_node *next = node; 2577 struct btrfs_backref_edge *edge; 2578 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2579 int index = 0; 2580 2581 while (next) { 2582 cond_resched(); 2583 while (1) { 2584 if (next->processed) 2585 break; 2586 2587 mark_block_processed(rc, next); 2588 2589 if (list_empty(&next->upper)) 2590 break; 2591 2592 edge = list_entry(next->upper.next, 2593 struct btrfs_backref_edge, list[LOWER]); 2594 edges[index++] = edge; 2595 next = edge->node[UPPER]; 2596 } 2597 next = walk_down_backref(edges, &index); 2598 } 2599 } 2600 2601 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2602 { 2603 u32 blocksize = rc->extent_root->fs_info->nodesize; 2604 2605 if (test_range_bit(&rc->processed_blocks, bytenr, 2606 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2607 return 1; 2608 return 0; 2609 } 2610 2611 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2612 struct tree_block *block) 2613 { 2614 struct btrfs_tree_parent_check check = { 2615 .level = block->level, 2616 .owner_root = block->owner, 2617 .transid = block->key.offset 2618 }; 2619 struct extent_buffer *eb; 2620 2621 eb = read_tree_block(fs_info, block->bytenr, &check); 2622 if (IS_ERR(eb)) 2623 return PTR_ERR(eb); 2624 if (!extent_buffer_uptodate(eb)) { 2625 free_extent_buffer(eb); 2626 return -EIO; 2627 } 2628 if (block->level == 0) 2629 btrfs_item_key_to_cpu(eb, &block->key, 0); 2630 else 2631 btrfs_node_key_to_cpu(eb, &block->key, 0); 2632 free_extent_buffer(eb); 2633 block->key_ready = 1; 2634 return 0; 2635 } 2636 2637 /* 2638 * helper function to relocate a tree block 2639 */ 2640 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2641 struct reloc_control *rc, 2642 struct btrfs_backref_node *node, 2643 struct btrfs_key *key, 2644 struct btrfs_path *path) 2645 { 2646 struct btrfs_root *root; 2647 int ret = 0; 2648 2649 if (!node) 2650 return 0; 2651 2652 /* 2653 * If we fail here we want to drop our backref_node because we are going 2654 * to start over and regenerate the tree for it. 2655 */ 2656 ret = reserve_metadata_space(trans, rc, node); 2657 if (ret) 2658 goto out; 2659 2660 BUG_ON(node->processed); 2661 root = select_one_root(node); 2662 if (IS_ERR(root)) { 2663 ret = PTR_ERR(root); 2664 2665 /* See explanation in select_one_root for the -EUCLEAN case. */ 2666 ASSERT(ret == -ENOENT); 2667 if (ret == -ENOENT) { 2668 ret = 0; 2669 update_processed_blocks(rc, node); 2670 } 2671 goto out; 2672 } 2673 2674 if (root) { 2675 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2676 /* 2677 * This block was the root block of a root, and this is 2678 * the first time we're processing the block and thus it 2679 * should not have had the ->new_bytenr modified and 2680 * should have not been included on the changed list. 2681 * 2682 * However in the case of corruption we could have 2683 * multiple refs pointing to the same block improperly, 2684 * and thus we would trip over these checks. ASSERT() 2685 * for the developer case, because it could indicate a 2686 * bug in the backref code, however error out for a 2687 * normal user in the case of corruption. 2688 */ 2689 ASSERT(node->new_bytenr == 0); 2690 ASSERT(list_empty(&node->list)); 2691 if (node->new_bytenr || !list_empty(&node->list)) { 2692 btrfs_err(root->fs_info, 2693 "bytenr %llu has improper references to it", 2694 node->bytenr); 2695 ret = -EUCLEAN; 2696 goto out; 2697 } 2698 ret = btrfs_record_root_in_trans(trans, root); 2699 if (ret) 2700 goto out; 2701 /* 2702 * Another thread could have failed, need to check if we 2703 * have reloc_root actually set. 2704 */ 2705 if (!root->reloc_root) { 2706 ret = -ENOENT; 2707 goto out; 2708 } 2709 root = root->reloc_root; 2710 node->new_bytenr = root->node->start; 2711 btrfs_put_root(node->root); 2712 node->root = btrfs_grab_root(root); 2713 ASSERT(node->root); 2714 list_add_tail(&node->list, &rc->backref_cache.changed); 2715 } else { 2716 path->lowest_level = node->level; 2717 if (root == root->fs_info->chunk_root) 2718 btrfs_reserve_chunk_metadata(trans, false); 2719 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2720 btrfs_release_path(path); 2721 if (root == root->fs_info->chunk_root) 2722 btrfs_trans_release_chunk_metadata(trans); 2723 if (ret > 0) 2724 ret = 0; 2725 } 2726 if (!ret) 2727 update_processed_blocks(rc, node); 2728 } else { 2729 ret = do_relocation(trans, rc, node, key, path, 1); 2730 } 2731 out: 2732 if (ret || node->level == 0 || node->cowonly) 2733 btrfs_backref_cleanup_node(&rc->backref_cache, node); 2734 return ret; 2735 } 2736 2737 /* 2738 * relocate a list of blocks 2739 */ 2740 static noinline_for_stack 2741 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2742 struct reloc_control *rc, struct rb_root *blocks) 2743 { 2744 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2745 struct btrfs_backref_node *node; 2746 struct btrfs_path *path; 2747 struct tree_block *block; 2748 struct tree_block *next; 2749 int ret; 2750 int err = 0; 2751 2752 path = btrfs_alloc_path(); 2753 if (!path) { 2754 err = -ENOMEM; 2755 goto out_free_blocks; 2756 } 2757 2758 /* Kick in readahead for tree blocks with missing keys */ 2759 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2760 if (!block->key_ready) 2761 btrfs_readahead_tree_block(fs_info, block->bytenr, 2762 block->owner, 0, 2763 block->level); 2764 } 2765 2766 /* Get first keys */ 2767 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2768 if (!block->key_ready) { 2769 err = get_tree_block_key(fs_info, block); 2770 if (err) 2771 goto out_free_path; 2772 } 2773 } 2774 2775 /* Do tree relocation */ 2776 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2777 node = build_backref_tree(rc, &block->key, 2778 block->level, block->bytenr); 2779 if (IS_ERR(node)) { 2780 err = PTR_ERR(node); 2781 goto out; 2782 } 2783 2784 ret = relocate_tree_block(trans, rc, node, &block->key, 2785 path); 2786 if (ret < 0) { 2787 err = ret; 2788 break; 2789 } 2790 } 2791 out: 2792 err = finish_pending_nodes(trans, rc, path, err); 2793 2794 out_free_path: 2795 btrfs_free_path(path); 2796 out_free_blocks: 2797 free_block_list(blocks); 2798 return err; 2799 } 2800 2801 static noinline_for_stack int prealloc_file_extent_cluster( 2802 struct btrfs_inode *inode, 2803 struct file_extent_cluster *cluster) 2804 { 2805 u64 alloc_hint = 0; 2806 u64 start; 2807 u64 end; 2808 u64 offset = inode->index_cnt; 2809 u64 num_bytes; 2810 int nr; 2811 int ret = 0; 2812 u64 i_size = i_size_read(&inode->vfs_inode); 2813 u64 prealloc_start = cluster->start - offset; 2814 u64 prealloc_end = cluster->end - offset; 2815 u64 cur_offset = prealloc_start; 2816 2817 /* 2818 * For subpage case, previous i_size may not be aligned to PAGE_SIZE. 2819 * This means the range [i_size, PAGE_END + 1) is filled with zeros by 2820 * btrfs_do_readpage() call of previously relocated file cluster. 2821 * 2822 * If the current cluster starts in the above range, btrfs_do_readpage() 2823 * will skip the read, and relocate_one_page() will later writeback 2824 * the padding zeros as new data, causing data corruption. 2825 * 2826 * Here we have to manually invalidate the range (i_size, PAGE_END + 1). 2827 */ 2828 if (!IS_ALIGNED(i_size, PAGE_SIZE)) { 2829 struct address_space *mapping = inode->vfs_inode.i_mapping; 2830 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2831 const u32 sectorsize = fs_info->sectorsize; 2832 struct page *page; 2833 2834 ASSERT(sectorsize < PAGE_SIZE); 2835 ASSERT(IS_ALIGNED(i_size, sectorsize)); 2836 2837 /* 2838 * Subpage can't handle page with DIRTY but without UPTODATE 2839 * bit as it can lead to the following deadlock: 2840 * 2841 * btrfs_read_folio() 2842 * | Page already *locked* 2843 * |- btrfs_lock_and_flush_ordered_range() 2844 * |- btrfs_start_ordered_extent() 2845 * |- extent_write_cache_pages() 2846 * |- lock_page() 2847 * We try to lock the page we already hold. 2848 * 2849 * Here we just writeback the whole data reloc inode, so that 2850 * we will be ensured to have no dirty range in the page, and 2851 * are safe to clear the uptodate bits. 2852 * 2853 * This shouldn't cause too much overhead, as we need to write 2854 * the data back anyway. 2855 */ 2856 ret = filemap_write_and_wait(mapping); 2857 if (ret < 0) 2858 return ret; 2859 2860 clear_extent_bits(&inode->io_tree, i_size, 2861 round_up(i_size, PAGE_SIZE) - 1, 2862 EXTENT_UPTODATE); 2863 page = find_lock_page(mapping, i_size >> PAGE_SHIFT); 2864 /* 2865 * If page is freed we don't need to do anything then, as we 2866 * will re-read the whole page anyway. 2867 */ 2868 if (page) { 2869 btrfs_subpage_clear_uptodate(fs_info, page, i_size, 2870 round_up(i_size, PAGE_SIZE) - i_size); 2871 unlock_page(page); 2872 put_page(page); 2873 } 2874 } 2875 2876 BUG_ON(cluster->start != cluster->boundary[0]); 2877 ret = btrfs_alloc_data_chunk_ondemand(inode, 2878 prealloc_end + 1 - prealloc_start); 2879 if (ret) 2880 return ret; 2881 2882 btrfs_inode_lock(inode, 0); 2883 for (nr = 0; nr < cluster->nr; nr++) { 2884 struct extent_state *cached_state = NULL; 2885 2886 start = cluster->boundary[nr] - offset; 2887 if (nr + 1 < cluster->nr) 2888 end = cluster->boundary[nr + 1] - 1 - offset; 2889 else 2890 end = cluster->end - offset; 2891 2892 lock_extent(&inode->io_tree, start, end, &cached_state); 2893 num_bytes = end + 1 - start; 2894 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start, 2895 num_bytes, num_bytes, 2896 end + 1, &alloc_hint); 2897 cur_offset = end + 1; 2898 unlock_extent(&inode->io_tree, start, end, &cached_state); 2899 if (ret) 2900 break; 2901 } 2902 btrfs_inode_unlock(inode, 0); 2903 2904 if (cur_offset < prealloc_end) 2905 btrfs_free_reserved_data_space_noquota(inode->root->fs_info, 2906 prealloc_end + 1 - cur_offset); 2907 return ret; 2908 } 2909 2910 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode, 2911 u64 start, u64 end, u64 block_start) 2912 { 2913 struct extent_map *em; 2914 struct extent_state *cached_state = NULL; 2915 int ret = 0; 2916 2917 em = alloc_extent_map(); 2918 if (!em) 2919 return -ENOMEM; 2920 2921 em->start = start; 2922 em->len = end + 1 - start; 2923 em->block_len = em->len; 2924 em->block_start = block_start; 2925 set_bit(EXTENT_FLAG_PINNED, &em->flags); 2926 2927 lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state); 2928 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false); 2929 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state); 2930 free_extent_map(em); 2931 2932 return ret; 2933 } 2934 2935 /* 2936 * Allow error injection to test balance/relocation cancellation 2937 */ 2938 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info) 2939 { 2940 return atomic_read(&fs_info->balance_cancel_req) || 2941 atomic_read(&fs_info->reloc_cancel_req) || 2942 fatal_signal_pending(current); 2943 } 2944 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); 2945 2946 static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster, 2947 int cluster_nr) 2948 { 2949 /* Last extent, use cluster end directly */ 2950 if (cluster_nr >= cluster->nr - 1) 2951 return cluster->end; 2952 2953 /* Use next boundary start*/ 2954 return cluster->boundary[cluster_nr + 1] - 1; 2955 } 2956 2957 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra, 2958 struct file_extent_cluster *cluster, 2959 int *cluster_nr, unsigned long page_index) 2960 { 2961 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2962 u64 offset = BTRFS_I(inode)->index_cnt; 2963 const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT; 2964 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2965 struct page *page; 2966 u64 page_start; 2967 u64 page_end; 2968 u64 cur; 2969 int ret; 2970 2971 ASSERT(page_index <= last_index); 2972 page = find_lock_page(inode->i_mapping, page_index); 2973 if (!page) { 2974 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 2975 page_index, last_index + 1 - page_index); 2976 page = find_or_create_page(inode->i_mapping, page_index, mask); 2977 if (!page) 2978 return -ENOMEM; 2979 } 2980 ret = set_page_extent_mapped(page); 2981 if (ret < 0) 2982 goto release_page; 2983 2984 if (PageReadahead(page)) 2985 page_cache_async_readahead(inode->i_mapping, ra, NULL, 2986 page_folio(page), page_index, 2987 last_index + 1 - page_index); 2988 2989 if (!PageUptodate(page)) { 2990 btrfs_read_folio(NULL, page_folio(page)); 2991 lock_page(page); 2992 if (!PageUptodate(page)) { 2993 ret = -EIO; 2994 goto release_page; 2995 } 2996 } 2997 2998 page_start = page_offset(page); 2999 page_end = page_start + PAGE_SIZE - 1; 3000 3001 /* 3002 * Start from the cluster, as for subpage case, the cluster can start 3003 * inside the page. 3004 */ 3005 cur = max(page_start, cluster->boundary[*cluster_nr] - offset); 3006 while (cur <= page_end) { 3007 struct extent_state *cached_state = NULL; 3008 u64 extent_start = cluster->boundary[*cluster_nr] - offset; 3009 u64 extent_end = get_cluster_boundary_end(cluster, 3010 *cluster_nr) - offset; 3011 u64 clamped_start = max(page_start, extent_start); 3012 u64 clamped_end = min(page_end, extent_end); 3013 u32 clamped_len = clamped_end + 1 - clamped_start; 3014 3015 /* Reserve metadata for this range */ 3016 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 3017 clamped_len, clamped_len, 3018 false); 3019 if (ret) 3020 goto release_page; 3021 3022 /* Mark the range delalloc and dirty for later writeback */ 3023 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, 3024 &cached_state); 3025 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start, 3026 clamped_end, 0, &cached_state); 3027 if (ret) { 3028 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3029 clamped_start, clamped_end, 3030 EXTENT_LOCKED | EXTENT_BOUNDARY, 3031 &cached_state); 3032 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3033 clamped_len, true); 3034 btrfs_delalloc_release_extents(BTRFS_I(inode), 3035 clamped_len); 3036 goto release_page; 3037 } 3038 btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len); 3039 3040 /* 3041 * Set the boundary if it's inside the page. 3042 * Data relocation requires the destination extents to have the 3043 * same size as the source. 3044 * EXTENT_BOUNDARY bit prevents current extent from being merged 3045 * with previous extent. 3046 */ 3047 if (in_range(cluster->boundary[*cluster_nr] - offset, 3048 page_start, PAGE_SIZE)) { 3049 u64 boundary_start = cluster->boundary[*cluster_nr] - 3050 offset; 3051 u64 boundary_end = boundary_start + 3052 fs_info->sectorsize - 1; 3053 3054 set_extent_bits(&BTRFS_I(inode)->io_tree, 3055 boundary_start, boundary_end, 3056 EXTENT_BOUNDARY); 3057 } 3058 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, 3059 &cached_state); 3060 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len); 3061 cur += clamped_len; 3062 3063 /* Crossed extent end, go to next extent */ 3064 if (cur >= extent_end) { 3065 (*cluster_nr)++; 3066 /* Just finished the last extent of the cluster, exit. */ 3067 if (*cluster_nr >= cluster->nr) 3068 break; 3069 } 3070 } 3071 unlock_page(page); 3072 put_page(page); 3073 3074 balance_dirty_pages_ratelimited(inode->i_mapping); 3075 btrfs_throttle(fs_info); 3076 if (btrfs_should_cancel_balance(fs_info)) 3077 ret = -ECANCELED; 3078 return ret; 3079 3080 release_page: 3081 unlock_page(page); 3082 put_page(page); 3083 return ret; 3084 } 3085 3086 static int relocate_file_extent_cluster(struct inode *inode, 3087 struct file_extent_cluster *cluster) 3088 { 3089 u64 offset = BTRFS_I(inode)->index_cnt; 3090 unsigned long index; 3091 unsigned long last_index; 3092 struct file_ra_state *ra; 3093 int cluster_nr = 0; 3094 int ret = 0; 3095 3096 if (!cluster->nr) 3097 return 0; 3098 3099 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3100 if (!ra) 3101 return -ENOMEM; 3102 3103 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster); 3104 if (ret) 3105 goto out; 3106 3107 file_ra_state_init(ra, inode->i_mapping); 3108 3109 ret = setup_relocation_extent_mapping(inode, cluster->start - offset, 3110 cluster->end - offset, cluster->start); 3111 if (ret) 3112 goto out; 3113 3114 last_index = (cluster->end - offset) >> PAGE_SHIFT; 3115 for (index = (cluster->start - offset) >> PAGE_SHIFT; 3116 index <= last_index && !ret; index++) 3117 ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index); 3118 if (ret == 0) 3119 WARN_ON(cluster_nr != cluster->nr); 3120 out: 3121 kfree(ra); 3122 return ret; 3123 } 3124 3125 static noinline_for_stack 3126 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3127 struct file_extent_cluster *cluster) 3128 { 3129 int ret; 3130 3131 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3132 ret = relocate_file_extent_cluster(inode, cluster); 3133 if (ret) 3134 return ret; 3135 cluster->nr = 0; 3136 } 3137 3138 if (!cluster->nr) 3139 cluster->start = extent_key->objectid; 3140 else 3141 BUG_ON(cluster->nr >= MAX_EXTENTS); 3142 cluster->end = extent_key->objectid + extent_key->offset - 1; 3143 cluster->boundary[cluster->nr] = extent_key->objectid; 3144 cluster->nr++; 3145 3146 if (cluster->nr >= MAX_EXTENTS) { 3147 ret = relocate_file_extent_cluster(inode, cluster); 3148 if (ret) 3149 return ret; 3150 cluster->nr = 0; 3151 } 3152 return 0; 3153 } 3154 3155 /* 3156 * helper to add a tree block to the list. 3157 * the major work is getting the generation and level of the block 3158 */ 3159 static int add_tree_block(struct reloc_control *rc, 3160 struct btrfs_key *extent_key, 3161 struct btrfs_path *path, 3162 struct rb_root *blocks) 3163 { 3164 struct extent_buffer *eb; 3165 struct btrfs_extent_item *ei; 3166 struct btrfs_tree_block_info *bi; 3167 struct tree_block *block; 3168 struct rb_node *rb_node; 3169 u32 item_size; 3170 int level = -1; 3171 u64 generation; 3172 u64 owner = 0; 3173 3174 eb = path->nodes[0]; 3175 item_size = btrfs_item_size(eb, path->slots[0]); 3176 3177 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3178 item_size >= sizeof(*ei) + sizeof(*bi)) { 3179 unsigned long ptr = 0, end; 3180 3181 ei = btrfs_item_ptr(eb, path->slots[0], 3182 struct btrfs_extent_item); 3183 end = (unsigned long)ei + item_size; 3184 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3185 bi = (struct btrfs_tree_block_info *)(ei + 1); 3186 level = btrfs_tree_block_level(eb, bi); 3187 ptr = (unsigned long)(bi + 1); 3188 } else { 3189 level = (int)extent_key->offset; 3190 ptr = (unsigned long)(ei + 1); 3191 } 3192 generation = btrfs_extent_generation(eb, ei); 3193 3194 /* 3195 * We're reading random blocks without knowing their owner ahead 3196 * of time. This is ok most of the time, as all reloc roots and 3197 * fs roots have the same lock type. However normal trees do 3198 * not, and the only way to know ahead of time is to read the 3199 * inline ref offset. We know it's an fs root if 3200 * 3201 * 1. There's more than one ref. 3202 * 2. There's a SHARED_DATA_REF_KEY set. 3203 * 3. FULL_BACKREF is set on the flags. 3204 * 3205 * Otherwise it's safe to assume that the ref offset == the 3206 * owner of this block, so we can use that when calling 3207 * read_tree_block. 3208 */ 3209 if (btrfs_extent_refs(eb, ei) == 1 && 3210 !(btrfs_extent_flags(eb, ei) & 3211 BTRFS_BLOCK_FLAG_FULL_BACKREF) && 3212 ptr < end) { 3213 struct btrfs_extent_inline_ref *iref; 3214 int type; 3215 3216 iref = (struct btrfs_extent_inline_ref *)ptr; 3217 type = btrfs_get_extent_inline_ref_type(eb, iref, 3218 BTRFS_REF_TYPE_BLOCK); 3219 if (type == BTRFS_REF_TYPE_INVALID) 3220 return -EINVAL; 3221 if (type == BTRFS_TREE_BLOCK_REF_KEY) 3222 owner = btrfs_extent_inline_ref_offset(eb, iref); 3223 } 3224 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 3225 btrfs_print_v0_err(eb->fs_info); 3226 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 3227 return -EINVAL; 3228 } else { 3229 BUG(); 3230 } 3231 3232 btrfs_release_path(path); 3233 3234 BUG_ON(level == -1); 3235 3236 block = kmalloc(sizeof(*block), GFP_NOFS); 3237 if (!block) 3238 return -ENOMEM; 3239 3240 block->bytenr = extent_key->objectid; 3241 block->key.objectid = rc->extent_root->fs_info->nodesize; 3242 block->key.offset = generation; 3243 block->level = level; 3244 block->key_ready = 0; 3245 block->owner = owner; 3246 3247 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node); 3248 if (rb_node) 3249 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr, 3250 -EEXIST); 3251 3252 return 0; 3253 } 3254 3255 /* 3256 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3257 */ 3258 static int __add_tree_block(struct reloc_control *rc, 3259 u64 bytenr, u32 blocksize, 3260 struct rb_root *blocks) 3261 { 3262 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3263 struct btrfs_path *path; 3264 struct btrfs_key key; 3265 int ret; 3266 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 3267 3268 if (tree_block_processed(bytenr, rc)) 3269 return 0; 3270 3271 if (rb_simple_search(blocks, bytenr)) 3272 return 0; 3273 3274 path = btrfs_alloc_path(); 3275 if (!path) 3276 return -ENOMEM; 3277 again: 3278 key.objectid = bytenr; 3279 if (skinny) { 3280 key.type = BTRFS_METADATA_ITEM_KEY; 3281 key.offset = (u64)-1; 3282 } else { 3283 key.type = BTRFS_EXTENT_ITEM_KEY; 3284 key.offset = blocksize; 3285 } 3286 3287 path->search_commit_root = 1; 3288 path->skip_locking = 1; 3289 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3290 if (ret < 0) 3291 goto out; 3292 3293 if (ret > 0 && skinny) { 3294 if (path->slots[0]) { 3295 path->slots[0]--; 3296 btrfs_item_key_to_cpu(path->nodes[0], &key, 3297 path->slots[0]); 3298 if (key.objectid == bytenr && 3299 (key.type == BTRFS_METADATA_ITEM_KEY || 3300 (key.type == BTRFS_EXTENT_ITEM_KEY && 3301 key.offset == blocksize))) 3302 ret = 0; 3303 } 3304 3305 if (ret) { 3306 skinny = false; 3307 btrfs_release_path(path); 3308 goto again; 3309 } 3310 } 3311 if (ret) { 3312 ASSERT(ret == 1); 3313 btrfs_print_leaf(path->nodes[0]); 3314 btrfs_err(fs_info, 3315 "tree block extent item (%llu) is not found in extent tree", 3316 bytenr); 3317 WARN_ON(1); 3318 ret = -EINVAL; 3319 goto out; 3320 } 3321 3322 ret = add_tree_block(rc, &key, path, blocks); 3323 out: 3324 btrfs_free_path(path); 3325 return ret; 3326 } 3327 3328 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3329 struct btrfs_block_group *block_group, 3330 struct inode *inode, 3331 u64 ino) 3332 { 3333 struct btrfs_root *root = fs_info->tree_root; 3334 struct btrfs_trans_handle *trans; 3335 int ret = 0; 3336 3337 if (inode) 3338 goto truncate; 3339 3340 inode = btrfs_iget(fs_info->sb, ino, root); 3341 if (IS_ERR(inode)) 3342 return -ENOENT; 3343 3344 truncate: 3345 ret = btrfs_check_trunc_cache_free_space(fs_info, 3346 &fs_info->global_block_rsv); 3347 if (ret) 3348 goto out; 3349 3350 trans = btrfs_join_transaction(root); 3351 if (IS_ERR(trans)) { 3352 ret = PTR_ERR(trans); 3353 goto out; 3354 } 3355 3356 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3357 3358 btrfs_end_transaction(trans); 3359 btrfs_btree_balance_dirty(fs_info); 3360 out: 3361 iput(inode); 3362 return ret; 3363 } 3364 3365 /* 3366 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the 3367 * cache inode, to avoid free space cache data extent blocking data relocation. 3368 */ 3369 static int delete_v1_space_cache(struct extent_buffer *leaf, 3370 struct btrfs_block_group *block_group, 3371 u64 data_bytenr) 3372 { 3373 u64 space_cache_ino; 3374 struct btrfs_file_extent_item *ei; 3375 struct btrfs_key key; 3376 bool found = false; 3377 int i; 3378 int ret; 3379 3380 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) 3381 return 0; 3382 3383 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 3384 u8 type; 3385 3386 btrfs_item_key_to_cpu(leaf, &key, i); 3387 if (key.type != BTRFS_EXTENT_DATA_KEY) 3388 continue; 3389 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 3390 type = btrfs_file_extent_type(leaf, ei); 3391 3392 if ((type == BTRFS_FILE_EXTENT_REG || 3393 type == BTRFS_FILE_EXTENT_PREALLOC) && 3394 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { 3395 found = true; 3396 space_cache_ino = key.objectid; 3397 break; 3398 } 3399 } 3400 if (!found) 3401 return -ENOENT; 3402 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL, 3403 space_cache_ino); 3404 return ret; 3405 } 3406 3407 /* 3408 * helper to find all tree blocks that reference a given data extent 3409 */ 3410 static noinline_for_stack 3411 int add_data_references(struct reloc_control *rc, 3412 struct btrfs_key *extent_key, 3413 struct btrfs_path *path, 3414 struct rb_root *blocks) 3415 { 3416 struct btrfs_backref_walk_ctx ctx = { 0 }; 3417 struct ulist_iterator leaf_uiter; 3418 struct ulist_node *ref_node = NULL; 3419 const u32 blocksize = rc->extent_root->fs_info->nodesize; 3420 int ret = 0; 3421 3422 btrfs_release_path(path); 3423 3424 ctx.bytenr = extent_key->objectid; 3425 ctx.ignore_extent_item_pos = true; 3426 ctx.fs_info = rc->extent_root->fs_info; 3427 3428 ret = btrfs_find_all_leafs(&ctx); 3429 if (ret < 0) 3430 return ret; 3431 3432 ULIST_ITER_INIT(&leaf_uiter); 3433 while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) { 3434 struct btrfs_tree_parent_check check = { 0 }; 3435 struct extent_buffer *eb; 3436 3437 eb = read_tree_block(ctx.fs_info, ref_node->val, &check); 3438 if (IS_ERR(eb)) { 3439 ret = PTR_ERR(eb); 3440 break; 3441 } 3442 ret = delete_v1_space_cache(eb, rc->block_group, 3443 extent_key->objectid); 3444 free_extent_buffer(eb); 3445 if (ret < 0) 3446 break; 3447 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); 3448 if (ret < 0) 3449 break; 3450 } 3451 if (ret < 0) 3452 free_block_list(blocks); 3453 ulist_free(ctx.refs); 3454 return ret; 3455 } 3456 3457 /* 3458 * helper to find next unprocessed extent 3459 */ 3460 static noinline_for_stack 3461 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3462 struct btrfs_key *extent_key) 3463 { 3464 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3465 struct btrfs_key key; 3466 struct extent_buffer *leaf; 3467 u64 start, end, last; 3468 int ret; 3469 3470 last = rc->block_group->start + rc->block_group->length; 3471 while (1) { 3472 cond_resched(); 3473 if (rc->search_start >= last) { 3474 ret = 1; 3475 break; 3476 } 3477 3478 key.objectid = rc->search_start; 3479 key.type = BTRFS_EXTENT_ITEM_KEY; 3480 key.offset = 0; 3481 3482 path->search_commit_root = 1; 3483 path->skip_locking = 1; 3484 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3485 0, 0); 3486 if (ret < 0) 3487 break; 3488 next: 3489 leaf = path->nodes[0]; 3490 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3491 ret = btrfs_next_leaf(rc->extent_root, path); 3492 if (ret != 0) 3493 break; 3494 leaf = path->nodes[0]; 3495 } 3496 3497 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3498 if (key.objectid >= last) { 3499 ret = 1; 3500 break; 3501 } 3502 3503 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3504 key.type != BTRFS_METADATA_ITEM_KEY) { 3505 path->slots[0]++; 3506 goto next; 3507 } 3508 3509 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3510 key.objectid + key.offset <= rc->search_start) { 3511 path->slots[0]++; 3512 goto next; 3513 } 3514 3515 if (key.type == BTRFS_METADATA_ITEM_KEY && 3516 key.objectid + fs_info->nodesize <= 3517 rc->search_start) { 3518 path->slots[0]++; 3519 goto next; 3520 } 3521 3522 ret = find_first_extent_bit(&rc->processed_blocks, 3523 key.objectid, &start, &end, 3524 EXTENT_DIRTY, NULL); 3525 3526 if (ret == 0 && start <= key.objectid) { 3527 btrfs_release_path(path); 3528 rc->search_start = end + 1; 3529 } else { 3530 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3531 rc->search_start = key.objectid + key.offset; 3532 else 3533 rc->search_start = key.objectid + 3534 fs_info->nodesize; 3535 memcpy(extent_key, &key, sizeof(key)); 3536 return 0; 3537 } 3538 } 3539 btrfs_release_path(path); 3540 return ret; 3541 } 3542 3543 static void set_reloc_control(struct reloc_control *rc) 3544 { 3545 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3546 3547 mutex_lock(&fs_info->reloc_mutex); 3548 fs_info->reloc_ctl = rc; 3549 mutex_unlock(&fs_info->reloc_mutex); 3550 } 3551 3552 static void unset_reloc_control(struct reloc_control *rc) 3553 { 3554 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3555 3556 mutex_lock(&fs_info->reloc_mutex); 3557 fs_info->reloc_ctl = NULL; 3558 mutex_unlock(&fs_info->reloc_mutex); 3559 } 3560 3561 static noinline_for_stack 3562 int prepare_to_relocate(struct reloc_control *rc) 3563 { 3564 struct btrfs_trans_handle *trans; 3565 int ret; 3566 3567 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3568 BTRFS_BLOCK_RSV_TEMP); 3569 if (!rc->block_rsv) 3570 return -ENOMEM; 3571 3572 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3573 rc->search_start = rc->block_group->start; 3574 rc->extents_found = 0; 3575 rc->nodes_relocated = 0; 3576 rc->merging_rsv_size = 0; 3577 rc->reserved_bytes = 0; 3578 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3579 RELOCATION_RESERVED_NODES; 3580 ret = btrfs_block_rsv_refill(rc->extent_root->fs_info, 3581 rc->block_rsv, rc->block_rsv->size, 3582 BTRFS_RESERVE_FLUSH_ALL); 3583 if (ret) 3584 return ret; 3585 3586 rc->create_reloc_tree = 1; 3587 set_reloc_control(rc); 3588 3589 trans = btrfs_join_transaction(rc->extent_root); 3590 if (IS_ERR(trans)) { 3591 unset_reloc_control(rc); 3592 /* 3593 * extent tree is not a ref_cow tree and has no reloc_root to 3594 * cleanup. And callers are responsible to free the above 3595 * block rsv. 3596 */ 3597 return PTR_ERR(trans); 3598 } 3599 3600 ret = btrfs_commit_transaction(trans); 3601 if (ret) 3602 unset_reloc_control(rc); 3603 3604 return ret; 3605 } 3606 3607 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3608 { 3609 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3610 struct rb_root blocks = RB_ROOT; 3611 struct btrfs_key key; 3612 struct btrfs_trans_handle *trans = NULL; 3613 struct btrfs_path *path; 3614 struct btrfs_extent_item *ei; 3615 u64 flags; 3616 int ret; 3617 int err = 0; 3618 int progress = 0; 3619 3620 path = btrfs_alloc_path(); 3621 if (!path) 3622 return -ENOMEM; 3623 path->reada = READA_FORWARD; 3624 3625 ret = prepare_to_relocate(rc); 3626 if (ret) { 3627 err = ret; 3628 goto out_free; 3629 } 3630 3631 while (1) { 3632 rc->reserved_bytes = 0; 3633 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, 3634 rc->block_rsv->size, 3635 BTRFS_RESERVE_FLUSH_ALL); 3636 if (ret) { 3637 err = ret; 3638 break; 3639 } 3640 progress++; 3641 trans = btrfs_start_transaction(rc->extent_root, 0); 3642 if (IS_ERR(trans)) { 3643 err = PTR_ERR(trans); 3644 trans = NULL; 3645 break; 3646 } 3647 restart: 3648 if (update_backref_cache(trans, &rc->backref_cache)) { 3649 btrfs_end_transaction(trans); 3650 trans = NULL; 3651 continue; 3652 } 3653 3654 ret = find_next_extent(rc, path, &key); 3655 if (ret < 0) 3656 err = ret; 3657 if (ret != 0) 3658 break; 3659 3660 rc->extents_found++; 3661 3662 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3663 struct btrfs_extent_item); 3664 flags = btrfs_extent_flags(path->nodes[0], ei); 3665 3666 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3667 ret = add_tree_block(rc, &key, path, &blocks); 3668 } else if (rc->stage == UPDATE_DATA_PTRS && 3669 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3670 ret = add_data_references(rc, &key, path, &blocks); 3671 } else { 3672 btrfs_release_path(path); 3673 ret = 0; 3674 } 3675 if (ret < 0) { 3676 err = ret; 3677 break; 3678 } 3679 3680 if (!RB_EMPTY_ROOT(&blocks)) { 3681 ret = relocate_tree_blocks(trans, rc, &blocks); 3682 if (ret < 0) { 3683 if (ret != -EAGAIN) { 3684 err = ret; 3685 break; 3686 } 3687 rc->extents_found--; 3688 rc->search_start = key.objectid; 3689 } 3690 } 3691 3692 btrfs_end_transaction_throttle(trans); 3693 btrfs_btree_balance_dirty(fs_info); 3694 trans = NULL; 3695 3696 if (rc->stage == MOVE_DATA_EXTENTS && 3697 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3698 rc->found_file_extent = 1; 3699 ret = relocate_data_extent(rc->data_inode, 3700 &key, &rc->cluster); 3701 if (ret < 0) { 3702 err = ret; 3703 break; 3704 } 3705 } 3706 if (btrfs_should_cancel_balance(fs_info)) { 3707 err = -ECANCELED; 3708 break; 3709 } 3710 } 3711 if (trans && progress && err == -ENOSPC) { 3712 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 3713 if (ret == 1) { 3714 err = 0; 3715 progress = 0; 3716 goto restart; 3717 } 3718 } 3719 3720 btrfs_release_path(path); 3721 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 3722 3723 if (trans) { 3724 btrfs_end_transaction_throttle(trans); 3725 btrfs_btree_balance_dirty(fs_info); 3726 } 3727 3728 if (!err) { 3729 ret = relocate_file_extent_cluster(rc->data_inode, 3730 &rc->cluster); 3731 if (ret < 0) 3732 err = ret; 3733 } 3734 3735 rc->create_reloc_tree = 0; 3736 set_reloc_control(rc); 3737 3738 btrfs_backref_release_cache(&rc->backref_cache); 3739 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3740 3741 /* 3742 * Even in the case when the relocation is cancelled, we should all go 3743 * through prepare_to_merge() and merge_reloc_roots(). 3744 * 3745 * For error (including cancelled balance), prepare_to_merge() will 3746 * mark all reloc trees orphan, then queue them for cleanup in 3747 * merge_reloc_roots() 3748 */ 3749 err = prepare_to_merge(rc, err); 3750 3751 merge_reloc_roots(rc); 3752 3753 rc->merge_reloc_tree = 0; 3754 unset_reloc_control(rc); 3755 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3756 3757 /* get rid of pinned extents */ 3758 trans = btrfs_join_transaction(rc->extent_root); 3759 if (IS_ERR(trans)) { 3760 err = PTR_ERR(trans); 3761 goto out_free; 3762 } 3763 ret = btrfs_commit_transaction(trans); 3764 if (ret && !err) 3765 err = ret; 3766 out_free: 3767 ret = clean_dirty_subvols(rc); 3768 if (ret < 0 && !err) 3769 err = ret; 3770 btrfs_free_block_rsv(fs_info, rc->block_rsv); 3771 btrfs_free_path(path); 3772 return err; 3773 } 3774 3775 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3776 struct btrfs_root *root, u64 objectid) 3777 { 3778 struct btrfs_path *path; 3779 struct btrfs_inode_item *item; 3780 struct extent_buffer *leaf; 3781 int ret; 3782 3783 path = btrfs_alloc_path(); 3784 if (!path) 3785 return -ENOMEM; 3786 3787 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3788 if (ret) 3789 goto out; 3790 3791 leaf = path->nodes[0]; 3792 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3793 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3794 btrfs_set_inode_generation(leaf, item, 1); 3795 btrfs_set_inode_size(leaf, item, 0); 3796 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3797 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 3798 BTRFS_INODE_PREALLOC); 3799 btrfs_mark_buffer_dirty(leaf); 3800 out: 3801 btrfs_free_path(path); 3802 return ret; 3803 } 3804 3805 static void delete_orphan_inode(struct btrfs_trans_handle *trans, 3806 struct btrfs_root *root, u64 objectid) 3807 { 3808 struct btrfs_path *path; 3809 struct btrfs_key key; 3810 int ret = 0; 3811 3812 path = btrfs_alloc_path(); 3813 if (!path) { 3814 ret = -ENOMEM; 3815 goto out; 3816 } 3817 3818 key.objectid = objectid; 3819 key.type = BTRFS_INODE_ITEM_KEY; 3820 key.offset = 0; 3821 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3822 if (ret) { 3823 if (ret > 0) 3824 ret = -ENOENT; 3825 goto out; 3826 } 3827 ret = btrfs_del_item(trans, root, path); 3828 out: 3829 if (ret) 3830 btrfs_abort_transaction(trans, ret); 3831 btrfs_free_path(path); 3832 } 3833 3834 /* 3835 * helper to create inode for data relocation. 3836 * the inode is in data relocation tree and its link count is 0 3837 */ 3838 static noinline_for_stack 3839 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 3840 struct btrfs_block_group *group) 3841 { 3842 struct inode *inode = NULL; 3843 struct btrfs_trans_handle *trans; 3844 struct btrfs_root *root; 3845 u64 objectid; 3846 int err = 0; 3847 3848 root = btrfs_grab_root(fs_info->data_reloc_root); 3849 trans = btrfs_start_transaction(root, 6); 3850 if (IS_ERR(trans)) { 3851 btrfs_put_root(root); 3852 return ERR_CAST(trans); 3853 } 3854 3855 err = btrfs_get_free_objectid(root, &objectid); 3856 if (err) 3857 goto out; 3858 3859 err = __insert_orphan_inode(trans, root, objectid); 3860 if (err) 3861 goto out; 3862 3863 inode = btrfs_iget(fs_info->sb, objectid, root); 3864 if (IS_ERR(inode)) { 3865 delete_orphan_inode(trans, root, objectid); 3866 err = PTR_ERR(inode); 3867 inode = NULL; 3868 goto out; 3869 } 3870 BTRFS_I(inode)->index_cnt = group->start; 3871 3872 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 3873 out: 3874 btrfs_put_root(root); 3875 btrfs_end_transaction(trans); 3876 btrfs_btree_balance_dirty(fs_info); 3877 if (err) { 3878 iput(inode); 3879 inode = ERR_PTR(err); 3880 } 3881 return inode; 3882 } 3883 3884 /* 3885 * Mark start of chunk relocation that is cancellable. Check if the cancellation 3886 * has been requested meanwhile and don't start in that case. 3887 * 3888 * Return: 3889 * 0 success 3890 * -EINPROGRESS operation is already in progress, that's probably a bug 3891 * -ECANCELED cancellation request was set before the operation started 3892 */ 3893 static int reloc_chunk_start(struct btrfs_fs_info *fs_info) 3894 { 3895 if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) { 3896 /* This should not happen */ 3897 btrfs_err(fs_info, "reloc already running, cannot start"); 3898 return -EINPROGRESS; 3899 } 3900 3901 if (atomic_read(&fs_info->reloc_cancel_req) > 0) { 3902 btrfs_info(fs_info, "chunk relocation canceled on start"); 3903 /* 3904 * On cancel, clear all requests but let the caller mark 3905 * the end after cleanup operations. 3906 */ 3907 atomic_set(&fs_info->reloc_cancel_req, 0); 3908 return -ECANCELED; 3909 } 3910 return 0; 3911 } 3912 3913 /* 3914 * Mark end of chunk relocation that is cancellable and wake any waiters. 3915 */ 3916 static void reloc_chunk_end(struct btrfs_fs_info *fs_info) 3917 { 3918 /* Requested after start, clear bit first so any waiters can continue */ 3919 if (atomic_read(&fs_info->reloc_cancel_req) > 0) 3920 btrfs_info(fs_info, "chunk relocation canceled during operation"); 3921 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags); 3922 atomic_set(&fs_info->reloc_cancel_req, 0); 3923 } 3924 3925 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 3926 { 3927 struct reloc_control *rc; 3928 3929 rc = kzalloc(sizeof(*rc), GFP_NOFS); 3930 if (!rc) 3931 return NULL; 3932 3933 INIT_LIST_HEAD(&rc->reloc_roots); 3934 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 3935 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1); 3936 mapping_tree_init(&rc->reloc_root_tree); 3937 extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS); 3938 return rc; 3939 } 3940 3941 static void free_reloc_control(struct reloc_control *rc) 3942 { 3943 struct mapping_node *node, *tmp; 3944 3945 free_reloc_roots(&rc->reloc_roots); 3946 rbtree_postorder_for_each_entry_safe(node, tmp, 3947 &rc->reloc_root_tree.rb_root, rb_node) 3948 kfree(node); 3949 3950 kfree(rc); 3951 } 3952 3953 /* 3954 * Print the block group being relocated 3955 */ 3956 static void describe_relocation(struct btrfs_fs_info *fs_info, 3957 struct btrfs_block_group *block_group) 3958 { 3959 char buf[128] = {'\0'}; 3960 3961 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 3962 3963 btrfs_info(fs_info, 3964 "relocating block group %llu flags %s", 3965 block_group->start, buf); 3966 } 3967 3968 static const char *stage_to_string(int stage) 3969 { 3970 if (stage == MOVE_DATA_EXTENTS) 3971 return "move data extents"; 3972 if (stage == UPDATE_DATA_PTRS) 3973 return "update data pointers"; 3974 return "unknown"; 3975 } 3976 3977 /* 3978 * function to relocate all extents in a block group. 3979 */ 3980 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 3981 { 3982 struct btrfs_block_group *bg; 3983 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start); 3984 struct reloc_control *rc; 3985 struct inode *inode; 3986 struct btrfs_path *path; 3987 int ret; 3988 int rw = 0; 3989 int err = 0; 3990 3991 /* 3992 * This only gets set if we had a half-deleted snapshot on mount. We 3993 * cannot allow relocation to start while we're still trying to clean up 3994 * these pending deletions. 3995 */ 3996 ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE); 3997 if (ret) 3998 return ret; 3999 4000 /* We may have been woken up by close_ctree, so bail if we're closing. */ 4001 if (btrfs_fs_closing(fs_info)) 4002 return -EINTR; 4003 4004 bg = btrfs_lookup_block_group(fs_info, group_start); 4005 if (!bg) 4006 return -ENOENT; 4007 4008 /* 4009 * Relocation of a data block group creates ordered extents. Without 4010 * sb_start_write(), we can freeze the filesystem while unfinished 4011 * ordered extents are left. Such ordered extents can cause a deadlock 4012 * e.g. when syncfs() is waiting for their completion but they can't 4013 * finish because they block when joining a transaction, due to the 4014 * fact that the freeze locks are being held in write mode. 4015 */ 4016 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) 4017 ASSERT(sb_write_started(fs_info->sb)); 4018 4019 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 4020 btrfs_put_block_group(bg); 4021 return -ETXTBSY; 4022 } 4023 4024 rc = alloc_reloc_control(fs_info); 4025 if (!rc) { 4026 btrfs_put_block_group(bg); 4027 return -ENOMEM; 4028 } 4029 4030 ret = reloc_chunk_start(fs_info); 4031 if (ret < 0) { 4032 err = ret; 4033 goto out_put_bg; 4034 } 4035 4036 rc->extent_root = extent_root; 4037 rc->block_group = bg; 4038 4039 ret = btrfs_inc_block_group_ro(rc->block_group, true); 4040 if (ret) { 4041 err = ret; 4042 goto out; 4043 } 4044 rw = 1; 4045 4046 path = btrfs_alloc_path(); 4047 if (!path) { 4048 err = -ENOMEM; 4049 goto out; 4050 } 4051 4052 inode = lookup_free_space_inode(rc->block_group, path); 4053 btrfs_free_path(path); 4054 4055 if (!IS_ERR(inode)) 4056 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4057 else 4058 ret = PTR_ERR(inode); 4059 4060 if (ret && ret != -ENOENT) { 4061 err = ret; 4062 goto out; 4063 } 4064 4065 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4066 if (IS_ERR(rc->data_inode)) { 4067 err = PTR_ERR(rc->data_inode); 4068 rc->data_inode = NULL; 4069 goto out; 4070 } 4071 4072 describe_relocation(fs_info, rc->block_group); 4073 4074 btrfs_wait_block_group_reservations(rc->block_group); 4075 btrfs_wait_nocow_writers(rc->block_group); 4076 btrfs_wait_ordered_roots(fs_info, U64_MAX, 4077 rc->block_group->start, 4078 rc->block_group->length); 4079 4080 ret = btrfs_zone_finish(rc->block_group); 4081 WARN_ON(ret && ret != -EAGAIN); 4082 4083 while (1) { 4084 int finishes_stage; 4085 4086 mutex_lock(&fs_info->cleaner_mutex); 4087 ret = relocate_block_group(rc); 4088 mutex_unlock(&fs_info->cleaner_mutex); 4089 if (ret < 0) 4090 err = ret; 4091 4092 finishes_stage = rc->stage; 4093 /* 4094 * We may have gotten ENOSPC after we already dirtied some 4095 * extents. If writeout happens while we're relocating a 4096 * different block group we could end up hitting the 4097 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 4098 * btrfs_reloc_cow_block. Make sure we write everything out 4099 * properly so we don't trip over this problem, and then break 4100 * out of the loop if we hit an error. 4101 */ 4102 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4103 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4104 (u64)-1); 4105 if (ret) 4106 err = ret; 4107 invalidate_mapping_pages(rc->data_inode->i_mapping, 4108 0, -1); 4109 rc->stage = UPDATE_DATA_PTRS; 4110 } 4111 4112 if (err < 0) 4113 goto out; 4114 4115 if (rc->extents_found == 0) 4116 break; 4117 4118 btrfs_info(fs_info, "found %llu extents, stage: %s", 4119 rc->extents_found, stage_to_string(finishes_stage)); 4120 } 4121 4122 WARN_ON(rc->block_group->pinned > 0); 4123 WARN_ON(rc->block_group->reserved > 0); 4124 WARN_ON(rc->block_group->used > 0); 4125 out: 4126 if (err && rw) 4127 btrfs_dec_block_group_ro(rc->block_group); 4128 iput(rc->data_inode); 4129 out_put_bg: 4130 btrfs_put_block_group(bg); 4131 reloc_chunk_end(fs_info); 4132 free_reloc_control(rc); 4133 return err; 4134 } 4135 4136 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4137 { 4138 struct btrfs_fs_info *fs_info = root->fs_info; 4139 struct btrfs_trans_handle *trans; 4140 int ret, err; 4141 4142 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4143 if (IS_ERR(trans)) 4144 return PTR_ERR(trans); 4145 4146 memset(&root->root_item.drop_progress, 0, 4147 sizeof(root->root_item.drop_progress)); 4148 btrfs_set_root_drop_level(&root->root_item, 0); 4149 btrfs_set_root_refs(&root->root_item, 0); 4150 ret = btrfs_update_root(trans, fs_info->tree_root, 4151 &root->root_key, &root->root_item); 4152 4153 err = btrfs_end_transaction(trans); 4154 if (err) 4155 return err; 4156 return ret; 4157 } 4158 4159 /* 4160 * recover relocation interrupted by system crash. 4161 * 4162 * this function resumes merging reloc trees with corresponding fs trees. 4163 * this is important for keeping the sharing of tree blocks 4164 */ 4165 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info) 4166 { 4167 LIST_HEAD(reloc_roots); 4168 struct btrfs_key key; 4169 struct btrfs_root *fs_root; 4170 struct btrfs_root *reloc_root; 4171 struct btrfs_path *path; 4172 struct extent_buffer *leaf; 4173 struct reloc_control *rc = NULL; 4174 struct btrfs_trans_handle *trans; 4175 int ret; 4176 int err = 0; 4177 4178 path = btrfs_alloc_path(); 4179 if (!path) 4180 return -ENOMEM; 4181 path->reada = READA_BACK; 4182 4183 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4184 key.type = BTRFS_ROOT_ITEM_KEY; 4185 key.offset = (u64)-1; 4186 4187 while (1) { 4188 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 4189 path, 0, 0); 4190 if (ret < 0) { 4191 err = ret; 4192 goto out; 4193 } 4194 if (ret > 0) { 4195 if (path->slots[0] == 0) 4196 break; 4197 path->slots[0]--; 4198 } 4199 leaf = path->nodes[0]; 4200 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4201 btrfs_release_path(path); 4202 4203 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4204 key.type != BTRFS_ROOT_ITEM_KEY) 4205 break; 4206 4207 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key); 4208 if (IS_ERR(reloc_root)) { 4209 err = PTR_ERR(reloc_root); 4210 goto out; 4211 } 4212 4213 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 4214 list_add(&reloc_root->root_list, &reloc_roots); 4215 4216 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4217 fs_root = btrfs_get_fs_root(fs_info, 4218 reloc_root->root_key.offset, false); 4219 if (IS_ERR(fs_root)) { 4220 ret = PTR_ERR(fs_root); 4221 if (ret != -ENOENT) { 4222 err = ret; 4223 goto out; 4224 } 4225 ret = mark_garbage_root(reloc_root); 4226 if (ret < 0) { 4227 err = ret; 4228 goto out; 4229 } 4230 } else { 4231 btrfs_put_root(fs_root); 4232 } 4233 } 4234 4235 if (key.offset == 0) 4236 break; 4237 4238 key.offset--; 4239 } 4240 btrfs_release_path(path); 4241 4242 if (list_empty(&reloc_roots)) 4243 goto out; 4244 4245 rc = alloc_reloc_control(fs_info); 4246 if (!rc) { 4247 err = -ENOMEM; 4248 goto out; 4249 } 4250 4251 ret = reloc_chunk_start(fs_info); 4252 if (ret < 0) { 4253 err = ret; 4254 goto out_end; 4255 } 4256 4257 rc->extent_root = btrfs_extent_root(fs_info, 0); 4258 4259 set_reloc_control(rc); 4260 4261 trans = btrfs_join_transaction(rc->extent_root); 4262 if (IS_ERR(trans)) { 4263 err = PTR_ERR(trans); 4264 goto out_unset; 4265 } 4266 4267 rc->merge_reloc_tree = 1; 4268 4269 while (!list_empty(&reloc_roots)) { 4270 reloc_root = list_entry(reloc_roots.next, 4271 struct btrfs_root, root_list); 4272 list_del(&reloc_root->root_list); 4273 4274 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4275 list_add_tail(&reloc_root->root_list, 4276 &rc->reloc_roots); 4277 continue; 4278 } 4279 4280 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 4281 false); 4282 if (IS_ERR(fs_root)) { 4283 err = PTR_ERR(fs_root); 4284 list_add_tail(&reloc_root->root_list, &reloc_roots); 4285 btrfs_end_transaction(trans); 4286 goto out_unset; 4287 } 4288 4289 err = __add_reloc_root(reloc_root); 4290 ASSERT(err != -EEXIST); 4291 if (err) { 4292 list_add_tail(&reloc_root->root_list, &reloc_roots); 4293 btrfs_put_root(fs_root); 4294 btrfs_end_transaction(trans); 4295 goto out_unset; 4296 } 4297 fs_root->reloc_root = btrfs_grab_root(reloc_root); 4298 btrfs_put_root(fs_root); 4299 } 4300 4301 err = btrfs_commit_transaction(trans); 4302 if (err) 4303 goto out_unset; 4304 4305 merge_reloc_roots(rc); 4306 4307 unset_reloc_control(rc); 4308 4309 trans = btrfs_join_transaction(rc->extent_root); 4310 if (IS_ERR(trans)) { 4311 err = PTR_ERR(trans); 4312 goto out_clean; 4313 } 4314 err = btrfs_commit_transaction(trans); 4315 out_clean: 4316 ret = clean_dirty_subvols(rc); 4317 if (ret < 0 && !err) 4318 err = ret; 4319 out_unset: 4320 unset_reloc_control(rc); 4321 out_end: 4322 reloc_chunk_end(fs_info); 4323 free_reloc_control(rc); 4324 out: 4325 free_reloc_roots(&reloc_roots); 4326 4327 btrfs_free_path(path); 4328 4329 if (err == 0) { 4330 /* cleanup orphan inode in data relocation tree */ 4331 fs_root = btrfs_grab_root(fs_info->data_reloc_root); 4332 ASSERT(fs_root); 4333 err = btrfs_orphan_cleanup(fs_root); 4334 btrfs_put_root(fs_root); 4335 } 4336 return err; 4337 } 4338 4339 /* 4340 * helper to add ordered checksum for data relocation. 4341 * 4342 * cloning checksum properly handles the nodatasum extents. 4343 * it also saves CPU time to re-calculate the checksum. 4344 */ 4345 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len) 4346 { 4347 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4348 struct btrfs_root *csum_root; 4349 struct btrfs_ordered_sum *sums; 4350 struct btrfs_ordered_extent *ordered; 4351 int ret; 4352 u64 disk_bytenr; 4353 u64 new_bytenr; 4354 LIST_HEAD(list); 4355 4356 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4357 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len); 4358 4359 disk_bytenr = file_pos + inode->index_cnt; 4360 csum_root = btrfs_csum_root(fs_info, disk_bytenr); 4361 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr, 4362 disk_bytenr + len - 1, &list, 0, false); 4363 if (ret) 4364 goto out; 4365 4366 while (!list_empty(&list)) { 4367 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4368 list_del_init(&sums->list); 4369 4370 /* 4371 * We need to offset the new_bytenr based on where the csum is. 4372 * We need to do this because we will read in entire prealloc 4373 * extents but we may have written to say the middle of the 4374 * prealloc extent, so we need to make sure the csum goes with 4375 * the right disk offset. 4376 * 4377 * We can do this because the data reloc inode refers strictly 4378 * to the on disk bytes, so we don't have to worry about 4379 * disk_len vs real len like with real inodes since it's all 4380 * disk length. 4381 */ 4382 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr; 4383 sums->bytenr = new_bytenr; 4384 4385 btrfs_add_ordered_sum(ordered, sums); 4386 } 4387 out: 4388 btrfs_put_ordered_extent(ordered); 4389 return ret; 4390 } 4391 4392 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4393 struct btrfs_root *root, struct extent_buffer *buf, 4394 struct extent_buffer *cow) 4395 { 4396 struct btrfs_fs_info *fs_info = root->fs_info; 4397 struct reloc_control *rc; 4398 struct btrfs_backref_node *node; 4399 int first_cow = 0; 4400 int level; 4401 int ret = 0; 4402 4403 rc = fs_info->reloc_ctl; 4404 if (!rc) 4405 return 0; 4406 4407 BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root)); 4408 4409 level = btrfs_header_level(buf); 4410 if (btrfs_header_generation(buf) <= 4411 btrfs_root_last_snapshot(&root->root_item)) 4412 first_cow = 1; 4413 4414 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4415 rc->create_reloc_tree) { 4416 WARN_ON(!first_cow && level == 0); 4417 4418 node = rc->backref_cache.path[level]; 4419 BUG_ON(node->bytenr != buf->start && 4420 node->new_bytenr != buf->start); 4421 4422 btrfs_backref_drop_node_buffer(node); 4423 atomic_inc(&cow->refs); 4424 node->eb = cow; 4425 node->new_bytenr = cow->start; 4426 4427 if (!node->pending) { 4428 list_move_tail(&node->list, 4429 &rc->backref_cache.pending[level]); 4430 node->pending = 1; 4431 } 4432 4433 if (first_cow) 4434 mark_block_processed(rc, node); 4435 4436 if (first_cow && level > 0) 4437 rc->nodes_relocated += buf->len; 4438 } 4439 4440 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4441 ret = replace_file_extents(trans, rc, root, cow); 4442 return ret; 4443 } 4444 4445 /* 4446 * called before creating snapshot. it calculates metadata reservation 4447 * required for relocating tree blocks in the snapshot 4448 */ 4449 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4450 u64 *bytes_to_reserve) 4451 { 4452 struct btrfs_root *root = pending->root; 4453 struct reloc_control *rc = root->fs_info->reloc_ctl; 4454 4455 if (!rc || !have_reloc_root(root)) 4456 return; 4457 4458 if (!rc->merge_reloc_tree) 4459 return; 4460 4461 root = root->reloc_root; 4462 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4463 /* 4464 * relocation is in the stage of merging trees. the space 4465 * used by merging a reloc tree is twice the size of 4466 * relocated tree nodes in the worst case. half for cowing 4467 * the reloc tree, half for cowing the fs tree. the space 4468 * used by cowing the reloc tree will be freed after the 4469 * tree is dropped. if we create snapshot, cowing the fs 4470 * tree may use more space than it frees. so we need 4471 * reserve extra space. 4472 */ 4473 *bytes_to_reserve += rc->nodes_relocated; 4474 } 4475 4476 /* 4477 * called after snapshot is created. migrate block reservation 4478 * and create reloc root for the newly created snapshot 4479 * 4480 * This is similar to btrfs_init_reloc_root(), we come out of here with two 4481 * references held on the reloc_root, one for root->reloc_root and one for 4482 * rc->reloc_roots. 4483 */ 4484 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4485 struct btrfs_pending_snapshot *pending) 4486 { 4487 struct btrfs_root *root = pending->root; 4488 struct btrfs_root *reloc_root; 4489 struct btrfs_root *new_root; 4490 struct reloc_control *rc = root->fs_info->reloc_ctl; 4491 int ret; 4492 4493 if (!rc || !have_reloc_root(root)) 4494 return 0; 4495 4496 rc = root->fs_info->reloc_ctl; 4497 rc->merging_rsv_size += rc->nodes_relocated; 4498 4499 if (rc->merge_reloc_tree) { 4500 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4501 rc->block_rsv, 4502 rc->nodes_relocated, true); 4503 if (ret) 4504 return ret; 4505 } 4506 4507 new_root = pending->snap; 4508 reloc_root = create_reloc_root(trans, root->reloc_root, 4509 new_root->root_key.objectid); 4510 if (IS_ERR(reloc_root)) 4511 return PTR_ERR(reloc_root); 4512 4513 ret = __add_reloc_root(reloc_root); 4514 ASSERT(ret != -EEXIST); 4515 if (ret) { 4516 /* Pairs with create_reloc_root */ 4517 btrfs_put_root(reloc_root); 4518 return ret; 4519 } 4520 new_root->reloc_root = btrfs_grab_root(reloc_root); 4521 4522 if (rc->create_reloc_tree) 4523 ret = clone_backref_node(trans, rc, root, reloc_root); 4524 return ret; 4525 } 4526