xref: /linux/fs/btrfs/relocation.c (revision ed4bc1890b4984d0af447ad3cc1f93541623f8f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "inode-map.h"
22 #include "qgroup.h"
23 #include "print-tree.h"
24 #include "delalloc-space.h"
25 #include "block-group.h"
26 #include "backref.h"
27 #include "misc.h"
28 
29 /*
30  * Relocation overview
31  *
32  * [What does relocation do]
33  *
34  * The objective of relocation is to relocate all extents of the target block
35  * group to other block groups.
36  * This is utilized by resize (shrink only), profile converting, compacting
37  * space, or balance routine to spread chunks over devices.
38  *
39  * 		Before		|		After
40  * ------------------------------------------------------------------
41  *  BG A: 10 data extents	| BG A: deleted
42  *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
43  *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
44  *
45  * [How does relocation work]
46  *
47  * 1.   Mark the target block group read-only
48  *      New extents won't be allocated from the target block group.
49  *
50  * 2.1  Record each extent in the target block group
51  *      To build a proper map of extents to be relocated.
52  *
53  * 2.2  Build data reloc tree and reloc trees
54  *      Data reloc tree will contain an inode, recording all newly relocated
55  *      data extents.
56  *      There will be only one data reloc tree for one data block group.
57  *
58  *      Reloc tree will be a special snapshot of its source tree, containing
59  *      relocated tree blocks.
60  *      Each tree referring to a tree block in target block group will get its
61  *      reloc tree built.
62  *
63  * 2.3  Swap source tree with its corresponding reloc tree
64  *      Each involved tree only refers to new extents after swap.
65  *
66  * 3.   Cleanup reloc trees and data reloc tree.
67  *      As old extents in the target block group are still referenced by reloc
68  *      trees, we need to clean them up before really freeing the target block
69  *      group.
70  *
71  * The main complexity is in steps 2.2 and 2.3.
72  *
73  * The entry point of relocation is relocate_block_group() function.
74  */
75 
76 #define RELOCATION_RESERVED_NODES	256
77 /*
78  * map address of tree root to tree
79  */
80 struct mapping_node {
81 	struct {
82 		struct rb_node rb_node;
83 		u64 bytenr;
84 	}; /* Use rb_simle_node for search/insert */
85 	void *data;
86 };
87 
88 struct mapping_tree {
89 	struct rb_root rb_root;
90 	spinlock_t lock;
91 };
92 
93 /*
94  * present a tree block to process
95  */
96 struct tree_block {
97 	struct {
98 		struct rb_node rb_node;
99 		u64 bytenr;
100 	}; /* Use rb_simple_node for search/insert */
101 	struct btrfs_key key;
102 	unsigned int level:8;
103 	unsigned int key_ready:1;
104 };
105 
106 #define MAX_EXTENTS 128
107 
108 struct file_extent_cluster {
109 	u64 start;
110 	u64 end;
111 	u64 boundary[MAX_EXTENTS];
112 	unsigned int nr;
113 };
114 
115 struct reloc_control {
116 	/* block group to relocate */
117 	struct btrfs_block_group *block_group;
118 	/* extent tree */
119 	struct btrfs_root *extent_root;
120 	/* inode for moving data */
121 	struct inode *data_inode;
122 
123 	struct btrfs_block_rsv *block_rsv;
124 
125 	struct btrfs_backref_cache backref_cache;
126 
127 	struct file_extent_cluster cluster;
128 	/* tree blocks have been processed */
129 	struct extent_io_tree processed_blocks;
130 	/* map start of tree root to corresponding reloc tree */
131 	struct mapping_tree reloc_root_tree;
132 	/* list of reloc trees */
133 	struct list_head reloc_roots;
134 	/* list of subvolume trees that get relocated */
135 	struct list_head dirty_subvol_roots;
136 	/* size of metadata reservation for merging reloc trees */
137 	u64 merging_rsv_size;
138 	/* size of relocated tree nodes */
139 	u64 nodes_relocated;
140 	/* reserved size for block group relocation*/
141 	u64 reserved_bytes;
142 
143 	u64 search_start;
144 	u64 extents_found;
145 
146 	unsigned int stage:8;
147 	unsigned int create_reloc_tree:1;
148 	unsigned int merge_reloc_tree:1;
149 	unsigned int found_file_extent:1;
150 };
151 
152 /* stages of data relocation */
153 #define MOVE_DATA_EXTENTS	0
154 #define UPDATE_DATA_PTRS	1
155 
156 static void mark_block_processed(struct reloc_control *rc,
157 				 struct btrfs_backref_node *node)
158 {
159 	u32 blocksize;
160 
161 	if (node->level == 0 ||
162 	    in_range(node->bytenr, rc->block_group->start,
163 		     rc->block_group->length)) {
164 		blocksize = rc->extent_root->fs_info->nodesize;
165 		set_extent_bits(&rc->processed_blocks, node->bytenr,
166 				node->bytenr + blocksize - 1, EXTENT_DIRTY);
167 	}
168 	node->processed = 1;
169 }
170 
171 
172 static void mapping_tree_init(struct mapping_tree *tree)
173 {
174 	tree->rb_root = RB_ROOT;
175 	spin_lock_init(&tree->lock);
176 }
177 
178 /*
179  * walk up backref nodes until reach node presents tree root
180  */
181 static struct btrfs_backref_node *walk_up_backref(
182 		struct btrfs_backref_node *node,
183 		struct btrfs_backref_edge *edges[], int *index)
184 {
185 	struct btrfs_backref_edge *edge;
186 	int idx = *index;
187 
188 	while (!list_empty(&node->upper)) {
189 		edge = list_entry(node->upper.next,
190 				  struct btrfs_backref_edge, list[LOWER]);
191 		edges[idx++] = edge;
192 		node = edge->node[UPPER];
193 	}
194 	BUG_ON(node->detached);
195 	*index = idx;
196 	return node;
197 }
198 
199 /*
200  * walk down backref nodes to find start of next reference path
201  */
202 static struct btrfs_backref_node *walk_down_backref(
203 		struct btrfs_backref_edge *edges[], int *index)
204 {
205 	struct btrfs_backref_edge *edge;
206 	struct btrfs_backref_node *lower;
207 	int idx = *index;
208 
209 	while (idx > 0) {
210 		edge = edges[idx - 1];
211 		lower = edge->node[LOWER];
212 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
213 			idx--;
214 			continue;
215 		}
216 		edge = list_entry(edge->list[LOWER].next,
217 				  struct btrfs_backref_edge, list[LOWER]);
218 		edges[idx - 1] = edge;
219 		*index = idx;
220 		return edge->node[UPPER];
221 	}
222 	*index = 0;
223 	return NULL;
224 }
225 
226 static void update_backref_node(struct btrfs_backref_cache *cache,
227 				struct btrfs_backref_node *node, u64 bytenr)
228 {
229 	struct rb_node *rb_node;
230 	rb_erase(&node->rb_node, &cache->rb_root);
231 	node->bytenr = bytenr;
232 	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
233 	if (rb_node)
234 		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
235 }
236 
237 /*
238  * update backref cache after a transaction commit
239  */
240 static int update_backref_cache(struct btrfs_trans_handle *trans,
241 				struct btrfs_backref_cache *cache)
242 {
243 	struct btrfs_backref_node *node;
244 	int level = 0;
245 
246 	if (cache->last_trans == 0) {
247 		cache->last_trans = trans->transid;
248 		return 0;
249 	}
250 
251 	if (cache->last_trans == trans->transid)
252 		return 0;
253 
254 	/*
255 	 * detached nodes are used to avoid unnecessary backref
256 	 * lookup. transaction commit changes the extent tree.
257 	 * so the detached nodes are no longer useful.
258 	 */
259 	while (!list_empty(&cache->detached)) {
260 		node = list_entry(cache->detached.next,
261 				  struct btrfs_backref_node, list);
262 		btrfs_backref_cleanup_node(cache, node);
263 	}
264 
265 	while (!list_empty(&cache->changed)) {
266 		node = list_entry(cache->changed.next,
267 				  struct btrfs_backref_node, list);
268 		list_del_init(&node->list);
269 		BUG_ON(node->pending);
270 		update_backref_node(cache, node, node->new_bytenr);
271 	}
272 
273 	/*
274 	 * some nodes can be left in the pending list if there were
275 	 * errors during processing the pending nodes.
276 	 */
277 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
278 		list_for_each_entry(node, &cache->pending[level], list) {
279 			BUG_ON(!node->pending);
280 			if (node->bytenr == node->new_bytenr)
281 				continue;
282 			update_backref_node(cache, node, node->new_bytenr);
283 		}
284 	}
285 
286 	cache->last_trans = 0;
287 	return 1;
288 }
289 
290 static bool reloc_root_is_dead(struct btrfs_root *root)
291 {
292 	/*
293 	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
294 	 * btrfs_update_reloc_root. We need to see the updated bit before
295 	 * trying to access reloc_root
296 	 */
297 	smp_rmb();
298 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
299 		return true;
300 	return false;
301 }
302 
303 /*
304  * Check if this subvolume tree has valid reloc tree.
305  *
306  * Reloc tree after swap is considered dead, thus not considered as valid.
307  * This is enough for most callers, as they don't distinguish dead reloc root
308  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
309  * special case.
310  */
311 static bool have_reloc_root(struct btrfs_root *root)
312 {
313 	if (reloc_root_is_dead(root))
314 		return false;
315 	if (!root->reloc_root)
316 		return false;
317 	return true;
318 }
319 
320 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
321 {
322 	struct btrfs_root *reloc_root;
323 
324 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
325 		return 0;
326 
327 	/* This root has been merged with its reloc tree, we can ignore it */
328 	if (reloc_root_is_dead(root))
329 		return 1;
330 
331 	reloc_root = root->reloc_root;
332 	if (!reloc_root)
333 		return 0;
334 
335 	if (btrfs_header_generation(reloc_root->commit_root) ==
336 	    root->fs_info->running_transaction->transid)
337 		return 0;
338 	/*
339 	 * if there is reloc tree and it was created in previous
340 	 * transaction backref lookup can find the reloc tree,
341 	 * so backref node for the fs tree root is useless for
342 	 * relocation.
343 	 */
344 	return 1;
345 }
346 
347 /*
348  * find reloc tree by address of tree root
349  */
350 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
351 {
352 	struct reloc_control *rc = fs_info->reloc_ctl;
353 	struct rb_node *rb_node;
354 	struct mapping_node *node;
355 	struct btrfs_root *root = NULL;
356 
357 	ASSERT(rc);
358 	spin_lock(&rc->reloc_root_tree.lock);
359 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
360 	if (rb_node) {
361 		node = rb_entry(rb_node, struct mapping_node, rb_node);
362 		root = (struct btrfs_root *)node->data;
363 	}
364 	spin_unlock(&rc->reloc_root_tree.lock);
365 	return btrfs_grab_root(root);
366 }
367 
368 /*
369  * For useless nodes, do two major clean ups:
370  *
371  * - Cleanup the children edges and nodes
372  *   If child node is also orphan (no parent) during cleanup, then the child
373  *   node will also be cleaned up.
374  *
375  * - Freeing up leaves (level 0), keeps nodes detached
376  *   For nodes, the node is still cached as "detached"
377  *
378  * Return false if @node is not in the @useless_nodes list.
379  * Return true if @node is in the @useless_nodes list.
380  */
381 static bool handle_useless_nodes(struct reloc_control *rc,
382 				 struct btrfs_backref_node *node)
383 {
384 	struct btrfs_backref_cache *cache = &rc->backref_cache;
385 	struct list_head *useless_node = &cache->useless_node;
386 	bool ret = false;
387 
388 	while (!list_empty(useless_node)) {
389 		struct btrfs_backref_node *cur;
390 
391 		cur = list_first_entry(useless_node, struct btrfs_backref_node,
392 				 list);
393 		list_del_init(&cur->list);
394 
395 		/* Only tree root nodes can be added to @useless_nodes */
396 		ASSERT(list_empty(&cur->upper));
397 
398 		if (cur == node)
399 			ret = true;
400 
401 		/* The node is the lowest node */
402 		if (cur->lowest) {
403 			list_del_init(&cur->lower);
404 			cur->lowest = 0;
405 		}
406 
407 		/* Cleanup the lower edges */
408 		while (!list_empty(&cur->lower)) {
409 			struct btrfs_backref_edge *edge;
410 			struct btrfs_backref_node *lower;
411 
412 			edge = list_entry(cur->lower.next,
413 					struct btrfs_backref_edge, list[UPPER]);
414 			list_del(&edge->list[UPPER]);
415 			list_del(&edge->list[LOWER]);
416 			lower = edge->node[LOWER];
417 			btrfs_backref_free_edge(cache, edge);
418 
419 			/* Child node is also orphan, queue for cleanup */
420 			if (list_empty(&lower->upper))
421 				list_add(&lower->list, useless_node);
422 		}
423 		/* Mark this block processed for relocation */
424 		mark_block_processed(rc, cur);
425 
426 		/*
427 		 * Backref nodes for tree leaves are deleted from the cache.
428 		 * Backref nodes for upper level tree blocks are left in the
429 		 * cache to avoid unnecessary backref lookup.
430 		 */
431 		if (cur->level > 0) {
432 			list_add(&cur->list, &cache->detached);
433 			cur->detached = 1;
434 		} else {
435 			rb_erase(&cur->rb_node, &cache->rb_root);
436 			btrfs_backref_free_node(cache, cur);
437 		}
438 	}
439 	return ret;
440 }
441 
442 /*
443  * Build backref tree for a given tree block. Root of the backref tree
444  * corresponds the tree block, leaves of the backref tree correspond roots of
445  * b-trees that reference the tree block.
446  *
447  * The basic idea of this function is check backrefs of a given block to find
448  * upper level blocks that reference the block, and then check backrefs of
449  * these upper level blocks recursively. The recursion stops when tree root is
450  * reached or backrefs for the block is cached.
451  *
452  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
453  * all upper level blocks that directly/indirectly reference the block are also
454  * cached.
455  */
456 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
457 			struct reloc_control *rc, struct btrfs_key *node_key,
458 			int level, u64 bytenr)
459 {
460 	struct btrfs_backref_iter *iter;
461 	struct btrfs_backref_cache *cache = &rc->backref_cache;
462 	/* For searching parent of TREE_BLOCK_REF */
463 	struct btrfs_path *path;
464 	struct btrfs_backref_node *cur;
465 	struct btrfs_backref_node *node = NULL;
466 	struct btrfs_backref_edge *edge;
467 	int ret;
468 	int err = 0;
469 
470 	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
471 	if (!iter)
472 		return ERR_PTR(-ENOMEM);
473 	path = btrfs_alloc_path();
474 	if (!path) {
475 		err = -ENOMEM;
476 		goto out;
477 	}
478 
479 	node = btrfs_backref_alloc_node(cache, bytenr, level);
480 	if (!node) {
481 		err = -ENOMEM;
482 		goto out;
483 	}
484 
485 	node->lowest = 1;
486 	cur = node;
487 
488 	/* Breadth-first search to build backref cache */
489 	do {
490 		ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
491 						  cur);
492 		if (ret < 0) {
493 			err = ret;
494 			goto out;
495 		}
496 		edge = list_first_entry_or_null(&cache->pending_edge,
497 				struct btrfs_backref_edge, list[UPPER]);
498 		/*
499 		 * The pending list isn't empty, take the first block to
500 		 * process
501 		 */
502 		if (edge) {
503 			list_del_init(&edge->list[UPPER]);
504 			cur = edge->node[UPPER];
505 		}
506 	} while (edge);
507 
508 	/* Finish the upper linkage of newly added edges/nodes */
509 	ret = btrfs_backref_finish_upper_links(cache, node);
510 	if (ret < 0) {
511 		err = ret;
512 		goto out;
513 	}
514 
515 	if (handle_useless_nodes(rc, node))
516 		node = NULL;
517 out:
518 	btrfs_backref_iter_free(iter);
519 	btrfs_free_path(path);
520 	if (err) {
521 		btrfs_backref_error_cleanup(cache, node);
522 		return ERR_PTR(err);
523 	}
524 	ASSERT(!node || !node->detached);
525 	ASSERT(list_empty(&cache->useless_node) &&
526 	       list_empty(&cache->pending_edge));
527 	return node;
528 }
529 
530 /*
531  * helper to add backref node for the newly created snapshot.
532  * the backref node is created by cloning backref node that
533  * corresponds to root of source tree
534  */
535 static int clone_backref_node(struct btrfs_trans_handle *trans,
536 			      struct reloc_control *rc,
537 			      struct btrfs_root *src,
538 			      struct btrfs_root *dest)
539 {
540 	struct btrfs_root *reloc_root = src->reloc_root;
541 	struct btrfs_backref_cache *cache = &rc->backref_cache;
542 	struct btrfs_backref_node *node = NULL;
543 	struct btrfs_backref_node *new_node;
544 	struct btrfs_backref_edge *edge;
545 	struct btrfs_backref_edge *new_edge;
546 	struct rb_node *rb_node;
547 
548 	if (cache->last_trans > 0)
549 		update_backref_cache(trans, cache);
550 
551 	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
552 	if (rb_node) {
553 		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
554 		if (node->detached)
555 			node = NULL;
556 		else
557 			BUG_ON(node->new_bytenr != reloc_root->node->start);
558 	}
559 
560 	if (!node) {
561 		rb_node = rb_simple_search(&cache->rb_root,
562 					   reloc_root->commit_root->start);
563 		if (rb_node) {
564 			node = rb_entry(rb_node, struct btrfs_backref_node,
565 					rb_node);
566 			BUG_ON(node->detached);
567 		}
568 	}
569 
570 	if (!node)
571 		return 0;
572 
573 	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
574 					    node->level);
575 	if (!new_node)
576 		return -ENOMEM;
577 
578 	new_node->lowest = node->lowest;
579 	new_node->checked = 1;
580 	new_node->root = btrfs_grab_root(dest);
581 	ASSERT(new_node->root);
582 
583 	if (!node->lowest) {
584 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
585 			new_edge = btrfs_backref_alloc_edge(cache);
586 			if (!new_edge)
587 				goto fail;
588 
589 			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
590 						new_node, LINK_UPPER);
591 		}
592 	} else {
593 		list_add_tail(&new_node->lower, &cache->leaves);
594 	}
595 
596 	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
597 				   &new_node->rb_node);
598 	if (rb_node)
599 		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
600 
601 	if (!new_node->lowest) {
602 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
603 			list_add_tail(&new_edge->list[LOWER],
604 				      &new_edge->node[LOWER]->upper);
605 		}
606 	}
607 	return 0;
608 fail:
609 	while (!list_empty(&new_node->lower)) {
610 		new_edge = list_entry(new_node->lower.next,
611 				      struct btrfs_backref_edge, list[UPPER]);
612 		list_del(&new_edge->list[UPPER]);
613 		btrfs_backref_free_edge(cache, new_edge);
614 	}
615 	btrfs_backref_free_node(cache, new_node);
616 	return -ENOMEM;
617 }
618 
619 /*
620  * helper to add 'address of tree root -> reloc tree' mapping
621  */
622 static int __must_check __add_reloc_root(struct btrfs_root *root)
623 {
624 	struct btrfs_fs_info *fs_info = root->fs_info;
625 	struct rb_node *rb_node;
626 	struct mapping_node *node;
627 	struct reloc_control *rc = fs_info->reloc_ctl;
628 
629 	node = kmalloc(sizeof(*node), GFP_NOFS);
630 	if (!node)
631 		return -ENOMEM;
632 
633 	node->bytenr = root->commit_root->start;
634 	node->data = root;
635 
636 	spin_lock(&rc->reloc_root_tree.lock);
637 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
638 				   node->bytenr, &node->rb_node);
639 	spin_unlock(&rc->reloc_root_tree.lock);
640 	if (rb_node) {
641 		btrfs_panic(fs_info, -EEXIST,
642 			    "Duplicate root found for start=%llu while inserting into relocation tree",
643 			    node->bytenr);
644 	}
645 
646 	list_add_tail(&root->root_list, &rc->reloc_roots);
647 	return 0;
648 }
649 
650 /*
651  * helper to delete the 'address of tree root -> reloc tree'
652  * mapping
653  */
654 static void __del_reloc_root(struct btrfs_root *root)
655 {
656 	struct btrfs_fs_info *fs_info = root->fs_info;
657 	struct rb_node *rb_node;
658 	struct mapping_node *node = NULL;
659 	struct reloc_control *rc = fs_info->reloc_ctl;
660 	bool put_ref = false;
661 
662 	if (rc && root->node) {
663 		spin_lock(&rc->reloc_root_tree.lock);
664 		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
665 					   root->commit_root->start);
666 		if (rb_node) {
667 			node = rb_entry(rb_node, struct mapping_node, rb_node);
668 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
669 			RB_CLEAR_NODE(&node->rb_node);
670 		}
671 		spin_unlock(&rc->reloc_root_tree.lock);
672 		if (!node)
673 			return;
674 		BUG_ON((struct btrfs_root *)node->data != root);
675 	}
676 
677 	/*
678 	 * We only put the reloc root here if it's on the list.  There's a lot
679 	 * of places where the pattern is to splice the rc->reloc_roots, process
680 	 * the reloc roots, and then add the reloc root back onto
681 	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
682 	 * list we don't want the reference being dropped, because the guy
683 	 * messing with the list is in charge of the reference.
684 	 */
685 	spin_lock(&fs_info->trans_lock);
686 	if (!list_empty(&root->root_list)) {
687 		put_ref = true;
688 		list_del_init(&root->root_list);
689 	}
690 	spin_unlock(&fs_info->trans_lock);
691 	if (put_ref)
692 		btrfs_put_root(root);
693 	kfree(node);
694 }
695 
696 /*
697  * helper to update the 'address of tree root -> reloc tree'
698  * mapping
699  */
700 static int __update_reloc_root(struct btrfs_root *root)
701 {
702 	struct btrfs_fs_info *fs_info = root->fs_info;
703 	struct rb_node *rb_node;
704 	struct mapping_node *node = NULL;
705 	struct reloc_control *rc = fs_info->reloc_ctl;
706 
707 	spin_lock(&rc->reloc_root_tree.lock);
708 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
709 				   root->commit_root->start);
710 	if (rb_node) {
711 		node = rb_entry(rb_node, struct mapping_node, rb_node);
712 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
713 	}
714 	spin_unlock(&rc->reloc_root_tree.lock);
715 
716 	if (!node)
717 		return 0;
718 	BUG_ON((struct btrfs_root *)node->data != root);
719 
720 	spin_lock(&rc->reloc_root_tree.lock);
721 	node->bytenr = root->node->start;
722 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
723 				   node->bytenr, &node->rb_node);
724 	spin_unlock(&rc->reloc_root_tree.lock);
725 	if (rb_node)
726 		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
727 	return 0;
728 }
729 
730 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
731 					struct btrfs_root *root, u64 objectid)
732 {
733 	struct btrfs_fs_info *fs_info = root->fs_info;
734 	struct btrfs_root *reloc_root;
735 	struct extent_buffer *eb;
736 	struct btrfs_root_item *root_item;
737 	struct btrfs_key root_key;
738 	int ret;
739 
740 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
741 	BUG_ON(!root_item);
742 
743 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
744 	root_key.type = BTRFS_ROOT_ITEM_KEY;
745 	root_key.offset = objectid;
746 
747 	if (root->root_key.objectid == objectid) {
748 		u64 commit_root_gen;
749 
750 		/* called by btrfs_init_reloc_root */
751 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
752 				      BTRFS_TREE_RELOC_OBJECTID);
753 		BUG_ON(ret);
754 		/*
755 		 * Set the last_snapshot field to the generation of the commit
756 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
757 		 * correctly (returns true) when the relocation root is created
758 		 * either inside the critical section of a transaction commit
759 		 * (through transaction.c:qgroup_account_snapshot()) and when
760 		 * it's created before the transaction commit is started.
761 		 */
762 		commit_root_gen = btrfs_header_generation(root->commit_root);
763 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
764 	} else {
765 		/*
766 		 * called by btrfs_reloc_post_snapshot_hook.
767 		 * the source tree is a reloc tree, all tree blocks
768 		 * modified after it was created have RELOC flag
769 		 * set in their headers. so it's OK to not update
770 		 * the 'last_snapshot'.
771 		 */
772 		ret = btrfs_copy_root(trans, root, root->node, &eb,
773 				      BTRFS_TREE_RELOC_OBJECTID);
774 		BUG_ON(ret);
775 	}
776 
777 	memcpy(root_item, &root->root_item, sizeof(*root_item));
778 	btrfs_set_root_bytenr(root_item, eb->start);
779 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
780 	btrfs_set_root_generation(root_item, trans->transid);
781 
782 	if (root->root_key.objectid == objectid) {
783 		btrfs_set_root_refs(root_item, 0);
784 		memset(&root_item->drop_progress, 0,
785 		       sizeof(struct btrfs_disk_key));
786 		root_item->drop_level = 0;
787 	}
788 
789 	btrfs_tree_unlock(eb);
790 	free_extent_buffer(eb);
791 
792 	ret = btrfs_insert_root(trans, fs_info->tree_root,
793 				&root_key, root_item);
794 	BUG_ON(ret);
795 	kfree(root_item);
796 
797 	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
798 	BUG_ON(IS_ERR(reloc_root));
799 	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
800 	reloc_root->last_trans = trans->transid;
801 	return reloc_root;
802 }
803 
804 /*
805  * create reloc tree for a given fs tree. reloc tree is just a
806  * snapshot of the fs tree with special root objectid.
807  *
808  * The reloc_root comes out of here with two references, one for
809  * root->reloc_root, and another for being on the rc->reloc_roots list.
810  */
811 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
812 			  struct btrfs_root *root)
813 {
814 	struct btrfs_fs_info *fs_info = root->fs_info;
815 	struct btrfs_root *reloc_root;
816 	struct reloc_control *rc = fs_info->reloc_ctl;
817 	struct btrfs_block_rsv *rsv;
818 	int clear_rsv = 0;
819 	int ret;
820 
821 	if (!rc)
822 		return 0;
823 
824 	/*
825 	 * The subvolume has reloc tree but the swap is finished, no need to
826 	 * create/update the dead reloc tree
827 	 */
828 	if (reloc_root_is_dead(root))
829 		return 0;
830 
831 	/*
832 	 * This is subtle but important.  We do not do
833 	 * record_root_in_transaction for reloc roots, instead we record their
834 	 * corresponding fs root, and then here we update the last trans for the
835 	 * reloc root.  This means that we have to do this for the entire life
836 	 * of the reloc root, regardless of which stage of the relocation we are
837 	 * in.
838 	 */
839 	if (root->reloc_root) {
840 		reloc_root = root->reloc_root;
841 		reloc_root->last_trans = trans->transid;
842 		return 0;
843 	}
844 
845 	/*
846 	 * We are merging reloc roots, we do not need new reloc trees.  Also
847 	 * reloc trees never need their own reloc tree.
848 	 */
849 	if (!rc->create_reloc_tree ||
850 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
851 		return 0;
852 
853 	if (!trans->reloc_reserved) {
854 		rsv = trans->block_rsv;
855 		trans->block_rsv = rc->block_rsv;
856 		clear_rsv = 1;
857 	}
858 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
859 	if (clear_rsv)
860 		trans->block_rsv = rsv;
861 
862 	ret = __add_reloc_root(reloc_root);
863 	BUG_ON(ret < 0);
864 	root->reloc_root = btrfs_grab_root(reloc_root);
865 	return 0;
866 }
867 
868 /*
869  * update root item of reloc tree
870  */
871 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
872 			    struct btrfs_root *root)
873 {
874 	struct btrfs_fs_info *fs_info = root->fs_info;
875 	struct btrfs_root *reloc_root;
876 	struct btrfs_root_item *root_item;
877 	int ret;
878 
879 	if (!have_reloc_root(root))
880 		goto out;
881 
882 	reloc_root = root->reloc_root;
883 	root_item = &reloc_root->root_item;
884 
885 	/*
886 	 * We are probably ok here, but __del_reloc_root() will drop its ref of
887 	 * the root.  We have the ref for root->reloc_root, but just in case
888 	 * hold it while we update the reloc root.
889 	 */
890 	btrfs_grab_root(reloc_root);
891 
892 	/* root->reloc_root will stay until current relocation finished */
893 	if (fs_info->reloc_ctl->merge_reloc_tree &&
894 	    btrfs_root_refs(root_item) == 0) {
895 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
896 		/*
897 		 * Mark the tree as dead before we change reloc_root so
898 		 * have_reloc_root will not touch it from now on.
899 		 */
900 		smp_wmb();
901 		__del_reloc_root(reloc_root);
902 	}
903 
904 	if (reloc_root->commit_root != reloc_root->node) {
905 		__update_reloc_root(reloc_root);
906 		btrfs_set_root_node(root_item, reloc_root->node);
907 		free_extent_buffer(reloc_root->commit_root);
908 		reloc_root->commit_root = btrfs_root_node(reloc_root);
909 	}
910 
911 	ret = btrfs_update_root(trans, fs_info->tree_root,
912 				&reloc_root->root_key, root_item);
913 	BUG_ON(ret);
914 	btrfs_put_root(reloc_root);
915 out:
916 	return 0;
917 }
918 
919 /*
920  * helper to find first cached inode with inode number >= objectid
921  * in a subvolume
922  */
923 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
924 {
925 	struct rb_node *node;
926 	struct rb_node *prev;
927 	struct btrfs_inode *entry;
928 	struct inode *inode;
929 
930 	spin_lock(&root->inode_lock);
931 again:
932 	node = root->inode_tree.rb_node;
933 	prev = NULL;
934 	while (node) {
935 		prev = node;
936 		entry = rb_entry(node, struct btrfs_inode, rb_node);
937 
938 		if (objectid < btrfs_ino(entry))
939 			node = node->rb_left;
940 		else if (objectid > btrfs_ino(entry))
941 			node = node->rb_right;
942 		else
943 			break;
944 	}
945 	if (!node) {
946 		while (prev) {
947 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
948 			if (objectid <= btrfs_ino(entry)) {
949 				node = prev;
950 				break;
951 			}
952 			prev = rb_next(prev);
953 		}
954 	}
955 	while (node) {
956 		entry = rb_entry(node, struct btrfs_inode, rb_node);
957 		inode = igrab(&entry->vfs_inode);
958 		if (inode) {
959 			spin_unlock(&root->inode_lock);
960 			return inode;
961 		}
962 
963 		objectid = btrfs_ino(entry) + 1;
964 		if (cond_resched_lock(&root->inode_lock))
965 			goto again;
966 
967 		node = rb_next(node);
968 	}
969 	spin_unlock(&root->inode_lock);
970 	return NULL;
971 }
972 
973 /*
974  * get new location of data
975  */
976 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
977 			    u64 bytenr, u64 num_bytes)
978 {
979 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
980 	struct btrfs_path *path;
981 	struct btrfs_file_extent_item *fi;
982 	struct extent_buffer *leaf;
983 	int ret;
984 
985 	path = btrfs_alloc_path();
986 	if (!path)
987 		return -ENOMEM;
988 
989 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
990 	ret = btrfs_lookup_file_extent(NULL, root, path,
991 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
992 	if (ret < 0)
993 		goto out;
994 	if (ret > 0) {
995 		ret = -ENOENT;
996 		goto out;
997 	}
998 
999 	leaf = path->nodes[0];
1000 	fi = btrfs_item_ptr(leaf, path->slots[0],
1001 			    struct btrfs_file_extent_item);
1002 
1003 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1004 	       btrfs_file_extent_compression(leaf, fi) ||
1005 	       btrfs_file_extent_encryption(leaf, fi) ||
1006 	       btrfs_file_extent_other_encoding(leaf, fi));
1007 
1008 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1009 		ret = -EINVAL;
1010 		goto out;
1011 	}
1012 
1013 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1014 	ret = 0;
1015 out:
1016 	btrfs_free_path(path);
1017 	return ret;
1018 }
1019 
1020 /*
1021  * update file extent items in the tree leaf to point to
1022  * the new locations.
1023  */
1024 static noinline_for_stack
1025 int replace_file_extents(struct btrfs_trans_handle *trans,
1026 			 struct reloc_control *rc,
1027 			 struct btrfs_root *root,
1028 			 struct extent_buffer *leaf)
1029 {
1030 	struct btrfs_fs_info *fs_info = root->fs_info;
1031 	struct btrfs_key key;
1032 	struct btrfs_file_extent_item *fi;
1033 	struct inode *inode = NULL;
1034 	u64 parent;
1035 	u64 bytenr;
1036 	u64 new_bytenr = 0;
1037 	u64 num_bytes;
1038 	u64 end;
1039 	u32 nritems;
1040 	u32 i;
1041 	int ret = 0;
1042 	int first = 1;
1043 	int dirty = 0;
1044 
1045 	if (rc->stage != UPDATE_DATA_PTRS)
1046 		return 0;
1047 
1048 	/* reloc trees always use full backref */
1049 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1050 		parent = leaf->start;
1051 	else
1052 		parent = 0;
1053 
1054 	nritems = btrfs_header_nritems(leaf);
1055 	for (i = 0; i < nritems; i++) {
1056 		struct btrfs_ref ref = { 0 };
1057 
1058 		cond_resched();
1059 		btrfs_item_key_to_cpu(leaf, &key, i);
1060 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1061 			continue;
1062 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1063 		if (btrfs_file_extent_type(leaf, fi) ==
1064 		    BTRFS_FILE_EXTENT_INLINE)
1065 			continue;
1066 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1067 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1068 		if (bytenr == 0)
1069 			continue;
1070 		if (!in_range(bytenr, rc->block_group->start,
1071 			      rc->block_group->length))
1072 			continue;
1073 
1074 		/*
1075 		 * if we are modifying block in fs tree, wait for readpage
1076 		 * to complete and drop the extent cache
1077 		 */
1078 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1079 			if (first) {
1080 				inode = find_next_inode(root, key.objectid);
1081 				first = 0;
1082 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1083 				btrfs_add_delayed_iput(inode);
1084 				inode = find_next_inode(root, key.objectid);
1085 			}
1086 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1087 				end = key.offset +
1088 				      btrfs_file_extent_num_bytes(leaf, fi);
1089 				WARN_ON(!IS_ALIGNED(key.offset,
1090 						    fs_info->sectorsize));
1091 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1092 				end--;
1093 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1094 						      key.offset, end);
1095 				if (!ret)
1096 					continue;
1097 
1098 				btrfs_drop_extent_cache(BTRFS_I(inode),
1099 						key.offset,	end, 1);
1100 				unlock_extent(&BTRFS_I(inode)->io_tree,
1101 					      key.offset, end);
1102 			}
1103 		}
1104 
1105 		ret = get_new_location(rc->data_inode, &new_bytenr,
1106 				       bytenr, num_bytes);
1107 		if (ret) {
1108 			/*
1109 			 * Don't have to abort since we've not changed anything
1110 			 * in the file extent yet.
1111 			 */
1112 			break;
1113 		}
1114 
1115 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1116 		dirty = 1;
1117 
1118 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1119 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1120 				       num_bytes, parent);
1121 		ref.real_root = root->root_key.objectid;
1122 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1123 				    key.objectid, key.offset);
1124 		ret = btrfs_inc_extent_ref(trans, &ref);
1125 		if (ret) {
1126 			btrfs_abort_transaction(trans, ret);
1127 			break;
1128 		}
1129 
1130 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1131 				       num_bytes, parent);
1132 		ref.real_root = root->root_key.objectid;
1133 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1134 				    key.objectid, key.offset);
1135 		ret = btrfs_free_extent(trans, &ref);
1136 		if (ret) {
1137 			btrfs_abort_transaction(trans, ret);
1138 			break;
1139 		}
1140 	}
1141 	if (dirty)
1142 		btrfs_mark_buffer_dirty(leaf);
1143 	if (inode)
1144 		btrfs_add_delayed_iput(inode);
1145 	return ret;
1146 }
1147 
1148 static noinline_for_stack
1149 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1150 		     struct btrfs_path *path, int level)
1151 {
1152 	struct btrfs_disk_key key1;
1153 	struct btrfs_disk_key key2;
1154 	btrfs_node_key(eb, &key1, slot);
1155 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1156 	return memcmp(&key1, &key2, sizeof(key1));
1157 }
1158 
1159 /*
1160  * try to replace tree blocks in fs tree with the new blocks
1161  * in reloc tree. tree blocks haven't been modified since the
1162  * reloc tree was create can be replaced.
1163  *
1164  * if a block was replaced, level of the block + 1 is returned.
1165  * if no block got replaced, 0 is returned. if there are other
1166  * errors, a negative error number is returned.
1167  */
1168 static noinline_for_stack
1169 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1170 		 struct btrfs_root *dest, struct btrfs_root *src,
1171 		 struct btrfs_path *path, struct btrfs_key *next_key,
1172 		 int lowest_level, int max_level)
1173 {
1174 	struct btrfs_fs_info *fs_info = dest->fs_info;
1175 	struct extent_buffer *eb;
1176 	struct extent_buffer *parent;
1177 	struct btrfs_ref ref = { 0 };
1178 	struct btrfs_key key;
1179 	u64 old_bytenr;
1180 	u64 new_bytenr;
1181 	u64 old_ptr_gen;
1182 	u64 new_ptr_gen;
1183 	u64 last_snapshot;
1184 	u32 blocksize;
1185 	int cow = 0;
1186 	int level;
1187 	int ret;
1188 	int slot;
1189 
1190 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1191 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1192 
1193 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1194 again:
1195 	slot = path->slots[lowest_level];
1196 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1197 
1198 	eb = btrfs_lock_root_node(dest);
1199 	btrfs_set_lock_blocking_write(eb);
1200 	level = btrfs_header_level(eb);
1201 
1202 	if (level < lowest_level) {
1203 		btrfs_tree_unlock(eb);
1204 		free_extent_buffer(eb);
1205 		return 0;
1206 	}
1207 
1208 	if (cow) {
1209 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1210 		BUG_ON(ret);
1211 	}
1212 	btrfs_set_lock_blocking_write(eb);
1213 
1214 	if (next_key) {
1215 		next_key->objectid = (u64)-1;
1216 		next_key->type = (u8)-1;
1217 		next_key->offset = (u64)-1;
1218 	}
1219 
1220 	parent = eb;
1221 	while (1) {
1222 		struct btrfs_key first_key;
1223 
1224 		level = btrfs_header_level(parent);
1225 		BUG_ON(level < lowest_level);
1226 
1227 		ret = btrfs_bin_search(parent, &key, &slot);
1228 		if (ret < 0)
1229 			break;
1230 		if (ret && slot > 0)
1231 			slot--;
1232 
1233 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1234 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1235 
1236 		old_bytenr = btrfs_node_blockptr(parent, slot);
1237 		blocksize = fs_info->nodesize;
1238 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1239 		btrfs_node_key_to_cpu(parent, &first_key, slot);
1240 
1241 		if (level <= max_level) {
1242 			eb = path->nodes[level];
1243 			new_bytenr = btrfs_node_blockptr(eb,
1244 							path->slots[level]);
1245 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1246 							path->slots[level]);
1247 		} else {
1248 			new_bytenr = 0;
1249 			new_ptr_gen = 0;
1250 		}
1251 
1252 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1253 			ret = level;
1254 			break;
1255 		}
1256 
1257 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1258 		    memcmp_node_keys(parent, slot, path, level)) {
1259 			if (level <= lowest_level) {
1260 				ret = 0;
1261 				break;
1262 			}
1263 
1264 			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1265 					     level - 1, &first_key);
1266 			if (IS_ERR(eb)) {
1267 				ret = PTR_ERR(eb);
1268 				break;
1269 			} else if (!extent_buffer_uptodate(eb)) {
1270 				ret = -EIO;
1271 				free_extent_buffer(eb);
1272 				break;
1273 			}
1274 			btrfs_tree_lock(eb);
1275 			if (cow) {
1276 				ret = btrfs_cow_block(trans, dest, eb, parent,
1277 						      slot, &eb);
1278 				BUG_ON(ret);
1279 			}
1280 			btrfs_set_lock_blocking_write(eb);
1281 
1282 			btrfs_tree_unlock(parent);
1283 			free_extent_buffer(parent);
1284 
1285 			parent = eb;
1286 			continue;
1287 		}
1288 
1289 		if (!cow) {
1290 			btrfs_tree_unlock(parent);
1291 			free_extent_buffer(parent);
1292 			cow = 1;
1293 			goto again;
1294 		}
1295 
1296 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1297 				      path->slots[level]);
1298 		btrfs_release_path(path);
1299 
1300 		path->lowest_level = level;
1301 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1302 		path->lowest_level = 0;
1303 		BUG_ON(ret);
1304 
1305 		/*
1306 		 * Info qgroup to trace both subtrees.
1307 		 *
1308 		 * We must trace both trees.
1309 		 * 1) Tree reloc subtree
1310 		 *    If not traced, we will leak data numbers
1311 		 * 2) Fs subtree
1312 		 *    If not traced, we will double count old data
1313 		 *
1314 		 * We don't scan the subtree right now, but only record
1315 		 * the swapped tree blocks.
1316 		 * The real subtree rescan is delayed until we have new
1317 		 * CoW on the subtree root node before transaction commit.
1318 		 */
1319 		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1320 				rc->block_group, parent, slot,
1321 				path->nodes[level], path->slots[level],
1322 				last_snapshot);
1323 		if (ret < 0)
1324 			break;
1325 		/*
1326 		 * swap blocks in fs tree and reloc tree.
1327 		 */
1328 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1329 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1330 		btrfs_mark_buffer_dirty(parent);
1331 
1332 		btrfs_set_node_blockptr(path->nodes[level],
1333 					path->slots[level], old_bytenr);
1334 		btrfs_set_node_ptr_generation(path->nodes[level],
1335 					      path->slots[level], old_ptr_gen);
1336 		btrfs_mark_buffer_dirty(path->nodes[level]);
1337 
1338 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1339 				       blocksize, path->nodes[level]->start);
1340 		ref.skip_qgroup = true;
1341 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1342 		ret = btrfs_inc_extent_ref(trans, &ref);
1343 		BUG_ON(ret);
1344 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1345 				       blocksize, 0);
1346 		ref.skip_qgroup = true;
1347 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1348 		ret = btrfs_inc_extent_ref(trans, &ref);
1349 		BUG_ON(ret);
1350 
1351 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1352 				       blocksize, path->nodes[level]->start);
1353 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1354 		ref.skip_qgroup = true;
1355 		ret = btrfs_free_extent(trans, &ref);
1356 		BUG_ON(ret);
1357 
1358 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1359 				       blocksize, 0);
1360 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1361 		ref.skip_qgroup = true;
1362 		ret = btrfs_free_extent(trans, &ref);
1363 		BUG_ON(ret);
1364 
1365 		btrfs_unlock_up_safe(path, 0);
1366 
1367 		ret = level;
1368 		break;
1369 	}
1370 	btrfs_tree_unlock(parent);
1371 	free_extent_buffer(parent);
1372 	return ret;
1373 }
1374 
1375 /*
1376  * helper to find next relocated block in reloc tree
1377  */
1378 static noinline_for_stack
1379 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1380 		       int *level)
1381 {
1382 	struct extent_buffer *eb;
1383 	int i;
1384 	u64 last_snapshot;
1385 	u32 nritems;
1386 
1387 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1388 
1389 	for (i = 0; i < *level; i++) {
1390 		free_extent_buffer(path->nodes[i]);
1391 		path->nodes[i] = NULL;
1392 	}
1393 
1394 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1395 		eb = path->nodes[i];
1396 		nritems = btrfs_header_nritems(eb);
1397 		while (path->slots[i] + 1 < nritems) {
1398 			path->slots[i]++;
1399 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1400 			    last_snapshot)
1401 				continue;
1402 
1403 			*level = i;
1404 			return 0;
1405 		}
1406 		free_extent_buffer(path->nodes[i]);
1407 		path->nodes[i] = NULL;
1408 	}
1409 	return 1;
1410 }
1411 
1412 /*
1413  * walk down reloc tree to find relocated block of lowest level
1414  */
1415 static noinline_for_stack
1416 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1417 			 int *level)
1418 {
1419 	struct btrfs_fs_info *fs_info = root->fs_info;
1420 	struct extent_buffer *eb = NULL;
1421 	int i;
1422 	u64 bytenr;
1423 	u64 ptr_gen = 0;
1424 	u64 last_snapshot;
1425 	u32 nritems;
1426 
1427 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1428 
1429 	for (i = *level; i > 0; i--) {
1430 		struct btrfs_key first_key;
1431 
1432 		eb = path->nodes[i];
1433 		nritems = btrfs_header_nritems(eb);
1434 		while (path->slots[i] < nritems) {
1435 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1436 			if (ptr_gen > last_snapshot)
1437 				break;
1438 			path->slots[i]++;
1439 		}
1440 		if (path->slots[i] >= nritems) {
1441 			if (i == *level)
1442 				break;
1443 			*level = i + 1;
1444 			return 0;
1445 		}
1446 		if (i == 1) {
1447 			*level = i;
1448 			return 0;
1449 		}
1450 
1451 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1452 		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
1453 		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
1454 				     &first_key);
1455 		if (IS_ERR(eb)) {
1456 			return PTR_ERR(eb);
1457 		} else if (!extent_buffer_uptodate(eb)) {
1458 			free_extent_buffer(eb);
1459 			return -EIO;
1460 		}
1461 		BUG_ON(btrfs_header_level(eb) != i - 1);
1462 		path->nodes[i - 1] = eb;
1463 		path->slots[i - 1] = 0;
1464 	}
1465 	return 1;
1466 }
1467 
1468 /*
1469  * invalidate extent cache for file extents whose key in range of
1470  * [min_key, max_key)
1471  */
1472 static int invalidate_extent_cache(struct btrfs_root *root,
1473 				   struct btrfs_key *min_key,
1474 				   struct btrfs_key *max_key)
1475 {
1476 	struct btrfs_fs_info *fs_info = root->fs_info;
1477 	struct inode *inode = NULL;
1478 	u64 objectid;
1479 	u64 start, end;
1480 	u64 ino;
1481 
1482 	objectid = min_key->objectid;
1483 	while (1) {
1484 		cond_resched();
1485 		iput(inode);
1486 
1487 		if (objectid > max_key->objectid)
1488 			break;
1489 
1490 		inode = find_next_inode(root, objectid);
1491 		if (!inode)
1492 			break;
1493 		ino = btrfs_ino(BTRFS_I(inode));
1494 
1495 		if (ino > max_key->objectid) {
1496 			iput(inode);
1497 			break;
1498 		}
1499 
1500 		objectid = ino + 1;
1501 		if (!S_ISREG(inode->i_mode))
1502 			continue;
1503 
1504 		if (unlikely(min_key->objectid == ino)) {
1505 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1506 				continue;
1507 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1508 				start = 0;
1509 			else {
1510 				start = min_key->offset;
1511 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1512 			}
1513 		} else {
1514 			start = 0;
1515 		}
1516 
1517 		if (unlikely(max_key->objectid == ino)) {
1518 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1519 				continue;
1520 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1521 				end = (u64)-1;
1522 			} else {
1523 				if (max_key->offset == 0)
1524 					continue;
1525 				end = max_key->offset;
1526 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1527 				end--;
1528 			}
1529 		} else {
1530 			end = (u64)-1;
1531 		}
1532 
1533 		/* the lock_extent waits for readpage to complete */
1534 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1535 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1536 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1537 	}
1538 	return 0;
1539 }
1540 
1541 static int find_next_key(struct btrfs_path *path, int level,
1542 			 struct btrfs_key *key)
1543 
1544 {
1545 	while (level < BTRFS_MAX_LEVEL) {
1546 		if (!path->nodes[level])
1547 			break;
1548 		if (path->slots[level] + 1 <
1549 		    btrfs_header_nritems(path->nodes[level])) {
1550 			btrfs_node_key_to_cpu(path->nodes[level], key,
1551 					      path->slots[level] + 1);
1552 			return 0;
1553 		}
1554 		level++;
1555 	}
1556 	return 1;
1557 }
1558 
1559 /*
1560  * Insert current subvolume into reloc_control::dirty_subvol_roots
1561  */
1562 static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
1563 				struct reloc_control *rc,
1564 				struct btrfs_root *root)
1565 {
1566 	struct btrfs_root *reloc_root = root->reloc_root;
1567 	struct btrfs_root_item *reloc_root_item;
1568 
1569 	/* @root must be a subvolume tree root with a valid reloc tree */
1570 	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1571 	ASSERT(reloc_root);
1572 
1573 	reloc_root_item = &reloc_root->root_item;
1574 	memset(&reloc_root_item->drop_progress, 0,
1575 		sizeof(reloc_root_item->drop_progress));
1576 	reloc_root_item->drop_level = 0;
1577 	btrfs_set_root_refs(reloc_root_item, 0);
1578 	btrfs_update_reloc_root(trans, root);
1579 
1580 	if (list_empty(&root->reloc_dirty_list)) {
1581 		btrfs_grab_root(root);
1582 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1583 	}
1584 }
1585 
1586 static int clean_dirty_subvols(struct reloc_control *rc)
1587 {
1588 	struct btrfs_root *root;
1589 	struct btrfs_root *next;
1590 	int ret = 0;
1591 	int ret2;
1592 
1593 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1594 				 reloc_dirty_list) {
1595 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1596 			/* Merged subvolume, cleanup its reloc root */
1597 			struct btrfs_root *reloc_root = root->reloc_root;
1598 
1599 			list_del_init(&root->reloc_dirty_list);
1600 			root->reloc_root = NULL;
1601 			/*
1602 			 * Need barrier to ensure clear_bit() only happens after
1603 			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1604 			 */
1605 			smp_wmb();
1606 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1607 			if (reloc_root) {
1608 				/*
1609 				 * btrfs_drop_snapshot drops our ref we hold for
1610 				 * ->reloc_root.  If it fails however we must
1611 				 * drop the ref ourselves.
1612 				 */
1613 				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1614 				if (ret2 < 0) {
1615 					btrfs_put_root(reloc_root);
1616 					if (!ret)
1617 						ret = ret2;
1618 				}
1619 			}
1620 			btrfs_put_root(root);
1621 		} else {
1622 			/* Orphan reloc tree, just clean it up */
1623 			ret2 = btrfs_drop_snapshot(root, 0, 1);
1624 			if (ret2 < 0) {
1625 				btrfs_put_root(root);
1626 				if (!ret)
1627 					ret = ret2;
1628 			}
1629 		}
1630 	}
1631 	return ret;
1632 }
1633 
1634 /*
1635  * merge the relocated tree blocks in reloc tree with corresponding
1636  * fs tree.
1637  */
1638 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1639 					       struct btrfs_root *root)
1640 {
1641 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1642 	struct btrfs_key key;
1643 	struct btrfs_key next_key;
1644 	struct btrfs_trans_handle *trans = NULL;
1645 	struct btrfs_root *reloc_root;
1646 	struct btrfs_root_item *root_item;
1647 	struct btrfs_path *path;
1648 	struct extent_buffer *leaf;
1649 	int level;
1650 	int max_level;
1651 	int replaced = 0;
1652 	int ret;
1653 	int err = 0;
1654 	u32 min_reserved;
1655 
1656 	path = btrfs_alloc_path();
1657 	if (!path)
1658 		return -ENOMEM;
1659 	path->reada = READA_FORWARD;
1660 
1661 	reloc_root = root->reloc_root;
1662 	root_item = &reloc_root->root_item;
1663 
1664 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1665 		level = btrfs_root_level(root_item);
1666 		atomic_inc(&reloc_root->node->refs);
1667 		path->nodes[level] = reloc_root->node;
1668 		path->slots[level] = 0;
1669 	} else {
1670 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1671 
1672 		level = root_item->drop_level;
1673 		BUG_ON(level == 0);
1674 		path->lowest_level = level;
1675 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1676 		path->lowest_level = 0;
1677 		if (ret < 0) {
1678 			btrfs_free_path(path);
1679 			return ret;
1680 		}
1681 
1682 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1683 				      path->slots[level]);
1684 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1685 
1686 		btrfs_unlock_up_safe(path, 0);
1687 	}
1688 
1689 	/*
1690 	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1691 	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1692 	 * block COW, we COW at most from level 1 to root level for each tree.
1693 	 *
1694 	 * Thus the needed metadata size is at most root_level * nodesize,
1695 	 * and * 2 since we have two trees to COW.
1696 	 */
1697 	min_reserved = fs_info->nodesize * btrfs_root_level(root_item) * 2;
1698 	memset(&next_key, 0, sizeof(next_key));
1699 
1700 	while (1) {
1701 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1702 					     BTRFS_RESERVE_FLUSH_LIMIT);
1703 		if (ret) {
1704 			err = ret;
1705 			goto out;
1706 		}
1707 		trans = btrfs_start_transaction(root, 0);
1708 		if (IS_ERR(trans)) {
1709 			err = PTR_ERR(trans);
1710 			trans = NULL;
1711 			goto out;
1712 		}
1713 
1714 		/*
1715 		 * At this point we no longer have a reloc_control, so we can't
1716 		 * depend on btrfs_init_reloc_root to update our last_trans.
1717 		 *
1718 		 * But that's ok, we started the trans handle on our
1719 		 * corresponding fs_root, which means it's been added to the
1720 		 * dirty list.  At commit time we'll still call
1721 		 * btrfs_update_reloc_root() and update our root item
1722 		 * appropriately.
1723 		 */
1724 		reloc_root->last_trans = trans->transid;
1725 		trans->block_rsv = rc->block_rsv;
1726 
1727 		replaced = 0;
1728 		max_level = level;
1729 
1730 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1731 		if (ret < 0) {
1732 			err = ret;
1733 			goto out;
1734 		}
1735 		if (ret > 0)
1736 			break;
1737 
1738 		if (!find_next_key(path, level, &key) &&
1739 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1740 			ret = 0;
1741 		} else {
1742 			ret = replace_path(trans, rc, root, reloc_root, path,
1743 					   &next_key, level, max_level);
1744 		}
1745 		if (ret < 0) {
1746 			err = ret;
1747 			goto out;
1748 		}
1749 
1750 		if (ret > 0) {
1751 			level = ret;
1752 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1753 					      path->slots[level]);
1754 			replaced = 1;
1755 		}
1756 
1757 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1758 		if (ret > 0)
1759 			break;
1760 
1761 		BUG_ON(level == 0);
1762 		/*
1763 		 * save the merging progress in the drop_progress.
1764 		 * this is OK since root refs == 1 in this case.
1765 		 */
1766 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1767 			       path->slots[level]);
1768 		root_item->drop_level = level;
1769 
1770 		btrfs_end_transaction_throttle(trans);
1771 		trans = NULL;
1772 
1773 		btrfs_btree_balance_dirty(fs_info);
1774 
1775 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1776 			invalidate_extent_cache(root, &key, &next_key);
1777 	}
1778 
1779 	/*
1780 	 * handle the case only one block in the fs tree need to be
1781 	 * relocated and the block is tree root.
1782 	 */
1783 	leaf = btrfs_lock_root_node(root);
1784 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
1785 	btrfs_tree_unlock(leaf);
1786 	free_extent_buffer(leaf);
1787 	if (ret < 0)
1788 		err = ret;
1789 out:
1790 	btrfs_free_path(path);
1791 
1792 	if (err == 0)
1793 		insert_dirty_subvol(trans, rc, root);
1794 
1795 	if (trans)
1796 		btrfs_end_transaction_throttle(trans);
1797 
1798 	btrfs_btree_balance_dirty(fs_info);
1799 
1800 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1801 		invalidate_extent_cache(root, &key, &next_key);
1802 
1803 	return err;
1804 }
1805 
1806 static noinline_for_stack
1807 int prepare_to_merge(struct reloc_control *rc, int err)
1808 {
1809 	struct btrfs_root *root = rc->extent_root;
1810 	struct btrfs_fs_info *fs_info = root->fs_info;
1811 	struct btrfs_root *reloc_root;
1812 	struct btrfs_trans_handle *trans;
1813 	LIST_HEAD(reloc_roots);
1814 	u64 num_bytes = 0;
1815 	int ret;
1816 
1817 	mutex_lock(&fs_info->reloc_mutex);
1818 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1819 	rc->merging_rsv_size += rc->nodes_relocated * 2;
1820 	mutex_unlock(&fs_info->reloc_mutex);
1821 
1822 again:
1823 	if (!err) {
1824 		num_bytes = rc->merging_rsv_size;
1825 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1826 					  BTRFS_RESERVE_FLUSH_ALL);
1827 		if (ret)
1828 			err = ret;
1829 	}
1830 
1831 	trans = btrfs_join_transaction(rc->extent_root);
1832 	if (IS_ERR(trans)) {
1833 		if (!err)
1834 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1835 						num_bytes, NULL);
1836 		return PTR_ERR(trans);
1837 	}
1838 
1839 	if (!err) {
1840 		if (num_bytes != rc->merging_rsv_size) {
1841 			btrfs_end_transaction(trans);
1842 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1843 						num_bytes, NULL);
1844 			goto again;
1845 		}
1846 	}
1847 
1848 	rc->merge_reloc_tree = 1;
1849 
1850 	while (!list_empty(&rc->reloc_roots)) {
1851 		reloc_root = list_entry(rc->reloc_roots.next,
1852 					struct btrfs_root, root_list);
1853 		list_del_init(&reloc_root->root_list);
1854 
1855 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1856 				false);
1857 		BUG_ON(IS_ERR(root));
1858 		BUG_ON(root->reloc_root != reloc_root);
1859 
1860 		/*
1861 		 * set reference count to 1, so btrfs_recover_relocation
1862 		 * knows it should resumes merging
1863 		 */
1864 		if (!err)
1865 			btrfs_set_root_refs(&reloc_root->root_item, 1);
1866 		btrfs_update_reloc_root(trans, root);
1867 
1868 		list_add(&reloc_root->root_list, &reloc_roots);
1869 		btrfs_put_root(root);
1870 	}
1871 
1872 	list_splice(&reloc_roots, &rc->reloc_roots);
1873 
1874 	if (!err)
1875 		btrfs_commit_transaction(trans);
1876 	else
1877 		btrfs_end_transaction(trans);
1878 	return err;
1879 }
1880 
1881 static noinline_for_stack
1882 void free_reloc_roots(struct list_head *list)
1883 {
1884 	struct btrfs_root *reloc_root, *tmp;
1885 
1886 	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1887 		__del_reloc_root(reloc_root);
1888 }
1889 
1890 static noinline_for_stack
1891 void merge_reloc_roots(struct reloc_control *rc)
1892 {
1893 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1894 	struct btrfs_root *root;
1895 	struct btrfs_root *reloc_root;
1896 	LIST_HEAD(reloc_roots);
1897 	int found = 0;
1898 	int ret = 0;
1899 again:
1900 	root = rc->extent_root;
1901 
1902 	/*
1903 	 * this serializes us with btrfs_record_root_in_transaction,
1904 	 * we have to make sure nobody is in the middle of
1905 	 * adding their roots to the list while we are
1906 	 * doing this splice
1907 	 */
1908 	mutex_lock(&fs_info->reloc_mutex);
1909 	list_splice_init(&rc->reloc_roots, &reloc_roots);
1910 	mutex_unlock(&fs_info->reloc_mutex);
1911 
1912 	while (!list_empty(&reloc_roots)) {
1913 		found = 1;
1914 		reloc_root = list_entry(reloc_roots.next,
1915 					struct btrfs_root, root_list);
1916 
1917 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1918 					 false);
1919 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1920 			BUG_ON(IS_ERR(root));
1921 			BUG_ON(root->reloc_root != reloc_root);
1922 			ret = merge_reloc_root(rc, root);
1923 			btrfs_put_root(root);
1924 			if (ret) {
1925 				if (list_empty(&reloc_root->root_list))
1926 					list_add_tail(&reloc_root->root_list,
1927 						      &reloc_roots);
1928 				goto out;
1929 			}
1930 		} else {
1931 			if (!IS_ERR(root)) {
1932 				if (root->reloc_root == reloc_root) {
1933 					root->reloc_root = NULL;
1934 					btrfs_put_root(reloc_root);
1935 				}
1936 				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1937 					  &root->state);
1938 				btrfs_put_root(root);
1939 			}
1940 
1941 			list_del_init(&reloc_root->root_list);
1942 			/* Don't forget to queue this reloc root for cleanup */
1943 			list_add_tail(&reloc_root->reloc_dirty_list,
1944 				      &rc->dirty_subvol_roots);
1945 		}
1946 	}
1947 
1948 	if (found) {
1949 		found = 0;
1950 		goto again;
1951 	}
1952 out:
1953 	if (ret) {
1954 		btrfs_handle_fs_error(fs_info, ret, NULL);
1955 		free_reloc_roots(&reloc_roots);
1956 
1957 		/* new reloc root may be added */
1958 		mutex_lock(&fs_info->reloc_mutex);
1959 		list_splice_init(&rc->reloc_roots, &reloc_roots);
1960 		mutex_unlock(&fs_info->reloc_mutex);
1961 		free_reloc_roots(&reloc_roots);
1962 	}
1963 
1964 	/*
1965 	 * We used to have
1966 	 *
1967 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1968 	 *
1969 	 * here, but it's wrong.  If we fail to start the transaction in
1970 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1971 	 * have actually been removed from the reloc_root_tree rb tree.  This is
1972 	 * fine because we're bailing here, and we hold a reference on the root
1973 	 * for the list that holds it, so these roots will be cleaned up when we
1974 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
1975 	 * will be cleaned up on unmount.
1976 	 *
1977 	 * The remaining nodes will be cleaned up by free_reloc_control.
1978 	 */
1979 }
1980 
1981 static void free_block_list(struct rb_root *blocks)
1982 {
1983 	struct tree_block *block;
1984 	struct rb_node *rb_node;
1985 	while ((rb_node = rb_first(blocks))) {
1986 		block = rb_entry(rb_node, struct tree_block, rb_node);
1987 		rb_erase(rb_node, blocks);
1988 		kfree(block);
1989 	}
1990 }
1991 
1992 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1993 				      struct btrfs_root *reloc_root)
1994 {
1995 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
1996 	struct btrfs_root *root;
1997 	int ret;
1998 
1999 	if (reloc_root->last_trans == trans->transid)
2000 		return 0;
2001 
2002 	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2003 	BUG_ON(IS_ERR(root));
2004 	BUG_ON(root->reloc_root != reloc_root);
2005 	ret = btrfs_record_root_in_trans(trans, root);
2006 	btrfs_put_root(root);
2007 
2008 	return ret;
2009 }
2010 
2011 static noinline_for_stack
2012 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2013 				     struct reloc_control *rc,
2014 				     struct btrfs_backref_node *node,
2015 				     struct btrfs_backref_edge *edges[])
2016 {
2017 	struct btrfs_backref_node *next;
2018 	struct btrfs_root *root;
2019 	int index = 0;
2020 
2021 	next = node;
2022 	while (1) {
2023 		cond_resched();
2024 		next = walk_up_backref(next, edges, &index);
2025 		root = next->root;
2026 		BUG_ON(!root);
2027 		BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state));
2028 
2029 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2030 			record_reloc_root_in_trans(trans, root);
2031 			break;
2032 		}
2033 
2034 		btrfs_record_root_in_trans(trans, root);
2035 		root = root->reloc_root;
2036 
2037 		if (next->new_bytenr != root->node->start) {
2038 			BUG_ON(next->new_bytenr);
2039 			BUG_ON(!list_empty(&next->list));
2040 			next->new_bytenr = root->node->start;
2041 			btrfs_put_root(next->root);
2042 			next->root = btrfs_grab_root(root);
2043 			ASSERT(next->root);
2044 			list_add_tail(&next->list,
2045 				      &rc->backref_cache.changed);
2046 			mark_block_processed(rc, next);
2047 			break;
2048 		}
2049 
2050 		WARN_ON(1);
2051 		root = NULL;
2052 		next = walk_down_backref(edges, &index);
2053 		if (!next || next->level <= node->level)
2054 			break;
2055 	}
2056 	if (!root)
2057 		return NULL;
2058 
2059 	next = node;
2060 	/* setup backref node path for btrfs_reloc_cow_block */
2061 	while (1) {
2062 		rc->backref_cache.path[next->level] = next;
2063 		if (--index < 0)
2064 			break;
2065 		next = edges[index]->node[UPPER];
2066 	}
2067 	return root;
2068 }
2069 
2070 /*
2071  * Select a tree root for relocation.
2072  *
2073  * Return NULL if the block is not shareable. We should use do_relocation() in
2074  * this case.
2075  *
2076  * Return a tree root pointer if the block is shareable.
2077  * Return -ENOENT if the block is root of reloc tree.
2078  */
2079 static noinline_for_stack
2080 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2081 {
2082 	struct btrfs_backref_node *next;
2083 	struct btrfs_root *root;
2084 	struct btrfs_root *fs_root = NULL;
2085 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2086 	int index = 0;
2087 
2088 	next = node;
2089 	while (1) {
2090 		cond_resched();
2091 		next = walk_up_backref(next, edges, &index);
2092 		root = next->root;
2093 		BUG_ON(!root);
2094 
2095 		/* No other choice for non-shareable tree */
2096 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2097 			return root;
2098 
2099 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2100 			fs_root = root;
2101 
2102 		if (next != node)
2103 			return NULL;
2104 
2105 		next = walk_down_backref(edges, &index);
2106 		if (!next || next->level <= node->level)
2107 			break;
2108 	}
2109 
2110 	if (!fs_root)
2111 		return ERR_PTR(-ENOENT);
2112 	return fs_root;
2113 }
2114 
2115 static noinline_for_stack
2116 u64 calcu_metadata_size(struct reloc_control *rc,
2117 			struct btrfs_backref_node *node, int reserve)
2118 {
2119 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2120 	struct btrfs_backref_node *next = node;
2121 	struct btrfs_backref_edge *edge;
2122 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2123 	u64 num_bytes = 0;
2124 	int index = 0;
2125 
2126 	BUG_ON(reserve && node->processed);
2127 
2128 	while (next) {
2129 		cond_resched();
2130 		while (1) {
2131 			if (next->processed && (reserve || next != node))
2132 				break;
2133 
2134 			num_bytes += fs_info->nodesize;
2135 
2136 			if (list_empty(&next->upper))
2137 				break;
2138 
2139 			edge = list_entry(next->upper.next,
2140 					struct btrfs_backref_edge, list[LOWER]);
2141 			edges[index++] = edge;
2142 			next = edge->node[UPPER];
2143 		}
2144 		next = walk_down_backref(edges, &index);
2145 	}
2146 	return num_bytes;
2147 }
2148 
2149 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2150 				  struct reloc_control *rc,
2151 				  struct btrfs_backref_node *node)
2152 {
2153 	struct btrfs_root *root = rc->extent_root;
2154 	struct btrfs_fs_info *fs_info = root->fs_info;
2155 	u64 num_bytes;
2156 	int ret;
2157 	u64 tmp;
2158 
2159 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2160 
2161 	trans->block_rsv = rc->block_rsv;
2162 	rc->reserved_bytes += num_bytes;
2163 
2164 	/*
2165 	 * We are under a transaction here so we can only do limited flushing.
2166 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2167 	 * transaction and try to refill when we can flush all the things.
2168 	 */
2169 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2170 				BTRFS_RESERVE_FLUSH_LIMIT);
2171 	if (ret) {
2172 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2173 		while (tmp <= rc->reserved_bytes)
2174 			tmp <<= 1;
2175 		/*
2176 		 * only one thread can access block_rsv at this point,
2177 		 * so we don't need hold lock to protect block_rsv.
2178 		 * we expand more reservation size here to allow enough
2179 		 * space for relocation and we will return earlier in
2180 		 * enospc case.
2181 		 */
2182 		rc->block_rsv->size = tmp + fs_info->nodesize *
2183 				      RELOCATION_RESERVED_NODES;
2184 		return -EAGAIN;
2185 	}
2186 
2187 	return 0;
2188 }
2189 
2190 /*
2191  * relocate a block tree, and then update pointers in upper level
2192  * blocks that reference the block to point to the new location.
2193  *
2194  * if called by link_to_upper, the block has already been relocated.
2195  * in that case this function just updates pointers.
2196  */
2197 static int do_relocation(struct btrfs_trans_handle *trans,
2198 			 struct reloc_control *rc,
2199 			 struct btrfs_backref_node *node,
2200 			 struct btrfs_key *key,
2201 			 struct btrfs_path *path, int lowest)
2202 {
2203 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2204 	struct btrfs_backref_node *upper;
2205 	struct btrfs_backref_edge *edge;
2206 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2207 	struct btrfs_root *root;
2208 	struct extent_buffer *eb;
2209 	u32 blocksize;
2210 	u64 bytenr;
2211 	u64 generation;
2212 	int slot;
2213 	int ret;
2214 	int err = 0;
2215 
2216 	BUG_ON(lowest && node->eb);
2217 
2218 	path->lowest_level = node->level + 1;
2219 	rc->backref_cache.path[node->level] = node;
2220 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2221 		struct btrfs_key first_key;
2222 		struct btrfs_ref ref = { 0 };
2223 
2224 		cond_resched();
2225 
2226 		upper = edge->node[UPPER];
2227 		root = select_reloc_root(trans, rc, upper, edges);
2228 		BUG_ON(!root);
2229 
2230 		if (upper->eb && !upper->locked) {
2231 			if (!lowest) {
2232 				ret = btrfs_bin_search(upper->eb, key, &slot);
2233 				if (ret < 0) {
2234 					err = ret;
2235 					goto next;
2236 				}
2237 				BUG_ON(ret);
2238 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2239 				if (node->eb->start == bytenr)
2240 					goto next;
2241 			}
2242 			btrfs_backref_drop_node_buffer(upper);
2243 		}
2244 
2245 		if (!upper->eb) {
2246 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2247 			if (ret) {
2248 				if (ret < 0)
2249 					err = ret;
2250 				else
2251 					err = -ENOENT;
2252 
2253 				btrfs_release_path(path);
2254 				break;
2255 			}
2256 
2257 			if (!upper->eb) {
2258 				upper->eb = path->nodes[upper->level];
2259 				path->nodes[upper->level] = NULL;
2260 			} else {
2261 				BUG_ON(upper->eb != path->nodes[upper->level]);
2262 			}
2263 
2264 			upper->locked = 1;
2265 			path->locks[upper->level] = 0;
2266 
2267 			slot = path->slots[upper->level];
2268 			btrfs_release_path(path);
2269 		} else {
2270 			ret = btrfs_bin_search(upper->eb, key, &slot);
2271 			if (ret < 0) {
2272 				err = ret;
2273 				goto next;
2274 			}
2275 			BUG_ON(ret);
2276 		}
2277 
2278 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2279 		if (lowest) {
2280 			if (bytenr != node->bytenr) {
2281 				btrfs_err(root->fs_info,
2282 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2283 					  bytenr, node->bytenr, slot,
2284 					  upper->eb->start);
2285 				err = -EIO;
2286 				goto next;
2287 			}
2288 		} else {
2289 			if (node->eb->start == bytenr)
2290 				goto next;
2291 		}
2292 
2293 		blocksize = root->fs_info->nodesize;
2294 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2295 		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2296 		eb = read_tree_block(fs_info, bytenr, generation,
2297 				     upper->level - 1, &first_key);
2298 		if (IS_ERR(eb)) {
2299 			err = PTR_ERR(eb);
2300 			goto next;
2301 		} else if (!extent_buffer_uptodate(eb)) {
2302 			free_extent_buffer(eb);
2303 			err = -EIO;
2304 			goto next;
2305 		}
2306 		btrfs_tree_lock(eb);
2307 		btrfs_set_lock_blocking_write(eb);
2308 
2309 		if (!node->eb) {
2310 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2311 					      slot, &eb);
2312 			btrfs_tree_unlock(eb);
2313 			free_extent_buffer(eb);
2314 			if (ret < 0) {
2315 				err = ret;
2316 				goto next;
2317 			}
2318 			BUG_ON(node->eb != eb);
2319 		} else {
2320 			btrfs_set_node_blockptr(upper->eb, slot,
2321 						node->eb->start);
2322 			btrfs_set_node_ptr_generation(upper->eb, slot,
2323 						      trans->transid);
2324 			btrfs_mark_buffer_dirty(upper->eb);
2325 
2326 			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2327 					       node->eb->start, blocksize,
2328 					       upper->eb->start);
2329 			ref.real_root = root->root_key.objectid;
2330 			btrfs_init_tree_ref(&ref, node->level,
2331 					    btrfs_header_owner(upper->eb));
2332 			ret = btrfs_inc_extent_ref(trans, &ref);
2333 			BUG_ON(ret);
2334 
2335 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2336 			BUG_ON(ret);
2337 		}
2338 next:
2339 		if (!upper->pending)
2340 			btrfs_backref_drop_node_buffer(upper);
2341 		else
2342 			btrfs_backref_unlock_node_buffer(upper);
2343 		if (err)
2344 			break;
2345 	}
2346 
2347 	if (!err && node->pending) {
2348 		btrfs_backref_drop_node_buffer(node);
2349 		list_move_tail(&node->list, &rc->backref_cache.changed);
2350 		node->pending = 0;
2351 	}
2352 
2353 	path->lowest_level = 0;
2354 	BUG_ON(err == -ENOSPC);
2355 	return err;
2356 }
2357 
2358 static int link_to_upper(struct btrfs_trans_handle *trans,
2359 			 struct reloc_control *rc,
2360 			 struct btrfs_backref_node *node,
2361 			 struct btrfs_path *path)
2362 {
2363 	struct btrfs_key key;
2364 
2365 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2366 	return do_relocation(trans, rc, node, &key, path, 0);
2367 }
2368 
2369 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2370 				struct reloc_control *rc,
2371 				struct btrfs_path *path, int err)
2372 {
2373 	LIST_HEAD(list);
2374 	struct btrfs_backref_cache *cache = &rc->backref_cache;
2375 	struct btrfs_backref_node *node;
2376 	int level;
2377 	int ret;
2378 
2379 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2380 		while (!list_empty(&cache->pending[level])) {
2381 			node = list_entry(cache->pending[level].next,
2382 					  struct btrfs_backref_node, list);
2383 			list_move_tail(&node->list, &list);
2384 			BUG_ON(!node->pending);
2385 
2386 			if (!err) {
2387 				ret = link_to_upper(trans, rc, node, path);
2388 				if (ret < 0)
2389 					err = ret;
2390 			}
2391 		}
2392 		list_splice_init(&list, &cache->pending[level]);
2393 	}
2394 	return err;
2395 }
2396 
2397 /*
2398  * mark a block and all blocks directly/indirectly reference the block
2399  * as processed.
2400  */
2401 static void update_processed_blocks(struct reloc_control *rc,
2402 				    struct btrfs_backref_node *node)
2403 {
2404 	struct btrfs_backref_node *next = node;
2405 	struct btrfs_backref_edge *edge;
2406 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2407 	int index = 0;
2408 
2409 	while (next) {
2410 		cond_resched();
2411 		while (1) {
2412 			if (next->processed)
2413 				break;
2414 
2415 			mark_block_processed(rc, next);
2416 
2417 			if (list_empty(&next->upper))
2418 				break;
2419 
2420 			edge = list_entry(next->upper.next,
2421 					struct btrfs_backref_edge, list[LOWER]);
2422 			edges[index++] = edge;
2423 			next = edge->node[UPPER];
2424 		}
2425 		next = walk_down_backref(edges, &index);
2426 	}
2427 }
2428 
2429 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2430 {
2431 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2432 
2433 	if (test_range_bit(&rc->processed_blocks, bytenr,
2434 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2435 		return 1;
2436 	return 0;
2437 }
2438 
2439 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2440 			      struct tree_block *block)
2441 {
2442 	struct extent_buffer *eb;
2443 
2444 	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2445 			     block->level, NULL);
2446 	if (IS_ERR(eb)) {
2447 		return PTR_ERR(eb);
2448 	} else if (!extent_buffer_uptodate(eb)) {
2449 		free_extent_buffer(eb);
2450 		return -EIO;
2451 	}
2452 	if (block->level == 0)
2453 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2454 	else
2455 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2456 	free_extent_buffer(eb);
2457 	block->key_ready = 1;
2458 	return 0;
2459 }
2460 
2461 /*
2462  * helper function to relocate a tree block
2463  */
2464 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2465 				struct reloc_control *rc,
2466 				struct btrfs_backref_node *node,
2467 				struct btrfs_key *key,
2468 				struct btrfs_path *path)
2469 {
2470 	struct btrfs_root *root;
2471 	int ret = 0;
2472 
2473 	if (!node)
2474 		return 0;
2475 
2476 	/*
2477 	 * If we fail here we want to drop our backref_node because we are going
2478 	 * to start over and regenerate the tree for it.
2479 	 */
2480 	ret = reserve_metadata_space(trans, rc, node);
2481 	if (ret)
2482 		goto out;
2483 
2484 	BUG_ON(node->processed);
2485 	root = select_one_root(node);
2486 	if (root == ERR_PTR(-ENOENT)) {
2487 		update_processed_blocks(rc, node);
2488 		goto out;
2489 	}
2490 
2491 	if (root) {
2492 		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2493 			BUG_ON(node->new_bytenr);
2494 			BUG_ON(!list_empty(&node->list));
2495 			btrfs_record_root_in_trans(trans, root);
2496 			root = root->reloc_root;
2497 			node->new_bytenr = root->node->start;
2498 			btrfs_put_root(node->root);
2499 			node->root = btrfs_grab_root(root);
2500 			ASSERT(node->root);
2501 			list_add_tail(&node->list, &rc->backref_cache.changed);
2502 		} else {
2503 			path->lowest_level = node->level;
2504 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2505 			btrfs_release_path(path);
2506 			if (ret > 0)
2507 				ret = 0;
2508 		}
2509 		if (!ret)
2510 			update_processed_blocks(rc, node);
2511 	} else {
2512 		ret = do_relocation(trans, rc, node, key, path, 1);
2513 	}
2514 out:
2515 	if (ret || node->level == 0 || node->cowonly)
2516 		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2517 	return ret;
2518 }
2519 
2520 /*
2521  * relocate a list of blocks
2522  */
2523 static noinline_for_stack
2524 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2525 			 struct reloc_control *rc, struct rb_root *blocks)
2526 {
2527 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2528 	struct btrfs_backref_node *node;
2529 	struct btrfs_path *path;
2530 	struct tree_block *block;
2531 	struct tree_block *next;
2532 	int ret;
2533 	int err = 0;
2534 
2535 	path = btrfs_alloc_path();
2536 	if (!path) {
2537 		err = -ENOMEM;
2538 		goto out_free_blocks;
2539 	}
2540 
2541 	/* Kick in readahead for tree blocks with missing keys */
2542 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2543 		if (!block->key_ready)
2544 			readahead_tree_block(fs_info, block->bytenr);
2545 	}
2546 
2547 	/* Get first keys */
2548 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2549 		if (!block->key_ready) {
2550 			err = get_tree_block_key(fs_info, block);
2551 			if (err)
2552 				goto out_free_path;
2553 		}
2554 	}
2555 
2556 	/* Do tree relocation */
2557 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2558 		node = build_backref_tree(rc, &block->key,
2559 					  block->level, block->bytenr);
2560 		if (IS_ERR(node)) {
2561 			err = PTR_ERR(node);
2562 			goto out;
2563 		}
2564 
2565 		ret = relocate_tree_block(trans, rc, node, &block->key,
2566 					  path);
2567 		if (ret < 0) {
2568 			err = ret;
2569 			break;
2570 		}
2571 	}
2572 out:
2573 	err = finish_pending_nodes(trans, rc, path, err);
2574 
2575 out_free_path:
2576 	btrfs_free_path(path);
2577 out_free_blocks:
2578 	free_block_list(blocks);
2579 	return err;
2580 }
2581 
2582 static noinline_for_stack int prealloc_file_extent_cluster(
2583 				struct btrfs_inode *inode,
2584 				struct file_extent_cluster *cluster)
2585 {
2586 	u64 alloc_hint = 0;
2587 	u64 start;
2588 	u64 end;
2589 	u64 offset = inode->index_cnt;
2590 	u64 num_bytes;
2591 	int nr;
2592 	int ret = 0;
2593 	u64 prealloc_start = cluster->start - offset;
2594 	u64 prealloc_end = cluster->end - offset;
2595 	u64 cur_offset = prealloc_start;
2596 
2597 	BUG_ON(cluster->start != cluster->boundary[0]);
2598 	ret = btrfs_alloc_data_chunk_ondemand(inode,
2599 					      prealloc_end + 1 - prealloc_start);
2600 	if (ret)
2601 		return ret;
2602 
2603 	inode_lock(&inode->vfs_inode);
2604 	for (nr = 0; nr < cluster->nr; nr++) {
2605 		start = cluster->boundary[nr] - offset;
2606 		if (nr + 1 < cluster->nr)
2607 			end = cluster->boundary[nr + 1] - 1 - offset;
2608 		else
2609 			end = cluster->end - offset;
2610 
2611 		lock_extent(&inode->io_tree, start, end);
2612 		num_bytes = end + 1 - start;
2613 		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2614 						num_bytes, num_bytes,
2615 						end + 1, &alloc_hint);
2616 		cur_offset = end + 1;
2617 		unlock_extent(&inode->io_tree, start, end);
2618 		if (ret)
2619 			break;
2620 	}
2621 	inode_unlock(&inode->vfs_inode);
2622 
2623 	if (cur_offset < prealloc_end)
2624 		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2625 					       prealloc_end + 1 - cur_offset);
2626 	return ret;
2627 }
2628 
2629 static noinline_for_stack
2630 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2631 			 u64 block_start)
2632 {
2633 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2634 	struct extent_map *em;
2635 	int ret = 0;
2636 
2637 	em = alloc_extent_map();
2638 	if (!em)
2639 		return -ENOMEM;
2640 
2641 	em->start = start;
2642 	em->len = end + 1 - start;
2643 	em->block_len = em->len;
2644 	em->block_start = block_start;
2645 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2646 
2647 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2648 	while (1) {
2649 		write_lock(&em_tree->lock);
2650 		ret = add_extent_mapping(em_tree, em, 0);
2651 		write_unlock(&em_tree->lock);
2652 		if (ret != -EEXIST) {
2653 			free_extent_map(em);
2654 			break;
2655 		}
2656 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2657 	}
2658 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2659 	return ret;
2660 }
2661 
2662 /*
2663  * Allow error injection to test balance cancellation
2664  */
2665 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2666 {
2667 	return atomic_read(&fs_info->balance_cancel_req) ||
2668 		fatal_signal_pending(current);
2669 }
2670 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2671 
2672 static int relocate_file_extent_cluster(struct inode *inode,
2673 					struct file_extent_cluster *cluster)
2674 {
2675 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2676 	u64 page_start;
2677 	u64 page_end;
2678 	u64 offset = BTRFS_I(inode)->index_cnt;
2679 	unsigned long index;
2680 	unsigned long last_index;
2681 	struct page *page;
2682 	struct file_ra_state *ra;
2683 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2684 	int nr = 0;
2685 	int ret = 0;
2686 
2687 	if (!cluster->nr)
2688 		return 0;
2689 
2690 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2691 	if (!ra)
2692 		return -ENOMEM;
2693 
2694 	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
2695 	if (ret)
2696 		goto out;
2697 
2698 	file_ra_state_init(ra, inode->i_mapping);
2699 
2700 	ret = setup_extent_mapping(inode, cluster->start - offset,
2701 				   cluster->end - offset, cluster->start);
2702 	if (ret)
2703 		goto out;
2704 
2705 	index = (cluster->start - offset) >> PAGE_SHIFT;
2706 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
2707 	while (index <= last_index) {
2708 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2709 				PAGE_SIZE);
2710 		if (ret)
2711 			goto out;
2712 
2713 		page = find_lock_page(inode->i_mapping, index);
2714 		if (!page) {
2715 			page_cache_sync_readahead(inode->i_mapping,
2716 						  ra, NULL, index,
2717 						  last_index + 1 - index);
2718 			page = find_or_create_page(inode->i_mapping, index,
2719 						   mask);
2720 			if (!page) {
2721 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2722 							PAGE_SIZE, true);
2723 				btrfs_delalloc_release_extents(BTRFS_I(inode),
2724 							PAGE_SIZE);
2725 				ret = -ENOMEM;
2726 				goto out;
2727 			}
2728 		}
2729 
2730 		if (PageReadahead(page)) {
2731 			page_cache_async_readahead(inode->i_mapping,
2732 						   ra, NULL, page, index,
2733 						   last_index + 1 - index);
2734 		}
2735 
2736 		if (!PageUptodate(page)) {
2737 			btrfs_readpage(NULL, page);
2738 			lock_page(page);
2739 			if (!PageUptodate(page)) {
2740 				unlock_page(page);
2741 				put_page(page);
2742 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2743 							PAGE_SIZE, true);
2744 				btrfs_delalloc_release_extents(BTRFS_I(inode),
2745 							       PAGE_SIZE);
2746 				ret = -EIO;
2747 				goto out;
2748 			}
2749 		}
2750 
2751 		page_start = page_offset(page);
2752 		page_end = page_start + PAGE_SIZE - 1;
2753 
2754 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
2755 
2756 		set_page_extent_mapped(page);
2757 
2758 		if (nr < cluster->nr &&
2759 		    page_start + offset == cluster->boundary[nr]) {
2760 			set_extent_bits(&BTRFS_I(inode)->io_tree,
2761 					page_start, page_end,
2762 					EXTENT_BOUNDARY);
2763 			nr++;
2764 		}
2765 
2766 		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start,
2767 						page_end, 0, NULL);
2768 		if (ret) {
2769 			unlock_page(page);
2770 			put_page(page);
2771 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2772 							 PAGE_SIZE, true);
2773 			btrfs_delalloc_release_extents(BTRFS_I(inode),
2774 			                               PAGE_SIZE);
2775 
2776 			clear_extent_bits(&BTRFS_I(inode)->io_tree,
2777 					  page_start, page_end,
2778 					  EXTENT_LOCKED | EXTENT_BOUNDARY);
2779 			goto out;
2780 
2781 		}
2782 		set_page_dirty(page);
2783 
2784 		unlock_extent(&BTRFS_I(inode)->io_tree,
2785 			      page_start, page_end);
2786 		unlock_page(page);
2787 		put_page(page);
2788 
2789 		index++;
2790 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2791 		balance_dirty_pages_ratelimited(inode->i_mapping);
2792 		btrfs_throttle(fs_info);
2793 		if (btrfs_should_cancel_balance(fs_info)) {
2794 			ret = -ECANCELED;
2795 			goto out;
2796 		}
2797 	}
2798 	WARN_ON(nr != cluster->nr);
2799 out:
2800 	kfree(ra);
2801 	return ret;
2802 }
2803 
2804 static noinline_for_stack
2805 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
2806 			 struct file_extent_cluster *cluster)
2807 {
2808 	int ret;
2809 
2810 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
2811 		ret = relocate_file_extent_cluster(inode, cluster);
2812 		if (ret)
2813 			return ret;
2814 		cluster->nr = 0;
2815 	}
2816 
2817 	if (!cluster->nr)
2818 		cluster->start = extent_key->objectid;
2819 	else
2820 		BUG_ON(cluster->nr >= MAX_EXTENTS);
2821 	cluster->end = extent_key->objectid + extent_key->offset - 1;
2822 	cluster->boundary[cluster->nr] = extent_key->objectid;
2823 	cluster->nr++;
2824 
2825 	if (cluster->nr >= MAX_EXTENTS) {
2826 		ret = relocate_file_extent_cluster(inode, cluster);
2827 		if (ret)
2828 			return ret;
2829 		cluster->nr = 0;
2830 	}
2831 	return 0;
2832 }
2833 
2834 /*
2835  * helper to add a tree block to the list.
2836  * the major work is getting the generation and level of the block
2837  */
2838 static int add_tree_block(struct reloc_control *rc,
2839 			  struct btrfs_key *extent_key,
2840 			  struct btrfs_path *path,
2841 			  struct rb_root *blocks)
2842 {
2843 	struct extent_buffer *eb;
2844 	struct btrfs_extent_item *ei;
2845 	struct btrfs_tree_block_info *bi;
2846 	struct tree_block *block;
2847 	struct rb_node *rb_node;
2848 	u32 item_size;
2849 	int level = -1;
2850 	u64 generation;
2851 
2852 	eb =  path->nodes[0];
2853 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
2854 
2855 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
2856 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
2857 		ei = btrfs_item_ptr(eb, path->slots[0],
2858 				struct btrfs_extent_item);
2859 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
2860 			bi = (struct btrfs_tree_block_info *)(ei + 1);
2861 			level = btrfs_tree_block_level(eb, bi);
2862 		} else {
2863 			level = (int)extent_key->offset;
2864 		}
2865 		generation = btrfs_extent_generation(eb, ei);
2866 	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
2867 		btrfs_print_v0_err(eb->fs_info);
2868 		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
2869 		return -EINVAL;
2870 	} else {
2871 		BUG();
2872 	}
2873 
2874 	btrfs_release_path(path);
2875 
2876 	BUG_ON(level == -1);
2877 
2878 	block = kmalloc(sizeof(*block), GFP_NOFS);
2879 	if (!block)
2880 		return -ENOMEM;
2881 
2882 	block->bytenr = extent_key->objectid;
2883 	block->key.objectid = rc->extent_root->fs_info->nodesize;
2884 	block->key.offset = generation;
2885 	block->level = level;
2886 	block->key_ready = 0;
2887 
2888 	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
2889 	if (rb_node)
2890 		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
2891 				    -EEXIST);
2892 
2893 	return 0;
2894 }
2895 
2896 /*
2897  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
2898  */
2899 static int __add_tree_block(struct reloc_control *rc,
2900 			    u64 bytenr, u32 blocksize,
2901 			    struct rb_root *blocks)
2902 {
2903 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2904 	struct btrfs_path *path;
2905 	struct btrfs_key key;
2906 	int ret;
2907 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2908 
2909 	if (tree_block_processed(bytenr, rc))
2910 		return 0;
2911 
2912 	if (rb_simple_search(blocks, bytenr))
2913 		return 0;
2914 
2915 	path = btrfs_alloc_path();
2916 	if (!path)
2917 		return -ENOMEM;
2918 again:
2919 	key.objectid = bytenr;
2920 	if (skinny) {
2921 		key.type = BTRFS_METADATA_ITEM_KEY;
2922 		key.offset = (u64)-1;
2923 	} else {
2924 		key.type = BTRFS_EXTENT_ITEM_KEY;
2925 		key.offset = blocksize;
2926 	}
2927 
2928 	path->search_commit_root = 1;
2929 	path->skip_locking = 1;
2930 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
2931 	if (ret < 0)
2932 		goto out;
2933 
2934 	if (ret > 0 && skinny) {
2935 		if (path->slots[0]) {
2936 			path->slots[0]--;
2937 			btrfs_item_key_to_cpu(path->nodes[0], &key,
2938 					      path->slots[0]);
2939 			if (key.objectid == bytenr &&
2940 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
2941 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
2942 			      key.offset == blocksize)))
2943 				ret = 0;
2944 		}
2945 
2946 		if (ret) {
2947 			skinny = false;
2948 			btrfs_release_path(path);
2949 			goto again;
2950 		}
2951 	}
2952 	if (ret) {
2953 		ASSERT(ret == 1);
2954 		btrfs_print_leaf(path->nodes[0]);
2955 		btrfs_err(fs_info,
2956 	     "tree block extent item (%llu) is not found in extent tree",
2957 		     bytenr);
2958 		WARN_ON(1);
2959 		ret = -EINVAL;
2960 		goto out;
2961 	}
2962 
2963 	ret = add_tree_block(rc, &key, path, blocks);
2964 out:
2965 	btrfs_free_path(path);
2966 	return ret;
2967 }
2968 
2969 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
2970 				    struct btrfs_block_group *block_group,
2971 				    struct inode *inode,
2972 				    u64 ino)
2973 {
2974 	struct btrfs_root *root = fs_info->tree_root;
2975 	struct btrfs_trans_handle *trans;
2976 	int ret = 0;
2977 
2978 	if (inode)
2979 		goto truncate;
2980 
2981 	inode = btrfs_iget(fs_info->sb, ino, root);
2982 	if (IS_ERR(inode))
2983 		return -ENOENT;
2984 
2985 truncate:
2986 	ret = btrfs_check_trunc_cache_free_space(fs_info,
2987 						 &fs_info->global_block_rsv);
2988 	if (ret)
2989 		goto out;
2990 
2991 	trans = btrfs_join_transaction(root);
2992 	if (IS_ERR(trans)) {
2993 		ret = PTR_ERR(trans);
2994 		goto out;
2995 	}
2996 
2997 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
2998 
2999 	btrfs_end_transaction(trans);
3000 	btrfs_btree_balance_dirty(fs_info);
3001 out:
3002 	iput(inode);
3003 	return ret;
3004 }
3005 
3006 /*
3007  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3008  * cache inode, to avoid free space cache data extent blocking data relocation.
3009  */
3010 static int delete_v1_space_cache(struct extent_buffer *leaf,
3011 				 struct btrfs_block_group *block_group,
3012 				 u64 data_bytenr)
3013 {
3014 	u64 space_cache_ino;
3015 	struct btrfs_file_extent_item *ei;
3016 	struct btrfs_key key;
3017 	bool found = false;
3018 	int i;
3019 	int ret;
3020 
3021 	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3022 		return 0;
3023 
3024 	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3025 		btrfs_item_key_to_cpu(leaf, &key, i);
3026 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3027 			continue;
3028 		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3029 		if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_REG &&
3030 		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3031 			found = true;
3032 			space_cache_ino = key.objectid;
3033 			break;
3034 		}
3035 	}
3036 	if (!found)
3037 		return -ENOENT;
3038 	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3039 					space_cache_ino);
3040 	return ret;
3041 }
3042 
3043 /*
3044  * helper to find all tree blocks that reference a given data extent
3045  */
3046 static noinline_for_stack
3047 int add_data_references(struct reloc_control *rc,
3048 			struct btrfs_key *extent_key,
3049 			struct btrfs_path *path,
3050 			struct rb_root *blocks)
3051 {
3052 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3053 	struct ulist *leaves = NULL;
3054 	struct ulist_iterator leaf_uiter;
3055 	struct ulist_node *ref_node = NULL;
3056 	const u32 blocksize = fs_info->nodesize;
3057 	int ret = 0;
3058 
3059 	btrfs_release_path(path);
3060 	ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3061 				   0, &leaves, NULL, true);
3062 	if (ret < 0)
3063 		return ret;
3064 
3065 	ULIST_ITER_INIT(&leaf_uiter);
3066 	while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3067 		struct extent_buffer *eb;
3068 
3069 		eb = read_tree_block(fs_info, ref_node->val, 0, 0, NULL);
3070 		if (IS_ERR(eb)) {
3071 			ret = PTR_ERR(eb);
3072 			break;
3073 		}
3074 		ret = delete_v1_space_cache(eb, rc->block_group,
3075 					    extent_key->objectid);
3076 		free_extent_buffer(eb);
3077 		if (ret < 0)
3078 			break;
3079 		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3080 		if (ret < 0)
3081 			break;
3082 	}
3083 	if (ret < 0)
3084 		free_block_list(blocks);
3085 	ulist_free(leaves);
3086 	return ret;
3087 }
3088 
3089 /*
3090  * helper to find next unprocessed extent
3091  */
3092 static noinline_for_stack
3093 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3094 		     struct btrfs_key *extent_key)
3095 {
3096 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3097 	struct btrfs_key key;
3098 	struct extent_buffer *leaf;
3099 	u64 start, end, last;
3100 	int ret;
3101 
3102 	last = rc->block_group->start + rc->block_group->length;
3103 	while (1) {
3104 		cond_resched();
3105 		if (rc->search_start >= last) {
3106 			ret = 1;
3107 			break;
3108 		}
3109 
3110 		key.objectid = rc->search_start;
3111 		key.type = BTRFS_EXTENT_ITEM_KEY;
3112 		key.offset = 0;
3113 
3114 		path->search_commit_root = 1;
3115 		path->skip_locking = 1;
3116 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3117 					0, 0);
3118 		if (ret < 0)
3119 			break;
3120 next:
3121 		leaf = path->nodes[0];
3122 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3123 			ret = btrfs_next_leaf(rc->extent_root, path);
3124 			if (ret != 0)
3125 				break;
3126 			leaf = path->nodes[0];
3127 		}
3128 
3129 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3130 		if (key.objectid >= last) {
3131 			ret = 1;
3132 			break;
3133 		}
3134 
3135 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3136 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3137 			path->slots[0]++;
3138 			goto next;
3139 		}
3140 
3141 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3142 		    key.objectid + key.offset <= rc->search_start) {
3143 			path->slots[0]++;
3144 			goto next;
3145 		}
3146 
3147 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3148 		    key.objectid + fs_info->nodesize <=
3149 		    rc->search_start) {
3150 			path->slots[0]++;
3151 			goto next;
3152 		}
3153 
3154 		ret = find_first_extent_bit(&rc->processed_blocks,
3155 					    key.objectid, &start, &end,
3156 					    EXTENT_DIRTY, NULL);
3157 
3158 		if (ret == 0 && start <= key.objectid) {
3159 			btrfs_release_path(path);
3160 			rc->search_start = end + 1;
3161 		} else {
3162 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3163 				rc->search_start = key.objectid + key.offset;
3164 			else
3165 				rc->search_start = key.objectid +
3166 					fs_info->nodesize;
3167 			memcpy(extent_key, &key, sizeof(key));
3168 			return 0;
3169 		}
3170 	}
3171 	btrfs_release_path(path);
3172 	return ret;
3173 }
3174 
3175 static void set_reloc_control(struct reloc_control *rc)
3176 {
3177 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3178 
3179 	mutex_lock(&fs_info->reloc_mutex);
3180 	fs_info->reloc_ctl = rc;
3181 	mutex_unlock(&fs_info->reloc_mutex);
3182 }
3183 
3184 static void unset_reloc_control(struct reloc_control *rc)
3185 {
3186 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3187 
3188 	mutex_lock(&fs_info->reloc_mutex);
3189 	fs_info->reloc_ctl = NULL;
3190 	mutex_unlock(&fs_info->reloc_mutex);
3191 }
3192 
3193 static int check_extent_flags(u64 flags)
3194 {
3195 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3196 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3197 		return 1;
3198 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3199 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3200 		return 1;
3201 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3202 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3203 		return 1;
3204 	return 0;
3205 }
3206 
3207 static noinline_for_stack
3208 int prepare_to_relocate(struct reloc_control *rc)
3209 {
3210 	struct btrfs_trans_handle *trans;
3211 	int ret;
3212 
3213 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3214 					      BTRFS_BLOCK_RSV_TEMP);
3215 	if (!rc->block_rsv)
3216 		return -ENOMEM;
3217 
3218 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3219 	rc->search_start = rc->block_group->start;
3220 	rc->extents_found = 0;
3221 	rc->nodes_relocated = 0;
3222 	rc->merging_rsv_size = 0;
3223 	rc->reserved_bytes = 0;
3224 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3225 			      RELOCATION_RESERVED_NODES;
3226 	ret = btrfs_block_rsv_refill(rc->extent_root,
3227 				     rc->block_rsv, rc->block_rsv->size,
3228 				     BTRFS_RESERVE_FLUSH_ALL);
3229 	if (ret)
3230 		return ret;
3231 
3232 	rc->create_reloc_tree = 1;
3233 	set_reloc_control(rc);
3234 
3235 	trans = btrfs_join_transaction(rc->extent_root);
3236 	if (IS_ERR(trans)) {
3237 		unset_reloc_control(rc);
3238 		/*
3239 		 * extent tree is not a ref_cow tree and has no reloc_root to
3240 		 * cleanup.  And callers are responsible to free the above
3241 		 * block rsv.
3242 		 */
3243 		return PTR_ERR(trans);
3244 	}
3245 	btrfs_commit_transaction(trans);
3246 	return 0;
3247 }
3248 
3249 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3250 {
3251 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3252 	struct rb_root blocks = RB_ROOT;
3253 	struct btrfs_key key;
3254 	struct btrfs_trans_handle *trans = NULL;
3255 	struct btrfs_path *path;
3256 	struct btrfs_extent_item *ei;
3257 	u64 flags;
3258 	u32 item_size;
3259 	int ret;
3260 	int err = 0;
3261 	int progress = 0;
3262 
3263 	path = btrfs_alloc_path();
3264 	if (!path)
3265 		return -ENOMEM;
3266 	path->reada = READA_FORWARD;
3267 
3268 	ret = prepare_to_relocate(rc);
3269 	if (ret) {
3270 		err = ret;
3271 		goto out_free;
3272 	}
3273 
3274 	while (1) {
3275 		rc->reserved_bytes = 0;
3276 		ret = btrfs_block_rsv_refill(rc->extent_root,
3277 					rc->block_rsv, rc->block_rsv->size,
3278 					BTRFS_RESERVE_FLUSH_ALL);
3279 		if (ret) {
3280 			err = ret;
3281 			break;
3282 		}
3283 		progress++;
3284 		trans = btrfs_start_transaction(rc->extent_root, 0);
3285 		if (IS_ERR(trans)) {
3286 			err = PTR_ERR(trans);
3287 			trans = NULL;
3288 			break;
3289 		}
3290 restart:
3291 		if (update_backref_cache(trans, &rc->backref_cache)) {
3292 			btrfs_end_transaction(trans);
3293 			trans = NULL;
3294 			continue;
3295 		}
3296 
3297 		ret = find_next_extent(rc, path, &key);
3298 		if (ret < 0)
3299 			err = ret;
3300 		if (ret != 0)
3301 			break;
3302 
3303 		rc->extents_found++;
3304 
3305 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3306 				    struct btrfs_extent_item);
3307 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3308 		if (item_size >= sizeof(*ei)) {
3309 			flags = btrfs_extent_flags(path->nodes[0], ei);
3310 			ret = check_extent_flags(flags);
3311 			BUG_ON(ret);
3312 		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3313 			err = -EINVAL;
3314 			btrfs_print_v0_err(trans->fs_info);
3315 			btrfs_abort_transaction(trans, err);
3316 			break;
3317 		} else {
3318 			BUG();
3319 		}
3320 
3321 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3322 			ret = add_tree_block(rc, &key, path, &blocks);
3323 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3324 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3325 			ret = add_data_references(rc, &key, path, &blocks);
3326 		} else {
3327 			btrfs_release_path(path);
3328 			ret = 0;
3329 		}
3330 		if (ret < 0) {
3331 			err = ret;
3332 			break;
3333 		}
3334 
3335 		if (!RB_EMPTY_ROOT(&blocks)) {
3336 			ret = relocate_tree_blocks(trans, rc, &blocks);
3337 			if (ret < 0) {
3338 				if (ret != -EAGAIN) {
3339 					err = ret;
3340 					break;
3341 				}
3342 				rc->extents_found--;
3343 				rc->search_start = key.objectid;
3344 			}
3345 		}
3346 
3347 		btrfs_end_transaction_throttle(trans);
3348 		btrfs_btree_balance_dirty(fs_info);
3349 		trans = NULL;
3350 
3351 		if (rc->stage == MOVE_DATA_EXTENTS &&
3352 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3353 			rc->found_file_extent = 1;
3354 			ret = relocate_data_extent(rc->data_inode,
3355 						   &key, &rc->cluster);
3356 			if (ret < 0) {
3357 				err = ret;
3358 				break;
3359 			}
3360 		}
3361 		if (btrfs_should_cancel_balance(fs_info)) {
3362 			err = -ECANCELED;
3363 			break;
3364 		}
3365 	}
3366 	if (trans && progress && err == -ENOSPC) {
3367 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3368 		if (ret == 1) {
3369 			err = 0;
3370 			progress = 0;
3371 			goto restart;
3372 		}
3373 	}
3374 
3375 	btrfs_release_path(path);
3376 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3377 
3378 	if (trans) {
3379 		btrfs_end_transaction_throttle(trans);
3380 		btrfs_btree_balance_dirty(fs_info);
3381 	}
3382 
3383 	if (!err) {
3384 		ret = relocate_file_extent_cluster(rc->data_inode,
3385 						   &rc->cluster);
3386 		if (ret < 0)
3387 			err = ret;
3388 	}
3389 
3390 	rc->create_reloc_tree = 0;
3391 	set_reloc_control(rc);
3392 
3393 	btrfs_backref_release_cache(&rc->backref_cache);
3394 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3395 
3396 	/*
3397 	 * Even in the case when the relocation is cancelled, we should all go
3398 	 * through prepare_to_merge() and merge_reloc_roots().
3399 	 *
3400 	 * For error (including cancelled balance), prepare_to_merge() will
3401 	 * mark all reloc trees orphan, then queue them for cleanup in
3402 	 * merge_reloc_roots()
3403 	 */
3404 	err = prepare_to_merge(rc, err);
3405 
3406 	merge_reloc_roots(rc);
3407 
3408 	rc->merge_reloc_tree = 0;
3409 	unset_reloc_control(rc);
3410 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3411 
3412 	/* get rid of pinned extents */
3413 	trans = btrfs_join_transaction(rc->extent_root);
3414 	if (IS_ERR(trans)) {
3415 		err = PTR_ERR(trans);
3416 		goto out_free;
3417 	}
3418 	btrfs_commit_transaction(trans);
3419 out_free:
3420 	ret = clean_dirty_subvols(rc);
3421 	if (ret < 0 && !err)
3422 		err = ret;
3423 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3424 	btrfs_free_path(path);
3425 	return err;
3426 }
3427 
3428 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3429 				 struct btrfs_root *root, u64 objectid)
3430 {
3431 	struct btrfs_path *path;
3432 	struct btrfs_inode_item *item;
3433 	struct extent_buffer *leaf;
3434 	int ret;
3435 
3436 	path = btrfs_alloc_path();
3437 	if (!path)
3438 		return -ENOMEM;
3439 
3440 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3441 	if (ret)
3442 		goto out;
3443 
3444 	leaf = path->nodes[0];
3445 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3446 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3447 	btrfs_set_inode_generation(leaf, item, 1);
3448 	btrfs_set_inode_size(leaf, item, 0);
3449 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3450 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3451 					  BTRFS_INODE_PREALLOC);
3452 	btrfs_mark_buffer_dirty(leaf);
3453 out:
3454 	btrfs_free_path(path);
3455 	return ret;
3456 }
3457 
3458 /*
3459  * helper to create inode for data relocation.
3460  * the inode is in data relocation tree and its link count is 0
3461  */
3462 static noinline_for_stack
3463 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3464 				 struct btrfs_block_group *group)
3465 {
3466 	struct inode *inode = NULL;
3467 	struct btrfs_trans_handle *trans;
3468 	struct btrfs_root *root;
3469 	u64 objectid;
3470 	int err = 0;
3471 
3472 	root = btrfs_grab_root(fs_info->data_reloc_root);
3473 	trans = btrfs_start_transaction(root, 6);
3474 	if (IS_ERR(trans)) {
3475 		btrfs_put_root(root);
3476 		return ERR_CAST(trans);
3477 	}
3478 
3479 	err = btrfs_find_free_objectid(root, &objectid);
3480 	if (err)
3481 		goto out;
3482 
3483 	err = __insert_orphan_inode(trans, root, objectid);
3484 	BUG_ON(err);
3485 
3486 	inode = btrfs_iget(fs_info->sb, objectid, root);
3487 	BUG_ON(IS_ERR(inode));
3488 	BTRFS_I(inode)->index_cnt = group->start;
3489 
3490 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3491 out:
3492 	btrfs_put_root(root);
3493 	btrfs_end_transaction(trans);
3494 	btrfs_btree_balance_dirty(fs_info);
3495 	if (err) {
3496 		if (inode)
3497 			iput(inode);
3498 		inode = ERR_PTR(err);
3499 	}
3500 	return inode;
3501 }
3502 
3503 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3504 {
3505 	struct reloc_control *rc;
3506 
3507 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3508 	if (!rc)
3509 		return NULL;
3510 
3511 	INIT_LIST_HEAD(&rc->reloc_roots);
3512 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3513 	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3514 	mapping_tree_init(&rc->reloc_root_tree);
3515 	extent_io_tree_init(fs_info, &rc->processed_blocks,
3516 			    IO_TREE_RELOC_BLOCKS, NULL);
3517 	return rc;
3518 }
3519 
3520 static void free_reloc_control(struct reloc_control *rc)
3521 {
3522 	struct mapping_node *node, *tmp;
3523 
3524 	free_reloc_roots(&rc->reloc_roots);
3525 	rbtree_postorder_for_each_entry_safe(node, tmp,
3526 			&rc->reloc_root_tree.rb_root, rb_node)
3527 		kfree(node);
3528 
3529 	kfree(rc);
3530 }
3531 
3532 /*
3533  * Print the block group being relocated
3534  */
3535 static void describe_relocation(struct btrfs_fs_info *fs_info,
3536 				struct btrfs_block_group *block_group)
3537 {
3538 	char buf[128] = {'\0'};
3539 
3540 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3541 
3542 	btrfs_info(fs_info,
3543 		   "relocating block group %llu flags %s",
3544 		   block_group->start, buf);
3545 }
3546 
3547 static const char *stage_to_string(int stage)
3548 {
3549 	if (stage == MOVE_DATA_EXTENTS)
3550 		return "move data extents";
3551 	if (stage == UPDATE_DATA_PTRS)
3552 		return "update data pointers";
3553 	return "unknown";
3554 }
3555 
3556 /*
3557  * function to relocate all extents in a block group.
3558  */
3559 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3560 {
3561 	struct btrfs_block_group *bg;
3562 	struct btrfs_root *extent_root = fs_info->extent_root;
3563 	struct reloc_control *rc;
3564 	struct inode *inode;
3565 	struct btrfs_path *path;
3566 	int ret;
3567 	int rw = 0;
3568 	int err = 0;
3569 
3570 	bg = btrfs_lookup_block_group(fs_info, group_start);
3571 	if (!bg)
3572 		return -ENOENT;
3573 
3574 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3575 		btrfs_put_block_group(bg);
3576 		return -ETXTBSY;
3577 	}
3578 
3579 	rc = alloc_reloc_control(fs_info);
3580 	if (!rc) {
3581 		btrfs_put_block_group(bg);
3582 		return -ENOMEM;
3583 	}
3584 
3585 	rc->extent_root = extent_root;
3586 	rc->block_group = bg;
3587 
3588 	ret = btrfs_inc_block_group_ro(rc->block_group, true);
3589 	if (ret) {
3590 		err = ret;
3591 		goto out;
3592 	}
3593 	rw = 1;
3594 
3595 	path = btrfs_alloc_path();
3596 	if (!path) {
3597 		err = -ENOMEM;
3598 		goto out;
3599 	}
3600 
3601 	inode = lookup_free_space_inode(rc->block_group, path);
3602 	btrfs_free_path(path);
3603 
3604 	if (!IS_ERR(inode))
3605 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
3606 	else
3607 		ret = PTR_ERR(inode);
3608 
3609 	if (ret && ret != -ENOENT) {
3610 		err = ret;
3611 		goto out;
3612 	}
3613 
3614 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3615 	if (IS_ERR(rc->data_inode)) {
3616 		err = PTR_ERR(rc->data_inode);
3617 		rc->data_inode = NULL;
3618 		goto out;
3619 	}
3620 
3621 	describe_relocation(fs_info, rc->block_group);
3622 
3623 	btrfs_wait_block_group_reservations(rc->block_group);
3624 	btrfs_wait_nocow_writers(rc->block_group);
3625 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
3626 				 rc->block_group->start,
3627 				 rc->block_group->length);
3628 
3629 	while (1) {
3630 		int finishes_stage;
3631 
3632 		mutex_lock(&fs_info->cleaner_mutex);
3633 		ret = relocate_block_group(rc);
3634 		mutex_unlock(&fs_info->cleaner_mutex);
3635 		if (ret < 0)
3636 			err = ret;
3637 
3638 		finishes_stage = rc->stage;
3639 		/*
3640 		 * We may have gotten ENOSPC after we already dirtied some
3641 		 * extents.  If writeout happens while we're relocating a
3642 		 * different block group we could end up hitting the
3643 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3644 		 * btrfs_reloc_cow_block.  Make sure we write everything out
3645 		 * properly so we don't trip over this problem, and then break
3646 		 * out of the loop if we hit an error.
3647 		 */
3648 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3649 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
3650 						       (u64)-1);
3651 			if (ret)
3652 				err = ret;
3653 			invalidate_mapping_pages(rc->data_inode->i_mapping,
3654 						 0, -1);
3655 			rc->stage = UPDATE_DATA_PTRS;
3656 		}
3657 
3658 		if (err < 0)
3659 			goto out;
3660 
3661 		if (rc->extents_found == 0)
3662 			break;
3663 
3664 		btrfs_info(fs_info, "found %llu extents, stage: %s",
3665 			   rc->extents_found, stage_to_string(finishes_stage));
3666 	}
3667 
3668 	WARN_ON(rc->block_group->pinned > 0);
3669 	WARN_ON(rc->block_group->reserved > 0);
3670 	WARN_ON(rc->block_group->used > 0);
3671 out:
3672 	if (err && rw)
3673 		btrfs_dec_block_group_ro(rc->block_group);
3674 	iput(rc->data_inode);
3675 	btrfs_put_block_group(rc->block_group);
3676 	free_reloc_control(rc);
3677 	return err;
3678 }
3679 
3680 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
3681 {
3682 	struct btrfs_fs_info *fs_info = root->fs_info;
3683 	struct btrfs_trans_handle *trans;
3684 	int ret, err;
3685 
3686 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3687 	if (IS_ERR(trans))
3688 		return PTR_ERR(trans);
3689 
3690 	memset(&root->root_item.drop_progress, 0,
3691 		sizeof(root->root_item.drop_progress));
3692 	root->root_item.drop_level = 0;
3693 	btrfs_set_root_refs(&root->root_item, 0);
3694 	ret = btrfs_update_root(trans, fs_info->tree_root,
3695 				&root->root_key, &root->root_item);
3696 
3697 	err = btrfs_end_transaction(trans);
3698 	if (err)
3699 		return err;
3700 	return ret;
3701 }
3702 
3703 /*
3704  * recover relocation interrupted by system crash.
3705  *
3706  * this function resumes merging reloc trees with corresponding fs trees.
3707  * this is important for keeping the sharing of tree blocks
3708  */
3709 int btrfs_recover_relocation(struct btrfs_root *root)
3710 {
3711 	struct btrfs_fs_info *fs_info = root->fs_info;
3712 	LIST_HEAD(reloc_roots);
3713 	struct btrfs_key key;
3714 	struct btrfs_root *fs_root;
3715 	struct btrfs_root *reloc_root;
3716 	struct btrfs_path *path;
3717 	struct extent_buffer *leaf;
3718 	struct reloc_control *rc = NULL;
3719 	struct btrfs_trans_handle *trans;
3720 	int ret;
3721 	int err = 0;
3722 
3723 	path = btrfs_alloc_path();
3724 	if (!path)
3725 		return -ENOMEM;
3726 	path->reada = READA_BACK;
3727 
3728 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
3729 	key.type = BTRFS_ROOT_ITEM_KEY;
3730 	key.offset = (u64)-1;
3731 
3732 	while (1) {
3733 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
3734 					path, 0, 0);
3735 		if (ret < 0) {
3736 			err = ret;
3737 			goto out;
3738 		}
3739 		if (ret > 0) {
3740 			if (path->slots[0] == 0)
3741 				break;
3742 			path->slots[0]--;
3743 		}
3744 		leaf = path->nodes[0];
3745 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3746 		btrfs_release_path(path);
3747 
3748 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
3749 		    key.type != BTRFS_ROOT_ITEM_KEY)
3750 			break;
3751 
3752 		reloc_root = btrfs_read_tree_root(root, &key);
3753 		if (IS_ERR(reloc_root)) {
3754 			err = PTR_ERR(reloc_root);
3755 			goto out;
3756 		}
3757 
3758 		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
3759 		list_add(&reloc_root->root_list, &reloc_roots);
3760 
3761 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
3762 			fs_root = btrfs_get_fs_root(fs_info,
3763 					reloc_root->root_key.offset, false);
3764 			if (IS_ERR(fs_root)) {
3765 				ret = PTR_ERR(fs_root);
3766 				if (ret != -ENOENT) {
3767 					err = ret;
3768 					goto out;
3769 				}
3770 				ret = mark_garbage_root(reloc_root);
3771 				if (ret < 0) {
3772 					err = ret;
3773 					goto out;
3774 				}
3775 			} else {
3776 				btrfs_put_root(fs_root);
3777 			}
3778 		}
3779 
3780 		if (key.offset == 0)
3781 			break;
3782 
3783 		key.offset--;
3784 	}
3785 	btrfs_release_path(path);
3786 
3787 	if (list_empty(&reloc_roots))
3788 		goto out;
3789 
3790 	rc = alloc_reloc_control(fs_info);
3791 	if (!rc) {
3792 		err = -ENOMEM;
3793 		goto out;
3794 	}
3795 
3796 	rc->extent_root = fs_info->extent_root;
3797 
3798 	set_reloc_control(rc);
3799 
3800 	trans = btrfs_join_transaction(rc->extent_root);
3801 	if (IS_ERR(trans)) {
3802 		err = PTR_ERR(trans);
3803 		goto out_unset;
3804 	}
3805 
3806 	rc->merge_reloc_tree = 1;
3807 
3808 	while (!list_empty(&reloc_roots)) {
3809 		reloc_root = list_entry(reloc_roots.next,
3810 					struct btrfs_root, root_list);
3811 		list_del(&reloc_root->root_list);
3812 
3813 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
3814 			list_add_tail(&reloc_root->root_list,
3815 				      &rc->reloc_roots);
3816 			continue;
3817 		}
3818 
3819 		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
3820 					    false);
3821 		if (IS_ERR(fs_root)) {
3822 			err = PTR_ERR(fs_root);
3823 			list_add_tail(&reloc_root->root_list, &reloc_roots);
3824 			btrfs_end_transaction(trans);
3825 			goto out_unset;
3826 		}
3827 
3828 		err = __add_reloc_root(reloc_root);
3829 		BUG_ON(err < 0); /* -ENOMEM or logic error */
3830 		fs_root->reloc_root = btrfs_grab_root(reloc_root);
3831 		btrfs_put_root(fs_root);
3832 	}
3833 
3834 	err = btrfs_commit_transaction(trans);
3835 	if (err)
3836 		goto out_unset;
3837 
3838 	merge_reloc_roots(rc);
3839 
3840 	unset_reloc_control(rc);
3841 
3842 	trans = btrfs_join_transaction(rc->extent_root);
3843 	if (IS_ERR(trans)) {
3844 		err = PTR_ERR(trans);
3845 		goto out_clean;
3846 	}
3847 	err = btrfs_commit_transaction(trans);
3848 out_clean:
3849 	ret = clean_dirty_subvols(rc);
3850 	if (ret < 0 && !err)
3851 		err = ret;
3852 out_unset:
3853 	unset_reloc_control(rc);
3854 	free_reloc_control(rc);
3855 out:
3856 	free_reloc_roots(&reloc_roots);
3857 
3858 	btrfs_free_path(path);
3859 
3860 	if (err == 0) {
3861 		/* cleanup orphan inode in data relocation tree */
3862 		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
3863 		ASSERT(fs_root);
3864 		err = btrfs_orphan_cleanup(fs_root);
3865 		btrfs_put_root(fs_root);
3866 	}
3867 	return err;
3868 }
3869 
3870 /*
3871  * helper to add ordered checksum for data relocation.
3872  *
3873  * cloning checksum properly handles the nodatasum extents.
3874  * it also saves CPU time to re-calculate the checksum.
3875  */
3876 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
3877 {
3878 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3879 	struct btrfs_ordered_sum *sums;
3880 	struct btrfs_ordered_extent *ordered;
3881 	int ret;
3882 	u64 disk_bytenr;
3883 	u64 new_bytenr;
3884 	LIST_HEAD(list);
3885 
3886 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
3887 	BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
3888 
3889 	disk_bytenr = file_pos + inode->index_cnt;
3890 	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
3891 				       disk_bytenr + len - 1, &list, 0);
3892 	if (ret)
3893 		goto out;
3894 
3895 	while (!list_empty(&list)) {
3896 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
3897 		list_del_init(&sums->list);
3898 
3899 		/*
3900 		 * We need to offset the new_bytenr based on where the csum is.
3901 		 * We need to do this because we will read in entire prealloc
3902 		 * extents but we may have written to say the middle of the
3903 		 * prealloc extent, so we need to make sure the csum goes with
3904 		 * the right disk offset.
3905 		 *
3906 		 * We can do this because the data reloc inode refers strictly
3907 		 * to the on disk bytes, so we don't have to worry about
3908 		 * disk_len vs real len like with real inodes since it's all
3909 		 * disk length.
3910 		 */
3911 		new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
3912 		sums->bytenr = new_bytenr;
3913 
3914 		btrfs_add_ordered_sum(ordered, sums);
3915 	}
3916 out:
3917 	btrfs_put_ordered_extent(ordered);
3918 	return ret;
3919 }
3920 
3921 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3922 			  struct btrfs_root *root, struct extent_buffer *buf,
3923 			  struct extent_buffer *cow)
3924 {
3925 	struct btrfs_fs_info *fs_info = root->fs_info;
3926 	struct reloc_control *rc;
3927 	struct btrfs_backref_node *node;
3928 	int first_cow = 0;
3929 	int level;
3930 	int ret = 0;
3931 
3932 	rc = fs_info->reloc_ctl;
3933 	if (!rc)
3934 		return 0;
3935 
3936 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
3937 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
3938 
3939 	level = btrfs_header_level(buf);
3940 	if (btrfs_header_generation(buf) <=
3941 	    btrfs_root_last_snapshot(&root->root_item))
3942 		first_cow = 1;
3943 
3944 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
3945 	    rc->create_reloc_tree) {
3946 		WARN_ON(!first_cow && level == 0);
3947 
3948 		node = rc->backref_cache.path[level];
3949 		BUG_ON(node->bytenr != buf->start &&
3950 		       node->new_bytenr != buf->start);
3951 
3952 		btrfs_backref_drop_node_buffer(node);
3953 		atomic_inc(&cow->refs);
3954 		node->eb = cow;
3955 		node->new_bytenr = cow->start;
3956 
3957 		if (!node->pending) {
3958 			list_move_tail(&node->list,
3959 				       &rc->backref_cache.pending[level]);
3960 			node->pending = 1;
3961 		}
3962 
3963 		if (first_cow)
3964 			mark_block_processed(rc, node);
3965 
3966 		if (first_cow && level > 0)
3967 			rc->nodes_relocated += buf->len;
3968 	}
3969 
3970 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
3971 		ret = replace_file_extents(trans, rc, root, cow);
3972 	return ret;
3973 }
3974 
3975 /*
3976  * called before creating snapshot. it calculates metadata reservation
3977  * required for relocating tree blocks in the snapshot
3978  */
3979 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3980 			      u64 *bytes_to_reserve)
3981 {
3982 	struct btrfs_root *root = pending->root;
3983 	struct reloc_control *rc = root->fs_info->reloc_ctl;
3984 
3985 	if (!rc || !have_reloc_root(root))
3986 		return;
3987 
3988 	if (!rc->merge_reloc_tree)
3989 		return;
3990 
3991 	root = root->reloc_root;
3992 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
3993 	/*
3994 	 * relocation is in the stage of merging trees. the space
3995 	 * used by merging a reloc tree is twice the size of
3996 	 * relocated tree nodes in the worst case. half for cowing
3997 	 * the reloc tree, half for cowing the fs tree. the space
3998 	 * used by cowing the reloc tree will be freed after the
3999 	 * tree is dropped. if we create snapshot, cowing the fs
4000 	 * tree may use more space than it frees. so we need
4001 	 * reserve extra space.
4002 	 */
4003 	*bytes_to_reserve += rc->nodes_relocated;
4004 }
4005 
4006 /*
4007  * called after snapshot is created. migrate block reservation
4008  * and create reloc root for the newly created snapshot
4009  *
4010  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4011  * references held on the reloc_root, one for root->reloc_root and one for
4012  * rc->reloc_roots.
4013  */
4014 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4015 			       struct btrfs_pending_snapshot *pending)
4016 {
4017 	struct btrfs_root *root = pending->root;
4018 	struct btrfs_root *reloc_root;
4019 	struct btrfs_root *new_root;
4020 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4021 	int ret;
4022 
4023 	if (!rc || !have_reloc_root(root))
4024 		return 0;
4025 
4026 	rc = root->fs_info->reloc_ctl;
4027 	rc->merging_rsv_size += rc->nodes_relocated;
4028 
4029 	if (rc->merge_reloc_tree) {
4030 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4031 					      rc->block_rsv,
4032 					      rc->nodes_relocated, true);
4033 		if (ret)
4034 			return ret;
4035 	}
4036 
4037 	new_root = pending->snap;
4038 	reloc_root = create_reloc_root(trans, root->reloc_root,
4039 				       new_root->root_key.objectid);
4040 	if (IS_ERR(reloc_root))
4041 		return PTR_ERR(reloc_root);
4042 
4043 	ret = __add_reloc_root(reloc_root);
4044 	BUG_ON(ret < 0);
4045 	new_root->reloc_root = btrfs_grab_root(reloc_root);
4046 
4047 	if (rc->create_reloc_tree)
4048 		ret = clone_backref_node(trans, rc, root, reloc_root);
4049 	return ret;
4050 }
4051