xref: /linux/fs/btrfs/relocation.c (revision e27ecdd94d81e5bc3d1f68591701db5adb342f0d)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "volumes.h"
28 #include "locking.h"
29 #include "btrfs_inode.h"
30 #include "async-thread.h"
31 
32 /*
33  * backref_node, mapping_node and tree_block start with this
34  */
35 struct tree_entry {
36 	struct rb_node rb_node;
37 	u64 bytenr;
38 };
39 
40 /*
41  * present a tree block in the backref cache
42  */
43 struct backref_node {
44 	struct rb_node rb_node;
45 	u64 bytenr;
46 	/* objectid tree block owner */
47 	u64 owner;
48 	/* list of upper level blocks reference this block */
49 	struct list_head upper;
50 	/* list of child blocks in the cache */
51 	struct list_head lower;
52 	/* NULL if this node is not tree root */
53 	struct btrfs_root *root;
54 	/* extent buffer got by COW the block */
55 	struct extent_buffer *eb;
56 	/* level of tree block */
57 	unsigned int level:8;
58 	/* 1 if the block is root of old snapshot */
59 	unsigned int old_root:1;
60 	/* 1 if no child blocks in the cache */
61 	unsigned int lowest:1;
62 	/* is the extent buffer locked */
63 	unsigned int locked:1;
64 	/* has the block been processed */
65 	unsigned int processed:1;
66 	/* have backrefs of this block been checked */
67 	unsigned int checked:1;
68 };
69 
70 /*
71  * present a block pointer in the backref cache
72  */
73 struct backref_edge {
74 	struct list_head list[2];
75 	struct backref_node *node[2];
76 	u64 blockptr;
77 };
78 
79 #define LOWER	0
80 #define UPPER	1
81 
82 struct backref_cache {
83 	/* red black tree of all backref nodes in the cache */
84 	struct rb_root rb_root;
85 	/* list of backref nodes with no child block in the cache */
86 	struct list_head pending[BTRFS_MAX_LEVEL];
87 	spinlock_t lock;
88 };
89 
90 /*
91  * map address of tree root to tree
92  */
93 struct mapping_node {
94 	struct rb_node rb_node;
95 	u64 bytenr;
96 	void *data;
97 };
98 
99 struct mapping_tree {
100 	struct rb_root rb_root;
101 	spinlock_t lock;
102 };
103 
104 /*
105  * present a tree block to process
106  */
107 struct tree_block {
108 	struct rb_node rb_node;
109 	u64 bytenr;
110 	struct btrfs_key key;
111 	unsigned int level:8;
112 	unsigned int key_ready:1;
113 };
114 
115 /* inode vector */
116 #define INODEVEC_SIZE 16
117 
118 struct inodevec {
119 	struct list_head list;
120 	struct inode *inode[INODEVEC_SIZE];
121 	int nr;
122 };
123 
124 struct reloc_control {
125 	/* block group to relocate */
126 	struct btrfs_block_group_cache *block_group;
127 	/* extent tree */
128 	struct btrfs_root *extent_root;
129 	/* inode for moving data */
130 	struct inode *data_inode;
131 	struct btrfs_workers workers;
132 	/* tree blocks have been processed */
133 	struct extent_io_tree processed_blocks;
134 	/* map start of tree root to corresponding reloc tree */
135 	struct mapping_tree reloc_root_tree;
136 	/* list of reloc trees */
137 	struct list_head reloc_roots;
138 	u64 search_start;
139 	u64 extents_found;
140 	u64 extents_skipped;
141 	int stage;
142 	int create_reloc_root;
143 	unsigned int found_file_extent:1;
144 	unsigned int found_old_snapshot:1;
145 };
146 
147 /* stages of data relocation */
148 #define MOVE_DATA_EXTENTS	0
149 #define UPDATE_DATA_PTRS	1
150 
151 /*
152  * merge reloc tree to corresponding fs tree in worker threads
153  */
154 struct async_merge {
155 	struct btrfs_work work;
156 	struct reloc_control *rc;
157 	struct btrfs_root *root;
158 	struct completion *done;
159 	atomic_t *num_pending;
160 };
161 
162 static void mapping_tree_init(struct mapping_tree *tree)
163 {
164 	tree->rb_root.rb_node = NULL;
165 	spin_lock_init(&tree->lock);
166 }
167 
168 static void backref_cache_init(struct backref_cache *cache)
169 {
170 	int i;
171 	cache->rb_root.rb_node = NULL;
172 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
173 		INIT_LIST_HEAD(&cache->pending[i]);
174 	spin_lock_init(&cache->lock);
175 }
176 
177 static void backref_node_init(struct backref_node *node)
178 {
179 	memset(node, 0, sizeof(*node));
180 	INIT_LIST_HEAD(&node->upper);
181 	INIT_LIST_HEAD(&node->lower);
182 	RB_CLEAR_NODE(&node->rb_node);
183 }
184 
185 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
186 				   struct rb_node *node)
187 {
188 	struct rb_node **p = &root->rb_node;
189 	struct rb_node *parent = NULL;
190 	struct tree_entry *entry;
191 
192 	while (*p) {
193 		parent = *p;
194 		entry = rb_entry(parent, struct tree_entry, rb_node);
195 
196 		if (bytenr < entry->bytenr)
197 			p = &(*p)->rb_left;
198 		else if (bytenr > entry->bytenr)
199 			p = &(*p)->rb_right;
200 		else
201 			return parent;
202 	}
203 
204 	rb_link_node(node, parent, p);
205 	rb_insert_color(node, root);
206 	return NULL;
207 }
208 
209 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
210 {
211 	struct rb_node *n = root->rb_node;
212 	struct tree_entry *entry;
213 
214 	while (n) {
215 		entry = rb_entry(n, struct tree_entry, rb_node);
216 
217 		if (bytenr < entry->bytenr)
218 			n = n->rb_left;
219 		else if (bytenr > entry->bytenr)
220 			n = n->rb_right;
221 		else
222 			return n;
223 	}
224 	return NULL;
225 }
226 
227 /*
228  * walk up backref nodes until reach node presents tree root
229  */
230 static struct backref_node *walk_up_backref(struct backref_node *node,
231 					    struct backref_edge *edges[],
232 					    int *index)
233 {
234 	struct backref_edge *edge;
235 	int idx = *index;
236 
237 	while (!list_empty(&node->upper)) {
238 		edge = list_entry(node->upper.next,
239 				  struct backref_edge, list[LOWER]);
240 		edges[idx++] = edge;
241 		node = edge->node[UPPER];
242 	}
243 	*index = idx;
244 	return node;
245 }
246 
247 /*
248  * walk down backref nodes to find start of next reference path
249  */
250 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
251 					      int *index)
252 {
253 	struct backref_edge *edge;
254 	struct backref_node *lower;
255 	int idx = *index;
256 
257 	while (idx > 0) {
258 		edge = edges[idx - 1];
259 		lower = edge->node[LOWER];
260 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
261 			idx--;
262 			continue;
263 		}
264 		edge = list_entry(edge->list[LOWER].next,
265 				  struct backref_edge, list[LOWER]);
266 		edges[idx - 1] = edge;
267 		*index = idx;
268 		return edge->node[UPPER];
269 	}
270 	*index = 0;
271 	return NULL;
272 }
273 
274 static void drop_node_buffer(struct backref_node *node)
275 {
276 	if (node->eb) {
277 		if (node->locked) {
278 			btrfs_tree_unlock(node->eb);
279 			node->locked = 0;
280 		}
281 		free_extent_buffer(node->eb);
282 		node->eb = NULL;
283 	}
284 }
285 
286 static void drop_backref_node(struct backref_cache *tree,
287 			      struct backref_node *node)
288 {
289 	BUG_ON(!node->lowest);
290 	BUG_ON(!list_empty(&node->upper));
291 
292 	drop_node_buffer(node);
293 	list_del(&node->lower);
294 
295 	rb_erase(&node->rb_node, &tree->rb_root);
296 	kfree(node);
297 }
298 
299 /*
300  * remove a backref node from the backref cache
301  */
302 static void remove_backref_node(struct backref_cache *cache,
303 				struct backref_node *node)
304 {
305 	struct backref_node *upper;
306 	struct backref_edge *edge;
307 
308 	if (!node)
309 		return;
310 
311 	BUG_ON(!node->lowest);
312 	while (!list_empty(&node->upper)) {
313 		edge = list_entry(node->upper.next, struct backref_edge,
314 				  list[LOWER]);
315 		upper = edge->node[UPPER];
316 		list_del(&edge->list[LOWER]);
317 		list_del(&edge->list[UPPER]);
318 		kfree(edge);
319 		/*
320 		 * add the node to pending list if no other
321 		 * child block cached.
322 		 */
323 		if (list_empty(&upper->lower)) {
324 			list_add_tail(&upper->lower,
325 				      &cache->pending[upper->level]);
326 			upper->lowest = 1;
327 		}
328 	}
329 	drop_backref_node(cache, node);
330 }
331 
332 /*
333  * find reloc tree by address of tree root
334  */
335 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
336 					  u64 bytenr)
337 {
338 	struct rb_node *rb_node;
339 	struct mapping_node *node;
340 	struct btrfs_root *root = NULL;
341 
342 	spin_lock(&rc->reloc_root_tree.lock);
343 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
344 	if (rb_node) {
345 		node = rb_entry(rb_node, struct mapping_node, rb_node);
346 		root = (struct btrfs_root *)node->data;
347 	}
348 	spin_unlock(&rc->reloc_root_tree.lock);
349 	return root;
350 }
351 
352 static int is_cowonly_root(u64 root_objectid)
353 {
354 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
355 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
356 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
357 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
358 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
359 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
360 		return 1;
361 	return 0;
362 }
363 
364 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
365 					u64 root_objectid)
366 {
367 	struct btrfs_key key;
368 
369 	key.objectid = root_objectid;
370 	key.type = BTRFS_ROOT_ITEM_KEY;
371 	if (is_cowonly_root(root_objectid))
372 		key.offset = 0;
373 	else
374 		key.offset = (u64)-1;
375 
376 	return btrfs_read_fs_root_no_name(fs_info, &key);
377 }
378 
379 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
380 static noinline_for_stack
381 struct btrfs_root *find_tree_root(struct reloc_control *rc,
382 				  struct extent_buffer *leaf,
383 				  struct btrfs_extent_ref_v0 *ref0)
384 {
385 	struct btrfs_root *root;
386 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
387 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
388 
389 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
390 
391 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
392 	BUG_ON(IS_ERR(root));
393 
394 	if (root->ref_cows &&
395 	    generation != btrfs_root_generation(&root->root_item))
396 		return NULL;
397 
398 	return root;
399 }
400 #endif
401 
402 static noinline_for_stack
403 int find_inline_backref(struct extent_buffer *leaf, int slot,
404 			unsigned long *ptr, unsigned long *end)
405 {
406 	struct btrfs_extent_item *ei;
407 	struct btrfs_tree_block_info *bi;
408 	u32 item_size;
409 
410 	item_size = btrfs_item_size_nr(leaf, slot);
411 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
412 	if (item_size < sizeof(*ei)) {
413 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
414 		return 1;
415 	}
416 #endif
417 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
418 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
419 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
420 
421 	if (item_size <= sizeof(*ei) + sizeof(*bi)) {
422 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
423 		return 1;
424 	}
425 
426 	bi = (struct btrfs_tree_block_info *)(ei + 1);
427 	*ptr = (unsigned long)(bi + 1);
428 	*end = (unsigned long)ei + item_size;
429 	return 0;
430 }
431 
432 /*
433  * build backref tree for a given tree block. root of the backref tree
434  * corresponds the tree block, leaves of the backref tree correspond
435  * roots of b-trees that reference the tree block.
436  *
437  * the basic idea of this function is check backrefs of a given block
438  * to find upper level blocks that refernece the block, and then check
439  * bakcrefs of these upper level blocks recursively. the recursion stop
440  * when tree root is reached or backrefs for the block is cached.
441  *
442  * NOTE: if we find backrefs for a block are cached, we know backrefs
443  * for all upper level blocks that directly/indirectly reference the
444  * block are also cached.
445  */
446 static struct backref_node *build_backref_tree(struct reloc_control *rc,
447 					       struct backref_cache *cache,
448 					       struct btrfs_key *node_key,
449 					       int level, u64 bytenr)
450 {
451 	struct btrfs_path *path1;
452 	struct btrfs_path *path2;
453 	struct extent_buffer *eb;
454 	struct btrfs_root *root;
455 	struct backref_node *cur;
456 	struct backref_node *upper;
457 	struct backref_node *lower;
458 	struct backref_node *node = NULL;
459 	struct backref_node *exist = NULL;
460 	struct backref_edge *edge;
461 	struct rb_node *rb_node;
462 	struct btrfs_key key;
463 	unsigned long end;
464 	unsigned long ptr;
465 	LIST_HEAD(list);
466 	int ret;
467 	int err = 0;
468 
469 	path1 = btrfs_alloc_path();
470 	path2 = btrfs_alloc_path();
471 	if (!path1 || !path2) {
472 		err = -ENOMEM;
473 		goto out;
474 	}
475 
476 	node = kmalloc(sizeof(*node), GFP_NOFS);
477 	if (!node) {
478 		err = -ENOMEM;
479 		goto out;
480 	}
481 
482 	backref_node_init(node);
483 	node->bytenr = bytenr;
484 	node->owner = 0;
485 	node->level = level;
486 	node->lowest = 1;
487 	cur = node;
488 again:
489 	end = 0;
490 	ptr = 0;
491 	key.objectid = cur->bytenr;
492 	key.type = BTRFS_EXTENT_ITEM_KEY;
493 	key.offset = (u64)-1;
494 
495 	path1->search_commit_root = 1;
496 	path1->skip_locking = 1;
497 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
498 				0, 0);
499 	if (ret < 0) {
500 		err = ret;
501 		goto out;
502 	}
503 	BUG_ON(!ret || !path1->slots[0]);
504 
505 	path1->slots[0]--;
506 
507 	WARN_ON(cur->checked);
508 	if (!list_empty(&cur->upper)) {
509 		/*
510 		 * the backref was added previously when processsing
511 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
512 		 */
513 		BUG_ON(!list_is_singular(&cur->upper));
514 		edge = list_entry(cur->upper.next, struct backref_edge,
515 				  list[LOWER]);
516 		BUG_ON(!list_empty(&edge->list[UPPER]));
517 		exist = edge->node[UPPER];
518 		/*
519 		 * add the upper level block to pending list if we need
520 		 * check its backrefs
521 		 */
522 		if (!exist->checked)
523 			list_add_tail(&edge->list[UPPER], &list);
524 	} else {
525 		exist = NULL;
526 	}
527 
528 	while (1) {
529 		cond_resched();
530 		eb = path1->nodes[0];
531 
532 		if (ptr >= end) {
533 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
534 				ret = btrfs_next_leaf(rc->extent_root, path1);
535 				if (ret < 0) {
536 					err = ret;
537 					goto out;
538 				}
539 				if (ret > 0)
540 					break;
541 				eb = path1->nodes[0];
542 			}
543 
544 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
545 			if (key.objectid != cur->bytenr) {
546 				WARN_ON(exist);
547 				break;
548 			}
549 
550 			if (key.type == BTRFS_EXTENT_ITEM_KEY) {
551 				ret = find_inline_backref(eb, path1->slots[0],
552 							  &ptr, &end);
553 				if (ret)
554 					goto next;
555 			}
556 		}
557 
558 		if (ptr < end) {
559 			/* update key for inline back ref */
560 			struct btrfs_extent_inline_ref *iref;
561 			iref = (struct btrfs_extent_inline_ref *)ptr;
562 			key.type = btrfs_extent_inline_ref_type(eb, iref);
563 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
564 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
565 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
566 		}
567 
568 		if (exist &&
569 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
570 		      exist->owner == key.offset) ||
571 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
572 		      exist->bytenr == key.offset))) {
573 			exist = NULL;
574 			goto next;
575 		}
576 
577 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
578 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
579 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
580 			if (key.objectid == key.offset &&
581 			    key.type == BTRFS_EXTENT_REF_V0_KEY) {
582 				struct btrfs_extent_ref_v0 *ref0;
583 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
584 						struct btrfs_extent_ref_v0);
585 				root = find_tree_root(rc, eb, ref0);
586 				if (root)
587 					cur->root = root;
588 				else
589 					cur->old_root = 1;
590 				break;
591 			}
592 #else
593 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
594 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
595 #endif
596 			if (key.objectid == key.offset) {
597 				/*
598 				 * only root blocks of reloc trees use
599 				 * backref of this type.
600 				 */
601 				root = find_reloc_root(rc, cur->bytenr);
602 				BUG_ON(!root);
603 				cur->root = root;
604 				break;
605 			}
606 
607 			edge = kzalloc(sizeof(*edge), GFP_NOFS);
608 			if (!edge) {
609 				err = -ENOMEM;
610 				goto out;
611 			}
612 			rb_node = tree_search(&cache->rb_root, key.offset);
613 			if (!rb_node) {
614 				upper = kmalloc(sizeof(*upper), GFP_NOFS);
615 				if (!upper) {
616 					kfree(edge);
617 					err = -ENOMEM;
618 					goto out;
619 				}
620 				backref_node_init(upper);
621 				upper->bytenr = key.offset;
622 				upper->owner = 0;
623 				upper->level = cur->level + 1;
624 				/*
625 				 *  backrefs for the upper level block isn't
626 				 *  cached, add the block to pending list
627 				 */
628 				list_add_tail(&edge->list[UPPER], &list);
629 			} else {
630 				upper = rb_entry(rb_node, struct backref_node,
631 						 rb_node);
632 				INIT_LIST_HEAD(&edge->list[UPPER]);
633 			}
634 			list_add(&edge->list[LOWER], &cur->upper);
635 			edge->node[UPPER] = upper;
636 			edge->node[LOWER] = cur;
637 
638 			goto next;
639 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
640 			goto next;
641 		}
642 
643 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
644 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
645 		if (IS_ERR(root)) {
646 			err = PTR_ERR(root);
647 			goto out;
648 		}
649 
650 		if (btrfs_root_level(&root->root_item) == cur->level) {
651 			/* tree root */
652 			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
653 			       cur->bytenr);
654 			cur->root = root;
655 			break;
656 		}
657 
658 		level = cur->level + 1;
659 
660 		/*
661 		 * searching the tree to find upper level blocks
662 		 * reference the block.
663 		 */
664 		path2->search_commit_root = 1;
665 		path2->skip_locking = 1;
666 		path2->lowest_level = level;
667 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
668 		path2->lowest_level = 0;
669 		if (ret < 0) {
670 			err = ret;
671 			goto out;
672 		}
673 
674 		eb = path2->nodes[level];
675 		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
676 			cur->bytenr);
677 
678 		lower = cur;
679 		for (; level < BTRFS_MAX_LEVEL; level++) {
680 			if (!path2->nodes[level]) {
681 				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
682 				       lower->bytenr);
683 				lower->root = root;
684 				break;
685 			}
686 
687 			edge = kzalloc(sizeof(*edge), GFP_NOFS);
688 			if (!edge) {
689 				err = -ENOMEM;
690 				goto out;
691 			}
692 
693 			eb = path2->nodes[level];
694 			rb_node = tree_search(&cache->rb_root, eb->start);
695 			if (!rb_node) {
696 				upper = kmalloc(sizeof(*upper), GFP_NOFS);
697 				if (!upper) {
698 					kfree(edge);
699 					err = -ENOMEM;
700 					goto out;
701 				}
702 				backref_node_init(upper);
703 				upper->bytenr = eb->start;
704 				upper->owner = btrfs_header_owner(eb);
705 				upper->level = lower->level + 1;
706 
707 				/*
708 				 * if we know the block isn't shared
709 				 * we can void checking its backrefs.
710 				 */
711 				if (btrfs_block_can_be_shared(root, eb))
712 					upper->checked = 0;
713 				else
714 					upper->checked = 1;
715 
716 				/*
717 				 * add the block to pending list if we
718 				 * need check its backrefs. only block
719 				 * at 'cur->level + 1' is added to the
720 				 * tail of pending list. this guarantees
721 				 * we check backrefs from lower level
722 				 * blocks to upper level blocks.
723 				 */
724 				if (!upper->checked &&
725 				    level == cur->level + 1) {
726 					list_add_tail(&edge->list[UPPER],
727 						      &list);
728 				} else
729 					INIT_LIST_HEAD(&edge->list[UPPER]);
730 			} else {
731 				upper = rb_entry(rb_node, struct backref_node,
732 						 rb_node);
733 				BUG_ON(!upper->checked);
734 				INIT_LIST_HEAD(&edge->list[UPPER]);
735 			}
736 			list_add_tail(&edge->list[LOWER], &lower->upper);
737 			edge->node[UPPER] = upper;
738 			edge->node[LOWER] = lower;
739 
740 			if (rb_node)
741 				break;
742 			lower = upper;
743 			upper = NULL;
744 		}
745 		btrfs_release_path(root, path2);
746 next:
747 		if (ptr < end) {
748 			ptr += btrfs_extent_inline_ref_size(key.type);
749 			if (ptr >= end) {
750 				WARN_ON(ptr > end);
751 				ptr = 0;
752 				end = 0;
753 			}
754 		}
755 		if (ptr >= end)
756 			path1->slots[0]++;
757 	}
758 	btrfs_release_path(rc->extent_root, path1);
759 
760 	cur->checked = 1;
761 	WARN_ON(exist);
762 
763 	/* the pending list isn't empty, take the first block to process */
764 	if (!list_empty(&list)) {
765 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
766 		list_del_init(&edge->list[UPPER]);
767 		cur = edge->node[UPPER];
768 		goto again;
769 	}
770 
771 	/*
772 	 * everything goes well, connect backref nodes and insert backref nodes
773 	 * into the cache.
774 	 */
775 	BUG_ON(!node->checked);
776 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
777 	BUG_ON(rb_node);
778 
779 	list_for_each_entry(edge, &node->upper, list[LOWER])
780 		list_add_tail(&edge->list[UPPER], &list);
781 
782 	while (!list_empty(&list)) {
783 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
784 		list_del_init(&edge->list[UPPER]);
785 		upper = edge->node[UPPER];
786 
787 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
788 			if (upper->lowest) {
789 				list_del_init(&upper->lower);
790 				upper->lowest = 0;
791 			}
792 
793 			list_add_tail(&edge->list[UPPER], &upper->lower);
794 			continue;
795 		}
796 
797 		BUG_ON(!upper->checked);
798 		rb_node = tree_insert(&cache->rb_root, upper->bytenr,
799 				      &upper->rb_node);
800 		BUG_ON(rb_node);
801 
802 		list_add_tail(&edge->list[UPPER], &upper->lower);
803 
804 		list_for_each_entry(edge, &upper->upper, list[LOWER])
805 			list_add_tail(&edge->list[UPPER], &list);
806 	}
807 out:
808 	btrfs_free_path(path1);
809 	btrfs_free_path(path2);
810 	if (err) {
811 		INIT_LIST_HEAD(&list);
812 		upper = node;
813 		while (upper) {
814 			if (RB_EMPTY_NODE(&upper->rb_node)) {
815 				list_splice_tail(&upper->upper, &list);
816 				kfree(upper);
817 			}
818 
819 			if (list_empty(&list))
820 				break;
821 
822 			edge = list_entry(list.next, struct backref_edge,
823 					  list[LOWER]);
824 			upper = edge->node[UPPER];
825 			kfree(edge);
826 		}
827 		return ERR_PTR(err);
828 	}
829 	return node;
830 }
831 
832 /*
833  * helper to add 'address of tree root -> reloc tree' mapping
834  */
835 static int __add_reloc_root(struct btrfs_root *root)
836 {
837 	struct rb_node *rb_node;
838 	struct mapping_node *node;
839 	struct reloc_control *rc = root->fs_info->reloc_ctl;
840 
841 	node = kmalloc(sizeof(*node), GFP_NOFS);
842 	BUG_ON(!node);
843 
844 	node->bytenr = root->node->start;
845 	node->data = root;
846 
847 	spin_lock(&rc->reloc_root_tree.lock);
848 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
849 			      node->bytenr, &node->rb_node);
850 	spin_unlock(&rc->reloc_root_tree.lock);
851 	BUG_ON(rb_node);
852 
853 	list_add_tail(&root->root_list, &rc->reloc_roots);
854 	return 0;
855 }
856 
857 /*
858  * helper to update/delete the 'address of tree root -> reloc tree'
859  * mapping
860  */
861 static int __update_reloc_root(struct btrfs_root *root, int del)
862 {
863 	struct rb_node *rb_node;
864 	struct mapping_node *node = NULL;
865 	struct reloc_control *rc = root->fs_info->reloc_ctl;
866 
867 	spin_lock(&rc->reloc_root_tree.lock);
868 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
869 			      root->commit_root->start);
870 	if (rb_node) {
871 		node = rb_entry(rb_node, struct mapping_node, rb_node);
872 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
873 	}
874 	spin_unlock(&rc->reloc_root_tree.lock);
875 
876 	BUG_ON((struct btrfs_root *)node->data != root);
877 
878 	if (!del) {
879 		spin_lock(&rc->reloc_root_tree.lock);
880 		node->bytenr = root->node->start;
881 		rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
882 				      node->bytenr, &node->rb_node);
883 		spin_unlock(&rc->reloc_root_tree.lock);
884 		BUG_ON(rb_node);
885 	} else {
886 		list_del_init(&root->root_list);
887 		kfree(node);
888 	}
889 	return 0;
890 }
891 
892 /*
893  * create reloc tree for a given fs tree. reloc tree is just a
894  * snapshot of the fs tree with special root objectid.
895  */
896 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
897 			  struct btrfs_root *root)
898 {
899 	struct btrfs_root *reloc_root;
900 	struct extent_buffer *eb;
901 	struct btrfs_root_item *root_item;
902 	struct btrfs_key root_key;
903 	int ret;
904 
905 	if (root->reloc_root) {
906 		reloc_root = root->reloc_root;
907 		reloc_root->last_trans = trans->transid;
908 		return 0;
909 	}
910 
911 	if (!root->fs_info->reloc_ctl ||
912 	    !root->fs_info->reloc_ctl->create_reloc_root ||
913 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
914 		return 0;
915 
916 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
917 	BUG_ON(!root_item);
918 
919 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
920 	root_key.type = BTRFS_ROOT_ITEM_KEY;
921 	root_key.offset = root->root_key.objectid;
922 
923 	ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
924 			      BTRFS_TREE_RELOC_OBJECTID);
925 	BUG_ON(ret);
926 
927 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid - 1);
928 	memcpy(root_item, &root->root_item, sizeof(*root_item));
929 	btrfs_set_root_refs(root_item, 1);
930 	btrfs_set_root_bytenr(root_item, eb->start);
931 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
932 	btrfs_set_root_generation(root_item, trans->transid);
933 	memset(&root_item->drop_progress, 0, sizeof(struct btrfs_disk_key));
934 	root_item->drop_level = 0;
935 
936 	btrfs_tree_unlock(eb);
937 	free_extent_buffer(eb);
938 
939 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
940 				&root_key, root_item);
941 	BUG_ON(ret);
942 	kfree(root_item);
943 
944 	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
945 						 &root_key);
946 	BUG_ON(IS_ERR(reloc_root));
947 	reloc_root->last_trans = trans->transid;
948 
949 	__add_reloc_root(reloc_root);
950 	root->reloc_root = reloc_root;
951 	return 0;
952 }
953 
954 /*
955  * update root item of reloc tree
956  */
957 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
958 			    struct btrfs_root *root)
959 {
960 	struct btrfs_root *reloc_root;
961 	struct btrfs_root_item *root_item;
962 	int del = 0;
963 	int ret;
964 
965 	if (!root->reloc_root)
966 		return 0;
967 
968 	reloc_root = root->reloc_root;
969 	root_item = &reloc_root->root_item;
970 
971 	if (btrfs_root_refs(root_item) == 0) {
972 		root->reloc_root = NULL;
973 		del = 1;
974 	}
975 
976 	__update_reloc_root(reloc_root, del);
977 
978 	if (reloc_root->commit_root != reloc_root->node) {
979 		btrfs_set_root_node(root_item, reloc_root->node);
980 		free_extent_buffer(reloc_root->commit_root);
981 		reloc_root->commit_root = btrfs_root_node(reloc_root);
982 	}
983 
984 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
985 				&reloc_root->root_key, root_item);
986 	BUG_ON(ret);
987 	return 0;
988 }
989 
990 /*
991  * helper to find first cached inode with inode number >= objectid
992  * in a subvolume
993  */
994 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
995 {
996 	struct rb_node *node;
997 	struct rb_node *prev;
998 	struct btrfs_inode *entry;
999 	struct inode *inode;
1000 
1001 	spin_lock(&root->inode_lock);
1002 again:
1003 	node = root->inode_tree.rb_node;
1004 	prev = NULL;
1005 	while (node) {
1006 		prev = node;
1007 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1008 
1009 		if (objectid < entry->vfs_inode.i_ino)
1010 			node = node->rb_left;
1011 		else if (objectid > entry->vfs_inode.i_ino)
1012 			node = node->rb_right;
1013 		else
1014 			break;
1015 	}
1016 	if (!node) {
1017 		while (prev) {
1018 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1019 			if (objectid <= entry->vfs_inode.i_ino) {
1020 				node = prev;
1021 				break;
1022 			}
1023 			prev = rb_next(prev);
1024 		}
1025 	}
1026 	while (node) {
1027 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1028 		inode = igrab(&entry->vfs_inode);
1029 		if (inode) {
1030 			spin_unlock(&root->inode_lock);
1031 			return inode;
1032 		}
1033 
1034 		objectid = entry->vfs_inode.i_ino + 1;
1035 		if (cond_resched_lock(&root->inode_lock))
1036 			goto again;
1037 
1038 		node = rb_next(node);
1039 	}
1040 	spin_unlock(&root->inode_lock);
1041 	return NULL;
1042 }
1043 
1044 static int in_block_group(u64 bytenr,
1045 			  struct btrfs_block_group_cache *block_group)
1046 {
1047 	if (bytenr >= block_group->key.objectid &&
1048 	    bytenr < block_group->key.objectid + block_group->key.offset)
1049 		return 1;
1050 	return 0;
1051 }
1052 
1053 /*
1054  * get new location of data
1055  */
1056 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1057 			    u64 bytenr, u64 num_bytes)
1058 {
1059 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1060 	struct btrfs_path *path;
1061 	struct btrfs_file_extent_item *fi;
1062 	struct extent_buffer *leaf;
1063 	int ret;
1064 
1065 	path = btrfs_alloc_path();
1066 	if (!path)
1067 		return -ENOMEM;
1068 
1069 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1070 	ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
1071 				       bytenr, 0);
1072 	if (ret < 0)
1073 		goto out;
1074 	if (ret > 0) {
1075 		ret = -ENOENT;
1076 		goto out;
1077 	}
1078 
1079 	leaf = path->nodes[0];
1080 	fi = btrfs_item_ptr(leaf, path->slots[0],
1081 			    struct btrfs_file_extent_item);
1082 
1083 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1084 	       btrfs_file_extent_compression(leaf, fi) ||
1085 	       btrfs_file_extent_encryption(leaf, fi) ||
1086 	       btrfs_file_extent_other_encoding(leaf, fi));
1087 
1088 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1089 		ret = 1;
1090 		goto out;
1091 	}
1092 
1093 	if (new_bytenr)
1094 		*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1095 	ret = 0;
1096 out:
1097 	btrfs_free_path(path);
1098 	return ret;
1099 }
1100 
1101 /*
1102  * update file extent items in the tree leaf to point to
1103  * the new locations.
1104  */
1105 static int replace_file_extents(struct btrfs_trans_handle *trans,
1106 				struct reloc_control *rc,
1107 				struct btrfs_root *root,
1108 				struct extent_buffer *leaf,
1109 				struct list_head *inode_list)
1110 {
1111 	struct btrfs_key key;
1112 	struct btrfs_file_extent_item *fi;
1113 	struct inode *inode = NULL;
1114 	struct inodevec *ivec = NULL;
1115 	u64 parent;
1116 	u64 bytenr;
1117 	u64 new_bytenr;
1118 	u64 num_bytes;
1119 	u64 end;
1120 	u32 nritems;
1121 	u32 i;
1122 	int ret;
1123 	int first = 1;
1124 	int dirty = 0;
1125 
1126 	if (rc->stage != UPDATE_DATA_PTRS)
1127 		return 0;
1128 
1129 	/* reloc trees always use full backref */
1130 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1131 		parent = leaf->start;
1132 	else
1133 		parent = 0;
1134 
1135 	nritems = btrfs_header_nritems(leaf);
1136 	for (i = 0; i < nritems; i++) {
1137 		cond_resched();
1138 		btrfs_item_key_to_cpu(leaf, &key, i);
1139 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1140 			continue;
1141 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1142 		if (btrfs_file_extent_type(leaf, fi) ==
1143 		    BTRFS_FILE_EXTENT_INLINE)
1144 			continue;
1145 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1146 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1147 		if (bytenr == 0)
1148 			continue;
1149 		if (!in_block_group(bytenr, rc->block_group))
1150 			continue;
1151 
1152 		/*
1153 		 * if we are modifying block in fs tree, wait for readpage
1154 		 * to complete and drop the extent cache
1155 		 */
1156 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1157 			if (!ivec || ivec->nr == INODEVEC_SIZE) {
1158 				ivec = kmalloc(sizeof(*ivec), GFP_NOFS);
1159 				BUG_ON(!ivec);
1160 				ivec->nr = 0;
1161 				list_add_tail(&ivec->list, inode_list);
1162 			}
1163 			if (first) {
1164 				inode = find_next_inode(root, key.objectid);
1165 				if (inode)
1166 					ivec->inode[ivec->nr++] = inode;
1167 				first = 0;
1168 			} else if (inode && inode->i_ino < key.objectid) {
1169 				inode = find_next_inode(root, key.objectid);
1170 				if (inode)
1171 					ivec->inode[ivec->nr++] = inode;
1172 			}
1173 			if (inode && inode->i_ino == key.objectid) {
1174 				end = key.offset +
1175 				      btrfs_file_extent_num_bytes(leaf, fi);
1176 				WARN_ON(!IS_ALIGNED(key.offset,
1177 						    root->sectorsize));
1178 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1179 				end--;
1180 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1181 						      key.offset, end,
1182 						      GFP_NOFS);
1183 				if (!ret)
1184 					continue;
1185 
1186 				btrfs_drop_extent_cache(inode, key.offset, end,
1187 							1);
1188 				unlock_extent(&BTRFS_I(inode)->io_tree,
1189 					      key.offset, end, GFP_NOFS);
1190 			}
1191 		}
1192 
1193 		ret = get_new_location(rc->data_inode, &new_bytenr,
1194 				       bytenr, num_bytes);
1195 		if (ret > 0)
1196 			continue;
1197 		BUG_ON(ret < 0);
1198 
1199 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1200 		dirty = 1;
1201 
1202 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1203 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1204 					   num_bytes, parent,
1205 					   btrfs_header_owner(leaf),
1206 					   key.objectid, key.offset);
1207 		BUG_ON(ret);
1208 
1209 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1210 					parent, btrfs_header_owner(leaf),
1211 					key.objectid, key.offset);
1212 		BUG_ON(ret);
1213 	}
1214 	if (dirty)
1215 		btrfs_mark_buffer_dirty(leaf);
1216 	return 0;
1217 }
1218 
1219 static noinline_for_stack
1220 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1221 		     struct btrfs_path *path, int level)
1222 {
1223 	struct btrfs_disk_key key1;
1224 	struct btrfs_disk_key key2;
1225 	btrfs_node_key(eb, &key1, slot);
1226 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1227 	return memcmp(&key1, &key2, sizeof(key1));
1228 }
1229 
1230 /*
1231  * try to replace tree blocks in fs tree with the new blocks
1232  * in reloc tree. tree blocks haven't been modified since the
1233  * reloc tree was create can be replaced.
1234  *
1235  * if a block was replaced, level of the block + 1 is returned.
1236  * if no block got replaced, 0 is returned. if there are other
1237  * errors, a negative error number is returned.
1238  */
1239 static int replace_path(struct btrfs_trans_handle *trans,
1240 			struct btrfs_root *dest, struct btrfs_root *src,
1241 			struct btrfs_path *path, struct btrfs_key *next_key,
1242 			struct extent_buffer **leaf,
1243 			int lowest_level, int max_level)
1244 {
1245 	struct extent_buffer *eb;
1246 	struct extent_buffer *parent;
1247 	struct btrfs_key key;
1248 	u64 old_bytenr;
1249 	u64 new_bytenr;
1250 	u64 old_ptr_gen;
1251 	u64 new_ptr_gen;
1252 	u64 last_snapshot;
1253 	u32 blocksize;
1254 	int level;
1255 	int ret;
1256 	int slot;
1257 
1258 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1259 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1260 	BUG_ON(lowest_level > 1 && leaf);
1261 
1262 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1263 
1264 	slot = path->slots[lowest_level];
1265 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1266 
1267 	eb = btrfs_lock_root_node(dest);
1268 	btrfs_set_lock_blocking(eb);
1269 	level = btrfs_header_level(eb);
1270 
1271 	if (level < lowest_level) {
1272 		btrfs_tree_unlock(eb);
1273 		free_extent_buffer(eb);
1274 		return 0;
1275 	}
1276 
1277 	ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1278 	BUG_ON(ret);
1279 	btrfs_set_lock_blocking(eb);
1280 
1281 	if (next_key) {
1282 		next_key->objectid = (u64)-1;
1283 		next_key->type = (u8)-1;
1284 		next_key->offset = (u64)-1;
1285 	}
1286 
1287 	parent = eb;
1288 	while (1) {
1289 		level = btrfs_header_level(parent);
1290 		BUG_ON(level < lowest_level);
1291 
1292 		ret = btrfs_bin_search(parent, &key, level, &slot);
1293 		if (ret && slot > 0)
1294 			slot--;
1295 
1296 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1297 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1298 
1299 		old_bytenr = btrfs_node_blockptr(parent, slot);
1300 		blocksize = btrfs_level_size(dest, level - 1);
1301 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1302 
1303 		if (level <= max_level) {
1304 			eb = path->nodes[level];
1305 			new_bytenr = btrfs_node_blockptr(eb,
1306 							path->slots[level]);
1307 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1308 							path->slots[level]);
1309 		} else {
1310 			new_bytenr = 0;
1311 			new_ptr_gen = 0;
1312 		}
1313 
1314 		if (new_bytenr > 0 && new_bytenr == old_bytenr) {
1315 			WARN_ON(1);
1316 			ret = level;
1317 			break;
1318 		}
1319 
1320 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1321 		    memcmp_node_keys(parent, slot, path, level)) {
1322 			if (level <= lowest_level && !leaf) {
1323 				ret = 0;
1324 				break;
1325 			}
1326 
1327 			eb = read_tree_block(dest, old_bytenr, blocksize,
1328 					     old_ptr_gen);
1329 			btrfs_tree_lock(eb);
1330 			ret = btrfs_cow_block(trans, dest, eb, parent,
1331 					      slot, &eb);
1332 			BUG_ON(ret);
1333 			btrfs_set_lock_blocking(eb);
1334 
1335 			if (level <= lowest_level) {
1336 				*leaf = eb;
1337 				ret = 0;
1338 				break;
1339 			}
1340 
1341 			btrfs_tree_unlock(parent);
1342 			free_extent_buffer(parent);
1343 
1344 			parent = eb;
1345 			continue;
1346 		}
1347 
1348 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1349 				      path->slots[level]);
1350 		btrfs_release_path(src, path);
1351 
1352 		path->lowest_level = level;
1353 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1354 		path->lowest_level = 0;
1355 		BUG_ON(ret);
1356 
1357 		/*
1358 		 * swap blocks in fs tree and reloc tree.
1359 		 */
1360 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1361 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1362 		btrfs_mark_buffer_dirty(parent);
1363 
1364 		btrfs_set_node_blockptr(path->nodes[level],
1365 					path->slots[level], old_bytenr);
1366 		btrfs_set_node_ptr_generation(path->nodes[level],
1367 					      path->slots[level], old_ptr_gen);
1368 		btrfs_mark_buffer_dirty(path->nodes[level]);
1369 
1370 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1371 					path->nodes[level]->start,
1372 					src->root_key.objectid, level - 1, 0);
1373 		BUG_ON(ret);
1374 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1375 					0, dest->root_key.objectid, level - 1,
1376 					0);
1377 		BUG_ON(ret);
1378 
1379 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1380 					path->nodes[level]->start,
1381 					src->root_key.objectid, level - 1, 0);
1382 		BUG_ON(ret);
1383 
1384 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1385 					0, dest->root_key.objectid, level - 1,
1386 					0);
1387 		BUG_ON(ret);
1388 
1389 		btrfs_unlock_up_safe(path, 0);
1390 
1391 		ret = level;
1392 		break;
1393 	}
1394 	btrfs_tree_unlock(parent);
1395 	free_extent_buffer(parent);
1396 	return ret;
1397 }
1398 
1399 /*
1400  * helper to find next relocated block in reloc tree
1401  */
1402 static noinline_for_stack
1403 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1404 		       int *level)
1405 {
1406 	struct extent_buffer *eb;
1407 	int i;
1408 	u64 last_snapshot;
1409 	u32 nritems;
1410 
1411 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1412 
1413 	for (i = 0; i < *level; i++) {
1414 		free_extent_buffer(path->nodes[i]);
1415 		path->nodes[i] = NULL;
1416 	}
1417 
1418 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1419 		eb = path->nodes[i];
1420 		nritems = btrfs_header_nritems(eb);
1421 		while (path->slots[i] + 1 < nritems) {
1422 			path->slots[i]++;
1423 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1424 			    last_snapshot)
1425 				continue;
1426 
1427 			*level = i;
1428 			return 0;
1429 		}
1430 		free_extent_buffer(path->nodes[i]);
1431 		path->nodes[i] = NULL;
1432 	}
1433 	return 1;
1434 }
1435 
1436 /*
1437  * walk down reloc tree to find relocated block of lowest level
1438  */
1439 static noinline_for_stack
1440 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1441 			 int *level)
1442 {
1443 	struct extent_buffer *eb = NULL;
1444 	int i;
1445 	u64 bytenr;
1446 	u64 ptr_gen = 0;
1447 	u64 last_snapshot;
1448 	u32 blocksize;
1449 	u32 nritems;
1450 
1451 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1452 
1453 	for (i = *level; i > 0; i--) {
1454 		eb = path->nodes[i];
1455 		nritems = btrfs_header_nritems(eb);
1456 		while (path->slots[i] < nritems) {
1457 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1458 			if (ptr_gen > last_snapshot)
1459 				break;
1460 			path->slots[i]++;
1461 		}
1462 		if (path->slots[i] >= nritems) {
1463 			if (i == *level)
1464 				break;
1465 			*level = i + 1;
1466 			return 0;
1467 		}
1468 		if (i == 1) {
1469 			*level = i;
1470 			return 0;
1471 		}
1472 
1473 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1474 		blocksize = btrfs_level_size(root, i - 1);
1475 		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
1476 		BUG_ON(btrfs_header_level(eb) != i - 1);
1477 		path->nodes[i - 1] = eb;
1478 		path->slots[i - 1] = 0;
1479 	}
1480 	return 1;
1481 }
1482 
1483 /*
1484  * invalidate extent cache for file extents whose key in range of
1485  * [min_key, max_key)
1486  */
1487 static int invalidate_extent_cache(struct btrfs_root *root,
1488 				   struct btrfs_key *min_key,
1489 				   struct btrfs_key *max_key)
1490 {
1491 	struct inode *inode = NULL;
1492 	u64 objectid;
1493 	u64 start, end;
1494 
1495 	objectid = min_key->objectid;
1496 	while (1) {
1497 		cond_resched();
1498 		iput(inode);
1499 
1500 		if (objectid > max_key->objectid)
1501 			break;
1502 
1503 		inode = find_next_inode(root, objectid);
1504 		if (!inode)
1505 			break;
1506 
1507 		if (inode->i_ino > max_key->objectid) {
1508 			iput(inode);
1509 			break;
1510 		}
1511 
1512 		objectid = inode->i_ino + 1;
1513 		if (!S_ISREG(inode->i_mode))
1514 			continue;
1515 
1516 		if (unlikely(min_key->objectid == inode->i_ino)) {
1517 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1518 				continue;
1519 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1520 				start = 0;
1521 			else {
1522 				start = min_key->offset;
1523 				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
1524 			}
1525 		} else {
1526 			start = 0;
1527 		}
1528 
1529 		if (unlikely(max_key->objectid == inode->i_ino)) {
1530 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1531 				continue;
1532 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1533 				end = (u64)-1;
1534 			} else {
1535 				if (max_key->offset == 0)
1536 					continue;
1537 				end = max_key->offset;
1538 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1539 				end--;
1540 			}
1541 		} else {
1542 			end = (u64)-1;
1543 		}
1544 
1545 		/* the lock_extent waits for readpage to complete */
1546 		lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1547 		btrfs_drop_extent_cache(inode, start, end, 1);
1548 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1549 	}
1550 	return 0;
1551 }
1552 
1553 static int find_next_key(struct btrfs_path *path, int level,
1554 			 struct btrfs_key *key)
1555 
1556 {
1557 	while (level < BTRFS_MAX_LEVEL) {
1558 		if (!path->nodes[level])
1559 			break;
1560 		if (path->slots[level] + 1 <
1561 		    btrfs_header_nritems(path->nodes[level])) {
1562 			btrfs_node_key_to_cpu(path->nodes[level], key,
1563 					      path->slots[level] + 1);
1564 			return 0;
1565 		}
1566 		level++;
1567 	}
1568 	return 1;
1569 }
1570 
1571 /*
1572  * merge the relocated tree blocks in reloc tree with corresponding
1573  * fs tree.
1574  */
1575 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1576 					       struct btrfs_root *root)
1577 {
1578 	LIST_HEAD(inode_list);
1579 	struct btrfs_key key;
1580 	struct btrfs_key next_key;
1581 	struct btrfs_trans_handle *trans;
1582 	struct btrfs_root *reloc_root;
1583 	struct btrfs_root_item *root_item;
1584 	struct btrfs_path *path;
1585 	struct extent_buffer *leaf = NULL;
1586 	unsigned long nr;
1587 	int level;
1588 	int max_level;
1589 	int replaced = 0;
1590 	int ret;
1591 	int err = 0;
1592 
1593 	path = btrfs_alloc_path();
1594 	if (!path)
1595 		return -ENOMEM;
1596 
1597 	reloc_root = root->reloc_root;
1598 	root_item = &reloc_root->root_item;
1599 
1600 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1601 		level = btrfs_root_level(root_item);
1602 		extent_buffer_get(reloc_root->node);
1603 		path->nodes[level] = reloc_root->node;
1604 		path->slots[level] = 0;
1605 	} else {
1606 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1607 
1608 		level = root_item->drop_level;
1609 		BUG_ON(level == 0);
1610 		path->lowest_level = level;
1611 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1612 		if (ret < 0) {
1613 			btrfs_free_path(path);
1614 			return ret;
1615 		}
1616 
1617 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1618 				      path->slots[level]);
1619 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1620 
1621 		btrfs_unlock_up_safe(path, 0);
1622 	}
1623 
1624 	if (level == 0 && rc->stage == UPDATE_DATA_PTRS) {
1625 		trans = btrfs_start_transaction(root, 1);
1626 
1627 		leaf = path->nodes[0];
1628 		btrfs_item_key_to_cpu(leaf, &key, 0);
1629 		btrfs_release_path(reloc_root, path);
1630 
1631 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1632 		if (ret < 0) {
1633 			err = ret;
1634 			goto out;
1635 		}
1636 
1637 		leaf = path->nodes[0];
1638 		btrfs_unlock_up_safe(path, 1);
1639 		ret = replace_file_extents(trans, rc, root, leaf,
1640 					   &inode_list);
1641 		if (ret < 0)
1642 			err = ret;
1643 		goto out;
1644 	}
1645 
1646 	memset(&next_key, 0, sizeof(next_key));
1647 
1648 	while (1) {
1649 		leaf = NULL;
1650 		replaced = 0;
1651 		trans = btrfs_start_transaction(root, 1);
1652 		max_level = level;
1653 
1654 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1655 		if (ret < 0) {
1656 			err = ret;
1657 			goto out;
1658 		}
1659 		if (ret > 0)
1660 			break;
1661 
1662 		if (!find_next_key(path, level, &key) &&
1663 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1664 			ret = 0;
1665 		} else if (level == 1 && rc->stage == UPDATE_DATA_PTRS) {
1666 			ret = replace_path(trans, root, reloc_root,
1667 					   path, &next_key, &leaf,
1668 					   level, max_level);
1669 		} else {
1670 			ret = replace_path(trans, root, reloc_root,
1671 					   path, &next_key, NULL,
1672 					   level, max_level);
1673 		}
1674 		if (ret < 0) {
1675 			err = ret;
1676 			goto out;
1677 		}
1678 
1679 		if (ret > 0) {
1680 			level = ret;
1681 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1682 					      path->slots[level]);
1683 			replaced = 1;
1684 		} else if (leaf) {
1685 			/*
1686 			 * no block got replaced, try replacing file extents
1687 			 */
1688 			btrfs_item_key_to_cpu(leaf, &key, 0);
1689 			ret = replace_file_extents(trans, rc, root, leaf,
1690 						   &inode_list);
1691 			btrfs_tree_unlock(leaf);
1692 			free_extent_buffer(leaf);
1693 			BUG_ON(ret < 0);
1694 		}
1695 
1696 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1697 		if (ret > 0)
1698 			break;
1699 
1700 		BUG_ON(level == 0);
1701 		/*
1702 		 * save the merging progress in the drop_progress.
1703 		 * this is OK since root refs == 1 in this case.
1704 		 */
1705 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1706 			       path->slots[level]);
1707 		root_item->drop_level = level;
1708 
1709 		nr = trans->blocks_used;
1710 		btrfs_end_transaction(trans, root);
1711 
1712 		btrfs_btree_balance_dirty(root, nr);
1713 
1714 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1715 			invalidate_extent_cache(root, &key, &next_key);
1716 	}
1717 
1718 	/*
1719 	 * handle the case only one block in the fs tree need to be
1720 	 * relocated and the block is tree root.
1721 	 */
1722 	leaf = btrfs_lock_root_node(root);
1723 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
1724 	btrfs_tree_unlock(leaf);
1725 	free_extent_buffer(leaf);
1726 	if (ret < 0)
1727 		err = ret;
1728 out:
1729 	btrfs_free_path(path);
1730 
1731 	if (err == 0) {
1732 		memset(&root_item->drop_progress, 0,
1733 		       sizeof(root_item->drop_progress));
1734 		root_item->drop_level = 0;
1735 		btrfs_set_root_refs(root_item, 0);
1736 	}
1737 
1738 	nr = trans->blocks_used;
1739 	btrfs_end_transaction(trans, root);
1740 
1741 	btrfs_btree_balance_dirty(root, nr);
1742 
1743 	/*
1744 	 * put inodes while we aren't holding the tree locks
1745 	 */
1746 	while (!list_empty(&inode_list)) {
1747 		struct inodevec *ivec;
1748 		ivec = list_entry(inode_list.next, struct inodevec, list);
1749 		list_del(&ivec->list);
1750 		while (ivec->nr > 0) {
1751 			ivec->nr--;
1752 			iput(ivec->inode[ivec->nr]);
1753 		}
1754 		kfree(ivec);
1755 	}
1756 
1757 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1758 		invalidate_extent_cache(root, &key, &next_key);
1759 
1760 	return err;
1761 }
1762 
1763 /*
1764  * callback for the work threads.
1765  * this function merges reloc tree with corresponding fs tree,
1766  * and then drops the reloc tree.
1767  */
1768 static void merge_func(struct btrfs_work *work)
1769 {
1770 	struct btrfs_trans_handle *trans;
1771 	struct btrfs_root *root;
1772 	struct btrfs_root *reloc_root;
1773 	struct async_merge *async;
1774 
1775 	async = container_of(work, struct async_merge, work);
1776 	reloc_root = async->root;
1777 
1778 	if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1779 		root = read_fs_root(reloc_root->fs_info,
1780 				    reloc_root->root_key.offset);
1781 		BUG_ON(IS_ERR(root));
1782 		BUG_ON(root->reloc_root != reloc_root);
1783 
1784 		merge_reloc_root(async->rc, root);
1785 
1786 		trans = btrfs_start_transaction(root, 1);
1787 		btrfs_update_reloc_root(trans, root);
1788 		btrfs_end_transaction(trans, root);
1789 	}
1790 
1791 	btrfs_drop_dead_root(reloc_root);
1792 
1793 	if (atomic_dec_and_test(async->num_pending))
1794 		complete(async->done);
1795 
1796 	kfree(async);
1797 }
1798 
1799 static int merge_reloc_roots(struct reloc_control *rc)
1800 {
1801 	struct async_merge *async;
1802 	struct btrfs_root *root;
1803 	struct completion done;
1804 	atomic_t num_pending;
1805 
1806 	init_completion(&done);
1807 	atomic_set(&num_pending, 1);
1808 
1809 	while (!list_empty(&rc->reloc_roots)) {
1810 		root = list_entry(rc->reloc_roots.next,
1811 				  struct btrfs_root, root_list);
1812 		list_del_init(&root->root_list);
1813 
1814 		async = kmalloc(sizeof(*async), GFP_NOFS);
1815 		BUG_ON(!async);
1816 		async->work.func = merge_func;
1817 		async->work.flags = 0;
1818 		async->rc = rc;
1819 		async->root = root;
1820 		async->done = &done;
1821 		async->num_pending = &num_pending;
1822 		atomic_inc(&num_pending);
1823 		btrfs_queue_worker(&rc->workers, &async->work);
1824 	}
1825 
1826 	if (!atomic_dec_and_test(&num_pending))
1827 		wait_for_completion(&done);
1828 
1829 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1830 	return 0;
1831 }
1832 
1833 static void free_block_list(struct rb_root *blocks)
1834 {
1835 	struct tree_block *block;
1836 	struct rb_node *rb_node;
1837 	while ((rb_node = rb_first(blocks))) {
1838 		block = rb_entry(rb_node, struct tree_block, rb_node);
1839 		rb_erase(rb_node, blocks);
1840 		kfree(block);
1841 	}
1842 }
1843 
1844 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1845 				      struct btrfs_root *reloc_root)
1846 {
1847 	struct btrfs_root *root;
1848 
1849 	if (reloc_root->last_trans == trans->transid)
1850 		return 0;
1851 
1852 	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
1853 	BUG_ON(IS_ERR(root));
1854 	BUG_ON(root->reloc_root != reloc_root);
1855 
1856 	return btrfs_record_root_in_trans(trans, root);
1857 }
1858 
1859 /*
1860  * select one tree from trees that references the block.
1861  * for blocks in refernce counted trees, we preper reloc tree.
1862  * if no reloc tree found and reloc_only is true, NULL is returned.
1863  */
1864 static struct btrfs_root *__select_one_root(struct btrfs_trans_handle *trans,
1865 					    struct backref_node *node,
1866 					    struct backref_edge *edges[],
1867 					    int *nr, int reloc_only)
1868 {
1869 	struct backref_node *next;
1870 	struct btrfs_root *root;
1871 	int index;
1872 	int loop = 0;
1873 again:
1874 	index = 0;
1875 	next = node;
1876 	while (1) {
1877 		cond_resched();
1878 		next = walk_up_backref(next, edges, &index);
1879 		root = next->root;
1880 		if (!root) {
1881 			BUG_ON(!node->old_root);
1882 			goto skip;
1883 		}
1884 
1885 		/* no other choice for non-refernce counted tree */
1886 		if (!root->ref_cows) {
1887 			BUG_ON(reloc_only);
1888 			break;
1889 		}
1890 
1891 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1892 			record_reloc_root_in_trans(trans, root);
1893 			break;
1894 		}
1895 
1896 		if (loop) {
1897 			btrfs_record_root_in_trans(trans, root);
1898 			break;
1899 		}
1900 
1901 		if (reloc_only || next != node) {
1902 			if (!root->reloc_root)
1903 				btrfs_record_root_in_trans(trans, root);
1904 			root = root->reloc_root;
1905 			/*
1906 			 * if the reloc tree was created in current
1907 			 * transation, there is no node in backref tree
1908 			 * corresponds to the root of the reloc tree.
1909 			 */
1910 			if (btrfs_root_last_snapshot(&root->root_item) ==
1911 			    trans->transid - 1)
1912 				break;
1913 		}
1914 skip:
1915 		root = NULL;
1916 		next = walk_down_backref(edges, &index);
1917 		if (!next || next->level <= node->level)
1918 			break;
1919 	}
1920 
1921 	if (!root && !loop && !reloc_only) {
1922 		loop = 1;
1923 		goto again;
1924 	}
1925 
1926 	if (root)
1927 		*nr = index;
1928 	else
1929 		*nr = 0;
1930 
1931 	return root;
1932 }
1933 
1934 static noinline_for_stack
1935 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
1936 				   struct backref_node *node)
1937 {
1938 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
1939 	int nr;
1940 	return __select_one_root(trans, node, edges, &nr, 0);
1941 }
1942 
1943 static noinline_for_stack
1944 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
1945 				     struct backref_node *node,
1946 				     struct backref_edge *edges[], int *nr)
1947 {
1948 	return __select_one_root(trans, node, edges, nr, 1);
1949 }
1950 
1951 static void grab_path_buffers(struct btrfs_path *path,
1952 			      struct backref_node *node,
1953 			      struct backref_edge *edges[], int nr)
1954 {
1955 	int i = 0;
1956 	while (1) {
1957 		drop_node_buffer(node);
1958 		node->eb = path->nodes[node->level];
1959 		BUG_ON(!node->eb);
1960 		if (path->locks[node->level])
1961 			node->locked = 1;
1962 		path->nodes[node->level] = NULL;
1963 		path->locks[node->level] = 0;
1964 
1965 		if (i >= nr)
1966 			break;
1967 
1968 		edges[i]->blockptr = node->eb->start;
1969 		node = edges[i]->node[UPPER];
1970 		i++;
1971 	}
1972 }
1973 
1974 /*
1975  * relocate a block tree, and then update pointers in upper level
1976  * blocks that reference the block to point to the new location.
1977  *
1978  * if called by link_to_upper, the block has already been relocated.
1979  * in that case this function just updates pointers.
1980  */
1981 static int do_relocation(struct btrfs_trans_handle *trans,
1982 			 struct backref_node *node,
1983 			 struct btrfs_key *key,
1984 			 struct btrfs_path *path, int lowest)
1985 {
1986 	struct backref_node *upper;
1987 	struct backref_edge *edge;
1988 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
1989 	struct btrfs_root *root;
1990 	struct extent_buffer *eb;
1991 	u32 blocksize;
1992 	u64 bytenr;
1993 	u64 generation;
1994 	int nr;
1995 	int slot;
1996 	int ret;
1997 	int err = 0;
1998 
1999 	BUG_ON(lowest && node->eb);
2000 
2001 	path->lowest_level = node->level + 1;
2002 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2003 		cond_resched();
2004 		if (node->eb && node->eb->start == edge->blockptr)
2005 			continue;
2006 
2007 		upper = edge->node[UPPER];
2008 		root = select_reloc_root(trans, upper, edges, &nr);
2009 		if (!root)
2010 			continue;
2011 
2012 		if (upper->eb && !upper->locked)
2013 			drop_node_buffer(upper);
2014 
2015 		if (!upper->eb) {
2016 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2017 			if (ret < 0) {
2018 				err = ret;
2019 				break;
2020 			}
2021 			BUG_ON(ret > 0);
2022 
2023 			slot = path->slots[upper->level];
2024 
2025 			btrfs_unlock_up_safe(path, upper->level + 1);
2026 			grab_path_buffers(path, upper, edges, nr);
2027 
2028 			btrfs_release_path(NULL, path);
2029 		} else {
2030 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2031 					       &slot);
2032 			BUG_ON(ret);
2033 		}
2034 
2035 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2036 		if (!lowest) {
2037 			if (node->eb->start == bytenr) {
2038 				btrfs_tree_unlock(upper->eb);
2039 				upper->locked = 0;
2040 				continue;
2041 			}
2042 		} else {
2043 			BUG_ON(node->bytenr != bytenr);
2044 		}
2045 
2046 		blocksize = btrfs_level_size(root, node->level);
2047 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2048 		eb = read_tree_block(root, bytenr, blocksize, generation);
2049 		btrfs_tree_lock(eb);
2050 		btrfs_set_lock_blocking(eb);
2051 
2052 		if (!node->eb) {
2053 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2054 					      slot, &eb);
2055 			if (ret < 0) {
2056 				err = ret;
2057 				break;
2058 			}
2059 			btrfs_set_lock_blocking(eb);
2060 			node->eb = eb;
2061 			node->locked = 1;
2062 		} else {
2063 			btrfs_set_node_blockptr(upper->eb, slot,
2064 						node->eb->start);
2065 			btrfs_set_node_ptr_generation(upper->eb, slot,
2066 						      trans->transid);
2067 			btrfs_mark_buffer_dirty(upper->eb);
2068 
2069 			ret = btrfs_inc_extent_ref(trans, root,
2070 						node->eb->start, blocksize,
2071 						upper->eb->start,
2072 						btrfs_header_owner(upper->eb),
2073 						node->level, 0);
2074 			BUG_ON(ret);
2075 
2076 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2077 			BUG_ON(ret);
2078 
2079 			btrfs_tree_unlock(eb);
2080 			free_extent_buffer(eb);
2081 		}
2082 		if (!lowest) {
2083 			btrfs_tree_unlock(upper->eb);
2084 			upper->locked = 0;
2085 		}
2086 	}
2087 	path->lowest_level = 0;
2088 	return err;
2089 }
2090 
2091 static int link_to_upper(struct btrfs_trans_handle *trans,
2092 			 struct backref_node *node,
2093 			 struct btrfs_path *path)
2094 {
2095 	struct btrfs_key key;
2096 	if (!node->eb || list_empty(&node->upper))
2097 		return 0;
2098 
2099 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2100 	return do_relocation(trans, node, &key, path, 0);
2101 }
2102 
2103 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2104 				struct backref_cache *cache,
2105 				struct btrfs_path *path)
2106 {
2107 	struct backref_node *node;
2108 	int level;
2109 	int ret;
2110 	int err = 0;
2111 
2112 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2113 		while (!list_empty(&cache->pending[level])) {
2114 			node = list_entry(cache->pending[level].next,
2115 					  struct backref_node, lower);
2116 			BUG_ON(node->level != level);
2117 
2118 			ret = link_to_upper(trans, node, path);
2119 			if (ret < 0)
2120 				err = ret;
2121 			/*
2122 			 * this remove the node from the pending list and
2123 			 * may add some other nodes to the level + 1
2124 			 * pending list
2125 			 */
2126 			remove_backref_node(cache, node);
2127 		}
2128 	}
2129 	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
2130 	return err;
2131 }
2132 
2133 static void mark_block_processed(struct reloc_control *rc,
2134 				 struct backref_node *node)
2135 {
2136 	u32 blocksize;
2137 	if (node->level == 0 ||
2138 	    in_block_group(node->bytenr, rc->block_group)) {
2139 		blocksize = btrfs_level_size(rc->extent_root, node->level);
2140 		set_extent_bits(&rc->processed_blocks, node->bytenr,
2141 				node->bytenr + blocksize - 1, EXTENT_DIRTY,
2142 				GFP_NOFS);
2143 	}
2144 	node->processed = 1;
2145 }
2146 
2147 /*
2148  * mark a block and all blocks directly/indirectly reference the block
2149  * as processed.
2150  */
2151 static void update_processed_blocks(struct reloc_control *rc,
2152 				    struct backref_node *node)
2153 {
2154 	struct backref_node *next = node;
2155 	struct backref_edge *edge;
2156 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2157 	int index = 0;
2158 
2159 	while (next) {
2160 		cond_resched();
2161 		while (1) {
2162 			if (next->processed)
2163 				break;
2164 
2165 			mark_block_processed(rc, next);
2166 
2167 			if (list_empty(&next->upper))
2168 				break;
2169 
2170 			edge = list_entry(next->upper.next,
2171 					  struct backref_edge, list[LOWER]);
2172 			edges[index++] = edge;
2173 			next = edge->node[UPPER];
2174 		}
2175 		next = walk_down_backref(edges, &index);
2176 	}
2177 }
2178 
2179 static int tree_block_processed(u64 bytenr, u32 blocksize,
2180 				struct reloc_control *rc)
2181 {
2182 	if (test_range_bit(&rc->processed_blocks, bytenr,
2183 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1))
2184 		return 1;
2185 	return 0;
2186 }
2187 
2188 /*
2189  * check if there are any file extent pointers in the leaf point to
2190  * data require processing
2191  */
2192 static int check_file_extents(struct reloc_control *rc,
2193 			      u64 bytenr, u32 blocksize, u64 ptr_gen)
2194 {
2195 	struct btrfs_key found_key;
2196 	struct btrfs_file_extent_item *fi;
2197 	struct extent_buffer *leaf;
2198 	u32 nritems;
2199 	int i;
2200 	int ret = 0;
2201 
2202 	leaf = read_tree_block(rc->extent_root, bytenr, blocksize, ptr_gen);
2203 
2204 	nritems = btrfs_header_nritems(leaf);
2205 	for (i = 0; i < nritems; i++) {
2206 		cond_resched();
2207 		btrfs_item_key_to_cpu(leaf, &found_key, i);
2208 		if (found_key.type != BTRFS_EXTENT_DATA_KEY)
2209 			continue;
2210 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
2211 		if (btrfs_file_extent_type(leaf, fi) ==
2212 		    BTRFS_FILE_EXTENT_INLINE)
2213 			continue;
2214 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
2215 		if (bytenr == 0)
2216 			continue;
2217 		if (in_block_group(bytenr, rc->block_group)) {
2218 			ret = 1;
2219 			break;
2220 		}
2221 	}
2222 	free_extent_buffer(leaf);
2223 	return ret;
2224 }
2225 
2226 /*
2227  * scan child blocks of a given block to find blocks require processing
2228  */
2229 static int add_child_blocks(struct btrfs_trans_handle *trans,
2230 			    struct reloc_control *rc,
2231 			    struct backref_node *node,
2232 			    struct rb_root *blocks)
2233 {
2234 	struct tree_block *block;
2235 	struct rb_node *rb_node;
2236 	u64 bytenr;
2237 	u64 ptr_gen;
2238 	u32 blocksize;
2239 	u32 nritems;
2240 	int i;
2241 	int err = 0;
2242 
2243 	nritems = btrfs_header_nritems(node->eb);
2244 	blocksize = btrfs_level_size(rc->extent_root, node->level - 1);
2245 	for (i = 0; i < nritems; i++) {
2246 		cond_resched();
2247 		bytenr = btrfs_node_blockptr(node->eb, i);
2248 		ptr_gen = btrfs_node_ptr_generation(node->eb, i);
2249 		if (ptr_gen == trans->transid)
2250 			continue;
2251 		if (!in_block_group(bytenr, rc->block_group) &&
2252 		    (node->level > 1 || rc->stage == MOVE_DATA_EXTENTS))
2253 			continue;
2254 		if (tree_block_processed(bytenr, blocksize, rc))
2255 			continue;
2256 
2257 		readahead_tree_block(rc->extent_root,
2258 				     bytenr, blocksize, ptr_gen);
2259 	}
2260 
2261 	for (i = 0; i < nritems; i++) {
2262 		cond_resched();
2263 		bytenr = btrfs_node_blockptr(node->eb, i);
2264 		ptr_gen = btrfs_node_ptr_generation(node->eb, i);
2265 		if (ptr_gen == trans->transid)
2266 			continue;
2267 		if (!in_block_group(bytenr, rc->block_group) &&
2268 		    (node->level > 1 || rc->stage == MOVE_DATA_EXTENTS))
2269 			continue;
2270 		if (tree_block_processed(bytenr, blocksize, rc))
2271 			continue;
2272 		if (!in_block_group(bytenr, rc->block_group) &&
2273 		    !check_file_extents(rc, bytenr, blocksize, ptr_gen))
2274 			continue;
2275 
2276 		block = kmalloc(sizeof(*block), GFP_NOFS);
2277 		if (!block) {
2278 			err = -ENOMEM;
2279 			break;
2280 		}
2281 		block->bytenr = bytenr;
2282 		btrfs_node_key_to_cpu(node->eb, &block->key, i);
2283 		block->level = node->level - 1;
2284 		block->key_ready = 1;
2285 		rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
2286 		BUG_ON(rb_node);
2287 	}
2288 	if (err)
2289 		free_block_list(blocks);
2290 	return err;
2291 }
2292 
2293 /*
2294  * find adjacent blocks require processing
2295  */
2296 static noinline_for_stack
2297 int add_adjacent_blocks(struct btrfs_trans_handle *trans,
2298 			struct reloc_control *rc,
2299 			struct backref_cache *cache,
2300 			struct rb_root *blocks, int level,
2301 			struct backref_node **upper)
2302 {
2303 	struct backref_node *node;
2304 	int ret = 0;
2305 
2306 	WARN_ON(!list_empty(&cache->pending[level]));
2307 
2308 	if (list_empty(&cache->pending[level + 1]))
2309 		return 1;
2310 
2311 	node = list_entry(cache->pending[level + 1].next,
2312 			  struct backref_node, lower);
2313 	if (node->eb)
2314 		ret = add_child_blocks(trans, rc, node, blocks);
2315 
2316 	*upper = node;
2317 	return ret;
2318 }
2319 
2320 static int get_tree_block_key(struct reloc_control *rc,
2321 			      struct tree_block *block)
2322 {
2323 	struct extent_buffer *eb;
2324 
2325 	BUG_ON(block->key_ready);
2326 	eb = read_tree_block(rc->extent_root, block->bytenr,
2327 			     block->key.objectid, block->key.offset);
2328 	WARN_ON(btrfs_header_level(eb) != block->level);
2329 	if (block->level == 0)
2330 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2331 	else
2332 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2333 	free_extent_buffer(eb);
2334 	block->key_ready = 1;
2335 	return 0;
2336 }
2337 
2338 static int reada_tree_block(struct reloc_control *rc,
2339 			    struct tree_block *block)
2340 {
2341 	BUG_ON(block->key_ready);
2342 	readahead_tree_block(rc->extent_root, block->bytenr,
2343 			     block->key.objectid, block->key.offset);
2344 	return 0;
2345 }
2346 
2347 /*
2348  * helper function to relocate a tree block
2349  */
2350 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2351 				struct reloc_control *rc,
2352 				struct backref_node *node,
2353 				struct btrfs_key *key,
2354 				struct btrfs_path *path)
2355 {
2356 	struct btrfs_root *root;
2357 	int ret;
2358 
2359 	root = select_one_root(trans, node);
2360 	if (unlikely(!root)) {
2361 		rc->found_old_snapshot = 1;
2362 		update_processed_blocks(rc, node);
2363 		return 0;
2364 	}
2365 
2366 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2367 		ret = do_relocation(trans, node, key, path, 1);
2368 		if (ret < 0)
2369 			goto out;
2370 		if (node->level == 0 && rc->stage == UPDATE_DATA_PTRS) {
2371 			ret = replace_file_extents(trans, rc, root,
2372 						   node->eb, NULL);
2373 			if (ret < 0)
2374 				goto out;
2375 		}
2376 		drop_node_buffer(node);
2377 	} else if (!root->ref_cows) {
2378 		path->lowest_level = node->level;
2379 		ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2380 		btrfs_release_path(root, path);
2381 		if (ret < 0)
2382 			goto out;
2383 	} else if (root != node->root) {
2384 		WARN_ON(node->level > 0 || rc->stage != UPDATE_DATA_PTRS);
2385 	}
2386 
2387 	update_processed_blocks(rc, node);
2388 	ret = 0;
2389 out:
2390 	drop_node_buffer(node);
2391 	return ret;
2392 }
2393 
2394 /*
2395  * relocate a list of blocks
2396  */
2397 static noinline_for_stack
2398 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2399 			 struct reloc_control *rc, struct rb_root *blocks)
2400 {
2401 	struct backref_cache *cache;
2402 	struct backref_node *node;
2403 	struct btrfs_path *path;
2404 	struct tree_block *block;
2405 	struct rb_node *rb_node;
2406 	int level = -1;
2407 	int ret;
2408 	int err = 0;
2409 
2410 	path = btrfs_alloc_path();
2411 	if (!path)
2412 		return -ENOMEM;
2413 
2414 	cache = kmalloc(sizeof(*cache), GFP_NOFS);
2415 	if (!cache) {
2416 		btrfs_free_path(path);
2417 		return -ENOMEM;
2418 	}
2419 
2420 	backref_cache_init(cache);
2421 
2422 	rb_node = rb_first(blocks);
2423 	while (rb_node) {
2424 		block = rb_entry(rb_node, struct tree_block, rb_node);
2425 		if (level == -1)
2426 			level = block->level;
2427 		else
2428 			BUG_ON(level != block->level);
2429 		if (!block->key_ready)
2430 			reada_tree_block(rc, block);
2431 		rb_node = rb_next(rb_node);
2432 	}
2433 
2434 	rb_node = rb_first(blocks);
2435 	while (rb_node) {
2436 		block = rb_entry(rb_node, struct tree_block, rb_node);
2437 		if (!block->key_ready)
2438 			get_tree_block_key(rc, block);
2439 		rb_node = rb_next(rb_node);
2440 	}
2441 
2442 	rb_node = rb_first(blocks);
2443 	while (rb_node) {
2444 		block = rb_entry(rb_node, struct tree_block, rb_node);
2445 
2446 		node = build_backref_tree(rc, cache, &block->key,
2447 					  block->level, block->bytenr);
2448 		if (IS_ERR(node)) {
2449 			err = PTR_ERR(node);
2450 			goto out;
2451 		}
2452 
2453 		ret = relocate_tree_block(trans, rc, node, &block->key,
2454 					  path);
2455 		if (ret < 0) {
2456 			err = ret;
2457 			goto out;
2458 		}
2459 		remove_backref_node(cache, node);
2460 		rb_node = rb_next(rb_node);
2461 	}
2462 
2463 	if (level > 0)
2464 		goto out;
2465 
2466 	free_block_list(blocks);
2467 
2468 	/*
2469 	 * now backrefs of some upper level tree blocks have been cached,
2470 	 * try relocating blocks referenced by these upper level blocks.
2471 	 */
2472 	while (1) {
2473 		struct backref_node *upper = NULL;
2474 		if (trans->transaction->in_commit ||
2475 		    trans->transaction->delayed_refs.flushing)
2476 			break;
2477 
2478 		ret = add_adjacent_blocks(trans, rc, cache, blocks, level,
2479 					  &upper);
2480 		if (ret < 0)
2481 			err = ret;
2482 		if (ret != 0)
2483 			break;
2484 
2485 		rb_node = rb_first(blocks);
2486 		while (rb_node) {
2487 			block = rb_entry(rb_node, struct tree_block, rb_node);
2488 			if (trans->transaction->in_commit ||
2489 			    trans->transaction->delayed_refs.flushing)
2490 				goto out;
2491 			BUG_ON(!block->key_ready);
2492 			node = build_backref_tree(rc, cache, &block->key,
2493 						  level, block->bytenr);
2494 			if (IS_ERR(node)) {
2495 				err = PTR_ERR(node);
2496 				goto out;
2497 			}
2498 
2499 			ret = relocate_tree_block(trans, rc, node,
2500 						  &block->key, path);
2501 			if (ret < 0) {
2502 				err = ret;
2503 				goto out;
2504 			}
2505 			remove_backref_node(cache, node);
2506 			rb_node = rb_next(rb_node);
2507 		}
2508 		free_block_list(blocks);
2509 
2510 		if (upper) {
2511 			ret = link_to_upper(trans, upper, path);
2512 			if (ret < 0) {
2513 				err = ret;
2514 				break;
2515 			}
2516 			remove_backref_node(cache, upper);
2517 		}
2518 	}
2519 out:
2520 	free_block_list(blocks);
2521 
2522 	ret = finish_pending_nodes(trans, cache, path);
2523 	if (ret < 0)
2524 		err = ret;
2525 
2526 	kfree(cache);
2527 	btrfs_free_path(path);
2528 	return err;
2529 }
2530 
2531 static noinline_for_stack
2532 int relocate_inode_pages(struct inode *inode, u64 start, u64 len)
2533 {
2534 	u64 page_start;
2535 	u64 page_end;
2536 	unsigned long i;
2537 	unsigned long first_index;
2538 	unsigned long last_index;
2539 	unsigned int total_read = 0;
2540 	unsigned int total_dirty = 0;
2541 	struct page *page;
2542 	struct file_ra_state *ra;
2543 	struct btrfs_ordered_extent *ordered;
2544 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2545 	int ret = 0;
2546 
2547 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2548 	if (!ra)
2549 		return -ENOMEM;
2550 
2551 	mutex_lock(&inode->i_mutex);
2552 	first_index = start >> PAGE_CACHE_SHIFT;
2553 	last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
2554 
2555 	/* make sure the dirty trick played by the caller work */
2556 	ret = invalidate_inode_pages2_range(inode->i_mapping,
2557 					    first_index, last_index);
2558 	if (ret)
2559 		goto out_unlock;
2560 
2561 	file_ra_state_init(ra, inode->i_mapping);
2562 
2563 	for (i = first_index ; i <= last_index; i++) {
2564 		if (total_read % ra->ra_pages == 0) {
2565 			btrfs_force_ra(inode->i_mapping, ra, NULL, i,
2566 				min(last_index, ra->ra_pages + i - 1));
2567 		}
2568 		total_read++;
2569 again:
2570 		if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
2571 			BUG_ON(1);
2572 		page = grab_cache_page(inode->i_mapping, i);
2573 		if (!page) {
2574 			ret = -ENOMEM;
2575 			goto out_unlock;
2576 		}
2577 		if (!PageUptodate(page)) {
2578 			btrfs_readpage(NULL, page);
2579 			lock_page(page);
2580 			if (!PageUptodate(page)) {
2581 				unlock_page(page);
2582 				page_cache_release(page);
2583 				ret = -EIO;
2584 				goto out_unlock;
2585 			}
2586 		}
2587 		wait_on_page_writeback(page);
2588 
2589 		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2590 		page_end = page_start + PAGE_CACHE_SIZE - 1;
2591 		lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2592 
2593 		ordered = btrfs_lookup_ordered_extent(inode, page_start);
2594 		if (ordered) {
2595 			unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2596 			unlock_page(page);
2597 			page_cache_release(page);
2598 			btrfs_start_ordered_extent(inode, ordered, 1);
2599 			btrfs_put_ordered_extent(ordered);
2600 			goto again;
2601 		}
2602 		set_page_extent_mapped(page);
2603 
2604 		if (i == first_index)
2605 			set_extent_bits(io_tree, page_start, page_end,
2606 					EXTENT_BOUNDARY, GFP_NOFS);
2607 		btrfs_set_extent_delalloc(inode, page_start, page_end);
2608 
2609 		set_page_dirty(page);
2610 		total_dirty++;
2611 
2612 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2613 		unlock_page(page);
2614 		page_cache_release(page);
2615 	}
2616 out_unlock:
2617 	mutex_unlock(&inode->i_mutex);
2618 	kfree(ra);
2619 	balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
2620 	return ret;
2621 }
2622 
2623 static noinline_for_stack
2624 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key)
2625 {
2626 	struct btrfs_root *root = BTRFS_I(inode)->root;
2627 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2628 	struct extent_map *em;
2629 	u64 start = extent_key->objectid - BTRFS_I(inode)->index_cnt;
2630 	u64 end = start + extent_key->offset - 1;
2631 
2632 	em = alloc_extent_map(GFP_NOFS);
2633 	em->start = start;
2634 	em->len = extent_key->offset;
2635 	em->block_len = extent_key->offset;
2636 	em->block_start = extent_key->objectid;
2637 	em->bdev = root->fs_info->fs_devices->latest_bdev;
2638 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2639 
2640 	/* setup extent map to cheat btrfs_readpage */
2641 	lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2642 	while (1) {
2643 		int ret;
2644 		spin_lock(&em_tree->lock);
2645 		ret = add_extent_mapping(em_tree, em);
2646 		spin_unlock(&em_tree->lock);
2647 		if (ret != -EEXIST) {
2648 			free_extent_map(em);
2649 			break;
2650 		}
2651 		btrfs_drop_extent_cache(inode, start, end, 0);
2652 	}
2653 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2654 
2655 	return relocate_inode_pages(inode, start, extent_key->offset);
2656 }
2657 
2658 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2659 static int get_ref_objectid_v0(struct reloc_control *rc,
2660 			       struct btrfs_path *path,
2661 			       struct btrfs_key *extent_key,
2662 			       u64 *ref_objectid, int *path_change)
2663 {
2664 	struct btrfs_key key;
2665 	struct extent_buffer *leaf;
2666 	struct btrfs_extent_ref_v0 *ref0;
2667 	int ret;
2668 	int slot;
2669 
2670 	leaf = path->nodes[0];
2671 	slot = path->slots[0];
2672 	while (1) {
2673 		if (slot >= btrfs_header_nritems(leaf)) {
2674 			ret = btrfs_next_leaf(rc->extent_root, path);
2675 			if (ret < 0)
2676 				return ret;
2677 			BUG_ON(ret > 0);
2678 			leaf = path->nodes[0];
2679 			slot = path->slots[0];
2680 			if (path_change)
2681 				*path_change = 1;
2682 		}
2683 		btrfs_item_key_to_cpu(leaf, &key, slot);
2684 		if (key.objectid != extent_key->objectid)
2685 			return -ENOENT;
2686 
2687 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
2688 			slot++;
2689 			continue;
2690 		}
2691 		ref0 = btrfs_item_ptr(leaf, slot,
2692 				struct btrfs_extent_ref_v0);
2693 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
2694 		break;
2695 	}
2696 	return 0;
2697 }
2698 #endif
2699 
2700 /*
2701  * helper to add a tree block to the list.
2702  * the major work is getting the generation and level of the block
2703  */
2704 static int add_tree_block(struct reloc_control *rc,
2705 			  struct btrfs_key *extent_key,
2706 			  struct btrfs_path *path,
2707 			  struct rb_root *blocks)
2708 {
2709 	struct extent_buffer *eb;
2710 	struct btrfs_extent_item *ei;
2711 	struct btrfs_tree_block_info *bi;
2712 	struct tree_block *block;
2713 	struct rb_node *rb_node;
2714 	u32 item_size;
2715 	int level = -1;
2716 	int generation;
2717 
2718 	eb =  path->nodes[0];
2719 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
2720 
2721 	if (item_size >= sizeof(*ei) + sizeof(*bi)) {
2722 		ei = btrfs_item_ptr(eb, path->slots[0],
2723 				struct btrfs_extent_item);
2724 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2725 		generation = btrfs_extent_generation(eb, ei);
2726 		level = btrfs_tree_block_level(eb, bi);
2727 	} else {
2728 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2729 		u64 ref_owner;
2730 		int ret;
2731 
2732 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2733 		ret = get_ref_objectid_v0(rc, path, extent_key,
2734 					  &ref_owner, NULL);
2735 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
2736 		level = (int)ref_owner;
2737 		/* FIXME: get real generation */
2738 		generation = 0;
2739 #else
2740 		BUG();
2741 #endif
2742 	}
2743 
2744 	btrfs_release_path(rc->extent_root, path);
2745 
2746 	BUG_ON(level == -1);
2747 
2748 	block = kmalloc(sizeof(*block), GFP_NOFS);
2749 	if (!block)
2750 		return -ENOMEM;
2751 
2752 	block->bytenr = extent_key->objectid;
2753 	block->key.objectid = extent_key->offset;
2754 	block->key.offset = generation;
2755 	block->level = level;
2756 	block->key_ready = 0;
2757 
2758 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
2759 	BUG_ON(rb_node);
2760 
2761 	return 0;
2762 }
2763 
2764 /*
2765  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
2766  */
2767 static int __add_tree_block(struct reloc_control *rc,
2768 			    u64 bytenr, u32 blocksize,
2769 			    struct rb_root *blocks)
2770 {
2771 	struct btrfs_path *path;
2772 	struct btrfs_key key;
2773 	int ret;
2774 
2775 	if (tree_block_processed(bytenr, blocksize, rc))
2776 		return 0;
2777 
2778 	if (tree_search(blocks, bytenr))
2779 		return 0;
2780 
2781 	path = btrfs_alloc_path();
2782 	if (!path)
2783 		return -ENOMEM;
2784 
2785 	key.objectid = bytenr;
2786 	key.type = BTRFS_EXTENT_ITEM_KEY;
2787 	key.offset = blocksize;
2788 
2789 	path->search_commit_root = 1;
2790 	path->skip_locking = 1;
2791 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
2792 	if (ret < 0)
2793 		goto out;
2794 	BUG_ON(ret);
2795 
2796 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2797 	ret = add_tree_block(rc, &key, path, blocks);
2798 out:
2799 	btrfs_free_path(path);
2800 	return ret;
2801 }
2802 
2803 /*
2804  * helper to check if the block use full backrefs for pointers in it
2805  */
2806 static int block_use_full_backref(struct reloc_control *rc,
2807 				  struct extent_buffer *eb)
2808 {
2809 	struct btrfs_path *path;
2810 	struct btrfs_extent_item *ei;
2811 	struct btrfs_key key;
2812 	u64 flags;
2813 	int ret;
2814 
2815 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
2816 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
2817 		return 1;
2818 
2819 	path = btrfs_alloc_path();
2820 	BUG_ON(!path);
2821 
2822 	key.objectid = eb->start;
2823 	key.type = BTRFS_EXTENT_ITEM_KEY;
2824 	key.offset = eb->len;
2825 
2826 	path->search_commit_root = 1;
2827 	path->skip_locking = 1;
2828 	ret = btrfs_search_slot(NULL, rc->extent_root,
2829 				&key, path, 0, 0);
2830 	BUG_ON(ret);
2831 
2832 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2833 			    struct btrfs_extent_item);
2834 	flags = btrfs_extent_flags(path->nodes[0], ei);
2835 	BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2836 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
2837 		ret = 1;
2838 	else
2839 		ret = 0;
2840 	btrfs_free_path(path);
2841 	return ret;
2842 }
2843 
2844 /*
2845  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
2846  * this function scans fs tree to find blocks reference the data extent
2847  */
2848 static int find_data_references(struct reloc_control *rc,
2849 				struct btrfs_key *extent_key,
2850 				struct extent_buffer *leaf,
2851 				struct btrfs_extent_data_ref *ref,
2852 				struct rb_root *blocks)
2853 {
2854 	struct btrfs_path *path;
2855 	struct tree_block *block;
2856 	struct btrfs_root *root;
2857 	struct btrfs_file_extent_item *fi;
2858 	struct rb_node *rb_node;
2859 	struct btrfs_key key;
2860 	u64 ref_root;
2861 	u64 ref_objectid;
2862 	u64 ref_offset;
2863 	u32 ref_count;
2864 	u32 nritems;
2865 	int err = 0;
2866 	int added = 0;
2867 	int counted;
2868 	int ret;
2869 
2870 	path = btrfs_alloc_path();
2871 	if (!path)
2872 		return -ENOMEM;
2873 
2874 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
2875 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
2876 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
2877 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
2878 
2879 	root = read_fs_root(rc->extent_root->fs_info, ref_root);
2880 	if (IS_ERR(root)) {
2881 		err = PTR_ERR(root);
2882 		goto out;
2883 	}
2884 
2885 	key.objectid = ref_objectid;
2886 	key.offset = ref_offset;
2887 	key.type = BTRFS_EXTENT_DATA_KEY;
2888 
2889 	path->search_commit_root = 1;
2890 	path->skip_locking = 1;
2891 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2892 	if (ret < 0) {
2893 		err = ret;
2894 		goto out;
2895 	}
2896 
2897 	leaf = path->nodes[0];
2898 	nritems = btrfs_header_nritems(leaf);
2899 	/*
2900 	 * the references in tree blocks that use full backrefs
2901 	 * are not counted in
2902 	 */
2903 	if (block_use_full_backref(rc, leaf))
2904 		counted = 0;
2905 	else
2906 		counted = 1;
2907 	rb_node = tree_search(blocks, leaf->start);
2908 	if (rb_node) {
2909 		if (counted)
2910 			added = 1;
2911 		else
2912 			path->slots[0] = nritems;
2913 	}
2914 
2915 	while (ref_count > 0) {
2916 		while (path->slots[0] >= nritems) {
2917 			ret = btrfs_next_leaf(root, path);
2918 			if (ret < 0) {
2919 				err = ret;
2920 				goto out;
2921 			}
2922 			if (ret > 0) {
2923 				WARN_ON(1);
2924 				goto out;
2925 			}
2926 
2927 			leaf = path->nodes[0];
2928 			nritems = btrfs_header_nritems(leaf);
2929 			added = 0;
2930 
2931 			if (block_use_full_backref(rc, leaf))
2932 				counted = 0;
2933 			else
2934 				counted = 1;
2935 			rb_node = tree_search(blocks, leaf->start);
2936 			if (rb_node) {
2937 				if (counted)
2938 					added = 1;
2939 				else
2940 					path->slots[0] = nritems;
2941 			}
2942 		}
2943 
2944 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2945 		if (key.objectid != ref_objectid ||
2946 		    key.type != BTRFS_EXTENT_DATA_KEY) {
2947 			WARN_ON(1);
2948 			break;
2949 		}
2950 
2951 		fi = btrfs_item_ptr(leaf, path->slots[0],
2952 				    struct btrfs_file_extent_item);
2953 
2954 		if (btrfs_file_extent_type(leaf, fi) ==
2955 		    BTRFS_FILE_EXTENT_INLINE)
2956 			goto next;
2957 
2958 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
2959 		    extent_key->objectid)
2960 			goto next;
2961 
2962 		key.offset -= btrfs_file_extent_offset(leaf, fi);
2963 		if (key.offset != ref_offset)
2964 			goto next;
2965 
2966 		if (counted)
2967 			ref_count--;
2968 		if (added)
2969 			goto next;
2970 
2971 		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
2972 			block = kmalloc(sizeof(*block), GFP_NOFS);
2973 			if (!block) {
2974 				err = -ENOMEM;
2975 				break;
2976 			}
2977 			block->bytenr = leaf->start;
2978 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
2979 			block->level = 0;
2980 			block->key_ready = 1;
2981 			rb_node = tree_insert(blocks, block->bytenr,
2982 					      &block->rb_node);
2983 			BUG_ON(rb_node);
2984 		}
2985 		if (counted)
2986 			added = 1;
2987 		else
2988 			path->slots[0] = nritems;
2989 next:
2990 		path->slots[0]++;
2991 
2992 	}
2993 out:
2994 	btrfs_free_path(path);
2995 	return err;
2996 }
2997 
2998 /*
2999  * hepler to find all tree blocks that reference a given data extent
3000  */
3001 static noinline_for_stack
3002 int add_data_references(struct reloc_control *rc,
3003 			struct btrfs_key *extent_key,
3004 			struct btrfs_path *path,
3005 			struct rb_root *blocks)
3006 {
3007 	struct btrfs_key key;
3008 	struct extent_buffer *eb;
3009 	struct btrfs_extent_data_ref *dref;
3010 	struct btrfs_extent_inline_ref *iref;
3011 	unsigned long ptr;
3012 	unsigned long end;
3013 	u32 blocksize;
3014 	int ret;
3015 	int err = 0;
3016 
3017 	ret = get_new_location(rc->data_inode, NULL, extent_key->objectid,
3018 			       extent_key->offset);
3019 	BUG_ON(ret < 0);
3020 	if (ret > 0) {
3021 		/* the relocated data is fragmented */
3022 		rc->extents_skipped++;
3023 		btrfs_release_path(rc->extent_root, path);
3024 		return 0;
3025 	}
3026 
3027 	blocksize = btrfs_level_size(rc->extent_root, 0);
3028 
3029 	eb = path->nodes[0];
3030 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3031 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3032 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3033 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3034 		ptr = end;
3035 	else
3036 #endif
3037 		ptr += sizeof(struct btrfs_extent_item);
3038 
3039 	while (ptr < end) {
3040 		iref = (struct btrfs_extent_inline_ref *)ptr;
3041 		key.type = btrfs_extent_inline_ref_type(eb, iref);
3042 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3043 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3044 			ret = __add_tree_block(rc, key.offset, blocksize,
3045 					       blocks);
3046 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3047 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3048 			ret = find_data_references(rc, extent_key,
3049 						   eb, dref, blocks);
3050 		} else {
3051 			BUG();
3052 		}
3053 		ptr += btrfs_extent_inline_ref_size(key.type);
3054 	}
3055 	WARN_ON(ptr > end);
3056 
3057 	while (1) {
3058 		cond_resched();
3059 		eb = path->nodes[0];
3060 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3061 			ret = btrfs_next_leaf(rc->extent_root, path);
3062 			if (ret < 0) {
3063 				err = ret;
3064 				break;
3065 			}
3066 			if (ret > 0)
3067 				break;
3068 			eb = path->nodes[0];
3069 		}
3070 
3071 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3072 		if (key.objectid != extent_key->objectid)
3073 			break;
3074 
3075 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3076 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3077 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3078 #else
3079 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3080 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3081 #endif
3082 			ret = __add_tree_block(rc, key.offset, blocksize,
3083 					       blocks);
3084 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3085 			dref = btrfs_item_ptr(eb, path->slots[0],
3086 					      struct btrfs_extent_data_ref);
3087 			ret = find_data_references(rc, extent_key,
3088 						   eb, dref, blocks);
3089 		} else {
3090 			ret = 0;
3091 		}
3092 		if (ret) {
3093 			err = ret;
3094 			break;
3095 		}
3096 		path->slots[0]++;
3097 	}
3098 	btrfs_release_path(rc->extent_root, path);
3099 	if (err)
3100 		free_block_list(blocks);
3101 	return err;
3102 }
3103 
3104 /*
3105  * hepler to find next unprocessed extent
3106  */
3107 static noinline_for_stack
3108 int find_next_extent(struct btrfs_trans_handle *trans,
3109 		     struct reloc_control *rc, struct btrfs_path *path)
3110 {
3111 	struct btrfs_key key;
3112 	struct extent_buffer *leaf;
3113 	u64 start, end, last;
3114 	int ret;
3115 
3116 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3117 	while (1) {
3118 		cond_resched();
3119 		if (rc->search_start >= last) {
3120 			ret = 1;
3121 			break;
3122 		}
3123 
3124 		key.objectid = rc->search_start;
3125 		key.type = BTRFS_EXTENT_ITEM_KEY;
3126 		key.offset = 0;
3127 
3128 		path->search_commit_root = 1;
3129 		path->skip_locking = 1;
3130 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3131 					0, 0);
3132 		if (ret < 0)
3133 			break;
3134 next:
3135 		leaf = path->nodes[0];
3136 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3137 			ret = btrfs_next_leaf(rc->extent_root, path);
3138 			if (ret != 0)
3139 				break;
3140 			leaf = path->nodes[0];
3141 		}
3142 
3143 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3144 		if (key.objectid >= last) {
3145 			ret = 1;
3146 			break;
3147 		}
3148 
3149 		if (key.type != BTRFS_EXTENT_ITEM_KEY ||
3150 		    key.objectid + key.offset <= rc->search_start) {
3151 			path->slots[0]++;
3152 			goto next;
3153 		}
3154 
3155 		ret = find_first_extent_bit(&rc->processed_blocks,
3156 					    key.objectid, &start, &end,
3157 					    EXTENT_DIRTY);
3158 
3159 		if (ret == 0 && start <= key.objectid) {
3160 			btrfs_release_path(rc->extent_root, path);
3161 			rc->search_start = end + 1;
3162 		} else {
3163 			rc->search_start = key.objectid + key.offset;
3164 			return 0;
3165 		}
3166 	}
3167 	btrfs_release_path(rc->extent_root, path);
3168 	return ret;
3169 }
3170 
3171 static void set_reloc_control(struct reloc_control *rc)
3172 {
3173 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3174 	mutex_lock(&fs_info->trans_mutex);
3175 	fs_info->reloc_ctl = rc;
3176 	mutex_unlock(&fs_info->trans_mutex);
3177 }
3178 
3179 static void unset_reloc_control(struct reloc_control *rc)
3180 {
3181 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3182 	mutex_lock(&fs_info->trans_mutex);
3183 	fs_info->reloc_ctl = NULL;
3184 	mutex_unlock(&fs_info->trans_mutex);
3185 }
3186 
3187 static int check_extent_flags(u64 flags)
3188 {
3189 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3190 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3191 		return 1;
3192 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3193 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3194 		return 1;
3195 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3196 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3197 		return 1;
3198 	return 0;
3199 }
3200 
3201 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3202 {
3203 	struct rb_root blocks = RB_ROOT;
3204 	struct btrfs_key key;
3205 	struct btrfs_trans_handle *trans = NULL;
3206 	struct btrfs_path *path;
3207 	struct btrfs_extent_item *ei;
3208 	unsigned long nr;
3209 	u64 flags;
3210 	u32 item_size;
3211 	int ret;
3212 	int err = 0;
3213 
3214 	path = btrfs_alloc_path();
3215 	if (!path)
3216 		return -ENOMEM;
3217 
3218 	rc->search_start = rc->block_group->key.objectid;
3219 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
3220 			  GFP_NOFS);
3221 
3222 	rc->create_reloc_root = 1;
3223 	set_reloc_control(rc);
3224 
3225 	trans = btrfs_start_transaction(rc->extent_root, 1);
3226 	btrfs_commit_transaction(trans, rc->extent_root);
3227 
3228 	while (1) {
3229 		trans = btrfs_start_transaction(rc->extent_root, 1);
3230 
3231 		ret = find_next_extent(trans, rc, path);
3232 		if (ret < 0)
3233 			err = ret;
3234 		if (ret != 0)
3235 			break;
3236 
3237 		rc->extents_found++;
3238 
3239 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3240 				    struct btrfs_extent_item);
3241 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3242 		item_size = btrfs_item_size_nr(path->nodes[0],
3243 					       path->slots[0]);
3244 		if (item_size >= sizeof(*ei)) {
3245 			flags = btrfs_extent_flags(path->nodes[0], ei);
3246 			ret = check_extent_flags(flags);
3247 			BUG_ON(ret);
3248 
3249 		} else {
3250 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3251 			u64 ref_owner;
3252 			int path_change = 0;
3253 
3254 			BUG_ON(item_size !=
3255 			       sizeof(struct btrfs_extent_item_v0));
3256 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3257 						  &path_change);
3258 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3259 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3260 			else
3261 				flags = BTRFS_EXTENT_FLAG_DATA;
3262 
3263 			if (path_change) {
3264 				btrfs_release_path(rc->extent_root, path);
3265 
3266 				path->search_commit_root = 1;
3267 				path->skip_locking = 1;
3268 				ret = btrfs_search_slot(NULL, rc->extent_root,
3269 							&key, path, 0, 0);
3270 				if (ret < 0) {
3271 					err = ret;
3272 					break;
3273 				}
3274 				BUG_ON(ret > 0);
3275 			}
3276 #else
3277 			BUG();
3278 #endif
3279 		}
3280 
3281 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3282 			ret = add_tree_block(rc, &key, path, &blocks);
3283 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3284 			 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3285 			ret = add_data_references(rc, &key, path, &blocks);
3286 		} else {
3287 			btrfs_release_path(rc->extent_root, path);
3288 			ret = 0;
3289 		}
3290 		if (ret < 0) {
3291 			err = 0;
3292 			break;
3293 		}
3294 
3295 		if (!RB_EMPTY_ROOT(&blocks)) {
3296 			ret = relocate_tree_blocks(trans, rc, &blocks);
3297 			if (ret < 0) {
3298 				err = ret;
3299 				break;
3300 			}
3301 		}
3302 
3303 		nr = trans->blocks_used;
3304 		btrfs_end_transaction_throttle(trans, rc->extent_root);
3305 		trans = NULL;
3306 		btrfs_btree_balance_dirty(rc->extent_root, nr);
3307 
3308 		if (rc->stage == MOVE_DATA_EXTENTS &&
3309 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3310 			rc->found_file_extent = 1;
3311 			ret = relocate_data_extent(rc->data_inode, &key);
3312 			if (ret < 0) {
3313 				err = ret;
3314 				break;
3315 			}
3316 		}
3317 	}
3318 	btrfs_free_path(path);
3319 
3320 	if (trans) {
3321 		nr = trans->blocks_used;
3322 		btrfs_end_transaction(trans, rc->extent_root);
3323 		btrfs_btree_balance_dirty(rc->extent_root, nr);
3324 	}
3325 
3326 	rc->create_reloc_root = 0;
3327 	smp_mb();
3328 
3329 	if (rc->extents_found > 0) {
3330 		trans = btrfs_start_transaction(rc->extent_root, 1);
3331 		btrfs_commit_transaction(trans, rc->extent_root);
3332 	}
3333 
3334 	merge_reloc_roots(rc);
3335 
3336 	unset_reloc_control(rc);
3337 
3338 	/* get rid of pinned extents */
3339 	trans = btrfs_start_transaction(rc->extent_root, 1);
3340 	btrfs_commit_transaction(trans, rc->extent_root);
3341 
3342 	return err;
3343 }
3344 
3345 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3346 				 struct btrfs_root *root,
3347 				 u64 objectid, u64 size)
3348 {
3349 	struct btrfs_path *path;
3350 	struct btrfs_inode_item *item;
3351 	struct extent_buffer *leaf;
3352 	int ret;
3353 
3354 	path = btrfs_alloc_path();
3355 	if (!path)
3356 		return -ENOMEM;
3357 
3358 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3359 	if (ret)
3360 		goto out;
3361 
3362 	leaf = path->nodes[0];
3363 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3364 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3365 	btrfs_set_inode_generation(leaf, item, 1);
3366 	btrfs_set_inode_size(leaf, item, size);
3367 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3368 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS);
3369 	btrfs_mark_buffer_dirty(leaf);
3370 	btrfs_release_path(root, path);
3371 out:
3372 	btrfs_free_path(path);
3373 	return ret;
3374 }
3375 
3376 /*
3377  * helper to create inode for data relocation.
3378  * the inode is in data relocation tree and its link count is 0
3379  */
3380 static struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3381 					struct btrfs_block_group_cache *group)
3382 {
3383 	struct inode *inode = NULL;
3384 	struct btrfs_trans_handle *trans;
3385 	struct btrfs_root *root;
3386 	struct btrfs_key key;
3387 	unsigned long nr;
3388 	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
3389 	int err = 0;
3390 
3391 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
3392 	if (IS_ERR(root))
3393 		return ERR_CAST(root);
3394 
3395 	trans = btrfs_start_transaction(root, 1);
3396 	BUG_ON(!trans);
3397 
3398 	err = btrfs_find_free_objectid(trans, root, objectid, &objectid);
3399 	if (err)
3400 		goto out;
3401 
3402 	err = __insert_orphan_inode(trans, root, objectid, group->key.offset);
3403 	BUG_ON(err);
3404 
3405 	err = btrfs_insert_file_extent(trans, root, objectid, 0, 0, 0,
3406 				       group->key.offset, 0, group->key.offset,
3407 				       0, 0, 0);
3408 	BUG_ON(err);
3409 
3410 	key.objectid = objectid;
3411 	key.type = BTRFS_INODE_ITEM_KEY;
3412 	key.offset = 0;
3413 	inode = btrfs_iget(root->fs_info->sb, &key, root);
3414 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
3415 	BTRFS_I(inode)->index_cnt = group->key.objectid;
3416 
3417 	err = btrfs_orphan_add(trans, inode);
3418 out:
3419 	nr = trans->blocks_used;
3420 	btrfs_end_transaction(trans, root);
3421 
3422 	btrfs_btree_balance_dirty(root, nr);
3423 	if (err) {
3424 		if (inode)
3425 			iput(inode);
3426 		inode = ERR_PTR(err);
3427 	}
3428 	return inode;
3429 }
3430 
3431 /*
3432  * function to relocate all extents in a block group.
3433  */
3434 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
3435 {
3436 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3437 	struct reloc_control *rc;
3438 	int ret;
3439 	int err = 0;
3440 
3441 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3442 	if (!rc)
3443 		return -ENOMEM;
3444 
3445 	mapping_tree_init(&rc->reloc_root_tree);
3446 	extent_io_tree_init(&rc->processed_blocks, NULL, GFP_NOFS);
3447 	INIT_LIST_HEAD(&rc->reloc_roots);
3448 
3449 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
3450 	BUG_ON(!rc->block_group);
3451 
3452 	btrfs_init_workers(&rc->workers, "relocate",
3453 			   fs_info->thread_pool_size);
3454 
3455 	rc->extent_root = extent_root;
3456 	btrfs_prepare_block_group_relocation(extent_root, rc->block_group);
3457 
3458 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3459 	if (IS_ERR(rc->data_inode)) {
3460 		err = PTR_ERR(rc->data_inode);
3461 		rc->data_inode = NULL;
3462 		goto out;
3463 	}
3464 
3465 	printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
3466 	       (unsigned long long)rc->block_group->key.objectid,
3467 	       (unsigned long long)rc->block_group->flags);
3468 
3469 	btrfs_start_delalloc_inodes(fs_info->tree_root);
3470 	btrfs_wait_ordered_extents(fs_info->tree_root, 0);
3471 
3472 	while (1) {
3473 		mutex_lock(&fs_info->cleaner_mutex);
3474 		btrfs_clean_old_snapshots(fs_info->tree_root);
3475 		mutex_unlock(&fs_info->cleaner_mutex);
3476 
3477 		rc->extents_found = 0;
3478 		rc->extents_skipped = 0;
3479 
3480 		ret = relocate_block_group(rc);
3481 		if (ret < 0) {
3482 			err = ret;
3483 			break;
3484 		}
3485 
3486 		if (rc->extents_found == 0)
3487 			break;
3488 
3489 		printk(KERN_INFO "btrfs: found %llu extents\n",
3490 			(unsigned long long)rc->extents_found);
3491 
3492 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3493 			btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1);
3494 			invalidate_mapping_pages(rc->data_inode->i_mapping,
3495 						 0, -1);
3496 			rc->stage = UPDATE_DATA_PTRS;
3497 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3498 			   rc->extents_skipped >= rc->extents_found) {
3499 			iput(rc->data_inode);
3500 			rc->data_inode = create_reloc_inode(fs_info,
3501 							    rc->block_group);
3502 			if (IS_ERR(rc->data_inode)) {
3503 				err = PTR_ERR(rc->data_inode);
3504 				rc->data_inode = NULL;
3505 				break;
3506 			}
3507 			rc->stage = MOVE_DATA_EXTENTS;
3508 			rc->found_file_extent = 0;
3509 		}
3510 	}
3511 
3512 	filemap_fdatawrite_range(fs_info->btree_inode->i_mapping,
3513 				 rc->block_group->key.objectid,
3514 				 rc->block_group->key.objectid +
3515 				 rc->block_group->key.offset - 1);
3516 
3517 	WARN_ON(rc->block_group->pinned > 0);
3518 	WARN_ON(rc->block_group->reserved > 0);
3519 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
3520 out:
3521 	iput(rc->data_inode);
3522 	btrfs_stop_workers(&rc->workers);
3523 	btrfs_put_block_group(rc->block_group);
3524 	kfree(rc);
3525 	return err;
3526 }
3527 
3528 /*
3529  * recover relocation interrupted by system crash.
3530  *
3531  * this function resumes merging reloc trees with corresponding fs trees.
3532  * this is important for keeping the sharing of tree blocks
3533  */
3534 int btrfs_recover_relocation(struct btrfs_root *root)
3535 {
3536 	LIST_HEAD(reloc_roots);
3537 	struct btrfs_key key;
3538 	struct btrfs_root *fs_root;
3539 	struct btrfs_root *reloc_root;
3540 	struct btrfs_path *path;
3541 	struct extent_buffer *leaf;
3542 	struct reloc_control *rc = NULL;
3543 	struct btrfs_trans_handle *trans;
3544 	int ret;
3545 	int err = 0;
3546 
3547 	path = btrfs_alloc_path();
3548 	if (!path)
3549 		return -ENOMEM;
3550 
3551 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
3552 	key.type = BTRFS_ROOT_ITEM_KEY;
3553 	key.offset = (u64)-1;
3554 
3555 	while (1) {
3556 		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
3557 					path, 0, 0);
3558 		if (ret < 0) {
3559 			err = ret;
3560 			goto out;
3561 		}
3562 		if (ret > 0) {
3563 			if (path->slots[0] == 0)
3564 				break;
3565 			path->slots[0]--;
3566 		}
3567 		leaf = path->nodes[0];
3568 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3569 		btrfs_release_path(root->fs_info->tree_root, path);
3570 
3571 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
3572 		    key.type != BTRFS_ROOT_ITEM_KEY)
3573 			break;
3574 
3575 		reloc_root = btrfs_read_fs_root_no_radix(root, &key);
3576 		if (IS_ERR(reloc_root)) {
3577 			err = PTR_ERR(reloc_root);
3578 			goto out;
3579 		}
3580 
3581 		list_add(&reloc_root->root_list, &reloc_roots);
3582 
3583 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
3584 			fs_root = read_fs_root(root->fs_info,
3585 					       reloc_root->root_key.offset);
3586 			if (IS_ERR(fs_root)) {
3587 				err = PTR_ERR(fs_root);
3588 				goto out;
3589 			}
3590 		}
3591 
3592 		if (key.offset == 0)
3593 			break;
3594 
3595 		key.offset--;
3596 	}
3597 	btrfs_release_path(root->fs_info->tree_root, path);
3598 
3599 	if (list_empty(&reloc_roots))
3600 		goto out;
3601 
3602 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3603 	if (!rc) {
3604 		err = -ENOMEM;
3605 		goto out;
3606 	}
3607 
3608 	mapping_tree_init(&rc->reloc_root_tree);
3609 	INIT_LIST_HEAD(&rc->reloc_roots);
3610 	btrfs_init_workers(&rc->workers, "relocate",
3611 			   root->fs_info->thread_pool_size);
3612 	rc->extent_root = root->fs_info->extent_root;
3613 
3614 	set_reloc_control(rc);
3615 
3616 	while (!list_empty(&reloc_roots)) {
3617 		reloc_root = list_entry(reloc_roots.next,
3618 					struct btrfs_root, root_list);
3619 		list_del(&reloc_root->root_list);
3620 
3621 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
3622 			list_add_tail(&reloc_root->root_list,
3623 				      &rc->reloc_roots);
3624 			continue;
3625 		}
3626 
3627 		fs_root = read_fs_root(root->fs_info,
3628 				       reloc_root->root_key.offset);
3629 		BUG_ON(IS_ERR(fs_root));
3630 
3631 		__add_reloc_root(reloc_root);
3632 		fs_root->reloc_root = reloc_root;
3633 	}
3634 
3635 	trans = btrfs_start_transaction(rc->extent_root, 1);
3636 	btrfs_commit_transaction(trans, rc->extent_root);
3637 
3638 	merge_reloc_roots(rc);
3639 
3640 	unset_reloc_control(rc);
3641 
3642 	trans = btrfs_start_transaction(rc->extent_root, 1);
3643 	btrfs_commit_transaction(trans, rc->extent_root);
3644 out:
3645 	if (rc) {
3646 		btrfs_stop_workers(&rc->workers);
3647 		kfree(rc);
3648 	}
3649 	while (!list_empty(&reloc_roots)) {
3650 		reloc_root = list_entry(reloc_roots.next,
3651 					struct btrfs_root, root_list);
3652 		list_del(&reloc_root->root_list);
3653 		free_extent_buffer(reloc_root->node);
3654 		free_extent_buffer(reloc_root->commit_root);
3655 		kfree(reloc_root);
3656 	}
3657 	btrfs_free_path(path);
3658 
3659 	if (err == 0) {
3660 		/* cleanup orphan inode in data relocation tree */
3661 		fs_root = read_fs_root(root->fs_info,
3662 				       BTRFS_DATA_RELOC_TREE_OBJECTID);
3663 		if (IS_ERR(fs_root))
3664 			err = PTR_ERR(fs_root);
3665 	}
3666 	return err;
3667 }
3668 
3669 /*
3670  * helper to add ordered checksum for data relocation.
3671  *
3672  * cloning checksum properly handles the nodatasum extents.
3673  * it also saves CPU time to re-calculate the checksum.
3674  */
3675 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
3676 {
3677 	struct btrfs_ordered_sum *sums;
3678 	struct btrfs_sector_sum *sector_sum;
3679 	struct btrfs_ordered_extent *ordered;
3680 	struct btrfs_root *root = BTRFS_I(inode)->root;
3681 	size_t offset;
3682 	int ret;
3683 	u64 disk_bytenr;
3684 	LIST_HEAD(list);
3685 
3686 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
3687 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
3688 
3689 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
3690 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
3691 				       disk_bytenr + len - 1, &list);
3692 
3693 	while (!list_empty(&list)) {
3694 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
3695 		list_del_init(&sums->list);
3696 
3697 		sector_sum = sums->sums;
3698 		sums->bytenr = ordered->start;
3699 
3700 		offset = 0;
3701 		while (offset < sums->len) {
3702 			sector_sum->bytenr += ordered->start - disk_bytenr;
3703 			sector_sum++;
3704 			offset += root->sectorsize;
3705 		}
3706 
3707 		btrfs_add_ordered_sum(inode, ordered, sums);
3708 	}
3709 	btrfs_put_ordered_extent(ordered);
3710 	return 0;
3711 }
3712