1 /* 2 * Copyright (C) 2009 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/rbtree.h> 24 #include <linux/slab.h> 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "volumes.h" 29 #include "locking.h" 30 #include "btrfs_inode.h" 31 #include "async-thread.h" 32 #include "free-space-cache.h" 33 #include "inode-map.h" 34 #include "qgroup.h" 35 36 /* 37 * backref_node, mapping_node and tree_block start with this 38 */ 39 struct tree_entry { 40 struct rb_node rb_node; 41 u64 bytenr; 42 }; 43 44 /* 45 * present a tree block in the backref cache 46 */ 47 struct backref_node { 48 struct rb_node rb_node; 49 u64 bytenr; 50 51 u64 new_bytenr; 52 /* objectid of tree block owner, can be not uptodate */ 53 u64 owner; 54 /* link to pending, changed or detached list */ 55 struct list_head list; 56 /* list of upper level blocks reference this block */ 57 struct list_head upper; 58 /* list of child blocks in the cache */ 59 struct list_head lower; 60 /* NULL if this node is not tree root */ 61 struct btrfs_root *root; 62 /* extent buffer got by COW the block */ 63 struct extent_buffer *eb; 64 /* level of tree block */ 65 unsigned int level:8; 66 /* is the block in non-reference counted tree */ 67 unsigned int cowonly:1; 68 /* 1 if no child node in the cache */ 69 unsigned int lowest:1; 70 /* is the extent buffer locked */ 71 unsigned int locked:1; 72 /* has the block been processed */ 73 unsigned int processed:1; 74 /* have backrefs of this block been checked */ 75 unsigned int checked:1; 76 /* 77 * 1 if corresponding block has been cowed but some upper 78 * level block pointers may not point to the new location 79 */ 80 unsigned int pending:1; 81 /* 82 * 1 if the backref node isn't connected to any other 83 * backref node. 84 */ 85 unsigned int detached:1; 86 }; 87 88 /* 89 * present a block pointer in the backref cache 90 */ 91 struct backref_edge { 92 struct list_head list[2]; 93 struct backref_node *node[2]; 94 }; 95 96 #define LOWER 0 97 #define UPPER 1 98 #define RELOCATION_RESERVED_NODES 256 99 100 struct backref_cache { 101 /* red black tree of all backref nodes in the cache */ 102 struct rb_root rb_root; 103 /* for passing backref nodes to btrfs_reloc_cow_block */ 104 struct backref_node *path[BTRFS_MAX_LEVEL]; 105 /* 106 * list of blocks that have been cowed but some block 107 * pointers in upper level blocks may not reflect the 108 * new location 109 */ 110 struct list_head pending[BTRFS_MAX_LEVEL]; 111 /* list of backref nodes with no child node */ 112 struct list_head leaves; 113 /* list of blocks that have been cowed in current transaction */ 114 struct list_head changed; 115 /* list of detached backref node. */ 116 struct list_head detached; 117 118 u64 last_trans; 119 120 int nr_nodes; 121 int nr_edges; 122 }; 123 124 /* 125 * map address of tree root to tree 126 */ 127 struct mapping_node { 128 struct rb_node rb_node; 129 u64 bytenr; 130 void *data; 131 }; 132 133 struct mapping_tree { 134 struct rb_root rb_root; 135 spinlock_t lock; 136 }; 137 138 /* 139 * present a tree block to process 140 */ 141 struct tree_block { 142 struct rb_node rb_node; 143 u64 bytenr; 144 struct btrfs_key key; 145 unsigned int level:8; 146 unsigned int key_ready:1; 147 }; 148 149 #define MAX_EXTENTS 128 150 151 struct file_extent_cluster { 152 u64 start; 153 u64 end; 154 u64 boundary[MAX_EXTENTS]; 155 unsigned int nr; 156 }; 157 158 struct reloc_control { 159 /* block group to relocate */ 160 struct btrfs_block_group_cache *block_group; 161 /* extent tree */ 162 struct btrfs_root *extent_root; 163 /* inode for moving data */ 164 struct inode *data_inode; 165 166 struct btrfs_block_rsv *block_rsv; 167 168 struct backref_cache backref_cache; 169 170 struct file_extent_cluster cluster; 171 /* tree blocks have been processed */ 172 struct extent_io_tree processed_blocks; 173 /* map start of tree root to corresponding reloc tree */ 174 struct mapping_tree reloc_root_tree; 175 /* list of reloc trees */ 176 struct list_head reloc_roots; 177 /* size of metadata reservation for merging reloc trees */ 178 u64 merging_rsv_size; 179 /* size of relocated tree nodes */ 180 u64 nodes_relocated; 181 /* reserved size for block group relocation*/ 182 u64 reserved_bytes; 183 184 u64 search_start; 185 u64 extents_found; 186 187 unsigned int stage:8; 188 unsigned int create_reloc_tree:1; 189 unsigned int merge_reloc_tree:1; 190 unsigned int found_file_extent:1; 191 }; 192 193 /* stages of data relocation */ 194 #define MOVE_DATA_EXTENTS 0 195 #define UPDATE_DATA_PTRS 1 196 197 static void remove_backref_node(struct backref_cache *cache, 198 struct backref_node *node); 199 static void __mark_block_processed(struct reloc_control *rc, 200 struct backref_node *node); 201 202 static void mapping_tree_init(struct mapping_tree *tree) 203 { 204 tree->rb_root = RB_ROOT; 205 spin_lock_init(&tree->lock); 206 } 207 208 static void backref_cache_init(struct backref_cache *cache) 209 { 210 int i; 211 cache->rb_root = RB_ROOT; 212 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 213 INIT_LIST_HEAD(&cache->pending[i]); 214 INIT_LIST_HEAD(&cache->changed); 215 INIT_LIST_HEAD(&cache->detached); 216 INIT_LIST_HEAD(&cache->leaves); 217 } 218 219 static void backref_cache_cleanup(struct backref_cache *cache) 220 { 221 struct backref_node *node; 222 int i; 223 224 while (!list_empty(&cache->detached)) { 225 node = list_entry(cache->detached.next, 226 struct backref_node, list); 227 remove_backref_node(cache, node); 228 } 229 230 while (!list_empty(&cache->leaves)) { 231 node = list_entry(cache->leaves.next, 232 struct backref_node, lower); 233 remove_backref_node(cache, node); 234 } 235 236 cache->last_trans = 0; 237 238 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 239 ASSERT(list_empty(&cache->pending[i])); 240 ASSERT(list_empty(&cache->changed)); 241 ASSERT(list_empty(&cache->detached)); 242 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 243 ASSERT(!cache->nr_nodes); 244 ASSERT(!cache->nr_edges); 245 } 246 247 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 248 { 249 struct backref_node *node; 250 251 node = kzalloc(sizeof(*node), GFP_NOFS); 252 if (node) { 253 INIT_LIST_HEAD(&node->list); 254 INIT_LIST_HEAD(&node->upper); 255 INIT_LIST_HEAD(&node->lower); 256 RB_CLEAR_NODE(&node->rb_node); 257 cache->nr_nodes++; 258 } 259 return node; 260 } 261 262 static void free_backref_node(struct backref_cache *cache, 263 struct backref_node *node) 264 { 265 if (node) { 266 cache->nr_nodes--; 267 kfree(node); 268 } 269 } 270 271 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 272 { 273 struct backref_edge *edge; 274 275 edge = kzalloc(sizeof(*edge), GFP_NOFS); 276 if (edge) 277 cache->nr_edges++; 278 return edge; 279 } 280 281 static void free_backref_edge(struct backref_cache *cache, 282 struct backref_edge *edge) 283 { 284 if (edge) { 285 cache->nr_edges--; 286 kfree(edge); 287 } 288 } 289 290 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 291 struct rb_node *node) 292 { 293 struct rb_node **p = &root->rb_node; 294 struct rb_node *parent = NULL; 295 struct tree_entry *entry; 296 297 while (*p) { 298 parent = *p; 299 entry = rb_entry(parent, struct tree_entry, rb_node); 300 301 if (bytenr < entry->bytenr) 302 p = &(*p)->rb_left; 303 else if (bytenr > entry->bytenr) 304 p = &(*p)->rb_right; 305 else 306 return parent; 307 } 308 309 rb_link_node(node, parent, p); 310 rb_insert_color(node, root); 311 return NULL; 312 } 313 314 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 315 { 316 struct rb_node *n = root->rb_node; 317 struct tree_entry *entry; 318 319 while (n) { 320 entry = rb_entry(n, struct tree_entry, rb_node); 321 322 if (bytenr < entry->bytenr) 323 n = n->rb_left; 324 else if (bytenr > entry->bytenr) 325 n = n->rb_right; 326 else 327 return n; 328 } 329 return NULL; 330 } 331 332 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr) 333 { 334 335 struct btrfs_fs_info *fs_info = NULL; 336 struct backref_node *bnode = rb_entry(rb_node, struct backref_node, 337 rb_node); 338 if (bnode->root) 339 fs_info = bnode->root->fs_info; 340 btrfs_panic(fs_info, errno, 341 "Inconsistency in backref cache found at offset %llu", 342 bytenr); 343 } 344 345 /* 346 * walk up backref nodes until reach node presents tree root 347 */ 348 static struct backref_node *walk_up_backref(struct backref_node *node, 349 struct backref_edge *edges[], 350 int *index) 351 { 352 struct backref_edge *edge; 353 int idx = *index; 354 355 while (!list_empty(&node->upper)) { 356 edge = list_entry(node->upper.next, 357 struct backref_edge, list[LOWER]); 358 edges[idx++] = edge; 359 node = edge->node[UPPER]; 360 } 361 BUG_ON(node->detached); 362 *index = idx; 363 return node; 364 } 365 366 /* 367 * walk down backref nodes to find start of next reference path 368 */ 369 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 370 int *index) 371 { 372 struct backref_edge *edge; 373 struct backref_node *lower; 374 int idx = *index; 375 376 while (idx > 0) { 377 edge = edges[idx - 1]; 378 lower = edge->node[LOWER]; 379 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 380 idx--; 381 continue; 382 } 383 edge = list_entry(edge->list[LOWER].next, 384 struct backref_edge, list[LOWER]); 385 edges[idx - 1] = edge; 386 *index = idx; 387 return edge->node[UPPER]; 388 } 389 *index = 0; 390 return NULL; 391 } 392 393 static void unlock_node_buffer(struct backref_node *node) 394 { 395 if (node->locked) { 396 btrfs_tree_unlock(node->eb); 397 node->locked = 0; 398 } 399 } 400 401 static void drop_node_buffer(struct backref_node *node) 402 { 403 if (node->eb) { 404 unlock_node_buffer(node); 405 free_extent_buffer(node->eb); 406 node->eb = NULL; 407 } 408 } 409 410 static void drop_backref_node(struct backref_cache *tree, 411 struct backref_node *node) 412 { 413 BUG_ON(!list_empty(&node->upper)); 414 415 drop_node_buffer(node); 416 list_del(&node->list); 417 list_del(&node->lower); 418 if (!RB_EMPTY_NODE(&node->rb_node)) 419 rb_erase(&node->rb_node, &tree->rb_root); 420 free_backref_node(tree, node); 421 } 422 423 /* 424 * remove a backref node from the backref cache 425 */ 426 static void remove_backref_node(struct backref_cache *cache, 427 struct backref_node *node) 428 { 429 struct backref_node *upper; 430 struct backref_edge *edge; 431 432 if (!node) 433 return; 434 435 BUG_ON(!node->lowest && !node->detached); 436 while (!list_empty(&node->upper)) { 437 edge = list_entry(node->upper.next, struct backref_edge, 438 list[LOWER]); 439 upper = edge->node[UPPER]; 440 list_del(&edge->list[LOWER]); 441 list_del(&edge->list[UPPER]); 442 free_backref_edge(cache, edge); 443 444 if (RB_EMPTY_NODE(&upper->rb_node)) { 445 BUG_ON(!list_empty(&node->upper)); 446 drop_backref_node(cache, node); 447 node = upper; 448 node->lowest = 1; 449 continue; 450 } 451 /* 452 * add the node to leaf node list if no other 453 * child block cached. 454 */ 455 if (list_empty(&upper->lower)) { 456 list_add_tail(&upper->lower, &cache->leaves); 457 upper->lowest = 1; 458 } 459 } 460 461 drop_backref_node(cache, node); 462 } 463 464 static void update_backref_node(struct backref_cache *cache, 465 struct backref_node *node, u64 bytenr) 466 { 467 struct rb_node *rb_node; 468 rb_erase(&node->rb_node, &cache->rb_root); 469 node->bytenr = bytenr; 470 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 471 if (rb_node) 472 backref_tree_panic(rb_node, -EEXIST, bytenr); 473 } 474 475 /* 476 * update backref cache after a transaction commit 477 */ 478 static int update_backref_cache(struct btrfs_trans_handle *trans, 479 struct backref_cache *cache) 480 { 481 struct backref_node *node; 482 int level = 0; 483 484 if (cache->last_trans == 0) { 485 cache->last_trans = trans->transid; 486 return 0; 487 } 488 489 if (cache->last_trans == trans->transid) 490 return 0; 491 492 /* 493 * detached nodes are used to avoid unnecessary backref 494 * lookup. transaction commit changes the extent tree. 495 * so the detached nodes are no longer useful. 496 */ 497 while (!list_empty(&cache->detached)) { 498 node = list_entry(cache->detached.next, 499 struct backref_node, list); 500 remove_backref_node(cache, node); 501 } 502 503 while (!list_empty(&cache->changed)) { 504 node = list_entry(cache->changed.next, 505 struct backref_node, list); 506 list_del_init(&node->list); 507 BUG_ON(node->pending); 508 update_backref_node(cache, node, node->new_bytenr); 509 } 510 511 /* 512 * some nodes can be left in the pending list if there were 513 * errors during processing the pending nodes. 514 */ 515 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 516 list_for_each_entry(node, &cache->pending[level], list) { 517 BUG_ON(!node->pending); 518 if (node->bytenr == node->new_bytenr) 519 continue; 520 update_backref_node(cache, node, node->new_bytenr); 521 } 522 } 523 524 cache->last_trans = 0; 525 return 1; 526 } 527 528 529 static int should_ignore_root(struct btrfs_root *root) 530 { 531 struct btrfs_root *reloc_root; 532 533 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 534 return 0; 535 536 reloc_root = root->reloc_root; 537 if (!reloc_root) 538 return 0; 539 540 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 541 root->fs_info->running_transaction->transid - 1) 542 return 0; 543 /* 544 * if there is reloc tree and it was created in previous 545 * transaction backref lookup can find the reloc tree, 546 * so backref node for the fs tree root is useless for 547 * relocation. 548 */ 549 return 1; 550 } 551 /* 552 * find reloc tree by address of tree root 553 */ 554 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 555 u64 bytenr) 556 { 557 struct rb_node *rb_node; 558 struct mapping_node *node; 559 struct btrfs_root *root = NULL; 560 561 spin_lock(&rc->reloc_root_tree.lock); 562 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 563 if (rb_node) { 564 node = rb_entry(rb_node, struct mapping_node, rb_node); 565 root = (struct btrfs_root *)node->data; 566 } 567 spin_unlock(&rc->reloc_root_tree.lock); 568 return root; 569 } 570 571 static int is_cowonly_root(u64 root_objectid) 572 { 573 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 574 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 575 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 576 root_objectid == BTRFS_DEV_TREE_OBJECTID || 577 root_objectid == BTRFS_TREE_LOG_OBJECTID || 578 root_objectid == BTRFS_CSUM_TREE_OBJECTID || 579 root_objectid == BTRFS_UUID_TREE_OBJECTID || 580 root_objectid == BTRFS_QUOTA_TREE_OBJECTID || 581 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 582 return 1; 583 return 0; 584 } 585 586 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 587 u64 root_objectid) 588 { 589 struct btrfs_key key; 590 591 key.objectid = root_objectid; 592 key.type = BTRFS_ROOT_ITEM_KEY; 593 if (is_cowonly_root(root_objectid)) 594 key.offset = 0; 595 else 596 key.offset = (u64)-1; 597 598 return btrfs_get_fs_root(fs_info, &key, false); 599 } 600 601 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 602 static noinline_for_stack 603 struct btrfs_root *find_tree_root(struct reloc_control *rc, 604 struct extent_buffer *leaf, 605 struct btrfs_extent_ref_v0 *ref0) 606 { 607 struct btrfs_root *root; 608 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0); 609 u64 generation = btrfs_ref_generation_v0(leaf, ref0); 610 611 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID); 612 613 root = read_fs_root(rc->extent_root->fs_info, root_objectid); 614 BUG_ON(IS_ERR(root)); 615 616 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 617 generation != btrfs_root_generation(&root->root_item)) 618 return NULL; 619 620 return root; 621 } 622 #endif 623 624 static noinline_for_stack 625 int find_inline_backref(struct extent_buffer *leaf, int slot, 626 unsigned long *ptr, unsigned long *end) 627 { 628 struct btrfs_key key; 629 struct btrfs_extent_item *ei; 630 struct btrfs_tree_block_info *bi; 631 u32 item_size; 632 633 btrfs_item_key_to_cpu(leaf, &key, slot); 634 635 item_size = btrfs_item_size_nr(leaf, slot); 636 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 637 if (item_size < sizeof(*ei)) { 638 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 639 return 1; 640 } 641 #endif 642 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 643 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 644 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 645 646 if (key.type == BTRFS_EXTENT_ITEM_KEY && 647 item_size <= sizeof(*ei) + sizeof(*bi)) { 648 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 649 return 1; 650 } 651 if (key.type == BTRFS_METADATA_ITEM_KEY && 652 item_size <= sizeof(*ei)) { 653 WARN_ON(item_size < sizeof(*ei)); 654 return 1; 655 } 656 657 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 658 bi = (struct btrfs_tree_block_info *)(ei + 1); 659 *ptr = (unsigned long)(bi + 1); 660 } else { 661 *ptr = (unsigned long)(ei + 1); 662 } 663 *end = (unsigned long)ei + item_size; 664 return 0; 665 } 666 667 /* 668 * build backref tree for a given tree block. root of the backref tree 669 * corresponds the tree block, leaves of the backref tree correspond 670 * roots of b-trees that reference the tree block. 671 * 672 * the basic idea of this function is check backrefs of a given block 673 * to find upper level blocks that reference the block, and then check 674 * backrefs of these upper level blocks recursively. the recursion stop 675 * when tree root is reached or backrefs for the block is cached. 676 * 677 * NOTE: if we find backrefs for a block are cached, we know backrefs 678 * for all upper level blocks that directly/indirectly reference the 679 * block are also cached. 680 */ 681 static noinline_for_stack 682 struct backref_node *build_backref_tree(struct reloc_control *rc, 683 struct btrfs_key *node_key, 684 int level, u64 bytenr) 685 { 686 struct backref_cache *cache = &rc->backref_cache; 687 struct btrfs_path *path1; 688 struct btrfs_path *path2; 689 struct extent_buffer *eb; 690 struct btrfs_root *root; 691 struct backref_node *cur; 692 struct backref_node *upper; 693 struct backref_node *lower; 694 struct backref_node *node = NULL; 695 struct backref_node *exist = NULL; 696 struct backref_edge *edge; 697 struct rb_node *rb_node; 698 struct btrfs_key key; 699 unsigned long end; 700 unsigned long ptr; 701 LIST_HEAD(list); 702 LIST_HEAD(useless); 703 int cowonly; 704 int ret; 705 int err = 0; 706 bool need_check = true; 707 708 path1 = btrfs_alloc_path(); 709 path2 = btrfs_alloc_path(); 710 if (!path1 || !path2) { 711 err = -ENOMEM; 712 goto out; 713 } 714 path1->reada = READA_FORWARD; 715 path2->reada = READA_FORWARD; 716 717 node = alloc_backref_node(cache); 718 if (!node) { 719 err = -ENOMEM; 720 goto out; 721 } 722 723 node->bytenr = bytenr; 724 node->level = level; 725 node->lowest = 1; 726 cur = node; 727 again: 728 end = 0; 729 ptr = 0; 730 key.objectid = cur->bytenr; 731 key.type = BTRFS_METADATA_ITEM_KEY; 732 key.offset = (u64)-1; 733 734 path1->search_commit_root = 1; 735 path1->skip_locking = 1; 736 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 737 0, 0); 738 if (ret < 0) { 739 err = ret; 740 goto out; 741 } 742 ASSERT(ret); 743 ASSERT(path1->slots[0]); 744 745 path1->slots[0]--; 746 747 WARN_ON(cur->checked); 748 if (!list_empty(&cur->upper)) { 749 /* 750 * the backref was added previously when processing 751 * backref of type BTRFS_TREE_BLOCK_REF_KEY 752 */ 753 ASSERT(list_is_singular(&cur->upper)); 754 edge = list_entry(cur->upper.next, struct backref_edge, 755 list[LOWER]); 756 ASSERT(list_empty(&edge->list[UPPER])); 757 exist = edge->node[UPPER]; 758 /* 759 * add the upper level block to pending list if we need 760 * check its backrefs 761 */ 762 if (!exist->checked) 763 list_add_tail(&edge->list[UPPER], &list); 764 } else { 765 exist = NULL; 766 } 767 768 while (1) { 769 cond_resched(); 770 eb = path1->nodes[0]; 771 772 if (ptr >= end) { 773 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 774 ret = btrfs_next_leaf(rc->extent_root, path1); 775 if (ret < 0) { 776 err = ret; 777 goto out; 778 } 779 if (ret > 0) 780 break; 781 eb = path1->nodes[0]; 782 } 783 784 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 785 if (key.objectid != cur->bytenr) { 786 WARN_ON(exist); 787 break; 788 } 789 790 if (key.type == BTRFS_EXTENT_ITEM_KEY || 791 key.type == BTRFS_METADATA_ITEM_KEY) { 792 ret = find_inline_backref(eb, path1->slots[0], 793 &ptr, &end); 794 if (ret) 795 goto next; 796 } 797 } 798 799 if (ptr < end) { 800 /* update key for inline back ref */ 801 struct btrfs_extent_inline_ref *iref; 802 iref = (struct btrfs_extent_inline_ref *)ptr; 803 key.type = btrfs_extent_inline_ref_type(eb, iref); 804 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 805 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 806 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 807 } 808 809 if (exist && 810 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 811 exist->owner == key.offset) || 812 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 813 exist->bytenr == key.offset))) { 814 exist = NULL; 815 goto next; 816 } 817 818 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 819 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY || 820 key.type == BTRFS_EXTENT_REF_V0_KEY) { 821 if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 822 struct btrfs_extent_ref_v0 *ref0; 823 ref0 = btrfs_item_ptr(eb, path1->slots[0], 824 struct btrfs_extent_ref_v0); 825 if (key.objectid == key.offset) { 826 root = find_tree_root(rc, eb, ref0); 827 if (root && !should_ignore_root(root)) 828 cur->root = root; 829 else 830 list_add(&cur->list, &useless); 831 break; 832 } 833 if (is_cowonly_root(btrfs_ref_root_v0(eb, 834 ref0))) 835 cur->cowonly = 1; 836 } 837 #else 838 ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY); 839 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 840 #endif 841 if (key.objectid == key.offset) { 842 /* 843 * only root blocks of reloc trees use 844 * backref of this type. 845 */ 846 root = find_reloc_root(rc, cur->bytenr); 847 ASSERT(root); 848 cur->root = root; 849 break; 850 } 851 852 edge = alloc_backref_edge(cache); 853 if (!edge) { 854 err = -ENOMEM; 855 goto out; 856 } 857 rb_node = tree_search(&cache->rb_root, key.offset); 858 if (!rb_node) { 859 upper = alloc_backref_node(cache); 860 if (!upper) { 861 free_backref_edge(cache, edge); 862 err = -ENOMEM; 863 goto out; 864 } 865 upper->bytenr = key.offset; 866 upper->level = cur->level + 1; 867 /* 868 * backrefs for the upper level block isn't 869 * cached, add the block to pending list 870 */ 871 list_add_tail(&edge->list[UPPER], &list); 872 } else { 873 upper = rb_entry(rb_node, struct backref_node, 874 rb_node); 875 ASSERT(upper->checked); 876 INIT_LIST_HEAD(&edge->list[UPPER]); 877 } 878 list_add_tail(&edge->list[LOWER], &cur->upper); 879 edge->node[LOWER] = cur; 880 edge->node[UPPER] = upper; 881 882 goto next; 883 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 884 goto next; 885 } 886 887 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */ 888 root = read_fs_root(rc->extent_root->fs_info, key.offset); 889 if (IS_ERR(root)) { 890 err = PTR_ERR(root); 891 goto out; 892 } 893 894 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 895 cur->cowonly = 1; 896 897 if (btrfs_root_level(&root->root_item) == cur->level) { 898 /* tree root */ 899 ASSERT(btrfs_root_bytenr(&root->root_item) == 900 cur->bytenr); 901 if (should_ignore_root(root)) 902 list_add(&cur->list, &useless); 903 else 904 cur->root = root; 905 break; 906 } 907 908 level = cur->level + 1; 909 910 /* 911 * searching the tree to find upper level blocks 912 * reference the block. 913 */ 914 path2->search_commit_root = 1; 915 path2->skip_locking = 1; 916 path2->lowest_level = level; 917 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 918 path2->lowest_level = 0; 919 if (ret < 0) { 920 err = ret; 921 goto out; 922 } 923 if (ret > 0 && path2->slots[level] > 0) 924 path2->slots[level]--; 925 926 eb = path2->nodes[level]; 927 if (btrfs_node_blockptr(eb, path2->slots[level]) != 928 cur->bytenr) { 929 btrfs_err(root->fs_info, 930 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 931 cur->bytenr, level - 1, root->objectid, 932 node_key->objectid, node_key->type, 933 node_key->offset); 934 err = -ENOENT; 935 goto out; 936 } 937 lower = cur; 938 need_check = true; 939 for (; level < BTRFS_MAX_LEVEL; level++) { 940 if (!path2->nodes[level]) { 941 ASSERT(btrfs_root_bytenr(&root->root_item) == 942 lower->bytenr); 943 if (should_ignore_root(root)) 944 list_add(&lower->list, &useless); 945 else 946 lower->root = root; 947 break; 948 } 949 950 edge = alloc_backref_edge(cache); 951 if (!edge) { 952 err = -ENOMEM; 953 goto out; 954 } 955 956 eb = path2->nodes[level]; 957 rb_node = tree_search(&cache->rb_root, eb->start); 958 if (!rb_node) { 959 upper = alloc_backref_node(cache); 960 if (!upper) { 961 free_backref_edge(cache, edge); 962 err = -ENOMEM; 963 goto out; 964 } 965 upper->bytenr = eb->start; 966 upper->owner = btrfs_header_owner(eb); 967 upper->level = lower->level + 1; 968 if (!test_bit(BTRFS_ROOT_REF_COWS, 969 &root->state)) 970 upper->cowonly = 1; 971 972 /* 973 * if we know the block isn't shared 974 * we can void checking its backrefs. 975 */ 976 if (btrfs_block_can_be_shared(root, eb)) 977 upper->checked = 0; 978 else 979 upper->checked = 1; 980 981 /* 982 * add the block to pending list if we 983 * need check its backrefs, we only do this once 984 * while walking up a tree as we will catch 985 * anything else later on. 986 */ 987 if (!upper->checked && need_check) { 988 need_check = false; 989 list_add_tail(&edge->list[UPPER], 990 &list); 991 } else { 992 if (upper->checked) 993 need_check = true; 994 INIT_LIST_HEAD(&edge->list[UPPER]); 995 } 996 } else { 997 upper = rb_entry(rb_node, struct backref_node, 998 rb_node); 999 ASSERT(upper->checked); 1000 INIT_LIST_HEAD(&edge->list[UPPER]); 1001 if (!upper->owner) 1002 upper->owner = btrfs_header_owner(eb); 1003 } 1004 list_add_tail(&edge->list[LOWER], &lower->upper); 1005 edge->node[LOWER] = lower; 1006 edge->node[UPPER] = upper; 1007 1008 if (rb_node) 1009 break; 1010 lower = upper; 1011 upper = NULL; 1012 } 1013 btrfs_release_path(path2); 1014 next: 1015 if (ptr < end) { 1016 ptr += btrfs_extent_inline_ref_size(key.type); 1017 if (ptr >= end) { 1018 WARN_ON(ptr > end); 1019 ptr = 0; 1020 end = 0; 1021 } 1022 } 1023 if (ptr >= end) 1024 path1->slots[0]++; 1025 } 1026 btrfs_release_path(path1); 1027 1028 cur->checked = 1; 1029 WARN_ON(exist); 1030 1031 /* the pending list isn't empty, take the first block to process */ 1032 if (!list_empty(&list)) { 1033 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1034 list_del_init(&edge->list[UPPER]); 1035 cur = edge->node[UPPER]; 1036 goto again; 1037 } 1038 1039 /* 1040 * everything goes well, connect backref nodes and insert backref nodes 1041 * into the cache. 1042 */ 1043 ASSERT(node->checked); 1044 cowonly = node->cowonly; 1045 if (!cowonly) { 1046 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1047 &node->rb_node); 1048 if (rb_node) 1049 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1050 list_add_tail(&node->lower, &cache->leaves); 1051 } 1052 1053 list_for_each_entry(edge, &node->upper, list[LOWER]) 1054 list_add_tail(&edge->list[UPPER], &list); 1055 1056 while (!list_empty(&list)) { 1057 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1058 list_del_init(&edge->list[UPPER]); 1059 upper = edge->node[UPPER]; 1060 if (upper->detached) { 1061 list_del(&edge->list[LOWER]); 1062 lower = edge->node[LOWER]; 1063 free_backref_edge(cache, edge); 1064 if (list_empty(&lower->upper)) 1065 list_add(&lower->list, &useless); 1066 continue; 1067 } 1068 1069 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1070 if (upper->lowest) { 1071 list_del_init(&upper->lower); 1072 upper->lowest = 0; 1073 } 1074 1075 list_add_tail(&edge->list[UPPER], &upper->lower); 1076 continue; 1077 } 1078 1079 if (!upper->checked) { 1080 /* 1081 * Still want to blow up for developers since this is a 1082 * logic bug. 1083 */ 1084 ASSERT(0); 1085 err = -EINVAL; 1086 goto out; 1087 } 1088 if (cowonly != upper->cowonly) { 1089 ASSERT(0); 1090 err = -EINVAL; 1091 goto out; 1092 } 1093 1094 if (!cowonly) { 1095 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1096 &upper->rb_node); 1097 if (rb_node) 1098 backref_tree_panic(rb_node, -EEXIST, 1099 upper->bytenr); 1100 } 1101 1102 list_add_tail(&edge->list[UPPER], &upper->lower); 1103 1104 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1105 list_add_tail(&edge->list[UPPER], &list); 1106 } 1107 /* 1108 * process useless backref nodes. backref nodes for tree leaves 1109 * are deleted from the cache. backref nodes for upper level 1110 * tree blocks are left in the cache to avoid unnecessary backref 1111 * lookup. 1112 */ 1113 while (!list_empty(&useless)) { 1114 upper = list_entry(useless.next, struct backref_node, list); 1115 list_del_init(&upper->list); 1116 ASSERT(list_empty(&upper->upper)); 1117 if (upper == node) 1118 node = NULL; 1119 if (upper->lowest) { 1120 list_del_init(&upper->lower); 1121 upper->lowest = 0; 1122 } 1123 while (!list_empty(&upper->lower)) { 1124 edge = list_entry(upper->lower.next, 1125 struct backref_edge, list[UPPER]); 1126 list_del(&edge->list[UPPER]); 1127 list_del(&edge->list[LOWER]); 1128 lower = edge->node[LOWER]; 1129 free_backref_edge(cache, edge); 1130 1131 if (list_empty(&lower->upper)) 1132 list_add(&lower->list, &useless); 1133 } 1134 __mark_block_processed(rc, upper); 1135 if (upper->level > 0) { 1136 list_add(&upper->list, &cache->detached); 1137 upper->detached = 1; 1138 } else { 1139 rb_erase(&upper->rb_node, &cache->rb_root); 1140 free_backref_node(cache, upper); 1141 } 1142 } 1143 out: 1144 btrfs_free_path(path1); 1145 btrfs_free_path(path2); 1146 if (err) { 1147 while (!list_empty(&useless)) { 1148 lower = list_entry(useless.next, 1149 struct backref_node, list); 1150 list_del_init(&lower->list); 1151 } 1152 while (!list_empty(&list)) { 1153 edge = list_first_entry(&list, struct backref_edge, 1154 list[UPPER]); 1155 list_del(&edge->list[UPPER]); 1156 list_del(&edge->list[LOWER]); 1157 lower = edge->node[LOWER]; 1158 upper = edge->node[UPPER]; 1159 free_backref_edge(cache, edge); 1160 1161 /* 1162 * Lower is no longer linked to any upper backref nodes 1163 * and isn't in the cache, we can free it ourselves. 1164 */ 1165 if (list_empty(&lower->upper) && 1166 RB_EMPTY_NODE(&lower->rb_node)) 1167 list_add(&lower->list, &useless); 1168 1169 if (!RB_EMPTY_NODE(&upper->rb_node)) 1170 continue; 1171 1172 /* Add this guy's upper edges to the list to process */ 1173 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1174 list_add_tail(&edge->list[UPPER], &list); 1175 if (list_empty(&upper->upper)) 1176 list_add(&upper->list, &useless); 1177 } 1178 1179 while (!list_empty(&useless)) { 1180 lower = list_entry(useless.next, 1181 struct backref_node, list); 1182 list_del_init(&lower->list); 1183 if (lower == node) 1184 node = NULL; 1185 free_backref_node(cache, lower); 1186 } 1187 1188 free_backref_node(cache, node); 1189 return ERR_PTR(err); 1190 } 1191 ASSERT(!node || !node->detached); 1192 return node; 1193 } 1194 1195 /* 1196 * helper to add backref node for the newly created snapshot. 1197 * the backref node is created by cloning backref node that 1198 * corresponds to root of source tree 1199 */ 1200 static int clone_backref_node(struct btrfs_trans_handle *trans, 1201 struct reloc_control *rc, 1202 struct btrfs_root *src, 1203 struct btrfs_root *dest) 1204 { 1205 struct btrfs_root *reloc_root = src->reloc_root; 1206 struct backref_cache *cache = &rc->backref_cache; 1207 struct backref_node *node = NULL; 1208 struct backref_node *new_node; 1209 struct backref_edge *edge; 1210 struct backref_edge *new_edge; 1211 struct rb_node *rb_node; 1212 1213 if (cache->last_trans > 0) 1214 update_backref_cache(trans, cache); 1215 1216 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1217 if (rb_node) { 1218 node = rb_entry(rb_node, struct backref_node, rb_node); 1219 if (node->detached) 1220 node = NULL; 1221 else 1222 BUG_ON(node->new_bytenr != reloc_root->node->start); 1223 } 1224 1225 if (!node) { 1226 rb_node = tree_search(&cache->rb_root, 1227 reloc_root->commit_root->start); 1228 if (rb_node) { 1229 node = rb_entry(rb_node, struct backref_node, 1230 rb_node); 1231 BUG_ON(node->detached); 1232 } 1233 } 1234 1235 if (!node) 1236 return 0; 1237 1238 new_node = alloc_backref_node(cache); 1239 if (!new_node) 1240 return -ENOMEM; 1241 1242 new_node->bytenr = dest->node->start; 1243 new_node->level = node->level; 1244 new_node->lowest = node->lowest; 1245 new_node->checked = 1; 1246 new_node->root = dest; 1247 1248 if (!node->lowest) { 1249 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1250 new_edge = alloc_backref_edge(cache); 1251 if (!new_edge) 1252 goto fail; 1253 1254 new_edge->node[UPPER] = new_node; 1255 new_edge->node[LOWER] = edge->node[LOWER]; 1256 list_add_tail(&new_edge->list[UPPER], 1257 &new_node->lower); 1258 } 1259 } else { 1260 list_add_tail(&new_node->lower, &cache->leaves); 1261 } 1262 1263 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1264 &new_node->rb_node); 1265 if (rb_node) 1266 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr); 1267 1268 if (!new_node->lowest) { 1269 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1270 list_add_tail(&new_edge->list[LOWER], 1271 &new_edge->node[LOWER]->upper); 1272 } 1273 } 1274 return 0; 1275 fail: 1276 while (!list_empty(&new_node->lower)) { 1277 new_edge = list_entry(new_node->lower.next, 1278 struct backref_edge, list[UPPER]); 1279 list_del(&new_edge->list[UPPER]); 1280 free_backref_edge(cache, new_edge); 1281 } 1282 free_backref_node(cache, new_node); 1283 return -ENOMEM; 1284 } 1285 1286 /* 1287 * helper to add 'address of tree root -> reloc tree' mapping 1288 */ 1289 static int __must_check __add_reloc_root(struct btrfs_root *root) 1290 { 1291 struct btrfs_fs_info *fs_info = root->fs_info; 1292 struct rb_node *rb_node; 1293 struct mapping_node *node; 1294 struct reloc_control *rc = fs_info->reloc_ctl; 1295 1296 node = kmalloc(sizeof(*node), GFP_NOFS); 1297 if (!node) 1298 return -ENOMEM; 1299 1300 node->bytenr = root->node->start; 1301 node->data = root; 1302 1303 spin_lock(&rc->reloc_root_tree.lock); 1304 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1305 node->bytenr, &node->rb_node); 1306 spin_unlock(&rc->reloc_root_tree.lock); 1307 if (rb_node) { 1308 btrfs_panic(fs_info, -EEXIST, 1309 "Duplicate root found for start=%llu while inserting into relocation tree", 1310 node->bytenr); 1311 kfree(node); 1312 return -EEXIST; 1313 } 1314 1315 list_add_tail(&root->root_list, &rc->reloc_roots); 1316 return 0; 1317 } 1318 1319 /* 1320 * helper to delete the 'address of tree root -> reloc tree' 1321 * mapping 1322 */ 1323 static void __del_reloc_root(struct btrfs_root *root) 1324 { 1325 struct btrfs_fs_info *fs_info = root->fs_info; 1326 struct rb_node *rb_node; 1327 struct mapping_node *node = NULL; 1328 struct reloc_control *rc = fs_info->reloc_ctl; 1329 1330 spin_lock(&rc->reloc_root_tree.lock); 1331 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1332 root->node->start); 1333 if (rb_node) { 1334 node = rb_entry(rb_node, struct mapping_node, rb_node); 1335 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1336 } 1337 spin_unlock(&rc->reloc_root_tree.lock); 1338 1339 if (!node) 1340 return; 1341 BUG_ON((struct btrfs_root *)node->data != root); 1342 1343 spin_lock(&fs_info->trans_lock); 1344 list_del_init(&root->root_list); 1345 spin_unlock(&fs_info->trans_lock); 1346 kfree(node); 1347 } 1348 1349 /* 1350 * helper to update the 'address of tree root -> reloc tree' 1351 * mapping 1352 */ 1353 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr) 1354 { 1355 struct btrfs_fs_info *fs_info = root->fs_info; 1356 struct rb_node *rb_node; 1357 struct mapping_node *node = NULL; 1358 struct reloc_control *rc = fs_info->reloc_ctl; 1359 1360 spin_lock(&rc->reloc_root_tree.lock); 1361 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1362 root->node->start); 1363 if (rb_node) { 1364 node = rb_entry(rb_node, struct mapping_node, rb_node); 1365 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1366 } 1367 spin_unlock(&rc->reloc_root_tree.lock); 1368 1369 if (!node) 1370 return 0; 1371 BUG_ON((struct btrfs_root *)node->data != root); 1372 1373 spin_lock(&rc->reloc_root_tree.lock); 1374 node->bytenr = new_bytenr; 1375 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1376 node->bytenr, &node->rb_node); 1377 spin_unlock(&rc->reloc_root_tree.lock); 1378 if (rb_node) 1379 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1380 return 0; 1381 } 1382 1383 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1384 struct btrfs_root *root, u64 objectid) 1385 { 1386 struct btrfs_fs_info *fs_info = root->fs_info; 1387 struct btrfs_root *reloc_root; 1388 struct extent_buffer *eb; 1389 struct btrfs_root_item *root_item; 1390 struct btrfs_key root_key; 1391 int ret; 1392 1393 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1394 BUG_ON(!root_item); 1395 1396 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1397 root_key.type = BTRFS_ROOT_ITEM_KEY; 1398 root_key.offset = objectid; 1399 1400 if (root->root_key.objectid == objectid) { 1401 u64 commit_root_gen; 1402 1403 /* called by btrfs_init_reloc_root */ 1404 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1405 BTRFS_TREE_RELOC_OBJECTID); 1406 BUG_ON(ret); 1407 /* 1408 * Set the last_snapshot field to the generation of the commit 1409 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 1410 * correctly (returns true) when the relocation root is created 1411 * either inside the critical section of a transaction commit 1412 * (through transaction.c:qgroup_account_snapshot()) and when 1413 * it's created before the transaction commit is started. 1414 */ 1415 commit_root_gen = btrfs_header_generation(root->commit_root); 1416 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 1417 } else { 1418 /* 1419 * called by btrfs_reloc_post_snapshot_hook. 1420 * the source tree is a reloc tree, all tree blocks 1421 * modified after it was created have RELOC flag 1422 * set in their headers. so it's OK to not update 1423 * the 'last_snapshot'. 1424 */ 1425 ret = btrfs_copy_root(trans, root, root->node, &eb, 1426 BTRFS_TREE_RELOC_OBJECTID); 1427 BUG_ON(ret); 1428 } 1429 1430 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1431 btrfs_set_root_bytenr(root_item, eb->start); 1432 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1433 btrfs_set_root_generation(root_item, trans->transid); 1434 1435 if (root->root_key.objectid == objectid) { 1436 btrfs_set_root_refs(root_item, 0); 1437 memset(&root_item->drop_progress, 0, 1438 sizeof(struct btrfs_disk_key)); 1439 root_item->drop_level = 0; 1440 } 1441 1442 btrfs_tree_unlock(eb); 1443 free_extent_buffer(eb); 1444 1445 ret = btrfs_insert_root(trans, fs_info->tree_root, 1446 &root_key, root_item); 1447 BUG_ON(ret); 1448 kfree(root_item); 1449 1450 reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key); 1451 BUG_ON(IS_ERR(reloc_root)); 1452 reloc_root->last_trans = trans->transid; 1453 return reloc_root; 1454 } 1455 1456 /* 1457 * create reloc tree for a given fs tree. reloc tree is just a 1458 * snapshot of the fs tree with special root objectid. 1459 */ 1460 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1461 struct btrfs_root *root) 1462 { 1463 struct btrfs_fs_info *fs_info = root->fs_info; 1464 struct btrfs_root *reloc_root; 1465 struct reloc_control *rc = fs_info->reloc_ctl; 1466 struct btrfs_block_rsv *rsv; 1467 int clear_rsv = 0; 1468 int ret; 1469 1470 if (root->reloc_root) { 1471 reloc_root = root->reloc_root; 1472 reloc_root->last_trans = trans->transid; 1473 return 0; 1474 } 1475 1476 if (!rc || !rc->create_reloc_tree || 1477 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1478 return 0; 1479 1480 if (!trans->reloc_reserved) { 1481 rsv = trans->block_rsv; 1482 trans->block_rsv = rc->block_rsv; 1483 clear_rsv = 1; 1484 } 1485 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1486 if (clear_rsv) 1487 trans->block_rsv = rsv; 1488 1489 ret = __add_reloc_root(reloc_root); 1490 BUG_ON(ret < 0); 1491 root->reloc_root = reloc_root; 1492 return 0; 1493 } 1494 1495 /* 1496 * update root item of reloc tree 1497 */ 1498 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1499 struct btrfs_root *root) 1500 { 1501 struct btrfs_fs_info *fs_info = root->fs_info; 1502 struct btrfs_root *reloc_root; 1503 struct btrfs_root_item *root_item; 1504 int ret; 1505 1506 if (!root->reloc_root) 1507 goto out; 1508 1509 reloc_root = root->reloc_root; 1510 root_item = &reloc_root->root_item; 1511 1512 if (fs_info->reloc_ctl->merge_reloc_tree && 1513 btrfs_root_refs(root_item) == 0) { 1514 root->reloc_root = NULL; 1515 __del_reloc_root(reloc_root); 1516 } 1517 1518 if (reloc_root->commit_root != reloc_root->node) { 1519 btrfs_set_root_node(root_item, reloc_root->node); 1520 free_extent_buffer(reloc_root->commit_root); 1521 reloc_root->commit_root = btrfs_root_node(reloc_root); 1522 } 1523 1524 ret = btrfs_update_root(trans, fs_info->tree_root, 1525 &reloc_root->root_key, root_item); 1526 BUG_ON(ret); 1527 1528 out: 1529 return 0; 1530 } 1531 1532 /* 1533 * helper to find first cached inode with inode number >= objectid 1534 * in a subvolume 1535 */ 1536 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1537 { 1538 struct rb_node *node; 1539 struct rb_node *prev; 1540 struct btrfs_inode *entry; 1541 struct inode *inode; 1542 1543 spin_lock(&root->inode_lock); 1544 again: 1545 node = root->inode_tree.rb_node; 1546 prev = NULL; 1547 while (node) { 1548 prev = node; 1549 entry = rb_entry(node, struct btrfs_inode, rb_node); 1550 1551 if (objectid < btrfs_ino(entry)) 1552 node = node->rb_left; 1553 else if (objectid > btrfs_ino(entry)) 1554 node = node->rb_right; 1555 else 1556 break; 1557 } 1558 if (!node) { 1559 while (prev) { 1560 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1561 if (objectid <= btrfs_ino(entry)) { 1562 node = prev; 1563 break; 1564 } 1565 prev = rb_next(prev); 1566 } 1567 } 1568 while (node) { 1569 entry = rb_entry(node, struct btrfs_inode, rb_node); 1570 inode = igrab(&entry->vfs_inode); 1571 if (inode) { 1572 spin_unlock(&root->inode_lock); 1573 return inode; 1574 } 1575 1576 objectid = btrfs_ino(entry) + 1; 1577 if (cond_resched_lock(&root->inode_lock)) 1578 goto again; 1579 1580 node = rb_next(node); 1581 } 1582 spin_unlock(&root->inode_lock); 1583 return NULL; 1584 } 1585 1586 static int in_block_group(u64 bytenr, 1587 struct btrfs_block_group_cache *block_group) 1588 { 1589 if (bytenr >= block_group->key.objectid && 1590 bytenr < block_group->key.objectid + block_group->key.offset) 1591 return 1; 1592 return 0; 1593 } 1594 1595 /* 1596 * get new location of data 1597 */ 1598 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1599 u64 bytenr, u64 num_bytes) 1600 { 1601 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1602 struct btrfs_path *path; 1603 struct btrfs_file_extent_item *fi; 1604 struct extent_buffer *leaf; 1605 int ret; 1606 1607 path = btrfs_alloc_path(); 1608 if (!path) 1609 return -ENOMEM; 1610 1611 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1612 ret = btrfs_lookup_file_extent(NULL, root, path, 1613 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 1614 if (ret < 0) 1615 goto out; 1616 if (ret > 0) { 1617 ret = -ENOENT; 1618 goto out; 1619 } 1620 1621 leaf = path->nodes[0]; 1622 fi = btrfs_item_ptr(leaf, path->slots[0], 1623 struct btrfs_file_extent_item); 1624 1625 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1626 btrfs_file_extent_compression(leaf, fi) || 1627 btrfs_file_extent_encryption(leaf, fi) || 1628 btrfs_file_extent_other_encoding(leaf, fi)); 1629 1630 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1631 ret = -EINVAL; 1632 goto out; 1633 } 1634 1635 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1636 ret = 0; 1637 out: 1638 btrfs_free_path(path); 1639 return ret; 1640 } 1641 1642 /* 1643 * update file extent items in the tree leaf to point to 1644 * the new locations. 1645 */ 1646 static noinline_for_stack 1647 int replace_file_extents(struct btrfs_trans_handle *trans, 1648 struct reloc_control *rc, 1649 struct btrfs_root *root, 1650 struct extent_buffer *leaf) 1651 { 1652 struct btrfs_fs_info *fs_info = root->fs_info; 1653 struct btrfs_key key; 1654 struct btrfs_file_extent_item *fi; 1655 struct inode *inode = NULL; 1656 u64 parent; 1657 u64 bytenr; 1658 u64 new_bytenr = 0; 1659 u64 num_bytes; 1660 u64 end; 1661 u32 nritems; 1662 u32 i; 1663 int ret = 0; 1664 int first = 1; 1665 int dirty = 0; 1666 1667 if (rc->stage != UPDATE_DATA_PTRS) 1668 return 0; 1669 1670 /* reloc trees always use full backref */ 1671 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1672 parent = leaf->start; 1673 else 1674 parent = 0; 1675 1676 nritems = btrfs_header_nritems(leaf); 1677 for (i = 0; i < nritems; i++) { 1678 cond_resched(); 1679 btrfs_item_key_to_cpu(leaf, &key, i); 1680 if (key.type != BTRFS_EXTENT_DATA_KEY) 1681 continue; 1682 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1683 if (btrfs_file_extent_type(leaf, fi) == 1684 BTRFS_FILE_EXTENT_INLINE) 1685 continue; 1686 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1687 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1688 if (bytenr == 0) 1689 continue; 1690 if (!in_block_group(bytenr, rc->block_group)) 1691 continue; 1692 1693 /* 1694 * if we are modifying block in fs tree, wait for readpage 1695 * to complete and drop the extent cache 1696 */ 1697 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1698 if (first) { 1699 inode = find_next_inode(root, key.objectid); 1700 first = 0; 1701 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1702 btrfs_add_delayed_iput(inode); 1703 inode = find_next_inode(root, key.objectid); 1704 } 1705 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1706 end = key.offset + 1707 btrfs_file_extent_num_bytes(leaf, fi); 1708 WARN_ON(!IS_ALIGNED(key.offset, 1709 fs_info->sectorsize)); 1710 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1711 end--; 1712 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1713 key.offset, end); 1714 if (!ret) 1715 continue; 1716 1717 btrfs_drop_extent_cache(BTRFS_I(inode), 1718 key.offset, end, 1); 1719 unlock_extent(&BTRFS_I(inode)->io_tree, 1720 key.offset, end); 1721 } 1722 } 1723 1724 ret = get_new_location(rc->data_inode, &new_bytenr, 1725 bytenr, num_bytes); 1726 if (ret) { 1727 /* 1728 * Don't have to abort since we've not changed anything 1729 * in the file extent yet. 1730 */ 1731 break; 1732 } 1733 1734 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1735 dirty = 1; 1736 1737 key.offset -= btrfs_file_extent_offset(leaf, fi); 1738 ret = btrfs_inc_extent_ref(trans, fs_info, new_bytenr, 1739 num_bytes, parent, 1740 btrfs_header_owner(leaf), 1741 key.objectid, key.offset); 1742 if (ret) { 1743 btrfs_abort_transaction(trans, ret); 1744 break; 1745 } 1746 1747 ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes, 1748 parent, btrfs_header_owner(leaf), 1749 key.objectid, key.offset); 1750 if (ret) { 1751 btrfs_abort_transaction(trans, ret); 1752 break; 1753 } 1754 } 1755 if (dirty) 1756 btrfs_mark_buffer_dirty(leaf); 1757 if (inode) 1758 btrfs_add_delayed_iput(inode); 1759 return ret; 1760 } 1761 1762 static noinline_for_stack 1763 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1764 struct btrfs_path *path, int level) 1765 { 1766 struct btrfs_disk_key key1; 1767 struct btrfs_disk_key key2; 1768 btrfs_node_key(eb, &key1, slot); 1769 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1770 return memcmp(&key1, &key2, sizeof(key1)); 1771 } 1772 1773 /* 1774 * try to replace tree blocks in fs tree with the new blocks 1775 * in reloc tree. tree blocks haven't been modified since the 1776 * reloc tree was create can be replaced. 1777 * 1778 * if a block was replaced, level of the block + 1 is returned. 1779 * if no block got replaced, 0 is returned. if there are other 1780 * errors, a negative error number is returned. 1781 */ 1782 static noinline_for_stack 1783 int replace_path(struct btrfs_trans_handle *trans, 1784 struct btrfs_root *dest, struct btrfs_root *src, 1785 struct btrfs_path *path, struct btrfs_key *next_key, 1786 int lowest_level, int max_level) 1787 { 1788 struct btrfs_fs_info *fs_info = dest->fs_info; 1789 struct extent_buffer *eb; 1790 struct extent_buffer *parent; 1791 struct btrfs_key key; 1792 u64 old_bytenr; 1793 u64 new_bytenr; 1794 u64 old_ptr_gen; 1795 u64 new_ptr_gen; 1796 u64 last_snapshot; 1797 u32 blocksize; 1798 int cow = 0; 1799 int level; 1800 int ret; 1801 int slot; 1802 1803 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1804 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1805 1806 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1807 again: 1808 slot = path->slots[lowest_level]; 1809 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1810 1811 eb = btrfs_lock_root_node(dest); 1812 btrfs_set_lock_blocking(eb); 1813 level = btrfs_header_level(eb); 1814 1815 if (level < lowest_level) { 1816 btrfs_tree_unlock(eb); 1817 free_extent_buffer(eb); 1818 return 0; 1819 } 1820 1821 if (cow) { 1822 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1823 BUG_ON(ret); 1824 } 1825 btrfs_set_lock_blocking(eb); 1826 1827 if (next_key) { 1828 next_key->objectid = (u64)-1; 1829 next_key->type = (u8)-1; 1830 next_key->offset = (u64)-1; 1831 } 1832 1833 parent = eb; 1834 while (1) { 1835 level = btrfs_header_level(parent); 1836 BUG_ON(level < lowest_level); 1837 1838 ret = btrfs_bin_search(parent, &key, level, &slot); 1839 if (ret && slot > 0) 1840 slot--; 1841 1842 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1843 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1844 1845 old_bytenr = btrfs_node_blockptr(parent, slot); 1846 blocksize = fs_info->nodesize; 1847 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1848 1849 if (level <= max_level) { 1850 eb = path->nodes[level]; 1851 new_bytenr = btrfs_node_blockptr(eb, 1852 path->slots[level]); 1853 new_ptr_gen = btrfs_node_ptr_generation(eb, 1854 path->slots[level]); 1855 } else { 1856 new_bytenr = 0; 1857 new_ptr_gen = 0; 1858 } 1859 1860 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1861 ret = level; 1862 break; 1863 } 1864 1865 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1866 memcmp_node_keys(parent, slot, path, level)) { 1867 if (level <= lowest_level) { 1868 ret = 0; 1869 break; 1870 } 1871 1872 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen); 1873 if (IS_ERR(eb)) { 1874 ret = PTR_ERR(eb); 1875 break; 1876 } else if (!extent_buffer_uptodate(eb)) { 1877 ret = -EIO; 1878 free_extent_buffer(eb); 1879 break; 1880 } 1881 btrfs_tree_lock(eb); 1882 if (cow) { 1883 ret = btrfs_cow_block(trans, dest, eb, parent, 1884 slot, &eb); 1885 BUG_ON(ret); 1886 } 1887 btrfs_set_lock_blocking(eb); 1888 1889 btrfs_tree_unlock(parent); 1890 free_extent_buffer(parent); 1891 1892 parent = eb; 1893 continue; 1894 } 1895 1896 if (!cow) { 1897 btrfs_tree_unlock(parent); 1898 free_extent_buffer(parent); 1899 cow = 1; 1900 goto again; 1901 } 1902 1903 btrfs_node_key_to_cpu(path->nodes[level], &key, 1904 path->slots[level]); 1905 btrfs_release_path(path); 1906 1907 path->lowest_level = level; 1908 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1909 path->lowest_level = 0; 1910 BUG_ON(ret); 1911 1912 /* 1913 * Info qgroup to trace both subtrees. 1914 * 1915 * We must trace both trees. 1916 * 1) Tree reloc subtree 1917 * If not traced, we will leak data numbers 1918 * 2) Fs subtree 1919 * If not traced, we will double count old data 1920 * and tree block numbers, if current trans doesn't free 1921 * data reloc tree inode. 1922 */ 1923 ret = btrfs_qgroup_trace_subtree(trans, src, parent, 1924 btrfs_header_generation(parent), 1925 btrfs_header_level(parent)); 1926 if (ret < 0) 1927 break; 1928 ret = btrfs_qgroup_trace_subtree(trans, dest, 1929 path->nodes[level], 1930 btrfs_header_generation(path->nodes[level]), 1931 btrfs_header_level(path->nodes[level])); 1932 if (ret < 0) 1933 break; 1934 1935 /* 1936 * swap blocks in fs tree and reloc tree. 1937 */ 1938 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1939 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1940 btrfs_mark_buffer_dirty(parent); 1941 1942 btrfs_set_node_blockptr(path->nodes[level], 1943 path->slots[level], old_bytenr); 1944 btrfs_set_node_ptr_generation(path->nodes[level], 1945 path->slots[level], old_ptr_gen); 1946 btrfs_mark_buffer_dirty(path->nodes[level]); 1947 1948 ret = btrfs_inc_extent_ref(trans, fs_info, old_bytenr, 1949 blocksize, path->nodes[level]->start, 1950 src->root_key.objectid, level - 1, 0); 1951 BUG_ON(ret); 1952 ret = btrfs_inc_extent_ref(trans, fs_info, new_bytenr, 1953 blocksize, 0, dest->root_key.objectid, 1954 level - 1, 0); 1955 BUG_ON(ret); 1956 1957 ret = btrfs_free_extent(trans, fs_info, new_bytenr, blocksize, 1958 path->nodes[level]->start, 1959 src->root_key.objectid, level - 1, 0); 1960 BUG_ON(ret); 1961 1962 ret = btrfs_free_extent(trans, fs_info, old_bytenr, blocksize, 1963 0, dest->root_key.objectid, level - 1, 1964 0); 1965 BUG_ON(ret); 1966 1967 btrfs_unlock_up_safe(path, 0); 1968 1969 ret = level; 1970 break; 1971 } 1972 btrfs_tree_unlock(parent); 1973 free_extent_buffer(parent); 1974 return ret; 1975 } 1976 1977 /* 1978 * helper to find next relocated block in reloc tree 1979 */ 1980 static noinline_for_stack 1981 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1982 int *level) 1983 { 1984 struct extent_buffer *eb; 1985 int i; 1986 u64 last_snapshot; 1987 u32 nritems; 1988 1989 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1990 1991 for (i = 0; i < *level; i++) { 1992 free_extent_buffer(path->nodes[i]); 1993 path->nodes[i] = NULL; 1994 } 1995 1996 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1997 eb = path->nodes[i]; 1998 nritems = btrfs_header_nritems(eb); 1999 while (path->slots[i] + 1 < nritems) { 2000 path->slots[i]++; 2001 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 2002 last_snapshot) 2003 continue; 2004 2005 *level = i; 2006 return 0; 2007 } 2008 free_extent_buffer(path->nodes[i]); 2009 path->nodes[i] = NULL; 2010 } 2011 return 1; 2012 } 2013 2014 /* 2015 * walk down reloc tree to find relocated block of lowest level 2016 */ 2017 static noinline_for_stack 2018 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 2019 int *level) 2020 { 2021 struct btrfs_fs_info *fs_info = root->fs_info; 2022 struct extent_buffer *eb = NULL; 2023 int i; 2024 u64 bytenr; 2025 u64 ptr_gen = 0; 2026 u64 last_snapshot; 2027 u32 nritems; 2028 2029 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2030 2031 for (i = *level; i > 0; i--) { 2032 eb = path->nodes[i]; 2033 nritems = btrfs_header_nritems(eb); 2034 while (path->slots[i] < nritems) { 2035 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 2036 if (ptr_gen > last_snapshot) 2037 break; 2038 path->slots[i]++; 2039 } 2040 if (path->slots[i] >= nritems) { 2041 if (i == *level) 2042 break; 2043 *level = i + 1; 2044 return 0; 2045 } 2046 if (i == 1) { 2047 *level = i; 2048 return 0; 2049 } 2050 2051 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 2052 eb = read_tree_block(fs_info, bytenr, ptr_gen); 2053 if (IS_ERR(eb)) { 2054 return PTR_ERR(eb); 2055 } else if (!extent_buffer_uptodate(eb)) { 2056 free_extent_buffer(eb); 2057 return -EIO; 2058 } 2059 BUG_ON(btrfs_header_level(eb) != i - 1); 2060 path->nodes[i - 1] = eb; 2061 path->slots[i - 1] = 0; 2062 } 2063 return 1; 2064 } 2065 2066 /* 2067 * invalidate extent cache for file extents whose key in range of 2068 * [min_key, max_key) 2069 */ 2070 static int invalidate_extent_cache(struct btrfs_root *root, 2071 struct btrfs_key *min_key, 2072 struct btrfs_key *max_key) 2073 { 2074 struct btrfs_fs_info *fs_info = root->fs_info; 2075 struct inode *inode = NULL; 2076 u64 objectid; 2077 u64 start, end; 2078 u64 ino; 2079 2080 objectid = min_key->objectid; 2081 while (1) { 2082 cond_resched(); 2083 iput(inode); 2084 2085 if (objectid > max_key->objectid) 2086 break; 2087 2088 inode = find_next_inode(root, objectid); 2089 if (!inode) 2090 break; 2091 ino = btrfs_ino(BTRFS_I(inode)); 2092 2093 if (ino > max_key->objectid) { 2094 iput(inode); 2095 break; 2096 } 2097 2098 objectid = ino + 1; 2099 if (!S_ISREG(inode->i_mode)) 2100 continue; 2101 2102 if (unlikely(min_key->objectid == ino)) { 2103 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 2104 continue; 2105 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 2106 start = 0; 2107 else { 2108 start = min_key->offset; 2109 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 2110 } 2111 } else { 2112 start = 0; 2113 } 2114 2115 if (unlikely(max_key->objectid == ino)) { 2116 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 2117 continue; 2118 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 2119 end = (u64)-1; 2120 } else { 2121 if (max_key->offset == 0) 2122 continue; 2123 end = max_key->offset; 2124 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 2125 end--; 2126 } 2127 } else { 2128 end = (u64)-1; 2129 } 2130 2131 /* the lock_extent waits for readpage to complete */ 2132 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2133 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1); 2134 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2135 } 2136 return 0; 2137 } 2138 2139 static int find_next_key(struct btrfs_path *path, int level, 2140 struct btrfs_key *key) 2141 2142 { 2143 while (level < BTRFS_MAX_LEVEL) { 2144 if (!path->nodes[level]) 2145 break; 2146 if (path->slots[level] + 1 < 2147 btrfs_header_nritems(path->nodes[level])) { 2148 btrfs_node_key_to_cpu(path->nodes[level], key, 2149 path->slots[level] + 1); 2150 return 0; 2151 } 2152 level++; 2153 } 2154 return 1; 2155 } 2156 2157 /* 2158 * merge the relocated tree blocks in reloc tree with corresponding 2159 * fs tree. 2160 */ 2161 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 2162 struct btrfs_root *root) 2163 { 2164 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2165 LIST_HEAD(inode_list); 2166 struct btrfs_key key; 2167 struct btrfs_key next_key; 2168 struct btrfs_trans_handle *trans = NULL; 2169 struct btrfs_root *reloc_root; 2170 struct btrfs_root_item *root_item; 2171 struct btrfs_path *path; 2172 struct extent_buffer *leaf; 2173 int level; 2174 int max_level; 2175 int replaced = 0; 2176 int ret; 2177 int err = 0; 2178 u32 min_reserved; 2179 2180 path = btrfs_alloc_path(); 2181 if (!path) 2182 return -ENOMEM; 2183 path->reada = READA_FORWARD; 2184 2185 reloc_root = root->reloc_root; 2186 root_item = &reloc_root->root_item; 2187 2188 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2189 level = btrfs_root_level(root_item); 2190 extent_buffer_get(reloc_root->node); 2191 path->nodes[level] = reloc_root->node; 2192 path->slots[level] = 0; 2193 } else { 2194 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2195 2196 level = root_item->drop_level; 2197 BUG_ON(level == 0); 2198 path->lowest_level = level; 2199 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2200 path->lowest_level = 0; 2201 if (ret < 0) { 2202 btrfs_free_path(path); 2203 return ret; 2204 } 2205 2206 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2207 path->slots[level]); 2208 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2209 2210 btrfs_unlock_up_safe(path, 0); 2211 } 2212 2213 min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2214 memset(&next_key, 0, sizeof(next_key)); 2215 2216 while (1) { 2217 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 2218 BTRFS_RESERVE_FLUSH_ALL); 2219 if (ret) { 2220 err = ret; 2221 goto out; 2222 } 2223 trans = btrfs_start_transaction(root, 0); 2224 if (IS_ERR(trans)) { 2225 err = PTR_ERR(trans); 2226 trans = NULL; 2227 goto out; 2228 } 2229 trans->block_rsv = rc->block_rsv; 2230 2231 replaced = 0; 2232 max_level = level; 2233 2234 ret = walk_down_reloc_tree(reloc_root, path, &level); 2235 if (ret < 0) { 2236 err = ret; 2237 goto out; 2238 } 2239 if (ret > 0) 2240 break; 2241 2242 if (!find_next_key(path, level, &key) && 2243 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2244 ret = 0; 2245 } else { 2246 ret = replace_path(trans, root, reloc_root, path, 2247 &next_key, level, max_level); 2248 } 2249 if (ret < 0) { 2250 err = ret; 2251 goto out; 2252 } 2253 2254 if (ret > 0) { 2255 level = ret; 2256 btrfs_node_key_to_cpu(path->nodes[level], &key, 2257 path->slots[level]); 2258 replaced = 1; 2259 } 2260 2261 ret = walk_up_reloc_tree(reloc_root, path, &level); 2262 if (ret > 0) 2263 break; 2264 2265 BUG_ON(level == 0); 2266 /* 2267 * save the merging progress in the drop_progress. 2268 * this is OK since root refs == 1 in this case. 2269 */ 2270 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2271 path->slots[level]); 2272 root_item->drop_level = level; 2273 2274 btrfs_end_transaction_throttle(trans); 2275 trans = NULL; 2276 2277 btrfs_btree_balance_dirty(fs_info); 2278 2279 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2280 invalidate_extent_cache(root, &key, &next_key); 2281 } 2282 2283 /* 2284 * handle the case only one block in the fs tree need to be 2285 * relocated and the block is tree root. 2286 */ 2287 leaf = btrfs_lock_root_node(root); 2288 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2289 btrfs_tree_unlock(leaf); 2290 free_extent_buffer(leaf); 2291 if (ret < 0) 2292 err = ret; 2293 out: 2294 btrfs_free_path(path); 2295 2296 if (err == 0) { 2297 memset(&root_item->drop_progress, 0, 2298 sizeof(root_item->drop_progress)); 2299 root_item->drop_level = 0; 2300 btrfs_set_root_refs(root_item, 0); 2301 btrfs_update_reloc_root(trans, root); 2302 } 2303 2304 if (trans) 2305 btrfs_end_transaction_throttle(trans); 2306 2307 btrfs_btree_balance_dirty(fs_info); 2308 2309 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2310 invalidate_extent_cache(root, &key, &next_key); 2311 2312 return err; 2313 } 2314 2315 static noinline_for_stack 2316 int prepare_to_merge(struct reloc_control *rc, int err) 2317 { 2318 struct btrfs_root *root = rc->extent_root; 2319 struct btrfs_fs_info *fs_info = root->fs_info; 2320 struct btrfs_root *reloc_root; 2321 struct btrfs_trans_handle *trans; 2322 LIST_HEAD(reloc_roots); 2323 u64 num_bytes = 0; 2324 int ret; 2325 2326 mutex_lock(&fs_info->reloc_mutex); 2327 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2328 rc->merging_rsv_size += rc->nodes_relocated * 2; 2329 mutex_unlock(&fs_info->reloc_mutex); 2330 2331 again: 2332 if (!err) { 2333 num_bytes = rc->merging_rsv_size; 2334 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2335 BTRFS_RESERVE_FLUSH_ALL); 2336 if (ret) 2337 err = ret; 2338 } 2339 2340 trans = btrfs_join_transaction(rc->extent_root); 2341 if (IS_ERR(trans)) { 2342 if (!err) 2343 btrfs_block_rsv_release(fs_info, rc->block_rsv, 2344 num_bytes); 2345 return PTR_ERR(trans); 2346 } 2347 2348 if (!err) { 2349 if (num_bytes != rc->merging_rsv_size) { 2350 btrfs_end_transaction(trans); 2351 btrfs_block_rsv_release(fs_info, rc->block_rsv, 2352 num_bytes); 2353 goto again; 2354 } 2355 } 2356 2357 rc->merge_reloc_tree = 1; 2358 2359 while (!list_empty(&rc->reloc_roots)) { 2360 reloc_root = list_entry(rc->reloc_roots.next, 2361 struct btrfs_root, root_list); 2362 list_del_init(&reloc_root->root_list); 2363 2364 root = read_fs_root(fs_info, reloc_root->root_key.offset); 2365 BUG_ON(IS_ERR(root)); 2366 BUG_ON(root->reloc_root != reloc_root); 2367 2368 /* 2369 * set reference count to 1, so btrfs_recover_relocation 2370 * knows it should resumes merging 2371 */ 2372 if (!err) 2373 btrfs_set_root_refs(&reloc_root->root_item, 1); 2374 btrfs_update_reloc_root(trans, root); 2375 2376 list_add(&reloc_root->root_list, &reloc_roots); 2377 } 2378 2379 list_splice(&reloc_roots, &rc->reloc_roots); 2380 2381 if (!err) 2382 btrfs_commit_transaction(trans); 2383 else 2384 btrfs_end_transaction(trans); 2385 return err; 2386 } 2387 2388 static noinline_for_stack 2389 void free_reloc_roots(struct list_head *list) 2390 { 2391 struct btrfs_root *reloc_root; 2392 2393 while (!list_empty(list)) { 2394 reloc_root = list_entry(list->next, struct btrfs_root, 2395 root_list); 2396 free_extent_buffer(reloc_root->node); 2397 free_extent_buffer(reloc_root->commit_root); 2398 reloc_root->node = NULL; 2399 reloc_root->commit_root = NULL; 2400 __del_reloc_root(reloc_root); 2401 } 2402 } 2403 2404 static noinline_for_stack 2405 void merge_reloc_roots(struct reloc_control *rc) 2406 { 2407 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2408 struct btrfs_root *root; 2409 struct btrfs_root *reloc_root; 2410 LIST_HEAD(reloc_roots); 2411 int found = 0; 2412 int ret = 0; 2413 again: 2414 root = rc->extent_root; 2415 2416 /* 2417 * this serializes us with btrfs_record_root_in_transaction, 2418 * we have to make sure nobody is in the middle of 2419 * adding their roots to the list while we are 2420 * doing this splice 2421 */ 2422 mutex_lock(&fs_info->reloc_mutex); 2423 list_splice_init(&rc->reloc_roots, &reloc_roots); 2424 mutex_unlock(&fs_info->reloc_mutex); 2425 2426 while (!list_empty(&reloc_roots)) { 2427 found = 1; 2428 reloc_root = list_entry(reloc_roots.next, 2429 struct btrfs_root, root_list); 2430 2431 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2432 root = read_fs_root(fs_info, 2433 reloc_root->root_key.offset); 2434 BUG_ON(IS_ERR(root)); 2435 BUG_ON(root->reloc_root != reloc_root); 2436 2437 ret = merge_reloc_root(rc, root); 2438 if (ret) { 2439 if (list_empty(&reloc_root->root_list)) 2440 list_add_tail(&reloc_root->root_list, 2441 &reloc_roots); 2442 goto out; 2443 } 2444 } else { 2445 list_del_init(&reloc_root->root_list); 2446 } 2447 2448 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1); 2449 if (ret < 0) { 2450 if (list_empty(&reloc_root->root_list)) 2451 list_add_tail(&reloc_root->root_list, 2452 &reloc_roots); 2453 goto out; 2454 } 2455 } 2456 2457 if (found) { 2458 found = 0; 2459 goto again; 2460 } 2461 out: 2462 if (ret) { 2463 btrfs_handle_fs_error(fs_info, ret, NULL); 2464 if (!list_empty(&reloc_roots)) 2465 free_reloc_roots(&reloc_roots); 2466 2467 /* new reloc root may be added */ 2468 mutex_lock(&fs_info->reloc_mutex); 2469 list_splice_init(&rc->reloc_roots, &reloc_roots); 2470 mutex_unlock(&fs_info->reloc_mutex); 2471 if (!list_empty(&reloc_roots)) 2472 free_reloc_roots(&reloc_roots); 2473 } 2474 2475 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2476 } 2477 2478 static void free_block_list(struct rb_root *blocks) 2479 { 2480 struct tree_block *block; 2481 struct rb_node *rb_node; 2482 while ((rb_node = rb_first(blocks))) { 2483 block = rb_entry(rb_node, struct tree_block, rb_node); 2484 rb_erase(rb_node, blocks); 2485 kfree(block); 2486 } 2487 } 2488 2489 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2490 struct btrfs_root *reloc_root) 2491 { 2492 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 2493 struct btrfs_root *root; 2494 2495 if (reloc_root->last_trans == trans->transid) 2496 return 0; 2497 2498 root = read_fs_root(fs_info, reloc_root->root_key.offset); 2499 BUG_ON(IS_ERR(root)); 2500 BUG_ON(root->reloc_root != reloc_root); 2501 2502 return btrfs_record_root_in_trans(trans, root); 2503 } 2504 2505 static noinline_for_stack 2506 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2507 struct reloc_control *rc, 2508 struct backref_node *node, 2509 struct backref_edge *edges[]) 2510 { 2511 struct backref_node *next; 2512 struct btrfs_root *root; 2513 int index = 0; 2514 2515 next = node; 2516 while (1) { 2517 cond_resched(); 2518 next = walk_up_backref(next, edges, &index); 2519 root = next->root; 2520 BUG_ON(!root); 2521 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state)); 2522 2523 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2524 record_reloc_root_in_trans(trans, root); 2525 break; 2526 } 2527 2528 btrfs_record_root_in_trans(trans, root); 2529 root = root->reloc_root; 2530 2531 if (next->new_bytenr != root->node->start) { 2532 BUG_ON(next->new_bytenr); 2533 BUG_ON(!list_empty(&next->list)); 2534 next->new_bytenr = root->node->start; 2535 next->root = root; 2536 list_add_tail(&next->list, 2537 &rc->backref_cache.changed); 2538 __mark_block_processed(rc, next); 2539 break; 2540 } 2541 2542 WARN_ON(1); 2543 root = NULL; 2544 next = walk_down_backref(edges, &index); 2545 if (!next || next->level <= node->level) 2546 break; 2547 } 2548 if (!root) 2549 return NULL; 2550 2551 next = node; 2552 /* setup backref node path for btrfs_reloc_cow_block */ 2553 while (1) { 2554 rc->backref_cache.path[next->level] = next; 2555 if (--index < 0) 2556 break; 2557 next = edges[index]->node[UPPER]; 2558 } 2559 return root; 2560 } 2561 2562 /* 2563 * select a tree root for relocation. return NULL if the block 2564 * is reference counted. we should use do_relocation() in this 2565 * case. return a tree root pointer if the block isn't reference 2566 * counted. return -ENOENT if the block is root of reloc tree. 2567 */ 2568 static noinline_for_stack 2569 struct btrfs_root *select_one_root(struct backref_node *node) 2570 { 2571 struct backref_node *next; 2572 struct btrfs_root *root; 2573 struct btrfs_root *fs_root = NULL; 2574 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2575 int index = 0; 2576 2577 next = node; 2578 while (1) { 2579 cond_resched(); 2580 next = walk_up_backref(next, edges, &index); 2581 root = next->root; 2582 BUG_ON(!root); 2583 2584 /* no other choice for non-references counted tree */ 2585 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 2586 return root; 2587 2588 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2589 fs_root = root; 2590 2591 if (next != node) 2592 return NULL; 2593 2594 next = walk_down_backref(edges, &index); 2595 if (!next || next->level <= node->level) 2596 break; 2597 } 2598 2599 if (!fs_root) 2600 return ERR_PTR(-ENOENT); 2601 return fs_root; 2602 } 2603 2604 static noinline_for_stack 2605 u64 calcu_metadata_size(struct reloc_control *rc, 2606 struct backref_node *node, int reserve) 2607 { 2608 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2609 struct backref_node *next = node; 2610 struct backref_edge *edge; 2611 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2612 u64 num_bytes = 0; 2613 int index = 0; 2614 2615 BUG_ON(reserve && node->processed); 2616 2617 while (next) { 2618 cond_resched(); 2619 while (1) { 2620 if (next->processed && (reserve || next != node)) 2621 break; 2622 2623 num_bytes += fs_info->nodesize; 2624 2625 if (list_empty(&next->upper)) 2626 break; 2627 2628 edge = list_entry(next->upper.next, 2629 struct backref_edge, list[LOWER]); 2630 edges[index++] = edge; 2631 next = edge->node[UPPER]; 2632 } 2633 next = walk_down_backref(edges, &index); 2634 } 2635 return num_bytes; 2636 } 2637 2638 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2639 struct reloc_control *rc, 2640 struct backref_node *node) 2641 { 2642 struct btrfs_root *root = rc->extent_root; 2643 struct btrfs_fs_info *fs_info = root->fs_info; 2644 u64 num_bytes; 2645 int ret; 2646 u64 tmp; 2647 2648 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2649 2650 trans->block_rsv = rc->block_rsv; 2651 rc->reserved_bytes += num_bytes; 2652 2653 /* 2654 * We are under a transaction here so we can only do limited flushing. 2655 * If we get an enospc just kick back -EAGAIN so we know to drop the 2656 * transaction and try to refill when we can flush all the things. 2657 */ 2658 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2659 BTRFS_RESERVE_FLUSH_LIMIT); 2660 if (ret) { 2661 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2662 while (tmp <= rc->reserved_bytes) 2663 tmp <<= 1; 2664 /* 2665 * only one thread can access block_rsv at this point, 2666 * so we don't need hold lock to protect block_rsv. 2667 * we expand more reservation size here to allow enough 2668 * space for relocation and we will return eailer in 2669 * enospc case. 2670 */ 2671 rc->block_rsv->size = tmp + fs_info->nodesize * 2672 RELOCATION_RESERVED_NODES; 2673 return -EAGAIN; 2674 } 2675 2676 return 0; 2677 } 2678 2679 /* 2680 * relocate a block tree, and then update pointers in upper level 2681 * blocks that reference the block to point to the new location. 2682 * 2683 * if called by link_to_upper, the block has already been relocated. 2684 * in that case this function just updates pointers. 2685 */ 2686 static int do_relocation(struct btrfs_trans_handle *trans, 2687 struct reloc_control *rc, 2688 struct backref_node *node, 2689 struct btrfs_key *key, 2690 struct btrfs_path *path, int lowest) 2691 { 2692 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2693 struct backref_node *upper; 2694 struct backref_edge *edge; 2695 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2696 struct btrfs_root *root; 2697 struct extent_buffer *eb; 2698 u32 blocksize; 2699 u64 bytenr; 2700 u64 generation; 2701 int slot; 2702 int ret; 2703 int err = 0; 2704 2705 BUG_ON(lowest && node->eb); 2706 2707 path->lowest_level = node->level + 1; 2708 rc->backref_cache.path[node->level] = node; 2709 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2710 cond_resched(); 2711 2712 upper = edge->node[UPPER]; 2713 root = select_reloc_root(trans, rc, upper, edges); 2714 BUG_ON(!root); 2715 2716 if (upper->eb && !upper->locked) { 2717 if (!lowest) { 2718 ret = btrfs_bin_search(upper->eb, key, 2719 upper->level, &slot); 2720 BUG_ON(ret); 2721 bytenr = btrfs_node_blockptr(upper->eb, slot); 2722 if (node->eb->start == bytenr) 2723 goto next; 2724 } 2725 drop_node_buffer(upper); 2726 } 2727 2728 if (!upper->eb) { 2729 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2730 if (ret) { 2731 if (ret < 0) 2732 err = ret; 2733 else 2734 err = -ENOENT; 2735 2736 btrfs_release_path(path); 2737 break; 2738 } 2739 2740 if (!upper->eb) { 2741 upper->eb = path->nodes[upper->level]; 2742 path->nodes[upper->level] = NULL; 2743 } else { 2744 BUG_ON(upper->eb != path->nodes[upper->level]); 2745 } 2746 2747 upper->locked = 1; 2748 path->locks[upper->level] = 0; 2749 2750 slot = path->slots[upper->level]; 2751 btrfs_release_path(path); 2752 } else { 2753 ret = btrfs_bin_search(upper->eb, key, upper->level, 2754 &slot); 2755 BUG_ON(ret); 2756 } 2757 2758 bytenr = btrfs_node_blockptr(upper->eb, slot); 2759 if (lowest) { 2760 if (bytenr != node->bytenr) { 2761 btrfs_err(root->fs_info, 2762 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2763 bytenr, node->bytenr, slot, 2764 upper->eb->start); 2765 err = -EIO; 2766 goto next; 2767 } 2768 } else { 2769 if (node->eb->start == bytenr) 2770 goto next; 2771 } 2772 2773 blocksize = root->fs_info->nodesize; 2774 generation = btrfs_node_ptr_generation(upper->eb, slot); 2775 eb = read_tree_block(fs_info, bytenr, generation); 2776 if (IS_ERR(eb)) { 2777 err = PTR_ERR(eb); 2778 goto next; 2779 } else if (!extent_buffer_uptodate(eb)) { 2780 free_extent_buffer(eb); 2781 err = -EIO; 2782 goto next; 2783 } 2784 btrfs_tree_lock(eb); 2785 btrfs_set_lock_blocking(eb); 2786 2787 if (!node->eb) { 2788 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2789 slot, &eb); 2790 btrfs_tree_unlock(eb); 2791 free_extent_buffer(eb); 2792 if (ret < 0) { 2793 err = ret; 2794 goto next; 2795 } 2796 BUG_ON(node->eb != eb); 2797 } else { 2798 btrfs_set_node_blockptr(upper->eb, slot, 2799 node->eb->start); 2800 btrfs_set_node_ptr_generation(upper->eb, slot, 2801 trans->transid); 2802 btrfs_mark_buffer_dirty(upper->eb); 2803 2804 ret = btrfs_inc_extent_ref(trans, root->fs_info, 2805 node->eb->start, blocksize, 2806 upper->eb->start, 2807 btrfs_header_owner(upper->eb), 2808 node->level, 0); 2809 BUG_ON(ret); 2810 2811 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2812 BUG_ON(ret); 2813 } 2814 next: 2815 if (!upper->pending) 2816 drop_node_buffer(upper); 2817 else 2818 unlock_node_buffer(upper); 2819 if (err) 2820 break; 2821 } 2822 2823 if (!err && node->pending) { 2824 drop_node_buffer(node); 2825 list_move_tail(&node->list, &rc->backref_cache.changed); 2826 node->pending = 0; 2827 } 2828 2829 path->lowest_level = 0; 2830 BUG_ON(err == -ENOSPC); 2831 return err; 2832 } 2833 2834 static int link_to_upper(struct btrfs_trans_handle *trans, 2835 struct reloc_control *rc, 2836 struct backref_node *node, 2837 struct btrfs_path *path) 2838 { 2839 struct btrfs_key key; 2840 2841 btrfs_node_key_to_cpu(node->eb, &key, 0); 2842 return do_relocation(trans, rc, node, &key, path, 0); 2843 } 2844 2845 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2846 struct reloc_control *rc, 2847 struct btrfs_path *path, int err) 2848 { 2849 LIST_HEAD(list); 2850 struct backref_cache *cache = &rc->backref_cache; 2851 struct backref_node *node; 2852 int level; 2853 int ret; 2854 2855 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2856 while (!list_empty(&cache->pending[level])) { 2857 node = list_entry(cache->pending[level].next, 2858 struct backref_node, list); 2859 list_move_tail(&node->list, &list); 2860 BUG_ON(!node->pending); 2861 2862 if (!err) { 2863 ret = link_to_upper(trans, rc, node, path); 2864 if (ret < 0) 2865 err = ret; 2866 } 2867 } 2868 list_splice_init(&list, &cache->pending[level]); 2869 } 2870 return err; 2871 } 2872 2873 static void mark_block_processed(struct reloc_control *rc, 2874 u64 bytenr, u32 blocksize) 2875 { 2876 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2877 EXTENT_DIRTY); 2878 } 2879 2880 static void __mark_block_processed(struct reloc_control *rc, 2881 struct backref_node *node) 2882 { 2883 u32 blocksize; 2884 if (node->level == 0 || 2885 in_block_group(node->bytenr, rc->block_group)) { 2886 blocksize = rc->extent_root->fs_info->nodesize; 2887 mark_block_processed(rc, node->bytenr, blocksize); 2888 } 2889 node->processed = 1; 2890 } 2891 2892 /* 2893 * mark a block and all blocks directly/indirectly reference the block 2894 * as processed. 2895 */ 2896 static void update_processed_blocks(struct reloc_control *rc, 2897 struct backref_node *node) 2898 { 2899 struct backref_node *next = node; 2900 struct backref_edge *edge; 2901 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2902 int index = 0; 2903 2904 while (next) { 2905 cond_resched(); 2906 while (1) { 2907 if (next->processed) 2908 break; 2909 2910 __mark_block_processed(rc, next); 2911 2912 if (list_empty(&next->upper)) 2913 break; 2914 2915 edge = list_entry(next->upper.next, 2916 struct backref_edge, list[LOWER]); 2917 edges[index++] = edge; 2918 next = edge->node[UPPER]; 2919 } 2920 next = walk_down_backref(edges, &index); 2921 } 2922 } 2923 2924 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2925 { 2926 u32 blocksize = rc->extent_root->fs_info->nodesize; 2927 2928 if (test_range_bit(&rc->processed_blocks, bytenr, 2929 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2930 return 1; 2931 return 0; 2932 } 2933 2934 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2935 struct tree_block *block) 2936 { 2937 struct extent_buffer *eb; 2938 2939 BUG_ON(block->key_ready); 2940 eb = read_tree_block(fs_info, block->bytenr, block->key.offset); 2941 if (IS_ERR(eb)) { 2942 return PTR_ERR(eb); 2943 } else if (!extent_buffer_uptodate(eb)) { 2944 free_extent_buffer(eb); 2945 return -EIO; 2946 } 2947 WARN_ON(btrfs_header_level(eb) != block->level); 2948 if (block->level == 0) 2949 btrfs_item_key_to_cpu(eb, &block->key, 0); 2950 else 2951 btrfs_node_key_to_cpu(eb, &block->key, 0); 2952 free_extent_buffer(eb); 2953 block->key_ready = 1; 2954 return 0; 2955 } 2956 2957 /* 2958 * helper function to relocate a tree block 2959 */ 2960 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2961 struct reloc_control *rc, 2962 struct backref_node *node, 2963 struct btrfs_key *key, 2964 struct btrfs_path *path) 2965 { 2966 struct btrfs_root *root; 2967 int ret = 0; 2968 2969 if (!node) 2970 return 0; 2971 2972 BUG_ON(node->processed); 2973 root = select_one_root(node); 2974 if (root == ERR_PTR(-ENOENT)) { 2975 update_processed_blocks(rc, node); 2976 goto out; 2977 } 2978 2979 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 2980 ret = reserve_metadata_space(trans, rc, node); 2981 if (ret) 2982 goto out; 2983 } 2984 2985 if (root) { 2986 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 2987 BUG_ON(node->new_bytenr); 2988 BUG_ON(!list_empty(&node->list)); 2989 btrfs_record_root_in_trans(trans, root); 2990 root = root->reloc_root; 2991 node->new_bytenr = root->node->start; 2992 node->root = root; 2993 list_add_tail(&node->list, &rc->backref_cache.changed); 2994 } else { 2995 path->lowest_level = node->level; 2996 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2997 btrfs_release_path(path); 2998 if (ret > 0) 2999 ret = 0; 3000 } 3001 if (!ret) 3002 update_processed_blocks(rc, node); 3003 } else { 3004 ret = do_relocation(trans, rc, node, key, path, 1); 3005 } 3006 out: 3007 if (ret || node->level == 0 || node->cowonly) 3008 remove_backref_node(&rc->backref_cache, node); 3009 return ret; 3010 } 3011 3012 /* 3013 * relocate a list of blocks 3014 */ 3015 static noinline_for_stack 3016 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 3017 struct reloc_control *rc, struct rb_root *blocks) 3018 { 3019 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3020 struct backref_node *node; 3021 struct btrfs_path *path; 3022 struct tree_block *block; 3023 struct rb_node *rb_node; 3024 int ret; 3025 int err = 0; 3026 3027 path = btrfs_alloc_path(); 3028 if (!path) { 3029 err = -ENOMEM; 3030 goto out_free_blocks; 3031 } 3032 3033 rb_node = rb_first(blocks); 3034 while (rb_node) { 3035 block = rb_entry(rb_node, struct tree_block, rb_node); 3036 if (!block->key_ready) 3037 readahead_tree_block(fs_info, block->bytenr); 3038 rb_node = rb_next(rb_node); 3039 } 3040 3041 rb_node = rb_first(blocks); 3042 while (rb_node) { 3043 block = rb_entry(rb_node, struct tree_block, rb_node); 3044 if (!block->key_ready) { 3045 err = get_tree_block_key(fs_info, block); 3046 if (err) 3047 goto out_free_path; 3048 } 3049 rb_node = rb_next(rb_node); 3050 } 3051 3052 rb_node = rb_first(blocks); 3053 while (rb_node) { 3054 block = rb_entry(rb_node, struct tree_block, rb_node); 3055 3056 node = build_backref_tree(rc, &block->key, 3057 block->level, block->bytenr); 3058 if (IS_ERR(node)) { 3059 err = PTR_ERR(node); 3060 goto out; 3061 } 3062 3063 ret = relocate_tree_block(trans, rc, node, &block->key, 3064 path); 3065 if (ret < 0) { 3066 if (ret != -EAGAIN || rb_node == rb_first(blocks)) 3067 err = ret; 3068 goto out; 3069 } 3070 rb_node = rb_next(rb_node); 3071 } 3072 out: 3073 err = finish_pending_nodes(trans, rc, path, err); 3074 3075 out_free_path: 3076 btrfs_free_path(path); 3077 out_free_blocks: 3078 free_block_list(blocks); 3079 return err; 3080 } 3081 3082 static noinline_for_stack 3083 int prealloc_file_extent_cluster(struct inode *inode, 3084 struct file_extent_cluster *cluster) 3085 { 3086 u64 alloc_hint = 0; 3087 u64 start; 3088 u64 end; 3089 u64 offset = BTRFS_I(inode)->index_cnt; 3090 u64 num_bytes; 3091 int nr = 0; 3092 int ret = 0; 3093 u64 prealloc_start = cluster->start - offset; 3094 u64 prealloc_end = cluster->end - offset; 3095 u64 cur_offset; 3096 struct extent_changeset *data_reserved = NULL; 3097 3098 BUG_ON(cluster->start != cluster->boundary[0]); 3099 inode_lock(inode); 3100 3101 ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start, 3102 prealloc_end + 1 - prealloc_start); 3103 if (ret) 3104 goto out; 3105 3106 cur_offset = prealloc_start; 3107 while (nr < cluster->nr) { 3108 start = cluster->boundary[nr] - offset; 3109 if (nr + 1 < cluster->nr) 3110 end = cluster->boundary[nr + 1] - 1 - offset; 3111 else 3112 end = cluster->end - offset; 3113 3114 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3115 num_bytes = end + 1 - start; 3116 if (cur_offset < start) 3117 btrfs_free_reserved_data_space(inode, data_reserved, 3118 cur_offset, start - cur_offset); 3119 ret = btrfs_prealloc_file_range(inode, 0, start, 3120 num_bytes, num_bytes, 3121 end + 1, &alloc_hint); 3122 cur_offset = end + 1; 3123 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3124 if (ret) 3125 break; 3126 nr++; 3127 } 3128 if (cur_offset < prealloc_end) 3129 btrfs_free_reserved_data_space(inode, data_reserved, 3130 cur_offset, prealloc_end + 1 - cur_offset); 3131 out: 3132 inode_unlock(inode); 3133 extent_changeset_free(data_reserved); 3134 return ret; 3135 } 3136 3137 static noinline_for_stack 3138 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 3139 u64 block_start) 3140 { 3141 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3142 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3143 struct extent_map *em; 3144 int ret = 0; 3145 3146 em = alloc_extent_map(); 3147 if (!em) 3148 return -ENOMEM; 3149 3150 em->start = start; 3151 em->len = end + 1 - start; 3152 em->block_len = em->len; 3153 em->block_start = block_start; 3154 em->bdev = fs_info->fs_devices->latest_bdev; 3155 set_bit(EXTENT_FLAG_PINNED, &em->flags); 3156 3157 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3158 while (1) { 3159 write_lock(&em_tree->lock); 3160 ret = add_extent_mapping(em_tree, em, 0); 3161 write_unlock(&em_tree->lock); 3162 if (ret != -EEXIST) { 3163 free_extent_map(em); 3164 break; 3165 } 3166 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3167 } 3168 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3169 return ret; 3170 } 3171 3172 static int relocate_file_extent_cluster(struct inode *inode, 3173 struct file_extent_cluster *cluster) 3174 { 3175 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3176 u64 page_start; 3177 u64 page_end; 3178 u64 offset = BTRFS_I(inode)->index_cnt; 3179 unsigned long index; 3180 unsigned long last_index; 3181 struct page *page; 3182 struct file_ra_state *ra; 3183 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 3184 int nr = 0; 3185 int ret = 0; 3186 3187 if (!cluster->nr) 3188 return 0; 3189 3190 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3191 if (!ra) 3192 return -ENOMEM; 3193 3194 ret = prealloc_file_extent_cluster(inode, cluster); 3195 if (ret) 3196 goto out; 3197 3198 file_ra_state_init(ra, inode->i_mapping); 3199 3200 ret = setup_extent_mapping(inode, cluster->start - offset, 3201 cluster->end - offset, cluster->start); 3202 if (ret) 3203 goto out; 3204 3205 index = (cluster->start - offset) >> PAGE_SHIFT; 3206 last_index = (cluster->end - offset) >> PAGE_SHIFT; 3207 while (index <= last_index) { 3208 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 3209 PAGE_SIZE); 3210 if (ret) 3211 goto out; 3212 3213 page = find_lock_page(inode->i_mapping, index); 3214 if (!page) { 3215 page_cache_sync_readahead(inode->i_mapping, 3216 ra, NULL, index, 3217 last_index + 1 - index); 3218 page = find_or_create_page(inode->i_mapping, index, 3219 mask); 3220 if (!page) { 3221 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3222 PAGE_SIZE); 3223 ret = -ENOMEM; 3224 goto out; 3225 } 3226 } 3227 3228 if (PageReadahead(page)) { 3229 page_cache_async_readahead(inode->i_mapping, 3230 ra, NULL, page, index, 3231 last_index + 1 - index); 3232 } 3233 3234 if (!PageUptodate(page)) { 3235 btrfs_readpage(NULL, page); 3236 lock_page(page); 3237 if (!PageUptodate(page)) { 3238 unlock_page(page); 3239 put_page(page); 3240 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3241 PAGE_SIZE); 3242 ret = -EIO; 3243 goto out; 3244 } 3245 } 3246 3247 page_start = page_offset(page); 3248 page_end = page_start + PAGE_SIZE - 1; 3249 3250 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 3251 3252 set_page_extent_mapped(page); 3253 3254 if (nr < cluster->nr && 3255 page_start + offset == cluster->boundary[nr]) { 3256 set_extent_bits(&BTRFS_I(inode)->io_tree, 3257 page_start, page_end, 3258 EXTENT_BOUNDARY); 3259 nr++; 3260 } 3261 3262 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL, 0); 3263 set_page_dirty(page); 3264 3265 unlock_extent(&BTRFS_I(inode)->io_tree, 3266 page_start, page_end); 3267 unlock_page(page); 3268 put_page(page); 3269 3270 index++; 3271 balance_dirty_pages_ratelimited(inode->i_mapping); 3272 btrfs_throttle(fs_info); 3273 } 3274 WARN_ON(nr != cluster->nr); 3275 out: 3276 kfree(ra); 3277 return ret; 3278 } 3279 3280 static noinline_for_stack 3281 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3282 struct file_extent_cluster *cluster) 3283 { 3284 int ret; 3285 3286 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3287 ret = relocate_file_extent_cluster(inode, cluster); 3288 if (ret) 3289 return ret; 3290 cluster->nr = 0; 3291 } 3292 3293 if (!cluster->nr) 3294 cluster->start = extent_key->objectid; 3295 else 3296 BUG_ON(cluster->nr >= MAX_EXTENTS); 3297 cluster->end = extent_key->objectid + extent_key->offset - 1; 3298 cluster->boundary[cluster->nr] = extent_key->objectid; 3299 cluster->nr++; 3300 3301 if (cluster->nr >= MAX_EXTENTS) { 3302 ret = relocate_file_extent_cluster(inode, cluster); 3303 if (ret) 3304 return ret; 3305 cluster->nr = 0; 3306 } 3307 return 0; 3308 } 3309 3310 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3311 static int get_ref_objectid_v0(struct reloc_control *rc, 3312 struct btrfs_path *path, 3313 struct btrfs_key *extent_key, 3314 u64 *ref_objectid, int *path_change) 3315 { 3316 struct btrfs_key key; 3317 struct extent_buffer *leaf; 3318 struct btrfs_extent_ref_v0 *ref0; 3319 int ret; 3320 int slot; 3321 3322 leaf = path->nodes[0]; 3323 slot = path->slots[0]; 3324 while (1) { 3325 if (slot >= btrfs_header_nritems(leaf)) { 3326 ret = btrfs_next_leaf(rc->extent_root, path); 3327 if (ret < 0) 3328 return ret; 3329 BUG_ON(ret > 0); 3330 leaf = path->nodes[0]; 3331 slot = path->slots[0]; 3332 if (path_change) 3333 *path_change = 1; 3334 } 3335 btrfs_item_key_to_cpu(leaf, &key, slot); 3336 if (key.objectid != extent_key->objectid) 3337 return -ENOENT; 3338 3339 if (key.type != BTRFS_EXTENT_REF_V0_KEY) { 3340 slot++; 3341 continue; 3342 } 3343 ref0 = btrfs_item_ptr(leaf, slot, 3344 struct btrfs_extent_ref_v0); 3345 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0); 3346 break; 3347 } 3348 return 0; 3349 } 3350 #endif 3351 3352 /* 3353 * helper to add a tree block to the list. 3354 * the major work is getting the generation and level of the block 3355 */ 3356 static int add_tree_block(struct reloc_control *rc, 3357 struct btrfs_key *extent_key, 3358 struct btrfs_path *path, 3359 struct rb_root *blocks) 3360 { 3361 struct extent_buffer *eb; 3362 struct btrfs_extent_item *ei; 3363 struct btrfs_tree_block_info *bi; 3364 struct tree_block *block; 3365 struct rb_node *rb_node; 3366 u32 item_size; 3367 int level = -1; 3368 u64 generation; 3369 3370 eb = path->nodes[0]; 3371 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3372 3373 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3374 item_size >= sizeof(*ei) + sizeof(*bi)) { 3375 ei = btrfs_item_ptr(eb, path->slots[0], 3376 struct btrfs_extent_item); 3377 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3378 bi = (struct btrfs_tree_block_info *)(ei + 1); 3379 level = btrfs_tree_block_level(eb, bi); 3380 } else { 3381 level = (int)extent_key->offset; 3382 } 3383 generation = btrfs_extent_generation(eb, ei); 3384 } else { 3385 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3386 u64 ref_owner; 3387 int ret; 3388 3389 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3390 ret = get_ref_objectid_v0(rc, path, extent_key, 3391 &ref_owner, NULL); 3392 if (ret < 0) 3393 return ret; 3394 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL); 3395 level = (int)ref_owner; 3396 /* FIXME: get real generation */ 3397 generation = 0; 3398 #else 3399 BUG(); 3400 #endif 3401 } 3402 3403 btrfs_release_path(path); 3404 3405 BUG_ON(level == -1); 3406 3407 block = kmalloc(sizeof(*block), GFP_NOFS); 3408 if (!block) 3409 return -ENOMEM; 3410 3411 block->bytenr = extent_key->objectid; 3412 block->key.objectid = rc->extent_root->fs_info->nodesize; 3413 block->key.offset = generation; 3414 block->level = level; 3415 block->key_ready = 0; 3416 3417 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3418 if (rb_node) 3419 backref_tree_panic(rb_node, -EEXIST, block->bytenr); 3420 3421 return 0; 3422 } 3423 3424 /* 3425 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3426 */ 3427 static int __add_tree_block(struct reloc_control *rc, 3428 u64 bytenr, u32 blocksize, 3429 struct rb_root *blocks) 3430 { 3431 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3432 struct btrfs_path *path; 3433 struct btrfs_key key; 3434 int ret; 3435 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 3436 3437 if (tree_block_processed(bytenr, rc)) 3438 return 0; 3439 3440 if (tree_search(blocks, bytenr)) 3441 return 0; 3442 3443 path = btrfs_alloc_path(); 3444 if (!path) 3445 return -ENOMEM; 3446 again: 3447 key.objectid = bytenr; 3448 if (skinny) { 3449 key.type = BTRFS_METADATA_ITEM_KEY; 3450 key.offset = (u64)-1; 3451 } else { 3452 key.type = BTRFS_EXTENT_ITEM_KEY; 3453 key.offset = blocksize; 3454 } 3455 3456 path->search_commit_root = 1; 3457 path->skip_locking = 1; 3458 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3459 if (ret < 0) 3460 goto out; 3461 3462 if (ret > 0 && skinny) { 3463 if (path->slots[0]) { 3464 path->slots[0]--; 3465 btrfs_item_key_to_cpu(path->nodes[0], &key, 3466 path->slots[0]); 3467 if (key.objectid == bytenr && 3468 (key.type == BTRFS_METADATA_ITEM_KEY || 3469 (key.type == BTRFS_EXTENT_ITEM_KEY && 3470 key.offset == blocksize))) 3471 ret = 0; 3472 } 3473 3474 if (ret) { 3475 skinny = false; 3476 btrfs_release_path(path); 3477 goto again; 3478 } 3479 } 3480 BUG_ON(ret); 3481 3482 ret = add_tree_block(rc, &key, path, blocks); 3483 out: 3484 btrfs_free_path(path); 3485 return ret; 3486 } 3487 3488 /* 3489 * helper to check if the block use full backrefs for pointers in it 3490 */ 3491 static int block_use_full_backref(struct reloc_control *rc, 3492 struct extent_buffer *eb) 3493 { 3494 u64 flags; 3495 int ret; 3496 3497 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3498 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3499 return 1; 3500 3501 ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info, 3502 eb->start, btrfs_header_level(eb), 1, 3503 NULL, &flags); 3504 BUG_ON(ret); 3505 3506 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3507 ret = 1; 3508 else 3509 ret = 0; 3510 return ret; 3511 } 3512 3513 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3514 struct btrfs_block_group_cache *block_group, 3515 struct inode *inode, 3516 u64 ino) 3517 { 3518 struct btrfs_key key; 3519 struct btrfs_root *root = fs_info->tree_root; 3520 struct btrfs_trans_handle *trans; 3521 int ret = 0; 3522 3523 if (inode) 3524 goto truncate; 3525 3526 key.objectid = ino; 3527 key.type = BTRFS_INODE_ITEM_KEY; 3528 key.offset = 0; 3529 3530 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3531 if (IS_ERR(inode) || is_bad_inode(inode)) { 3532 if (!IS_ERR(inode)) 3533 iput(inode); 3534 return -ENOENT; 3535 } 3536 3537 truncate: 3538 ret = btrfs_check_trunc_cache_free_space(fs_info, 3539 &fs_info->global_block_rsv); 3540 if (ret) 3541 goto out; 3542 3543 trans = btrfs_join_transaction(root); 3544 if (IS_ERR(trans)) { 3545 ret = PTR_ERR(trans); 3546 goto out; 3547 } 3548 3549 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3550 3551 btrfs_end_transaction(trans); 3552 btrfs_btree_balance_dirty(fs_info); 3553 out: 3554 iput(inode); 3555 return ret; 3556 } 3557 3558 /* 3559 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3560 * this function scans fs tree to find blocks reference the data extent 3561 */ 3562 static int find_data_references(struct reloc_control *rc, 3563 struct btrfs_key *extent_key, 3564 struct extent_buffer *leaf, 3565 struct btrfs_extent_data_ref *ref, 3566 struct rb_root *blocks) 3567 { 3568 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3569 struct btrfs_path *path; 3570 struct tree_block *block; 3571 struct btrfs_root *root; 3572 struct btrfs_file_extent_item *fi; 3573 struct rb_node *rb_node; 3574 struct btrfs_key key; 3575 u64 ref_root; 3576 u64 ref_objectid; 3577 u64 ref_offset; 3578 u32 ref_count; 3579 u32 nritems; 3580 int err = 0; 3581 int added = 0; 3582 int counted; 3583 int ret; 3584 3585 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3586 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3587 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3588 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3589 3590 /* 3591 * This is an extent belonging to the free space cache, lets just delete 3592 * it and redo the search. 3593 */ 3594 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3595 ret = delete_block_group_cache(fs_info, rc->block_group, 3596 NULL, ref_objectid); 3597 if (ret != -ENOENT) 3598 return ret; 3599 ret = 0; 3600 } 3601 3602 path = btrfs_alloc_path(); 3603 if (!path) 3604 return -ENOMEM; 3605 path->reada = READA_FORWARD; 3606 3607 root = read_fs_root(fs_info, ref_root); 3608 if (IS_ERR(root)) { 3609 err = PTR_ERR(root); 3610 goto out; 3611 } 3612 3613 key.objectid = ref_objectid; 3614 key.type = BTRFS_EXTENT_DATA_KEY; 3615 if (ref_offset > ((u64)-1 << 32)) 3616 key.offset = 0; 3617 else 3618 key.offset = ref_offset; 3619 3620 path->search_commit_root = 1; 3621 path->skip_locking = 1; 3622 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3623 if (ret < 0) { 3624 err = ret; 3625 goto out; 3626 } 3627 3628 leaf = path->nodes[0]; 3629 nritems = btrfs_header_nritems(leaf); 3630 /* 3631 * the references in tree blocks that use full backrefs 3632 * are not counted in 3633 */ 3634 if (block_use_full_backref(rc, leaf)) 3635 counted = 0; 3636 else 3637 counted = 1; 3638 rb_node = tree_search(blocks, leaf->start); 3639 if (rb_node) { 3640 if (counted) 3641 added = 1; 3642 else 3643 path->slots[0] = nritems; 3644 } 3645 3646 while (ref_count > 0) { 3647 while (path->slots[0] >= nritems) { 3648 ret = btrfs_next_leaf(root, path); 3649 if (ret < 0) { 3650 err = ret; 3651 goto out; 3652 } 3653 if (WARN_ON(ret > 0)) 3654 goto out; 3655 3656 leaf = path->nodes[0]; 3657 nritems = btrfs_header_nritems(leaf); 3658 added = 0; 3659 3660 if (block_use_full_backref(rc, leaf)) 3661 counted = 0; 3662 else 3663 counted = 1; 3664 rb_node = tree_search(blocks, leaf->start); 3665 if (rb_node) { 3666 if (counted) 3667 added = 1; 3668 else 3669 path->slots[0] = nritems; 3670 } 3671 } 3672 3673 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3674 if (WARN_ON(key.objectid != ref_objectid || 3675 key.type != BTRFS_EXTENT_DATA_KEY)) 3676 break; 3677 3678 fi = btrfs_item_ptr(leaf, path->slots[0], 3679 struct btrfs_file_extent_item); 3680 3681 if (btrfs_file_extent_type(leaf, fi) == 3682 BTRFS_FILE_EXTENT_INLINE) 3683 goto next; 3684 3685 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3686 extent_key->objectid) 3687 goto next; 3688 3689 key.offset -= btrfs_file_extent_offset(leaf, fi); 3690 if (key.offset != ref_offset) 3691 goto next; 3692 3693 if (counted) 3694 ref_count--; 3695 if (added) 3696 goto next; 3697 3698 if (!tree_block_processed(leaf->start, rc)) { 3699 block = kmalloc(sizeof(*block), GFP_NOFS); 3700 if (!block) { 3701 err = -ENOMEM; 3702 break; 3703 } 3704 block->bytenr = leaf->start; 3705 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3706 block->level = 0; 3707 block->key_ready = 1; 3708 rb_node = tree_insert(blocks, block->bytenr, 3709 &block->rb_node); 3710 if (rb_node) 3711 backref_tree_panic(rb_node, -EEXIST, 3712 block->bytenr); 3713 } 3714 if (counted) 3715 added = 1; 3716 else 3717 path->slots[0] = nritems; 3718 next: 3719 path->slots[0]++; 3720 3721 } 3722 out: 3723 btrfs_free_path(path); 3724 return err; 3725 } 3726 3727 /* 3728 * helper to find all tree blocks that reference a given data extent 3729 */ 3730 static noinline_for_stack 3731 int add_data_references(struct reloc_control *rc, 3732 struct btrfs_key *extent_key, 3733 struct btrfs_path *path, 3734 struct rb_root *blocks) 3735 { 3736 struct btrfs_key key; 3737 struct extent_buffer *eb; 3738 struct btrfs_extent_data_ref *dref; 3739 struct btrfs_extent_inline_ref *iref; 3740 unsigned long ptr; 3741 unsigned long end; 3742 u32 blocksize = rc->extent_root->fs_info->nodesize; 3743 int ret = 0; 3744 int err = 0; 3745 3746 eb = path->nodes[0]; 3747 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3748 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3749 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3750 if (ptr + sizeof(struct btrfs_extent_item_v0) == end) 3751 ptr = end; 3752 else 3753 #endif 3754 ptr += sizeof(struct btrfs_extent_item); 3755 3756 while (ptr < end) { 3757 iref = (struct btrfs_extent_inline_ref *)ptr; 3758 key.type = btrfs_extent_inline_ref_type(eb, iref); 3759 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3760 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3761 ret = __add_tree_block(rc, key.offset, blocksize, 3762 blocks); 3763 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3764 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3765 ret = find_data_references(rc, extent_key, 3766 eb, dref, blocks); 3767 } else { 3768 BUG(); 3769 } 3770 if (ret) { 3771 err = ret; 3772 goto out; 3773 } 3774 ptr += btrfs_extent_inline_ref_size(key.type); 3775 } 3776 WARN_ON(ptr > end); 3777 3778 while (1) { 3779 cond_resched(); 3780 eb = path->nodes[0]; 3781 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3782 ret = btrfs_next_leaf(rc->extent_root, path); 3783 if (ret < 0) { 3784 err = ret; 3785 break; 3786 } 3787 if (ret > 0) 3788 break; 3789 eb = path->nodes[0]; 3790 } 3791 3792 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3793 if (key.objectid != extent_key->objectid) 3794 break; 3795 3796 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3797 if (key.type == BTRFS_SHARED_DATA_REF_KEY || 3798 key.type == BTRFS_EXTENT_REF_V0_KEY) { 3799 #else 3800 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 3801 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3802 #endif 3803 ret = __add_tree_block(rc, key.offset, blocksize, 3804 blocks); 3805 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3806 dref = btrfs_item_ptr(eb, path->slots[0], 3807 struct btrfs_extent_data_ref); 3808 ret = find_data_references(rc, extent_key, 3809 eb, dref, blocks); 3810 } else { 3811 ret = 0; 3812 } 3813 if (ret) { 3814 err = ret; 3815 break; 3816 } 3817 path->slots[0]++; 3818 } 3819 out: 3820 btrfs_release_path(path); 3821 if (err) 3822 free_block_list(blocks); 3823 return err; 3824 } 3825 3826 /* 3827 * helper to find next unprocessed extent 3828 */ 3829 static noinline_for_stack 3830 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3831 struct btrfs_key *extent_key) 3832 { 3833 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3834 struct btrfs_key key; 3835 struct extent_buffer *leaf; 3836 u64 start, end, last; 3837 int ret; 3838 3839 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3840 while (1) { 3841 cond_resched(); 3842 if (rc->search_start >= last) { 3843 ret = 1; 3844 break; 3845 } 3846 3847 key.objectid = rc->search_start; 3848 key.type = BTRFS_EXTENT_ITEM_KEY; 3849 key.offset = 0; 3850 3851 path->search_commit_root = 1; 3852 path->skip_locking = 1; 3853 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3854 0, 0); 3855 if (ret < 0) 3856 break; 3857 next: 3858 leaf = path->nodes[0]; 3859 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3860 ret = btrfs_next_leaf(rc->extent_root, path); 3861 if (ret != 0) 3862 break; 3863 leaf = path->nodes[0]; 3864 } 3865 3866 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3867 if (key.objectid >= last) { 3868 ret = 1; 3869 break; 3870 } 3871 3872 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3873 key.type != BTRFS_METADATA_ITEM_KEY) { 3874 path->slots[0]++; 3875 goto next; 3876 } 3877 3878 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3879 key.objectid + key.offset <= rc->search_start) { 3880 path->slots[0]++; 3881 goto next; 3882 } 3883 3884 if (key.type == BTRFS_METADATA_ITEM_KEY && 3885 key.objectid + fs_info->nodesize <= 3886 rc->search_start) { 3887 path->slots[0]++; 3888 goto next; 3889 } 3890 3891 ret = find_first_extent_bit(&rc->processed_blocks, 3892 key.objectid, &start, &end, 3893 EXTENT_DIRTY, NULL); 3894 3895 if (ret == 0 && start <= key.objectid) { 3896 btrfs_release_path(path); 3897 rc->search_start = end + 1; 3898 } else { 3899 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3900 rc->search_start = key.objectid + key.offset; 3901 else 3902 rc->search_start = key.objectid + 3903 fs_info->nodesize; 3904 memcpy(extent_key, &key, sizeof(key)); 3905 return 0; 3906 } 3907 } 3908 btrfs_release_path(path); 3909 return ret; 3910 } 3911 3912 static void set_reloc_control(struct reloc_control *rc) 3913 { 3914 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3915 3916 mutex_lock(&fs_info->reloc_mutex); 3917 fs_info->reloc_ctl = rc; 3918 mutex_unlock(&fs_info->reloc_mutex); 3919 } 3920 3921 static void unset_reloc_control(struct reloc_control *rc) 3922 { 3923 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3924 3925 mutex_lock(&fs_info->reloc_mutex); 3926 fs_info->reloc_ctl = NULL; 3927 mutex_unlock(&fs_info->reloc_mutex); 3928 } 3929 3930 static int check_extent_flags(u64 flags) 3931 { 3932 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3933 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3934 return 1; 3935 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3936 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3937 return 1; 3938 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3939 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3940 return 1; 3941 return 0; 3942 } 3943 3944 static noinline_for_stack 3945 int prepare_to_relocate(struct reloc_control *rc) 3946 { 3947 struct btrfs_trans_handle *trans; 3948 int ret; 3949 3950 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3951 BTRFS_BLOCK_RSV_TEMP); 3952 if (!rc->block_rsv) 3953 return -ENOMEM; 3954 3955 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3956 rc->search_start = rc->block_group->key.objectid; 3957 rc->extents_found = 0; 3958 rc->nodes_relocated = 0; 3959 rc->merging_rsv_size = 0; 3960 rc->reserved_bytes = 0; 3961 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3962 RELOCATION_RESERVED_NODES; 3963 ret = btrfs_block_rsv_refill(rc->extent_root, 3964 rc->block_rsv, rc->block_rsv->size, 3965 BTRFS_RESERVE_FLUSH_ALL); 3966 if (ret) 3967 return ret; 3968 3969 rc->create_reloc_tree = 1; 3970 set_reloc_control(rc); 3971 3972 trans = btrfs_join_transaction(rc->extent_root); 3973 if (IS_ERR(trans)) { 3974 unset_reloc_control(rc); 3975 /* 3976 * extent tree is not a ref_cow tree and has no reloc_root to 3977 * cleanup. And callers are responsible to free the above 3978 * block rsv. 3979 */ 3980 return PTR_ERR(trans); 3981 } 3982 btrfs_commit_transaction(trans); 3983 return 0; 3984 } 3985 3986 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3987 { 3988 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3989 struct rb_root blocks = RB_ROOT; 3990 struct btrfs_key key; 3991 struct btrfs_trans_handle *trans = NULL; 3992 struct btrfs_path *path; 3993 struct btrfs_extent_item *ei; 3994 u64 flags; 3995 u32 item_size; 3996 int ret; 3997 int err = 0; 3998 int progress = 0; 3999 4000 path = btrfs_alloc_path(); 4001 if (!path) 4002 return -ENOMEM; 4003 path->reada = READA_FORWARD; 4004 4005 ret = prepare_to_relocate(rc); 4006 if (ret) { 4007 err = ret; 4008 goto out_free; 4009 } 4010 4011 while (1) { 4012 rc->reserved_bytes = 0; 4013 ret = btrfs_block_rsv_refill(rc->extent_root, 4014 rc->block_rsv, rc->block_rsv->size, 4015 BTRFS_RESERVE_FLUSH_ALL); 4016 if (ret) { 4017 err = ret; 4018 break; 4019 } 4020 progress++; 4021 trans = btrfs_start_transaction(rc->extent_root, 0); 4022 if (IS_ERR(trans)) { 4023 err = PTR_ERR(trans); 4024 trans = NULL; 4025 break; 4026 } 4027 restart: 4028 if (update_backref_cache(trans, &rc->backref_cache)) { 4029 btrfs_end_transaction(trans); 4030 continue; 4031 } 4032 4033 ret = find_next_extent(rc, path, &key); 4034 if (ret < 0) 4035 err = ret; 4036 if (ret != 0) 4037 break; 4038 4039 rc->extents_found++; 4040 4041 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 4042 struct btrfs_extent_item); 4043 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 4044 if (item_size >= sizeof(*ei)) { 4045 flags = btrfs_extent_flags(path->nodes[0], ei); 4046 ret = check_extent_flags(flags); 4047 BUG_ON(ret); 4048 4049 } else { 4050 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 4051 u64 ref_owner; 4052 int path_change = 0; 4053 4054 BUG_ON(item_size != 4055 sizeof(struct btrfs_extent_item_v0)); 4056 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner, 4057 &path_change); 4058 if (ret < 0) { 4059 err = ret; 4060 break; 4061 } 4062 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID) 4063 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK; 4064 else 4065 flags = BTRFS_EXTENT_FLAG_DATA; 4066 4067 if (path_change) { 4068 btrfs_release_path(path); 4069 4070 path->search_commit_root = 1; 4071 path->skip_locking = 1; 4072 ret = btrfs_search_slot(NULL, rc->extent_root, 4073 &key, path, 0, 0); 4074 if (ret < 0) { 4075 err = ret; 4076 break; 4077 } 4078 BUG_ON(ret > 0); 4079 } 4080 #else 4081 BUG(); 4082 #endif 4083 } 4084 4085 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 4086 ret = add_tree_block(rc, &key, path, &blocks); 4087 } else if (rc->stage == UPDATE_DATA_PTRS && 4088 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4089 ret = add_data_references(rc, &key, path, &blocks); 4090 } else { 4091 btrfs_release_path(path); 4092 ret = 0; 4093 } 4094 if (ret < 0) { 4095 err = ret; 4096 break; 4097 } 4098 4099 if (!RB_EMPTY_ROOT(&blocks)) { 4100 ret = relocate_tree_blocks(trans, rc, &blocks); 4101 if (ret < 0) { 4102 /* 4103 * if we fail to relocate tree blocks, force to update 4104 * backref cache when committing transaction. 4105 */ 4106 rc->backref_cache.last_trans = trans->transid - 1; 4107 4108 if (ret != -EAGAIN) { 4109 err = ret; 4110 break; 4111 } 4112 rc->extents_found--; 4113 rc->search_start = key.objectid; 4114 } 4115 } 4116 4117 btrfs_end_transaction_throttle(trans); 4118 btrfs_btree_balance_dirty(fs_info); 4119 trans = NULL; 4120 4121 if (rc->stage == MOVE_DATA_EXTENTS && 4122 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4123 rc->found_file_extent = 1; 4124 ret = relocate_data_extent(rc->data_inode, 4125 &key, &rc->cluster); 4126 if (ret < 0) { 4127 err = ret; 4128 break; 4129 } 4130 } 4131 } 4132 if (trans && progress && err == -ENOSPC) { 4133 ret = btrfs_force_chunk_alloc(trans, fs_info, 4134 rc->block_group->flags); 4135 if (ret == 1) { 4136 err = 0; 4137 progress = 0; 4138 goto restart; 4139 } 4140 } 4141 4142 btrfs_release_path(path); 4143 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 4144 4145 if (trans) { 4146 btrfs_end_transaction_throttle(trans); 4147 btrfs_btree_balance_dirty(fs_info); 4148 } 4149 4150 if (!err) { 4151 ret = relocate_file_extent_cluster(rc->data_inode, 4152 &rc->cluster); 4153 if (ret < 0) 4154 err = ret; 4155 } 4156 4157 rc->create_reloc_tree = 0; 4158 set_reloc_control(rc); 4159 4160 backref_cache_cleanup(&rc->backref_cache); 4161 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1); 4162 4163 err = prepare_to_merge(rc, err); 4164 4165 merge_reloc_roots(rc); 4166 4167 rc->merge_reloc_tree = 0; 4168 unset_reloc_control(rc); 4169 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1); 4170 4171 /* get rid of pinned extents */ 4172 trans = btrfs_join_transaction(rc->extent_root); 4173 if (IS_ERR(trans)) { 4174 err = PTR_ERR(trans); 4175 goto out_free; 4176 } 4177 btrfs_commit_transaction(trans); 4178 out_free: 4179 btrfs_free_block_rsv(fs_info, rc->block_rsv); 4180 btrfs_free_path(path); 4181 return err; 4182 } 4183 4184 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 4185 struct btrfs_root *root, u64 objectid) 4186 { 4187 struct btrfs_path *path; 4188 struct btrfs_inode_item *item; 4189 struct extent_buffer *leaf; 4190 int ret; 4191 4192 path = btrfs_alloc_path(); 4193 if (!path) 4194 return -ENOMEM; 4195 4196 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 4197 if (ret) 4198 goto out; 4199 4200 leaf = path->nodes[0]; 4201 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 4202 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 4203 btrfs_set_inode_generation(leaf, item, 1); 4204 btrfs_set_inode_size(leaf, item, 0); 4205 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 4206 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 4207 BTRFS_INODE_PREALLOC); 4208 btrfs_mark_buffer_dirty(leaf); 4209 out: 4210 btrfs_free_path(path); 4211 return ret; 4212 } 4213 4214 /* 4215 * helper to create inode for data relocation. 4216 * the inode is in data relocation tree and its link count is 0 4217 */ 4218 static noinline_for_stack 4219 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 4220 struct btrfs_block_group_cache *group) 4221 { 4222 struct inode *inode = NULL; 4223 struct btrfs_trans_handle *trans; 4224 struct btrfs_root *root; 4225 struct btrfs_key key; 4226 u64 objectid; 4227 int err = 0; 4228 4229 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4230 if (IS_ERR(root)) 4231 return ERR_CAST(root); 4232 4233 trans = btrfs_start_transaction(root, 6); 4234 if (IS_ERR(trans)) 4235 return ERR_CAST(trans); 4236 4237 err = btrfs_find_free_objectid(root, &objectid); 4238 if (err) 4239 goto out; 4240 4241 err = __insert_orphan_inode(trans, root, objectid); 4242 BUG_ON(err); 4243 4244 key.objectid = objectid; 4245 key.type = BTRFS_INODE_ITEM_KEY; 4246 key.offset = 0; 4247 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4248 BUG_ON(IS_ERR(inode) || is_bad_inode(inode)); 4249 BTRFS_I(inode)->index_cnt = group->key.objectid; 4250 4251 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4252 out: 4253 btrfs_end_transaction(trans); 4254 btrfs_btree_balance_dirty(fs_info); 4255 if (err) { 4256 if (inode) 4257 iput(inode); 4258 inode = ERR_PTR(err); 4259 } 4260 return inode; 4261 } 4262 4263 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 4264 { 4265 struct reloc_control *rc; 4266 4267 rc = kzalloc(sizeof(*rc), GFP_NOFS); 4268 if (!rc) 4269 return NULL; 4270 4271 INIT_LIST_HEAD(&rc->reloc_roots); 4272 backref_cache_init(&rc->backref_cache); 4273 mapping_tree_init(&rc->reloc_root_tree); 4274 extent_io_tree_init(&rc->processed_blocks, NULL); 4275 return rc; 4276 } 4277 4278 /* 4279 * Print the block group being relocated 4280 */ 4281 static void describe_relocation(struct btrfs_fs_info *fs_info, 4282 struct btrfs_block_group_cache *block_group) 4283 { 4284 char buf[128]; /* prefixed by a '|' that'll be dropped */ 4285 u64 flags = block_group->flags; 4286 4287 /* Shouldn't happen */ 4288 if (!flags) { 4289 strcpy(buf, "|NONE"); 4290 } else { 4291 char *bp = buf; 4292 4293 #define DESCRIBE_FLAG(f, d) \ 4294 if (flags & BTRFS_BLOCK_GROUP_##f) { \ 4295 bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \ 4296 flags &= ~BTRFS_BLOCK_GROUP_##f; \ 4297 } 4298 DESCRIBE_FLAG(DATA, "data"); 4299 DESCRIBE_FLAG(SYSTEM, "system"); 4300 DESCRIBE_FLAG(METADATA, "metadata"); 4301 DESCRIBE_FLAG(RAID0, "raid0"); 4302 DESCRIBE_FLAG(RAID1, "raid1"); 4303 DESCRIBE_FLAG(DUP, "dup"); 4304 DESCRIBE_FLAG(RAID10, "raid10"); 4305 DESCRIBE_FLAG(RAID5, "raid5"); 4306 DESCRIBE_FLAG(RAID6, "raid6"); 4307 if (flags) 4308 snprintf(buf, buf - bp + sizeof(buf), "|0x%llx", flags); 4309 #undef DESCRIBE_FLAG 4310 } 4311 4312 btrfs_info(fs_info, 4313 "relocating block group %llu flags %s", 4314 block_group->key.objectid, buf + 1); 4315 } 4316 4317 /* 4318 * function to relocate all extents in a block group. 4319 */ 4320 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 4321 { 4322 struct btrfs_root *extent_root = fs_info->extent_root; 4323 struct reloc_control *rc; 4324 struct inode *inode; 4325 struct btrfs_path *path; 4326 int ret; 4327 int rw = 0; 4328 int err = 0; 4329 4330 rc = alloc_reloc_control(fs_info); 4331 if (!rc) 4332 return -ENOMEM; 4333 4334 rc->extent_root = extent_root; 4335 4336 rc->block_group = btrfs_lookup_block_group(fs_info, group_start); 4337 BUG_ON(!rc->block_group); 4338 4339 ret = btrfs_inc_block_group_ro(fs_info, rc->block_group); 4340 if (ret) { 4341 err = ret; 4342 goto out; 4343 } 4344 rw = 1; 4345 4346 path = btrfs_alloc_path(); 4347 if (!path) { 4348 err = -ENOMEM; 4349 goto out; 4350 } 4351 4352 inode = lookup_free_space_inode(fs_info, rc->block_group, path); 4353 btrfs_free_path(path); 4354 4355 if (!IS_ERR(inode)) 4356 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4357 else 4358 ret = PTR_ERR(inode); 4359 4360 if (ret && ret != -ENOENT) { 4361 err = ret; 4362 goto out; 4363 } 4364 4365 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4366 if (IS_ERR(rc->data_inode)) { 4367 err = PTR_ERR(rc->data_inode); 4368 rc->data_inode = NULL; 4369 goto out; 4370 } 4371 4372 describe_relocation(fs_info, rc->block_group); 4373 4374 btrfs_wait_block_group_reservations(rc->block_group); 4375 btrfs_wait_nocow_writers(rc->block_group); 4376 btrfs_wait_ordered_roots(fs_info, U64_MAX, 4377 rc->block_group->key.objectid, 4378 rc->block_group->key.offset); 4379 4380 while (1) { 4381 mutex_lock(&fs_info->cleaner_mutex); 4382 ret = relocate_block_group(rc); 4383 mutex_unlock(&fs_info->cleaner_mutex); 4384 if (ret < 0) { 4385 err = ret; 4386 goto out; 4387 } 4388 4389 if (rc->extents_found == 0) 4390 break; 4391 4392 btrfs_info(fs_info, "found %llu extents", rc->extents_found); 4393 4394 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4395 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4396 (u64)-1); 4397 if (ret) { 4398 err = ret; 4399 goto out; 4400 } 4401 invalidate_mapping_pages(rc->data_inode->i_mapping, 4402 0, -1); 4403 rc->stage = UPDATE_DATA_PTRS; 4404 } 4405 } 4406 4407 WARN_ON(rc->block_group->pinned > 0); 4408 WARN_ON(rc->block_group->reserved > 0); 4409 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4410 out: 4411 if (err && rw) 4412 btrfs_dec_block_group_ro(rc->block_group); 4413 iput(rc->data_inode); 4414 btrfs_put_block_group(rc->block_group); 4415 kfree(rc); 4416 return err; 4417 } 4418 4419 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4420 { 4421 struct btrfs_fs_info *fs_info = root->fs_info; 4422 struct btrfs_trans_handle *trans; 4423 int ret, err; 4424 4425 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4426 if (IS_ERR(trans)) 4427 return PTR_ERR(trans); 4428 4429 memset(&root->root_item.drop_progress, 0, 4430 sizeof(root->root_item.drop_progress)); 4431 root->root_item.drop_level = 0; 4432 btrfs_set_root_refs(&root->root_item, 0); 4433 ret = btrfs_update_root(trans, fs_info->tree_root, 4434 &root->root_key, &root->root_item); 4435 4436 err = btrfs_end_transaction(trans); 4437 if (err) 4438 return err; 4439 return ret; 4440 } 4441 4442 /* 4443 * recover relocation interrupted by system crash. 4444 * 4445 * this function resumes merging reloc trees with corresponding fs trees. 4446 * this is important for keeping the sharing of tree blocks 4447 */ 4448 int btrfs_recover_relocation(struct btrfs_root *root) 4449 { 4450 struct btrfs_fs_info *fs_info = root->fs_info; 4451 LIST_HEAD(reloc_roots); 4452 struct btrfs_key key; 4453 struct btrfs_root *fs_root; 4454 struct btrfs_root *reloc_root; 4455 struct btrfs_path *path; 4456 struct extent_buffer *leaf; 4457 struct reloc_control *rc = NULL; 4458 struct btrfs_trans_handle *trans; 4459 int ret; 4460 int err = 0; 4461 4462 path = btrfs_alloc_path(); 4463 if (!path) 4464 return -ENOMEM; 4465 path->reada = READA_BACK; 4466 4467 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4468 key.type = BTRFS_ROOT_ITEM_KEY; 4469 key.offset = (u64)-1; 4470 4471 while (1) { 4472 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 4473 path, 0, 0); 4474 if (ret < 0) { 4475 err = ret; 4476 goto out; 4477 } 4478 if (ret > 0) { 4479 if (path->slots[0] == 0) 4480 break; 4481 path->slots[0]--; 4482 } 4483 leaf = path->nodes[0]; 4484 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4485 btrfs_release_path(path); 4486 4487 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4488 key.type != BTRFS_ROOT_ITEM_KEY) 4489 break; 4490 4491 reloc_root = btrfs_read_fs_root(root, &key); 4492 if (IS_ERR(reloc_root)) { 4493 err = PTR_ERR(reloc_root); 4494 goto out; 4495 } 4496 4497 list_add(&reloc_root->root_list, &reloc_roots); 4498 4499 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4500 fs_root = read_fs_root(fs_info, 4501 reloc_root->root_key.offset); 4502 if (IS_ERR(fs_root)) { 4503 ret = PTR_ERR(fs_root); 4504 if (ret != -ENOENT) { 4505 err = ret; 4506 goto out; 4507 } 4508 ret = mark_garbage_root(reloc_root); 4509 if (ret < 0) { 4510 err = ret; 4511 goto out; 4512 } 4513 } 4514 } 4515 4516 if (key.offset == 0) 4517 break; 4518 4519 key.offset--; 4520 } 4521 btrfs_release_path(path); 4522 4523 if (list_empty(&reloc_roots)) 4524 goto out; 4525 4526 rc = alloc_reloc_control(fs_info); 4527 if (!rc) { 4528 err = -ENOMEM; 4529 goto out; 4530 } 4531 4532 rc->extent_root = fs_info->extent_root; 4533 4534 set_reloc_control(rc); 4535 4536 trans = btrfs_join_transaction(rc->extent_root); 4537 if (IS_ERR(trans)) { 4538 unset_reloc_control(rc); 4539 err = PTR_ERR(trans); 4540 goto out_free; 4541 } 4542 4543 rc->merge_reloc_tree = 1; 4544 4545 while (!list_empty(&reloc_roots)) { 4546 reloc_root = list_entry(reloc_roots.next, 4547 struct btrfs_root, root_list); 4548 list_del(&reloc_root->root_list); 4549 4550 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4551 list_add_tail(&reloc_root->root_list, 4552 &rc->reloc_roots); 4553 continue; 4554 } 4555 4556 fs_root = read_fs_root(fs_info, reloc_root->root_key.offset); 4557 if (IS_ERR(fs_root)) { 4558 err = PTR_ERR(fs_root); 4559 goto out_free; 4560 } 4561 4562 err = __add_reloc_root(reloc_root); 4563 BUG_ON(err < 0); /* -ENOMEM or logic error */ 4564 fs_root->reloc_root = reloc_root; 4565 } 4566 4567 err = btrfs_commit_transaction(trans); 4568 if (err) 4569 goto out_free; 4570 4571 merge_reloc_roots(rc); 4572 4573 unset_reloc_control(rc); 4574 4575 trans = btrfs_join_transaction(rc->extent_root); 4576 if (IS_ERR(trans)) { 4577 err = PTR_ERR(trans); 4578 goto out_free; 4579 } 4580 err = btrfs_commit_transaction(trans); 4581 out_free: 4582 kfree(rc); 4583 out: 4584 if (!list_empty(&reloc_roots)) 4585 free_reloc_roots(&reloc_roots); 4586 4587 btrfs_free_path(path); 4588 4589 if (err == 0) { 4590 /* cleanup orphan inode in data relocation tree */ 4591 fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4592 if (IS_ERR(fs_root)) 4593 err = PTR_ERR(fs_root); 4594 else 4595 err = btrfs_orphan_cleanup(fs_root); 4596 } 4597 return err; 4598 } 4599 4600 /* 4601 * helper to add ordered checksum for data relocation. 4602 * 4603 * cloning checksum properly handles the nodatasum extents. 4604 * it also saves CPU time to re-calculate the checksum. 4605 */ 4606 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4607 { 4608 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4609 struct btrfs_ordered_sum *sums; 4610 struct btrfs_ordered_extent *ordered; 4611 int ret; 4612 u64 disk_bytenr; 4613 u64 new_bytenr; 4614 LIST_HEAD(list); 4615 4616 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4617 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4618 4619 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4620 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr, 4621 disk_bytenr + len - 1, &list, 0); 4622 if (ret) 4623 goto out; 4624 4625 while (!list_empty(&list)) { 4626 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4627 list_del_init(&sums->list); 4628 4629 /* 4630 * We need to offset the new_bytenr based on where the csum is. 4631 * We need to do this because we will read in entire prealloc 4632 * extents but we may have written to say the middle of the 4633 * prealloc extent, so we need to make sure the csum goes with 4634 * the right disk offset. 4635 * 4636 * We can do this because the data reloc inode refers strictly 4637 * to the on disk bytes, so we don't have to worry about 4638 * disk_len vs real len like with real inodes since it's all 4639 * disk length. 4640 */ 4641 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr); 4642 sums->bytenr = new_bytenr; 4643 4644 btrfs_add_ordered_sum(inode, ordered, sums); 4645 } 4646 out: 4647 btrfs_put_ordered_extent(ordered); 4648 return ret; 4649 } 4650 4651 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4652 struct btrfs_root *root, struct extent_buffer *buf, 4653 struct extent_buffer *cow) 4654 { 4655 struct btrfs_fs_info *fs_info = root->fs_info; 4656 struct reloc_control *rc; 4657 struct backref_node *node; 4658 int first_cow = 0; 4659 int level; 4660 int ret = 0; 4661 4662 rc = fs_info->reloc_ctl; 4663 if (!rc) 4664 return 0; 4665 4666 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4667 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4668 4669 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 4670 if (buf == root->node) 4671 __update_reloc_root(root, cow->start); 4672 } 4673 4674 level = btrfs_header_level(buf); 4675 if (btrfs_header_generation(buf) <= 4676 btrfs_root_last_snapshot(&root->root_item)) 4677 first_cow = 1; 4678 4679 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4680 rc->create_reloc_tree) { 4681 WARN_ON(!first_cow && level == 0); 4682 4683 node = rc->backref_cache.path[level]; 4684 BUG_ON(node->bytenr != buf->start && 4685 node->new_bytenr != buf->start); 4686 4687 drop_node_buffer(node); 4688 extent_buffer_get(cow); 4689 node->eb = cow; 4690 node->new_bytenr = cow->start; 4691 4692 if (!node->pending) { 4693 list_move_tail(&node->list, 4694 &rc->backref_cache.pending[level]); 4695 node->pending = 1; 4696 } 4697 4698 if (first_cow) 4699 __mark_block_processed(rc, node); 4700 4701 if (first_cow && level > 0) 4702 rc->nodes_relocated += buf->len; 4703 } 4704 4705 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4706 ret = replace_file_extents(trans, rc, root, cow); 4707 return ret; 4708 } 4709 4710 /* 4711 * called before creating snapshot. it calculates metadata reservation 4712 * required for relocating tree blocks in the snapshot 4713 */ 4714 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4715 u64 *bytes_to_reserve) 4716 { 4717 struct btrfs_root *root; 4718 struct reloc_control *rc; 4719 4720 root = pending->root; 4721 if (!root->reloc_root) 4722 return; 4723 4724 rc = root->fs_info->reloc_ctl; 4725 if (!rc->merge_reloc_tree) 4726 return; 4727 4728 root = root->reloc_root; 4729 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4730 /* 4731 * relocation is in the stage of merging trees. the space 4732 * used by merging a reloc tree is twice the size of 4733 * relocated tree nodes in the worst case. half for cowing 4734 * the reloc tree, half for cowing the fs tree. the space 4735 * used by cowing the reloc tree will be freed after the 4736 * tree is dropped. if we create snapshot, cowing the fs 4737 * tree may use more space than it frees. so we need 4738 * reserve extra space. 4739 */ 4740 *bytes_to_reserve += rc->nodes_relocated; 4741 } 4742 4743 /* 4744 * called after snapshot is created. migrate block reservation 4745 * and create reloc root for the newly created snapshot 4746 */ 4747 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4748 struct btrfs_pending_snapshot *pending) 4749 { 4750 struct btrfs_root *root = pending->root; 4751 struct btrfs_root *reloc_root; 4752 struct btrfs_root *new_root; 4753 struct reloc_control *rc; 4754 int ret; 4755 4756 if (!root->reloc_root) 4757 return 0; 4758 4759 rc = root->fs_info->reloc_ctl; 4760 rc->merging_rsv_size += rc->nodes_relocated; 4761 4762 if (rc->merge_reloc_tree) { 4763 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4764 rc->block_rsv, 4765 rc->nodes_relocated, 1); 4766 if (ret) 4767 return ret; 4768 } 4769 4770 new_root = pending->snap; 4771 reloc_root = create_reloc_root(trans, root->reloc_root, 4772 new_root->root_key.objectid); 4773 if (IS_ERR(reloc_root)) 4774 return PTR_ERR(reloc_root); 4775 4776 ret = __add_reloc_root(reloc_root); 4777 BUG_ON(ret < 0); 4778 new_root->reloc_root = reloc_root; 4779 4780 if (rc->create_reloc_tree) 4781 ret = clone_backref_node(trans, rc, root, reloc_root); 4782 return ret; 4783 } 4784