1 /* 2 * Copyright (C) 2009 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/rbtree.h> 24 #include <linux/slab.h> 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "volumes.h" 29 #include "locking.h" 30 #include "btrfs_inode.h" 31 #include "async-thread.h" 32 #include "free-space-cache.h" 33 #include "inode-map.h" 34 35 /* 36 * backref_node, mapping_node and tree_block start with this 37 */ 38 struct tree_entry { 39 struct rb_node rb_node; 40 u64 bytenr; 41 }; 42 43 /* 44 * present a tree block in the backref cache 45 */ 46 struct backref_node { 47 struct rb_node rb_node; 48 u64 bytenr; 49 50 u64 new_bytenr; 51 /* objectid of tree block owner, can be not uptodate */ 52 u64 owner; 53 /* link to pending, changed or detached list */ 54 struct list_head list; 55 /* list of upper level blocks reference this block */ 56 struct list_head upper; 57 /* list of child blocks in the cache */ 58 struct list_head lower; 59 /* NULL if this node is not tree root */ 60 struct btrfs_root *root; 61 /* extent buffer got by COW the block */ 62 struct extent_buffer *eb; 63 /* level of tree block */ 64 unsigned int level:8; 65 /* is the block in non-reference counted tree */ 66 unsigned int cowonly:1; 67 /* 1 if no child node in the cache */ 68 unsigned int lowest:1; 69 /* is the extent buffer locked */ 70 unsigned int locked:1; 71 /* has the block been processed */ 72 unsigned int processed:1; 73 /* have backrefs of this block been checked */ 74 unsigned int checked:1; 75 /* 76 * 1 if corresponding block has been cowed but some upper 77 * level block pointers may not point to the new location 78 */ 79 unsigned int pending:1; 80 /* 81 * 1 if the backref node isn't connected to any other 82 * backref node. 83 */ 84 unsigned int detached:1; 85 }; 86 87 /* 88 * present a block pointer in the backref cache 89 */ 90 struct backref_edge { 91 struct list_head list[2]; 92 struct backref_node *node[2]; 93 }; 94 95 #define LOWER 0 96 #define UPPER 1 97 #define RELOCATION_RESERVED_NODES 256 98 99 struct backref_cache { 100 /* red black tree of all backref nodes in the cache */ 101 struct rb_root rb_root; 102 /* for passing backref nodes to btrfs_reloc_cow_block */ 103 struct backref_node *path[BTRFS_MAX_LEVEL]; 104 /* 105 * list of blocks that have been cowed but some block 106 * pointers in upper level blocks may not reflect the 107 * new location 108 */ 109 struct list_head pending[BTRFS_MAX_LEVEL]; 110 /* list of backref nodes with no child node */ 111 struct list_head leaves; 112 /* list of blocks that have been cowed in current transaction */ 113 struct list_head changed; 114 /* list of detached backref node. */ 115 struct list_head detached; 116 117 u64 last_trans; 118 119 int nr_nodes; 120 int nr_edges; 121 }; 122 123 /* 124 * map address of tree root to tree 125 */ 126 struct mapping_node { 127 struct rb_node rb_node; 128 u64 bytenr; 129 void *data; 130 }; 131 132 struct mapping_tree { 133 struct rb_root rb_root; 134 spinlock_t lock; 135 }; 136 137 /* 138 * present a tree block to process 139 */ 140 struct tree_block { 141 struct rb_node rb_node; 142 u64 bytenr; 143 struct btrfs_key key; 144 unsigned int level:8; 145 unsigned int key_ready:1; 146 }; 147 148 #define MAX_EXTENTS 128 149 150 struct file_extent_cluster { 151 u64 start; 152 u64 end; 153 u64 boundary[MAX_EXTENTS]; 154 unsigned int nr; 155 }; 156 157 struct reloc_control { 158 /* block group to relocate */ 159 struct btrfs_block_group_cache *block_group; 160 /* extent tree */ 161 struct btrfs_root *extent_root; 162 /* inode for moving data */ 163 struct inode *data_inode; 164 165 struct btrfs_block_rsv *block_rsv; 166 167 struct backref_cache backref_cache; 168 169 struct file_extent_cluster cluster; 170 /* tree blocks have been processed */ 171 struct extent_io_tree processed_blocks; 172 /* map start of tree root to corresponding reloc tree */ 173 struct mapping_tree reloc_root_tree; 174 /* list of reloc trees */ 175 struct list_head reloc_roots; 176 /* size of metadata reservation for merging reloc trees */ 177 u64 merging_rsv_size; 178 /* size of relocated tree nodes */ 179 u64 nodes_relocated; 180 /* reserved size for block group relocation*/ 181 u64 reserved_bytes; 182 183 u64 search_start; 184 u64 extents_found; 185 186 unsigned int stage:8; 187 unsigned int create_reloc_tree:1; 188 unsigned int merge_reloc_tree:1; 189 unsigned int found_file_extent:1; 190 }; 191 192 /* stages of data relocation */ 193 #define MOVE_DATA_EXTENTS 0 194 #define UPDATE_DATA_PTRS 1 195 196 static void remove_backref_node(struct backref_cache *cache, 197 struct backref_node *node); 198 static void __mark_block_processed(struct reloc_control *rc, 199 struct backref_node *node); 200 201 static void mapping_tree_init(struct mapping_tree *tree) 202 { 203 tree->rb_root = RB_ROOT; 204 spin_lock_init(&tree->lock); 205 } 206 207 static void backref_cache_init(struct backref_cache *cache) 208 { 209 int i; 210 cache->rb_root = RB_ROOT; 211 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 212 INIT_LIST_HEAD(&cache->pending[i]); 213 INIT_LIST_HEAD(&cache->changed); 214 INIT_LIST_HEAD(&cache->detached); 215 INIT_LIST_HEAD(&cache->leaves); 216 } 217 218 static void backref_cache_cleanup(struct backref_cache *cache) 219 { 220 struct backref_node *node; 221 int i; 222 223 while (!list_empty(&cache->detached)) { 224 node = list_entry(cache->detached.next, 225 struct backref_node, list); 226 remove_backref_node(cache, node); 227 } 228 229 while (!list_empty(&cache->leaves)) { 230 node = list_entry(cache->leaves.next, 231 struct backref_node, lower); 232 remove_backref_node(cache, node); 233 } 234 235 cache->last_trans = 0; 236 237 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 238 BUG_ON(!list_empty(&cache->pending[i])); 239 BUG_ON(!list_empty(&cache->changed)); 240 BUG_ON(!list_empty(&cache->detached)); 241 BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root)); 242 BUG_ON(cache->nr_nodes); 243 BUG_ON(cache->nr_edges); 244 } 245 246 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 247 { 248 struct backref_node *node; 249 250 node = kzalloc(sizeof(*node), GFP_NOFS); 251 if (node) { 252 INIT_LIST_HEAD(&node->list); 253 INIT_LIST_HEAD(&node->upper); 254 INIT_LIST_HEAD(&node->lower); 255 RB_CLEAR_NODE(&node->rb_node); 256 cache->nr_nodes++; 257 } 258 return node; 259 } 260 261 static void free_backref_node(struct backref_cache *cache, 262 struct backref_node *node) 263 { 264 if (node) { 265 cache->nr_nodes--; 266 kfree(node); 267 } 268 } 269 270 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 271 { 272 struct backref_edge *edge; 273 274 edge = kzalloc(sizeof(*edge), GFP_NOFS); 275 if (edge) 276 cache->nr_edges++; 277 return edge; 278 } 279 280 static void free_backref_edge(struct backref_cache *cache, 281 struct backref_edge *edge) 282 { 283 if (edge) { 284 cache->nr_edges--; 285 kfree(edge); 286 } 287 } 288 289 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 290 struct rb_node *node) 291 { 292 struct rb_node **p = &root->rb_node; 293 struct rb_node *parent = NULL; 294 struct tree_entry *entry; 295 296 while (*p) { 297 parent = *p; 298 entry = rb_entry(parent, struct tree_entry, rb_node); 299 300 if (bytenr < entry->bytenr) 301 p = &(*p)->rb_left; 302 else if (bytenr > entry->bytenr) 303 p = &(*p)->rb_right; 304 else 305 return parent; 306 } 307 308 rb_link_node(node, parent, p); 309 rb_insert_color(node, root); 310 return NULL; 311 } 312 313 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 314 { 315 struct rb_node *n = root->rb_node; 316 struct tree_entry *entry; 317 318 while (n) { 319 entry = rb_entry(n, struct tree_entry, rb_node); 320 321 if (bytenr < entry->bytenr) 322 n = n->rb_left; 323 else if (bytenr > entry->bytenr) 324 n = n->rb_right; 325 else 326 return n; 327 } 328 return NULL; 329 } 330 331 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr) 332 { 333 334 struct btrfs_fs_info *fs_info = NULL; 335 struct backref_node *bnode = rb_entry(rb_node, struct backref_node, 336 rb_node); 337 if (bnode->root) 338 fs_info = bnode->root->fs_info; 339 btrfs_panic(fs_info, errno, "Inconsistency in backref cache " 340 "found at offset %llu", bytenr); 341 } 342 343 /* 344 * walk up backref nodes until reach node presents tree root 345 */ 346 static struct backref_node *walk_up_backref(struct backref_node *node, 347 struct backref_edge *edges[], 348 int *index) 349 { 350 struct backref_edge *edge; 351 int idx = *index; 352 353 while (!list_empty(&node->upper)) { 354 edge = list_entry(node->upper.next, 355 struct backref_edge, list[LOWER]); 356 edges[idx++] = edge; 357 node = edge->node[UPPER]; 358 } 359 BUG_ON(node->detached); 360 *index = idx; 361 return node; 362 } 363 364 /* 365 * walk down backref nodes to find start of next reference path 366 */ 367 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 368 int *index) 369 { 370 struct backref_edge *edge; 371 struct backref_node *lower; 372 int idx = *index; 373 374 while (idx > 0) { 375 edge = edges[idx - 1]; 376 lower = edge->node[LOWER]; 377 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 378 idx--; 379 continue; 380 } 381 edge = list_entry(edge->list[LOWER].next, 382 struct backref_edge, list[LOWER]); 383 edges[idx - 1] = edge; 384 *index = idx; 385 return edge->node[UPPER]; 386 } 387 *index = 0; 388 return NULL; 389 } 390 391 static void unlock_node_buffer(struct backref_node *node) 392 { 393 if (node->locked) { 394 btrfs_tree_unlock(node->eb); 395 node->locked = 0; 396 } 397 } 398 399 static void drop_node_buffer(struct backref_node *node) 400 { 401 if (node->eb) { 402 unlock_node_buffer(node); 403 free_extent_buffer(node->eb); 404 node->eb = NULL; 405 } 406 } 407 408 static void drop_backref_node(struct backref_cache *tree, 409 struct backref_node *node) 410 { 411 BUG_ON(!list_empty(&node->upper)); 412 413 drop_node_buffer(node); 414 list_del(&node->list); 415 list_del(&node->lower); 416 if (!RB_EMPTY_NODE(&node->rb_node)) 417 rb_erase(&node->rb_node, &tree->rb_root); 418 free_backref_node(tree, node); 419 } 420 421 /* 422 * remove a backref node from the backref cache 423 */ 424 static void remove_backref_node(struct backref_cache *cache, 425 struct backref_node *node) 426 { 427 struct backref_node *upper; 428 struct backref_edge *edge; 429 430 if (!node) 431 return; 432 433 BUG_ON(!node->lowest && !node->detached); 434 while (!list_empty(&node->upper)) { 435 edge = list_entry(node->upper.next, struct backref_edge, 436 list[LOWER]); 437 upper = edge->node[UPPER]; 438 list_del(&edge->list[LOWER]); 439 list_del(&edge->list[UPPER]); 440 free_backref_edge(cache, edge); 441 442 if (RB_EMPTY_NODE(&upper->rb_node)) { 443 BUG_ON(!list_empty(&node->upper)); 444 drop_backref_node(cache, node); 445 node = upper; 446 node->lowest = 1; 447 continue; 448 } 449 /* 450 * add the node to leaf node list if no other 451 * child block cached. 452 */ 453 if (list_empty(&upper->lower)) { 454 list_add_tail(&upper->lower, &cache->leaves); 455 upper->lowest = 1; 456 } 457 } 458 459 drop_backref_node(cache, node); 460 } 461 462 static void update_backref_node(struct backref_cache *cache, 463 struct backref_node *node, u64 bytenr) 464 { 465 struct rb_node *rb_node; 466 rb_erase(&node->rb_node, &cache->rb_root); 467 node->bytenr = bytenr; 468 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 469 if (rb_node) 470 backref_tree_panic(rb_node, -EEXIST, bytenr); 471 } 472 473 /* 474 * update backref cache after a transaction commit 475 */ 476 static int update_backref_cache(struct btrfs_trans_handle *trans, 477 struct backref_cache *cache) 478 { 479 struct backref_node *node; 480 int level = 0; 481 482 if (cache->last_trans == 0) { 483 cache->last_trans = trans->transid; 484 return 0; 485 } 486 487 if (cache->last_trans == trans->transid) 488 return 0; 489 490 /* 491 * detached nodes are used to avoid unnecessary backref 492 * lookup. transaction commit changes the extent tree. 493 * so the detached nodes are no longer useful. 494 */ 495 while (!list_empty(&cache->detached)) { 496 node = list_entry(cache->detached.next, 497 struct backref_node, list); 498 remove_backref_node(cache, node); 499 } 500 501 while (!list_empty(&cache->changed)) { 502 node = list_entry(cache->changed.next, 503 struct backref_node, list); 504 list_del_init(&node->list); 505 BUG_ON(node->pending); 506 update_backref_node(cache, node, node->new_bytenr); 507 } 508 509 /* 510 * some nodes can be left in the pending list if there were 511 * errors during processing the pending nodes. 512 */ 513 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 514 list_for_each_entry(node, &cache->pending[level], list) { 515 BUG_ON(!node->pending); 516 if (node->bytenr == node->new_bytenr) 517 continue; 518 update_backref_node(cache, node, node->new_bytenr); 519 } 520 } 521 522 cache->last_trans = 0; 523 return 1; 524 } 525 526 527 static int should_ignore_root(struct btrfs_root *root) 528 { 529 struct btrfs_root *reloc_root; 530 531 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 532 return 0; 533 534 reloc_root = root->reloc_root; 535 if (!reloc_root) 536 return 0; 537 538 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 539 root->fs_info->running_transaction->transid - 1) 540 return 0; 541 /* 542 * if there is reloc tree and it was created in previous 543 * transaction backref lookup can find the reloc tree, 544 * so backref node for the fs tree root is useless for 545 * relocation. 546 */ 547 return 1; 548 } 549 /* 550 * find reloc tree by address of tree root 551 */ 552 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 553 u64 bytenr) 554 { 555 struct rb_node *rb_node; 556 struct mapping_node *node; 557 struct btrfs_root *root = NULL; 558 559 spin_lock(&rc->reloc_root_tree.lock); 560 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 561 if (rb_node) { 562 node = rb_entry(rb_node, struct mapping_node, rb_node); 563 root = (struct btrfs_root *)node->data; 564 } 565 spin_unlock(&rc->reloc_root_tree.lock); 566 return root; 567 } 568 569 static int is_cowonly_root(u64 root_objectid) 570 { 571 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 572 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 573 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 574 root_objectid == BTRFS_DEV_TREE_OBJECTID || 575 root_objectid == BTRFS_TREE_LOG_OBJECTID || 576 root_objectid == BTRFS_CSUM_TREE_OBJECTID || 577 root_objectid == BTRFS_UUID_TREE_OBJECTID || 578 root_objectid == BTRFS_QUOTA_TREE_OBJECTID) 579 return 1; 580 return 0; 581 } 582 583 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 584 u64 root_objectid) 585 { 586 struct btrfs_key key; 587 588 key.objectid = root_objectid; 589 key.type = BTRFS_ROOT_ITEM_KEY; 590 if (is_cowonly_root(root_objectid)) 591 key.offset = 0; 592 else 593 key.offset = (u64)-1; 594 595 return btrfs_get_fs_root(fs_info, &key, false); 596 } 597 598 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 599 static noinline_for_stack 600 struct btrfs_root *find_tree_root(struct reloc_control *rc, 601 struct extent_buffer *leaf, 602 struct btrfs_extent_ref_v0 *ref0) 603 { 604 struct btrfs_root *root; 605 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0); 606 u64 generation = btrfs_ref_generation_v0(leaf, ref0); 607 608 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID); 609 610 root = read_fs_root(rc->extent_root->fs_info, root_objectid); 611 BUG_ON(IS_ERR(root)); 612 613 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 614 generation != btrfs_root_generation(&root->root_item)) 615 return NULL; 616 617 return root; 618 } 619 #endif 620 621 static noinline_for_stack 622 int find_inline_backref(struct extent_buffer *leaf, int slot, 623 unsigned long *ptr, unsigned long *end) 624 { 625 struct btrfs_key key; 626 struct btrfs_extent_item *ei; 627 struct btrfs_tree_block_info *bi; 628 u32 item_size; 629 630 btrfs_item_key_to_cpu(leaf, &key, slot); 631 632 item_size = btrfs_item_size_nr(leaf, slot); 633 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 634 if (item_size < sizeof(*ei)) { 635 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 636 return 1; 637 } 638 #endif 639 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 640 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 641 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 642 643 if (key.type == BTRFS_EXTENT_ITEM_KEY && 644 item_size <= sizeof(*ei) + sizeof(*bi)) { 645 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 646 return 1; 647 } 648 if (key.type == BTRFS_METADATA_ITEM_KEY && 649 item_size <= sizeof(*ei)) { 650 WARN_ON(item_size < sizeof(*ei)); 651 return 1; 652 } 653 654 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 655 bi = (struct btrfs_tree_block_info *)(ei + 1); 656 *ptr = (unsigned long)(bi + 1); 657 } else { 658 *ptr = (unsigned long)(ei + 1); 659 } 660 *end = (unsigned long)ei + item_size; 661 return 0; 662 } 663 664 /* 665 * build backref tree for a given tree block. root of the backref tree 666 * corresponds the tree block, leaves of the backref tree correspond 667 * roots of b-trees that reference the tree block. 668 * 669 * the basic idea of this function is check backrefs of a given block 670 * to find upper level blocks that refernece the block, and then check 671 * bakcrefs of these upper level blocks recursively. the recursion stop 672 * when tree root is reached or backrefs for the block is cached. 673 * 674 * NOTE: if we find backrefs for a block are cached, we know backrefs 675 * for all upper level blocks that directly/indirectly reference the 676 * block are also cached. 677 */ 678 static noinline_for_stack 679 struct backref_node *build_backref_tree(struct reloc_control *rc, 680 struct btrfs_key *node_key, 681 int level, u64 bytenr) 682 { 683 struct backref_cache *cache = &rc->backref_cache; 684 struct btrfs_path *path1; 685 struct btrfs_path *path2; 686 struct extent_buffer *eb; 687 struct btrfs_root *root; 688 struct backref_node *cur; 689 struct backref_node *upper; 690 struct backref_node *lower; 691 struct backref_node *node = NULL; 692 struct backref_node *exist = NULL; 693 struct backref_edge *edge; 694 struct rb_node *rb_node; 695 struct btrfs_key key; 696 unsigned long end; 697 unsigned long ptr; 698 LIST_HEAD(list); 699 LIST_HEAD(useless); 700 int cowonly; 701 int ret; 702 int err = 0; 703 bool need_check = true; 704 705 path1 = btrfs_alloc_path(); 706 path2 = btrfs_alloc_path(); 707 if (!path1 || !path2) { 708 err = -ENOMEM; 709 goto out; 710 } 711 path1->reada = 1; 712 path2->reada = 2; 713 714 node = alloc_backref_node(cache); 715 if (!node) { 716 err = -ENOMEM; 717 goto out; 718 } 719 720 node->bytenr = bytenr; 721 node->level = level; 722 node->lowest = 1; 723 cur = node; 724 again: 725 end = 0; 726 ptr = 0; 727 key.objectid = cur->bytenr; 728 key.type = BTRFS_METADATA_ITEM_KEY; 729 key.offset = (u64)-1; 730 731 path1->search_commit_root = 1; 732 path1->skip_locking = 1; 733 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 734 0, 0); 735 if (ret < 0) { 736 err = ret; 737 goto out; 738 } 739 ASSERT(ret); 740 ASSERT(path1->slots[0]); 741 742 path1->slots[0]--; 743 744 WARN_ON(cur->checked); 745 if (!list_empty(&cur->upper)) { 746 /* 747 * the backref was added previously when processing 748 * backref of type BTRFS_TREE_BLOCK_REF_KEY 749 */ 750 ASSERT(list_is_singular(&cur->upper)); 751 edge = list_entry(cur->upper.next, struct backref_edge, 752 list[LOWER]); 753 ASSERT(list_empty(&edge->list[UPPER])); 754 exist = edge->node[UPPER]; 755 /* 756 * add the upper level block to pending list if we need 757 * check its backrefs 758 */ 759 if (!exist->checked) 760 list_add_tail(&edge->list[UPPER], &list); 761 } else { 762 exist = NULL; 763 } 764 765 while (1) { 766 cond_resched(); 767 eb = path1->nodes[0]; 768 769 if (ptr >= end) { 770 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 771 ret = btrfs_next_leaf(rc->extent_root, path1); 772 if (ret < 0) { 773 err = ret; 774 goto out; 775 } 776 if (ret > 0) 777 break; 778 eb = path1->nodes[0]; 779 } 780 781 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 782 if (key.objectid != cur->bytenr) { 783 WARN_ON(exist); 784 break; 785 } 786 787 if (key.type == BTRFS_EXTENT_ITEM_KEY || 788 key.type == BTRFS_METADATA_ITEM_KEY) { 789 ret = find_inline_backref(eb, path1->slots[0], 790 &ptr, &end); 791 if (ret) 792 goto next; 793 } 794 } 795 796 if (ptr < end) { 797 /* update key for inline back ref */ 798 struct btrfs_extent_inline_ref *iref; 799 iref = (struct btrfs_extent_inline_ref *)ptr; 800 key.type = btrfs_extent_inline_ref_type(eb, iref); 801 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 802 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 803 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 804 } 805 806 if (exist && 807 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 808 exist->owner == key.offset) || 809 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 810 exist->bytenr == key.offset))) { 811 exist = NULL; 812 goto next; 813 } 814 815 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 816 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY || 817 key.type == BTRFS_EXTENT_REF_V0_KEY) { 818 if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 819 struct btrfs_extent_ref_v0 *ref0; 820 ref0 = btrfs_item_ptr(eb, path1->slots[0], 821 struct btrfs_extent_ref_v0); 822 if (key.objectid == key.offset) { 823 root = find_tree_root(rc, eb, ref0); 824 if (root && !should_ignore_root(root)) 825 cur->root = root; 826 else 827 list_add(&cur->list, &useless); 828 break; 829 } 830 if (is_cowonly_root(btrfs_ref_root_v0(eb, 831 ref0))) 832 cur->cowonly = 1; 833 } 834 #else 835 ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY); 836 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 837 #endif 838 if (key.objectid == key.offset) { 839 /* 840 * only root blocks of reloc trees use 841 * backref of this type. 842 */ 843 root = find_reloc_root(rc, cur->bytenr); 844 ASSERT(root); 845 cur->root = root; 846 break; 847 } 848 849 edge = alloc_backref_edge(cache); 850 if (!edge) { 851 err = -ENOMEM; 852 goto out; 853 } 854 rb_node = tree_search(&cache->rb_root, key.offset); 855 if (!rb_node) { 856 upper = alloc_backref_node(cache); 857 if (!upper) { 858 free_backref_edge(cache, edge); 859 err = -ENOMEM; 860 goto out; 861 } 862 upper->bytenr = key.offset; 863 upper->level = cur->level + 1; 864 /* 865 * backrefs for the upper level block isn't 866 * cached, add the block to pending list 867 */ 868 list_add_tail(&edge->list[UPPER], &list); 869 } else { 870 upper = rb_entry(rb_node, struct backref_node, 871 rb_node); 872 ASSERT(upper->checked); 873 INIT_LIST_HEAD(&edge->list[UPPER]); 874 } 875 list_add_tail(&edge->list[LOWER], &cur->upper); 876 edge->node[LOWER] = cur; 877 edge->node[UPPER] = upper; 878 879 goto next; 880 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 881 goto next; 882 } 883 884 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */ 885 root = read_fs_root(rc->extent_root->fs_info, key.offset); 886 if (IS_ERR(root)) { 887 err = PTR_ERR(root); 888 goto out; 889 } 890 891 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 892 cur->cowonly = 1; 893 894 if (btrfs_root_level(&root->root_item) == cur->level) { 895 /* tree root */ 896 ASSERT(btrfs_root_bytenr(&root->root_item) == 897 cur->bytenr); 898 if (should_ignore_root(root)) 899 list_add(&cur->list, &useless); 900 else 901 cur->root = root; 902 break; 903 } 904 905 level = cur->level + 1; 906 907 /* 908 * searching the tree to find upper level blocks 909 * reference the block. 910 */ 911 path2->search_commit_root = 1; 912 path2->skip_locking = 1; 913 path2->lowest_level = level; 914 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 915 path2->lowest_level = 0; 916 if (ret < 0) { 917 err = ret; 918 goto out; 919 } 920 if (ret > 0 && path2->slots[level] > 0) 921 path2->slots[level]--; 922 923 eb = path2->nodes[level]; 924 WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) != 925 cur->bytenr); 926 927 lower = cur; 928 need_check = true; 929 for (; level < BTRFS_MAX_LEVEL; level++) { 930 if (!path2->nodes[level]) { 931 ASSERT(btrfs_root_bytenr(&root->root_item) == 932 lower->bytenr); 933 if (should_ignore_root(root)) 934 list_add(&lower->list, &useless); 935 else 936 lower->root = root; 937 break; 938 } 939 940 edge = alloc_backref_edge(cache); 941 if (!edge) { 942 err = -ENOMEM; 943 goto out; 944 } 945 946 eb = path2->nodes[level]; 947 rb_node = tree_search(&cache->rb_root, eb->start); 948 if (!rb_node) { 949 upper = alloc_backref_node(cache); 950 if (!upper) { 951 free_backref_edge(cache, edge); 952 err = -ENOMEM; 953 goto out; 954 } 955 upper->bytenr = eb->start; 956 upper->owner = btrfs_header_owner(eb); 957 upper->level = lower->level + 1; 958 if (!test_bit(BTRFS_ROOT_REF_COWS, 959 &root->state)) 960 upper->cowonly = 1; 961 962 /* 963 * if we know the block isn't shared 964 * we can void checking its backrefs. 965 */ 966 if (btrfs_block_can_be_shared(root, eb)) 967 upper->checked = 0; 968 else 969 upper->checked = 1; 970 971 /* 972 * add the block to pending list if we 973 * need check its backrefs, we only do this once 974 * while walking up a tree as we will catch 975 * anything else later on. 976 */ 977 if (!upper->checked && need_check) { 978 need_check = false; 979 list_add_tail(&edge->list[UPPER], 980 &list); 981 } else { 982 if (upper->checked) 983 need_check = true; 984 INIT_LIST_HEAD(&edge->list[UPPER]); 985 } 986 } else { 987 upper = rb_entry(rb_node, struct backref_node, 988 rb_node); 989 ASSERT(upper->checked); 990 INIT_LIST_HEAD(&edge->list[UPPER]); 991 if (!upper->owner) 992 upper->owner = btrfs_header_owner(eb); 993 } 994 list_add_tail(&edge->list[LOWER], &lower->upper); 995 edge->node[LOWER] = lower; 996 edge->node[UPPER] = upper; 997 998 if (rb_node) 999 break; 1000 lower = upper; 1001 upper = NULL; 1002 } 1003 btrfs_release_path(path2); 1004 next: 1005 if (ptr < end) { 1006 ptr += btrfs_extent_inline_ref_size(key.type); 1007 if (ptr >= end) { 1008 WARN_ON(ptr > end); 1009 ptr = 0; 1010 end = 0; 1011 } 1012 } 1013 if (ptr >= end) 1014 path1->slots[0]++; 1015 } 1016 btrfs_release_path(path1); 1017 1018 cur->checked = 1; 1019 WARN_ON(exist); 1020 1021 /* the pending list isn't empty, take the first block to process */ 1022 if (!list_empty(&list)) { 1023 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1024 list_del_init(&edge->list[UPPER]); 1025 cur = edge->node[UPPER]; 1026 goto again; 1027 } 1028 1029 /* 1030 * everything goes well, connect backref nodes and insert backref nodes 1031 * into the cache. 1032 */ 1033 ASSERT(node->checked); 1034 cowonly = node->cowonly; 1035 if (!cowonly) { 1036 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1037 &node->rb_node); 1038 if (rb_node) 1039 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1040 list_add_tail(&node->lower, &cache->leaves); 1041 } 1042 1043 list_for_each_entry(edge, &node->upper, list[LOWER]) 1044 list_add_tail(&edge->list[UPPER], &list); 1045 1046 while (!list_empty(&list)) { 1047 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1048 list_del_init(&edge->list[UPPER]); 1049 upper = edge->node[UPPER]; 1050 if (upper->detached) { 1051 list_del(&edge->list[LOWER]); 1052 lower = edge->node[LOWER]; 1053 free_backref_edge(cache, edge); 1054 if (list_empty(&lower->upper)) 1055 list_add(&lower->list, &useless); 1056 continue; 1057 } 1058 1059 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1060 if (upper->lowest) { 1061 list_del_init(&upper->lower); 1062 upper->lowest = 0; 1063 } 1064 1065 list_add_tail(&edge->list[UPPER], &upper->lower); 1066 continue; 1067 } 1068 1069 if (!upper->checked) { 1070 /* 1071 * Still want to blow up for developers since this is a 1072 * logic bug. 1073 */ 1074 ASSERT(0); 1075 err = -EINVAL; 1076 goto out; 1077 } 1078 if (cowonly != upper->cowonly) { 1079 ASSERT(0); 1080 err = -EINVAL; 1081 goto out; 1082 } 1083 1084 if (!cowonly) { 1085 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1086 &upper->rb_node); 1087 if (rb_node) 1088 backref_tree_panic(rb_node, -EEXIST, 1089 upper->bytenr); 1090 } 1091 1092 list_add_tail(&edge->list[UPPER], &upper->lower); 1093 1094 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1095 list_add_tail(&edge->list[UPPER], &list); 1096 } 1097 /* 1098 * process useless backref nodes. backref nodes for tree leaves 1099 * are deleted from the cache. backref nodes for upper level 1100 * tree blocks are left in the cache to avoid unnecessary backref 1101 * lookup. 1102 */ 1103 while (!list_empty(&useless)) { 1104 upper = list_entry(useless.next, struct backref_node, list); 1105 list_del_init(&upper->list); 1106 ASSERT(list_empty(&upper->upper)); 1107 if (upper == node) 1108 node = NULL; 1109 if (upper->lowest) { 1110 list_del_init(&upper->lower); 1111 upper->lowest = 0; 1112 } 1113 while (!list_empty(&upper->lower)) { 1114 edge = list_entry(upper->lower.next, 1115 struct backref_edge, list[UPPER]); 1116 list_del(&edge->list[UPPER]); 1117 list_del(&edge->list[LOWER]); 1118 lower = edge->node[LOWER]; 1119 free_backref_edge(cache, edge); 1120 1121 if (list_empty(&lower->upper)) 1122 list_add(&lower->list, &useless); 1123 } 1124 __mark_block_processed(rc, upper); 1125 if (upper->level > 0) { 1126 list_add(&upper->list, &cache->detached); 1127 upper->detached = 1; 1128 } else { 1129 rb_erase(&upper->rb_node, &cache->rb_root); 1130 free_backref_node(cache, upper); 1131 } 1132 } 1133 out: 1134 btrfs_free_path(path1); 1135 btrfs_free_path(path2); 1136 if (err) { 1137 while (!list_empty(&useless)) { 1138 lower = list_entry(useless.next, 1139 struct backref_node, list); 1140 list_del_init(&lower->list); 1141 } 1142 while (!list_empty(&list)) { 1143 edge = list_first_entry(&list, struct backref_edge, 1144 list[UPPER]); 1145 list_del(&edge->list[UPPER]); 1146 list_del(&edge->list[LOWER]); 1147 lower = edge->node[LOWER]; 1148 upper = edge->node[UPPER]; 1149 free_backref_edge(cache, edge); 1150 1151 /* 1152 * Lower is no longer linked to any upper backref nodes 1153 * and isn't in the cache, we can free it ourselves. 1154 */ 1155 if (list_empty(&lower->upper) && 1156 RB_EMPTY_NODE(&lower->rb_node)) 1157 list_add(&lower->list, &useless); 1158 1159 if (!RB_EMPTY_NODE(&upper->rb_node)) 1160 continue; 1161 1162 /* Add this guy's upper edges to the list to proces */ 1163 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1164 list_add_tail(&edge->list[UPPER], &list); 1165 if (list_empty(&upper->upper)) 1166 list_add(&upper->list, &useless); 1167 } 1168 1169 while (!list_empty(&useless)) { 1170 lower = list_entry(useless.next, 1171 struct backref_node, list); 1172 list_del_init(&lower->list); 1173 free_backref_node(cache, lower); 1174 } 1175 return ERR_PTR(err); 1176 } 1177 ASSERT(!node || !node->detached); 1178 return node; 1179 } 1180 1181 /* 1182 * helper to add backref node for the newly created snapshot. 1183 * the backref node is created by cloning backref node that 1184 * corresponds to root of source tree 1185 */ 1186 static int clone_backref_node(struct btrfs_trans_handle *trans, 1187 struct reloc_control *rc, 1188 struct btrfs_root *src, 1189 struct btrfs_root *dest) 1190 { 1191 struct btrfs_root *reloc_root = src->reloc_root; 1192 struct backref_cache *cache = &rc->backref_cache; 1193 struct backref_node *node = NULL; 1194 struct backref_node *new_node; 1195 struct backref_edge *edge; 1196 struct backref_edge *new_edge; 1197 struct rb_node *rb_node; 1198 1199 if (cache->last_trans > 0) 1200 update_backref_cache(trans, cache); 1201 1202 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1203 if (rb_node) { 1204 node = rb_entry(rb_node, struct backref_node, rb_node); 1205 if (node->detached) 1206 node = NULL; 1207 else 1208 BUG_ON(node->new_bytenr != reloc_root->node->start); 1209 } 1210 1211 if (!node) { 1212 rb_node = tree_search(&cache->rb_root, 1213 reloc_root->commit_root->start); 1214 if (rb_node) { 1215 node = rb_entry(rb_node, struct backref_node, 1216 rb_node); 1217 BUG_ON(node->detached); 1218 } 1219 } 1220 1221 if (!node) 1222 return 0; 1223 1224 new_node = alloc_backref_node(cache); 1225 if (!new_node) 1226 return -ENOMEM; 1227 1228 new_node->bytenr = dest->node->start; 1229 new_node->level = node->level; 1230 new_node->lowest = node->lowest; 1231 new_node->checked = 1; 1232 new_node->root = dest; 1233 1234 if (!node->lowest) { 1235 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1236 new_edge = alloc_backref_edge(cache); 1237 if (!new_edge) 1238 goto fail; 1239 1240 new_edge->node[UPPER] = new_node; 1241 new_edge->node[LOWER] = edge->node[LOWER]; 1242 list_add_tail(&new_edge->list[UPPER], 1243 &new_node->lower); 1244 } 1245 } else { 1246 list_add_tail(&new_node->lower, &cache->leaves); 1247 } 1248 1249 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1250 &new_node->rb_node); 1251 if (rb_node) 1252 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr); 1253 1254 if (!new_node->lowest) { 1255 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1256 list_add_tail(&new_edge->list[LOWER], 1257 &new_edge->node[LOWER]->upper); 1258 } 1259 } 1260 return 0; 1261 fail: 1262 while (!list_empty(&new_node->lower)) { 1263 new_edge = list_entry(new_node->lower.next, 1264 struct backref_edge, list[UPPER]); 1265 list_del(&new_edge->list[UPPER]); 1266 free_backref_edge(cache, new_edge); 1267 } 1268 free_backref_node(cache, new_node); 1269 return -ENOMEM; 1270 } 1271 1272 /* 1273 * helper to add 'address of tree root -> reloc tree' mapping 1274 */ 1275 static int __must_check __add_reloc_root(struct btrfs_root *root) 1276 { 1277 struct rb_node *rb_node; 1278 struct mapping_node *node; 1279 struct reloc_control *rc = root->fs_info->reloc_ctl; 1280 1281 node = kmalloc(sizeof(*node), GFP_NOFS); 1282 if (!node) 1283 return -ENOMEM; 1284 1285 node->bytenr = root->node->start; 1286 node->data = root; 1287 1288 spin_lock(&rc->reloc_root_tree.lock); 1289 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1290 node->bytenr, &node->rb_node); 1291 spin_unlock(&rc->reloc_root_tree.lock); 1292 if (rb_node) { 1293 btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found " 1294 "for start=%llu while inserting into relocation " 1295 "tree", node->bytenr); 1296 kfree(node); 1297 return -EEXIST; 1298 } 1299 1300 list_add_tail(&root->root_list, &rc->reloc_roots); 1301 return 0; 1302 } 1303 1304 /* 1305 * helper to delete the 'address of tree root -> reloc tree' 1306 * mapping 1307 */ 1308 static void __del_reloc_root(struct btrfs_root *root) 1309 { 1310 struct rb_node *rb_node; 1311 struct mapping_node *node = NULL; 1312 struct reloc_control *rc = root->fs_info->reloc_ctl; 1313 1314 spin_lock(&rc->reloc_root_tree.lock); 1315 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1316 root->node->start); 1317 if (rb_node) { 1318 node = rb_entry(rb_node, struct mapping_node, rb_node); 1319 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1320 } 1321 spin_unlock(&rc->reloc_root_tree.lock); 1322 1323 if (!node) 1324 return; 1325 BUG_ON((struct btrfs_root *)node->data != root); 1326 1327 spin_lock(&root->fs_info->trans_lock); 1328 list_del_init(&root->root_list); 1329 spin_unlock(&root->fs_info->trans_lock); 1330 kfree(node); 1331 } 1332 1333 /* 1334 * helper to update the 'address of tree root -> reloc tree' 1335 * mapping 1336 */ 1337 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr) 1338 { 1339 struct rb_node *rb_node; 1340 struct mapping_node *node = NULL; 1341 struct reloc_control *rc = root->fs_info->reloc_ctl; 1342 1343 spin_lock(&rc->reloc_root_tree.lock); 1344 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1345 root->node->start); 1346 if (rb_node) { 1347 node = rb_entry(rb_node, struct mapping_node, rb_node); 1348 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1349 } 1350 spin_unlock(&rc->reloc_root_tree.lock); 1351 1352 if (!node) 1353 return 0; 1354 BUG_ON((struct btrfs_root *)node->data != root); 1355 1356 spin_lock(&rc->reloc_root_tree.lock); 1357 node->bytenr = new_bytenr; 1358 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1359 node->bytenr, &node->rb_node); 1360 spin_unlock(&rc->reloc_root_tree.lock); 1361 if (rb_node) 1362 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1363 return 0; 1364 } 1365 1366 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1367 struct btrfs_root *root, u64 objectid) 1368 { 1369 struct btrfs_root *reloc_root; 1370 struct extent_buffer *eb; 1371 struct btrfs_root_item *root_item; 1372 struct btrfs_key root_key; 1373 u64 last_snap = 0; 1374 int ret; 1375 1376 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1377 BUG_ON(!root_item); 1378 1379 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1380 root_key.type = BTRFS_ROOT_ITEM_KEY; 1381 root_key.offset = objectid; 1382 1383 if (root->root_key.objectid == objectid) { 1384 /* called by btrfs_init_reloc_root */ 1385 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1386 BTRFS_TREE_RELOC_OBJECTID); 1387 BUG_ON(ret); 1388 1389 last_snap = btrfs_root_last_snapshot(&root->root_item); 1390 btrfs_set_root_last_snapshot(&root->root_item, 1391 trans->transid - 1); 1392 } else { 1393 /* 1394 * called by btrfs_reloc_post_snapshot_hook. 1395 * the source tree is a reloc tree, all tree blocks 1396 * modified after it was created have RELOC flag 1397 * set in their headers. so it's OK to not update 1398 * the 'last_snapshot'. 1399 */ 1400 ret = btrfs_copy_root(trans, root, root->node, &eb, 1401 BTRFS_TREE_RELOC_OBJECTID); 1402 BUG_ON(ret); 1403 } 1404 1405 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1406 btrfs_set_root_bytenr(root_item, eb->start); 1407 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1408 btrfs_set_root_generation(root_item, trans->transid); 1409 1410 if (root->root_key.objectid == objectid) { 1411 btrfs_set_root_refs(root_item, 0); 1412 memset(&root_item->drop_progress, 0, 1413 sizeof(struct btrfs_disk_key)); 1414 root_item->drop_level = 0; 1415 /* 1416 * abuse rtransid, it is safe because it is impossible to 1417 * receive data into a relocation tree. 1418 */ 1419 btrfs_set_root_rtransid(root_item, last_snap); 1420 btrfs_set_root_otransid(root_item, trans->transid); 1421 } 1422 1423 btrfs_tree_unlock(eb); 1424 free_extent_buffer(eb); 1425 1426 ret = btrfs_insert_root(trans, root->fs_info->tree_root, 1427 &root_key, root_item); 1428 BUG_ON(ret); 1429 kfree(root_item); 1430 1431 reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key); 1432 BUG_ON(IS_ERR(reloc_root)); 1433 reloc_root->last_trans = trans->transid; 1434 return reloc_root; 1435 } 1436 1437 /* 1438 * create reloc tree for a given fs tree. reloc tree is just a 1439 * snapshot of the fs tree with special root objectid. 1440 */ 1441 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1442 struct btrfs_root *root) 1443 { 1444 struct btrfs_root *reloc_root; 1445 struct reloc_control *rc = root->fs_info->reloc_ctl; 1446 struct btrfs_block_rsv *rsv; 1447 int clear_rsv = 0; 1448 int ret; 1449 1450 if (root->reloc_root) { 1451 reloc_root = root->reloc_root; 1452 reloc_root->last_trans = trans->transid; 1453 return 0; 1454 } 1455 1456 if (!rc || !rc->create_reloc_tree || 1457 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1458 return 0; 1459 1460 if (!trans->reloc_reserved) { 1461 rsv = trans->block_rsv; 1462 trans->block_rsv = rc->block_rsv; 1463 clear_rsv = 1; 1464 } 1465 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1466 if (clear_rsv) 1467 trans->block_rsv = rsv; 1468 1469 ret = __add_reloc_root(reloc_root); 1470 BUG_ON(ret < 0); 1471 root->reloc_root = reloc_root; 1472 return 0; 1473 } 1474 1475 /* 1476 * update root item of reloc tree 1477 */ 1478 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1479 struct btrfs_root *root) 1480 { 1481 struct btrfs_root *reloc_root; 1482 struct btrfs_root_item *root_item; 1483 int ret; 1484 1485 if (!root->reloc_root) 1486 goto out; 1487 1488 reloc_root = root->reloc_root; 1489 root_item = &reloc_root->root_item; 1490 1491 if (root->fs_info->reloc_ctl->merge_reloc_tree && 1492 btrfs_root_refs(root_item) == 0) { 1493 root->reloc_root = NULL; 1494 __del_reloc_root(reloc_root); 1495 } 1496 1497 if (reloc_root->commit_root != reloc_root->node) { 1498 btrfs_set_root_node(root_item, reloc_root->node); 1499 free_extent_buffer(reloc_root->commit_root); 1500 reloc_root->commit_root = btrfs_root_node(reloc_root); 1501 } 1502 1503 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1504 &reloc_root->root_key, root_item); 1505 BUG_ON(ret); 1506 1507 out: 1508 return 0; 1509 } 1510 1511 /* 1512 * helper to find first cached inode with inode number >= objectid 1513 * in a subvolume 1514 */ 1515 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1516 { 1517 struct rb_node *node; 1518 struct rb_node *prev; 1519 struct btrfs_inode *entry; 1520 struct inode *inode; 1521 1522 spin_lock(&root->inode_lock); 1523 again: 1524 node = root->inode_tree.rb_node; 1525 prev = NULL; 1526 while (node) { 1527 prev = node; 1528 entry = rb_entry(node, struct btrfs_inode, rb_node); 1529 1530 if (objectid < btrfs_ino(&entry->vfs_inode)) 1531 node = node->rb_left; 1532 else if (objectid > btrfs_ino(&entry->vfs_inode)) 1533 node = node->rb_right; 1534 else 1535 break; 1536 } 1537 if (!node) { 1538 while (prev) { 1539 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1540 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 1541 node = prev; 1542 break; 1543 } 1544 prev = rb_next(prev); 1545 } 1546 } 1547 while (node) { 1548 entry = rb_entry(node, struct btrfs_inode, rb_node); 1549 inode = igrab(&entry->vfs_inode); 1550 if (inode) { 1551 spin_unlock(&root->inode_lock); 1552 return inode; 1553 } 1554 1555 objectid = btrfs_ino(&entry->vfs_inode) + 1; 1556 if (cond_resched_lock(&root->inode_lock)) 1557 goto again; 1558 1559 node = rb_next(node); 1560 } 1561 spin_unlock(&root->inode_lock); 1562 return NULL; 1563 } 1564 1565 static int in_block_group(u64 bytenr, 1566 struct btrfs_block_group_cache *block_group) 1567 { 1568 if (bytenr >= block_group->key.objectid && 1569 bytenr < block_group->key.objectid + block_group->key.offset) 1570 return 1; 1571 return 0; 1572 } 1573 1574 /* 1575 * get new location of data 1576 */ 1577 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1578 u64 bytenr, u64 num_bytes) 1579 { 1580 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1581 struct btrfs_path *path; 1582 struct btrfs_file_extent_item *fi; 1583 struct extent_buffer *leaf; 1584 int ret; 1585 1586 path = btrfs_alloc_path(); 1587 if (!path) 1588 return -ENOMEM; 1589 1590 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1591 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode), 1592 bytenr, 0); 1593 if (ret < 0) 1594 goto out; 1595 if (ret > 0) { 1596 ret = -ENOENT; 1597 goto out; 1598 } 1599 1600 leaf = path->nodes[0]; 1601 fi = btrfs_item_ptr(leaf, path->slots[0], 1602 struct btrfs_file_extent_item); 1603 1604 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1605 btrfs_file_extent_compression(leaf, fi) || 1606 btrfs_file_extent_encryption(leaf, fi) || 1607 btrfs_file_extent_other_encoding(leaf, fi)); 1608 1609 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1610 ret = -EINVAL; 1611 goto out; 1612 } 1613 1614 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1615 ret = 0; 1616 out: 1617 btrfs_free_path(path); 1618 return ret; 1619 } 1620 1621 /* 1622 * update file extent items in the tree leaf to point to 1623 * the new locations. 1624 */ 1625 static noinline_for_stack 1626 int replace_file_extents(struct btrfs_trans_handle *trans, 1627 struct reloc_control *rc, 1628 struct btrfs_root *root, 1629 struct extent_buffer *leaf) 1630 { 1631 struct btrfs_key key; 1632 struct btrfs_file_extent_item *fi; 1633 struct inode *inode = NULL; 1634 u64 parent; 1635 u64 bytenr; 1636 u64 new_bytenr = 0; 1637 u64 num_bytes; 1638 u64 end; 1639 u32 nritems; 1640 u32 i; 1641 int ret = 0; 1642 int first = 1; 1643 int dirty = 0; 1644 1645 if (rc->stage != UPDATE_DATA_PTRS) 1646 return 0; 1647 1648 /* reloc trees always use full backref */ 1649 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1650 parent = leaf->start; 1651 else 1652 parent = 0; 1653 1654 nritems = btrfs_header_nritems(leaf); 1655 for (i = 0; i < nritems; i++) { 1656 cond_resched(); 1657 btrfs_item_key_to_cpu(leaf, &key, i); 1658 if (key.type != BTRFS_EXTENT_DATA_KEY) 1659 continue; 1660 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1661 if (btrfs_file_extent_type(leaf, fi) == 1662 BTRFS_FILE_EXTENT_INLINE) 1663 continue; 1664 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1665 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1666 if (bytenr == 0) 1667 continue; 1668 if (!in_block_group(bytenr, rc->block_group)) 1669 continue; 1670 1671 /* 1672 * if we are modifying block in fs tree, wait for readpage 1673 * to complete and drop the extent cache 1674 */ 1675 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1676 if (first) { 1677 inode = find_next_inode(root, key.objectid); 1678 first = 0; 1679 } else if (inode && btrfs_ino(inode) < key.objectid) { 1680 btrfs_add_delayed_iput(inode); 1681 inode = find_next_inode(root, key.objectid); 1682 } 1683 if (inode && btrfs_ino(inode) == key.objectid) { 1684 end = key.offset + 1685 btrfs_file_extent_num_bytes(leaf, fi); 1686 WARN_ON(!IS_ALIGNED(key.offset, 1687 root->sectorsize)); 1688 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 1689 end--; 1690 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1691 key.offset, end); 1692 if (!ret) 1693 continue; 1694 1695 btrfs_drop_extent_cache(inode, key.offset, end, 1696 1); 1697 unlock_extent(&BTRFS_I(inode)->io_tree, 1698 key.offset, end); 1699 } 1700 } 1701 1702 ret = get_new_location(rc->data_inode, &new_bytenr, 1703 bytenr, num_bytes); 1704 if (ret) { 1705 /* 1706 * Don't have to abort since we've not changed anything 1707 * in the file extent yet. 1708 */ 1709 break; 1710 } 1711 1712 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1713 dirty = 1; 1714 1715 key.offset -= btrfs_file_extent_offset(leaf, fi); 1716 ret = btrfs_inc_extent_ref(trans, root, new_bytenr, 1717 num_bytes, parent, 1718 btrfs_header_owner(leaf), 1719 key.objectid, key.offset, 1); 1720 if (ret) { 1721 btrfs_abort_transaction(trans, root, ret); 1722 break; 1723 } 1724 1725 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1726 parent, btrfs_header_owner(leaf), 1727 key.objectid, key.offset, 1); 1728 if (ret) { 1729 btrfs_abort_transaction(trans, root, ret); 1730 break; 1731 } 1732 } 1733 if (dirty) 1734 btrfs_mark_buffer_dirty(leaf); 1735 if (inode) 1736 btrfs_add_delayed_iput(inode); 1737 return ret; 1738 } 1739 1740 static noinline_for_stack 1741 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1742 struct btrfs_path *path, int level) 1743 { 1744 struct btrfs_disk_key key1; 1745 struct btrfs_disk_key key2; 1746 btrfs_node_key(eb, &key1, slot); 1747 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1748 return memcmp(&key1, &key2, sizeof(key1)); 1749 } 1750 1751 /* 1752 * try to replace tree blocks in fs tree with the new blocks 1753 * in reloc tree. tree blocks haven't been modified since the 1754 * reloc tree was create can be replaced. 1755 * 1756 * if a block was replaced, level of the block + 1 is returned. 1757 * if no block got replaced, 0 is returned. if there are other 1758 * errors, a negative error number is returned. 1759 */ 1760 static noinline_for_stack 1761 int replace_path(struct btrfs_trans_handle *trans, 1762 struct btrfs_root *dest, struct btrfs_root *src, 1763 struct btrfs_path *path, struct btrfs_key *next_key, 1764 int lowest_level, int max_level) 1765 { 1766 struct extent_buffer *eb; 1767 struct extent_buffer *parent; 1768 struct btrfs_key key; 1769 u64 old_bytenr; 1770 u64 new_bytenr; 1771 u64 old_ptr_gen; 1772 u64 new_ptr_gen; 1773 u64 last_snapshot; 1774 u32 blocksize; 1775 int cow = 0; 1776 int level; 1777 int ret; 1778 int slot; 1779 1780 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1781 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1782 1783 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1784 again: 1785 slot = path->slots[lowest_level]; 1786 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1787 1788 eb = btrfs_lock_root_node(dest); 1789 btrfs_set_lock_blocking(eb); 1790 level = btrfs_header_level(eb); 1791 1792 if (level < lowest_level) { 1793 btrfs_tree_unlock(eb); 1794 free_extent_buffer(eb); 1795 return 0; 1796 } 1797 1798 if (cow) { 1799 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1800 BUG_ON(ret); 1801 } 1802 btrfs_set_lock_blocking(eb); 1803 1804 if (next_key) { 1805 next_key->objectid = (u64)-1; 1806 next_key->type = (u8)-1; 1807 next_key->offset = (u64)-1; 1808 } 1809 1810 parent = eb; 1811 while (1) { 1812 level = btrfs_header_level(parent); 1813 BUG_ON(level < lowest_level); 1814 1815 ret = btrfs_bin_search(parent, &key, level, &slot); 1816 if (ret && slot > 0) 1817 slot--; 1818 1819 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1820 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1821 1822 old_bytenr = btrfs_node_blockptr(parent, slot); 1823 blocksize = dest->nodesize; 1824 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1825 1826 if (level <= max_level) { 1827 eb = path->nodes[level]; 1828 new_bytenr = btrfs_node_blockptr(eb, 1829 path->slots[level]); 1830 new_ptr_gen = btrfs_node_ptr_generation(eb, 1831 path->slots[level]); 1832 } else { 1833 new_bytenr = 0; 1834 new_ptr_gen = 0; 1835 } 1836 1837 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1838 ret = level; 1839 break; 1840 } 1841 1842 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1843 memcmp_node_keys(parent, slot, path, level)) { 1844 if (level <= lowest_level) { 1845 ret = 0; 1846 break; 1847 } 1848 1849 eb = read_tree_block(dest, old_bytenr, old_ptr_gen); 1850 if (IS_ERR(eb)) { 1851 ret = PTR_ERR(eb); 1852 } else if (!extent_buffer_uptodate(eb)) { 1853 ret = -EIO; 1854 free_extent_buffer(eb); 1855 break; 1856 } 1857 btrfs_tree_lock(eb); 1858 if (cow) { 1859 ret = btrfs_cow_block(trans, dest, eb, parent, 1860 slot, &eb); 1861 BUG_ON(ret); 1862 } 1863 btrfs_set_lock_blocking(eb); 1864 1865 btrfs_tree_unlock(parent); 1866 free_extent_buffer(parent); 1867 1868 parent = eb; 1869 continue; 1870 } 1871 1872 if (!cow) { 1873 btrfs_tree_unlock(parent); 1874 free_extent_buffer(parent); 1875 cow = 1; 1876 goto again; 1877 } 1878 1879 btrfs_node_key_to_cpu(path->nodes[level], &key, 1880 path->slots[level]); 1881 btrfs_release_path(path); 1882 1883 path->lowest_level = level; 1884 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1885 path->lowest_level = 0; 1886 BUG_ON(ret); 1887 1888 /* 1889 * swap blocks in fs tree and reloc tree. 1890 */ 1891 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1892 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1893 btrfs_mark_buffer_dirty(parent); 1894 1895 btrfs_set_node_blockptr(path->nodes[level], 1896 path->slots[level], old_bytenr); 1897 btrfs_set_node_ptr_generation(path->nodes[level], 1898 path->slots[level], old_ptr_gen); 1899 btrfs_mark_buffer_dirty(path->nodes[level]); 1900 1901 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize, 1902 path->nodes[level]->start, 1903 src->root_key.objectid, level - 1, 0, 1904 1); 1905 BUG_ON(ret); 1906 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize, 1907 0, dest->root_key.objectid, level - 1, 1908 0, 1); 1909 BUG_ON(ret); 1910 1911 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize, 1912 path->nodes[level]->start, 1913 src->root_key.objectid, level - 1, 0, 1914 1); 1915 BUG_ON(ret); 1916 1917 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize, 1918 0, dest->root_key.objectid, level - 1, 1919 0, 1); 1920 BUG_ON(ret); 1921 1922 btrfs_unlock_up_safe(path, 0); 1923 1924 ret = level; 1925 break; 1926 } 1927 btrfs_tree_unlock(parent); 1928 free_extent_buffer(parent); 1929 return ret; 1930 } 1931 1932 /* 1933 * helper to find next relocated block in reloc tree 1934 */ 1935 static noinline_for_stack 1936 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1937 int *level) 1938 { 1939 struct extent_buffer *eb; 1940 int i; 1941 u64 last_snapshot; 1942 u32 nritems; 1943 1944 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1945 1946 for (i = 0; i < *level; i++) { 1947 free_extent_buffer(path->nodes[i]); 1948 path->nodes[i] = NULL; 1949 } 1950 1951 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1952 eb = path->nodes[i]; 1953 nritems = btrfs_header_nritems(eb); 1954 while (path->slots[i] + 1 < nritems) { 1955 path->slots[i]++; 1956 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1957 last_snapshot) 1958 continue; 1959 1960 *level = i; 1961 return 0; 1962 } 1963 free_extent_buffer(path->nodes[i]); 1964 path->nodes[i] = NULL; 1965 } 1966 return 1; 1967 } 1968 1969 /* 1970 * walk down reloc tree to find relocated block of lowest level 1971 */ 1972 static noinline_for_stack 1973 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1974 int *level) 1975 { 1976 struct extent_buffer *eb = NULL; 1977 int i; 1978 u64 bytenr; 1979 u64 ptr_gen = 0; 1980 u64 last_snapshot; 1981 u32 nritems; 1982 1983 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1984 1985 for (i = *level; i > 0; i--) { 1986 eb = path->nodes[i]; 1987 nritems = btrfs_header_nritems(eb); 1988 while (path->slots[i] < nritems) { 1989 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1990 if (ptr_gen > last_snapshot) 1991 break; 1992 path->slots[i]++; 1993 } 1994 if (path->slots[i] >= nritems) { 1995 if (i == *level) 1996 break; 1997 *level = i + 1; 1998 return 0; 1999 } 2000 if (i == 1) { 2001 *level = i; 2002 return 0; 2003 } 2004 2005 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 2006 eb = read_tree_block(root, bytenr, ptr_gen); 2007 if (IS_ERR(eb)) { 2008 return PTR_ERR(eb); 2009 } else if (!extent_buffer_uptodate(eb)) { 2010 free_extent_buffer(eb); 2011 return -EIO; 2012 } 2013 BUG_ON(btrfs_header_level(eb) != i - 1); 2014 path->nodes[i - 1] = eb; 2015 path->slots[i - 1] = 0; 2016 } 2017 return 1; 2018 } 2019 2020 /* 2021 * invalidate extent cache for file extents whose key in range of 2022 * [min_key, max_key) 2023 */ 2024 static int invalidate_extent_cache(struct btrfs_root *root, 2025 struct btrfs_key *min_key, 2026 struct btrfs_key *max_key) 2027 { 2028 struct inode *inode = NULL; 2029 u64 objectid; 2030 u64 start, end; 2031 u64 ino; 2032 2033 objectid = min_key->objectid; 2034 while (1) { 2035 cond_resched(); 2036 iput(inode); 2037 2038 if (objectid > max_key->objectid) 2039 break; 2040 2041 inode = find_next_inode(root, objectid); 2042 if (!inode) 2043 break; 2044 ino = btrfs_ino(inode); 2045 2046 if (ino > max_key->objectid) { 2047 iput(inode); 2048 break; 2049 } 2050 2051 objectid = ino + 1; 2052 if (!S_ISREG(inode->i_mode)) 2053 continue; 2054 2055 if (unlikely(min_key->objectid == ino)) { 2056 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 2057 continue; 2058 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 2059 start = 0; 2060 else { 2061 start = min_key->offset; 2062 WARN_ON(!IS_ALIGNED(start, root->sectorsize)); 2063 } 2064 } else { 2065 start = 0; 2066 } 2067 2068 if (unlikely(max_key->objectid == ino)) { 2069 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 2070 continue; 2071 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 2072 end = (u64)-1; 2073 } else { 2074 if (max_key->offset == 0) 2075 continue; 2076 end = max_key->offset; 2077 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 2078 end--; 2079 } 2080 } else { 2081 end = (u64)-1; 2082 } 2083 2084 /* the lock_extent waits for readpage to complete */ 2085 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2086 btrfs_drop_extent_cache(inode, start, end, 1); 2087 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2088 } 2089 return 0; 2090 } 2091 2092 static int find_next_key(struct btrfs_path *path, int level, 2093 struct btrfs_key *key) 2094 2095 { 2096 while (level < BTRFS_MAX_LEVEL) { 2097 if (!path->nodes[level]) 2098 break; 2099 if (path->slots[level] + 1 < 2100 btrfs_header_nritems(path->nodes[level])) { 2101 btrfs_node_key_to_cpu(path->nodes[level], key, 2102 path->slots[level] + 1); 2103 return 0; 2104 } 2105 level++; 2106 } 2107 return 1; 2108 } 2109 2110 /* 2111 * merge the relocated tree blocks in reloc tree with corresponding 2112 * fs tree. 2113 */ 2114 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 2115 struct btrfs_root *root) 2116 { 2117 LIST_HEAD(inode_list); 2118 struct btrfs_key key; 2119 struct btrfs_key next_key; 2120 struct btrfs_trans_handle *trans = NULL; 2121 struct btrfs_root *reloc_root; 2122 struct btrfs_root_item *root_item; 2123 struct btrfs_path *path; 2124 struct extent_buffer *leaf; 2125 int level; 2126 int max_level; 2127 int replaced = 0; 2128 int ret; 2129 int err = 0; 2130 u32 min_reserved; 2131 2132 path = btrfs_alloc_path(); 2133 if (!path) 2134 return -ENOMEM; 2135 path->reada = 1; 2136 2137 reloc_root = root->reloc_root; 2138 root_item = &reloc_root->root_item; 2139 2140 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2141 level = btrfs_root_level(root_item); 2142 extent_buffer_get(reloc_root->node); 2143 path->nodes[level] = reloc_root->node; 2144 path->slots[level] = 0; 2145 } else { 2146 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2147 2148 level = root_item->drop_level; 2149 BUG_ON(level == 0); 2150 path->lowest_level = level; 2151 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2152 path->lowest_level = 0; 2153 if (ret < 0) { 2154 btrfs_free_path(path); 2155 return ret; 2156 } 2157 2158 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2159 path->slots[level]); 2160 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2161 2162 btrfs_unlock_up_safe(path, 0); 2163 } 2164 2165 min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2166 memset(&next_key, 0, sizeof(next_key)); 2167 2168 while (1) { 2169 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 2170 BTRFS_RESERVE_FLUSH_ALL); 2171 if (ret) { 2172 err = ret; 2173 goto out; 2174 } 2175 trans = btrfs_start_transaction(root, 0); 2176 if (IS_ERR(trans)) { 2177 err = PTR_ERR(trans); 2178 trans = NULL; 2179 goto out; 2180 } 2181 trans->block_rsv = rc->block_rsv; 2182 2183 replaced = 0; 2184 max_level = level; 2185 2186 ret = walk_down_reloc_tree(reloc_root, path, &level); 2187 if (ret < 0) { 2188 err = ret; 2189 goto out; 2190 } 2191 if (ret > 0) 2192 break; 2193 2194 if (!find_next_key(path, level, &key) && 2195 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2196 ret = 0; 2197 } else { 2198 ret = replace_path(trans, root, reloc_root, path, 2199 &next_key, level, max_level); 2200 } 2201 if (ret < 0) { 2202 err = ret; 2203 goto out; 2204 } 2205 2206 if (ret > 0) { 2207 level = ret; 2208 btrfs_node_key_to_cpu(path->nodes[level], &key, 2209 path->slots[level]); 2210 replaced = 1; 2211 } 2212 2213 ret = walk_up_reloc_tree(reloc_root, path, &level); 2214 if (ret > 0) 2215 break; 2216 2217 BUG_ON(level == 0); 2218 /* 2219 * save the merging progress in the drop_progress. 2220 * this is OK since root refs == 1 in this case. 2221 */ 2222 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2223 path->slots[level]); 2224 root_item->drop_level = level; 2225 2226 btrfs_end_transaction_throttle(trans, root); 2227 trans = NULL; 2228 2229 btrfs_btree_balance_dirty(root); 2230 2231 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2232 invalidate_extent_cache(root, &key, &next_key); 2233 } 2234 2235 /* 2236 * handle the case only one block in the fs tree need to be 2237 * relocated and the block is tree root. 2238 */ 2239 leaf = btrfs_lock_root_node(root); 2240 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2241 btrfs_tree_unlock(leaf); 2242 free_extent_buffer(leaf); 2243 if (ret < 0) 2244 err = ret; 2245 out: 2246 btrfs_free_path(path); 2247 2248 if (err == 0) { 2249 memset(&root_item->drop_progress, 0, 2250 sizeof(root_item->drop_progress)); 2251 root_item->drop_level = 0; 2252 btrfs_set_root_refs(root_item, 0); 2253 btrfs_update_reloc_root(trans, root); 2254 } 2255 2256 if (trans) 2257 btrfs_end_transaction_throttle(trans, root); 2258 2259 btrfs_btree_balance_dirty(root); 2260 2261 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2262 invalidate_extent_cache(root, &key, &next_key); 2263 2264 return err; 2265 } 2266 2267 static noinline_for_stack 2268 int prepare_to_merge(struct reloc_control *rc, int err) 2269 { 2270 struct btrfs_root *root = rc->extent_root; 2271 struct btrfs_root *reloc_root; 2272 struct btrfs_trans_handle *trans; 2273 LIST_HEAD(reloc_roots); 2274 u64 num_bytes = 0; 2275 int ret; 2276 2277 mutex_lock(&root->fs_info->reloc_mutex); 2278 rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2279 rc->merging_rsv_size += rc->nodes_relocated * 2; 2280 mutex_unlock(&root->fs_info->reloc_mutex); 2281 2282 again: 2283 if (!err) { 2284 num_bytes = rc->merging_rsv_size; 2285 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2286 BTRFS_RESERVE_FLUSH_ALL); 2287 if (ret) 2288 err = ret; 2289 } 2290 2291 trans = btrfs_join_transaction(rc->extent_root); 2292 if (IS_ERR(trans)) { 2293 if (!err) 2294 btrfs_block_rsv_release(rc->extent_root, 2295 rc->block_rsv, num_bytes); 2296 return PTR_ERR(trans); 2297 } 2298 2299 if (!err) { 2300 if (num_bytes != rc->merging_rsv_size) { 2301 btrfs_end_transaction(trans, rc->extent_root); 2302 btrfs_block_rsv_release(rc->extent_root, 2303 rc->block_rsv, num_bytes); 2304 goto again; 2305 } 2306 } 2307 2308 rc->merge_reloc_tree = 1; 2309 2310 while (!list_empty(&rc->reloc_roots)) { 2311 reloc_root = list_entry(rc->reloc_roots.next, 2312 struct btrfs_root, root_list); 2313 list_del_init(&reloc_root->root_list); 2314 2315 root = read_fs_root(reloc_root->fs_info, 2316 reloc_root->root_key.offset); 2317 BUG_ON(IS_ERR(root)); 2318 BUG_ON(root->reloc_root != reloc_root); 2319 2320 /* 2321 * set reference count to 1, so btrfs_recover_relocation 2322 * knows it should resumes merging 2323 */ 2324 if (!err) 2325 btrfs_set_root_refs(&reloc_root->root_item, 1); 2326 btrfs_update_reloc_root(trans, root); 2327 2328 list_add(&reloc_root->root_list, &reloc_roots); 2329 } 2330 2331 list_splice(&reloc_roots, &rc->reloc_roots); 2332 2333 if (!err) 2334 btrfs_commit_transaction(trans, rc->extent_root); 2335 else 2336 btrfs_end_transaction(trans, rc->extent_root); 2337 return err; 2338 } 2339 2340 static noinline_for_stack 2341 void free_reloc_roots(struct list_head *list) 2342 { 2343 struct btrfs_root *reloc_root; 2344 2345 while (!list_empty(list)) { 2346 reloc_root = list_entry(list->next, struct btrfs_root, 2347 root_list); 2348 __del_reloc_root(reloc_root); 2349 } 2350 } 2351 2352 static noinline_for_stack 2353 void merge_reloc_roots(struct reloc_control *rc) 2354 { 2355 struct btrfs_root *root; 2356 struct btrfs_root *reloc_root; 2357 u64 last_snap; 2358 u64 otransid; 2359 u64 objectid; 2360 LIST_HEAD(reloc_roots); 2361 int found = 0; 2362 int ret = 0; 2363 again: 2364 root = rc->extent_root; 2365 2366 /* 2367 * this serializes us with btrfs_record_root_in_transaction, 2368 * we have to make sure nobody is in the middle of 2369 * adding their roots to the list while we are 2370 * doing this splice 2371 */ 2372 mutex_lock(&root->fs_info->reloc_mutex); 2373 list_splice_init(&rc->reloc_roots, &reloc_roots); 2374 mutex_unlock(&root->fs_info->reloc_mutex); 2375 2376 while (!list_empty(&reloc_roots)) { 2377 found = 1; 2378 reloc_root = list_entry(reloc_roots.next, 2379 struct btrfs_root, root_list); 2380 2381 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2382 root = read_fs_root(reloc_root->fs_info, 2383 reloc_root->root_key.offset); 2384 BUG_ON(IS_ERR(root)); 2385 BUG_ON(root->reloc_root != reloc_root); 2386 2387 ret = merge_reloc_root(rc, root); 2388 if (ret) { 2389 if (list_empty(&reloc_root->root_list)) 2390 list_add_tail(&reloc_root->root_list, 2391 &reloc_roots); 2392 goto out; 2393 } 2394 } else { 2395 list_del_init(&reloc_root->root_list); 2396 } 2397 2398 /* 2399 * we keep the old last snapshod transid in rtranid when we 2400 * created the relocation tree. 2401 */ 2402 last_snap = btrfs_root_rtransid(&reloc_root->root_item); 2403 otransid = btrfs_root_otransid(&reloc_root->root_item); 2404 objectid = reloc_root->root_key.offset; 2405 2406 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1); 2407 if (ret < 0) { 2408 if (list_empty(&reloc_root->root_list)) 2409 list_add_tail(&reloc_root->root_list, 2410 &reloc_roots); 2411 goto out; 2412 } 2413 } 2414 2415 if (found) { 2416 found = 0; 2417 goto again; 2418 } 2419 out: 2420 if (ret) { 2421 btrfs_std_error(root->fs_info, ret); 2422 if (!list_empty(&reloc_roots)) 2423 free_reloc_roots(&reloc_roots); 2424 2425 /* new reloc root may be added */ 2426 mutex_lock(&root->fs_info->reloc_mutex); 2427 list_splice_init(&rc->reloc_roots, &reloc_roots); 2428 mutex_unlock(&root->fs_info->reloc_mutex); 2429 if (!list_empty(&reloc_roots)) 2430 free_reloc_roots(&reloc_roots); 2431 } 2432 2433 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2434 } 2435 2436 static void free_block_list(struct rb_root *blocks) 2437 { 2438 struct tree_block *block; 2439 struct rb_node *rb_node; 2440 while ((rb_node = rb_first(blocks))) { 2441 block = rb_entry(rb_node, struct tree_block, rb_node); 2442 rb_erase(rb_node, blocks); 2443 kfree(block); 2444 } 2445 } 2446 2447 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2448 struct btrfs_root *reloc_root) 2449 { 2450 struct btrfs_root *root; 2451 2452 if (reloc_root->last_trans == trans->transid) 2453 return 0; 2454 2455 root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset); 2456 BUG_ON(IS_ERR(root)); 2457 BUG_ON(root->reloc_root != reloc_root); 2458 2459 return btrfs_record_root_in_trans(trans, root); 2460 } 2461 2462 static noinline_for_stack 2463 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2464 struct reloc_control *rc, 2465 struct backref_node *node, 2466 struct backref_edge *edges[]) 2467 { 2468 struct backref_node *next; 2469 struct btrfs_root *root; 2470 int index = 0; 2471 2472 next = node; 2473 while (1) { 2474 cond_resched(); 2475 next = walk_up_backref(next, edges, &index); 2476 root = next->root; 2477 BUG_ON(!root); 2478 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state)); 2479 2480 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2481 record_reloc_root_in_trans(trans, root); 2482 break; 2483 } 2484 2485 btrfs_record_root_in_trans(trans, root); 2486 root = root->reloc_root; 2487 2488 if (next->new_bytenr != root->node->start) { 2489 BUG_ON(next->new_bytenr); 2490 BUG_ON(!list_empty(&next->list)); 2491 next->new_bytenr = root->node->start; 2492 next->root = root; 2493 list_add_tail(&next->list, 2494 &rc->backref_cache.changed); 2495 __mark_block_processed(rc, next); 2496 break; 2497 } 2498 2499 WARN_ON(1); 2500 root = NULL; 2501 next = walk_down_backref(edges, &index); 2502 if (!next || next->level <= node->level) 2503 break; 2504 } 2505 if (!root) 2506 return NULL; 2507 2508 next = node; 2509 /* setup backref node path for btrfs_reloc_cow_block */ 2510 while (1) { 2511 rc->backref_cache.path[next->level] = next; 2512 if (--index < 0) 2513 break; 2514 next = edges[index]->node[UPPER]; 2515 } 2516 return root; 2517 } 2518 2519 /* 2520 * select a tree root for relocation. return NULL if the block 2521 * is reference counted. we should use do_relocation() in this 2522 * case. return a tree root pointer if the block isn't reference 2523 * counted. return -ENOENT if the block is root of reloc tree. 2524 */ 2525 static noinline_for_stack 2526 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans, 2527 struct backref_node *node) 2528 { 2529 struct backref_node *next; 2530 struct btrfs_root *root; 2531 struct btrfs_root *fs_root = NULL; 2532 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2533 int index = 0; 2534 2535 next = node; 2536 while (1) { 2537 cond_resched(); 2538 next = walk_up_backref(next, edges, &index); 2539 root = next->root; 2540 BUG_ON(!root); 2541 2542 /* no other choice for non-references counted tree */ 2543 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 2544 return root; 2545 2546 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2547 fs_root = root; 2548 2549 if (next != node) 2550 return NULL; 2551 2552 next = walk_down_backref(edges, &index); 2553 if (!next || next->level <= node->level) 2554 break; 2555 } 2556 2557 if (!fs_root) 2558 return ERR_PTR(-ENOENT); 2559 return fs_root; 2560 } 2561 2562 static noinline_for_stack 2563 u64 calcu_metadata_size(struct reloc_control *rc, 2564 struct backref_node *node, int reserve) 2565 { 2566 struct backref_node *next = node; 2567 struct backref_edge *edge; 2568 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2569 u64 num_bytes = 0; 2570 int index = 0; 2571 2572 BUG_ON(reserve && node->processed); 2573 2574 while (next) { 2575 cond_resched(); 2576 while (1) { 2577 if (next->processed && (reserve || next != node)) 2578 break; 2579 2580 num_bytes += rc->extent_root->nodesize; 2581 2582 if (list_empty(&next->upper)) 2583 break; 2584 2585 edge = list_entry(next->upper.next, 2586 struct backref_edge, list[LOWER]); 2587 edges[index++] = edge; 2588 next = edge->node[UPPER]; 2589 } 2590 next = walk_down_backref(edges, &index); 2591 } 2592 return num_bytes; 2593 } 2594 2595 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2596 struct reloc_control *rc, 2597 struct backref_node *node) 2598 { 2599 struct btrfs_root *root = rc->extent_root; 2600 u64 num_bytes; 2601 int ret; 2602 u64 tmp; 2603 2604 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2605 2606 trans->block_rsv = rc->block_rsv; 2607 rc->reserved_bytes += num_bytes; 2608 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2609 BTRFS_RESERVE_FLUSH_ALL); 2610 if (ret) { 2611 if (ret == -EAGAIN) { 2612 tmp = rc->extent_root->nodesize * 2613 RELOCATION_RESERVED_NODES; 2614 while (tmp <= rc->reserved_bytes) 2615 tmp <<= 1; 2616 /* 2617 * only one thread can access block_rsv at this point, 2618 * so we don't need hold lock to protect block_rsv. 2619 * we expand more reservation size here to allow enough 2620 * space for relocation and we will return eailer in 2621 * enospc case. 2622 */ 2623 rc->block_rsv->size = tmp + rc->extent_root->nodesize * 2624 RELOCATION_RESERVED_NODES; 2625 } 2626 return ret; 2627 } 2628 2629 return 0; 2630 } 2631 2632 /* 2633 * relocate a block tree, and then update pointers in upper level 2634 * blocks that reference the block to point to the new location. 2635 * 2636 * if called by link_to_upper, the block has already been relocated. 2637 * in that case this function just updates pointers. 2638 */ 2639 static int do_relocation(struct btrfs_trans_handle *trans, 2640 struct reloc_control *rc, 2641 struct backref_node *node, 2642 struct btrfs_key *key, 2643 struct btrfs_path *path, int lowest) 2644 { 2645 struct backref_node *upper; 2646 struct backref_edge *edge; 2647 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2648 struct btrfs_root *root; 2649 struct extent_buffer *eb; 2650 u32 blocksize; 2651 u64 bytenr; 2652 u64 generation; 2653 int slot; 2654 int ret; 2655 int err = 0; 2656 2657 BUG_ON(lowest && node->eb); 2658 2659 path->lowest_level = node->level + 1; 2660 rc->backref_cache.path[node->level] = node; 2661 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2662 cond_resched(); 2663 2664 upper = edge->node[UPPER]; 2665 root = select_reloc_root(trans, rc, upper, edges); 2666 BUG_ON(!root); 2667 2668 if (upper->eb && !upper->locked) { 2669 if (!lowest) { 2670 ret = btrfs_bin_search(upper->eb, key, 2671 upper->level, &slot); 2672 BUG_ON(ret); 2673 bytenr = btrfs_node_blockptr(upper->eb, slot); 2674 if (node->eb->start == bytenr) 2675 goto next; 2676 } 2677 drop_node_buffer(upper); 2678 } 2679 2680 if (!upper->eb) { 2681 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2682 if (ret < 0) { 2683 err = ret; 2684 break; 2685 } 2686 BUG_ON(ret > 0); 2687 2688 if (!upper->eb) { 2689 upper->eb = path->nodes[upper->level]; 2690 path->nodes[upper->level] = NULL; 2691 } else { 2692 BUG_ON(upper->eb != path->nodes[upper->level]); 2693 } 2694 2695 upper->locked = 1; 2696 path->locks[upper->level] = 0; 2697 2698 slot = path->slots[upper->level]; 2699 btrfs_release_path(path); 2700 } else { 2701 ret = btrfs_bin_search(upper->eb, key, upper->level, 2702 &slot); 2703 BUG_ON(ret); 2704 } 2705 2706 bytenr = btrfs_node_blockptr(upper->eb, slot); 2707 if (lowest) { 2708 BUG_ON(bytenr != node->bytenr); 2709 } else { 2710 if (node->eb->start == bytenr) 2711 goto next; 2712 } 2713 2714 blocksize = root->nodesize; 2715 generation = btrfs_node_ptr_generation(upper->eb, slot); 2716 eb = read_tree_block(root, bytenr, generation); 2717 if (IS_ERR(eb)) { 2718 err = PTR_ERR(eb); 2719 goto next; 2720 } else if (!extent_buffer_uptodate(eb)) { 2721 free_extent_buffer(eb); 2722 err = -EIO; 2723 goto next; 2724 } 2725 btrfs_tree_lock(eb); 2726 btrfs_set_lock_blocking(eb); 2727 2728 if (!node->eb) { 2729 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2730 slot, &eb); 2731 btrfs_tree_unlock(eb); 2732 free_extent_buffer(eb); 2733 if (ret < 0) { 2734 err = ret; 2735 goto next; 2736 } 2737 BUG_ON(node->eb != eb); 2738 } else { 2739 btrfs_set_node_blockptr(upper->eb, slot, 2740 node->eb->start); 2741 btrfs_set_node_ptr_generation(upper->eb, slot, 2742 trans->transid); 2743 btrfs_mark_buffer_dirty(upper->eb); 2744 2745 ret = btrfs_inc_extent_ref(trans, root, 2746 node->eb->start, blocksize, 2747 upper->eb->start, 2748 btrfs_header_owner(upper->eb), 2749 node->level, 0, 1); 2750 BUG_ON(ret); 2751 2752 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2753 BUG_ON(ret); 2754 } 2755 next: 2756 if (!upper->pending) 2757 drop_node_buffer(upper); 2758 else 2759 unlock_node_buffer(upper); 2760 if (err) 2761 break; 2762 } 2763 2764 if (!err && node->pending) { 2765 drop_node_buffer(node); 2766 list_move_tail(&node->list, &rc->backref_cache.changed); 2767 node->pending = 0; 2768 } 2769 2770 path->lowest_level = 0; 2771 BUG_ON(err == -ENOSPC); 2772 return err; 2773 } 2774 2775 static int link_to_upper(struct btrfs_trans_handle *trans, 2776 struct reloc_control *rc, 2777 struct backref_node *node, 2778 struct btrfs_path *path) 2779 { 2780 struct btrfs_key key; 2781 2782 btrfs_node_key_to_cpu(node->eb, &key, 0); 2783 return do_relocation(trans, rc, node, &key, path, 0); 2784 } 2785 2786 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2787 struct reloc_control *rc, 2788 struct btrfs_path *path, int err) 2789 { 2790 LIST_HEAD(list); 2791 struct backref_cache *cache = &rc->backref_cache; 2792 struct backref_node *node; 2793 int level; 2794 int ret; 2795 2796 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2797 while (!list_empty(&cache->pending[level])) { 2798 node = list_entry(cache->pending[level].next, 2799 struct backref_node, list); 2800 list_move_tail(&node->list, &list); 2801 BUG_ON(!node->pending); 2802 2803 if (!err) { 2804 ret = link_to_upper(trans, rc, node, path); 2805 if (ret < 0) 2806 err = ret; 2807 } 2808 } 2809 list_splice_init(&list, &cache->pending[level]); 2810 } 2811 return err; 2812 } 2813 2814 static void mark_block_processed(struct reloc_control *rc, 2815 u64 bytenr, u32 blocksize) 2816 { 2817 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2818 EXTENT_DIRTY, GFP_NOFS); 2819 } 2820 2821 static void __mark_block_processed(struct reloc_control *rc, 2822 struct backref_node *node) 2823 { 2824 u32 blocksize; 2825 if (node->level == 0 || 2826 in_block_group(node->bytenr, rc->block_group)) { 2827 blocksize = rc->extent_root->nodesize; 2828 mark_block_processed(rc, node->bytenr, blocksize); 2829 } 2830 node->processed = 1; 2831 } 2832 2833 /* 2834 * mark a block and all blocks directly/indirectly reference the block 2835 * as processed. 2836 */ 2837 static void update_processed_blocks(struct reloc_control *rc, 2838 struct backref_node *node) 2839 { 2840 struct backref_node *next = node; 2841 struct backref_edge *edge; 2842 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2843 int index = 0; 2844 2845 while (next) { 2846 cond_resched(); 2847 while (1) { 2848 if (next->processed) 2849 break; 2850 2851 __mark_block_processed(rc, next); 2852 2853 if (list_empty(&next->upper)) 2854 break; 2855 2856 edge = list_entry(next->upper.next, 2857 struct backref_edge, list[LOWER]); 2858 edges[index++] = edge; 2859 next = edge->node[UPPER]; 2860 } 2861 next = walk_down_backref(edges, &index); 2862 } 2863 } 2864 2865 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2866 { 2867 u32 blocksize = rc->extent_root->nodesize; 2868 2869 if (test_range_bit(&rc->processed_blocks, bytenr, 2870 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2871 return 1; 2872 return 0; 2873 } 2874 2875 static int get_tree_block_key(struct reloc_control *rc, 2876 struct tree_block *block) 2877 { 2878 struct extent_buffer *eb; 2879 2880 BUG_ON(block->key_ready); 2881 eb = read_tree_block(rc->extent_root, block->bytenr, 2882 block->key.offset); 2883 if (IS_ERR(eb)) { 2884 return PTR_ERR(eb); 2885 } else if (!extent_buffer_uptodate(eb)) { 2886 free_extent_buffer(eb); 2887 return -EIO; 2888 } 2889 WARN_ON(btrfs_header_level(eb) != block->level); 2890 if (block->level == 0) 2891 btrfs_item_key_to_cpu(eb, &block->key, 0); 2892 else 2893 btrfs_node_key_to_cpu(eb, &block->key, 0); 2894 free_extent_buffer(eb); 2895 block->key_ready = 1; 2896 return 0; 2897 } 2898 2899 /* 2900 * helper function to relocate a tree block 2901 */ 2902 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2903 struct reloc_control *rc, 2904 struct backref_node *node, 2905 struct btrfs_key *key, 2906 struct btrfs_path *path) 2907 { 2908 struct btrfs_root *root; 2909 int ret = 0; 2910 2911 if (!node) 2912 return 0; 2913 2914 BUG_ON(node->processed); 2915 root = select_one_root(trans, node); 2916 if (root == ERR_PTR(-ENOENT)) { 2917 update_processed_blocks(rc, node); 2918 goto out; 2919 } 2920 2921 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 2922 ret = reserve_metadata_space(trans, rc, node); 2923 if (ret) 2924 goto out; 2925 } 2926 2927 if (root) { 2928 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 2929 BUG_ON(node->new_bytenr); 2930 BUG_ON(!list_empty(&node->list)); 2931 btrfs_record_root_in_trans(trans, root); 2932 root = root->reloc_root; 2933 node->new_bytenr = root->node->start; 2934 node->root = root; 2935 list_add_tail(&node->list, &rc->backref_cache.changed); 2936 } else { 2937 path->lowest_level = node->level; 2938 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2939 btrfs_release_path(path); 2940 if (ret > 0) 2941 ret = 0; 2942 } 2943 if (!ret) 2944 update_processed_blocks(rc, node); 2945 } else { 2946 ret = do_relocation(trans, rc, node, key, path, 1); 2947 } 2948 out: 2949 if (ret || node->level == 0 || node->cowonly) 2950 remove_backref_node(&rc->backref_cache, node); 2951 return ret; 2952 } 2953 2954 /* 2955 * relocate a list of blocks 2956 */ 2957 static noinline_for_stack 2958 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2959 struct reloc_control *rc, struct rb_root *blocks) 2960 { 2961 struct backref_node *node; 2962 struct btrfs_path *path; 2963 struct tree_block *block; 2964 struct rb_node *rb_node; 2965 int ret; 2966 int err = 0; 2967 2968 path = btrfs_alloc_path(); 2969 if (!path) { 2970 err = -ENOMEM; 2971 goto out_free_blocks; 2972 } 2973 2974 rb_node = rb_first(blocks); 2975 while (rb_node) { 2976 block = rb_entry(rb_node, struct tree_block, rb_node); 2977 if (!block->key_ready) 2978 readahead_tree_block(rc->extent_root, block->bytenr); 2979 rb_node = rb_next(rb_node); 2980 } 2981 2982 rb_node = rb_first(blocks); 2983 while (rb_node) { 2984 block = rb_entry(rb_node, struct tree_block, rb_node); 2985 if (!block->key_ready) { 2986 err = get_tree_block_key(rc, block); 2987 if (err) 2988 goto out_free_path; 2989 } 2990 rb_node = rb_next(rb_node); 2991 } 2992 2993 rb_node = rb_first(blocks); 2994 while (rb_node) { 2995 block = rb_entry(rb_node, struct tree_block, rb_node); 2996 2997 node = build_backref_tree(rc, &block->key, 2998 block->level, block->bytenr); 2999 if (IS_ERR(node)) { 3000 err = PTR_ERR(node); 3001 goto out; 3002 } 3003 3004 ret = relocate_tree_block(trans, rc, node, &block->key, 3005 path); 3006 if (ret < 0) { 3007 if (ret != -EAGAIN || rb_node == rb_first(blocks)) 3008 err = ret; 3009 goto out; 3010 } 3011 rb_node = rb_next(rb_node); 3012 } 3013 out: 3014 err = finish_pending_nodes(trans, rc, path, err); 3015 3016 out_free_path: 3017 btrfs_free_path(path); 3018 out_free_blocks: 3019 free_block_list(blocks); 3020 return err; 3021 } 3022 3023 static noinline_for_stack 3024 int prealloc_file_extent_cluster(struct inode *inode, 3025 struct file_extent_cluster *cluster) 3026 { 3027 u64 alloc_hint = 0; 3028 u64 start; 3029 u64 end; 3030 u64 offset = BTRFS_I(inode)->index_cnt; 3031 u64 num_bytes; 3032 int nr = 0; 3033 int ret = 0; 3034 3035 BUG_ON(cluster->start != cluster->boundary[0]); 3036 mutex_lock(&inode->i_mutex); 3037 3038 ret = btrfs_check_data_free_space(inode, cluster->end + 3039 1 - cluster->start, 0); 3040 if (ret) 3041 goto out; 3042 3043 while (nr < cluster->nr) { 3044 start = cluster->boundary[nr] - offset; 3045 if (nr + 1 < cluster->nr) 3046 end = cluster->boundary[nr + 1] - 1 - offset; 3047 else 3048 end = cluster->end - offset; 3049 3050 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3051 num_bytes = end + 1 - start; 3052 ret = btrfs_prealloc_file_range(inode, 0, start, 3053 num_bytes, num_bytes, 3054 end + 1, &alloc_hint); 3055 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3056 if (ret) 3057 break; 3058 nr++; 3059 } 3060 btrfs_free_reserved_data_space(inode, cluster->end + 3061 1 - cluster->start); 3062 out: 3063 mutex_unlock(&inode->i_mutex); 3064 return ret; 3065 } 3066 3067 static noinline_for_stack 3068 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 3069 u64 block_start) 3070 { 3071 struct btrfs_root *root = BTRFS_I(inode)->root; 3072 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3073 struct extent_map *em; 3074 int ret = 0; 3075 3076 em = alloc_extent_map(); 3077 if (!em) 3078 return -ENOMEM; 3079 3080 em->start = start; 3081 em->len = end + 1 - start; 3082 em->block_len = em->len; 3083 em->block_start = block_start; 3084 em->bdev = root->fs_info->fs_devices->latest_bdev; 3085 set_bit(EXTENT_FLAG_PINNED, &em->flags); 3086 3087 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3088 while (1) { 3089 write_lock(&em_tree->lock); 3090 ret = add_extent_mapping(em_tree, em, 0); 3091 write_unlock(&em_tree->lock); 3092 if (ret != -EEXIST) { 3093 free_extent_map(em); 3094 break; 3095 } 3096 btrfs_drop_extent_cache(inode, start, end, 0); 3097 } 3098 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3099 return ret; 3100 } 3101 3102 static int relocate_file_extent_cluster(struct inode *inode, 3103 struct file_extent_cluster *cluster) 3104 { 3105 u64 page_start; 3106 u64 page_end; 3107 u64 offset = BTRFS_I(inode)->index_cnt; 3108 unsigned long index; 3109 unsigned long last_index; 3110 struct page *page; 3111 struct file_ra_state *ra; 3112 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 3113 int nr = 0; 3114 int ret = 0; 3115 3116 if (!cluster->nr) 3117 return 0; 3118 3119 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3120 if (!ra) 3121 return -ENOMEM; 3122 3123 ret = prealloc_file_extent_cluster(inode, cluster); 3124 if (ret) 3125 goto out; 3126 3127 file_ra_state_init(ra, inode->i_mapping); 3128 3129 ret = setup_extent_mapping(inode, cluster->start - offset, 3130 cluster->end - offset, cluster->start); 3131 if (ret) 3132 goto out; 3133 3134 index = (cluster->start - offset) >> PAGE_CACHE_SHIFT; 3135 last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT; 3136 while (index <= last_index) { 3137 ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE); 3138 if (ret) 3139 goto out; 3140 3141 page = find_lock_page(inode->i_mapping, index); 3142 if (!page) { 3143 page_cache_sync_readahead(inode->i_mapping, 3144 ra, NULL, index, 3145 last_index + 1 - index); 3146 page = find_or_create_page(inode->i_mapping, index, 3147 mask); 3148 if (!page) { 3149 btrfs_delalloc_release_metadata(inode, 3150 PAGE_CACHE_SIZE); 3151 ret = -ENOMEM; 3152 goto out; 3153 } 3154 } 3155 3156 if (PageReadahead(page)) { 3157 page_cache_async_readahead(inode->i_mapping, 3158 ra, NULL, page, index, 3159 last_index + 1 - index); 3160 } 3161 3162 if (!PageUptodate(page)) { 3163 btrfs_readpage(NULL, page); 3164 lock_page(page); 3165 if (!PageUptodate(page)) { 3166 unlock_page(page); 3167 page_cache_release(page); 3168 btrfs_delalloc_release_metadata(inode, 3169 PAGE_CACHE_SIZE); 3170 ret = -EIO; 3171 goto out; 3172 } 3173 } 3174 3175 page_start = page_offset(page); 3176 page_end = page_start + PAGE_CACHE_SIZE - 1; 3177 3178 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 3179 3180 set_page_extent_mapped(page); 3181 3182 if (nr < cluster->nr && 3183 page_start + offset == cluster->boundary[nr]) { 3184 set_extent_bits(&BTRFS_I(inode)->io_tree, 3185 page_start, page_end, 3186 EXTENT_BOUNDARY, GFP_NOFS); 3187 nr++; 3188 } 3189 3190 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL); 3191 set_page_dirty(page); 3192 3193 unlock_extent(&BTRFS_I(inode)->io_tree, 3194 page_start, page_end); 3195 unlock_page(page); 3196 page_cache_release(page); 3197 3198 index++; 3199 balance_dirty_pages_ratelimited(inode->i_mapping); 3200 btrfs_throttle(BTRFS_I(inode)->root); 3201 } 3202 WARN_ON(nr != cluster->nr); 3203 out: 3204 kfree(ra); 3205 return ret; 3206 } 3207 3208 static noinline_for_stack 3209 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3210 struct file_extent_cluster *cluster) 3211 { 3212 int ret; 3213 3214 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3215 ret = relocate_file_extent_cluster(inode, cluster); 3216 if (ret) 3217 return ret; 3218 cluster->nr = 0; 3219 } 3220 3221 if (!cluster->nr) 3222 cluster->start = extent_key->objectid; 3223 else 3224 BUG_ON(cluster->nr >= MAX_EXTENTS); 3225 cluster->end = extent_key->objectid + extent_key->offset - 1; 3226 cluster->boundary[cluster->nr] = extent_key->objectid; 3227 cluster->nr++; 3228 3229 if (cluster->nr >= MAX_EXTENTS) { 3230 ret = relocate_file_extent_cluster(inode, cluster); 3231 if (ret) 3232 return ret; 3233 cluster->nr = 0; 3234 } 3235 return 0; 3236 } 3237 3238 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3239 static int get_ref_objectid_v0(struct reloc_control *rc, 3240 struct btrfs_path *path, 3241 struct btrfs_key *extent_key, 3242 u64 *ref_objectid, int *path_change) 3243 { 3244 struct btrfs_key key; 3245 struct extent_buffer *leaf; 3246 struct btrfs_extent_ref_v0 *ref0; 3247 int ret; 3248 int slot; 3249 3250 leaf = path->nodes[0]; 3251 slot = path->slots[0]; 3252 while (1) { 3253 if (slot >= btrfs_header_nritems(leaf)) { 3254 ret = btrfs_next_leaf(rc->extent_root, path); 3255 if (ret < 0) 3256 return ret; 3257 BUG_ON(ret > 0); 3258 leaf = path->nodes[0]; 3259 slot = path->slots[0]; 3260 if (path_change) 3261 *path_change = 1; 3262 } 3263 btrfs_item_key_to_cpu(leaf, &key, slot); 3264 if (key.objectid != extent_key->objectid) 3265 return -ENOENT; 3266 3267 if (key.type != BTRFS_EXTENT_REF_V0_KEY) { 3268 slot++; 3269 continue; 3270 } 3271 ref0 = btrfs_item_ptr(leaf, slot, 3272 struct btrfs_extent_ref_v0); 3273 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0); 3274 break; 3275 } 3276 return 0; 3277 } 3278 #endif 3279 3280 /* 3281 * helper to add a tree block to the list. 3282 * the major work is getting the generation and level of the block 3283 */ 3284 static int add_tree_block(struct reloc_control *rc, 3285 struct btrfs_key *extent_key, 3286 struct btrfs_path *path, 3287 struct rb_root *blocks) 3288 { 3289 struct extent_buffer *eb; 3290 struct btrfs_extent_item *ei; 3291 struct btrfs_tree_block_info *bi; 3292 struct tree_block *block; 3293 struct rb_node *rb_node; 3294 u32 item_size; 3295 int level = -1; 3296 u64 generation; 3297 3298 eb = path->nodes[0]; 3299 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3300 3301 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3302 item_size >= sizeof(*ei) + sizeof(*bi)) { 3303 ei = btrfs_item_ptr(eb, path->slots[0], 3304 struct btrfs_extent_item); 3305 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3306 bi = (struct btrfs_tree_block_info *)(ei + 1); 3307 level = btrfs_tree_block_level(eb, bi); 3308 } else { 3309 level = (int)extent_key->offset; 3310 } 3311 generation = btrfs_extent_generation(eb, ei); 3312 } else { 3313 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3314 u64 ref_owner; 3315 int ret; 3316 3317 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3318 ret = get_ref_objectid_v0(rc, path, extent_key, 3319 &ref_owner, NULL); 3320 if (ret < 0) 3321 return ret; 3322 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL); 3323 level = (int)ref_owner; 3324 /* FIXME: get real generation */ 3325 generation = 0; 3326 #else 3327 BUG(); 3328 #endif 3329 } 3330 3331 btrfs_release_path(path); 3332 3333 BUG_ON(level == -1); 3334 3335 block = kmalloc(sizeof(*block), GFP_NOFS); 3336 if (!block) 3337 return -ENOMEM; 3338 3339 block->bytenr = extent_key->objectid; 3340 block->key.objectid = rc->extent_root->nodesize; 3341 block->key.offset = generation; 3342 block->level = level; 3343 block->key_ready = 0; 3344 3345 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3346 if (rb_node) 3347 backref_tree_panic(rb_node, -EEXIST, block->bytenr); 3348 3349 return 0; 3350 } 3351 3352 /* 3353 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3354 */ 3355 static int __add_tree_block(struct reloc_control *rc, 3356 u64 bytenr, u32 blocksize, 3357 struct rb_root *blocks) 3358 { 3359 struct btrfs_path *path; 3360 struct btrfs_key key; 3361 int ret; 3362 bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info, 3363 SKINNY_METADATA); 3364 3365 if (tree_block_processed(bytenr, rc)) 3366 return 0; 3367 3368 if (tree_search(blocks, bytenr)) 3369 return 0; 3370 3371 path = btrfs_alloc_path(); 3372 if (!path) 3373 return -ENOMEM; 3374 again: 3375 key.objectid = bytenr; 3376 if (skinny) { 3377 key.type = BTRFS_METADATA_ITEM_KEY; 3378 key.offset = (u64)-1; 3379 } else { 3380 key.type = BTRFS_EXTENT_ITEM_KEY; 3381 key.offset = blocksize; 3382 } 3383 3384 path->search_commit_root = 1; 3385 path->skip_locking = 1; 3386 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3387 if (ret < 0) 3388 goto out; 3389 3390 if (ret > 0 && skinny) { 3391 if (path->slots[0]) { 3392 path->slots[0]--; 3393 btrfs_item_key_to_cpu(path->nodes[0], &key, 3394 path->slots[0]); 3395 if (key.objectid == bytenr && 3396 (key.type == BTRFS_METADATA_ITEM_KEY || 3397 (key.type == BTRFS_EXTENT_ITEM_KEY && 3398 key.offset == blocksize))) 3399 ret = 0; 3400 } 3401 3402 if (ret) { 3403 skinny = false; 3404 btrfs_release_path(path); 3405 goto again; 3406 } 3407 } 3408 BUG_ON(ret); 3409 3410 ret = add_tree_block(rc, &key, path, blocks); 3411 out: 3412 btrfs_free_path(path); 3413 return ret; 3414 } 3415 3416 /* 3417 * helper to check if the block use full backrefs for pointers in it 3418 */ 3419 static int block_use_full_backref(struct reloc_control *rc, 3420 struct extent_buffer *eb) 3421 { 3422 u64 flags; 3423 int ret; 3424 3425 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3426 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3427 return 1; 3428 3429 ret = btrfs_lookup_extent_info(NULL, rc->extent_root, 3430 eb->start, btrfs_header_level(eb), 1, 3431 NULL, &flags); 3432 BUG_ON(ret); 3433 3434 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3435 ret = 1; 3436 else 3437 ret = 0; 3438 return ret; 3439 } 3440 3441 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3442 struct btrfs_block_group_cache *block_group, 3443 struct inode *inode, 3444 u64 ino) 3445 { 3446 struct btrfs_key key; 3447 struct btrfs_root *root = fs_info->tree_root; 3448 struct btrfs_trans_handle *trans; 3449 int ret = 0; 3450 3451 if (inode) 3452 goto truncate; 3453 3454 key.objectid = ino; 3455 key.type = BTRFS_INODE_ITEM_KEY; 3456 key.offset = 0; 3457 3458 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3459 if (IS_ERR(inode) || is_bad_inode(inode)) { 3460 if (!IS_ERR(inode)) 3461 iput(inode); 3462 return -ENOENT; 3463 } 3464 3465 truncate: 3466 ret = btrfs_check_trunc_cache_free_space(root, 3467 &fs_info->global_block_rsv); 3468 if (ret) 3469 goto out; 3470 3471 trans = btrfs_join_transaction(root); 3472 if (IS_ERR(trans)) { 3473 ret = PTR_ERR(trans); 3474 goto out; 3475 } 3476 3477 ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode); 3478 3479 btrfs_end_transaction(trans, root); 3480 btrfs_btree_balance_dirty(root); 3481 out: 3482 iput(inode); 3483 return ret; 3484 } 3485 3486 /* 3487 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3488 * this function scans fs tree to find blocks reference the data extent 3489 */ 3490 static int find_data_references(struct reloc_control *rc, 3491 struct btrfs_key *extent_key, 3492 struct extent_buffer *leaf, 3493 struct btrfs_extent_data_ref *ref, 3494 struct rb_root *blocks) 3495 { 3496 struct btrfs_path *path; 3497 struct tree_block *block; 3498 struct btrfs_root *root; 3499 struct btrfs_file_extent_item *fi; 3500 struct rb_node *rb_node; 3501 struct btrfs_key key; 3502 u64 ref_root; 3503 u64 ref_objectid; 3504 u64 ref_offset; 3505 u32 ref_count; 3506 u32 nritems; 3507 int err = 0; 3508 int added = 0; 3509 int counted; 3510 int ret; 3511 3512 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3513 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3514 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3515 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3516 3517 /* 3518 * This is an extent belonging to the free space cache, lets just delete 3519 * it and redo the search. 3520 */ 3521 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3522 ret = delete_block_group_cache(rc->extent_root->fs_info, 3523 rc->block_group, 3524 NULL, ref_objectid); 3525 if (ret != -ENOENT) 3526 return ret; 3527 ret = 0; 3528 } 3529 3530 path = btrfs_alloc_path(); 3531 if (!path) 3532 return -ENOMEM; 3533 path->reada = 1; 3534 3535 root = read_fs_root(rc->extent_root->fs_info, ref_root); 3536 if (IS_ERR(root)) { 3537 err = PTR_ERR(root); 3538 goto out; 3539 } 3540 3541 key.objectid = ref_objectid; 3542 key.type = BTRFS_EXTENT_DATA_KEY; 3543 if (ref_offset > ((u64)-1 << 32)) 3544 key.offset = 0; 3545 else 3546 key.offset = ref_offset; 3547 3548 path->search_commit_root = 1; 3549 path->skip_locking = 1; 3550 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3551 if (ret < 0) { 3552 err = ret; 3553 goto out; 3554 } 3555 3556 leaf = path->nodes[0]; 3557 nritems = btrfs_header_nritems(leaf); 3558 /* 3559 * the references in tree blocks that use full backrefs 3560 * are not counted in 3561 */ 3562 if (block_use_full_backref(rc, leaf)) 3563 counted = 0; 3564 else 3565 counted = 1; 3566 rb_node = tree_search(blocks, leaf->start); 3567 if (rb_node) { 3568 if (counted) 3569 added = 1; 3570 else 3571 path->slots[0] = nritems; 3572 } 3573 3574 while (ref_count > 0) { 3575 while (path->slots[0] >= nritems) { 3576 ret = btrfs_next_leaf(root, path); 3577 if (ret < 0) { 3578 err = ret; 3579 goto out; 3580 } 3581 if (WARN_ON(ret > 0)) 3582 goto out; 3583 3584 leaf = path->nodes[0]; 3585 nritems = btrfs_header_nritems(leaf); 3586 added = 0; 3587 3588 if (block_use_full_backref(rc, leaf)) 3589 counted = 0; 3590 else 3591 counted = 1; 3592 rb_node = tree_search(blocks, leaf->start); 3593 if (rb_node) { 3594 if (counted) 3595 added = 1; 3596 else 3597 path->slots[0] = nritems; 3598 } 3599 } 3600 3601 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3602 if (WARN_ON(key.objectid != ref_objectid || 3603 key.type != BTRFS_EXTENT_DATA_KEY)) 3604 break; 3605 3606 fi = btrfs_item_ptr(leaf, path->slots[0], 3607 struct btrfs_file_extent_item); 3608 3609 if (btrfs_file_extent_type(leaf, fi) == 3610 BTRFS_FILE_EXTENT_INLINE) 3611 goto next; 3612 3613 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3614 extent_key->objectid) 3615 goto next; 3616 3617 key.offset -= btrfs_file_extent_offset(leaf, fi); 3618 if (key.offset != ref_offset) 3619 goto next; 3620 3621 if (counted) 3622 ref_count--; 3623 if (added) 3624 goto next; 3625 3626 if (!tree_block_processed(leaf->start, rc)) { 3627 block = kmalloc(sizeof(*block), GFP_NOFS); 3628 if (!block) { 3629 err = -ENOMEM; 3630 break; 3631 } 3632 block->bytenr = leaf->start; 3633 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3634 block->level = 0; 3635 block->key_ready = 1; 3636 rb_node = tree_insert(blocks, block->bytenr, 3637 &block->rb_node); 3638 if (rb_node) 3639 backref_tree_panic(rb_node, -EEXIST, 3640 block->bytenr); 3641 } 3642 if (counted) 3643 added = 1; 3644 else 3645 path->slots[0] = nritems; 3646 next: 3647 path->slots[0]++; 3648 3649 } 3650 out: 3651 btrfs_free_path(path); 3652 return err; 3653 } 3654 3655 /* 3656 * helper to find all tree blocks that reference a given data extent 3657 */ 3658 static noinline_for_stack 3659 int add_data_references(struct reloc_control *rc, 3660 struct btrfs_key *extent_key, 3661 struct btrfs_path *path, 3662 struct rb_root *blocks) 3663 { 3664 struct btrfs_key key; 3665 struct extent_buffer *eb; 3666 struct btrfs_extent_data_ref *dref; 3667 struct btrfs_extent_inline_ref *iref; 3668 unsigned long ptr; 3669 unsigned long end; 3670 u32 blocksize = rc->extent_root->nodesize; 3671 int ret = 0; 3672 int err = 0; 3673 3674 eb = path->nodes[0]; 3675 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3676 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3677 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3678 if (ptr + sizeof(struct btrfs_extent_item_v0) == end) 3679 ptr = end; 3680 else 3681 #endif 3682 ptr += sizeof(struct btrfs_extent_item); 3683 3684 while (ptr < end) { 3685 iref = (struct btrfs_extent_inline_ref *)ptr; 3686 key.type = btrfs_extent_inline_ref_type(eb, iref); 3687 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3688 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3689 ret = __add_tree_block(rc, key.offset, blocksize, 3690 blocks); 3691 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3692 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3693 ret = find_data_references(rc, extent_key, 3694 eb, dref, blocks); 3695 } else { 3696 BUG(); 3697 } 3698 if (ret) { 3699 err = ret; 3700 goto out; 3701 } 3702 ptr += btrfs_extent_inline_ref_size(key.type); 3703 } 3704 WARN_ON(ptr > end); 3705 3706 while (1) { 3707 cond_resched(); 3708 eb = path->nodes[0]; 3709 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3710 ret = btrfs_next_leaf(rc->extent_root, path); 3711 if (ret < 0) { 3712 err = ret; 3713 break; 3714 } 3715 if (ret > 0) 3716 break; 3717 eb = path->nodes[0]; 3718 } 3719 3720 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3721 if (key.objectid != extent_key->objectid) 3722 break; 3723 3724 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3725 if (key.type == BTRFS_SHARED_DATA_REF_KEY || 3726 key.type == BTRFS_EXTENT_REF_V0_KEY) { 3727 #else 3728 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 3729 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3730 #endif 3731 ret = __add_tree_block(rc, key.offset, blocksize, 3732 blocks); 3733 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3734 dref = btrfs_item_ptr(eb, path->slots[0], 3735 struct btrfs_extent_data_ref); 3736 ret = find_data_references(rc, extent_key, 3737 eb, dref, blocks); 3738 } else { 3739 ret = 0; 3740 } 3741 if (ret) { 3742 err = ret; 3743 break; 3744 } 3745 path->slots[0]++; 3746 } 3747 out: 3748 btrfs_release_path(path); 3749 if (err) 3750 free_block_list(blocks); 3751 return err; 3752 } 3753 3754 /* 3755 * helper to find next unprocessed extent 3756 */ 3757 static noinline_for_stack 3758 int find_next_extent(struct btrfs_trans_handle *trans, 3759 struct reloc_control *rc, struct btrfs_path *path, 3760 struct btrfs_key *extent_key) 3761 { 3762 struct btrfs_key key; 3763 struct extent_buffer *leaf; 3764 u64 start, end, last; 3765 int ret; 3766 3767 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3768 while (1) { 3769 cond_resched(); 3770 if (rc->search_start >= last) { 3771 ret = 1; 3772 break; 3773 } 3774 3775 key.objectid = rc->search_start; 3776 key.type = BTRFS_EXTENT_ITEM_KEY; 3777 key.offset = 0; 3778 3779 path->search_commit_root = 1; 3780 path->skip_locking = 1; 3781 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3782 0, 0); 3783 if (ret < 0) 3784 break; 3785 next: 3786 leaf = path->nodes[0]; 3787 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3788 ret = btrfs_next_leaf(rc->extent_root, path); 3789 if (ret != 0) 3790 break; 3791 leaf = path->nodes[0]; 3792 } 3793 3794 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3795 if (key.objectid >= last) { 3796 ret = 1; 3797 break; 3798 } 3799 3800 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3801 key.type != BTRFS_METADATA_ITEM_KEY) { 3802 path->slots[0]++; 3803 goto next; 3804 } 3805 3806 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3807 key.objectid + key.offset <= rc->search_start) { 3808 path->slots[0]++; 3809 goto next; 3810 } 3811 3812 if (key.type == BTRFS_METADATA_ITEM_KEY && 3813 key.objectid + rc->extent_root->nodesize <= 3814 rc->search_start) { 3815 path->slots[0]++; 3816 goto next; 3817 } 3818 3819 ret = find_first_extent_bit(&rc->processed_blocks, 3820 key.objectid, &start, &end, 3821 EXTENT_DIRTY, NULL); 3822 3823 if (ret == 0 && start <= key.objectid) { 3824 btrfs_release_path(path); 3825 rc->search_start = end + 1; 3826 } else { 3827 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3828 rc->search_start = key.objectid + key.offset; 3829 else 3830 rc->search_start = key.objectid + 3831 rc->extent_root->nodesize; 3832 memcpy(extent_key, &key, sizeof(key)); 3833 return 0; 3834 } 3835 } 3836 btrfs_release_path(path); 3837 return ret; 3838 } 3839 3840 static void set_reloc_control(struct reloc_control *rc) 3841 { 3842 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3843 3844 mutex_lock(&fs_info->reloc_mutex); 3845 fs_info->reloc_ctl = rc; 3846 mutex_unlock(&fs_info->reloc_mutex); 3847 } 3848 3849 static void unset_reloc_control(struct reloc_control *rc) 3850 { 3851 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3852 3853 mutex_lock(&fs_info->reloc_mutex); 3854 fs_info->reloc_ctl = NULL; 3855 mutex_unlock(&fs_info->reloc_mutex); 3856 } 3857 3858 static int check_extent_flags(u64 flags) 3859 { 3860 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3861 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3862 return 1; 3863 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3864 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3865 return 1; 3866 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3867 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3868 return 1; 3869 return 0; 3870 } 3871 3872 static noinline_for_stack 3873 int prepare_to_relocate(struct reloc_control *rc) 3874 { 3875 struct btrfs_trans_handle *trans; 3876 3877 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root, 3878 BTRFS_BLOCK_RSV_TEMP); 3879 if (!rc->block_rsv) 3880 return -ENOMEM; 3881 3882 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3883 rc->search_start = rc->block_group->key.objectid; 3884 rc->extents_found = 0; 3885 rc->nodes_relocated = 0; 3886 rc->merging_rsv_size = 0; 3887 rc->reserved_bytes = 0; 3888 rc->block_rsv->size = rc->extent_root->nodesize * 3889 RELOCATION_RESERVED_NODES; 3890 3891 rc->create_reloc_tree = 1; 3892 set_reloc_control(rc); 3893 3894 trans = btrfs_join_transaction(rc->extent_root); 3895 if (IS_ERR(trans)) { 3896 unset_reloc_control(rc); 3897 /* 3898 * extent tree is not a ref_cow tree and has no reloc_root to 3899 * cleanup. And callers are responsible to free the above 3900 * block rsv. 3901 */ 3902 return PTR_ERR(trans); 3903 } 3904 btrfs_commit_transaction(trans, rc->extent_root); 3905 return 0; 3906 } 3907 3908 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3909 { 3910 struct rb_root blocks = RB_ROOT; 3911 struct btrfs_key key; 3912 struct btrfs_trans_handle *trans = NULL; 3913 struct btrfs_path *path; 3914 struct btrfs_extent_item *ei; 3915 u64 flags; 3916 u32 item_size; 3917 int ret; 3918 int err = 0; 3919 int progress = 0; 3920 3921 path = btrfs_alloc_path(); 3922 if (!path) 3923 return -ENOMEM; 3924 path->reada = 1; 3925 3926 ret = prepare_to_relocate(rc); 3927 if (ret) { 3928 err = ret; 3929 goto out_free; 3930 } 3931 3932 while (1) { 3933 rc->reserved_bytes = 0; 3934 ret = btrfs_block_rsv_refill(rc->extent_root, 3935 rc->block_rsv, rc->block_rsv->size, 3936 BTRFS_RESERVE_FLUSH_ALL); 3937 if (ret) { 3938 err = ret; 3939 break; 3940 } 3941 progress++; 3942 trans = btrfs_start_transaction(rc->extent_root, 0); 3943 if (IS_ERR(trans)) { 3944 err = PTR_ERR(trans); 3945 trans = NULL; 3946 break; 3947 } 3948 restart: 3949 if (update_backref_cache(trans, &rc->backref_cache)) { 3950 btrfs_end_transaction(trans, rc->extent_root); 3951 continue; 3952 } 3953 3954 ret = find_next_extent(trans, rc, path, &key); 3955 if (ret < 0) 3956 err = ret; 3957 if (ret != 0) 3958 break; 3959 3960 rc->extents_found++; 3961 3962 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3963 struct btrfs_extent_item); 3964 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 3965 if (item_size >= sizeof(*ei)) { 3966 flags = btrfs_extent_flags(path->nodes[0], ei); 3967 ret = check_extent_flags(flags); 3968 BUG_ON(ret); 3969 3970 } else { 3971 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3972 u64 ref_owner; 3973 int path_change = 0; 3974 3975 BUG_ON(item_size != 3976 sizeof(struct btrfs_extent_item_v0)); 3977 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner, 3978 &path_change); 3979 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID) 3980 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK; 3981 else 3982 flags = BTRFS_EXTENT_FLAG_DATA; 3983 3984 if (path_change) { 3985 btrfs_release_path(path); 3986 3987 path->search_commit_root = 1; 3988 path->skip_locking = 1; 3989 ret = btrfs_search_slot(NULL, rc->extent_root, 3990 &key, path, 0, 0); 3991 if (ret < 0) { 3992 err = ret; 3993 break; 3994 } 3995 BUG_ON(ret > 0); 3996 } 3997 #else 3998 BUG(); 3999 #endif 4000 } 4001 4002 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 4003 ret = add_tree_block(rc, &key, path, &blocks); 4004 } else if (rc->stage == UPDATE_DATA_PTRS && 4005 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4006 ret = add_data_references(rc, &key, path, &blocks); 4007 } else { 4008 btrfs_release_path(path); 4009 ret = 0; 4010 } 4011 if (ret < 0) { 4012 err = ret; 4013 break; 4014 } 4015 4016 if (!RB_EMPTY_ROOT(&blocks)) { 4017 ret = relocate_tree_blocks(trans, rc, &blocks); 4018 if (ret < 0) { 4019 /* 4020 * if we fail to relocate tree blocks, force to update 4021 * backref cache when committing transaction. 4022 */ 4023 rc->backref_cache.last_trans = trans->transid - 1; 4024 4025 if (ret != -EAGAIN) { 4026 err = ret; 4027 break; 4028 } 4029 rc->extents_found--; 4030 rc->search_start = key.objectid; 4031 } 4032 } 4033 4034 btrfs_end_transaction_throttle(trans, rc->extent_root); 4035 btrfs_btree_balance_dirty(rc->extent_root); 4036 trans = NULL; 4037 4038 if (rc->stage == MOVE_DATA_EXTENTS && 4039 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4040 rc->found_file_extent = 1; 4041 ret = relocate_data_extent(rc->data_inode, 4042 &key, &rc->cluster); 4043 if (ret < 0) { 4044 err = ret; 4045 break; 4046 } 4047 } 4048 } 4049 if (trans && progress && err == -ENOSPC) { 4050 ret = btrfs_force_chunk_alloc(trans, rc->extent_root, 4051 rc->block_group->flags); 4052 if (ret == 1) { 4053 err = 0; 4054 progress = 0; 4055 goto restart; 4056 } 4057 } 4058 4059 btrfs_release_path(path); 4060 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY, 4061 GFP_NOFS); 4062 4063 if (trans) { 4064 btrfs_end_transaction_throttle(trans, rc->extent_root); 4065 btrfs_btree_balance_dirty(rc->extent_root); 4066 } 4067 4068 if (!err) { 4069 ret = relocate_file_extent_cluster(rc->data_inode, 4070 &rc->cluster); 4071 if (ret < 0) 4072 err = ret; 4073 } 4074 4075 rc->create_reloc_tree = 0; 4076 set_reloc_control(rc); 4077 4078 backref_cache_cleanup(&rc->backref_cache); 4079 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 4080 4081 err = prepare_to_merge(rc, err); 4082 4083 merge_reloc_roots(rc); 4084 4085 rc->merge_reloc_tree = 0; 4086 unset_reloc_control(rc); 4087 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 4088 4089 /* get rid of pinned extents */ 4090 trans = btrfs_join_transaction(rc->extent_root); 4091 if (IS_ERR(trans)) 4092 err = PTR_ERR(trans); 4093 else 4094 btrfs_commit_transaction(trans, rc->extent_root); 4095 out_free: 4096 btrfs_free_block_rsv(rc->extent_root, rc->block_rsv); 4097 btrfs_free_path(path); 4098 return err; 4099 } 4100 4101 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 4102 struct btrfs_root *root, u64 objectid) 4103 { 4104 struct btrfs_path *path; 4105 struct btrfs_inode_item *item; 4106 struct extent_buffer *leaf; 4107 int ret; 4108 4109 path = btrfs_alloc_path(); 4110 if (!path) 4111 return -ENOMEM; 4112 4113 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 4114 if (ret) 4115 goto out; 4116 4117 leaf = path->nodes[0]; 4118 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 4119 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 4120 btrfs_set_inode_generation(leaf, item, 1); 4121 btrfs_set_inode_size(leaf, item, 0); 4122 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 4123 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 4124 BTRFS_INODE_PREALLOC); 4125 btrfs_mark_buffer_dirty(leaf); 4126 out: 4127 btrfs_free_path(path); 4128 return ret; 4129 } 4130 4131 /* 4132 * helper to create inode for data relocation. 4133 * the inode is in data relocation tree and its link count is 0 4134 */ 4135 static noinline_for_stack 4136 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 4137 struct btrfs_block_group_cache *group) 4138 { 4139 struct inode *inode = NULL; 4140 struct btrfs_trans_handle *trans; 4141 struct btrfs_root *root; 4142 struct btrfs_key key; 4143 u64 objectid = BTRFS_FIRST_FREE_OBJECTID; 4144 int err = 0; 4145 4146 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4147 if (IS_ERR(root)) 4148 return ERR_CAST(root); 4149 4150 trans = btrfs_start_transaction(root, 6); 4151 if (IS_ERR(trans)) 4152 return ERR_CAST(trans); 4153 4154 err = btrfs_find_free_objectid(root, &objectid); 4155 if (err) 4156 goto out; 4157 4158 err = __insert_orphan_inode(trans, root, objectid); 4159 BUG_ON(err); 4160 4161 key.objectid = objectid; 4162 key.type = BTRFS_INODE_ITEM_KEY; 4163 key.offset = 0; 4164 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 4165 BUG_ON(IS_ERR(inode) || is_bad_inode(inode)); 4166 BTRFS_I(inode)->index_cnt = group->key.objectid; 4167 4168 err = btrfs_orphan_add(trans, inode); 4169 out: 4170 btrfs_end_transaction(trans, root); 4171 btrfs_btree_balance_dirty(root); 4172 if (err) { 4173 if (inode) 4174 iput(inode); 4175 inode = ERR_PTR(err); 4176 } 4177 return inode; 4178 } 4179 4180 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 4181 { 4182 struct reloc_control *rc; 4183 4184 rc = kzalloc(sizeof(*rc), GFP_NOFS); 4185 if (!rc) 4186 return NULL; 4187 4188 INIT_LIST_HEAD(&rc->reloc_roots); 4189 backref_cache_init(&rc->backref_cache); 4190 mapping_tree_init(&rc->reloc_root_tree); 4191 extent_io_tree_init(&rc->processed_blocks, 4192 fs_info->btree_inode->i_mapping); 4193 return rc; 4194 } 4195 4196 /* 4197 * function to relocate all extents in a block group. 4198 */ 4199 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start) 4200 { 4201 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4202 struct reloc_control *rc; 4203 struct inode *inode; 4204 struct btrfs_path *path; 4205 int ret; 4206 int rw = 0; 4207 int err = 0; 4208 4209 rc = alloc_reloc_control(fs_info); 4210 if (!rc) 4211 return -ENOMEM; 4212 4213 rc->extent_root = extent_root; 4214 4215 rc->block_group = btrfs_lookup_block_group(fs_info, group_start); 4216 BUG_ON(!rc->block_group); 4217 4218 if (!rc->block_group->ro) { 4219 ret = btrfs_set_block_group_ro(extent_root, rc->block_group); 4220 if (ret) { 4221 err = ret; 4222 goto out; 4223 } 4224 rw = 1; 4225 } 4226 4227 path = btrfs_alloc_path(); 4228 if (!path) { 4229 err = -ENOMEM; 4230 goto out; 4231 } 4232 4233 inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group, 4234 path); 4235 btrfs_free_path(path); 4236 4237 if (!IS_ERR(inode)) 4238 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4239 else 4240 ret = PTR_ERR(inode); 4241 4242 if (ret && ret != -ENOENT) { 4243 err = ret; 4244 goto out; 4245 } 4246 4247 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4248 if (IS_ERR(rc->data_inode)) { 4249 err = PTR_ERR(rc->data_inode); 4250 rc->data_inode = NULL; 4251 goto out; 4252 } 4253 4254 btrfs_info(extent_root->fs_info, "relocating block group %llu flags %llu", 4255 rc->block_group->key.objectid, rc->block_group->flags); 4256 4257 ret = btrfs_start_delalloc_roots(fs_info, 0, -1); 4258 if (ret < 0) { 4259 err = ret; 4260 goto out; 4261 } 4262 btrfs_wait_ordered_roots(fs_info, -1); 4263 4264 while (1) { 4265 mutex_lock(&fs_info->cleaner_mutex); 4266 ret = relocate_block_group(rc); 4267 mutex_unlock(&fs_info->cleaner_mutex); 4268 if (ret < 0) { 4269 err = ret; 4270 goto out; 4271 } 4272 4273 if (rc->extents_found == 0) 4274 break; 4275 4276 btrfs_info(extent_root->fs_info, "found %llu extents", 4277 rc->extents_found); 4278 4279 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4280 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4281 (u64)-1); 4282 if (ret) { 4283 err = ret; 4284 goto out; 4285 } 4286 invalidate_mapping_pages(rc->data_inode->i_mapping, 4287 0, -1); 4288 rc->stage = UPDATE_DATA_PTRS; 4289 } 4290 } 4291 4292 WARN_ON(rc->block_group->pinned > 0); 4293 WARN_ON(rc->block_group->reserved > 0); 4294 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4295 out: 4296 if (err && rw) 4297 btrfs_set_block_group_rw(extent_root, rc->block_group); 4298 iput(rc->data_inode); 4299 btrfs_put_block_group(rc->block_group); 4300 kfree(rc); 4301 return err; 4302 } 4303 4304 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4305 { 4306 struct btrfs_trans_handle *trans; 4307 int ret, err; 4308 4309 trans = btrfs_start_transaction(root->fs_info->tree_root, 0); 4310 if (IS_ERR(trans)) 4311 return PTR_ERR(trans); 4312 4313 memset(&root->root_item.drop_progress, 0, 4314 sizeof(root->root_item.drop_progress)); 4315 root->root_item.drop_level = 0; 4316 btrfs_set_root_refs(&root->root_item, 0); 4317 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4318 &root->root_key, &root->root_item); 4319 4320 err = btrfs_end_transaction(trans, root->fs_info->tree_root); 4321 if (err) 4322 return err; 4323 return ret; 4324 } 4325 4326 /* 4327 * recover relocation interrupted by system crash. 4328 * 4329 * this function resumes merging reloc trees with corresponding fs trees. 4330 * this is important for keeping the sharing of tree blocks 4331 */ 4332 int btrfs_recover_relocation(struct btrfs_root *root) 4333 { 4334 LIST_HEAD(reloc_roots); 4335 struct btrfs_key key; 4336 struct btrfs_root *fs_root; 4337 struct btrfs_root *reloc_root; 4338 struct btrfs_path *path; 4339 struct extent_buffer *leaf; 4340 struct reloc_control *rc = NULL; 4341 struct btrfs_trans_handle *trans; 4342 int ret; 4343 int err = 0; 4344 4345 path = btrfs_alloc_path(); 4346 if (!path) 4347 return -ENOMEM; 4348 path->reada = -1; 4349 4350 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4351 key.type = BTRFS_ROOT_ITEM_KEY; 4352 key.offset = (u64)-1; 4353 4354 while (1) { 4355 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, 4356 path, 0, 0); 4357 if (ret < 0) { 4358 err = ret; 4359 goto out; 4360 } 4361 if (ret > 0) { 4362 if (path->slots[0] == 0) 4363 break; 4364 path->slots[0]--; 4365 } 4366 leaf = path->nodes[0]; 4367 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4368 btrfs_release_path(path); 4369 4370 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4371 key.type != BTRFS_ROOT_ITEM_KEY) 4372 break; 4373 4374 reloc_root = btrfs_read_fs_root(root, &key); 4375 if (IS_ERR(reloc_root)) { 4376 err = PTR_ERR(reloc_root); 4377 goto out; 4378 } 4379 4380 list_add(&reloc_root->root_list, &reloc_roots); 4381 4382 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4383 fs_root = read_fs_root(root->fs_info, 4384 reloc_root->root_key.offset); 4385 if (IS_ERR(fs_root)) { 4386 ret = PTR_ERR(fs_root); 4387 if (ret != -ENOENT) { 4388 err = ret; 4389 goto out; 4390 } 4391 ret = mark_garbage_root(reloc_root); 4392 if (ret < 0) { 4393 err = ret; 4394 goto out; 4395 } 4396 } 4397 } 4398 4399 if (key.offset == 0) 4400 break; 4401 4402 key.offset--; 4403 } 4404 btrfs_release_path(path); 4405 4406 if (list_empty(&reloc_roots)) 4407 goto out; 4408 4409 rc = alloc_reloc_control(root->fs_info); 4410 if (!rc) { 4411 err = -ENOMEM; 4412 goto out; 4413 } 4414 4415 rc->extent_root = root->fs_info->extent_root; 4416 4417 set_reloc_control(rc); 4418 4419 trans = btrfs_join_transaction(rc->extent_root); 4420 if (IS_ERR(trans)) { 4421 unset_reloc_control(rc); 4422 err = PTR_ERR(trans); 4423 goto out_free; 4424 } 4425 4426 rc->merge_reloc_tree = 1; 4427 4428 while (!list_empty(&reloc_roots)) { 4429 reloc_root = list_entry(reloc_roots.next, 4430 struct btrfs_root, root_list); 4431 list_del(&reloc_root->root_list); 4432 4433 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4434 list_add_tail(&reloc_root->root_list, 4435 &rc->reloc_roots); 4436 continue; 4437 } 4438 4439 fs_root = read_fs_root(root->fs_info, 4440 reloc_root->root_key.offset); 4441 if (IS_ERR(fs_root)) { 4442 err = PTR_ERR(fs_root); 4443 goto out_free; 4444 } 4445 4446 err = __add_reloc_root(reloc_root); 4447 BUG_ON(err < 0); /* -ENOMEM or logic error */ 4448 fs_root->reloc_root = reloc_root; 4449 } 4450 4451 err = btrfs_commit_transaction(trans, rc->extent_root); 4452 if (err) 4453 goto out_free; 4454 4455 merge_reloc_roots(rc); 4456 4457 unset_reloc_control(rc); 4458 4459 trans = btrfs_join_transaction(rc->extent_root); 4460 if (IS_ERR(trans)) 4461 err = PTR_ERR(trans); 4462 else 4463 err = btrfs_commit_transaction(trans, rc->extent_root); 4464 out_free: 4465 kfree(rc); 4466 out: 4467 if (!list_empty(&reloc_roots)) 4468 free_reloc_roots(&reloc_roots); 4469 4470 btrfs_free_path(path); 4471 4472 if (err == 0) { 4473 /* cleanup orphan inode in data relocation tree */ 4474 fs_root = read_fs_root(root->fs_info, 4475 BTRFS_DATA_RELOC_TREE_OBJECTID); 4476 if (IS_ERR(fs_root)) 4477 err = PTR_ERR(fs_root); 4478 else 4479 err = btrfs_orphan_cleanup(fs_root); 4480 } 4481 return err; 4482 } 4483 4484 /* 4485 * helper to add ordered checksum for data relocation. 4486 * 4487 * cloning checksum properly handles the nodatasum extents. 4488 * it also saves CPU time to re-calculate the checksum. 4489 */ 4490 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4491 { 4492 struct btrfs_ordered_sum *sums; 4493 struct btrfs_ordered_extent *ordered; 4494 struct btrfs_root *root = BTRFS_I(inode)->root; 4495 int ret; 4496 u64 disk_bytenr; 4497 u64 new_bytenr; 4498 LIST_HEAD(list); 4499 4500 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4501 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4502 4503 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4504 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr, 4505 disk_bytenr + len - 1, &list, 0); 4506 if (ret) 4507 goto out; 4508 4509 while (!list_empty(&list)) { 4510 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4511 list_del_init(&sums->list); 4512 4513 /* 4514 * We need to offset the new_bytenr based on where the csum is. 4515 * We need to do this because we will read in entire prealloc 4516 * extents but we may have written to say the middle of the 4517 * prealloc extent, so we need to make sure the csum goes with 4518 * the right disk offset. 4519 * 4520 * We can do this because the data reloc inode refers strictly 4521 * to the on disk bytes, so we don't have to worry about 4522 * disk_len vs real len like with real inodes since it's all 4523 * disk length. 4524 */ 4525 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr); 4526 sums->bytenr = new_bytenr; 4527 4528 btrfs_add_ordered_sum(inode, ordered, sums); 4529 } 4530 out: 4531 btrfs_put_ordered_extent(ordered); 4532 return ret; 4533 } 4534 4535 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4536 struct btrfs_root *root, struct extent_buffer *buf, 4537 struct extent_buffer *cow) 4538 { 4539 struct reloc_control *rc; 4540 struct backref_node *node; 4541 int first_cow = 0; 4542 int level; 4543 int ret = 0; 4544 4545 rc = root->fs_info->reloc_ctl; 4546 if (!rc) 4547 return 0; 4548 4549 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4550 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4551 4552 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 4553 if (buf == root->node) 4554 __update_reloc_root(root, cow->start); 4555 } 4556 4557 level = btrfs_header_level(buf); 4558 if (btrfs_header_generation(buf) <= 4559 btrfs_root_last_snapshot(&root->root_item)) 4560 first_cow = 1; 4561 4562 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4563 rc->create_reloc_tree) { 4564 WARN_ON(!first_cow && level == 0); 4565 4566 node = rc->backref_cache.path[level]; 4567 BUG_ON(node->bytenr != buf->start && 4568 node->new_bytenr != buf->start); 4569 4570 drop_node_buffer(node); 4571 extent_buffer_get(cow); 4572 node->eb = cow; 4573 node->new_bytenr = cow->start; 4574 4575 if (!node->pending) { 4576 list_move_tail(&node->list, 4577 &rc->backref_cache.pending[level]); 4578 node->pending = 1; 4579 } 4580 4581 if (first_cow) 4582 __mark_block_processed(rc, node); 4583 4584 if (first_cow && level > 0) 4585 rc->nodes_relocated += buf->len; 4586 } 4587 4588 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4589 ret = replace_file_extents(trans, rc, root, cow); 4590 return ret; 4591 } 4592 4593 /* 4594 * called before creating snapshot. it calculates metadata reservation 4595 * requried for relocating tree blocks in the snapshot 4596 */ 4597 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans, 4598 struct btrfs_pending_snapshot *pending, 4599 u64 *bytes_to_reserve) 4600 { 4601 struct btrfs_root *root; 4602 struct reloc_control *rc; 4603 4604 root = pending->root; 4605 if (!root->reloc_root) 4606 return; 4607 4608 rc = root->fs_info->reloc_ctl; 4609 if (!rc->merge_reloc_tree) 4610 return; 4611 4612 root = root->reloc_root; 4613 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4614 /* 4615 * relocation is in the stage of merging trees. the space 4616 * used by merging a reloc tree is twice the size of 4617 * relocated tree nodes in the worst case. half for cowing 4618 * the reloc tree, half for cowing the fs tree. the space 4619 * used by cowing the reloc tree will be freed after the 4620 * tree is dropped. if we create snapshot, cowing the fs 4621 * tree may use more space than it frees. so we need 4622 * reserve extra space. 4623 */ 4624 *bytes_to_reserve += rc->nodes_relocated; 4625 } 4626 4627 /* 4628 * called after snapshot is created. migrate block reservation 4629 * and create reloc root for the newly created snapshot 4630 */ 4631 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4632 struct btrfs_pending_snapshot *pending) 4633 { 4634 struct btrfs_root *root = pending->root; 4635 struct btrfs_root *reloc_root; 4636 struct btrfs_root *new_root; 4637 struct reloc_control *rc; 4638 int ret; 4639 4640 if (!root->reloc_root) 4641 return 0; 4642 4643 rc = root->fs_info->reloc_ctl; 4644 rc->merging_rsv_size += rc->nodes_relocated; 4645 4646 if (rc->merge_reloc_tree) { 4647 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4648 rc->block_rsv, 4649 rc->nodes_relocated); 4650 if (ret) 4651 return ret; 4652 } 4653 4654 new_root = pending->snap; 4655 reloc_root = create_reloc_root(trans, root->reloc_root, 4656 new_root->root_key.objectid); 4657 if (IS_ERR(reloc_root)) 4658 return PTR_ERR(reloc_root); 4659 4660 ret = __add_reloc_root(reloc_root); 4661 BUG_ON(ret < 0); 4662 new_root->reloc_root = reloc_root; 4663 4664 if (rc->create_reloc_tree) 4665 ret = clone_backref_node(trans, rc, root, reloc_root); 4666 return ret; 4667 } 4668