xref: /linux/fs/btrfs/relocation.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "volumes.h"
29 #include "locking.h"
30 #include "btrfs_inode.h"
31 #include "async-thread.h"
32 #include "free-space-cache.h"
33 #include "inode-map.h"
34 
35 /*
36  * backref_node, mapping_node and tree_block start with this
37  */
38 struct tree_entry {
39 	struct rb_node rb_node;
40 	u64 bytenr;
41 };
42 
43 /*
44  * present a tree block in the backref cache
45  */
46 struct backref_node {
47 	struct rb_node rb_node;
48 	u64 bytenr;
49 
50 	u64 new_bytenr;
51 	/* objectid of tree block owner, can be not uptodate */
52 	u64 owner;
53 	/* link to pending, changed or detached list */
54 	struct list_head list;
55 	/* list of upper level blocks reference this block */
56 	struct list_head upper;
57 	/* list of child blocks in the cache */
58 	struct list_head lower;
59 	/* NULL if this node is not tree root */
60 	struct btrfs_root *root;
61 	/* extent buffer got by COW the block */
62 	struct extent_buffer *eb;
63 	/* level of tree block */
64 	unsigned int level:8;
65 	/* is the block in non-reference counted tree */
66 	unsigned int cowonly:1;
67 	/* 1 if no child node in the cache */
68 	unsigned int lowest:1;
69 	/* is the extent buffer locked */
70 	unsigned int locked:1;
71 	/* has the block been processed */
72 	unsigned int processed:1;
73 	/* have backrefs of this block been checked */
74 	unsigned int checked:1;
75 	/*
76 	 * 1 if corresponding block has been cowed but some upper
77 	 * level block pointers may not point to the new location
78 	 */
79 	unsigned int pending:1;
80 	/*
81 	 * 1 if the backref node isn't connected to any other
82 	 * backref node.
83 	 */
84 	unsigned int detached:1;
85 };
86 
87 /*
88  * present a block pointer in the backref cache
89  */
90 struct backref_edge {
91 	struct list_head list[2];
92 	struct backref_node *node[2];
93 };
94 
95 #define LOWER	0
96 #define UPPER	1
97 #define RELOCATION_RESERVED_NODES	256
98 
99 struct backref_cache {
100 	/* red black tree of all backref nodes in the cache */
101 	struct rb_root rb_root;
102 	/* for passing backref nodes to btrfs_reloc_cow_block */
103 	struct backref_node *path[BTRFS_MAX_LEVEL];
104 	/*
105 	 * list of blocks that have been cowed but some block
106 	 * pointers in upper level blocks may not reflect the
107 	 * new location
108 	 */
109 	struct list_head pending[BTRFS_MAX_LEVEL];
110 	/* list of backref nodes with no child node */
111 	struct list_head leaves;
112 	/* list of blocks that have been cowed in current transaction */
113 	struct list_head changed;
114 	/* list of detached backref node. */
115 	struct list_head detached;
116 
117 	u64 last_trans;
118 
119 	int nr_nodes;
120 	int nr_edges;
121 };
122 
123 /*
124  * map address of tree root to tree
125  */
126 struct mapping_node {
127 	struct rb_node rb_node;
128 	u64 bytenr;
129 	void *data;
130 };
131 
132 struct mapping_tree {
133 	struct rb_root rb_root;
134 	spinlock_t lock;
135 };
136 
137 /*
138  * present a tree block to process
139  */
140 struct tree_block {
141 	struct rb_node rb_node;
142 	u64 bytenr;
143 	struct btrfs_key key;
144 	unsigned int level:8;
145 	unsigned int key_ready:1;
146 };
147 
148 #define MAX_EXTENTS 128
149 
150 struct file_extent_cluster {
151 	u64 start;
152 	u64 end;
153 	u64 boundary[MAX_EXTENTS];
154 	unsigned int nr;
155 };
156 
157 struct reloc_control {
158 	/* block group to relocate */
159 	struct btrfs_block_group_cache *block_group;
160 	/* extent tree */
161 	struct btrfs_root *extent_root;
162 	/* inode for moving data */
163 	struct inode *data_inode;
164 
165 	struct btrfs_block_rsv *block_rsv;
166 
167 	struct backref_cache backref_cache;
168 
169 	struct file_extent_cluster cluster;
170 	/* tree blocks have been processed */
171 	struct extent_io_tree processed_blocks;
172 	/* map start of tree root to corresponding reloc tree */
173 	struct mapping_tree reloc_root_tree;
174 	/* list of reloc trees */
175 	struct list_head reloc_roots;
176 	/* size of metadata reservation for merging reloc trees */
177 	u64 merging_rsv_size;
178 	/* size of relocated tree nodes */
179 	u64 nodes_relocated;
180 	/* reserved size for block group relocation*/
181 	u64 reserved_bytes;
182 
183 	u64 search_start;
184 	u64 extents_found;
185 
186 	unsigned int stage:8;
187 	unsigned int create_reloc_tree:1;
188 	unsigned int merge_reloc_tree:1;
189 	unsigned int found_file_extent:1;
190 };
191 
192 /* stages of data relocation */
193 #define MOVE_DATA_EXTENTS	0
194 #define UPDATE_DATA_PTRS	1
195 
196 static void remove_backref_node(struct backref_cache *cache,
197 				struct backref_node *node);
198 static void __mark_block_processed(struct reloc_control *rc,
199 				   struct backref_node *node);
200 
201 static void mapping_tree_init(struct mapping_tree *tree)
202 {
203 	tree->rb_root = RB_ROOT;
204 	spin_lock_init(&tree->lock);
205 }
206 
207 static void backref_cache_init(struct backref_cache *cache)
208 {
209 	int i;
210 	cache->rb_root = RB_ROOT;
211 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
212 		INIT_LIST_HEAD(&cache->pending[i]);
213 	INIT_LIST_HEAD(&cache->changed);
214 	INIT_LIST_HEAD(&cache->detached);
215 	INIT_LIST_HEAD(&cache->leaves);
216 }
217 
218 static void backref_cache_cleanup(struct backref_cache *cache)
219 {
220 	struct backref_node *node;
221 	int i;
222 
223 	while (!list_empty(&cache->detached)) {
224 		node = list_entry(cache->detached.next,
225 				  struct backref_node, list);
226 		remove_backref_node(cache, node);
227 	}
228 
229 	while (!list_empty(&cache->leaves)) {
230 		node = list_entry(cache->leaves.next,
231 				  struct backref_node, lower);
232 		remove_backref_node(cache, node);
233 	}
234 
235 	cache->last_trans = 0;
236 
237 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
238 		BUG_ON(!list_empty(&cache->pending[i]));
239 	BUG_ON(!list_empty(&cache->changed));
240 	BUG_ON(!list_empty(&cache->detached));
241 	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
242 	BUG_ON(cache->nr_nodes);
243 	BUG_ON(cache->nr_edges);
244 }
245 
246 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
247 {
248 	struct backref_node *node;
249 
250 	node = kzalloc(sizeof(*node), GFP_NOFS);
251 	if (node) {
252 		INIT_LIST_HEAD(&node->list);
253 		INIT_LIST_HEAD(&node->upper);
254 		INIT_LIST_HEAD(&node->lower);
255 		RB_CLEAR_NODE(&node->rb_node);
256 		cache->nr_nodes++;
257 	}
258 	return node;
259 }
260 
261 static void free_backref_node(struct backref_cache *cache,
262 			      struct backref_node *node)
263 {
264 	if (node) {
265 		cache->nr_nodes--;
266 		kfree(node);
267 	}
268 }
269 
270 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
271 {
272 	struct backref_edge *edge;
273 
274 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
275 	if (edge)
276 		cache->nr_edges++;
277 	return edge;
278 }
279 
280 static void free_backref_edge(struct backref_cache *cache,
281 			      struct backref_edge *edge)
282 {
283 	if (edge) {
284 		cache->nr_edges--;
285 		kfree(edge);
286 	}
287 }
288 
289 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
290 				   struct rb_node *node)
291 {
292 	struct rb_node **p = &root->rb_node;
293 	struct rb_node *parent = NULL;
294 	struct tree_entry *entry;
295 
296 	while (*p) {
297 		parent = *p;
298 		entry = rb_entry(parent, struct tree_entry, rb_node);
299 
300 		if (bytenr < entry->bytenr)
301 			p = &(*p)->rb_left;
302 		else if (bytenr > entry->bytenr)
303 			p = &(*p)->rb_right;
304 		else
305 			return parent;
306 	}
307 
308 	rb_link_node(node, parent, p);
309 	rb_insert_color(node, root);
310 	return NULL;
311 }
312 
313 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
314 {
315 	struct rb_node *n = root->rb_node;
316 	struct tree_entry *entry;
317 
318 	while (n) {
319 		entry = rb_entry(n, struct tree_entry, rb_node);
320 
321 		if (bytenr < entry->bytenr)
322 			n = n->rb_left;
323 		else if (bytenr > entry->bytenr)
324 			n = n->rb_right;
325 		else
326 			return n;
327 	}
328 	return NULL;
329 }
330 
331 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
332 {
333 
334 	struct btrfs_fs_info *fs_info = NULL;
335 	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
336 					      rb_node);
337 	if (bnode->root)
338 		fs_info = bnode->root->fs_info;
339 	btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
340 		    "found at offset %llu", bytenr);
341 }
342 
343 /*
344  * walk up backref nodes until reach node presents tree root
345  */
346 static struct backref_node *walk_up_backref(struct backref_node *node,
347 					    struct backref_edge *edges[],
348 					    int *index)
349 {
350 	struct backref_edge *edge;
351 	int idx = *index;
352 
353 	while (!list_empty(&node->upper)) {
354 		edge = list_entry(node->upper.next,
355 				  struct backref_edge, list[LOWER]);
356 		edges[idx++] = edge;
357 		node = edge->node[UPPER];
358 	}
359 	BUG_ON(node->detached);
360 	*index = idx;
361 	return node;
362 }
363 
364 /*
365  * walk down backref nodes to find start of next reference path
366  */
367 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
368 					      int *index)
369 {
370 	struct backref_edge *edge;
371 	struct backref_node *lower;
372 	int idx = *index;
373 
374 	while (idx > 0) {
375 		edge = edges[idx - 1];
376 		lower = edge->node[LOWER];
377 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
378 			idx--;
379 			continue;
380 		}
381 		edge = list_entry(edge->list[LOWER].next,
382 				  struct backref_edge, list[LOWER]);
383 		edges[idx - 1] = edge;
384 		*index = idx;
385 		return edge->node[UPPER];
386 	}
387 	*index = 0;
388 	return NULL;
389 }
390 
391 static void unlock_node_buffer(struct backref_node *node)
392 {
393 	if (node->locked) {
394 		btrfs_tree_unlock(node->eb);
395 		node->locked = 0;
396 	}
397 }
398 
399 static void drop_node_buffer(struct backref_node *node)
400 {
401 	if (node->eb) {
402 		unlock_node_buffer(node);
403 		free_extent_buffer(node->eb);
404 		node->eb = NULL;
405 	}
406 }
407 
408 static void drop_backref_node(struct backref_cache *tree,
409 			      struct backref_node *node)
410 {
411 	BUG_ON(!list_empty(&node->upper));
412 
413 	drop_node_buffer(node);
414 	list_del(&node->list);
415 	list_del(&node->lower);
416 	if (!RB_EMPTY_NODE(&node->rb_node))
417 		rb_erase(&node->rb_node, &tree->rb_root);
418 	free_backref_node(tree, node);
419 }
420 
421 /*
422  * remove a backref node from the backref cache
423  */
424 static void remove_backref_node(struct backref_cache *cache,
425 				struct backref_node *node)
426 {
427 	struct backref_node *upper;
428 	struct backref_edge *edge;
429 
430 	if (!node)
431 		return;
432 
433 	BUG_ON(!node->lowest && !node->detached);
434 	while (!list_empty(&node->upper)) {
435 		edge = list_entry(node->upper.next, struct backref_edge,
436 				  list[LOWER]);
437 		upper = edge->node[UPPER];
438 		list_del(&edge->list[LOWER]);
439 		list_del(&edge->list[UPPER]);
440 		free_backref_edge(cache, edge);
441 
442 		if (RB_EMPTY_NODE(&upper->rb_node)) {
443 			BUG_ON(!list_empty(&node->upper));
444 			drop_backref_node(cache, node);
445 			node = upper;
446 			node->lowest = 1;
447 			continue;
448 		}
449 		/*
450 		 * add the node to leaf node list if no other
451 		 * child block cached.
452 		 */
453 		if (list_empty(&upper->lower)) {
454 			list_add_tail(&upper->lower, &cache->leaves);
455 			upper->lowest = 1;
456 		}
457 	}
458 
459 	drop_backref_node(cache, node);
460 }
461 
462 static void update_backref_node(struct backref_cache *cache,
463 				struct backref_node *node, u64 bytenr)
464 {
465 	struct rb_node *rb_node;
466 	rb_erase(&node->rb_node, &cache->rb_root);
467 	node->bytenr = bytenr;
468 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
469 	if (rb_node)
470 		backref_tree_panic(rb_node, -EEXIST, bytenr);
471 }
472 
473 /*
474  * update backref cache after a transaction commit
475  */
476 static int update_backref_cache(struct btrfs_trans_handle *trans,
477 				struct backref_cache *cache)
478 {
479 	struct backref_node *node;
480 	int level = 0;
481 
482 	if (cache->last_trans == 0) {
483 		cache->last_trans = trans->transid;
484 		return 0;
485 	}
486 
487 	if (cache->last_trans == trans->transid)
488 		return 0;
489 
490 	/*
491 	 * detached nodes are used to avoid unnecessary backref
492 	 * lookup. transaction commit changes the extent tree.
493 	 * so the detached nodes are no longer useful.
494 	 */
495 	while (!list_empty(&cache->detached)) {
496 		node = list_entry(cache->detached.next,
497 				  struct backref_node, list);
498 		remove_backref_node(cache, node);
499 	}
500 
501 	while (!list_empty(&cache->changed)) {
502 		node = list_entry(cache->changed.next,
503 				  struct backref_node, list);
504 		list_del_init(&node->list);
505 		BUG_ON(node->pending);
506 		update_backref_node(cache, node, node->new_bytenr);
507 	}
508 
509 	/*
510 	 * some nodes can be left in the pending list if there were
511 	 * errors during processing the pending nodes.
512 	 */
513 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
514 		list_for_each_entry(node, &cache->pending[level], list) {
515 			BUG_ON(!node->pending);
516 			if (node->bytenr == node->new_bytenr)
517 				continue;
518 			update_backref_node(cache, node, node->new_bytenr);
519 		}
520 	}
521 
522 	cache->last_trans = 0;
523 	return 1;
524 }
525 
526 
527 static int should_ignore_root(struct btrfs_root *root)
528 {
529 	struct btrfs_root *reloc_root;
530 
531 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
532 		return 0;
533 
534 	reloc_root = root->reloc_root;
535 	if (!reloc_root)
536 		return 0;
537 
538 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
539 	    root->fs_info->running_transaction->transid - 1)
540 		return 0;
541 	/*
542 	 * if there is reloc tree and it was created in previous
543 	 * transaction backref lookup can find the reloc tree,
544 	 * so backref node for the fs tree root is useless for
545 	 * relocation.
546 	 */
547 	return 1;
548 }
549 /*
550  * find reloc tree by address of tree root
551  */
552 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
553 					  u64 bytenr)
554 {
555 	struct rb_node *rb_node;
556 	struct mapping_node *node;
557 	struct btrfs_root *root = NULL;
558 
559 	spin_lock(&rc->reloc_root_tree.lock);
560 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
561 	if (rb_node) {
562 		node = rb_entry(rb_node, struct mapping_node, rb_node);
563 		root = (struct btrfs_root *)node->data;
564 	}
565 	spin_unlock(&rc->reloc_root_tree.lock);
566 	return root;
567 }
568 
569 static int is_cowonly_root(u64 root_objectid)
570 {
571 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
572 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
573 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
574 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
575 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
576 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
577 	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
578 	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID)
579 		return 1;
580 	return 0;
581 }
582 
583 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
584 					u64 root_objectid)
585 {
586 	struct btrfs_key key;
587 
588 	key.objectid = root_objectid;
589 	key.type = BTRFS_ROOT_ITEM_KEY;
590 	if (is_cowonly_root(root_objectid))
591 		key.offset = 0;
592 	else
593 		key.offset = (u64)-1;
594 
595 	return btrfs_get_fs_root(fs_info, &key, false);
596 }
597 
598 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
599 static noinline_for_stack
600 struct btrfs_root *find_tree_root(struct reloc_control *rc,
601 				  struct extent_buffer *leaf,
602 				  struct btrfs_extent_ref_v0 *ref0)
603 {
604 	struct btrfs_root *root;
605 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
606 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
607 
608 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
609 
610 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
611 	BUG_ON(IS_ERR(root));
612 
613 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
614 	    generation != btrfs_root_generation(&root->root_item))
615 		return NULL;
616 
617 	return root;
618 }
619 #endif
620 
621 static noinline_for_stack
622 int find_inline_backref(struct extent_buffer *leaf, int slot,
623 			unsigned long *ptr, unsigned long *end)
624 {
625 	struct btrfs_key key;
626 	struct btrfs_extent_item *ei;
627 	struct btrfs_tree_block_info *bi;
628 	u32 item_size;
629 
630 	btrfs_item_key_to_cpu(leaf, &key, slot);
631 
632 	item_size = btrfs_item_size_nr(leaf, slot);
633 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
634 	if (item_size < sizeof(*ei)) {
635 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
636 		return 1;
637 	}
638 #endif
639 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
640 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
641 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
642 
643 	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
644 	    item_size <= sizeof(*ei) + sizeof(*bi)) {
645 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
646 		return 1;
647 	}
648 	if (key.type == BTRFS_METADATA_ITEM_KEY &&
649 	    item_size <= sizeof(*ei)) {
650 		WARN_ON(item_size < sizeof(*ei));
651 		return 1;
652 	}
653 
654 	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
655 		bi = (struct btrfs_tree_block_info *)(ei + 1);
656 		*ptr = (unsigned long)(bi + 1);
657 	} else {
658 		*ptr = (unsigned long)(ei + 1);
659 	}
660 	*end = (unsigned long)ei + item_size;
661 	return 0;
662 }
663 
664 /*
665  * build backref tree for a given tree block. root of the backref tree
666  * corresponds the tree block, leaves of the backref tree correspond
667  * roots of b-trees that reference the tree block.
668  *
669  * the basic idea of this function is check backrefs of a given block
670  * to find upper level blocks that refernece the block, and then check
671  * bakcrefs of these upper level blocks recursively. the recursion stop
672  * when tree root is reached or backrefs for the block is cached.
673  *
674  * NOTE: if we find backrefs for a block are cached, we know backrefs
675  * for all upper level blocks that directly/indirectly reference the
676  * block are also cached.
677  */
678 static noinline_for_stack
679 struct backref_node *build_backref_tree(struct reloc_control *rc,
680 					struct btrfs_key *node_key,
681 					int level, u64 bytenr)
682 {
683 	struct backref_cache *cache = &rc->backref_cache;
684 	struct btrfs_path *path1;
685 	struct btrfs_path *path2;
686 	struct extent_buffer *eb;
687 	struct btrfs_root *root;
688 	struct backref_node *cur;
689 	struct backref_node *upper;
690 	struct backref_node *lower;
691 	struct backref_node *node = NULL;
692 	struct backref_node *exist = NULL;
693 	struct backref_edge *edge;
694 	struct rb_node *rb_node;
695 	struct btrfs_key key;
696 	unsigned long end;
697 	unsigned long ptr;
698 	LIST_HEAD(list);
699 	LIST_HEAD(useless);
700 	int cowonly;
701 	int ret;
702 	int err = 0;
703 	bool need_check = true;
704 
705 	path1 = btrfs_alloc_path();
706 	path2 = btrfs_alloc_path();
707 	if (!path1 || !path2) {
708 		err = -ENOMEM;
709 		goto out;
710 	}
711 	path1->reada = 1;
712 	path2->reada = 2;
713 
714 	node = alloc_backref_node(cache);
715 	if (!node) {
716 		err = -ENOMEM;
717 		goto out;
718 	}
719 
720 	node->bytenr = bytenr;
721 	node->level = level;
722 	node->lowest = 1;
723 	cur = node;
724 again:
725 	end = 0;
726 	ptr = 0;
727 	key.objectid = cur->bytenr;
728 	key.type = BTRFS_METADATA_ITEM_KEY;
729 	key.offset = (u64)-1;
730 
731 	path1->search_commit_root = 1;
732 	path1->skip_locking = 1;
733 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
734 				0, 0);
735 	if (ret < 0) {
736 		err = ret;
737 		goto out;
738 	}
739 	ASSERT(ret);
740 	ASSERT(path1->slots[0]);
741 
742 	path1->slots[0]--;
743 
744 	WARN_ON(cur->checked);
745 	if (!list_empty(&cur->upper)) {
746 		/*
747 		 * the backref was added previously when processing
748 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
749 		 */
750 		ASSERT(list_is_singular(&cur->upper));
751 		edge = list_entry(cur->upper.next, struct backref_edge,
752 				  list[LOWER]);
753 		ASSERT(list_empty(&edge->list[UPPER]));
754 		exist = edge->node[UPPER];
755 		/*
756 		 * add the upper level block to pending list if we need
757 		 * check its backrefs
758 		 */
759 		if (!exist->checked)
760 			list_add_tail(&edge->list[UPPER], &list);
761 	} else {
762 		exist = NULL;
763 	}
764 
765 	while (1) {
766 		cond_resched();
767 		eb = path1->nodes[0];
768 
769 		if (ptr >= end) {
770 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
771 				ret = btrfs_next_leaf(rc->extent_root, path1);
772 				if (ret < 0) {
773 					err = ret;
774 					goto out;
775 				}
776 				if (ret > 0)
777 					break;
778 				eb = path1->nodes[0];
779 			}
780 
781 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
782 			if (key.objectid != cur->bytenr) {
783 				WARN_ON(exist);
784 				break;
785 			}
786 
787 			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
788 			    key.type == BTRFS_METADATA_ITEM_KEY) {
789 				ret = find_inline_backref(eb, path1->slots[0],
790 							  &ptr, &end);
791 				if (ret)
792 					goto next;
793 			}
794 		}
795 
796 		if (ptr < end) {
797 			/* update key for inline back ref */
798 			struct btrfs_extent_inline_ref *iref;
799 			iref = (struct btrfs_extent_inline_ref *)ptr;
800 			key.type = btrfs_extent_inline_ref_type(eb, iref);
801 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
802 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
803 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
804 		}
805 
806 		if (exist &&
807 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
808 		      exist->owner == key.offset) ||
809 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
810 		      exist->bytenr == key.offset))) {
811 			exist = NULL;
812 			goto next;
813 		}
814 
815 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
816 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
817 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
818 			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
819 				struct btrfs_extent_ref_v0 *ref0;
820 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
821 						struct btrfs_extent_ref_v0);
822 				if (key.objectid == key.offset) {
823 					root = find_tree_root(rc, eb, ref0);
824 					if (root && !should_ignore_root(root))
825 						cur->root = root;
826 					else
827 						list_add(&cur->list, &useless);
828 					break;
829 				}
830 				if (is_cowonly_root(btrfs_ref_root_v0(eb,
831 								      ref0)))
832 					cur->cowonly = 1;
833 			}
834 #else
835 		ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
836 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
837 #endif
838 			if (key.objectid == key.offset) {
839 				/*
840 				 * only root blocks of reloc trees use
841 				 * backref of this type.
842 				 */
843 				root = find_reloc_root(rc, cur->bytenr);
844 				ASSERT(root);
845 				cur->root = root;
846 				break;
847 			}
848 
849 			edge = alloc_backref_edge(cache);
850 			if (!edge) {
851 				err = -ENOMEM;
852 				goto out;
853 			}
854 			rb_node = tree_search(&cache->rb_root, key.offset);
855 			if (!rb_node) {
856 				upper = alloc_backref_node(cache);
857 				if (!upper) {
858 					free_backref_edge(cache, edge);
859 					err = -ENOMEM;
860 					goto out;
861 				}
862 				upper->bytenr = key.offset;
863 				upper->level = cur->level + 1;
864 				/*
865 				 *  backrefs for the upper level block isn't
866 				 *  cached, add the block to pending list
867 				 */
868 				list_add_tail(&edge->list[UPPER], &list);
869 			} else {
870 				upper = rb_entry(rb_node, struct backref_node,
871 						 rb_node);
872 				ASSERT(upper->checked);
873 				INIT_LIST_HEAD(&edge->list[UPPER]);
874 			}
875 			list_add_tail(&edge->list[LOWER], &cur->upper);
876 			edge->node[LOWER] = cur;
877 			edge->node[UPPER] = upper;
878 
879 			goto next;
880 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
881 			goto next;
882 		}
883 
884 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
885 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
886 		if (IS_ERR(root)) {
887 			err = PTR_ERR(root);
888 			goto out;
889 		}
890 
891 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
892 			cur->cowonly = 1;
893 
894 		if (btrfs_root_level(&root->root_item) == cur->level) {
895 			/* tree root */
896 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
897 			       cur->bytenr);
898 			if (should_ignore_root(root))
899 				list_add(&cur->list, &useless);
900 			else
901 				cur->root = root;
902 			break;
903 		}
904 
905 		level = cur->level + 1;
906 
907 		/*
908 		 * searching the tree to find upper level blocks
909 		 * reference the block.
910 		 */
911 		path2->search_commit_root = 1;
912 		path2->skip_locking = 1;
913 		path2->lowest_level = level;
914 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
915 		path2->lowest_level = 0;
916 		if (ret < 0) {
917 			err = ret;
918 			goto out;
919 		}
920 		if (ret > 0 && path2->slots[level] > 0)
921 			path2->slots[level]--;
922 
923 		eb = path2->nodes[level];
924 		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
925 			cur->bytenr);
926 
927 		lower = cur;
928 		need_check = true;
929 		for (; level < BTRFS_MAX_LEVEL; level++) {
930 			if (!path2->nodes[level]) {
931 				ASSERT(btrfs_root_bytenr(&root->root_item) ==
932 				       lower->bytenr);
933 				if (should_ignore_root(root))
934 					list_add(&lower->list, &useless);
935 				else
936 					lower->root = root;
937 				break;
938 			}
939 
940 			edge = alloc_backref_edge(cache);
941 			if (!edge) {
942 				err = -ENOMEM;
943 				goto out;
944 			}
945 
946 			eb = path2->nodes[level];
947 			rb_node = tree_search(&cache->rb_root, eb->start);
948 			if (!rb_node) {
949 				upper = alloc_backref_node(cache);
950 				if (!upper) {
951 					free_backref_edge(cache, edge);
952 					err = -ENOMEM;
953 					goto out;
954 				}
955 				upper->bytenr = eb->start;
956 				upper->owner = btrfs_header_owner(eb);
957 				upper->level = lower->level + 1;
958 				if (!test_bit(BTRFS_ROOT_REF_COWS,
959 					      &root->state))
960 					upper->cowonly = 1;
961 
962 				/*
963 				 * if we know the block isn't shared
964 				 * we can void checking its backrefs.
965 				 */
966 				if (btrfs_block_can_be_shared(root, eb))
967 					upper->checked = 0;
968 				else
969 					upper->checked = 1;
970 
971 				/*
972 				 * add the block to pending list if we
973 				 * need check its backrefs, we only do this once
974 				 * while walking up a tree as we will catch
975 				 * anything else later on.
976 				 */
977 				if (!upper->checked && need_check) {
978 					need_check = false;
979 					list_add_tail(&edge->list[UPPER],
980 						      &list);
981 				} else {
982 					if (upper->checked)
983 						need_check = true;
984 					INIT_LIST_HEAD(&edge->list[UPPER]);
985 				}
986 			} else {
987 				upper = rb_entry(rb_node, struct backref_node,
988 						 rb_node);
989 				ASSERT(upper->checked);
990 				INIT_LIST_HEAD(&edge->list[UPPER]);
991 				if (!upper->owner)
992 					upper->owner = btrfs_header_owner(eb);
993 			}
994 			list_add_tail(&edge->list[LOWER], &lower->upper);
995 			edge->node[LOWER] = lower;
996 			edge->node[UPPER] = upper;
997 
998 			if (rb_node)
999 				break;
1000 			lower = upper;
1001 			upper = NULL;
1002 		}
1003 		btrfs_release_path(path2);
1004 next:
1005 		if (ptr < end) {
1006 			ptr += btrfs_extent_inline_ref_size(key.type);
1007 			if (ptr >= end) {
1008 				WARN_ON(ptr > end);
1009 				ptr = 0;
1010 				end = 0;
1011 			}
1012 		}
1013 		if (ptr >= end)
1014 			path1->slots[0]++;
1015 	}
1016 	btrfs_release_path(path1);
1017 
1018 	cur->checked = 1;
1019 	WARN_ON(exist);
1020 
1021 	/* the pending list isn't empty, take the first block to process */
1022 	if (!list_empty(&list)) {
1023 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1024 		list_del_init(&edge->list[UPPER]);
1025 		cur = edge->node[UPPER];
1026 		goto again;
1027 	}
1028 
1029 	/*
1030 	 * everything goes well, connect backref nodes and insert backref nodes
1031 	 * into the cache.
1032 	 */
1033 	ASSERT(node->checked);
1034 	cowonly = node->cowonly;
1035 	if (!cowonly) {
1036 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1037 				      &node->rb_node);
1038 		if (rb_node)
1039 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1040 		list_add_tail(&node->lower, &cache->leaves);
1041 	}
1042 
1043 	list_for_each_entry(edge, &node->upper, list[LOWER])
1044 		list_add_tail(&edge->list[UPPER], &list);
1045 
1046 	while (!list_empty(&list)) {
1047 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1048 		list_del_init(&edge->list[UPPER]);
1049 		upper = edge->node[UPPER];
1050 		if (upper->detached) {
1051 			list_del(&edge->list[LOWER]);
1052 			lower = edge->node[LOWER];
1053 			free_backref_edge(cache, edge);
1054 			if (list_empty(&lower->upper))
1055 				list_add(&lower->list, &useless);
1056 			continue;
1057 		}
1058 
1059 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1060 			if (upper->lowest) {
1061 				list_del_init(&upper->lower);
1062 				upper->lowest = 0;
1063 			}
1064 
1065 			list_add_tail(&edge->list[UPPER], &upper->lower);
1066 			continue;
1067 		}
1068 
1069 		if (!upper->checked) {
1070 			/*
1071 			 * Still want to blow up for developers since this is a
1072 			 * logic bug.
1073 			 */
1074 			ASSERT(0);
1075 			err = -EINVAL;
1076 			goto out;
1077 		}
1078 		if (cowonly != upper->cowonly) {
1079 			ASSERT(0);
1080 			err = -EINVAL;
1081 			goto out;
1082 		}
1083 
1084 		if (!cowonly) {
1085 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1086 					      &upper->rb_node);
1087 			if (rb_node)
1088 				backref_tree_panic(rb_node, -EEXIST,
1089 						   upper->bytenr);
1090 		}
1091 
1092 		list_add_tail(&edge->list[UPPER], &upper->lower);
1093 
1094 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1095 			list_add_tail(&edge->list[UPPER], &list);
1096 	}
1097 	/*
1098 	 * process useless backref nodes. backref nodes for tree leaves
1099 	 * are deleted from the cache. backref nodes for upper level
1100 	 * tree blocks are left in the cache to avoid unnecessary backref
1101 	 * lookup.
1102 	 */
1103 	while (!list_empty(&useless)) {
1104 		upper = list_entry(useless.next, struct backref_node, list);
1105 		list_del_init(&upper->list);
1106 		ASSERT(list_empty(&upper->upper));
1107 		if (upper == node)
1108 			node = NULL;
1109 		if (upper->lowest) {
1110 			list_del_init(&upper->lower);
1111 			upper->lowest = 0;
1112 		}
1113 		while (!list_empty(&upper->lower)) {
1114 			edge = list_entry(upper->lower.next,
1115 					  struct backref_edge, list[UPPER]);
1116 			list_del(&edge->list[UPPER]);
1117 			list_del(&edge->list[LOWER]);
1118 			lower = edge->node[LOWER];
1119 			free_backref_edge(cache, edge);
1120 
1121 			if (list_empty(&lower->upper))
1122 				list_add(&lower->list, &useless);
1123 		}
1124 		__mark_block_processed(rc, upper);
1125 		if (upper->level > 0) {
1126 			list_add(&upper->list, &cache->detached);
1127 			upper->detached = 1;
1128 		} else {
1129 			rb_erase(&upper->rb_node, &cache->rb_root);
1130 			free_backref_node(cache, upper);
1131 		}
1132 	}
1133 out:
1134 	btrfs_free_path(path1);
1135 	btrfs_free_path(path2);
1136 	if (err) {
1137 		while (!list_empty(&useless)) {
1138 			lower = list_entry(useless.next,
1139 					   struct backref_node, list);
1140 			list_del_init(&lower->list);
1141 		}
1142 		while (!list_empty(&list)) {
1143 			edge = list_first_entry(&list, struct backref_edge,
1144 						list[UPPER]);
1145 			list_del(&edge->list[UPPER]);
1146 			list_del(&edge->list[LOWER]);
1147 			lower = edge->node[LOWER];
1148 			upper = edge->node[UPPER];
1149 			free_backref_edge(cache, edge);
1150 
1151 			/*
1152 			 * Lower is no longer linked to any upper backref nodes
1153 			 * and isn't in the cache, we can free it ourselves.
1154 			 */
1155 			if (list_empty(&lower->upper) &&
1156 			    RB_EMPTY_NODE(&lower->rb_node))
1157 				list_add(&lower->list, &useless);
1158 
1159 			if (!RB_EMPTY_NODE(&upper->rb_node))
1160 				continue;
1161 
1162 			/* Add this guy's upper edges to the list to proces */
1163 			list_for_each_entry(edge, &upper->upper, list[LOWER])
1164 				list_add_tail(&edge->list[UPPER], &list);
1165 			if (list_empty(&upper->upper))
1166 				list_add(&upper->list, &useless);
1167 		}
1168 
1169 		while (!list_empty(&useless)) {
1170 			lower = list_entry(useless.next,
1171 					   struct backref_node, list);
1172 			list_del_init(&lower->list);
1173 			free_backref_node(cache, lower);
1174 		}
1175 		return ERR_PTR(err);
1176 	}
1177 	ASSERT(!node || !node->detached);
1178 	return node;
1179 }
1180 
1181 /*
1182  * helper to add backref node for the newly created snapshot.
1183  * the backref node is created by cloning backref node that
1184  * corresponds to root of source tree
1185  */
1186 static int clone_backref_node(struct btrfs_trans_handle *trans,
1187 			      struct reloc_control *rc,
1188 			      struct btrfs_root *src,
1189 			      struct btrfs_root *dest)
1190 {
1191 	struct btrfs_root *reloc_root = src->reloc_root;
1192 	struct backref_cache *cache = &rc->backref_cache;
1193 	struct backref_node *node = NULL;
1194 	struct backref_node *new_node;
1195 	struct backref_edge *edge;
1196 	struct backref_edge *new_edge;
1197 	struct rb_node *rb_node;
1198 
1199 	if (cache->last_trans > 0)
1200 		update_backref_cache(trans, cache);
1201 
1202 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1203 	if (rb_node) {
1204 		node = rb_entry(rb_node, struct backref_node, rb_node);
1205 		if (node->detached)
1206 			node = NULL;
1207 		else
1208 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1209 	}
1210 
1211 	if (!node) {
1212 		rb_node = tree_search(&cache->rb_root,
1213 				      reloc_root->commit_root->start);
1214 		if (rb_node) {
1215 			node = rb_entry(rb_node, struct backref_node,
1216 					rb_node);
1217 			BUG_ON(node->detached);
1218 		}
1219 	}
1220 
1221 	if (!node)
1222 		return 0;
1223 
1224 	new_node = alloc_backref_node(cache);
1225 	if (!new_node)
1226 		return -ENOMEM;
1227 
1228 	new_node->bytenr = dest->node->start;
1229 	new_node->level = node->level;
1230 	new_node->lowest = node->lowest;
1231 	new_node->checked = 1;
1232 	new_node->root = dest;
1233 
1234 	if (!node->lowest) {
1235 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1236 			new_edge = alloc_backref_edge(cache);
1237 			if (!new_edge)
1238 				goto fail;
1239 
1240 			new_edge->node[UPPER] = new_node;
1241 			new_edge->node[LOWER] = edge->node[LOWER];
1242 			list_add_tail(&new_edge->list[UPPER],
1243 				      &new_node->lower);
1244 		}
1245 	} else {
1246 		list_add_tail(&new_node->lower, &cache->leaves);
1247 	}
1248 
1249 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1250 			      &new_node->rb_node);
1251 	if (rb_node)
1252 		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1253 
1254 	if (!new_node->lowest) {
1255 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1256 			list_add_tail(&new_edge->list[LOWER],
1257 				      &new_edge->node[LOWER]->upper);
1258 		}
1259 	}
1260 	return 0;
1261 fail:
1262 	while (!list_empty(&new_node->lower)) {
1263 		new_edge = list_entry(new_node->lower.next,
1264 				      struct backref_edge, list[UPPER]);
1265 		list_del(&new_edge->list[UPPER]);
1266 		free_backref_edge(cache, new_edge);
1267 	}
1268 	free_backref_node(cache, new_node);
1269 	return -ENOMEM;
1270 }
1271 
1272 /*
1273  * helper to add 'address of tree root -> reloc tree' mapping
1274  */
1275 static int __must_check __add_reloc_root(struct btrfs_root *root)
1276 {
1277 	struct rb_node *rb_node;
1278 	struct mapping_node *node;
1279 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1280 
1281 	node = kmalloc(sizeof(*node), GFP_NOFS);
1282 	if (!node)
1283 		return -ENOMEM;
1284 
1285 	node->bytenr = root->node->start;
1286 	node->data = root;
1287 
1288 	spin_lock(&rc->reloc_root_tree.lock);
1289 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1290 			      node->bytenr, &node->rb_node);
1291 	spin_unlock(&rc->reloc_root_tree.lock);
1292 	if (rb_node) {
1293 		btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
1294 			    "for start=%llu while inserting into relocation "
1295 			    "tree", node->bytenr);
1296 		kfree(node);
1297 		return -EEXIST;
1298 	}
1299 
1300 	list_add_tail(&root->root_list, &rc->reloc_roots);
1301 	return 0;
1302 }
1303 
1304 /*
1305  * helper to delete the 'address of tree root -> reloc tree'
1306  * mapping
1307  */
1308 static void __del_reloc_root(struct btrfs_root *root)
1309 {
1310 	struct rb_node *rb_node;
1311 	struct mapping_node *node = NULL;
1312 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1313 
1314 	spin_lock(&rc->reloc_root_tree.lock);
1315 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1316 			      root->node->start);
1317 	if (rb_node) {
1318 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1319 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1320 	}
1321 	spin_unlock(&rc->reloc_root_tree.lock);
1322 
1323 	if (!node)
1324 		return;
1325 	BUG_ON((struct btrfs_root *)node->data != root);
1326 
1327 	spin_lock(&root->fs_info->trans_lock);
1328 	list_del_init(&root->root_list);
1329 	spin_unlock(&root->fs_info->trans_lock);
1330 	kfree(node);
1331 }
1332 
1333 /*
1334  * helper to update the 'address of tree root -> reloc tree'
1335  * mapping
1336  */
1337 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1338 {
1339 	struct rb_node *rb_node;
1340 	struct mapping_node *node = NULL;
1341 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1342 
1343 	spin_lock(&rc->reloc_root_tree.lock);
1344 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1345 			      root->node->start);
1346 	if (rb_node) {
1347 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1348 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1349 	}
1350 	spin_unlock(&rc->reloc_root_tree.lock);
1351 
1352 	if (!node)
1353 		return 0;
1354 	BUG_ON((struct btrfs_root *)node->data != root);
1355 
1356 	spin_lock(&rc->reloc_root_tree.lock);
1357 	node->bytenr = new_bytenr;
1358 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1359 			      node->bytenr, &node->rb_node);
1360 	spin_unlock(&rc->reloc_root_tree.lock);
1361 	if (rb_node)
1362 		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1363 	return 0;
1364 }
1365 
1366 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1367 					struct btrfs_root *root, u64 objectid)
1368 {
1369 	struct btrfs_root *reloc_root;
1370 	struct extent_buffer *eb;
1371 	struct btrfs_root_item *root_item;
1372 	struct btrfs_key root_key;
1373 	u64 last_snap = 0;
1374 	int ret;
1375 
1376 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1377 	BUG_ON(!root_item);
1378 
1379 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1380 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1381 	root_key.offset = objectid;
1382 
1383 	if (root->root_key.objectid == objectid) {
1384 		/* called by btrfs_init_reloc_root */
1385 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1386 				      BTRFS_TREE_RELOC_OBJECTID);
1387 		BUG_ON(ret);
1388 
1389 		last_snap = btrfs_root_last_snapshot(&root->root_item);
1390 		btrfs_set_root_last_snapshot(&root->root_item,
1391 					     trans->transid - 1);
1392 	} else {
1393 		/*
1394 		 * called by btrfs_reloc_post_snapshot_hook.
1395 		 * the source tree is a reloc tree, all tree blocks
1396 		 * modified after it was created have RELOC flag
1397 		 * set in their headers. so it's OK to not update
1398 		 * the 'last_snapshot'.
1399 		 */
1400 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1401 				      BTRFS_TREE_RELOC_OBJECTID);
1402 		BUG_ON(ret);
1403 	}
1404 
1405 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1406 	btrfs_set_root_bytenr(root_item, eb->start);
1407 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1408 	btrfs_set_root_generation(root_item, trans->transid);
1409 
1410 	if (root->root_key.objectid == objectid) {
1411 		btrfs_set_root_refs(root_item, 0);
1412 		memset(&root_item->drop_progress, 0,
1413 		       sizeof(struct btrfs_disk_key));
1414 		root_item->drop_level = 0;
1415 		/*
1416 		 * abuse rtransid, it is safe because it is impossible to
1417 		 * receive data into a relocation tree.
1418 		 */
1419 		btrfs_set_root_rtransid(root_item, last_snap);
1420 		btrfs_set_root_otransid(root_item, trans->transid);
1421 	}
1422 
1423 	btrfs_tree_unlock(eb);
1424 	free_extent_buffer(eb);
1425 
1426 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1427 				&root_key, root_item);
1428 	BUG_ON(ret);
1429 	kfree(root_item);
1430 
1431 	reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key);
1432 	BUG_ON(IS_ERR(reloc_root));
1433 	reloc_root->last_trans = trans->transid;
1434 	return reloc_root;
1435 }
1436 
1437 /*
1438  * create reloc tree for a given fs tree. reloc tree is just a
1439  * snapshot of the fs tree with special root objectid.
1440  */
1441 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1442 			  struct btrfs_root *root)
1443 {
1444 	struct btrfs_root *reloc_root;
1445 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1446 	struct btrfs_block_rsv *rsv;
1447 	int clear_rsv = 0;
1448 	int ret;
1449 
1450 	if (root->reloc_root) {
1451 		reloc_root = root->reloc_root;
1452 		reloc_root->last_trans = trans->transid;
1453 		return 0;
1454 	}
1455 
1456 	if (!rc || !rc->create_reloc_tree ||
1457 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1458 		return 0;
1459 
1460 	if (!trans->reloc_reserved) {
1461 		rsv = trans->block_rsv;
1462 		trans->block_rsv = rc->block_rsv;
1463 		clear_rsv = 1;
1464 	}
1465 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1466 	if (clear_rsv)
1467 		trans->block_rsv = rsv;
1468 
1469 	ret = __add_reloc_root(reloc_root);
1470 	BUG_ON(ret < 0);
1471 	root->reloc_root = reloc_root;
1472 	return 0;
1473 }
1474 
1475 /*
1476  * update root item of reloc tree
1477  */
1478 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1479 			    struct btrfs_root *root)
1480 {
1481 	struct btrfs_root *reloc_root;
1482 	struct btrfs_root_item *root_item;
1483 	int ret;
1484 
1485 	if (!root->reloc_root)
1486 		goto out;
1487 
1488 	reloc_root = root->reloc_root;
1489 	root_item = &reloc_root->root_item;
1490 
1491 	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1492 	    btrfs_root_refs(root_item) == 0) {
1493 		root->reloc_root = NULL;
1494 		__del_reloc_root(reloc_root);
1495 	}
1496 
1497 	if (reloc_root->commit_root != reloc_root->node) {
1498 		btrfs_set_root_node(root_item, reloc_root->node);
1499 		free_extent_buffer(reloc_root->commit_root);
1500 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1501 	}
1502 
1503 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1504 				&reloc_root->root_key, root_item);
1505 	BUG_ON(ret);
1506 
1507 out:
1508 	return 0;
1509 }
1510 
1511 /*
1512  * helper to find first cached inode with inode number >= objectid
1513  * in a subvolume
1514  */
1515 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1516 {
1517 	struct rb_node *node;
1518 	struct rb_node *prev;
1519 	struct btrfs_inode *entry;
1520 	struct inode *inode;
1521 
1522 	spin_lock(&root->inode_lock);
1523 again:
1524 	node = root->inode_tree.rb_node;
1525 	prev = NULL;
1526 	while (node) {
1527 		prev = node;
1528 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1529 
1530 		if (objectid < btrfs_ino(&entry->vfs_inode))
1531 			node = node->rb_left;
1532 		else if (objectid > btrfs_ino(&entry->vfs_inode))
1533 			node = node->rb_right;
1534 		else
1535 			break;
1536 	}
1537 	if (!node) {
1538 		while (prev) {
1539 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1540 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1541 				node = prev;
1542 				break;
1543 			}
1544 			prev = rb_next(prev);
1545 		}
1546 	}
1547 	while (node) {
1548 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1549 		inode = igrab(&entry->vfs_inode);
1550 		if (inode) {
1551 			spin_unlock(&root->inode_lock);
1552 			return inode;
1553 		}
1554 
1555 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1556 		if (cond_resched_lock(&root->inode_lock))
1557 			goto again;
1558 
1559 		node = rb_next(node);
1560 	}
1561 	spin_unlock(&root->inode_lock);
1562 	return NULL;
1563 }
1564 
1565 static int in_block_group(u64 bytenr,
1566 			  struct btrfs_block_group_cache *block_group)
1567 {
1568 	if (bytenr >= block_group->key.objectid &&
1569 	    bytenr < block_group->key.objectid + block_group->key.offset)
1570 		return 1;
1571 	return 0;
1572 }
1573 
1574 /*
1575  * get new location of data
1576  */
1577 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1578 			    u64 bytenr, u64 num_bytes)
1579 {
1580 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1581 	struct btrfs_path *path;
1582 	struct btrfs_file_extent_item *fi;
1583 	struct extent_buffer *leaf;
1584 	int ret;
1585 
1586 	path = btrfs_alloc_path();
1587 	if (!path)
1588 		return -ENOMEM;
1589 
1590 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1591 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1592 				       bytenr, 0);
1593 	if (ret < 0)
1594 		goto out;
1595 	if (ret > 0) {
1596 		ret = -ENOENT;
1597 		goto out;
1598 	}
1599 
1600 	leaf = path->nodes[0];
1601 	fi = btrfs_item_ptr(leaf, path->slots[0],
1602 			    struct btrfs_file_extent_item);
1603 
1604 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1605 	       btrfs_file_extent_compression(leaf, fi) ||
1606 	       btrfs_file_extent_encryption(leaf, fi) ||
1607 	       btrfs_file_extent_other_encoding(leaf, fi));
1608 
1609 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1610 		ret = -EINVAL;
1611 		goto out;
1612 	}
1613 
1614 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1615 	ret = 0;
1616 out:
1617 	btrfs_free_path(path);
1618 	return ret;
1619 }
1620 
1621 /*
1622  * update file extent items in the tree leaf to point to
1623  * the new locations.
1624  */
1625 static noinline_for_stack
1626 int replace_file_extents(struct btrfs_trans_handle *trans,
1627 			 struct reloc_control *rc,
1628 			 struct btrfs_root *root,
1629 			 struct extent_buffer *leaf)
1630 {
1631 	struct btrfs_key key;
1632 	struct btrfs_file_extent_item *fi;
1633 	struct inode *inode = NULL;
1634 	u64 parent;
1635 	u64 bytenr;
1636 	u64 new_bytenr = 0;
1637 	u64 num_bytes;
1638 	u64 end;
1639 	u32 nritems;
1640 	u32 i;
1641 	int ret = 0;
1642 	int first = 1;
1643 	int dirty = 0;
1644 
1645 	if (rc->stage != UPDATE_DATA_PTRS)
1646 		return 0;
1647 
1648 	/* reloc trees always use full backref */
1649 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1650 		parent = leaf->start;
1651 	else
1652 		parent = 0;
1653 
1654 	nritems = btrfs_header_nritems(leaf);
1655 	for (i = 0; i < nritems; i++) {
1656 		cond_resched();
1657 		btrfs_item_key_to_cpu(leaf, &key, i);
1658 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1659 			continue;
1660 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1661 		if (btrfs_file_extent_type(leaf, fi) ==
1662 		    BTRFS_FILE_EXTENT_INLINE)
1663 			continue;
1664 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1665 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1666 		if (bytenr == 0)
1667 			continue;
1668 		if (!in_block_group(bytenr, rc->block_group))
1669 			continue;
1670 
1671 		/*
1672 		 * if we are modifying block in fs tree, wait for readpage
1673 		 * to complete and drop the extent cache
1674 		 */
1675 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1676 			if (first) {
1677 				inode = find_next_inode(root, key.objectid);
1678 				first = 0;
1679 			} else if (inode && btrfs_ino(inode) < key.objectid) {
1680 				btrfs_add_delayed_iput(inode);
1681 				inode = find_next_inode(root, key.objectid);
1682 			}
1683 			if (inode && btrfs_ino(inode) == key.objectid) {
1684 				end = key.offset +
1685 				      btrfs_file_extent_num_bytes(leaf, fi);
1686 				WARN_ON(!IS_ALIGNED(key.offset,
1687 						    root->sectorsize));
1688 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1689 				end--;
1690 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1691 						      key.offset, end);
1692 				if (!ret)
1693 					continue;
1694 
1695 				btrfs_drop_extent_cache(inode, key.offset, end,
1696 							1);
1697 				unlock_extent(&BTRFS_I(inode)->io_tree,
1698 					      key.offset, end);
1699 			}
1700 		}
1701 
1702 		ret = get_new_location(rc->data_inode, &new_bytenr,
1703 				       bytenr, num_bytes);
1704 		if (ret) {
1705 			/*
1706 			 * Don't have to abort since we've not changed anything
1707 			 * in the file extent yet.
1708 			 */
1709 			break;
1710 		}
1711 
1712 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1713 		dirty = 1;
1714 
1715 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1716 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1717 					   num_bytes, parent,
1718 					   btrfs_header_owner(leaf),
1719 					   key.objectid, key.offset, 1);
1720 		if (ret) {
1721 			btrfs_abort_transaction(trans, root, ret);
1722 			break;
1723 		}
1724 
1725 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1726 					parent, btrfs_header_owner(leaf),
1727 					key.objectid, key.offset, 1);
1728 		if (ret) {
1729 			btrfs_abort_transaction(trans, root, ret);
1730 			break;
1731 		}
1732 	}
1733 	if (dirty)
1734 		btrfs_mark_buffer_dirty(leaf);
1735 	if (inode)
1736 		btrfs_add_delayed_iput(inode);
1737 	return ret;
1738 }
1739 
1740 static noinline_for_stack
1741 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1742 		     struct btrfs_path *path, int level)
1743 {
1744 	struct btrfs_disk_key key1;
1745 	struct btrfs_disk_key key2;
1746 	btrfs_node_key(eb, &key1, slot);
1747 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1748 	return memcmp(&key1, &key2, sizeof(key1));
1749 }
1750 
1751 /*
1752  * try to replace tree blocks in fs tree with the new blocks
1753  * in reloc tree. tree blocks haven't been modified since the
1754  * reloc tree was create can be replaced.
1755  *
1756  * if a block was replaced, level of the block + 1 is returned.
1757  * if no block got replaced, 0 is returned. if there are other
1758  * errors, a negative error number is returned.
1759  */
1760 static noinline_for_stack
1761 int replace_path(struct btrfs_trans_handle *trans,
1762 		 struct btrfs_root *dest, struct btrfs_root *src,
1763 		 struct btrfs_path *path, struct btrfs_key *next_key,
1764 		 int lowest_level, int max_level)
1765 {
1766 	struct extent_buffer *eb;
1767 	struct extent_buffer *parent;
1768 	struct btrfs_key key;
1769 	u64 old_bytenr;
1770 	u64 new_bytenr;
1771 	u64 old_ptr_gen;
1772 	u64 new_ptr_gen;
1773 	u64 last_snapshot;
1774 	u32 blocksize;
1775 	int cow = 0;
1776 	int level;
1777 	int ret;
1778 	int slot;
1779 
1780 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1781 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1782 
1783 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1784 again:
1785 	slot = path->slots[lowest_level];
1786 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1787 
1788 	eb = btrfs_lock_root_node(dest);
1789 	btrfs_set_lock_blocking(eb);
1790 	level = btrfs_header_level(eb);
1791 
1792 	if (level < lowest_level) {
1793 		btrfs_tree_unlock(eb);
1794 		free_extent_buffer(eb);
1795 		return 0;
1796 	}
1797 
1798 	if (cow) {
1799 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1800 		BUG_ON(ret);
1801 	}
1802 	btrfs_set_lock_blocking(eb);
1803 
1804 	if (next_key) {
1805 		next_key->objectid = (u64)-1;
1806 		next_key->type = (u8)-1;
1807 		next_key->offset = (u64)-1;
1808 	}
1809 
1810 	parent = eb;
1811 	while (1) {
1812 		level = btrfs_header_level(parent);
1813 		BUG_ON(level < lowest_level);
1814 
1815 		ret = btrfs_bin_search(parent, &key, level, &slot);
1816 		if (ret && slot > 0)
1817 			slot--;
1818 
1819 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1820 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1821 
1822 		old_bytenr = btrfs_node_blockptr(parent, slot);
1823 		blocksize = dest->nodesize;
1824 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1825 
1826 		if (level <= max_level) {
1827 			eb = path->nodes[level];
1828 			new_bytenr = btrfs_node_blockptr(eb,
1829 							path->slots[level]);
1830 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1831 							path->slots[level]);
1832 		} else {
1833 			new_bytenr = 0;
1834 			new_ptr_gen = 0;
1835 		}
1836 
1837 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1838 			ret = level;
1839 			break;
1840 		}
1841 
1842 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1843 		    memcmp_node_keys(parent, slot, path, level)) {
1844 			if (level <= lowest_level) {
1845 				ret = 0;
1846 				break;
1847 			}
1848 
1849 			eb = read_tree_block(dest, old_bytenr, old_ptr_gen);
1850 			if (IS_ERR(eb)) {
1851 				ret = PTR_ERR(eb);
1852 			} else if (!extent_buffer_uptodate(eb)) {
1853 				ret = -EIO;
1854 				free_extent_buffer(eb);
1855 				break;
1856 			}
1857 			btrfs_tree_lock(eb);
1858 			if (cow) {
1859 				ret = btrfs_cow_block(trans, dest, eb, parent,
1860 						      slot, &eb);
1861 				BUG_ON(ret);
1862 			}
1863 			btrfs_set_lock_blocking(eb);
1864 
1865 			btrfs_tree_unlock(parent);
1866 			free_extent_buffer(parent);
1867 
1868 			parent = eb;
1869 			continue;
1870 		}
1871 
1872 		if (!cow) {
1873 			btrfs_tree_unlock(parent);
1874 			free_extent_buffer(parent);
1875 			cow = 1;
1876 			goto again;
1877 		}
1878 
1879 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1880 				      path->slots[level]);
1881 		btrfs_release_path(path);
1882 
1883 		path->lowest_level = level;
1884 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1885 		path->lowest_level = 0;
1886 		BUG_ON(ret);
1887 
1888 		/*
1889 		 * swap blocks in fs tree and reloc tree.
1890 		 */
1891 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1892 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1893 		btrfs_mark_buffer_dirty(parent);
1894 
1895 		btrfs_set_node_blockptr(path->nodes[level],
1896 					path->slots[level], old_bytenr);
1897 		btrfs_set_node_ptr_generation(path->nodes[level],
1898 					      path->slots[level], old_ptr_gen);
1899 		btrfs_mark_buffer_dirty(path->nodes[level]);
1900 
1901 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1902 					path->nodes[level]->start,
1903 					src->root_key.objectid, level - 1, 0,
1904 					1);
1905 		BUG_ON(ret);
1906 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1907 					0, dest->root_key.objectid, level - 1,
1908 					0, 1);
1909 		BUG_ON(ret);
1910 
1911 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1912 					path->nodes[level]->start,
1913 					src->root_key.objectid, level - 1, 0,
1914 					1);
1915 		BUG_ON(ret);
1916 
1917 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1918 					0, dest->root_key.objectid, level - 1,
1919 					0, 1);
1920 		BUG_ON(ret);
1921 
1922 		btrfs_unlock_up_safe(path, 0);
1923 
1924 		ret = level;
1925 		break;
1926 	}
1927 	btrfs_tree_unlock(parent);
1928 	free_extent_buffer(parent);
1929 	return ret;
1930 }
1931 
1932 /*
1933  * helper to find next relocated block in reloc tree
1934  */
1935 static noinline_for_stack
1936 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1937 		       int *level)
1938 {
1939 	struct extent_buffer *eb;
1940 	int i;
1941 	u64 last_snapshot;
1942 	u32 nritems;
1943 
1944 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1945 
1946 	for (i = 0; i < *level; i++) {
1947 		free_extent_buffer(path->nodes[i]);
1948 		path->nodes[i] = NULL;
1949 	}
1950 
1951 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1952 		eb = path->nodes[i];
1953 		nritems = btrfs_header_nritems(eb);
1954 		while (path->slots[i] + 1 < nritems) {
1955 			path->slots[i]++;
1956 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1957 			    last_snapshot)
1958 				continue;
1959 
1960 			*level = i;
1961 			return 0;
1962 		}
1963 		free_extent_buffer(path->nodes[i]);
1964 		path->nodes[i] = NULL;
1965 	}
1966 	return 1;
1967 }
1968 
1969 /*
1970  * walk down reloc tree to find relocated block of lowest level
1971  */
1972 static noinline_for_stack
1973 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1974 			 int *level)
1975 {
1976 	struct extent_buffer *eb = NULL;
1977 	int i;
1978 	u64 bytenr;
1979 	u64 ptr_gen = 0;
1980 	u64 last_snapshot;
1981 	u32 nritems;
1982 
1983 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1984 
1985 	for (i = *level; i > 0; i--) {
1986 		eb = path->nodes[i];
1987 		nritems = btrfs_header_nritems(eb);
1988 		while (path->slots[i] < nritems) {
1989 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1990 			if (ptr_gen > last_snapshot)
1991 				break;
1992 			path->slots[i]++;
1993 		}
1994 		if (path->slots[i] >= nritems) {
1995 			if (i == *level)
1996 				break;
1997 			*level = i + 1;
1998 			return 0;
1999 		}
2000 		if (i == 1) {
2001 			*level = i;
2002 			return 0;
2003 		}
2004 
2005 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2006 		eb = read_tree_block(root, bytenr, ptr_gen);
2007 		if (IS_ERR(eb)) {
2008 			return PTR_ERR(eb);
2009 		} else if (!extent_buffer_uptodate(eb)) {
2010 			free_extent_buffer(eb);
2011 			return -EIO;
2012 		}
2013 		BUG_ON(btrfs_header_level(eb) != i - 1);
2014 		path->nodes[i - 1] = eb;
2015 		path->slots[i - 1] = 0;
2016 	}
2017 	return 1;
2018 }
2019 
2020 /*
2021  * invalidate extent cache for file extents whose key in range of
2022  * [min_key, max_key)
2023  */
2024 static int invalidate_extent_cache(struct btrfs_root *root,
2025 				   struct btrfs_key *min_key,
2026 				   struct btrfs_key *max_key)
2027 {
2028 	struct inode *inode = NULL;
2029 	u64 objectid;
2030 	u64 start, end;
2031 	u64 ino;
2032 
2033 	objectid = min_key->objectid;
2034 	while (1) {
2035 		cond_resched();
2036 		iput(inode);
2037 
2038 		if (objectid > max_key->objectid)
2039 			break;
2040 
2041 		inode = find_next_inode(root, objectid);
2042 		if (!inode)
2043 			break;
2044 		ino = btrfs_ino(inode);
2045 
2046 		if (ino > max_key->objectid) {
2047 			iput(inode);
2048 			break;
2049 		}
2050 
2051 		objectid = ino + 1;
2052 		if (!S_ISREG(inode->i_mode))
2053 			continue;
2054 
2055 		if (unlikely(min_key->objectid == ino)) {
2056 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2057 				continue;
2058 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2059 				start = 0;
2060 			else {
2061 				start = min_key->offset;
2062 				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
2063 			}
2064 		} else {
2065 			start = 0;
2066 		}
2067 
2068 		if (unlikely(max_key->objectid == ino)) {
2069 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2070 				continue;
2071 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2072 				end = (u64)-1;
2073 			} else {
2074 				if (max_key->offset == 0)
2075 					continue;
2076 				end = max_key->offset;
2077 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
2078 				end--;
2079 			}
2080 		} else {
2081 			end = (u64)-1;
2082 		}
2083 
2084 		/* the lock_extent waits for readpage to complete */
2085 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2086 		btrfs_drop_extent_cache(inode, start, end, 1);
2087 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2088 	}
2089 	return 0;
2090 }
2091 
2092 static int find_next_key(struct btrfs_path *path, int level,
2093 			 struct btrfs_key *key)
2094 
2095 {
2096 	while (level < BTRFS_MAX_LEVEL) {
2097 		if (!path->nodes[level])
2098 			break;
2099 		if (path->slots[level] + 1 <
2100 		    btrfs_header_nritems(path->nodes[level])) {
2101 			btrfs_node_key_to_cpu(path->nodes[level], key,
2102 					      path->slots[level] + 1);
2103 			return 0;
2104 		}
2105 		level++;
2106 	}
2107 	return 1;
2108 }
2109 
2110 /*
2111  * merge the relocated tree blocks in reloc tree with corresponding
2112  * fs tree.
2113  */
2114 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2115 					       struct btrfs_root *root)
2116 {
2117 	LIST_HEAD(inode_list);
2118 	struct btrfs_key key;
2119 	struct btrfs_key next_key;
2120 	struct btrfs_trans_handle *trans = NULL;
2121 	struct btrfs_root *reloc_root;
2122 	struct btrfs_root_item *root_item;
2123 	struct btrfs_path *path;
2124 	struct extent_buffer *leaf;
2125 	int level;
2126 	int max_level;
2127 	int replaced = 0;
2128 	int ret;
2129 	int err = 0;
2130 	u32 min_reserved;
2131 
2132 	path = btrfs_alloc_path();
2133 	if (!path)
2134 		return -ENOMEM;
2135 	path->reada = 1;
2136 
2137 	reloc_root = root->reloc_root;
2138 	root_item = &reloc_root->root_item;
2139 
2140 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2141 		level = btrfs_root_level(root_item);
2142 		extent_buffer_get(reloc_root->node);
2143 		path->nodes[level] = reloc_root->node;
2144 		path->slots[level] = 0;
2145 	} else {
2146 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2147 
2148 		level = root_item->drop_level;
2149 		BUG_ON(level == 0);
2150 		path->lowest_level = level;
2151 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2152 		path->lowest_level = 0;
2153 		if (ret < 0) {
2154 			btrfs_free_path(path);
2155 			return ret;
2156 		}
2157 
2158 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2159 				      path->slots[level]);
2160 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2161 
2162 		btrfs_unlock_up_safe(path, 0);
2163 	}
2164 
2165 	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2166 	memset(&next_key, 0, sizeof(next_key));
2167 
2168 	while (1) {
2169 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2170 					     BTRFS_RESERVE_FLUSH_ALL);
2171 		if (ret) {
2172 			err = ret;
2173 			goto out;
2174 		}
2175 		trans = btrfs_start_transaction(root, 0);
2176 		if (IS_ERR(trans)) {
2177 			err = PTR_ERR(trans);
2178 			trans = NULL;
2179 			goto out;
2180 		}
2181 		trans->block_rsv = rc->block_rsv;
2182 
2183 		replaced = 0;
2184 		max_level = level;
2185 
2186 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2187 		if (ret < 0) {
2188 			err = ret;
2189 			goto out;
2190 		}
2191 		if (ret > 0)
2192 			break;
2193 
2194 		if (!find_next_key(path, level, &key) &&
2195 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2196 			ret = 0;
2197 		} else {
2198 			ret = replace_path(trans, root, reloc_root, path,
2199 					   &next_key, level, max_level);
2200 		}
2201 		if (ret < 0) {
2202 			err = ret;
2203 			goto out;
2204 		}
2205 
2206 		if (ret > 0) {
2207 			level = ret;
2208 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2209 					      path->slots[level]);
2210 			replaced = 1;
2211 		}
2212 
2213 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2214 		if (ret > 0)
2215 			break;
2216 
2217 		BUG_ON(level == 0);
2218 		/*
2219 		 * save the merging progress in the drop_progress.
2220 		 * this is OK since root refs == 1 in this case.
2221 		 */
2222 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2223 			       path->slots[level]);
2224 		root_item->drop_level = level;
2225 
2226 		btrfs_end_transaction_throttle(trans, root);
2227 		trans = NULL;
2228 
2229 		btrfs_btree_balance_dirty(root);
2230 
2231 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2232 			invalidate_extent_cache(root, &key, &next_key);
2233 	}
2234 
2235 	/*
2236 	 * handle the case only one block in the fs tree need to be
2237 	 * relocated and the block is tree root.
2238 	 */
2239 	leaf = btrfs_lock_root_node(root);
2240 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2241 	btrfs_tree_unlock(leaf);
2242 	free_extent_buffer(leaf);
2243 	if (ret < 0)
2244 		err = ret;
2245 out:
2246 	btrfs_free_path(path);
2247 
2248 	if (err == 0) {
2249 		memset(&root_item->drop_progress, 0,
2250 		       sizeof(root_item->drop_progress));
2251 		root_item->drop_level = 0;
2252 		btrfs_set_root_refs(root_item, 0);
2253 		btrfs_update_reloc_root(trans, root);
2254 	}
2255 
2256 	if (trans)
2257 		btrfs_end_transaction_throttle(trans, root);
2258 
2259 	btrfs_btree_balance_dirty(root);
2260 
2261 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2262 		invalidate_extent_cache(root, &key, &next_key);
2263 
2264 	return err;
2265 }
2266 
2267 static noinline_for_stack
2268 int prepare_to_merge(struct reloc_control *rc, int err)
2269 {
2270 	struct btrfs_root *root = rc->extent_root;
2271 	struct btrfs_root *reloc_root;
2272 	struct btrfs_trans_handle *trans;
2273 	LIST_HEAD(reloc_roots);
2274 	u64 num_bytes = 0;
2275 	int ret;
2276 
2277 	mutex_lock(&root->fs_info->reloc_mutex);
2278 	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2279 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2280 	mutex_unlock(&root->fs_info->reloc_mutex);
2281 
2282 again:
2283 	if (!err) {
2284 		num_bytes = rc->merging_rsv_size;
2285 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2286 					  BTRFS_RESERVE_FLUSH_ALL);
2287 		if (ret)
2288 			err = ret;
2289 	}
2290 
2291 	trans = btrfs_join_transaction(rc->extent_root);
2292 	if (IS_ERR(trans)) {
2293 		if (!err)
2294 			btrfs_block_rsv_release(rc->extent_root,
2295 						rc->block_rsv, num_bytes);
2296 		return PTR_ERR(trans);
2297 	}
2298 
2299 	if (!err) {
2300 		if (num_bytes != rc->merging_rsv_size) {
2301 			btrfs_end_transaction(trans, rc->extent_root);
2302 			btrfs_block_rsv_release(rc->extent_root,
2303 						rc->block_rsv, num_bytes);
2304 			goto again;
2305 		}
2306 	}
2307 
2308 	rc->merge_reloc_tree = 1;
2309 
2310 	while (!list_empty(&rc->reloc_roots)) {
2311 		reloc_root = list_entry(rc->reloc_roots.next,
2312 					struct btrfs_root, root_list);
2313 		list_del_init(&reloc_root->root_list);
2314 
2315 		root = read_fs_root(reloc_root->fs_info,
2316 				    reloc_root->root_key.offset);
2317 		BUG_ON(IS_ERR(root));
2318 		BUG_ON(root->reloc_root != reloc_root);
2319 
2320 		/*
2321 		 * set reference count to 1, so btrfs_recover_relocation
2322 		 * knows it should resumes merging
2323 		 */
2324 		if (!err)
2325 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2326 		btrfs_update_reloc_root(trans, root);
2327 
2328 		list_add(&reloc_root->root_list, &reloc_roots);
2329 	}
2330 
2331 	list_splice(&reloc_roots, &rc->reloc_roots);
2332 
2333 	if (!err)
2334 		btrfs_commit_transaction(trans, rc->extent_root);
2335 	else
2336 		btrfs_end_transaction(trans, rc->extent_root);
2337 	return err;
2338 }
2339 
2340 static noinline_for_stack
2341 void free_reloc_roots(struct list_head *list)
2342 {
2343 	struct btrfs_root *reloc_root;
2344 
2345 	while (!list_empty(list)) {
2346 		reloc_root = list_entry(list->next, struct btrfs_root,
2347 					root_list);
2348 		__del_reloc_root(reloc_root);
2349 	}
2350 }
2351 
2352 static noinline_for_stack
2353 void merge_reloc_roots(struct reloc_control *rc)
2354 {
2355 	struct btrfs_root *root;
2356 	struct btrfs_root *reloc_root;
2357 	u64 last_snap;
2358 	u64 otransid;
2359 	u64 objectid;
2360 	LIST_HEAD(reloc_roots);
2361 	int found = 0;
2362 	int ret = 0;
2363 again:
2364 	root = rc->extent_root;
2365 
2366 	/*
2367 	 * this serializes us with btrfs_record_root_in_transaction,
2368 	 * we have to make sure nobody is in the middle of
2369 	 * adding their roots to the list while we are
2370 	 * doing this splice
2371 	 */
2372 	mutex_lock(&root->fs_info->reloc_mutex);
2373 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2374 	mutex_unlock(&root->fs_info->reloc_mutex);
2375 
2376 	while (!list_empty(&reloc_roots)) {
2377 		found = 1;
2378 		reloc_root = list_entry(reloc_roots.next,
2379 					struct btrfs_root, root_list);
2380 
2381 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2382 			root = read_fs_root(reloc_root->fs_info,
2383 					    reloc_root->root_key.offset);
2384 			BUG_ON(IS_ERR(root));
2385 			BUG_ON(root->reloc_root != reloc_root);
2386 
2387 			ret = merge_reloc_root(rc, root);
2388 			if (ret) {
2389 				if (list_empty(&reloc_root->root_list))
2390 					list_add_tail(&reloc_root->root_list,
2391 						      &reloc_roots);
2392 				goto out;
2393 			}
2394 		} else {
2395 			list_del_init(&reloc_root->root_list);
2396 		}
2397 
2398 		/*
2399 		 * we keep the old last snapshod transid in rtranid when we
2400 		 * created the relocation tree.
2401 		 */
2402 		last_snap = btrfs_root_rtransid(&reloc_root->root_item);
2403 		otransid = btrfs_root_otransid(&reloc_root->root_item);
2404 		objectid = reloc_root->root_key.offset;
2405 
2406 		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2407 		if (ret < 0) {
2408 			if (list_empty(&reloc_root->root_list))
2409 				list_add_tail(&reloc_root->root_list,
2410 					      &reloc_roots);
2411 			goto out;
2412 		}
2413 	}
2414 
2415 	if (found) {
2416 		found = 0;
2417 		goto again;
2418 	}
2419 out:
2420 	if (ret) {
2421 		btrfs_std_error(root->fs_info, ret);
2422 		if (!list_empty(&reloc_roots))
2423 			free_reloc_roots(&reloc_roots);
2424 
2425 		/* new reloc root may be added */
2426 		mutex_lock(&root->fs_info->reloc_mutex);
2427 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2428 		mutex_unlock(&root->fs_info->reloc_mutex);
2429 		if (!list_empty(&reloc_roots))
2430 			free_reloc_roots(&reloc_roots);
2431 	}
2432 
2433 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2434 }
2435 
2436 static void free_block_list(struct rb_root *blocks)
2437 {
2438 	struct tree_block *block;
2439 	struct rb_node *rb_node;
2440 	while ((rb_node = rb_first(blocks))) {
2441 		block = rb_entry(rb_node, struct tree_block, rb_node);
2442 		rb_erase(rb_node, blocks);
2443 		kfree(block);
2444 	}
2445 }
2446 
2447 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2448 				      struct btrfs_root *reloc_root)
2449 {
2450 	struct btrfs_root *root;
2451 
2452 	if (reloc_root->last_trans == trans->transid)
2453 		return 0;
2454 
2455 	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2456 	BUG_ON(IS_ERR(root));
2457 	BUG_ON(root->reloc_root != reloc_root);
2458 
2459 	return btrfs_record_root_in_trans(trans, root);
2460 }
2461 
2462 static noinline_for_stack
2463 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2464 				     struct reloc_control *rc,
2465 				     struct backref_node *node,
2466 				     struct backref_edge *edges[])
2467 {
2468 	struct backref_node *next;
2469 	struct btrfs_root *root;
2470 	int index = 0;
2471 
2472 	next = node;
2473 	while (1) {
2474 		cond_resched();
2475 		next = walk_up_backref(next, edges, &index);
2476 		root = next->root;
2477 		BUG_ON(!root);
2478 		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2479 
2480 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2481 			record_reloc_root_in_trans(trans, root);
2482 			break;
2483 		}
2484 
2485 		btrfs_record_root_in_trans(trans, root);
2486 		root = root->reloc_root;
2487 
2488 		if (next->new_bytenr != root->node->start) {
2489 			BUG_ON(next->new_bytenr);
2490 			BUG_ON(!list_empty(&next->list));
2491 			next->new_bytenr = root->node->start;
2492 			next->root = root;
2493 			list_add_tail(&next->list,
2494 				      &rc->backref_cache.changed);
2495 			__mark_block_processed(rc, next);
2496 			break;
2497 		}
2498 
2499 		WARN_ON(1);
2500 		root = NULL;
2501 		next = walk_down_backref(edges, &index);
2502 		if (!next || next->level <= node->level)
2503 			break;
2504 	}
2505 	if (!root)
2506 		return NULL;
2507 
2508 	next = node;
2509 	/* setup backref node path for btrfs_reloc_cow_block */
2510 	while (1) {
2511 		rc->backref_cache.path[next->level] = next;
2512 		if (--index < 0)
2513 			break;
2514 		next = edges[index]->node[UPPER];
2515 	}
2516 	return root;
2517 }
2518 
2519 /*
2520  * select a tree root for relocation. return NULL if the block
2521  * is reference counted. we should use do_relocation() in this
2522  * case. return a tree root pointer if the block isn't reference
2523  * counted. return -ENOENT if the block is root of reloc tree.
2524  */
2525 static noinline_for_stack
2526 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2527 				   struct backref_node *node)
2528 {
2529 	struct backref_node *next;
2530 	struct btrfs_root *root;
2531 	struct btrfs_root *fs_root = NULL;
2532 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2533 	int index = 0;
2534 
2535 	next = node;
2536 	while (1) {
2537 		cond_resched();
2538 		next = walk_up_backref(next, edges, &index);
2539 		root = next->root;
2540 		BUG_ON(!root);
2541 
2542 		/* no other choice for non-references counted tree */
2543 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2544 			return root;
2545 
2546 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2547 			fs_root = root;
2548 
2549 		if (next != node)
2550 			return NULL;
2551 
2552 		next = walk_down_backref(edges, &index);
2553 		if (!next || next->level <= node->level)
2554 			break;
2555 	}
2556 
2557 	if (!fs_root)
2558 		return ERR_PTR(-ENOENT);
2559 	return fs_root;
2560 }
2561 
2562 static noinline_for_stack
2563 u64 calcu_metadata_size(struct reloc_control *rc,
2564 			struct backref_node *node, int reserve)
2565 {
2566 	struct backref_node *next = node;
2567 	struct backref_edge *edge;
2568 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2569 	u64 num_bytes = 0;
2570 	int index = 0;
2571 
2572 	BUG_ON(reserve && node->processed);
2573 
2574 	while (next) {
2575 		cond_resched();
2576 		while (1) {
2577 			if (next->processed && (reserve || next != node))
2578 				break;
2579 
2580 			num_bytes += rc->extent_root->nodesize;
2581 
2582 			if (list_empty(&next->upper))
2583 				break;
2584 
2585 			edge = list_entry(next->upper.next,
2586 					  struct backref_edge, list[LOWER]);
2587 			edges[index++] = edge;
2588 			next = edge->node[UPPER];
2589 		}
2590 		next = walk_down_backref(edges, &index);
2591 	}
2592 	return num_bytes;
2593 }
2594 
2595 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2596 				  struct reloc_control *rc,
2597 				  struct backref_node *node)
2598 {
2599 	struct btrfs_root *root = rc->extent_root;
2600 	u64 num_bytes;
2601 	int ret;
2602 	u64 tmp;
2603 
2604 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2605 
2606 	trans->block_rsv = rc->block_rsv;
2607 	rc->reserved_bytes += num_bytes;
2608 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2609 				BTRFS_RESERVE_FLUSH_ALL);
2610 	if (ret) {
2611 		if (ret == -EAGAIN) {
2612 			tmp = rc->extent_root->nodesize *
2613 				RELOCATION_RESERVED_NODES;
2614 			while (tmp <= rc->reserved_bytes)
2615 				tmp <<= 1;
2616 			/*
2617 			 * only one thread can access block_rsv at this point,
2618 			 * so we don't need hold lock to protect block_rsv.
2619 			 * we expand more reservation size here to allow enough
2620 			 * space for relocation and we will return eailer in
2621 			 * enospc case.
2622 			 */
2623 			rc->block_rsv->size = tmp + rc->extent_root->nodesize *
2624 					      RELOCATION_RESERVED_NODES;
2625 		}
2626 		return ret;
2627 	}
2628 
2629 	return 0;
2630 }
2631 
2632 /*
2633  * relocate a block tree, and then update pointers in upper level
2634  * blocks that reference the block to point to the new location.
2635  *
2636  * if called by link_to_upper, the block has already been relocated.
2637  * in that case this function just updates pointers.
2638  */
2639 static int do_relocation(struct btrfs_trans_handle *trans,
2640 			 struct reloc_control *rc,
2641 			 struct backref_node *node,
2642 			 struct btrfs_key *key,
2643 			 struct btrfs_path *path, int lowest)
2644 {
2645 	struct backref_node *upper;
2646 	struct backref_edge *edge;
2647 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2648 	struct btrfs_root *root;
2649 	struct extent_buffer *eb;
2650 	u32 blocksize;
2651 	u64 bytenr;
2652 	u64 generation;
2653 	int slot;
2654 	int ret;
2655 	int err = 0;
2656 
2657 	BUG_ON(lowest && node->eb);
2658 
2659 	path->lowest_level = node->level + 1;
2660 	rc->backref_cache.path[node->level] = node;
2661 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2662 		cond_resched();
2663 
2664 		upper = edge->node[UPPER];
2665 		root = select_reloc_root(trans, rc, upper, edges);
2666 		BUG_ON(!root);
2667 
2668 		if (upper->eb && !upper->locked) {
2669 			if (!lowest) {
2670 				ret = btrfs_bin_search(upper->eb, key,
2671 						       upper->level, &slot);
2672 				BUG_ON(ret);
2673 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2674 				if (node->eb->start == bytenr)
2675 					goto next;
2676 			}
2677 			drop_node_buffer(upper);
2678 		}
2679 
2680 		if (!upper->eb) {
2681 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2682 			if (ret < 0) {
2683 				err = ret;
2684 				break;
2685 			}
2686 			BUG_ON(ret > 0);
2687 
2688 			if (!upper->eb) {
2689 				upper->eb = path->nodes[upper->level];
2690 				path->nodes[upper->level] = NULL;
2691 			} else {
2692 				BUG_ON(upper->eb != path->nodes[upper->level]);
2693 			}
2694 
2695 			upper->locked = 1;
2696 			path->locks[upper->level] = 0;
2697 
2698 			slot = path->slots[upper->level];
2699 			btrfs_release_path(path);
2700 		} else {
2701 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2702 					       &slot);
2703 			BUG_ON(ret);
2704 		}
2705 
2706 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2707 		if (lowest) {
2708 			BUG_ON(bytenr != node->bytenr);
2709 		} else {
2710 			if (node->eb->start == bytenr)
2711 				goto next;
2712 		}
2713 
2714 		blocksize = root->nodesize;
2715 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2716 		eb = read_tree_block(root, bytenr, generation);
2717 		if (IS_ERR(eb)) {
2718 			err = PTR_ERR(eb);
2719 			goto next;
2720 		} else if (!extent_buffer_uptodate(eb)) {
2721 			free_extent_buffer(eb);
2722 			err = -EIO;
2723 			goto next;
2724 		}
2725 		btrfs_tree_lock(eb);
2726 		btrfs_set_lock_blocking(eb);
2727 
2728 		if (!node->eb) {
2729 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2730 					      slot, &eb);
2731 			btrfs_tree_unlock(eb);
2732 			free_extent_buffer(eb);
2733 			if (ret < 0) {
2734 				err = ret;
2735 				goto next;
2736 			}
2737 			BUG_ON(node->eb != eb);
2738 		} else {
2739 			btrfs_set_node_blockptr(upper->eb, slot,
2740 						node->eb->start);
2741 			btrfs_set_node_ptr_generation(upper->eb, slot,
2742 						      trans->transid);
2743 			btrfs_mark_buffer_dirty(upper->eb);
2744 
2745 			ret = btrfs_inc_extent_ref(trans, root,
2746 						node->eb->start, blocksize,
2747 						upper->eb->start,
2748 						btrfs_header_owner(upper->eb),
2749 						node->level, 0, 1);
2750 			BUG_ON(ret);
2751 
2752 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2753 			BUG_ON(ret);
2754 		}
2755 next:
2756 		if (!upper->pending)
2757 			drop_node_buffer(upper);
2758 		else
2759 			unlock_node_buffer(upper);
2760 		if (err)
2761 			break;
2762 	}
2763 
2764 	if (!err && node->pending) {
2765 		drop_node_buffer(node);
2766 		list_move_tail(&node->list, &rc->backref_cache.changed);
2767 		node->pending = 0;
2768 	}
2769 
2770 	path->lowest_level = 0;
2771 	BUG_ON(err == -ENOSPC);
2772 	return err;
2773 }
2774 
2775 static int link_to_upper(struct btrfs_trans_handle *trans,
2776 			 struct reloc_control *rc,
2777 			 struct backref_node *node,
2778 			 struct btrfs_path *path)
2779 {
2780 	struct btrfs_key key;
2781 
2782 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2783 	return do_relocation(trans, rc, node, &key, path, 0);
2784 }
2785 
2786 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2787 				struct reloc_control *rc,
2788 				struct btrfs_path *path, int err)
2789 {
2790 	LIST_HEAD(list);
2791 	struct backref_cache *cache = &rc->backref_cache;
2792 	struct backref_node *node;
2793 	int level;
2794 	int ret;
2795 
2796 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2797 		while (!list_empty(&cache->pending[level])) {
2798 			node = list_entry(cache->pending[level].next,
2799 					  struct backref_node, list);
2800 			list_move_tail(&node->list, &list);
2801 			BUG_ON(!node->pending);
2802 
2803 			if (!err) {
2804 				ret = link_to_upper(trans, rc, node, path);
2805 				if (ret < 0)
2806 					err = ret;
2807 			}
2808 		}
2809 		list_splice_init(&list, &cache->pending[level]);
2810 	}
2811 	return err;
2812 }
2813 
2814 static void mark_block_processed(struct reloc_control *rc,
2815 				 u64 bytenr, u32 blocksize)
2816 {
2817 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2818 			EXTENT_DIRTY, GFP_NOFS);
2819 }
2820 
2821 static void __mark_block_processed(struct reloc_control *rc,
2822 				   struct backref_node *node)
2823 {
2824 	u32 blocksize;
2825 	if (node->level == 0 ||
2826 	    in_block_group(node->bytenr, rc->block_group)) {
2827 		blocksize = rc->extent_root->nodesize;
2828 		mark_block_processed(rc, node->bytenr, blocksize);
2829 	}
2830 	node->processed = 1;
2831 }
2832 
2833 /*
2834  * mark a block and all blocks directly/indirectly reference the block
2835  * as processed.
2836  */
2837 static void update_processed_blocks(struct reloc_control *rc,
2838 				    struct backref_node *node)
2839 {
2840 	struct backref_node *next = node;
2841 	struct backref_edge *edge;
2842 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2843 	int index = 0;
2844 
2845 	while (next) {
2846 		cond_resched();
2847 		while (1) {
2848 			if (next->processed)
2849 				break;
2850 
2851 			__mark_block_processed(rc, next);
2852 
2853 			if (list_empty(&next->upper))
2854 				break;
2855 
2856 			edge = list_entry(next->upper.next,
2857 					  struct backref_edge, list[LOWER]);
2858 			edges[index++] = edge;
2859 			next = edge->node[UPPER];
2860 		}
2861 		next = walk_down_backref(edges, &index);
2862 	}
2863 }
2864 
2865 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2866 {
2867 	u32 blocksize = rc->extent_root->nodesize;
2868 
2869 	if (test_range_bit(&rc->processed_blocks, bytenr,
2870 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2871 		return 1;
2872 	return 0;
2873 }
2874 
2875 static int get_tree_block_key(struct reloc_control *rc,
2876 			      struct tree_block *block)
2877 {
2878 	struct extent_buffer *eb;
2879 
2880 	BUG_ON(block->key_ready);
2881 	eb = read_tree_block(rc->extent_root, block->bytenr,
2882 			     block->key.offset);
2883 	if (IS_ERR(eb)) {
2884 		return PTR_ERR(eb);
2885 	} else if (!extent_buffer_uptodate(eb)) {
2886 		free_extent_buffer(eb);
2887 		return -EIO;
2888 	}
2889 	WARN_ON(btrfs_header_level(eb) != block->level);
2890 	if (block->level == 0)
2891 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2892 	else
2893 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2894 	free_extent_buffer(eb);
2895 	block->key_ready = 1;
2896 	return 0;
2897 }
2898 
2899 /*
2900  * helper function to relocate a tree block
2901  */
2902 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2903 				struct reloc_control *rc,
2904 				struct backref_node *node,
2905 				struct btrfs_key *key,
2906 				struct btrfs_path *path)
2907 {
2908 	struct btrfs_root *root;
2909 	int ret = 0;
2910 
2911 	if (!node)
2912 		return 0;
2913 
2914 	BUG_ON(node->processed);
2915 	root = select_one_root(trans, node);
2916 	if (root == ERR_PTR(-ENOENT)) {
2917 		update_processed_blocks(rc, node);
2918 		goto out;
2919 	}
2920 
2921 	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2922 		ret = reserve_metadata_space(trans, rc, node);
2923 		if (ret)
2924 			goto out;
2925 	}
2926 
2927 	if (root) {
2928 		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2929 			BUG_ON(node->new_bytenr);
2930 			BUG_ON(!list_empty(&node->list));
2931 			btrfs_record_root_in_trans(trans, root);
2932 			root = root->reloc_root;
2933 			node->new_bytenr = root->node->start;
2934 			node->root = root;
2935 			list_add_tail(&node->list, &rc->backref_cache.changed);
2936 		} else {
2937 			path->lowest_level = node->level;
2938 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2939 			btrfs_release_path(path);
2940 			if (ret > 0)
2941 				ret = 0;
2942 		}
2943 		if (!ret)
2944 			update_processed_blocks(rc, node);
2945 	} else {
2946 		ret = do_relocation(trans, rc, node, key, path, 1);
2947 	}
2948 out:
2949 	if (ret || node->level == 0 || node->cowonly)
2950 		remove_backref_node(&rc->backref_cache, node);
2951 	return ret;
2952 }
2953 
2954 /*
2955  * relocate a list of blocks
2956  */
2957 static noinline_for_stack
2958 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2959 			 struct reloc_control *rc, struct rb_root *blocks)
2960 {
2961 	struct backref_node *node;
2962 	struct btrfs_path *path;
2963 	struct tree_block *block;
2964 	struct rb_node *rb_node;
2965 	int ret;
2966 	int err = 0;
2967 
2968 	path = btrfs_alloc_path();
2969 	if (!path) {
2970 		err = -ENOMEM;
2971 		goto out_free_blocks;
2972 	}
2973 
2974 	rb_node = rb_first(blocks);
2975 	while (rb_node) {
2976 		block = rb_entry(rb_node, struct tree_block, rb_node);
2977 		if (!block->key_ready)
2978 			readahead_tree_block(rc->extent_root, block->bytenr);
2979 		rb_node = rb_next(rb_node);
2980 	}
2981 
2982 	rb_node = rb_first(blocks);
2983 	while (rb_node) {
2984 		block = rb_entry(rb_node, struct tree_block, rb_node);
2985 		if (!block->key_ready) {
2986 			err = get_tree_block_key(rc, block);
2987 			if (err)
2988 				goto out_free_path;
2989 		}
2990 		rb_node = rb_next(rb_node);
2991 	}
2992 
2993 	rb_node = rb_first(blocks);
2994 	while (rb_node) {
2995 		block = rb_entry(rb_node, struct tree_block, rb_node);
2996 
2997 		node = build_backref_tree(rc, &block->key,
2998 					  block->level, block->bytenr);
2999 		if (IS_ERR(node)) {
3000 			err = PTR_ERR(node);
3001 			goto out;
3002 		}
3003 
3004 		ret = relocate_tree_block(trans, rc, node, &block->key,
3005 					  path);
3006 		if (ret < 0) {
3007 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
3008 				err = ret;
3009 			goto out;
3010 		}
3011 		rb_node = rb_next(rb_node);
3012 	}
3013 out:
3014 	err = finish_pending_nodes(trans, rc, path, err);
3015 
3016 out_free_path:
3017 	btrfs_free_path(path);
3018 out_free_blocks:
3019 	free_block_list(blocks);
3020 	return err;
3021 }
3022 
3023 static noinline_for_stack
3024 int prealloc_file_extent_cluster(struct inode *inode,
3025 				 struct file_extent_cluster *cluster)
3026 {
3027 	u64 alloc_hint = 0;
3028 	u64 start;
3029 	u64 end;
3030 	u64 offset = BTRFS_I(inode)->index_cnt;
3031 	u64 num_bytes;
3032 	int nr = 0;
3033 	int ret = 0;
3034 
3035 	BUG_ON(cluster->start != cluster->boundary[0]);
3036 	mutex_lock(&inode->i_mutex);
3037 
3038 	ret = btrfs_check_data_free_space(inode, cluster->end +
3039 					  1 - cluster->start, 0);
3040 	if (ret)
3041 		goto out;
3042 
3043 	while (nr < cluster->nr) {
3044 		start = cluster->boundary[nr] - offset;
3045 		if (nr + 1 < cluster->nr)
3046 			end = cluster->boundary[nr + 1] - 1 - offset;
3047 		else
3048 			end = cluster->end - offset;
3049 
3050 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3051 		num_bytes = end + 1 - start;
3052 		ret = btrfs_prealloc_file_range(inode, 0, start,
3053 						num_bytes, num_bytes,
3054 						end + 1, &alloc_hint);
3055 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3056 		if (ret)
3057 			break;
3058 		nr++;
3059 	}
3060 	btrfs_free_reserved_data_space(inode, cluster->end +
3061 				       1 - cluster->start);
3062 out:
3063 	mutex_unlock(&inode->i_mutex);
3064 	return ret;
3065 }
3066 
3067 static noinline_for_stack
3068 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3069 			 u64 block_start)
3070 {
3071 	struct btrfs_root *root = BTRFS_I(inode)->root;
3072 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3073 	struct extent_map *em;
3074 	int ret = 0;
3075 
3076 	em = alloc_extent_map();
3077 	if (!em)
3078 		return -ENOMEM;
3079 
3080 	em->start = start;
3081 	em->len = end + 1 - start;
3082 	em->block_len = em->len;
3083 	em->block_start = block_start;
3084 	em->bdev = root->fs_info->fs_devices->latest_bdev;
3085 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3086 
3087 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3088 	while (1) {
3089 		write_lock(&em_tree->lock);
3090 		ret = add_extent_mapping(em_tree, em, 0);
3091 		write_unlock(&em_tree->lock);
3092 		if (ret != -EEXIST) {
3093 			free_extent_map(em);
3094 			break;
3095 		}
3096 		btrfs_drop_extent_cache(inode, start, end, 0);
3097 	}
3098 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3099 	return ret;
3100 }
3101 
3102 static int relocate_file_extent_cluster(struct inode *inode,
3103 					struct file_extent_cluster *cluster)
3104 {
3105 	u64 page_start;
3106 	u64 page_end;
3107 	u64 offset = BTRFS_I(inode)->index_cnt;
3108 	unsigned long index;
3109 	unsigned long last_index;
3110 	struct page *page;
3111 	struct file_ra_state *ra;
3112 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3113 	int nr = 0;
3114 	int ret = 0;
3115 
3116 	if (!cluster->nr)
3117 		return 0;
3118 
3119 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3120 	if (!ra)
3121 		return -ENOMEM;
3122 
3123 	ret = prealloc_file_extent_cluster(inode, cluster);
3124 	if (ret)
3125 		goto out;
3126 
3127 	file_ra_state_init(ra, inode->i_mapping);
3128 
3129 	ret = setup_extent_mapping(inode, cluster->start - offset,
3130 				   cluster->end - offset, cluster->start);
3131 	if (ret)
3132 		goto out;
3133 
3134 	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
3135 	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
3136 	while (index <= last_index) {
3137 		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
3138 		if (ret)
3139 			goto out;
3140 
3141 		page = find_lock_page(inode->i_mapping, index);
3142 		if (!page) {
3143 			page_cache_sync_readahead(inode->i_mapping,
3144 						  ra, NULL, index,
3145 						  last_index + 1 - index);
3146 			page = find_or_create_page(inode->i_mapping, index,
3147 						   mask);
3148 			if (!page) {
3149 				btrfs_delalloc_release_metadata(inode,
3150 							PAGE_CACHE_SIZE);
3151 				ret = -ENOMEM;
3152 				goto out;
3153 			}
3154 		}
3155 
3156 		if (PageReadahead(page)) {
3157 			page_cache_async_readahead(inode->i_mapping,
3158 						   ra, NULL, page, index,
3159 						   last_index + 1 - index);
3160 		}
3161 
3162 		if (!PageUptodate(page)) {
3163 			btrfs_readpage(NULL, page);
3164 			lock_page(page);
3165 			if (!PageUptodate(page)) {
3166 				unlock_page(page);
3167 				page_cache_release(page);
3168 				btrfs_delalloc_release_metadata(inode,
3169 							PAGE_CACHE_SIZE);
3170 				ret = -EIO;
3171 				goto out;
3172 			}
3173 		}
3174 
3175 		page_start = page_offset(page);
3176 		page_end = page_start + PAGE_CACHE_SIZE - 1;
3177 
3178 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3179 
3180 		set_page_extent_mapped(page);
3181 
3182 		if (nr < cluster->nr &&
3183 		    page_start + offset == cluster->boundary[nr]) {
3184 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3185 					page_start, page_end,
3186 					EXTENT_BOUNDARY, GFP_NOFS);
3187 			nr++;
3188 		}
3189 
3190 		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3191 		set_page_dirty(page);
3192 
3193 		unlock_extent(&BTRFS_I(inode)->io_tree,
3194 			      page_start, page_end);
3195 		unlock_page(page);
3196 		page_cache_release(page);
3197 
3198 		index++;
3199 		balance_dirty_pages_ratelimited(inode->i_mapping);
3200 		btrfs_throttle(BTRFS_I(inode)->root);
3201 	}
3202 	WARN_ON(nr != cluster->nr);
3203 out:
3204 	kfree(ra);
3205 	return ret;
3206 }
3207 
3208 static noinline_for_stack
3209 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3210 			 struct file_extent_cluster *cluster)
3211 {
3212 	int ret;
3213 
3214 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3215 		ret = relocate_file_extent_cluster(inode, cluster);
3216 		if (ret)
3217 			return ret;
3218 		cluster->nr = 0;
3219 	}
3220 
3221 	if (!cluster->nr)
3222 		cluster->start = extent_key->objectid;
3223 	else
3224 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3225 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3226 	cluster->boundary[cluster->nr] = extent_key->objectid;
3227 	cluster->nr++;
3228 
3229 	if (cluster->nr >= MAX_EXTENTS) {
3230 		ret = relocate_file_extent_cluster(inode, cluster);
3231 		if (ret)
3232 			return ret;
3233 		cluster->nr = 0;
3234 	}
3235 	return 0;
3236 }
3237 
3238 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3239 static int get_ref_objectid_v0(struct reloc_control *rc,
3240 			       struct btrfs_path *path,
3241 			       struct btrfs_key *extent_key,
3242 			       u64 *ref_objectid, int *path_change)
3243 {
3244 	struct btrfs_key key;
3245 	struct extent_buffer *leaf;
3246 	struct btrfs_extent_ref_v0 *ref0;
3247 	int ret;
3248 	int slot;
3249 
3250 	leaf = path->nodes[0];
3251 	slot = path->slots[0];
3252 	while (1) {
3253 		if (slot >= btrfs_header_nritems(leaf)) {
3254 			ret = btrfs_next_leaf(rc->extent_root, path);
3255 			if (ret < 0)
3256 				return ret;
3257 			BUG_ON(ret > 0);
3258 			leaf = path->nodes[0];
3259 			slot = path->slots[0];
3260 			if (path_change)
3261 				*path_change = 1;
3262 		}
3263 		btrfs_item_key_to_cpu(leaf, &key, slot);
3264 		if (key.objectid != extent_key->objectid)
3265 			return -ENOENT;
3266 
3267 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3268 			slot++;
3269 			continue;
3270 		}
3271 		ref0 = btrfs_item_ptr(leaf, slot,
3272 				struct btrfs_extent_ref_v0);
3273 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3274 		break;
3275 	}
3276 	return 0;
3277 }
3278 #endif
3279 
3280 /*
3281  * helper to add a tree block to the list.
3282  * the major work is getting the generation and level of the block
3283  */
3284 static int add_tree_block(struct reloc_control *rc,
3285 			  struct btrfs_key *extent_key,
3286 			  struct btrfs_path *path,
3287 			  struct rb_root *blocks)
3288 {
3289 	struct extent_buffer *eb;
3290 	struct btrfs_extent_item *ei;
3291 	struct btrfs_tree_block_info *bi;
3292 	struct tree_block *block;
3293 	struct rb_node *rb_node;
3294 	u32 item_size;
3295 	int level = -1;
3296 	u64 generation;
3297 
3298 	eb =  path->nodes[0];
3299 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3300 
3301 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3302 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3303 		ei = btrfs_item_ptr(eb, path->slots[0],
3304 				struct btrfs_extent_item);
3305 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3306 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3307 			level = btrfs_tree_block_level(eb, bi);
3308 		} else {
3309 			level = (int)extent_key->offset;
3310 		}
3311 		generation = btrfs_extent_generation(eb, ei);
3312 	} else {
3313 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3314 		u64 ref_owner;
3315 		int ret;
3316 
3317 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3318 		ret = get_ref_objectid_v0(rc, path, extent_key,
3319 					  &ref_owner, NULL);
3320 		if (ret < 0)
3321 			return ret;
3322 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3323 		level = (int)ref_owner;
3324 		/* FIXME: get real generation */
3325 		generation = 0;
3326 #else
3327 		BUG();
3328 #endif
3329 	}
3330 
3331 	btrfs_release_path(path);
3332 
3333 	BUG_ON(level == -1);
3334 
3335 	block = kmalloc(sizeof(*block), GFP_NOFS);
3336 	if (!block)
3337 		return -ENOMEM;
3338 
3339 	block->bytenr = extent_key->objectid;
3340 	block->key.objectid = rc->extent_root->nodesize;
3341 	block->key.offset = generation;
3342 	block->level = level;
3343 	block->key_ready = 0;
3344 
3345 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3346 	if (rb_node)
3347 		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3348 
3349 	return 0;
3350 }
3351 
3352 /*
3353  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3354  */
3355 static int __add_tree_block(struct reloc_control *rc,
3356 			    u64 bytenr, u32 blocksize,
3357 			    struct rb_root *blocks)
3358 {
3359 	struct btrfs_path *path;
3360 	struct btrfs_key key;
3361 	int ret;
3362 	bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info,
3363 					SKINNY_METADATA);
3364 
3365 	if (tree_block_processed(bytenr, rc))
3366 		return 0;
3367 
3368 	if (tree_search(blocks, bytenr))
3369 		return 0;
3370 
3371 	path = btrfs_alloc_path();
3372 	if (!path)
3373 		return -ENOMEM;
3374 again:
3375 	key.objectid = bytenr;
3376 	if (skinny) {
3377 		key.type = BTRFS_METADATA_ITEM_KEY;
3378 		key.offset = (u64)-1;
3379 	} else {
3380 		key.type = BTRFS_EXTENT_ITEM_KEY;
3381 		key.offset = blocksize;
3382 	}
3383 
3384 	path->search_commit_root = 1;
3385 	path->skip_locking = 1;
3386 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3387 	if (ret < 0)
3388 		goto out;
3389 
3390 	if (ret > 0 && skinny) {
3391 		if (path->slots[0]) {
3392 			path->slots[0]--;
3393 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3394 					      path->slots[0]);
3395 			if (key.objectid == bytenr &&
3396 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3397 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3398 			      key.offset == blocksize)))
3399 				ret = 0;
3400 		}
3401 
3402 		if (ret) {
3403 			skinny = false;
3404 			btrfs_release_path(path);
3405 			goto again;
3406 		}
3407 	}
3408 	BUG_ON(ret);
3409 
3410 	ret = add_tree_block(rc, &key, path, blocks);
3411 out:
3412 	btrfs_free_path(path);
3413 	return ret;
3414 }
3415 
3416 /*
3417  * helper to check if the block use full backrefs for pointers in it
3418  */
3419 static int block_use_full_backref(struct reloc_control *rc,
3420 				  struct extent_buffer *eb)
3421 {
3422 	u64 flags;
3423 	int ret;
3424 
3425 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3426 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3427 		return 1;
3428 
3429 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3430 				       eb->start, btrfs_header_level(eb), 1,
3431 				       NULL, &flags);
3432 	BUG_ON(ret);
3433 
3434 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3435 		ret = 1;
3436 	else
3437 		ret = 0;
3438 	return ret;
3439 }
3440 
3441 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3442 				    struct btrfs_block_group_cache *block_group,
3443 				    struct inode *inode,
3444 				    u64 ino)
3445 {
3446 	struct btrfs_key key;
3447 	struct btrfs_root *root = fs_info->tree_root;
3448 	struct btrfs_trans_handle *trans;
3449 	int ret = 0;
3450 
3451 	if (inode)
3452 		goto truncate;
3453 
3454 	key.objectid = ino;
3455 	key.type = BTRFS_INODE_ITEM_KEY;
3456 	key.offset = 0;
3457 
3458 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3459 	if (IS_ERR(inode) || is_bad_inode(inode)) {
3460 		if (!IS_ERR(inode))
3461 			iput(inode);
3462 		return -ENOENT;
3463 	}
3464 
3465 truncate:
3466 	ret = btrfs_check_trunc_cache_free_space(root,
3467 						 &fs_info->global_block_rsv);
3468 	if (ret)
3469 		goto out;
3470 
3471 	trans = btrfs_join_transaction(root);
3472 	if (IS_ERR(trans)) {
3473 		ret = PTR_ERR(trans);
3474 		goto out;
3475 	}
3476 
3477 	ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode);
3478 
3479 	btrfs_end_transaction(trans, root);
3480 	btrfs_btree_balance_dirty(root);
3481 out:
3482 	iput(inode);
3483 	return ret;
3484 }
3485 
3486 /*
3487  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3488  * this function scans fs tree to find blocks reference the data extent
3489  */
3490 static int find_data_references(struct reloc_control *rc,
3491 				struct btrfs_key *extent_key,
3492 				struct extent_buffer *leaf,
3493 				struct btrfs_extent_data_ref *ref,
3494 				struct rb_root *blocks)
3495 {
3496 	struct btrfs_path *path;
3497 	struct tree_block *block;
3498 	struct btrfs_root *root;
3499 	struct btrfs_file_extent_item *fi;
3500 	struct rb_node *rb_node;
3501 	struct btrfs_key key;
3502 	u64 ref_root;
3503 	u64 ref_objectid;
3504 	u64 ref_offset;
3505 	u32 ref_count;
3506 	u32 nritems;
3507 	int err = 0;
3508 	int added = 0;
3509 	int counted;
3510 	int ret;
3511 
3512 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3513 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3514 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3515 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3516 
3517 	/*
3518 	 * This is an extent belonging to the free space cache, lets just delete
3519 	 * it and redo the search.
3520 	 */
3521 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3522 		ret = delete_block_group_cache(rc->extent_root->fs_info,
3523 					       rc->block_group,
3524 					       NULL, ref_objectid);
3525 		if (ret != -ENOENT)
3526 			return ret;
3527 		ret = 0;
3528 	}
3529 
3530 	path = btrfs_alloc_path();
3531 	if (!path)
3532 		return -ENOMEM;
3533 	path->reada = 1;
3534 
3535 	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3536 	if (IS_ERR(root)) {
3537 		err = PTR_ERR(root);
3538 		goto out;
3539 	}
3540 
3541 	key.objectid = ref_objectid;
3542 	key.type = BTRFS_EXTENT_DATA_KEY;
3543 	if (ref_offset > ((u64)-1 << 32))
3544 		key.offset = 0;
3545 	else
3546 		key.offset = ref_offset;
3547 
3548 	path->search_commit_root = 1;
3549 	path->skip_locking = 1;
3550 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3551 	if (ret < 0) {
3552 		err = ret;
3553 		goto out;
3554 	}
3555 
3556 	leaf = path->nodes[0];
3557 	nritems = btrfs_header_nritems(leaf);
3558 	/*
3559 	 * the references in tree blocks that use full backrefs
3560 	 * are not counted in
3561 	 */
3562 	if (block_use_full_backref(rc, leaf))
3563 		counted = 0;
3564 	else
3565 		counted = 1;
3566 	rb_node = tree_search(blocks, leaf->start);
3567 	if (rb_node) {
3568 		if (counted)
3569 			added = 1;
3570 		else
3571 			path->slots[0] = nritems;
3572 	}
3573 
3574 	while (ref_count > 0) {
3575 		while (path->slots[0] >= nritems) {
3576 			ret = btrfs_next_leaf(root, path);
3577 			if (ret < 0) {
3578 				err = ret;
3579 				goto out;
3580 			}
3581 			if (WARN_ON(ret > 0))
3582 				goto out;
3583 
3584 			leaf = path->nodes[0];
3585 			nritems = btrfs_header_nritems(leaf);
3586 			added = 0;
3587 
3588 			if (block_use_full_backref(rc, leaf))
3589 				counted = 0;
3590 			else
3591 				counted = 1;
3592 			rb_node = tree_search(blocks, leaf->start);
3593 			if (rb_node) {
3594 				if (counted)
3595 					added = 1;
3596 				else
3597 					path->slots[0] = nritems;
3598 			}
3599 		}
3600 
3601 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3602 		if (WARN_ON(key.objectid != ref_objectid ||
3603 		    key.type != BTRFS_EXTENT_DATA_KEY))
3604 			break;
3605 
3606 		fi = btrfs_item_ptr(leaf, path->slots[0],
3607 				    struct btrfs_file_extent_item);
3608 
3609 		if (btrfs_file_extent_type(leaf, fi) ==
3610 		    BTRFS_FILE_EXTENT_INLINE)
3611 			goto next;
3612 
3613 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3614 		    extent_key->objectid)
3615 			goto next;
3616 
3617 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3618 		if (key.offset != ref_offset)
3619 			goto next;
3620 
3621 		if (counted)
3622 			ref_count--;
3623 		if (added)
3624 			goto next;
3625 
3626 		if (!tree_block_processed(leaf->start, rc)) {
3627 			block = kmalloc(sizeof(*block), GFP_NOFS);
3628 			if (!block) {
3629 				err = -ENOMEM;
3630 				break;
3631 			}
3632 			block->bytenr = leaf->start;
3633 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3634 			block->level = 0;
3635 			block->key_ready = 1;
3636 			rb_node = tree_insert(blocks, block->bytenr,
3637 					      &block->rb_node);
3638 			if (rb_node)
3639 				backref_tree_panic(rb_node, -EEXIST,
3640 						   block->bytenr);
3641 		}
3642 		if (counted)
3643 			added = 1;
3644 		else
3645 			path->slots[0] = nritems;
3646 next:
3647 		path->slots[0]++;
3648 
3649 	}
3650 out:
3651 	btrfs_free_path(path);
3652 	return err;
3653 }
3654 
3655 /*
3656  * helper to find all tree blocks that reference a given data extent
3657  */
3658 static noinline_for_stack
3659 int add_data_references(struct reloc_control *rc,
3660 			struct btrfs_key *extent_key,
3661 			struct btrfs_path *path,
3662 			struct rb_root *blocks)
3663 {
3664 	struct btrfs_key key;
3665 	struct extent_buffer *eb;
3666 	struct btrfs_extent_data_ref *dref;
3667 	struct btrfs_extent_inline_ref *iref;
3668 	unsigned long ptr;
3669 	unsigned long end;
3670 	u32 blocksize = rc->extent_root->nodesize;
3671 	int ret = 0;
3672 	int err = 0;
3673 
3674 	eb = path->nodes[0];
3675 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3676 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3677 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3678 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3679 		ptr = end;
3680 	else
3681 #endif
3682 		ptr += sizeof(struct btrfs_extent_item);
3683 
3684 	while (ptr < end) {
3685 		iref = (struct btrfs_extent_inline_ref *)ptr;
3686 		key.type = btrfs_extent_inline_ref_type(eb, iref);
3687 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3688 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3689 			ret = __add_tree_block(rc, key.offset, blocksize,
3690 					       blocks);
3691 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3692 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3693 			ret = find_data_references(rc, extent_key,
3694 						   eb, dref, blocks);
3695 		} else {
3696 			BUG();
3697 		}
3698 		if (ret) {
3699 			err = ret;
3700 			goto out;
3701 		}
3702 		ptr += btrfs_extent_inline_ref_size(key.type);
3703 	}
3704 	WARN_ON(ptr > end);
3705 
3706 	while (1) {
3707 		cond_resched();
3708 		eb = path->nodes[0];
3709 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3710 			ret = btrfs_next_leaf(rc->extent_root, path);
3711 			if (ret < 0) {
3712 				err = ret;
3713 				break;
3714 			}
3715 			if (ret > 0)
3716 				break;
3717 			eb = path->nodes[0];
3718 		}
3719 
3720 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3721 		if (key.objectid != extent_key->objectid)
3722 			break;
3723 
3724 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3725 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3726 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3727 #else
3728 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3729 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3730 #endif
3731 			ret = __add_tree_block(rc, key.offset, blocksize,
3732 					       blocks);
3733 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3734 			dref = btrfs_item_ptr(eb, path->slots[0],
3735 					      struct btrfs_extent_data_ref);
3736 			ret = find_data_references(rc, extent_key,
3737 						   eb, dref, blocks);
3738 		} else {
3739 			ret = 0;
3740 		}
3741 		if (ret) {
3742 			err = ret;
3743 			break;
3744 		}
3745 		path->slots[0]++;
3746 	}
3747 out:
3748 	btrfs_release_path(path);
3749 	if (err)
3750 		free_block_list(blocks);
3751 	return err;
3752 }
3753 
3754 /*
3755  * helper to find next unprocessed extent
3756  */
3757 static noinline_for_stack
3758 int find_next_extent(struct btrfs_trans_handle *trans,
3759 		     struct reloc_control *rc, struct btrfs_path *path,
3760 		     struct btrfs_key *extent_key)
3761 {
3762 	struct btrfs_key key;
3763 	struct extent_buffer *leaf;
3764 	u64 start, end, last;
3765 	int ret;
3766 
3767 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3768 	while (1) {
3769 		cond_resched();
3770 		if (rc->search_start >= last) {
3771 			ret = 1;
3772 			break;
3773 		}
3774 
3775 		key.objectid = rc->search_start;
3776 		key.type = BTRFS_EXTENT_ITEM_KEY;
3777 		key.offset = 0;
3778 
3779 		path->search_commit_root = 1;
3780 		path->skip_locking = 1;
3781 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3782 					0, 0);
3783 		if (ret < 0)
3784 			break;
3785 next:
3786 		leaf = path->nodes[0];
3787 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3788 			ret = btrfs_next_leaf(rc->extent_root, path);
3789 			if (ret != 0)
3790 				break;
3791 			leaf = path->nodes[0];
3792 		}
3793 
3794 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3795 		if (key.objectid >= last) {
3796 			ret = 1;
3797 			break;
3798 		}
3799 
3800 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3801 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3802 			path->slots[0]++;
3803 			goto next;
3804 		}
3805 
3806 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3807 		    key.objectid + key.offset <= rc->search_start) {
3808 			path->slots[0]++;
3809 			goto next;
3810 		}
3811 
3812 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3813 		    key.objectid + rc->extent_root->nodesize <=
3814 		    rc->search_start) {
3815 			path->slots[0]++;
3816 			goto next;
3817 		}
3818 
3819 		ret = find_first_extent_bit(&rc->processed_blocks,
3820 					    key.objectid, &start, &end,
3821 					    EXTENT_DIRTY, NULL);
3822 
3823 		if (ret == 0 && start <= key.objectid) {
3824 			btrfs_release_path(path);
3825 			rc->search_start = end + 1;
3826 		} else {
3827 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3828 				rc->search_start = key.objectid + key.offset;
3829 			else
3830 				rc->search_start = key.objectid +
3831 					rc->extent_root->nodesize;
3832 			memcpy(extent_key, &key, sizeof(key));
3833 			return 0;
3834 		}
3835 	}
3836 	btrfs_release_path(path);
3837 	return ret;
3838 }
3839 
3840 static void set_reloc_control(struct reloc_control *rc)
3841 {
3842 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3843 
3844 	mutex_lock(&fs_info->reloc_mutex);
3845 	fs_info->reloc_ctl = rc;
3846 	mutex_unlock(&fs_info->reloc_mutex);
3847 }
3848 
3849 static void unset_reloc_control(struct reloc_control *rc)
3850 {
3851 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3852 
3853 	mutex_lock(&fs_info->reloc_mutex);
3854 	fs_info->reloc_ctl = NULL;
3855 	mutex_unlock(&fs_info->reloc_mutex);
3856 }
3857 
3858 static int check_extent_flags(u64 flags)
3859 {
3860 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3861 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3862 		return 1;
3863 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3864 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3865 		return 1;
3866 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3867 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3868 		return 1;
3869 	return 0;
3870 }
3871 
3872 static noinline_for_stack
3873 int prepare_to_relocate(struct reloc_control *rc)
3874 {
3875 	struct btrfs_trans_handle *trans;
3876 
3877 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root,
3878 					      BTRFS_BLOCK_RSV_TEMP);
3879 	if (!rc->block_rsv)
3880 		return -ENOMEM;
3881 
3882 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3883 	rc->search_start = rc->block_group->key.objectid;
3884 	rc->extents_found = 0;
3885 	rc->nodes_relocated = 0;
3886 	rc->merging_rsv_size = 0;
3887 	rc->reserved_bytes = 0;
3888 	rc->block_rsv->size = rc->extent_root->nodesize *
3889 			      RELOCATION_RESERVED_NODES;
3890 
3891 	rc->create_reloc_tree = 1;
3892 	set_reloc_control(rc);
3893 
3894 	trans = btrfs_join_transaction(rc->extent_root);
3895 	if (IS_ERR(trans)) {
3896 		unset_reloc_control(rc);
3897 		/*
3898 		 * extent tree is not a ref_cow tree and has no reloc_root to
3899 		 * cleanup.  And callers are responsible to free the above
3900 		 * block rsv.
3901 		 */
3902 		return PTR_ERR(trans);
3903 	}
3904 	btrfs_commit_transaction(trans, rc->extent_root);
3905 	return 0;
3906 }
3907 
3908 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3909 {
3910 	struct rb_root blocks = RB_ROOT;
3911 	struct btrfs_key key;
3912 	struct btrfs_trans_handle *trans = NULL;
3913 	struct btrfs_path *path;
3914 	struct btrfs_extent_item *ei;
3915 	u64 flags;
3916 	u32 item_size;
3917 	int ret;
3918 	int err = 0;
3919 	int progress = 0;
3920 
3921 	path = btrfs_alloc_path();
3922 	if (!path)
3923 		return -ENOMEM;
3924 	path->reada = 1;
3925 
3926 	ret = prepare_to_relocate(rc);
3927 	if (ret) {
3928 		err = ret;
3929 		goto out_free;
3930 	}
3931 
3932 	while (1) {
3933 		rc->reserved_bytes = 0;
3934 		ret = btrfs_block_rsv_refill(rc->extent_root,
3935 					rc->block_rsv, rc->block_rsv->size,
3936 					BTRFS_RESERVE_FLUSH_ALL);
3937 		if (ret) {
3938 			err = ret;
3939 			break;
3940 		}
3941 		progress++;
3942 		trans = btrfs_start_transaction(rc->extent_root, 0);
3943 		if (IS_ERR(trans)) {
3944 			err = PTR_ERR(trans);
3945 			trans = NULL;
3946 			break;
3947 		}
3948 restart:
3949 		if (update_backref_cache(trans, &rc->backref_cache)) {
3950 			btrfs_end_transaction(trans, rc->extent_root);
3951 			continue;
3952 		}
3953 
3954 		ret = find_next_extent(trans, rc, path, &key);
3955 		if (ret < 0)
3956 			err = ret;
3957 		if (ret != 0)
3958 			break;
3959 
3960 		rc->extents_found++;
3961 
3962 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3963 				    struct btrfs_extent_item);
3964 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3965 		if (item_size >= sizeof(*ei)) {
3966 			flags = btrfs_extent_flags(path->nodes[0], ei);
3967 			ret = check_extent_flags(flags);
3968 			BUG_ON(ret);
3969 
3970 		} else {
3971 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3972 			u64 ref_owner;
3973 			int path_change = 0;
3974 
3975 			BUG_ON(item_size !=
3976 			       sizeof(struct btrfs_extent_item_v0));
3977 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3978 						  &path_change);
3979 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3980 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3981 			else
3982 				flags = BTRFS_EXTENT_FLAG_DATA;
3983 
3984 			if (path_change) {
3985 				btrfs_release_path(path);
3986 
3987 				path->search_commit_root = 1;
3988 				path->skip_locking = 1;
3989 				ret = btrfs_search_slot(NULL, rc->extent_root,
3990 							&key, path, 0, 0);
3991 				if (ret < 0) {
3992 					err = ret;
3993 					break;
3994 				}
3995 				BUG_ON(ret > 0);
3996 			}
3997 #else
3998 			BUG();
3999 #endif
4000 		}
4001 
4002 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4003 			ret = add_tree_block(rc, &key, path, &blocks);
4004 		} else if (rc->stage == UPDATE_DATA_PTRS &&
4005 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4006 			ret = add_data_references(rc, &key, path, &blocks);
4007 		} else {
4008 			btrfs_release_path(path);
4009 			ret = 0;
4010 		}
4011 		if (ret < 0) {
4012 			err = ret;
4013 			break;
4014 		}
4015 
4016 		if (!RB_EMPTY_ROOT(&blocks)) {
4017 			ret = relocate_tree_blocks(trans, rc, &blocks);
4018 			if (ret < 0) {
4019 				/*
4020 				 * if we fail to relocate tree blocks, force to update
4021 				 * backref cache when committing transaction.
4022 				 */
4023 				rc->backref_cache.last_trans = trans->transid - 1;
4024 
4025 				if (ret != -EAGAIN) {
4026 					err = ret;
4027 					break;
4028 				}
4029 				rc->extents_found--;
4030 				rc->search_start = key.objectid;
4031 			}
4032 		}
4033 
4034 		btrfs_end_transaction_throttle(trans, rc->extent_root);
4035 		btrfs_btree_balance_dirty(rc->extent_root);
4036 		trans = NULL;
4037 
4038 		if (rc->stage == MOVE_DATA_EXTENTS &&
4039 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4040 			rc->found_file_extent = 1;
4041 			ret = relocate_data_extent(rc->data_inode,
4042 						   &key, &rc->cluster);
4043 			if (ret < 0) {
4044 				err = ret;
4045 				break;
4046 			}
4047 		}
4048 	}
4049 	if (trans && progress && err == -ENOSPC) {
4050 		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
4051 					      rc->block_group->flags);
4052 		if (ret == 1) {
4053 			err = 0;
4054 			progress = 0;
4055 			goto restart;
4056 		}
4057 	}
4058 
4059 	btrfs_release_path(path);
4060 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
4061 			  GFP_NOFS);
4062 
4063 	if (trans) {
4064 		btrfs_end_transaction_throttle(trans, rc->extent_root);
4065 		btrfs_btree_balance_dirty(rc->extent_root);
4066 	}
4067 
4068 	if (!err) {
4069 		ret = relocate_file_extent_cluster(rc->data_inode,
4070 						   &rc->cluster);
4071 		if (ret < 0)
4072 			err = ret;
4073 	}
4074 
4075 	rc->create_reloc_tree = 0;
4076 	set_reloc_control(rc);
4077 
4078 	backref_cache_cleanup(&rc->backref_cache);
4079 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4080 
4081 	err = prepare_to_merge(rc, err);
4082 
4083 	merge_reloc_roots(rc);
4084 
4085 	rc->merge_reloc_tree = 0;
4086 	unset_reloc_control(rc);
4087 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4088 
4089 	/* get rid of pinned extents */
4090 	trans = btrfs_join_transaction(rc->extent_root);
4091 	if (IS_ERR(trans))
4092 		err = PTR_ERR(trans);
4093 	else
4094 		btrfs_commit_transaction(trans, rc->extent_root);
4095 out_free:
4096 	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
4097 	btrfs_free_path(path);
4098 	return err;
4099 }
4100 
4101 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4102 				 struct btrfs_root *root, u64 objectid)
4103 {
4104 	struct btrfs_path *path;
4105 	struct btrfs_inode_item *item;
4106 	struct extent_buffer *leaf;
4107 	int ret;
4108 
4109 	path = btrfs_alloc_path();
4110 	if (!path)
4111 		return -ENOMEM;
4112 
4113 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4114 	if (ret)
4115 		goto out;
4116 
4117 	leaf = path->nodes[0];
4118 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4119 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
4120 	btrfs_set_inode_generation(leaf, item, 1);
4121 	btrfs_set_inode_size(leaf, item, 0);
4122 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4123 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4124 					  BTRFS_INODE_PREALLOC);
4125 	btrfs_mark_buffer_dirty(leaf);
4126 out:
4127 	btrfs_free_path(path);
4128 	return ret;
4129 }
4130 
4131 /*
4132  * helper to create inode for data relocation.
4133  * the inode is in data relocation tree and its link count is 0
4134  */
4135 static noinline_for_stack
4136 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4137 				 struct btrfs_block_group_cache *group)
4138 {
4139 	struct inode *inode = NULL;
4140 	struct btrfs_trans_handle *trans;
4141 	struct btrfs_root *root;
4142 	struct btrfs_key key;
4143 	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
4144 	int err = 0;
4145 
4146 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4147 	if (IS_ERR(root))
4148 		return ERR_CAST(root);
4149 
4150 	trans = btrfs_start_transaction(root, 6);
4151 	if (IS_ERR(trans))
4152 		return ERR_CAST(trans);
4153 
4154 	err = btrfs_find_free_objectid(root, &objectid);
4155 	if (err)
4156 		goto out;
4157 
4158 	err = __insert_orphan_inode(trans, root, objectid);
4159 	BUG_ON(err);
4160 
4161 	key.objectid = objectid;
4162 	key.type = BTRFS_INODE_ITEM_KEY;
4163 	key.offset = 0;
4164 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
4165 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4166 	BTRFS_I(inode)->index_cnt = group->key.objectid;
4167 
4168 	err = btrfs_orphan_add(trans, inode);
4169 out:
4170 	btrfs_end_transaction(trans, root);
4171 	btrfs_btree_balance_dirty(root);
4172 	if (err) {
4173 		if (inode)
4174 			iput(inode);
4175 		inode = ERR_PTR(err);
4176 	}
4177 	return inode;
4178 }
4179 
4180 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4181 {
4182 	struct reloc_control *rc;
4183 
4184 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4185 	if (!rc)
4186 		return NULL;
4187 
4188 	INIT_LIST_HEAD(&rc->reloc_roots);
4189 	backref_cache_init(&rc->backref_cache);
4190 	mapping_tree_init(&rc->reloc_root_tree);
4191 	extent_io_tree_init(&rc->processed_blocks,
4192 			    fs_info->btree_inode->i_mapping);
4193 	return rc;
4194 }
4195 
4196 /*
4197  * function to relocate all extents in a block group.
4198  */
4199 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
4200 {
4201 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4202 	struct reloc_control *rc;
4203 	struct inode *inode;
4204 	struct btrfs_path *path;
4205 	int ret;
4206 	int rw = 0;
4207 	int err = 0;
4208 
4209 	rc = alloc_reloc_control(fs_info);
4210 	if (!rc)
4211 		return -ENOMEM;
4212 
4213 	rc->extent_root = extent_root;
4214 
4215 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4216 	BUG_ON(!rc->block_group);
4217 
4218 	if (!rc->block_group->ro) {
4219 		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
4220 		if (ret) {
4221 			err = ret;
4222 			goto out;
4223 		}
4224 		rw = 1;
4225 	}
4226 
4227 	path = btrfs_alloc_path();
4228 	if (!path) {
4229 		err = -ENOMEM;
4230 		goto out;
4231 	}
4232 
4233 	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4234 					path);
4235 	btrfs_free_path(path);
4236 
4237 	if (!IS_ERR(inode))
4238 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4239 	else
4240 		ret = PTR_ERR(inode);
4241 
4242 	if (ret && ret != -ENOENT) {
4243 		err = ret;
4244 		goto out;
4245 	}
4246 
4247 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4248 	if (IS_ERR(rc->data_inode)) {
4249 		err = PTR_ERR(rc->data_inode);
4250 		rc->data_inode = NULL;
4251 		goto out;
4252 	}
4253 
4254 	btrfs_info(extent_root->fs_info, "relocating block group %llu flags %llu",
4255 	       rc->block_group->key.objectid, rc->block_group->flags);
4256 
4257 	ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
4258 	if (ret < 0) {
4259 		err = ret;
4260 		goto out;
4261 	}
4262 	btrfs_wait_ordered_roots(fs_info, -1);
4263 
4264 	while (1) {
4265 		mutex_lock(&fs_info->cleaner_mutex);
4266 		ret = relocate_block_group(rc);
4267 		mutex_unlock(&fs_info->cleaner_mutex);
4268 		if (ret < 0) {
4269 			err = ret;
4270 			goto out;
4271 		}
4272 
4273 		if (rc->extents_found == 0)
4274 			break;
4275 
4276 		btrfs_info(extent_root->fs_info, "found %llu extents",
4277 			rc->extents_found);
4278 
4279 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4280 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4281 						       (u64)-1);
4282 			if (ret) {
4283 				err = ret;
4284 				goto out;
4285 			}
4286 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4287 						 0, -1);
4288 			rc->stage = UPDATE_DATA_PTRS;
4289 		}
4290 	}
4291 
4292 	WARN_ON(rc->block_group->pinned > 0);
4293 	WARN_ON(rc->block_group->reserved > 0);
4294 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4295 out:
4296 	if (err && rw)
4297 		btrfs_set_block_group_rw(extent_root, rc->block_group);
4298 	iput(rc->data_inode);
4299 	btrfs_put_block_group(rc->block_group);
4300 	kfree(rc);
4301 	return err;
4302 }
4303 
4304 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4305 {
4306 	struct btrfs_trans_handle *trans;
4307 	int ret, err;
4308 
4309 	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4310 	if (IS_ERR(trans))
4311 		return PTR_ERR(trans);
4312 
4313 	memset(&root->root_item.drop_progress, 0,
4314 		sizeof(root->root_item.drop_progress));
4315 	root->root_item.drop_level = 0;
4316 	btrfs_set_root_refs(&root->root_item, 0);
4317 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4318 				&root->root_key, &root->root_item);
4319 
4320 	err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4321 	if (err)
4322 		return err;
4323 	return ret;
4324 }
4325 
4326 /*
4327  * recover relocation interrupted by system crash.
4328  *
4329  * this function resumes merging reloc trees with corresponding fs trees.
4330  * this is important for keeping the sharing of tree blocks
4331  */
4332 int btrfs_recover_relocation(struct btrfs_root *root)
4333 {
4334 	LIST_HEAD(reloc_roots);
4335 	struct btrfs_key key;
4336 	struct btrfs_root *fs_root;
4337 	struct btrfs_root *reloc_root;
4338 	struct btrfs_path *path;
4339 	struct extent_buffer *leaf;
4340 	struct reloc_control *rc = NULL;
4341 	struct btrfs_trans_handle *trans;
4342 	int ret;
4343 	int err = 0;
4344 
4345 	path = btrfs_alloc_path();
4346 	if (!path)
4347 		return -ENOMEM;
4348 	path->reada = -1;
4349 
4350 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4351 	key.type = BTRFS_ROOT_ITEM_KEY;
4352 	key.offset = (u64)-1;
4353 
4354 	while (1) {
4355 		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4356 					path, 0, 0);
4357 		if (ret < 0) {
4358 			err = ret;
4359 			goto out;
4360 		}
4361 		if (ret > 0) {
4362 			if (path->slots[0] == 0)
4363 				break;
4364 			path->slots[0]--;
4365 		}
4366 		leaf = path->nodes[0];
4367 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4368 		btrfs_release_path(path);
4369 
4370 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4371 		    key.type != BTRFS_ROOT_ITEM_KEY)
4372 			break;
4373 
4374 		reloc_root = btrfs_read_fs_root(root, &key);
4375 		if (IS_ERR(reloc_root)) {
4376 			err = PTR_ERR(reloc_root);
4377 			goto out;
4378 		}
4379 
4380 		list_add(&reloc_root->root_list, &reloc_roots);
4381 
4382 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4383 			fs_root = read_fs_root(root->fs_info,
4384 					       reloc_root->root_key.offset);
4385 			if (IS_ERR(fs_root)) {
4386 				ret = PTR_ERR(fs_root);
4387 				if (ret != -ENOENT) {
4388 					err = ret;
4389 					goto out;
4390 				}
4391 				ret = mark_garbage_root(reloc_root);
4392 				if (ret < 0) {
4393 					err = ret;
4394 					goto out;
4395 				}
4396 			}
4397 		}
4398 
4399 		if (key.offset == 0)
4400 			break;
4401 
4402 		key.offset--;
4403 	}
4404 	btrfs_release_path(path);
4405 
4406 	if (list_empty(&reloc_roots))
4407 		goto out;
4408 
4409 	rc = alloc_reloc_control(root->fs_info);
4410 	if (!rc) {
4411 		err = -ENOMEM;
4412 		goto out;
4413 	}
4414 
4415 	rc->extent_root = root->fs_info->extent_root;
4416 
4417 	set_reloc_control(rc);
4418 
4419 	trans = btrfs_join_transaction(rc->extent_root);
4420 	if (IS_ERR(trans)) {
4421 		unset_reloc_control(rc);
4422 		err = PTR_ERR(trans);
4423 		goto out_free;
4424 	}
4425 
4426 	rc->merge_reloc_tree = 1;
4427 
4428 	while (!list_empty(&reloc_roots)) {
4429 		reloc_root = list_entry(reloc_roots.next,
4430 					struct btrfs_root, root_list);
4431 		list_del(&reloc_root->root_list);
4432 
4433 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4434 			list_add_tail(&reloc_root->root_list,
4435 				      &rc->reloc_roots);
4436 			continue;
4437 		}
4438 
4439 		fs_root = read_fs_root(root->fs_info,
4440 				       reloc_root->root_key.offset);
4441 		if (IS_ERR(fs_root)) {
4442 			err = PTR_ERR(fs_root);
4443 			goto out_free;
4444 		}
4445 
4446 		err = __add_reloc_root(reloc_root);
4447 		BUG_ON(err < 0); /* -ENOMEM or logic error */
4448 		fs_root->reloc_root = reloc_root;
4449 	}
4450 
4451 	err = btrfs_commit_transaction(trans, rc->extent_root);
4452 	if (err)
4453 		goto out_free;
4454 
4455 	merge_reloc_roots(rc);
4456 
4457 	unset_reloc_control(rc);
4458 
4459 	trans = btrfs_join_transaction(rc->extent_root);
4460 	if (IS_ERR(trans))
4461 		err = PTR_ERR(trans);
4462 	else
4463 		err = btrfs_commit_transaction(trans, rc->extent_root);
4464 out_free:
4465 	kfree(rc);
4466 out:
4467 	if (!list_empty(&reloc_roots))
4468 		free_reloc_roots(&reloc_roots);
4469 
4470 	btrfs_free_path(path);
4471 
4472 	if (err == 0) {
4473 		/* cleanup orphan inode in data relocation tree */
4474 		fs_root = read_fs_root(root->fs_info,
4475 				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4476 		if (IS_ERR(fs_root))
4477 			err = PTR_ERR(fs_root);
4478 		else
4479 			err = btrfs_orphan_cleanup(fs_root);
4480 	}
4481 	return err;
4482 }
4483 
4484 /*
4485  * helper to add ordered checksum for data relocation.
4486  *
4487  * cloning checksum properly handles the nodatasum extents.
4488  * it also saves CPU time to re-calculate the checksum.
4489  */
4490 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4491 {
4492 	struct btrfs_ordered_sum *sums;
4493 	struct btrfs_ordered_extent *ordered;
4494 	struct btrfs_root *root = BTRFS_I(inode)->root;
4495 	int ret;
4496 	u64 disk_bytenr;
4497 	u64 new_bytenr;
4498 	LIST_HEAD(list);
4499 
4500 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4501 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4502 
4503 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4504 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4505 				       disk_bytenr + len - 1, &list, 0);
4506 	if (ret)
4507 		goto out;
4508 
4509 	while (!list_empty(&list)) {
4510 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4511 		list_del_init(&sums->list);
4512 
4513 		/*
4514 		 * We need to offset the new_bytenr based on where the csum is.
4515 		 * We need to do this because we will read in entire prealloc
4516 		 * extents but we may have written to say the middle of the
4517 		 * prealloc extent, so we need to make sure the csum goes with
4518 		 * the right disk offset.
4519 		 *
4520 		 * We can do this because the data reloc inode refers strictly
4521 		 * to the on disk bytes, so we don't have to worry about
4522 		 * disk_len vs real len like with real inodes since it's all
4523 		 * disk length.
4524 		 */
4525 		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4526 		sums->bytenr = new_bytenr;
4527 
4528 		btrfs_add_ordered_sum(inode, ordered, sums);
4529 	}
4530 out:
4531 	btrfs_put_ordered_extent(ordered);
4532 	return ret;
4533 }
4534 
4535 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4536 			  struct btrfs_root *root, struct extent_buffer *buf,
4537 			  struct extent_buffer *cow)
4538 {
4539 	struct reloc_control *rc;
4540 	struct backref_node *node;
4541 	int first_cow = 0;
4542 	int level;
4543 	int ret = 0;
4544 
4545 	rc = root->fs_info->reloc_ctl;
4546 	if (!rc)
4547 		return 0;
4548 
4549 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4550 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4551 
4552 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4553 		if (buf == root->node)
4554 			__update_reloc_root(root, cow->start);
4555 	}
4556 
4557 	level = btrfs_header_level(buf);
4558 	if (btrfs_header_generation(buf) <=
4559 	    btrfs_root_last_snapshot(&root->root_item))
4560 		first_cow = 1;
4561 
4562 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4563 	    rc->create_reloc_tree) {
4564 		WARN_ON(!first_cow && level == 0);
4565 
4566 		node = rc->backref_cache.path[level];
4567 		BUG_ON(node->bytenr != buf->start &&
4568 		       node->new_bytenr != buf->start);
4569 
4570 		drop_node_buffer(node);
4571 		extent_buffer_get(cow);
4572 		node->eb = cow;
4573 		node->new_bytenr = cow->start;
4574 
4575 		if (!node->pending) {
4576 			list_move_tail(&node->list,
4577 				       &rc->backref_cache.pending[level]);
4578 			node->pending = 1;
4579 		}
4580 
4581 		if (first_cow)
4582 			__mark_block_processed(rc, node);
4583 
4584 		if (first_cow && level > 0)
4585 			rc->nodes_relocated += buf->len;
4586 	}
4587 
4588 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4589 		ret = replace_file_extents(trans, rc, root, cow);
4590 	return ret;
4591 }
4592 
4593 /*
4594  * called before creating snapshot. it calculates metadata reservation
4595  * requried for relocating tree blocks in the snapshot
4596  */
4597 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4598 			      struct btrfs_pending_snapshot *pending,
4599 			      u64 *bytes_to_reserve)
4600 {
4601 	struct btrfs_root *root;
4602 	struct reloc_control *rc;
4603 
4604 	root = pending->root;
4605 	if (!root->reloc_root)
4606 		return;
4607 
4608 	rc = root->fs_info->reloc_ctl;
4609 	if (!rc->merge_reloc_tree)
4610 		return;
4611 
4612 	root = root->reloc_root;
4613 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4614 	/*
4615 	 * relocation is in the stage of merging trees. the space
4616 	 * used by merging a reloc tree is twice the size of
4617 	 * relocated tree nodes in the worst case. half for cowing
4618 	 * the reloc tree, half for cowing the fs tree. the space
4619 	 * used by cowing the reloc tree will be freed after the
4620 	 * tree is dropped. if we create snapshot, cowing the fs
4621 	 * tree may use more space than it frees. so we need
4622 	 * reserve extra space.
4623 	 */
4624 	*bytes_to_reserve += rc->nodes_relocated;
4625 }
4626 
4627 /*
4628  * called after snapshot is created. migrate block reservation
4629  * and create reloc root for the newly created snapshot
4630  */
4631 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4632 			       struct btrfs_pending_snapshot *pending)
4633 {
4634 	struct btrfs_root *root = pending->root;
4635 	struct btrfs_root *reloc_root;
4636 	struct btrfs_root *new_root;
4637 	struct reloc_control *rc;
4638 	int ret;
4639 
4640 	if (!root->reloc_root)
4641 		return 0;
4642 
4643 	rc = root->fs_info->reloc_ctl;
4644 	rc->merging_rsv_size += rc->nodes_relocated;
4645 
4646 	if (rc->merge_reloc_tree) {
4647 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4648 					      rc->block_rsv,
4649 					      rc->nodes_relocated);
4650 		if (ret)
4651 			return ret;
4652 	}
4653 
4654 	new_root = pending->snap;
4655 	reloc_root = create_reloc_root(trans, root->reloc_root,
4656 				       new_root->root_key.objectid);
4657 	if (IS_ERR(reloc_root))
4658 		return PTR_ERR(reloc_root);
4659 
4660 	ret = __add_reloc_root(reloc_root);
4661 	BUG_ON(ret < 0);
4662 	new_root->reloc_root = reloc_root;
4663 
4664 	if (rc->create_reloc_tree)
4665 		ret = clone_backref_node(trans, rc, root, reloc_root);
4666 	return ret;
4667 }
4668