1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include <linux/error-injection.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "locking.h" 18 #include "btrfs_inode.h" 19 #include "async-thread.h" 20 #include "free-space-cache.h" 21 #include "qgroup.h" 22 #include "print-tree.h" 23 #include "delalloc-space.h" 24 #include "block-group.h" 25 #include "backref.h" 26 #include "misc.h" 27 #include "subpage.h" 28 #include "zoned.h" 29 #include "inode-item.h" 30 #include "space-info.h" 31 #include "fs.h" 32 #include "accessors.h" 33 #include "extent-tree.h" 34 #include "root-tree.h" 35 #include "file-item.h" 36 #include "relocation.h" 37 #include "super.h" 38 #include "tree-checker.h" 39 40 /* 41 * Relocation overview 42 * 43 * [What does relocation do] 44 * 45 * The objective of relocation is to relocate all extents of the target block 46 * group to other block groups. 47 * This is utilized by resize (shrink only), profile converting, compacting 48 * space, or balance routine to spread chunks over devices. 49 * 50 * Before | After 51 * ------------------------------------------------------------------ 52 * BG A: 10 data extents | BG A: deleted 53 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated) 54 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated) 55 * 56 * [How does relocation work] 57 * 58 * 1. Mark the target block group read-only 59 * New extents won't be allocated from the target block group. 60 * 61 * 2.1 Record each extent in the target block group 62 * To build a proper map of extents to be relocated. 63 * 64 * 2.2 Build data reloc tree and reloc trees 65 * Data reloc tree will contain an inode, recording all newly relocated 66 * data extents. 67 * There will be only one data reloc tree for one data block group. 68 * 69 * Reloc tree will be a special snapshot of its source tree, containing 70 * relocated tree blocks. 71 * Each tree referring to a tree block in target block group will get its 72 * reloc tree built. 73 * 74 * 2.3 Swap source tree with its corresponding reloc tree 75 * Each involved tree only refers to new extents after swap. 76 * 77 * 3. Cleanup reloc trees and data reloc tree. 78 * As old extents in the target block group are still referenced by reloc 79 * trees, we need to clean them up before really freeing the target block 80 * group. 81 * 82 * The main complexity is in steps 2.2 and 2.3. 83 * 84 * The entry point of relocation is relocate_block_group() function. 85 */ 86 87 #define RELOCATION_RESERVED_NODES 256 88 /* 89 * map address of tree root to tree 90 */ 91 struct mapping_node { 92 struct { 93 struct rb_node rb_node; 94 u64 bytenr; 95 }; /* Use rb_simle_node for search/insert */ 96 void *data; 97 }; 98 99 struct mapping_tree { 100 struct rb_root rb_root; 101 spinlock_t lock; 102 }; 103 104 /* 105 * present a tree block to process 106 */ 107 struct tree_block { 108 struct { 109 struct rb_node rb_node; 110 u64 bytenr; 111 }; /* Use rb_simple_node for search/insert */ 112 u64 owner; 113 struct btrfs_key key; 114 u8 level; 115 bool key_ready; 116 }; 117 118 #define MAX_EXTENTS 128 119 120 struct file_extent_cluster { 121 u64 start; 122 u64 end; 123 u64 boundary[MAX_EXTENTS]; 124 unsigned int nr; 125 u64 owning_root; 126 }; 127 128 /* Stages of data relocation. */ 129 enum reloc_stage { 130 MOVE_DATA_EXTENTS, 131 UPDATE_DATA_PTRS 132 }; 133 134 struct reloc_control { 135 /* block group to relocate */ 136 struct btrfs_block_group *block_group; 137 /* extent tree */ 138 struct btrfs_root *extent_root; 139 /* inode for moving data */ 140 struct inode *data_inode; 141 142 struct btrfs_block_rsv *block_rsv; 143 144 struct btrfs_backref_cache backref_cache; 145 146 struct file_extent_cluster cluster; 147 /* tree blocks have been processed */ 148 struct extent_io_tree processed_blocks; 149 /* map start of tree root to corresponding reloc tree */ 150 struct mapping_tree reloc_root_tree; 151 /* list of reloc trees */ 152 struct list_head reloc_roots; 153 /* list of subvolume trees that get relocated */ 154 struct list_head dirty_subvol_roots; 155 /* size of metadata reservation for merging reloc trees */ 156 u64 merging_rsv_size; 157 /* size of relocated tree nodes */ 158 u64 nodes_relocated; 159 /* reserved size for block group relocation*/ 160 u64 reserved_bytes; 161 162 u64 search_start; 163 u64 extents_found; 164 165 enum reloc_stage stage; 166 bool create_reloc_tree; 167 bool merge_reloc_tree; 168 bool found_file_extent; 169 }; 170 171 static void mark_block_processed(struct reloc_control *rc, 172 struct btrfs_backref_node *node) 173 { 174 u32 blocksize; 175 176 if (node->level == 0 || 177 in_range(node->bytenr, rc->block_group->start, 178 rc->block_group->length)) { 179 blocksize = rc->extent_root->fs_info->nodesize; 180 set_extent_bit(&rc->processed_blocks, node->bytenr, 181 node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL); 182 } 183 node->processed = 1; 184 } 185 186 /* 187 * walk up backref nodes until reach node presents tree root 188 */ 189 static struct btrfs_backref_node *walk_up_backref( 190 struct btrfs_backref_node *node, 191 struct btrfs_backref_edge *edges[], int *index) 192 { 193 struct btrfs_backref_edge *edge; 194 int idx = *index; 195 196 while (!list_empty(&node->upper)) { 197 edge = list_entry(node->upper.next, 198 struct btrfs_backref_edge, list[LOWER]); 199 edges[idx++] = edge; 200 node = edge->node[UPPER]; 201 } 202 BUG_ON(node->detached); 203 *index = idx; 204 return node; 205 } 206 207 /* 208 * walk down backref nodes to find start of next reference path 209 */ 210 static struct btrfs_backref_node *walk_down_backref( 211 struct btrfs_backref_edge *edges[], int *index) 212 { 213 struct btrfs_backref_edge *edge; 214 struct btrfs_backref_node *lower; 215 int idx = *index; 216 217 while (idx > 0) { 218 edge = edges[idx - 1]; 219 lower = edge->node[LOWER]; 220 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 221 idx--; 222 continue; 223 } 224 edge = list_entry(edge->list[LOWER].next, 225 struct btrfs_backref_edge, list[LOWER]); 226 edges[idx - 1] = edge; 227 *index = idx; 228 return edge->node[UPPER]; 229 } 230 *index = 0; 231 return NULL; 232 } 233 234 static void update_backref_node(struct btrfs_backref_cache *cache, 235 struct btrfs_backref_node *node, u64 bytenr) 236 { 237 struct rb_node *rb_node; 238 rb_erase(&node->rb_node, &cache->rb_root); 239 node->bytenr = bytenr; 240 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node); 241 if (rb_node) 242 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST); 243 } 244 245 /* 246 * update backref cache after a transaction commit 247 */ 248 static int update_backref_cache(struct btrfs_trans_handle *trans, 249 struct btrfs_backref_cache *cache) 250 { 251 struct btrfs_backref_node *node; 252 int level = 0; 253 254 if (cache->last_trans == 0) { 255 cache->last_trans = trans->transid; 256 return 0; 257 } 258 259 if (cache->last_trans == trans->transid) 260 return 0; 261 262 /* 263 * detached nodes are used to avoid unnecessary backref 264 * lookup. transaction commit changes the extent tree. 265 * so the detached nodes are no longer useful. 266 */ 267 while (!list_empty(&cache->detached)) { 268 node = list_entry(cache->detached.next, 269 struct btrfs_backref_node, list); 270 btrfs_backref_cleanup_node(cache, node); 271 } 272 273 while (!list_empty(&cache->changed)) { 274 node = list_entry(cache->changed.next, 275 struct btrfs_backref_node, list); 276 list_del_init(&node->list); 277 BUG_ON(node->pending); 278 update_backref_node(cache, node, node->new_bytenr); 279 } 280 281 /* 282 * some nodes can be left in the pending list if there were 283 * errors during processing the pending nodes. 284 */ 285 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 286 list_for_each_entry(node, &cache->pending[level], list) { 287 BUG_ON(!node->pending); 288 if (node->bytenr == node->new_bytenr) 289 continue; 290 update_backref_node(cache, node, node->new_bytenr); 291 } 292 } 293 294 cache->last_trans = 0; 295 return 1; 296 } 297 298 static bool reloc_root_is_dead(const struct btrfs_root *root) 299 { 300 /* 301 * Pair with set_bit/clear_bit in clean_dirty_subvols and 302 * btrfs_update_reloc_root. We need to see the updated bit before 303 * trying to access reloc_root 304 */ 305 smp_rmb(); 306 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) 307 return true; 308 return false; 309 } 310 311 /* 312 * Check if this subvolume tree has valid reloc tree. 313 * 314 * Reloc tree after swap is considered dead, thus not considered as valid. 315 * This is enough for most callers, as they don't distinguish dead reloc root 316 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a 317 * special case. 318 */ 319 static bool have_reloc_root(const struct btrfs_root *root) 320 { 321 if (reloc_root_is_dead(root)) 322 return false; 323 if (!root->reloc_root) 324 return false; 325 return true; 326 } 327 328 bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root) 329 { 330 struct btrfs_root *reloc_root; 331 332 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 333 return false; 334 335 /* This root has been merged with its reloc tree, we can ignore it */ 336 if (reloc_root_is_dead(root)) 337 return true; 338 339 reloc_root = root->reloc_root; 340 if (!reloc_root) 341 return false; 342 343 if (btrfs_header_generation(reloc_root->commit_root) == 344 root->fs_info->running_transaction->transid) 345 return false; 346 /* 347 * If there is reloc tree and it was created in previous transaction 348 * backref lookup can find the reloc tree, so backref node for the fs 349 * tree root is useless for relocation. 350 */ 351 return true; 352 } 353 354 /* 355 * find reloc tree by address of tree root 356 */ 357 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr) 358 { 359 struct reloc_control *rc = fs_info->reloc_ctl; 360 struct rb_node *rb_node; 361 struct mapping_node *node; 362 struct btrfs_root *root = NULL; 363 364 ASSERT(rc); 365 spin_lock(&rc->reloc_root_tree.lock); 366 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr); 367 if (rb_node) { 368 node = rb_entry(rb_node, struct mapping_node, rb_node); 369 root = node->data; 370 } 371 spin_unlock(&rc->reloc_root_tree.lock); 372 return btrfs_grab_root(root); 373 } 374 375 /* 376 * For useless nodes, do two major clean ups: 377 * 378 * - Cleanup the children edges and nodes 379 * If child node is also orphan (no parent) during cleanup, then the child 380 * node will also be cleaned up. 381 * 382 * - Freeing up leaves (level 0), keeps nodes detached 383 * For nodes, the node is still cached as "detached" 384 * 385 * Return false if @node is not in the @useless_nodes list. 386 * Return true if @node is in the @useless_nodes list. 387 */ 388 static bool handle_useless_nodes(struct reloc_control *rc, 389 struct btrfs_backref_node *node) 390 { 391 struct btrfs_backref_cache *cache = &rc->backref_cache; 392 struct list_head *useless_node = &cache->useless_node; 393 bool ret = false; 394 395 while (!list_empty(useless_node)) { 396 struct btrfs_backref_node *cur; 397 398 cur = list_first_entry(useless_node, struct btrfs_backref_node, 399 list); 400 list_del_init(&cur->list); 401 402 /* Only tree root nodes can be added to @useless_nodes */ 403 ASSERT(list_empty(&cur->upper)); 404 405 if (cur == node) 406 ret = true; 407 408 /* The node is the lowest node */ 409 if (cur->lowest) { 410 list_del_init(&cur->lower); 411 cur->lowest = 0; 412 } 413 414 /* Cleanup the lower edges */ 415 while (!list_empty(&cur->lower)) { 416 struct btrfs_backref_edge *edge; 417 struct btrfs_backref_node *lower; 418 419 edge = list_entry(cur->lower.next, 420 struct btrfs_backref_edge, list[UPPER]); 421 list_del(&edge->list[UPPER]); 422 list_del(&edge->list[LOWER]); 423 lower = edge->node[LOWER]; 424 btrfs_backref_free_edge(cache, edge); 425 426 /* Child node is also orphan, queue for cleanup */ 427 if (list_empty(&lower->upper)) 428 list_add(&lower->list, useless_node); 429 } 430 /* Mark this block processed for relocation */ 431 mark_block_processed(rc, cur); 432 433 /* 434 * Backref nodes for tree leaves are deleted from the cache. 435 * Backref nodes for upper level tree blocks are left in the 436 * cache to avoid unnecessary backref lookup. 437 */ 438 if (cur->level > 0) { 439 list_add(&cur->list, &cache->detached); 440 cur->detached = 1; 441 } else { 442 rb_erase(&cur->rb_node, &cache->rb_root); 443 btrfs_backref_free_node(cache, cur); 444 } 445 } 446 return ret; 447 } 448 449 /* 450 * Build backref tree for a given tree block. Root of the backref tree 451 * corresponds the tree block, leaves of the backref tree correspond roots of 452 * b-trees that reference the tree block. 453 * 454 * The basic idea of this function is check backrefs of a given block to find 455 * upper level blocks that reference the block, and then check backrefs of 456 * these upper level blocks recursively. The recursion stops when tree root is 457 * reached or backrefs for the block is cached. 458 * 459 * NOTE: if we find that backrefs for a block are cached, we know backrefs for 460 * all upper level blocks that directly/indirectly reference the block are also 461 * cached. 462 */ 463 static noinline_for_stack struct btrfs_backref_node *build_backref_tree( 464 struct btrfs_trans_handle *trans, 465 struct reloc_control *rc, struct btrfs_key *node_key, 466 int level, u64 bytenr) 467 { 468 struct btrfs_backref_iter *iter; 469 struct btrfs_backref_cache *cache = &rc->backref_cache; 470 /* For searching parent of TREE_BLOCK_REF */ 471 struct btrfs_path *path; 472 struct btrfs_backref_node *cur; 473 struct btrfs_backref_node *node = NULL; 474 struct btrfs_backref_edge *edge; 475 int ret; 476 477 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info); 478 if (!iter) 479 return ERR_PTR(-ENOMEM); 480 path = btrfs_alloc_path(); 481 if (!path) { 482 ret = -ENOMEM; 483 goto out; 484 } 485 486 node = btrfs_backref_alloc_node(cache, bytenr, level); 487 if (!node) { 488 ret = -ENOMEM; 489 goto out; 490 } 491 492 node->lowest = 1; 493 cur = node; 494 495 /* Breadth-first search to build backref cache */ 496 do { 497 ret = btrfs_backref_add_tree_node(trans, cache, path, iter, 498 node_key, cur); 499 if (ret < 0) 500 goto out; 501 502 edge = list_first_entry_or_null(&cache->pending_edge, 503 struct btrfs_backref_edge, list[UPPER]); 504 /* 505 * The pending list isn't empty, take the first block to 506 * process 507 */ 508 if (edge) { 509 list_del_init(&edge->list[UPPER]); 510 cur = edge->node[UPPER]; 511 } 512 } while (edge); 513 514 /* Finish the upper linkage of newly added edges/nodes */ 515 ret = btrfs_backref_finish_upper_links(cache, node); 516 if (ret < 0) 517 goto out; 518 519 if (handle_useless_nodes(rc, node)) 520 node = NULL; 521 out: 522 btrfs_free_path(iter->path); 523 kfree(iter); 524 btrfs_free_path(path); 525 if (ret) { 526 btrfs_backref_error_cleanup(cache, node); 527 return ERR_PTR(ret); 528 } 529 ASSERT(!node || !node->detached); 530 ASSERT(list_empty(&cache->useless_node) && 531 list_empty(&cache->pending_edge)); 532 return node; 533 } 534 535 /* 536 * helper to add backref node for the newly created snapshot. 537 * the backref node is created by cloning backref node that 538 * corresponds to root of source tree 539 */ 540 static int clone_backref_node(struct btrfs_trans_handle *trans, 541 struct reloc_control *rc, 542 const struct btrfs_root *src, 543 struct btrfs_root *dest) 544 { 545 struct btrfs_root *reloc_root = src->reloc_root; 546 struct btrfs_backref_cache *cache = &rc->backref_cache; 547 struct btrfs_backref_node *node = NULL; 548 struct btrfs_backref_node *new_node; 549 struct btrfs_backref_edge *edge; 550 struct btrfs_backref_edge *new_edge; 551 struct rb_node *rb_node; 552 553 if (cache->last_trans > 0) 554 update_backref_cache(trans, cache); 555 556 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start); 557 if (rb_node) { 558 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 559 if (node->detached) 560 node = NULL; 561 else 562 BUG_ON(node->new_bytenr != reloc_root->node->start); 563 } 564 565 if (!node) { 566 rb_node = rb_simple_search(&cache->rb_root, 567 reloc_root->commit_root->start); 568 if (rb_node) { 569 node = rb_entry(rb_node, struct btrfs_backref_node, 570 rb_node); 571 BUG_ON(node->detached); 572 } 573 } 574 575 if (!node) 576 return 0; 577 578 new_node = btrfs_backref_alloc_node(cache, dest->node->start, 579 node->level); 580 if (!new_node) 581 return -ENOMEM; 582 583 new_node->lowest = node->lowest; 584 new_node->checked = 1; 585 new_node->root = btrfs_grab_root(dest); 586 ASSERT(new_node->root); 587 588 if (!node->lowest) { 589 list_for_each_entry(edge, &node->lower, list[UPPER]) { 590 new_edge = btrfs_backref_alloc_edge(cache); 591 if (!new_edge) 592 goto fail; 593 594 btrfs_backref_link_edge(new_edge, edge->node[LOWER], 595 new_node, LINK_UPPER); 596 } 597 } else { 598 list_add_tail(&new_node->lower, &cache->leaves); 599 } 600 601 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr, 602 &new_node->rb_node); 603 if (rb_node) 604 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST); 605 606 if (!new_node->lowest) { 607 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 608 list_add_tail(&new_edge->list[LOWER], 609 &new_edge->node[LOWER]->upper); 610 } 611 } 612 return 0; 613 fail: 614 while (!list_empty(&new_node->lower)) { 615 new_edge = list_entry(new_node->lower.next, 616 struct btrfs_backref_edge, list[UPPER]); 617 list_del(&new_edge->list[UPPER]); 618 btrfs_backref_free_edge(cache, new_edge); 619 } 620 btrfs_backref_free_node(cache, new_node); 621 return -ENOMEM; 622 } 623 624 /* 625 * helper to add 'address of tree root -> reloc tree' mapping 626 */ 627 static int __add_reloc_root(struct btrfs_root *root) 628 { 629 struct btrfs_fs_info *fs_info = root->fs_info; 630 struct rb_node *rb_node; 631 struct mapping_node *node; 632 struct reloc_control *rc = fs_info->reloc_ctl; 633 634 node = kmalloc(sizeof(*node), GFP_NOFS); 635 if (!node) 636 return -ENOMEM; 637 638 node->bytenr = root->commit_root->start; 639 node->data = root; 640 641 spin_lock(&rc->reloc_root_tree.lock); 642 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 643 node->bytenr, &node->rb_node); 644 spin_unlock(&rc->reloc_root_tree.lock); 645 if (rb_node) { 646 btrfs_err(fs_info, 647 "Duplicate root found for start=%llu while inserting into relocation tree", 648 node->bytenr); 649 return -EEXIST; 650 } 651 652 list_add_tail(&root->root_list, &rc->reloc_roots); 653 return 0; 654 } 655 656 /* 657 * helper to delete the 'address of tree root -> reloc tree' 658 * mapping 659 */ 660 static void __del_reloc_root(struct btrfs_root *root) 661 { 662 struct btrfs_fs_info *fs_info = root->fs_info; 663 struct rb_node *rb_node; 664 struct mapping_node *node = NULL; 665 struct reloc_control *rc = fs_info->reloc_ctl; 666 bool put_ref = false; 667 668 if (rc && root->node) { 669 spin_lock(&rc->reloc_root_tree.lock); 670 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 671 root->commit_root->start); 672 if (rb_node) { 673 node = rb_entry(rb_node, struct mapping_node, rb_node); 674 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 675 RB_CLEAR_NODE(&node->rb_node); 676 } 677 spin_unlock(&rc->reloc_root_tree.lock); 678 ASSERT(!node || (struct btrfs_root *)node->data == root); 679 } 680 681 /* 682 * We only put the reloc root here if it's on the list. There's a lot 683 * of places where the pattern is to splice the rc->reloc_roots, process 684 * the reloc roots, and then add the reloc root back onto 685 * rc->reloc_roots. If we call __del_reloc_root while it's off of the 686 * list we don't want the reference being dropped, because the guy 687 * messing with the list is in charge of the reference. 688 */ 689 spin_lock(&fs_info->trans_lock); 690 if (!list_empty(&root->root_list)) { 691 put_ref = true; 692 list_del_init(&root->root_list); 693 } 694 spin_unlock(&fs_info->trans_lock); 695 if (put_ref) 696 btrfs_put_root(root); 697 kfree(node); 698 } 699 700 /* 701 * helper to update the 'address of tree root -> reloc tree' 702 * mapping 703 */ 704 static int __update_reloc_root(struct btrfs_root *root) 705 { 706 struct btrfs_fs_info *fs_info = root->fs_info; 707 struct rb_node *rb_node; 708 struct mapping_node *node = NULL; 709 struct reloc_control *rc = fs_info->reloc_ctl; 710 711 spin_lock(&rc->reloc_root_tree.lock); 712 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 713 root->commit_root->start); 714 if (rb_node) { 715 node = rb_entry(rb_node, struct mapping_node, rb_node); 716 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 717 } 718 spin_unlock(&rc->reloc_root_tree.lock); 719 720 if (!node) 721 return 0; 722 BUG_ON((struct btrfs_root *)node->data != root); 723 724 spin_lock(&rc->reloc_root_tree.lock); 725 node->bytenr = root->node->start; 726 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 727 node->bytenr, &node->rb_node); 728 spin_unlock(&rc->reloc_root_tree.lock); 729 if (rb_node) 730 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST); 731 return 0; 732 } 733 734 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 735 struct btrfs_root *root, u64 objectid) 736 { 737 struct btrfs_fs_info *fs_info = root->fs_info; 738 struct btrfs_root *reloc_root; 739 struct extent_buffer *eb; 740 struct btrfs_root_item *root_item; 741 struct btrfs_key root_key; 742 int ret = 0; 743 bool must_abort = false; 744 745 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 746 if (!root_item) 747 return ERR_PTR(-ENOMEM); 748 749 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 750 root_key.type = BTRFS_ROOT_ITEM_KEY; 751 root_key.offset = objectid; 752 753 if (btrfs_root_id(root) == objectid) { 754 u64 commit_root_gen; 755 756 /* called by btrfs_init_reloc_root */ 757 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 758 BTRFS_TREE_RELOC_OBJECTID); 759 if (ret) 760 goto fail; 761 762 /* 763 * Set the last_snapshot field to the generation of the commit 764 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 765 * correctly (returns true) when the relocation root is created 766 * either inside the critical section of a transaction commit 767 * (through transaction.c:qgroup_account_snapshot()) and when 768 * it's created before the transaction commit is started. 769 */ 770 commit_root_gen = btrfs_header_generation(root->commit_root); 771 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 772 } else { 773 /* 774 * called by btrfs_reloc_post_snapshot_hook. 775 * the source tree is a reloc tree, all tree blocks 776 * modified after it was created have RELOC flag 777 * set in their headers. so it's OK to not update 778 * the 'last_snapshot'. 779 */ 780 ret = btrfs_copy_root(trans, root, root->node, &eb, 781 BTRFS_TREE_RELOC_OBJECTID); 782 if (ret) 783 goto fail; 784 } 785 786 /* 787 * We have changed references at this point, we must abort the 788 * transaction if anything fails. 789 */ 790 must_abort = true; 791 792 memcpy(root_item, &root->root_item, sizeof(*root_item)); 793 btrfs_set_root_bytenr(root_item, eb->start); 794 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 795 btrfs_set_root_generation(root_item, trans->transid); 796 797 if (btrfs_root_id(root) == objectid) { 798 btrfs_set_root_refs(root_item, 0); 799 memset(&root_item->drop_progress, 0, 800 sizeof(struct btrfs_disk_key)); 801 btrfs_set_root_drop_level(root_item, 0); 802 } 803 804 btrfs_tree_unlock(eb); 805 free_extent_buffer(eb); 806 807 ret = btrfs_insert_root(trans, fs_info->tree_root, 808 &root_key, root_item); 809 if (ret) 810 goto fail; 811 812 kfree(root_item); 813 814 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); 815 if (IS_ERR(reloc_root)) { 816 ret = PTR_ERR(reloc_root); 817 goto abort; 818 } 819 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 820 btrfs_set_root_last_trans(reloc_root, trans->transid); 821 return reloc_root; 822 fail: 823 kfree(root_item); 824 abort: 825 if (must_abort) 826 btrfs_abort_transaction(trans, ret); 827 return ERR_PTR(ret); 828 } 829 830 /* 831 * create reloc tree for a given fs tree. reloc tree is just a 832 * snapshot of the fs tree with special root objectid. 833 * 834 * The reloc_root comes out of here with two references, one for 835 * root->reloc_root, and another for being on the rc->reloc_roots list. 836 */ 837 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 838 struct btrfs_root *root) 839 { 840 struct btrfs_fs_info *fs_info = root->fs_info; 841 struct btrfs_root *reloc_root; 842 struct reloc_control *rc = fs_info->reloc_ctl; 843 struct btrfs_block_rsv *rsv; 844 int clear_rsv = 0; 845 int ret; 846 847 if (!rc) 848 return 0; 849 850 /* 851 * The subvolume has reloc tree but the swap is finished, no need to 852 * create/update the dead reloc tree 853 */ 854 if (reloc_root_is_dead(root)) 855 return 0; 856 857 /* 858 * This is subtle but important. We do not do 859 * record_root_in_transaction for reloc roots, instead we record their 860 * corresponding fs root, and then here we update the last trans for the 861 * reloc root. This means that we have to do this for the entire life 862 * of the reloc root, regardless of which stage of the relocation we are 863 * in. 864 */ 865 if (root->reloc_root) { 866 reloc_root = root->reloc_root; 867 btrfs_set_root_last_trans(reloc_root, trans->transid); 868 return 0; 869 } 870 871 /* 872 * We are merging reloc roots, we do not need new reloc trees. Also 873 * reloc trees never need their own reloc tree. 874 */ 875 if (!rc->create_reloc_tree || btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) 876 return 0; 877 878 if (!trans->reloc_reserved) { 879 rsv = trans->block_rsv; 880 trans->block_rsv = rc->block_rsv; 881 clear_rsv = 1; 882 } 883 reloc_root = create_reloc_root(trans, root, btrfs_root_id(root)); 884 if (clear_rsv) 885 trans->block_rsv = rsv; 886 if (IS_ERR(reloc_root)) 887 return PTR_ERR(reloc_root); 888 889 ret = __add_reloc_root(reloc_root); 890 ASSERT(ret != -EEXIST); 891 if (ret) { 892 /* Pairs with create_reloc_root */ 893 btrfs_put_root(reloc_root); 894 return ret; 895 } 896 root->reloc_root = btrfs_grab_root(reloc_root); 897 return 0; 898 } 899 900 /* 901 * update root item of reloc tree 902 */ 903 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 904 struct btrfs_root *root) 905 { 906 struct btrfs_fs_info *fs_info = root->fs_info; 907 struct btrfs_root *reloc_root; 908 struct btrfs_root_item *root_item; 909 int ret; 910 911 if (!have_reloc_root(root)) 912 return 0; 913 914 reloc_root = root->reloc_root; 915 root_item = &reloc_root->root_item; 916 917 /* 918 * We are probably ok here, but __del_reloc_root() will drop its ref of 919 * the root. We have the ref for root->reloc_root, but just in case 920 * hold it while we update the reloc root. 921 */ 922 btrfs_grab_root(reloc_root); 923 924 /* root->reloc_root will stay until current relocation finished */ 925 if (fs_info->reloc_ctl->merge_reloc_tree && 926 btrfs_root_refs(root_item) == 0) { 927 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 928 /* 929 * Mark the tree as dead before we change reloc_root so 930 * have_reloc_root will not touch it from now on. 931 */ 932 smp_wmb(); 933 __del_reloc_root(reloc_root); 934 } 935 936 if (reloc_root->commit_root != reloc_root->node) { 937 __update_reloc_root(reloc_root); 938 btrfs_set_root_node(root_item, reloc_root->node); 939 free_extent_buffer(reloc_root->commit_root); 940 reloc_root->commit_root = btrfs_root_node(reloc_root); 941 } 942 943 ret = btrfs_update_root(trans, fs_info->tree_root, 944 &reloc_root->root_key, root_item); 945 btrfs_put_root(reloc_root); 946 return ret; 947 } 948 949 /* 950 * get new location of data 951 */ 952 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 953 u64 bytenr, u64 num_bytes) 954 { 955 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 956 struct btrfs_path *path; 957 struct btrfs_file_extent_item *fi; 958 struct extent_buffer *leaf; 959 int ret; 960 961 path = btrfs_alloc_path(); 962 if (!path) 963 return -ENOMEM; 964 965 bytenr -= BTRFS_I(reloc_inode)->reloc_block_group_start; 966 ret = btrfs_lookup_file_extent(NULL, root, path, 967 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 968 if (ret < 0) 969 goto out; 970 if (ret > 0) { 971 ret = -ENOENT; 972 goto out; 973 } 974 975 leaf = path->nodes[0]; 976 fi = btrfs_item_ptr(leaf, path->slots[0], 977 struct btrfs_file_extent_item); 978 979 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 980 btrfs_file_extent_compression(leaf, fi) || 981 btrfs_file_extent_encryption(leaf, fi) || 982 btrfs_file_extent_other_encoding(leaf, fi)); 983 984 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 985 ret = -EINVAL; 986 goto out; 987 } 988 989 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 990 ret = 0; 991 out: 992 btrfs_free_path(path); 993 return ret; 994 } 995 996 /* 997 * update file extent items in the tree leaf to point to 998 * the new locations. 999 */ 1000 static noinline_for_stack 1001 int replace_file_extents(struct btrfs_trans_handle *trans, 1002 struct reloc_control *rc, 1003 struct btrfs_root *root, 1004 struct extent_buffer *leaf) 1005 { 1006 struct btrfs_fs_info *fs_info = root->fs_info; 1007 struct btrfs_key key; 1008 struct btrfs_file_extent_item *fi; 1009 struct btrfs_inode *inode = NULL; 1010 u64 parent; 1011 u64 bytenr; 1012 u64 new_bytenr = 0; 1013 u64 num_bytes; 1014 u64 end; 1015 u32 nritems; 1016 u32 i; 1017 int ret = 0; 1018 int first = 1; 1019 int dirty = 0; 1020 1021 if (rc->stage != UPDATE_DATA_PTRS) 1022 return 0; 1023 1024 /* reloc trees always use full backref */ 1025 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) 1026 parent = leaf->start; 1027 else 1028 parent = 0; 1029 1030 nritems = btrfs_header_nritems(leaf); 1031 for (i = 0; i < nritems; i++) { 1032 struct btrfs_ref ref = { 0 }; 1033 1034 cond_resched(); 1035 btrfs_item_key_to_cpu(leaf, &key, i); 1036 if (key.type != BTRFS_EXTENT_DATA_KEY) 1037 continue; 1038 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1039 if (btrfs_file_extent_type(leaf, fi) == 1040 BTRFS_FILE_EXTENT_INLINE) 1041 continue; 1042 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1043 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1044 if (bytenr == 0) 1045 continue; 1046 if (!in_range(bytenr, rc->block_group->start, 1047 rc->block_group->length)) 1048 continue; 1049 1050 /* 1051 * if we are modifying block in fs tree, wait for read_folio 1052 * to complete and drop the extent cache 1053 */ 1054 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) { 1055 if (first) { 1056 inode = btrfs_find_first_inode(root, key.objectid); 1057 first = 0; 1058 } else if (inode && btrfs_ino(inode) < key.objectid) { 1059 btrfs_add_delayed_iput(inode); 1060 inode = btrfs_find_first_inode(root, key.objectid); 1061 } 1062 if (inode && btrfs_ino(inode) == key.objectid) { 1063 struct extent_state *cached_state = NULL; 1064 1065 end = key.offset + 1066 btrfs_file_extent_num_bytes(leaf, fi); 1067 WARN_ON(!IS_ALIGNED(key.offset, 1068 fs_info->sectorsize)); 1069 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1070 end--; 1071 /* Take mmap lock to serialize with reflinks. */ 1072 if (!down_read_trylock(&inode->i_mmap_lock)) 1073 continue; 1074 ret = try_lock_extent(&inode->io_tree, key.offset, 1075 end, &cached_state); 1076 if (!ret) { 1077 up_read(&inode->i_mmap_lock); 1078 continue; 1079 } 1080 1081 btrfs_drop_extent_map_range(inode, key.offset, end, true); 1082 unlock_extent(&inode->io_tree, key.offset, end, 1083 &cached_state); 1084 up_read(&inode->i_mmap_lock); 1085 } 1086 } 1087 1088 ret = get_new_location(rc->data_inode, &new_bytenr, 1089 bytenr, num_bytes); 1090 if (ret) { 1091 /* 1092 * Don't have to abort since we've not changed anything 1093 * in the file extent yet. 1094 */ 1095 break; 1096 } 1097 1098 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1099 dirty = 1; 1100 1101 key.offset -= btrfs_file_extent_offset(leaf, fi); 1102 ref.action = BTRFS_ADD_DELAYED_REF; 1103 ref.bytenr = new_bytenr; 1104 ref.num_bytes = num_bytes; 1105 ref.parent = parent; 1106 ref.owning_root = btrfs_root_id(root); 1107 ref.ref_root = btrfs_header_owner(leaf); 1108 btrfs_init_data_ref(&ref, key.objectid, key.offset, 1109 btrfs_root_id(root), false); 1110 ret = btrfs_inc_extent_ref(trans, &ref); 1111 if (ret) { 1112 btrfs_abort_transaction(trans, ret); 1113 break; 1114 } 1115 1116 ref.action = BTRFS_DROP_DELAYED_REF; 1117 ref.bytenr = bytenr; 1118 ref.num_bytes = num_bytes; 1119 ref.parent = parent; 1120 ref.owning_root = btrfs_root_id(root); 1121 ref.ref_root = btrfs_header_owner(leaf); 1122 btrfs_init_data_ref(&ref, key.objectid, key.offset, 1123 btrfs_root_id(root), false); 1124 ret = btrfs_free_extent(trans, &ref); 1125 if (ret) { 1126 btrfs_abort_transaction(trans, ret); 1127 break; 1128 } 1129 } 1130 if (dirty) 1131 btrfs_mark_buffer_dirty(trans, leaf); 1132 if (inode) 1133 btrfs_add_delayed_iput(inode); 1134 return ret; 1135 } 1136 1137 static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb, 1138 int slot, const struct btrfs_path *path, 1139 int level) 1140 { 1141 struct btrfs_disk_key key1; 1142 struct btrfs_disk_key key2; 1143 btrfs_node_key(eb, &key1, slot); 1144 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1145 return memcmp(&key1, &key2, sizeof(key1)); 1146 } 1147 1148 /* 1149 * try to replace tree blocks in fs tree with the new blocks 1150 * in reloc tree. tree blocks haven't been modified since the 1151 * reloc tree was create can be replaced. 1152 * 1153 * if a block was replaced, level of the block + 1 is returned. 1154 * if no block got replaced, 0 is returned. if there are other 1155 * errors, a negative error number is returned. 1156 */ 1157 static noinline_for_stack 1158 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1159 struct btrfs_root *dest, struct btrfs_root *src, 1160 struct btrfs_path *path, struct btrfs_key *next_key, 1161 int lowest_level, int max_level) 1162 { 1163 struct btrfs_fs_info *fs_info = dest->fs_info; 1164 struct extent_buffer *eb; 1165 struct extent_buffer *parent; 1166 struct btrfs_ref ref = { 0 }; 1167 struct btrfs_key key; 1168 u64 old_bytenr; 1169 u64 new_bytenr; 1170 u64 old_ptr_gen; 1171 u64 new_ptr_gen; 1172 u64 last_snapshot; 1173 u32 blocksize; 1174 int cow = 0; 1175 int level; 1176 int ret; 1177 int slot; 1178 1179 ASSERT(btrfs_root_id(src) == BTRFS_TREE_RELOC_OBJECTID); 1180 ASSERT(btrfs_root_id(dest) != BTRFS_TREE_RELOC_OBJECTID); 1181 1182 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1183 again: 1184 slot = path->slots[lowest_level]; 1185 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1186 1187 eb = btrfs_lock_root_node(dest); 1188 level = btrfs_header_level(eb); 1189 1190 if (level < lowest_level) { 1191 btrfs_tree_unlock(eb); 1192 free_extent_buffer(eb); 1193 return 0; 1194 } 1195 1196 if (cow) { 1197 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb, 1198 BTRFS_NESTING_COW); 1199 if (ret) { 1200 btrfs_tree_unlock(eb); 1201 free_extent_buffer(eb); 1202 return ret; 1203 } 1204 } 1205 1206 if (next_key) { 1207 next_key->objectid = (u64)-1; 1208 next_key->type = (u8)-1; 1209 next_key->offset = (u64)-1; 1210 } 1211 1212 parent = eb; 1213 while (1) { 1214 level = btrfs_header_level(parent); 1215 ASSERT(level >= lowest_level); 1216 1217 ret = btrfs_bin_search(parent, 0, &key, &slot); 1218 if (ret < 0) 1219 break; 1220 if (ret && slot > 0) 1221 slot--; 1222 1223 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1224 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1225 1226 old_bytenr = btrfs_node_blockptr(parent, slot); 1227 blocksize = fs_info->nodesize; 1228 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1229 1230 if (level <= max_level) { 1231 eb = path->nodes[level]; 1232 new_bytenr = btrfs_node_blockptr(eb, 1233 path->slots[level]); 1234 new_ptr_gen = btrfs_node_ptr_generation(eb, 1235 path->slots[level]); 1236 } else { 1237 new_bytenr = 0; 1238 new_ptr_gen = 0; 1239 } 1240 1241 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1242 ret = level; 1243 break; 1244 } 1245 1246 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1247 memcmp_node_keys(parent, slot, path, level)) { 1248 if (level <= lowest_level) { 1249 ret = 0; 1250 break; 1251 } 1252 1253 eb = btrfs_read_node_slot(parent, slot); 1254 if (IS_ERR(eb)) { 1255 ret = PTR_ERR(eb); 1256 break; 1257 } 1258 btrfs_tree_lock(eb); 1259 if (cow) { 1260 ret = btrfs_cow_block(trans, dest, eb, parent, 1261 slot, &eb, 1262 BTRFS_NESTING_COW); 1263 if (ret) { 1264 btrfs_tree_unlock(eb); 1265 free_extent_buffer(eb); 1266 break; 1267 } 1268 } 1269 1270 btrfs_tree_unlock(parent); 1271 free_extent_buffer(parent); 1272 1273 parent = eb; 1274 continue; 1275 } 1276 1277 if (!cow) { 1278 btrfs_tree_unlock(parent); 1279 free_extent_buffer(parent); 1280 cow = 1; 1281 goto again; 1282 } 1283 1284 btrfs_node_key_to_cpu(path->nodes[level], &key, 1285 path->slots[level]); 1286 btrfs_release_path(path); 1287 1288 path->lowest_level = level; 1289 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); 1290 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1291 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); 1292 path->lowest_level = 0; 1293 if (ret) { 1294 if (ret > 0) 1295 ret = -ENOENT; 1296 break; 1297 } 1298 1299 /* 1300 * Info qgroup to trace both subtrees. 1301 * 1302 * We must trace both trees. 1303 * 1) Tree reloc subtree 1304 * If not traced, we will leak data numbers 1305 * 2) Fs subtree 1306 * If not traced, we will double count old data 1307 * 1308 * We don't scan the subtree right now, but only record 1309 * the swapped tree blocks. 1310 * The real subtree rescan is delayed until we have new 1311 * CoW on the subtree root node before transaction commit. 1312 */ 1313 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 1314 rc->block_group, parent, slot, 1315 path->nodes[level], path->slots[level], 1316 last_snapshot); 1317 if (ret < 0) 1318 break; 1319 /* 1320 * swap blocks in fs tree and reloc tree. 1321 */ 1322 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1323 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1324 btrfs_mark_buffer_dirty(trans, parent); 1325 1326 btrfs_set_node_blockptr(path->nodes[level], 1327 path->slots[level], old_bytenr); 1328 btrfs_set_node_ptr_generation(path->nodes[level], 1329 path->slots[level], old_ptr_gen); 1330 btrfs_mark_buffer_dirty(trans, path->nodes[level]); 1331 1332 ref.action = BTRFS_ADD_DELAYED_REF; 1333 ref.bytenr = old_bytenr; 1334 ref.num_bytes = blocksize; 1335 ref.parent = path->nodes[level]->start; 1336 ref.owning_root = btrfs_root_id(src); 1337 ref.ref_root = btrfs_root_id(src); 1338 btrfs_init_tree_ref(&ref, level - 1, 0, true); 1339 ret = btrfs_inc_extent_ref(trans, &ref); 1340 if (ret) { 1341 btrfs_abort_transaction(trans, ret); 1342 break; 1343 } 1344 1345 ref.action = BTRFS_ADD_DELAYED_REF; 1346 ref.bytenr = new_bytenr; 1347 ref.num_bytes = blocksize; 1348 ref.parent = 0; 1349 ref.owning_root = btrfs_root_id(dest); 1350 ref.ref_root = btrfs_root_id(dest); 1351 btrfs_init_tree_ref(&ref, level - 1, 0, true); 1352 ret = btrfs_inc_extent_ref(trans, &ref); 1353 if (ret) { 1354 btrfs_abort_transaction(trans, ret); 1355 break; 1356 } 1357 1358 /* We don't know the real owning_root, use 0. */ 1359 ref.action = BTRFS_DROP_DELAYED_REF; 1360 ref.bytenr = new_bytenr; 1361 ref.num_bytes = blocksize; 1362 ref.parent = path->nodes[level]->start; 1363 ref.owning_root = 0; 1364 ref.ref_root = btrfs_root_id(src); 1365 btrfs_init_tree_ref(&ref, level - 1, 0, true); 1366 ret = btrfs_free_extent(trans, &ref); 1367 if (ret) { 1368 btrfs_abort_transaction(trans, ret); 1369 break; 1370 } 1371 1372 /* We don't know the real owning_root, use 0. */ 1373 ref.action = BTRFS_DROP_DELAYED_REF; 1374 ref.bytenr = old_bytenr; 1375 ref.num_bytes = blocksize; 1376 ref.parent = 0; 1377 ref.owning_root = 0; 1378 ref.ref_root = btrfs_root_id(dest); 1379 btrfs_init_tree_ref(&ref, level - 1, 0, true); 1380 ret = btrfs_free_extent(trans, &ref); 1381 if (ret) { 1382 btrfs_abort_transaction(trans, ret); 1383 break; 1384 } 1385 1386 btrfs_unlock_up_safe(path, 0); 1387 1388 ret = level; 1389 break; 1390 } 1391 btrfs_tree_unlock(parent); 1392 free_extent_buffer(parent); 1393 return ret; 1394 } 1395 1396 /* 1397 * helper to find next relocated block in reloc tree 1398 */ 1399 static noinline_for_stack 1400 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1401 int *level) 1402 { 1403 struct extent_buffer *eb; 1404 int i; 1405 u64 last_snapshot; 1406 u32 nritems; 1407 1408 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1409 1410 for (i = 0; i < *level; i++) { 1411 free_extent_buffer(path->nodes[i]); 1412 path->nodes[i] = NULL; 1413 } 1414 1415 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1416 eb = path->nodes[i]; 1417 nritems = btrfs_header_nritems(eb); 1418 while (path->slots[i] + 1 < nritems) { 1419 path->slots[i]++; 1420 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1421 last_snapshot) 1422 continue; 1423 1424 *level = i; 1425 return 0; 1426 } 1427 free_extent_buffer(path->nodes[i]); 1428 path->nodes[i] = NULL; 1429 } 1430 return 1; 1431 } 1432 1433 /* 1434 * walk down reloc tree to find relocated block of lowest level 1435 */ 1436 static noinline_for_stack 1437 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1438 int *level) 1439 { 1440 struct extent_buffer *eb = NULL; 1441 int i; 1442 u64 ptr_gen = 0; 1443 u64 last_snapshot; 1444 u32 nritems; 1445 1446 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1447 1448 for (i = *level; i > 0; i--) { 1449 eb = path->nodes[i]; 1450 nritems = btrfs_header_nritems(eb); 1451 while (path->slots[i] < nritems) { 1452 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1453 if (ptr_gen > last_snapshot) 1454 break; 1455 path->slots[i]++; 1456 } 1457 if (path->slots[i] >= nritems) { 1458 if (i == *level) 1459 break; 1460 *level = i + 1; 1461 return 0; 1462 } 1463 if (i == 1) { 1464 *level = i; 1465 return 0; 1466 } 1467 1468 eb = btrfs_read_node_slot(eb, path->slots[i]); 1469 if (IS_ERR(eb)) 1470 return PTR_ERR(eb); 1471 BUG_ON(btrfs_header_level(eb) != i - 1); 1472 path->nodes[i - 1] = eb; 1473 path->slots[i - 1] = 0; 1474 } 1475 return 1; 1476 } 1477 1478 /* 1479 * invalidate extent cache for file extents whose key in range of 1480 * [min_key, max_key) 1481 */ 1482 static int invalidate_extent_cache(struct btrfs_root *root, 1483 const struct btrfs_key *min_key, 1484 const struct btrfs_key *max_key) 1485 { 1486 struct btrfs_fs_info *fs_info = root->fs_info; 1487 struct btrfs_inode *inode = NULL; 1488 u64 objectid; 1489 u64 start, end; 1490 u64 ino; 1491 1492 objectid = min_key->objectid; 1493 while (1) { 1494 struct extent_state *cached_state = NULL; 1495 1496 cond_resched(); 1497 if (inode) 1498 iput(&inode->vfs_inode); 1499 1500 if (objectid > max_key->objectid) 1501 break; 1502 1503 inode = btrfs_find_first_inode(root, objectid); 1504 if (!inode) 1505 break; 1506 ino = btrfs_ino(inode); 1507 1508 if (ino > max_key->objectid) { 1509 iput(&inode->vfs_inode); 1510 break; 1511 } 1512 1513 objectid = ino + 1; 1514 if (!S_ISREG(inode->vfs_inode.i_mode)) 1515 continue; 1516 1517 if (unlikely(min_key->objectid == ino)) { 1518 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1519 continue; 1520 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1521 start = 0; 1522 else { 1523 start = min_key->offset; 1524 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 1525 } 1526 } else { 1527 start = 0; 1528 } 1529 1530 if (unlikely(max_key->objectid == ino)) { 1531 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1532 continue; 1533 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1534 end = (u64)-1; 1535 } else { 1536 if (max_key->offset == 0) 1537 continue; 1538 end = max_key->offset; 1539 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1540 end--; 1541 } 1542 } else { 1543 end = (u64)-1; 1544 } 1545 1546 /* the lock_extent waits for read_folio to complete */ 1547 lock_extent(&inode->io_tree, start, end, &cached_state); 1548 btrfs_drop_extent_map_range(inode, start, end, true); 1549 unlock_extent(&inode->io_tree, start, end, &cached_state); 1550 } 1551 return 0; 1552 } 1553 1554 static int find_next_key(struct btrfs_path *path, int level, 1555 struct btrfs_key *key) 1556 1557 { 1558 while (level < BTRFS_MAX_LEVEL) { 1559 if (!path->nodes[level]) 1560 break; 1561 if (path->slots[level] + 1 < 1562 btrfs_header_nritems(path->nodes[level])) { 1563 btrfs_node_key_to_cpu(path->nodes[level], key, 1564 path->slots[level] + 1); 1565 return 0; 1566 } 1567 level++; 1568 } 1569 return 1; 1570 } 1571 1572 /* 1573 * Insert current subvolume into reloc_control::dirty_subvol_roots 1574 */ 1575 static int insert_dirty_subvol(struct btrfs_trans_handle *trans, 1576 struct reloc_control *rc, 1577 struct btrfs_root *root) 1578 { 1579 struct btrfs_root *reloc_root = root->reloc_root; 1580 struct btrfs_root_item *reloc_root_item; 1581 int ret; 1582 1583 /* @root must be a subvolume tree root with a valid reloc tree */ 1584 ASSERT(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID); 1585 ASSERT(reloc_root); 1586 1587 reloc_root_item = &reloc_root->root_item; 1588 memset(&reloc_root_item->drop_progress, 0, 1589 sizeof(reloc_root_item->drop_progress)); 1590 btrfs_set_root_drop_level(reloc_root_item, 0); 1591 btrfs_set_root_refs(reloc_root_item, 0); 1592 ret = btrfs_update_reloc_root(trans, root); 1593 if (ret) 1594 return ret; 1595 1596 if (list_empty(&root->reloc_dirty_list)) { 1597 btrfs_grab_root(root); 1598 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 1599 } 1600 1601 return 0; 1602 } 1603 1604 static int clean_dirty_subvols(struct reloc_control *rc) 1605 { 1606 struct btrfs_root *root; 1607 struct btrfs_root *next; 1608 int ret = 0; 1609 int ret2; 1610 1611 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 1612 reloc_dirty_list) { 1613 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) { 1614 /* Merged subvolume, cleanup its reloc root */ 1615 struct btrfs_root *reloc_root = root->reloc_root; 1616 1617 list_del_init(&root->reloc_dirty_list); 1618 root->reloc_root = NULL; 1619 /* 1620 * Need barrier to ensure clear_bit() only happens after 1621 * root->reloc_root = NULL. Pairs with have_reloc_root. 1622 */ 1623 smp_wmb(); 1624 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1625 if (reloc_root) { 1626 /* 1627 * btrfs_drop_snapshot drops our ref we hold for 1628 * ->reloc_root. If it fails however we must 1629 * drop the ref ourselves. 1630 */ 1631 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1); 1632 if (ret2 < 0) { 1633 btrfs_put_root(reloc_root); 1634 if (!ret) 1635 ret = ret2; 1636 } 1637 } 1638 btrfs_put_root(root); 1639 } else { 1640 /* Orphan reloc tree, just clean it up */ 1641 ret2 = btrfs_drop_snapshot(root, 0, 1); 1642 if (ret2 < 0) { 1643 btrfs_put_root(root); 1644 if (!ret) 1645 ret = ret2; 1646 } 1647 } 1648 } 1649 return ret; 1650 } 1651 1652 /* 1653 * merge the relocated tree blocks in reloc tree with corresponding 1654 * fs tree. 1655 */ 1656 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 1657 struct btrfs_root *root) 1658 { 1659 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1660 struct btrfs_key key; 1661 struct btrfs_key next_key; 1662 struct btrfs_trans_handle *trans = NULL; 1663 struct btrfs_root *reloc_root; 1664 struct btrfs_root_item *root_item; 1665 struct btrfs_path *path; 1666 struct extent_buffer *leaf; 1667 int reserve_level; 1668 int level; 1669 int max_level; 1670 int replaced = 0; 1671 int ret = 0; 1672 u32 min_reserved; 1673 1674 path = btrfs_alloc_path(); 1675 if (!path) 1676 return -ENOMEM; 1677 path->reada = READA_FORWARD; 1678 1679 reloc_root = root->reloc_root; 1680 root_item = &reloc_root->root_item; 1681 1682 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 1683 level = btrfs_root_level(root_item); 1684 atomic_inc(&reloc_root->node->refs); 1685 path->nodes[level] = reloc_root->node; 1686 path->slots[level] = 0; 1687 } else { 1688 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 1689 1690 level = btrfs_root_drop_level(root_item); 1691 BUG_ON(level == 0); 1692 path->lowest_level = level; 1693 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 1694 path->lowest_level = 0; 1695 if (ret < 0) { 1696 btrfs_free_path(path); 1697 return ret; 1698 } 1699 1700 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 1701 path->slots[level]); 1702 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 1703 1704 btrfs_unlock_up_safe(path, 0); 1705 } 1706 1707 /* 1708 * In merge_reloc_root(), we modify the upper level pointer to swap the 1709 * tree blocks between reloc tree and subvolume tree. Thus for tree 1710 * block COW, we COW at most from level 1 to root level for each tree. 1711 * 1712 * Thus the needed metadata size is at most root_level * nodesize, 1713 * and * 2 since we have two trees to COW. 1714 */ 1715 reserve_level = max_t(int, 1, btrfs_root_level(root_item)); 1716 min_reserved = fs_info->nodesize * reserve_level * 2; 1717 memset(&next_key, 0, sizeof(next_key)); 1718 1719 while (1) { 1720 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, 1721 min_reserved, 1722 BTRFS_RESERVE_FLUSH_LIMIT); 1723 if (ret) 1724 goto out; 1725 trans = btrfs_start_transaction(root, 0); 1726 if (IS_ERR(trans)) { 1727 ret = PTR_ERR(trans); 1728 trans = NULL; 1729 goto out; 1730 } 1731 1732 /* 1733 * At this point we no longer have a reloc_control, so we can't 1734 * depend on btrfs_init_reloc_root to update our last_trans. 1735 * 1736 * But that's ok, we started the trans handle on our 1737 * corresponding fs_root, which means it's been added to the 1738 * dirty list. At commit time we'll still call 1739 * btrfs_update_reloc_root() and update our root item 1740 * appropriately. 1741 */ 1742 btrfs_set_root_last_trans(reloc_root, trans->transid); 1743 trans->block_rsv = rc->block_rsv; 1744 1745 replaced = 0; 1746 max_level = level; 1747 1748 ret = walk_down_reloc_tree(reloc_root, path, &level); 1749 if (ret < 0) 1750 goto out; 1751 if (ret > 0) 1752 break; 1753 1754 if (!find_next_key(path, level, &key) && 1755 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 1756 ret = 0; 1757 } else { 1758 ret = replace_path(trans, rc, root, reloc_root, path, 1759 &next_key, level, max_level); 1760 } 1761 if (ret < 0) 1762 goto out; 1763 if (ret > 0) { 1764 level = ret; 1765 btrfs_node_key_to_cpu(path->nodes[level], &key, 1766 path->slots[level]); 1767 replaced = 1; 1768 } 1769 1770 ret = walk_up_reloc_tree(reloc_root, path, &level); 1771 if (ret > 0) 1772 break; 1773 1774 BUG_ON(level == 0); 1775 /* 1776 * save the merging progress in the drop_progress. 1777 * this is OK since root refs == 1 in this case. 1778 */ 1779 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 1780 path->slots[level]); 1781 btrfs_set_root_drop_level(root_item, level); 1782 1783 btrfs_end_transaction_throttle(trans); 1784 trans = NULL; 1785 1786 btrfs_btree_balance_dirty(fs_info); 1787 1788 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1789 invalidate_extent_cache(root, &key, &next_key); 1790 } 1791 1792 /* 1793 * handle the case only one block in the fs tree need to be 1794 * relocated and the block is tree root. 1795 */ 1796 leaf = btrfs_lock_root_node(root); 1797 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf, 1798 BTRFS_NESTING_COW); 1799 btrfs_tree_unlock(leaf); 1800 free_extent_buffer(leaf); 1801 out: 1802 btrfs_free_path(path); 1803 1804 if (ret == 0) { 1805 ret = insert_dirty_subvol(trans, rc, root); 1806 if (ret) 1807 btrfs_abort_transaction(trans, ret); 1808 } 1809 1810 if (trans) 1811 btrfs_end_transaction_throttle(trans); 1812 1813 btrfs_btree_balance_dirty(fs_info); 1814 1815 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1816 invalidate_extent_cache(root, &key, &next_key); 1817 1818 return ret; 1819 } 1820 1821 static noinline_for_stack 1822 int prepare_to_merge(struct reloc_control *rc, int err) 1823 { 1824 struct btrfs_root *root = rc->extent_root; 1825 struct btrfs_fs_info *fs_info = root->fs_info; 1826 struct btrfs_root *reloc_root; 1827 struct btrfs_trans_handle *trans; 1828 LIST_HEAD(reloc_roots); 1829 u64 num_bytes = 0; 1830 int ret; 1831 1832 mutex_lock(&fs_info->reloc_mutex); 1833 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 1834 rc->merging_rsv_size += rc->nodes_relocated * 2; 1835 mutex_unlock(&fs_info->reloc_mutex); 1836 1837 again: 1838 if (!err) { 1839 num_bytes = rc->merging_rsv_size; 1840 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes, 1841 BTRFS_RESERVE_FLUSH_ALL); 1842 if (ret) 1843 err = ret; 1844 } 1845 1846 trans = btrfs_join_transaction(rc->extent_root); 1847 if (IS_ERR(trans)) { 1848 if (!err) 1849 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1850 num_bytes, NULL); 1851 return PTR_ERR(trans); 1852 } 1853 1854 if (!err) { 1855 if (num_bytes != rc->merging_rsv_size) { 1856 btrfs_end_transaction(trans); 1857 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1858 num_bytes, NULL); 1859 goto again; 1860 } 1861 } 1862 1863 rc->merge_reloc_tree = true; 1864 1865 while (!list_empty(&rc->reloc_roots)) { 1866 reloc_root = list_entry(rc->reloc_roots.next, 1867 struct btrfs_root, root_list); 1868 list_del_init(&reloc_root->root_list); 1869 1870 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1871 false); 1872 if (IS_ERR(root)) { 1873 /* 1874 * Even if we have an error we need this reloc root 1875 * back on our list so we can clean up properly. 1876 */ 1877 list_add(&reloc_root->root_list, &reloc_roots); 1878 btrfs_abort_transaction(trans, (int)PTR_ERR(root)); 1879 if (!err) 1880 err = PTR_ERR(root); 1881 break; 1882 } 1883 1884 if (unlikely(root->reloc_root != reloc_root)) { 1885 if (root->reloc_root) { 1886 btrfs_err(fs_info, 1887 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu", 1888 btrfs_root_id(root), 1889 btrfs_root_id(root->reloc_root), 1890 root->reloc_root->root_key.type, 1891 root->reloc_root->root_key.offset, 1892 btrfs_root_generation( 1893 &root->reloc_root->root_item), 1894 btrfs_root_id(reloc_root), 1895 reloc_root->root_key.type, 1896 reloc_root->root_key.offset, 1897 btrfs_root_generation( 1898 &reloc_root->root_item)); 1899 } else { 1900 btrfs_err(fs_info, 1901 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu", 1902 btrfs_root_id(root), 1903 btrfs_root_id(reloc_root), 1904 reloc_root->root_key.type, 1905 reloc_root->root_key.offset, 1906 btrfs_root_generation( 1907 &reloc_root->root_item)); 1908 } 1909 list_add(&reloc_root->root_list, &reloc_roots); 1910 btrfs_put_root(root); 1911 btrfs_abort_transaction(trans, -EUCLEAN); 1912 if (!err) 1913 err = -EUCLEAN; 1914 break; 1915 } 1916 1917 /* 1918 * set reference count to 1, so btrfs_recover_relocation 1919 * knows it should resumes merging 1920 */ 1921 if (!err) 1922 btrfs_set_root_refs(&reloc_root->root_item, 1); 1923 ret = btrfs_update_reloc_root(trans, root); 1924 1925 /* 1926 * Even if we have an error we need this reloc root back on our 1927 * list so we can clean up properly. 1928 */ 1929 list_add(&reloc_root->root_list, &reloc_roots); 1930 btrfs_put_root(root); 1931 1932 if (ret) { 1933 btrfs_abort_transaction(trans, ret); 1934 if (!err) 1935 err = ret; 1936 break; 1937 } 1938 } 1939 1940 list_splice(&reloc_roots, &rc->reloc_roots); 1941 1942 if (!err) 1943 err = btrfs_commit_transaction(trans); 1944 else 1945 btrfs_end_transaction(trans); 1946 return err; 1947 } 1948 1949 static noinline_for_stack 1950 void free_reloc_roots(struct list_head *list) 1951 { 1952 struct btrfs_root *reloc_root, *tmp; 1953 1954 list_for_each_entry_safe(reloc_root, tmp, list, root_list) 1955 __del_reloc_root(reloc_root); 1956 } 1957 1958 static noinline_for_stack 1959 void merge_reloc_roots(struct reloc_control *rc) 1960 { 1961 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1962 struct btrfs_root *root; 1963 struct btrfs_root *reloc_root; 1964 LIST_HEAD(reloc_roots); 1965 int found = 0; 1966 int ret = 0; 1967 again: 1968 root = rc->extent_root; 1969 1970 /* 1971 * this serializes us with btrfs_record_root_in_transaction, 1972 * we have to make sure nobody is in the middle of 1973 * adding their roots to the list while we are 1974 * doing this splice 1975 */ 1976 mutex_lock(&fs_info->reloc_mutex); 1977 list_splice_init(&rc->reloc_roots, &reloc_roots); 1978 mutex_unlock(&fs_info->reloc_mutex); 1979 1980 while (!list_empty(&reloc_roots)) { 1981 found = 1; 1982 reloc_root = list_entry(reloc_roots.next, 1983 struct btrfs_root, root_list); 1984 1985 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1986 false); 1987 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 1988 if (WARN_ON(IS_ERR(root))) { 1989 /* 1990 * For recovery we read the fs roots on mount, 1991 * and if we didn't find the root then we marked 1992 * the reloc root as a garbage root. For normal 1993 * relocation obviously the root should exist in 1994 * memory. However there's no reason we can't 1995 * handle the error properly here just in case. 1996 */ 1997 ret = PTR_ERR(root); 1998 goto out; 1999 } 2000 if (WARN_ON(root->reloc_root != reloc_root)) { 2001 /* 2002 * This can happen if on-disk metadata has some 2003 * corruption, e.g. bad reloc tree key offset. 2004 */ 2005 ret = -EINVAL; 2006 goto out; 2007 } 2008 ret = merge_reloc_root(rc, root); 2009 btrfs_put_root(root); 2010 if (ret) { 2011 if (list_empty(&reloc_root->root_list)) 2012 list_add_tail(&reloc_root->root_list, 2013 &reloc_roots); 2014 goto out; 2015 } 2016 } else { 2017 if (!IS_ERR(root)) { 2018 if (root->reloc_root == reloc_root) { 2019 root->reloc_root = NULL; 2020 btrfs_put_root(reloc_root); 2021 } 2022 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, 2023 &root->state); 2024 btrfs_put_root(root); 2025 } 2026 2027 list_del_init(&reloc_root->root_list); 2028 /* Don't forget to queue this reloc root for cleanup */ 2029 list_add_tail(&reloc_root->reloc_dirty_list, 2030 &rc->dirty_subvol_roots); 2031 } 2032 } 2033 2034 if (found) { 2035 found = 0; 2036 goto again; 2037 } 2038 out: 2039 if (ret) { 2040 btrfs_handle_fs_error(fs_info, ret, NULL); 2041 free_reloc_roots(&reloc_roots); 2042 2043 /* new reloc root may be added */ 2044 mutex_lock(&fs_info->reloc_mutex); 2045 list_splice_init(&rc->reloc_roots, &reloc_roots); 2046 mutex_unlock(&fs_info->reloc_mutex); 2047 free_reloc_roots(&reloc_roots); 2048 } 2049 2050 /* 2051 * We used to have 2052 * 2053 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2054 * 2055 * here, but it's wrong. If we fail to start the transaction in 2056 * prepare_to_merge() we will have only 0 ref reloc roots, none of which 2057 * have actually been removed from the reloc_root_tree rb tree. This is 2058 * fine because we're bailing here, and we hold a reference on the root 2059 * for the list that holds it, so these roots will be cleaned up when we 2060 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root 2061 * will be cleaned up on unmount. 2062 * 2063 * The remaining nodes will be cleaned up by free_reloc_control. 2064 */ 2065 } 2066 2067 static void free_block_list(struct rb_root *blocks) 2068 { 2069 struct tree_block *block; 2070 struct rb_node *rb_node; 2071 while ((rb_node = rb_first(blocks))) { 2072 block = rb_entry(rb_node, struct tree_block, rb_node); 2073 rb_erase(rb_node, blocks); 2074 kfree(block); 2075 } 2076 } 2077 2078 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2079 struct btrfs_root *reloc_root) 2080 { 2081 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 2082 struct btrfs_root *root; 2083 int ret; 2084 2085 if (btrfs_get_root_last_trans(reloc_root) == trans->transid) 2086 return 0; 2087 2088 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false); 2089 2090 /* 2091 * This should succeed, since we can't have a reloc root without having 2092 * already looked up the actual root and created the reloc root for this 2093 * root. 2094 * 2095 * However if there's some sort of corruption where we have a ref to a 2096 * reloc root without a corresponding root this could return ENOENT. 2097 */ 2098 if (IS_ERR(root)) { 2099 ASSERT(0); 2100 return PTR_ERR(root); 2101 } 2102 if (root->reloc_root != reloc_root) { 2103 ASSERT(0); 2104 btrfs_err(fs_info, 2105 "root %llu has two reloc roots associated with it", 2106 reloc_root->root_key.offset); 2107 btrfs_put_root(root); 2108 return -EUCLEAN; 2109 } 2110 ret = btrfs_record_root_in_trans(trans, root); 2111 btrfs_put_root(root); 2112 2113 return ret; 2114 } 2115 2116 static noinline_for_stack 2117 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2118 struct reloc_control *rc, 2119 struct btrfs_backref_node *node, 2120 struct btrfs_backref_edge *edges[]) 2121 { 2122 struct btrfs_backref_node *next; 2123 struct btrfs_root *root; 2124 int index = 0; 2125 int ret; 2126 2127 next = node; 2128 while (1) { 2129 cond_resched(); 2130 next = walk_up_backref(next, edges, &index); 2131 root = next->root; 2132 2133 /* 2134 * If there is no root, then our references for this block are 2135 * incomplete, as we should be able to walk all the way up to a 2136 * block that is owned by a root. 2137 * 2138 * This path is only for SHAREABLE roots, so if we come upon a 2139 * non-SHAREABLE root then we have backrefs that resolve 2140 * improperly. 2141 * 2142 * Both of these cases indicate file system corruption, or a bug 2143 * in the backref walking code. 2144 */ 2145 if (!root) { 2146 ASSERT(0); 2147 btrfs_err(trans->fs_info, 2148 "bytenr %llu doesn't have a backref path ending in a root", 2149 node->bytenr); 2150 return ERR_PTR(-EUCLEAN); 2151 } 2152 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2153 ASSERT(0); 2154 btrfs_err(trans->fs_info, 2155 "bytenr %llu has multiple refs with one ending in a non-shareable root", 2156 node->bytenr); 2157 return ERR_PTR(-EUCLEAN); 2158 } 2159 2160 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) { 2161 ret = record_reloc_root_in_trans(trans, root); 2162 if (ret) 2163 return ERR_PTR(ret); 2164 break; 2165 } 2166 2167 ret = btrfs_record_root_in_trans(trans, root); 2168 if (ret) 2169 return ERR_PTR(ret); 2170 root = root->reloc_root; 2171 2172 /* 2173 * We could have raced with another thread which failed, so 2174 * root->reloc_root may not be set, return ENOENT in this case. 2175 */ 2176 if (!root) 2177 return ERR_PTR(-ENOENT); 2178 2179 if (next->new_bytenr != root->node->start) { 2180 /* 2181 * We just created the reloc root, so we shouldn't have 2182 * ->new_bytenr set and this shouldn't be in the changed 2183 * list. If it is then we have multiple roots pointing 2184 * at the same bytenr which indicates corruption, or 2185 * we've made a mistake in the backref walking code. 2186 */ 2187 ASSERT(next->new_bytenr == 0); 2188 ASSERT(list_empty(&next->list)); 2189 if (next->new_bytenr || !list_empty(&next->list)) { 2190 btrfs_err(trans->fs_info, 2191 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu", 2192 node->bytenr, next->bytenr); 2193 return ERR_PTR(-EUCLEAN); 2194 } 2195 2196 next->new_bytenr = root->node->start; 2197 btrfs_put_root(next->root); 2198 next->root = btrfs_grab_root(root); 2199 ASSERT(next->root); 2200 list_add_tail(&next->list, 2201 &rc->backref_cache.changed); 2202 mark_block_processed(rc, next); 2203 break; 2204 } 2205 2206 WARN_ON(1); 2207 root = NULL; 2208 next = walk_down_backref(edges, &index); 2209 if (!next || next->level <= node->level) 2210 break; 2211 } 2212 if (!root) { 2213 /* 2214 * This can happen if there's fs corruption or if there's a bug 2215 * in the backref lookup code. 2216 */ 2217 ASSERT(0); 2218 return ERR_PTR(-ENOENT); 2219 } 2220 2221 next = node; 2222 /* setup backref node path for btrfs_reloc_cow_block */ 2223 while (1) { 2224 rc->backref_cache.path[next->level] = next; 2225 if (--index < 0) 2226 break; 2227 next = edges[index]->node[UPPER]; 2228 } 2229 return root; 2230 } 2231 2232 /* 2233 * Select a tree root for relocation. 2234 * 2235 * Return NULL if the block is not shareable. We should use do_relocation() in 2236 * this case. 2237 * 2238 * Return a tree root pointer if the block is shareable. 2239 * Return -ENOENT if the block is root of reloc tree. 2240 */ 2241 static noinline_for_stack 2242 struct btrfs_root *select_one_root(struct btrfs_backref_node *node) 2243 { 2244 struct btrfs_backref_node *next; 2245 struct btrfs_root *root; 2246 struct btrfs_root *fs_root = NULL; 2247 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2248 int index = 0; 2249 2250 next = node; 2251 while (1) { 2252 cond_resched(); 2253 next = walk_up_backref(next, edges, &index); 2254 root = next->root; 2255 2256 /* 2257 * This can occur if we have incomplete extent refs leading all 2258 * the way up a particular path, in this case return -EUCLEAN. 2259 */ 2260 if (!root) 2261 return ERR_PTR(-EUCLEAN); 2262 2263 /* No other choice for non-shareable tree */ 2264 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2265 return root; 2266 2267 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) 2268 fs_root = root; 2269 2270 if (next != node) 2271 return NULL; 2272 2273 next = walk_down_backref(edges, &index); 2274 if (!next || next->level <= node->level) 2275 break; 2276 } 2277 2278 if (!fs_root) 2279 return ERR_PTR(-ENOENT); 2280 return fs_root; 2281 } 2282 2283 static noinline_for_stack u64 calcu_metadata_size(struct reloc_control *rc, 2284 struct btrfs_backref_node *node) 2285 { 2286 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2287 struct btrfs_backref_node *next = node; 2288 struct btrfs_backref_edge *edge; 2289 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2290 u64 num_bytes = 0; 2291 int index = 0; 2292 2293 BUG_ON(node->processed); 2294 2295 while (next) { 2296 cond_resched(); 2297 while (1) { 2298 if (next->processed) 2299 break; 2300 2301 num_bytes += fs_info->nodesize; 2302 2303 if (list_empty(&next->upper)) 2304 break; 2305 2306 edge = list_entry(next->upper.next, 2307 struct btrfs_backref_edge, list[LOWER]); 2308 edges[index++] = edge; 2309 next = edge->node[UPPER]; 2310 } 2311 next = walk_down_backref(edges, &index); 2312 } 2313 return num_bytes; 2314 } 2315 2316 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2317 struct reloc_control *rc, 2318 struct btrfs_backref_node *node) 2319 { 2320 struct btrfs_root *root = rc->extent_root; 2321 struct btrfs_fs_info *fs_info = root->fs_info; 2322 u64 num_bytes; 2323 int ret; 2324 u64 tmp; 2325 2326 num_bytes = calcu_metadata_size(rc, node) * 2; 2327 2328 trans->block_rsv = rc->block_rsv; 2329 rc->reserved_bytes += num_bytes; 2330 2331 /* 2332 * We are under a transaction here so we can only do limited flushing. 2333 * If we get an enospc just kick back -EAGAIN so we know to drop the 2334 * transaction and try to refill when we can flush all the things. 2335 */ 2336 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes, 2337 BTRFS_RESERVE_FLUSH_LIMIT); 2338 if (ret) { 2339 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2340 while (tmp <= rc->reserved_bytes) 2341 tmp <<= 1; 2342 /* 2343 * only one thread can access block_rsv at this point, 2344 * so we don't need hold lock to protect block_rsv. 2345 * we expand more reservation size here to allow enough 2346 * space for relocation and we will return earlier in 2347 * enospc case. 2348 */ 2349 rc->block_rsv->size = tmp + fs_info->nodesize * 2350 RELOCATION_RESERVED_NODES; 2351 return -EAGAIN; 2352 } 2353 2354 return 0; 2355 } 2356 2357 /* 2358 * relocate a block tree, and then update pointers in upper level 2359 * blocks that reference the block to point to the new location. 2360 * 2361 * if called by link_to_upper, the block has already been relocated. 2362 * in that case this function just updates pointers. 2363 */ 2364 static int do_relocation(struct btrfs_trans_handle *trans, 2365 struct reloc_control *rc, 2366 struct btrfs_backref_node *node, 2367 struct btrfs_key *key, 2368 struct btrfs_path *path, int lowest) 2369 { 2370 struct btrfs_backref_node *upper; 2371 struct btrfs_backref_edge *edge; 2372 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2373 struct btrfs_root *root; 2374 struct extent_buffer *eb; 2375 u32 blocksize; 2376 u64 bytenr; 2377 int slot; 2378 int ret = 0; 2379 2380 /* 2381 * If we are lowest then this is the first time we're processing this 2382 * block, and thus shouldn't have an eb associated with it yet. 2383 */ 2384 ASSERT(!lowest || !node->eb); 2385 2386 path->lowest_level = node->level + 1; 2387 rc->backref_cache.path[node->level] = node; 2388 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2389 cond_resched(); 2390 2391 upper = edge->node[UPPER]; 2392 root = select_reloc_root(trans, rc, upper, edges); 2393 if (IS_ERR(root)) { 2394 ret = PTR_ERR(root); 2395 goto next; 2396 } 2397 2398 if (upper->eb && !upper->locked) { 2399 if (!lowest) { 2400 ret = btrfs_bin_search(upper->eb, 0, key, &slot); 2401 if (ret < 0) 2402 goto next; 2403 BUG_ON(ret); 2404 bytenr = btrfs_node_blockptr(upper->eb, slot); 2405 if (node->eb->start == bytenr) 2406 goto next; 2407 } 2408 btrfs_backref_drop_node_buffer(upper); 2409 } 2410 2411 if (!upper->eb) { 2412 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2413 if (ret) { 2414 if (ret > 0) 2415 ret = -ENOENT; 2416 2417 btrfs_release_path(path); 2418 break; 2419 } 2420 2421 if (!upper->eb) { 2422 upper->eb = path->nodes[upper->level]; 2423 path->nodes[upper->level] = NULL; 2424 } else { 2425 BUG_ON(upper->eb != path->nodes[upper->level]); 2426 } 2427 2428 upper->locked = 1; 2429 path->locks[upper->level] = 0; 2430 2431 slot = path->slots[upper->level]; 2432 btrfs_release_path(path); 2433 } else { 2434 ret = btrfs_bin_search(upper->eb, 0, key, &slot); 2435 if (ret < 0) 2436 goto next; 2437 BUG_ON(ret); 2438 } 2439 2440 bytenr = btrfs_node_blockptr(upper->eb, slot); 2441 if (lowest) { 2442 if (bytenr != node->bytenr) { 2443 btrfs_err(root->fs_info, 2444 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2445 bytenr, node->bytenr, slot, 2446 upper->eb->start); 2447 ret = -EIO; 2448 goto next; 2449 } 2450 } else { 2451 if (node->eb->start == bytenr) 2452 goto next; 2453 } 2454 2455 blocksize = root->fs_info->nodesize; 2456 eb = btrfs_read_node_slot(upper->eb, slot); 2457 if (IS_ERR(eb)) { 2458 ret = PTR_ERR(eb); 2459 goto next; 2460 } 2461 btrfs_tree_lock(eb); 2462 2463 if (!node->eb) { 2464 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2465 slot, &eb, BTRFS_NESTING_COW); 2466 btrfs_tree_unlock(eb); 2467 free_extent_buffer(eb); 2468 if (ret < 0) 2469 goto next; 2470 /* 2471 * We've just COWed this block, it should have updated 2472 * the correct backref node entry. 2473 */ 2474 ASSERT(node->eb == eb); 2475 } else { 2476 struct btrfs_ref ref = { 2477 .action = BTRFS_ADD_DELAYED_REF, 2478 .bytenr = node->eb->start, 2479 .num_bytes = blocksize, 2480 .parent = upper->eb->start, 2481 .owning_root = btrfs_header_owner(upper->eb), 2482 .ref_root = btrfs_header_owner(upper->eb), 2483 }; 2484 2485 btrfs_set_node_blockptr(upper->eb, slot, 2486 node->eb->start); 2487 btrfs_set_node_ptr_generation(upper->eb, slot, 2488 trans->transid); 2489 btrfs_mark_buffer_dirty(trans, upper->eb); 2490 2491 btrfs_init_tree_ref(&ref, node->level, 2492 btrfs_root_id(root), false); 2493 ret = btrfs_inc_extent_ref(trans, &ref); 2494 if (!ret) 2495 ret = btrfs_drop_subtree(trans, root, eb, 2496 upper->eb); 2497 if (ret) 2498 btrfs_abort_transaction(trans, ret); 2499 } 2500 next: 2501 if (!upper->pending) 2502 btrfs_backref_drop_node_buffer(upper); 2503 else 2504 btrfs_backref_unlock_node_buffer(upper); 2505 if (ret) 2506 break; 2507 } 2508 2509 if (!ret && node->pending) { 2510 btrfs_backref_drop_node_buffer(node); 2511 list_move_tail(&node->list, &rc->backref_cache.changed); 2512 node->pending = 0; 2513 } 2514 2515 path->lowest_level = 0; 2516 2517 /* 2518 * We should have allocated all of our space in the block rsv and thus 2519 * shouldn't ENOSPC. 2520 */ 2521 ASSERT(ret != -ENOSPC); 2522 return ret; 2523 } 2524 2525 static int link_to_upper(struct btrfs_trans_handle *trans, 2526 struct reloc_control *rc, 2527 struct btrfs_backref_node *node, 2528 struct btrfs_path *path) 2529 { 2530 struct btrfs_key key; 2531 2532 btrfs_node_key_to_cpu(node->eb, &key, 0); 2533 return do_relocation(trans, rc, node, &key, path, 0); 2534 } 2535 2536 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2537 struct reloc_control *rc, 2538 struct btrfs_path *path, int err) 2539 { 2540 LIST_HEAD(list); 2541 struct btrfs_backref_cache *cache = &rc->backref_cache; 2542 struct btrfs_backref_node *node; 2543 int level; 2544 int ret; 2545 2546 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2547 while (!list_empty(&cache->pending[level])) { 2548 node = list_entry(cache->pending[level].next, 2549 struct btrfs_backref_node, list); 2550 list_move_tail(&node->list, &list); 2551 BUG_ON(!node->pending); 2552 2553 if (!err) { 2554 ret = link_to_upper(trans, rc, node, path); 2555 if (ret < 0) 2556 err = ret; 2557 } 2558 } 2559 list_splice_init(&list, &cache->pending[level]); 2560 } 2561 return err; 2562 } 2563 2564 /* 2565 * mark a block and all blocks directly/indirectly reference the block 2566 * as processed. 2567 */ 2568 static void update_processed_blocks(struct reloc_control *rc, 2569 struct btrfs_backref_node *node) 2570 { 2571 struct btrfs_backref_node *next = node; 2572 struct btrfs_backref_edge *edge; 2573 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2574 int index = 0; 2575 2576 while (next) { 2577 cond_resched(); 2578 while (1) { 2579 if (next->processed) 2580 break; 2581 2582 mark_block_processed(rc, next); 2583 2584 if (list_empty(&next->upper)) 2585 break; 2586 2587 edge = list_entry(next->upper.next, 2588 struct btrfs_backref_edge, list[LOWER]); 2589 edges[index++] = edge; 2590 next = edge->node[UPPER]; 2591 } 2592 next = walk_down_backref(edges, &index); 2593 } 2594 } 2595 2596 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2597 { 2598 u32 blocksize = rc->extent_root->fs_info->nodesize; 2599 2600 if (test_range_bit(&rc->processed_blocks, bytenr, 2601 bytenr + blocksize - 1, EXTENT_DIRTY, NULL)) 2602 return 1; 2603 return 0; 2604 } 2605 2606 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2607 struct tree_block *block) 2608 { 2609 struct btrfs_tree_parent_check check = { 2610 .level = block->level, 2611 .owner_root = block->owner, 2612 .transid = block->key.offset 2613 }; 2614 struct extent_buffer *eb; 2615 2616 eb = read_tree_block(fs_info, block->bytenr, &check); 2617 if (IS_ERR(eb)) 2618 return PTR_ERR(eb); 2619 if (!extent_buffer_uptodate(eb)) { 2620 free_extent_buffer(eb); 2621 return -EIO; 2622 } 2623 if (block->level == 0) 2624 btrfs_item_key_to_cpu(eb, &block->key, 0); 2625 else 2626 btrfs_node_key_to_cpu(eb, &block->key, 0); 2627 free_extent_buffer(eb); 2628 block->key_ready = true; 2629 return 0; 2630 } 2631 2632 /* 2633 * helper function to relocate a tree block 2634 */ 2635 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2636 struct reloc_control *rc, 2637 struct btrfs_backref_node *node, 2638 struct btrfs_key *key, 2639 struct btrfs_path *path) 2640 { 2641 struct btrfs_root *root; 2642 int ret = 0; 2643 2644 if (!node) 2645 return 0; 2646 2647 /* 2648 * If we fail here we want to drop our backref_node because we are going 2649 * to start over and regenerate the tree for it. 2650 */ 2651 ret = reserve_metadata_space(trans, rc, node); 2652 if (ret) 2653 goto out; 2654 2655 BUG_ON(node->processed); 2656 root = select_one_root(node); 2657 if (IS_ERR(root)) { 2658 ret = PTR_ERR(root); 2659 2660 /* See explanation in select_one_root for the -EUCLEAN case. */ 2661 ASSERT(ret == -ENOENT); 2662 if (ret == -ENOENT) { 2663 ret = 0; 2664 update_processed_blocks(rc, node); 2665 } 2666 goto out; 2667 } 2668 2669 if (root) { 2670 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2671 /* 2672 * This block was the root block of a root, and this is 2673 * the first time we're processing the block and thus it 2674 * should not have had the ->new_bytenr modified and 2675 * should have not been included on the changed list. 2676 * 2677 * However in the case of corruption we could have 2678 * multiple refs pointing to the same block improperly, 2679 * and thus we would trip over these checks. ASSERT() 2680 * for the developer case, because it could indicate a 2681 * bug in the backref code, however error out for a 2682 * normal user in the case of corruption. 2683 */ 2684 ASSERT(node->new_bytenr == 0); 2685 ASSERT(list_empty(&node->list)); 2686 if (node->new_bytenr || !list_empty(&node->list)) { 2687 btrfs_err(root->fs_info, 2688 "bytenr %llu has improper references to it", 2689 node->bytenr); 2690 ret = -EUCLEAN; 2691 goto out; 2692 } 2693 ret = btrfs_record_root_in_trans(trans, root); 2694 if (ret) 2695 goto out; 2696 /* 2697 * Another thread could have failed, need to check if we 2698 * have reloc_root actually set. 2699 */ 2700 if (!root->reloc_root) { 2701 ret = -ENOENT; 2702 goto out; 2703 } 2704 root = root->reloc_root; 2705 node->new_bytenr = root->node->start; 2706 btrfs_put_root(node->root); 2707 node->root = btrfs_grab_root(root); 2708 ASSERT(node->root); 2709 list_add_tail(&node->list, &rc->backref_cache.changed); 2710 } else { 2711 path->lowest_level = node->level; 2712 if (root == root->fs_info->chunk_root) 2713 btrfs_reserve_chunk_metadata(trans, false); 2714 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2715 btrfs_release_path(path); 2716 if (root == root->fs_info->chunk_root) 2717 btrfs_trans_release_chunk_metadata(trans); 2718 if (ret > 0) 2719 ret = 0; 2720 } 2721 if (!ret) 2722 update_processed_blocks(rc, node); 2723 } else { 2724 ret = do_relocation(trans, rc, node, key, path, 1); 2725 } 2726 out: 2727 if (ret || node->level == 0 || node->cowonly) 2728 btrfs_backref_cleanup_node(&rc->backref_cache, node); 2729 return ret; 2730 } 2731 2732 /* 2733 * relocate a list of blocks 2734 */ 2735 static noinline_for_stack 2736 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2737 struct reloc_control *rc, struct rb_root *blocks) 2738 { 2739 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2740 struct btrfs_backref_node *node; 2741 struct btrfs_path *path; 2742 struct tree_block *block; 2743 struct tree_block *next; 2744 int ret = 0; 2745 2746 path = btrfs_alloc_path(); 2747 if (!path) { 2748 ret = -ENOMEM; 2749 goto out_free_blocks; 2750 } 2751 2752 /* Kick in readahead for tree blocks with missing keys */ 2753 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2754 if (!block->key_ready) 2755 btrfs_readahead_tree_block(fs_info, block->bytenr, 2756 block->owner, 0, 2757 block->level); 2758 } 2759 2760 /* Get first keys */ 2761 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2762 if (!block->key_ready) { 2763 ret = get_tree_block_key(fs_info, block); 2764 if (ret) 2765 goto out_free_path; 2766 } 2767 } 2768 2769 /* Do tree relocation */ 2770 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2771 node = build_backref_tree(trans, rc, &block->key, 2772 block->level, block->bytenr); 2773 if (IS_ERR(node)) { 2774 ret = PTR_ERR(node); 2775 goto out; 2776 } 2777 2778 ret = relocate_tree_block(trans, rc, node, &block->key, 2779 path); 2780 if (ret < 0) 2781 break; 2782 } 2783 out: 2784 ret = finish_pending_nodes(trans, rc, path, ret); 2785 2786 out_free_path: 2787 btrfs_free_path(path); 2788 out_free_blocks: 2789 free_block_list(blocks); 2790 return ret; 2791 } 2792 2793 static noinline_for_stack int prealloc_file_extent_cluster(struct reloc_control *rc) 2794 { 2795 const struct file_extent_cluster *cluster = &rc->cluster; 2796 struct btrfs_inode *inode = BTRFS_I(rc->data_inode); 2797 u64 alloc_hint = 0; 2798 u64 start; 2799 u64 end; 2800 u64 offset = inode->reloc_block_group_start; 2801 u64 num_bytes; 2802 int nr; 2803 int ret = 0; 2804 u64 i_size = i_size_read(&inode->vfs_inode); 2805 u64 prealloc_start = cluster->start - offset; 2806 u64 prealloc_end = cluster->end - offset; 2807 u64 cur_offset = prealloc_start; 2808 2809 /* 2810 * For subpage case, previous i_size may not be aligned to PAGE_SIZE. 2811 * This means the range [i_size, PAGE_END + 1) is filled with zeros by 2812 * btrfs_do_readpage() call of previously relocated file cluster. 2813 * 2814 * If the current cluster starts in the above range, btrfs_do_readpage() 2815 * will skip the read, and relocate_one_folio() will later writeback 2816 * the padding zeros as new data, causing data corruption. 2817 * 2818 * Here we have to manually invalidate the range (i_size, PAGE_END + 1). 2819 */ 2820 if (!PAGE_ALIGNED(i_size)) { 2821 struct address_space *mapping = inode->vfs_inode.i_mapping; 2822 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2823 const u32 sectorsize = fs_info->sectorsize; 2824 struct folio *folio; 2825 2826 ASSERT(sectorsize < PAGE_SIZE); 2827 ASSERT(IS_ALIGNED(i_size, sectorsize)); 2828 2829 /* 2830 * Subpage can't handle page with DIRTY but without UPTODATE 2831 * bit as it can lead to the following deadlock: 2832 * 2833 * btrfs_read_folio() 2834 * | Page already *locked* 2835 * |- btrfs_lock_and_flush_ordered_range() 2836 * |- btrfs_start_ordered_extent() 2837 * |- extent_write_cache_pages() 2838 * |- lock_page() 2839 * We try to lock the page we already hold. 2840 * 2841 * Here we just writeback the whole data reloc inode, so that 2842 * we will be ensured to have no dirty range in the page, and 2843 * are safe to clear the uptodate bits. 2844 * 2845 * This shouldn't cause too much overhead, as we need to write 2846 * the data back anyway. 2847 */ 2848 ret = filemap_write_and_wait(mapping); 2849 if (ret < 0) 2850 return ret; 2851 2852 clear_extent_bits(&inode->io_tree, i_size, 2853 round_up(i_size, PAGE_SIZE) - 1, 2854 EXTENT_UPTODATE); 2855 folio = filemap_lock_folio(mapping, i_size >> PAGE_SHIFT); 2856 /* 2857 * If page is freed we don't need to do anything then, as we 2858 * will re-read the whole page anyway. 2859 */ 2860 if (!IS_ERR(folio)) { 2861 btrfs_subpage_clear_uptodate(fs_info, folio, i_size, 2862 round_up(i_size, PAGE_SIZE) - i_size); 2863 folio_unlock(folio); 2864 folio_put(folio); 2865 } 2866 } 2867 2868 BUG_ON(cluster->start != cluster->boundary[0]); 2869 ret = btrfs_alloc_data_chunk_ondemand(inode, 2870 prealloc_end + 1 - prealloc_start); 2871 if (ret) 2872 return ret; 2873 2874 btrfs_inode_lock(inode, 0); 2875 for (nr = 0; nr < cluster->nr; nr++) { 2876 struct extent_state *cached_state = NULL; 2877 2878 start = cluster->boundary[nr] - offset; 2879 if (nr + 1 < cluster->nr) 2880 end = cluster->boundary[nr + 1] - 1 - offset; 2881 else 2882 end = cluster->end - offset; 2883 2884 lock_extent(&inode->io_tree, start, end, &cached_state); 2885 num_bytes = end + 1 - start; 2886 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start, 2887 num_bytes, num_bytes, 2888 end + 1, &alloc_hint); 2889 cur_offset = end + 1; 2890 unlock_extent(&inode->io_tree, start, end, &cached_state); 2891 if (ret) 2892 break; 2893 } 2894 btrfs_inode_unlock(inode, 0); 2895 2896 if (cur_offset < prealloc_end) 2897 btrfs_free_reserved_data_space_noquota(inode->root->fs_info, 2898 prealloc_end + 1 - cur_offset); 2899 return ret; 2900 } 2901 2902 static noinline_for_stack int setup_relocation_extent_mapping(struct reloc_control *rc) 2903 { 2904 struct btrfs_inode *inode = BTRFS_I(rc->data_inode); 2905 struct extent_map *em; 2906 struct extent_state *cached_state = NULL; 2907 u64 offset = inode->reloc_block_group_start; 2908 u64 start = rc->cluster.start - offset; 2909 u64 end = rc->cluster.end - offset; 2910 int ret = 0; 2911 2912 em = alloc_extent_map(); 2913 if (!em) 2914 return -ENOMEM; 2915 2916 em->start = start; 2917 em->len = end + 1 - start; 2918 em->disk_bytenr = rc->cluster.start; 2919 em->disk_num_bytes = em->len; 2920 em->ram_bytes = em->len; 2921 em->flags |= EXTENT_FLAG_PINNED; 2922 2923 lock_extent(&inode->io_tree, start, end, &cached_state); 2924 ret = btrfs_replace_extent_map_range(inode, em, false); 2925 unlock_extent(&inode->io_tree, start, end, &cached_state); 2926 free_extent_map(em); 2927 2928 return ret; 2929 } 2930 2931 /* 2932 * Allow error injection to test balance/relocation cancellation 2933 */ 2934 noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info) 2935 { 2936 return atomic_read(&fs_info->balance_cancel_req) || 2937 atomic_read(&fs_info->reloc_cancel_req) || 2938 fatal_signal_pending(current); 2939 } 2940 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); 2941 2942 static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster, 2943 int cluster_nr) 2944 { 2945 /* Last extent, use cluster end directly */ 2946 if (cluster_nr >= cluster->nr - 1) 2947 return cluster->end; 2948 2949 /* Use next boundary start*/ 2950 return cluster->boundary[cluster_nr + 1] - 1; 2951 } 2952 2953 static int relocate_one_folio(struct reloc_control *rc, 2954 struct file_ra_state *ra, 2955 int *cluster_nr, unsigned long index) 2956 { 2957 const struct file_extent_cluster *cluster = &rc->cluster; 2958 struct inode *inode = rc->data_inode; 2959 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2960 u64 offset = BTRFS_I(inode)->reloc_block_group_start; 2961 const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT; 2962 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2963 struct folio *folio; 2964 u64 folio_start; 2965 u64 folio_end; 2966 u64 cur; 2967 int ret; 2968 2969 ASSERT(index <= last_index); 2970 folio = filemap_lock_folio(inode->i_mapping, index); 2971 if (IS_ERR(folio)) { 2972 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 2973 index, last_index + 1 - index); 2974 folio = __filemap_get_folio(inode->i_mapping, index, 2975 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 2976 if (IS_ERR(folio)) 2977 return PTR_ERR(folio); 2978 } 2979 2980 WARN_ON(folio_order(folio)); 2981 2982 if (folio_test_readahead(folio)) 2983 page_cache_async_readahead(inode->i_mapping, ra, NULL, 2984 folio, last_index + 1 - index); 2985 2986 if (!folio_test_uptodate(folio)) { 2987 btrfs_read_folio(NULL, folio); 2988 folio_lock(folio); 2989 if (!folio_test_uptodate(folio)) { 2990 ret = -EIO; 2991 goto release_folio; 2992 } 2993 } 2994 2995 /* 2996 * We could have lost folio private when we dropped the lock to read the 2997 * folio above, make sure we set_page_extent_mapped here so we have any 2998 * of the subpage blocksize stuff we need in place. 2999 */ 3000 ret = set_folio_extent_mapped(folio); 3001 if (ret < 0) 3002 goto release_folio; 3003 3004 folio_start = folio_pos(folio); 3005 folio_end = folio_start + PAGE_SIZE - 1; 3006 3007 /* 3008 * Start from the cluster, as for subpage case, the cluster can start 3009 * inside the folio. 3010 */ 3011 cur = max(folio_start, cluster->boundary[*cluster_nr] - offset); 3012 while (cur <= folio_end) { 3013 struct extent_state *cached_state = NULL; 3014 u64 extent_start = cluster->boundary[*cluster_nr] - offset; 3015 u64 extent_end = get_cluster_boundary_end(cluster, 3016 *cluster_nr) - offset; 3017 u64 clamped_start = max(folio_start, extent_start); 3018 u64 clamped_end = min(folio_end, extent_end); 3019 u32 clamped_len = clamped_end + 1 - clamped_start; 3020 3021 /* Reserve metadata for this range */ 3022 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 3023 clamped_len, clamped_len, 3024 false); 3025 if (ret) 3026 goto release_folio; 3027 3028 /* Mark the range delalloc and dirty for later writeback */ 3029 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, 3030 &cached_state); 3031 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start, 3032 clamped_end, 0, &cached_state); 3033 if (ret) { 3034 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3035 clamped_start, clamped_end, 3036 EXTENT_LOCKED | EXTENT_BOUNDARY, 3037 &cached_state); 3038 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3039 clamped_len, true); 3040 btrfs_delalloc_release_extents(BTRFS_I(inode), 3041 clamped_len); 3042 goto release_folio; 3043 } 3044 btrfs_folio_set_dirty(fs_info, folio, clamped_start, clamped_len); 3045 3046 /* 3047 * Set the boundary if it's inside the folio. 3048 * Data relocation requires the destination extents to have the 3049 * same size as the source. 3050 * EXTENT_BOUNDARY bit prevents current extent from being merged 3051 * with previous extent. 3052 */ 3053 if (in_range(cluster->boundary[*cluster_nr] - offset, folio_start, PAGE_SIZE)) { 3054 u64 boundary_start = cluster->boundary[*cluster_nr] - 3055 offset; 3056 u64 boundary_end = boundary_start + 3057 fs_info->sectorsize - 1; 3058 3059 set_extent_bit(&BTRFS_I(inode)->io_tree, 3060 boundary_start, boundary_end, 3061 EXTENT_BOUNDARY, NULL); 3062 } 3063 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, 3064 &cached_state); 3065 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len); 3066 cur += clamped_len; 3067 3068 /* Crossed extent end, go to next extent */ 3069 if (cur >= extent_end) { 3070 (*cluster_nr)++; 3071 /* Just finished the last extent of the cluster, exit. */ 3072 if (*cluster_nr >= cluster->nr) 3073 break; 3074 } 3075 } 3076 folio_unlock(folio); 3077 folio_put(folio); 3078 3079 balance_dirty_pages_ratelimited(inode->i_mapping); 3080 btrfs_throttle(fs_info); 3081 if (btrfs_should_cancel_balance(fs_info)) 3082 ret = -ECANCELED; 3083 return ret; 3084 3085 release_folio: 3086 folio_unlock(folio); 3087 folio_put(folio); 3088 return ret; 3089 } 3090 3091 static int relocate_file_extent_cluster(struct reloc_control *rc) 3092 { 3093 struct inode *inode = rc->data_inode; 3094 const struct file_extent_cluster *cluster = &rc->cluster; 3095 u64 offset = BTRFS_I(inode)->reloc_block_group_start; 3096 unsigned long index; 3097 unsigned long last_index; 3098 struct file_ra_state *ra; 3099 int cluster_nr = 0; 3100 int ret = 0; 3101 3102 if (!cluster->nr) 3103 return 0; 3104 3105 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3106 if (!ra) 3107 return -ENOMEM; 3108 3109 ret = prealloc_file_extent_cluster(rc); 3110 if (ret) 3111 goto out; 3112 3113 file_ra_state_init(ra, inode->i_mapping); 3114 3115 ret = setup_relocation_extent_mapping(rc); 3116 if (ret) 3117 goto out; 3118 3119 last_index = (cluster->end - offset) >> PAGE_SHIFT; 3120 for (index = (cluster->start - offset) >> PAGE_SHIFT; 3121 index <= last_index && !ret; index++) 3122 ret = relocate_one_folio(rc, ra, &cluster_nr, index); 3123 if (ret == 0) 3124 WARN_ON(cluster_nr != cluster->nr); 3125 out: 3126 kfree(ra); 3127 return ret; 3128 } 3129 3130 static noinline_for_stack int relocate_data_extent(struct reloc_control *rc, 3131 const struct btrfs_key *extent_key) 3132 { 3133 struct inode *inode = rc->data_inode; 3134 struct file_extent_cluster *cluster = &rc->cluster; 3135 int ret; 3136 struct btrfs_root *root = BTRFS_I(inode)->root; 3137 3138 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3139 ret = relocate_file_extent_cluster(rc); 3140 if (ret) 3141 return ret; 3142 cluster->nr = 0; 3143 } 3144 3145 /* 3146 * Under simple quotas, we set root->relocation_src_root when we find 3147 * the extent. If adjacent extents have different owners, we can't merge 3148 * them while relocating. Handle this by storing the owning root that 3149 * started a cluster and if we see an extent from a different root break 3150 * cluster formation (just like the above case of non-adjacent extents). 3151 * 3152 * Without simple quotas, relocation_src_root is always 0, so we should 3153 * never see a mismatch, and it should have no effect on relocation 3154 * clusters. 3155 */ 3156 if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) { 3157 u64 tmp = root->relocation_src_root; 3158 3159 /* 3160 * root->relocation_src_root is the state that actually affects 3161 * the preallocation we do here, so set it to the root owning 3162 * the cluster we need to relocate. 3163 */ 3164 root->relocation_src_root = cluster->owning_root; 3165 ret = relocate_file_extent_cluster(rc); 3166 if (ret) 3167 return ret; 3168 cluster->nr = 0; 3169 /* And reset it back for the current extent's owning root. */ 3170 root->relocation_src_root = tmp; 3171 } 3172 3173 if (!cluster->nr) { 3174 cluster->start = extent_key->objectid; 3175 cluster->owning_root = root->relocation_src_root; 3176 } 3177 else 3178 BUG_ON(cluster->nr >= MAX_EXTENTS); 3179 cluster->end = extent_key->objectid + extent_key->offset - 1; 3180 cluster->boundary[cluster->nr] = extent_key->objectid; 3181 cluster->nr++; 3182 3183 if (cluster->nr >= MAX_EXTENTS) { 3184 ret = relocate_file_extent_cluster(rc); 3185 if (ret) 3186 return ret; 3187 cluster->nr = 0; 3188 } 3189 return 0; 3190 } 3191 3192 /* 3193 * helper to add a tree block to the list. 3194 * the major work is getting the generation and level of the block 3195 */ 3196 static int add_tree_block(struct reloc_control *rc, 3197 const struct btrfs_key *extent_key, 3198 struct btrfs_path *path, 3199 struct rb_root *blocks) 3200 { 3201 struct extent_buffer *eb; 3202 struct btrfs_extent_item *ei; 3203 struct btrfs_tree_block_info *bi; 3204 struct tree_block *block; 3205 struct rb_node *rb_node; 3206 u32 item_size; 3207 int level = -1; 3208 u64 generation; 3209 u64 owner = 0; 3210 3211 eb = path->nodes[0]; 3212 item_size = btrfs_item_size(eb, path->slots[0]); 3213 3214 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3215 item_size >= sizeof(*ei) + sizeof(*bi)) { 3216 unsigned long ptr = 0, end; 3217 3218 ei = btrfs_item_ptr(eb, path->slots[0], 3219 struct btrfs_extent_item); 3220 end = (unsigned long)ei + item_size; 3221 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3222 bi = (struct btrfs_tree_block_info *)(ei + 1); 3223 level = btrfs_tree_block_level(eb, bi); 3224 ptr = (unsigned long)(bi + 1); 3225 } else { 3226 level = (int)extent_key->offset; 3227 ptr = (unsigned long)(ei + 1); 3228 } 3229 generation = btrfs_extent_generation(eb, ei); 3230 3231 /* 3232 * We're reading random blocks without knowing their owner ahead 3233 * of time. This is ok most of the time, as all reloc roots and 3234 * fs roots have the same lock type. However normal trees do 3235 * not, and the only way to know ahead of time is to read the 3236 * inline ref offset. We know it's an fs root if 3237 * 3238 * 1. There's more than one ref. 3239 * 2. There's a SHARED_DATA_REF_KEY set. 3240 * 3. FULL_BACKREF is set on the flags. 3241 * 3242 * Otherwise it's safe to assume that the ref offset == the 3243 * owner of this block, so we can use that when calling 3244 * read_tree_block. 3245 */ 3246 if (btrfs_extent_refs(eb, ei) == 1 && 3247 !(btrfs_extent_flags(eb, ei) & 3248 BTRFS_BLOCK_FLAG_FULL_BACKREF) && 3249 ptr < end) { 3250 struct btrfs_extent_inline_ref *iref; 3251 int type; 3252 3253 iref = (struct btrfs_extent_inline_ref *)ptr; 3254 type = btrfs_get_extent_inline_ref_type(eb, iref, 3255 BTRFS_REF_TYPE_BLOCK); 3256 if (type == BTRFS_REF_TYPE_INVALID) 3257 return -EINVAL; 3258 if (type == BTRFS_TREE_BLOCK_REF_KEY) 3259 owner = btrfs_extent_inline_ref_offset(eb, iref); 3260 } 3261 } else { 3262 btrfs_print_leaf(eb); 3263 btrfs_err(rc->block_group->fs_info, 3264 "unrecognized tree backref at tree block %llu slot %u", 3265 eb->start, path->slots[0]); 3266 btrfs_release_path(path); 3267 return -EUCLEAN; 3268 } 3269 3270 btrfs_release_path(path); 3271 3272 BUG_ON(level == -1); 3273 3274 block = kmalloc(sizeof(*block), GFP_NOFS); 3275 if (!block) 3276 return -ENOMEM; 3277 3278 block->bytenr = extent_key->objectid; 3279 block->key.objectid = rc->extent_root->fs_info->nodesize; 3280 block->key.offset = generation; 3281 block->level = level; 3282 block->key_ready = false; 3283 block->owner = owner; 3284 3285 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node); 3286 if (rb_node) 3287 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr, 3288 -EEXIST); 3289 3290 return 0; 3291 } 3292 3293 /* 3294 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3295 */ 3296 static int __add_tree_block(struct reloc_control *rc, 3297 u64 bytenr, u32 blocksize, 3298 struct rb_root *blocks) 3299 { 3300 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3301 struct btrfs_path *path; 3302 struct btrfs_key key; 3303 int ret; 3304 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 3305 3306 if (tree_block_processed(bytenr, rc)) 3307 return 0; 3308 3309 if (rb_simple_search(blocks, bytenr)) 3310 return 0; 3311 3312 path = btrfs_alloc_path(); 3313 if (!path) 3314 return -ENOMEM; 3315 again: 3316 key.objectid = bytenr; 3317 if (skinny) { 3318 key.type = BTRFS_METADATA_ITEM_KEY; 3319 key.offset = (u64)-1; 3320 } else { 3321 key.type = BTRFS_EXTENT_ITEM_KEY; 3322 key.offset = blocksize; 3323 } 3324 3325 path->search_commit_root = 1; 3326 path->skip_locking = 1; 3327 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3328 if (ret < 0) 3329 goto out; 3330 3331 if (ret > 0 && skinny) { 3332 if (path->slots[0]) { 3333 path->slots[0]--; 3334 btrfs_item_key_to_cpu(path->nodes[0], &key, 3335 path->slots[0]); 3336 if (key.objectid == bytenr && 3337 (key.type == BTRFS_METADATA_ITEM_KEY || 3338 (key.type == BTRFS_EXTENT_ITEM_KEY && 3339 key.offset == blocksize))) 3340 ret = 0; 3341 } 3342 3343 if (ret) { 3344 skinny = false; 3345 btrfs_release_path(path); 3346 goto again; 3347 } 3348 } 3349 if (ret) { 3350 ASSERT(ret == 1); 3351 btrfs_print_leaf(path->nodes[0]); 3352 btrfs_err(fs_info, 3353 "tree block extent item (%llu) is not found in extent tree", 3354 bytenr); 3355 WARN_ON(1); 3356 ret = -EINVAL; 3357 goto out; 3358 } 3359 3360 ret = add_tree_block(rc, &key, path, blocks); 3361 out: 3362 btrfs_free_path(path); 3363 return ret; 3364 } 3365 3366 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3367 struct btrfs_block_group *block_group, 3368 struct inode *inode, 3369 u64 ino) 3370 { 3371 struct btrfs_root *root = fs_info->tree_root; 3372 struct btrfs_trans_handle *trans; 3373 int ret = 0; 3374 3375 if (inode) 3376 goto truncate; 3377 3378 inode = btrfs_iget(ino, root); 3379 if (IS_ERR(inode)) 3380 return -ENOENT; 3381 3382 truncate: 3383 ret = btrfs_check_trunc_cache_free_space(fs_info, 3384 &fs_info->global_block_rsv); 3385 if (ret) 3386 goto out; 3387 3388 trans = btrfs_join_transaction(root); 3389 if (IS_ERR(trans)) { 3390 ret = PTR_ERR(trans); 3391 goto out; 3392 } 3393 3394 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3395 3396 btrfs_end_transaction(trans); 3397 btrfs_btree_balance_dirty(fs_info); 3398 out: 3399 iput(inode); 3400 return ret; 3401 } 3402 3403 /* 3404 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the 3405 * cache inode, to avoid free space cache data extent blocking data relocation. 3406 */ 3407 static int delete_v1_space_cache(struct extent_buffer *leaf, 3408 struct btrfs_block_group *block_group, 3409 u64 data_bytenr) 3410 { 3411 u64 space_cache_ino; 3412 struct btrfs_file_extent_item *ei; 3413 struct btrfs_key key; 3414 bool found = false; 3415 int i; 3416 int ret; 3417 3418 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) 3419 return 0; 3420 3421 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 3422 u8 type; 3423 3424 btrfs_item_key_to_cpu(leaf, &key, i); 3425 if (key.type != BTRFS_EXTENT_DATA_KEY) 3426 continue; 3427 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 3428 type = btrfs_file_extent_type(leaf, ei); 3429 3430 if ((type == BTRFS_FILE_EXTENT_REG || 3431 type == BTRFS_FILE_EXTENT_PREALLOC) && 3432 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { 3433 found = true; 3434 space_cache_ino = key.objectid; 3435 break; 3436 } 3437 } 3438 if (!found) 3439 return -ENOENT; 3440 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL, 3441 space_cache_ino); 3442 return ret; 3443 } 3444 3445 /* 3446 * helper to find all tree blocks that reference a given data extent 3447 */ 3448 static noinline_for_stack int add_data_references(struct reloc_control *rc, 3449 const struct btrfs_key *extent_key, 3450 struct btrfs_path *path, 3451 struct rb_root *blocks) 3452 { 3453 struct btrfs_backref_walk_ctx ctx = { 0 }; 3454 struct ulist_iterator leaf_uiter; 3455 struct ulist_node *ref_node = NULL; 3456 const u32 blocksize = rc->extent_root->fs_info->nodesize; 3457 int ret = 0; 3458 3459 btrfs_release_path(path); 3460 3461 ctx.bytenr = extent_key->objectid; 3462 ctx.skip_inode_ref_list = true; 3463 ctx.fs_info = rc->extent_root->fs_info; 3464 3465 ret = btrfs_find_all_leafs(&ctx); 3466 if (ret < 0) 3467 return ret; 3468 3469 ULIST_ITER_INIT(&leaf_uiter); 3470 while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) { 3471 struct btrfs_tree_parent_check check = { 0 }; 3472 struct extent_buffer *eb; 3473 3474 eb = read_tree_block(ctx.fs_info, ref_node->val, &check); 3475 if (IS_ERR(eb)) { 3476 ret = PTR_ERR(eb); 3477 break; 3478 } 3479 ret = delete_v1_space_cache(eb, rc->block_group, 3480 extent_key->objectid); 3481 free_extent_buffer(eb); 3482 if (ret < 0) 3483 break; 3484 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); 3485 if (ret < 0) 3486 break; 3487 } 3488 if (ret < 0) 3489 free_block_list(blocks); 3490 ulist_free(ctx.refs); 3491 return ret; 3492 } 3493 3494 /* 3495 * helper to find next unprocessed extent 3496 */ 3497 static noinline_for_stack 3498 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3499 struct btrfs_key *extent_key) 3500 { 3501 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3502 struct btrfs_key key; 3503 struct extent_buffer *leaf; 3504 u64 start, end, last; 3505 int ret; 3506 3507 last = rc->block_group->start + rc->block_group->length; 3508 while (1) { 3509 bool block_found; 3510 3511 cond_resched(); 3512 if (rc->search_start >= last) { 3513 ret = 1; 3514 break; 3515 } 3516 3517 key.objectid = rc->search_start; 3518 key.type = BTRFS_EXTENT_ITEM_KEY; 3519 key.offset = 0; 3520 3521 path->search_commit_root = 1; 3522 path->skip_locking = 1; 3523 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3524 0, 0); 3525 if (ret < 0) 3526 break; 3527 next: 3528 leaf = path->nodes[0]; 3529 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3530 ret = btrfs_next_leaf(rc->extent_root, path); 3531 if (ret != 0) 3532 break; 3533 leaf = path->nodes[0]; 3534 } 3535 3536 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3537 if (key.objectid >= last) { 3538 ret = 1; 3539 break; 3540 } 3541 3542 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3543 key.type != BTRFS_METADATA_ITEM_KEY) { 3544 path->slots[0]++; 3545 goto next; 3546 } 3547 3548 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3549 key.objectid + key.offset <= rc->search_start) { 3550 path->slots[0]++; 3551 goto next; 3552 } 3553 3554 if (key.type == BTRFS_METADATA_ITEM_KEY && 3555 key.objectid + fs_info->nodesize <= 3556 rc->search_start) { 3557 path->slots[0]++; 3558 goto next; 3559 } 3560 3561 block_found = find_first_extent_bit(&rc->processed_blocks, 3562 key.objectid, &start, &end, 3563 EXTENT_DIRTY, NULL); 3564 3565 if (block_found && start <= key.objectid) { 3566 btrfs_release_path(path); 3567 rc->search_start = end + 1; 3568 } else { 3569 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3570 rc->search_start = key.objectid + key.offset; 3571 else 3572 rc->search_start = key.objectid + 3573 fs_info->nodesize; 3574 memcpy(extent_key, &key, sizeof(key)); 3575 return 0; 3576 } 3577 } 3578 btrfs_release_path(path); 3579 return ret; 3580 } 3581 3582 static void set_reloc_control(struct reloc_control *rc) 3583 { 3584 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3585 3586 mutex_lock(&fs_info->reloc_mutex); 3587 fs_info->reloc_ctl = rc; 3588 mutex_unlock(&fs_info->reloc_mutex); 3589 } 3590 3591 static void unset_reloc_control(struct reloc_control *rc) 3592 { 3593 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3594 3595 mutex_lock(&fs_info->reloc_mutex); 3596 fs_info->reloc_ctl = NULL; 3597 mutex_unlock(&fs_info->reloc_mutex); 3598 } 3599 3600 static noinline_for_stack 3601 int prepare_to_relocate(struct reloc_control *rc) 3602 { 3603 struct btrfs_trans_handle *trans; 3604 int ret; 3605 3606 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3607 BTRFS_BLOCK_RSV_TEMP); 3608 if (!rc->block_rsv) 3609 return -ENOMEM; 3610 3611 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3612 rc->search_start = rc->block_group->start; 3613 rc->extents_found = 0; 3614 rc->nodes_relocated = 0; 3615 rc->merging_rsv_size = 0; 3616 rc->reserved_bytes = 0; 3617 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3618 RELOCATION_RESERVED_NODES; 3619 ret = btrfs_block_rsv_refill(rc->extent_root->fs_info, 3620 rc->block_rsv, rc->block_rsv->size, 3621 BTRFS_RESERVE_FLUSH_ALL); 3622 if (ret) 3623 return ret; 3624 3625 rc->create_reloc_tree = true; 3626 set_reloc_control(rc); 3627 3628 trans = btrfs_join_transaction(rc->extent_root); 3629 if (IS_ERR(trans)) { 3630 unset_reloc_control(rc); 3631 /* 3632 * extent tree is not a ref_cow tree and has no reloc_root to 3633 * cleanup. And callers are responsible to free the above 3634 * block rsv. 3635 */ 3636 return PTR_ERR(trans); 3637 } 3638 3639 ret = btrfs_commit_transaction(trans); 3640 if (ret) 3641 unset_reloc_control(rc); 3642 3643 return ret; 3644 } 3645 3646 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3647 { 3648 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3649 struct rb_root blocks = RB_ROOT; 3650 struct btrfs_key key; 3651 struct btrfs_trans_handle *trans = NULL; 3652 struct btrfs_path *path; 3653 struct btrfs_extent_item *ei; 3654 u64 flags; 3655 int ret; 3656 int err = 0; 3657 int progress = 0; 3658 3659 path = btrfs_alloc_path(); 3660 if (!path) 3661 return -ENOMEM; 3662 path->reada = READA_FORWARD; 3663 3664 ret = prepare_to_relocate(rc); 3665 if (ret) { 3666 err = ret; 3667 goto out_free; 3668 } 3669 3670 while (1) { 3671 rc->reserved_bytes = 0; 3672 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, 3673 rc->block_rsv->size, 3674 BTRFS_RESERVE_FLUSH_ALL); 3675 if (ret) { 3676 err = ret; 3677 break; 3678 } 3679 progress++; 3680 trans = btrfs_start_transaction(rc->extent_root, 0); 3681 if (IS_ERR(trans)) { 3682 err = PTR_ERR(trans); 3683 trans = NULL; 3684 break; 3685 } 3686 restart: 3687 if (update_backref_cache(trans, &rc->backref_cache)) { 3688 btrfs_end_transaction(trans); 3689 trans = NULL; 3690 continue; 3691 } 3692 3693 ret = find_next_extent(rc, path, &key); 3694 if (ret < 0) 3695 err = ret; 3696 if (ret != 0) 3697 break; 3698 3699 rc->extents_found++; 3700 3701 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3702 struct btrfs_extent_item); 3703 flags = btrfs_extent_flags(path->nodes[0], ei); 3704 3705 /* 3706 * If we are relocating a simple quota owned extent item, we 3707 * need to note the owner on the reloc data root so that when 3708 * we allocate the replacement item, we can attribute it to the 3709 * correct eventual owner (rather than the reloc data root). 3710 */ 3711 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) { 3712 struct btrfs_root *root = BTRFS_I(rc->data_inode)->root; 3713 u64 owning_root_id = btrfs_get_extent_owner_root(fs_info, 3714 path->nodes[0], 3715 path->slots[0]); 3716 3717 root->relocation_src_root = owning_root_id; 3718 } 3719 3720 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3721 ret = add_tree_block(rc, &key, path, &blocks); 3722 } else if (rc->stage == UPDATE_DATA_PTRS && 3723 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3724 ret = add_data_references(rc, &key, path, &blocks); 3725 } else { 3726 btrfs_release_path(path); 3727 ret = 0; 3728 } 3729 if (ret < 0) { 3730 err = ret; 3731 break; 3732 } 3733 3734 if (!RB_EMPTY_ROOT(&blocks)) { 3735 ret = relocate_tree_blocks(trans, rc, &blocks); 3736 if (ret < 0) { 3737 if (ret != -EAGAIN) { 3738 err = ret; 3739 break; 3740 } 3741 rc->extents_found--; 3742 rc->search_start = key.objectid; 3743 } 3744 } 3745 3746 btrfs_end_transaction_throttle(trans); 3747 btrfs_btree_balance_dirty(fs_info); 3748 trans = NULL; 3749 3750 if (rc->stage == MOVE_DATA_EXTENTS && 3751 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3752 rc->found_file_extent = true; 3753 ret = relocate_data_extent(rc, &key); 3754 if (ret < 0) { 3755 err = ret; 3756 break; 3757 } 3758 } 3759 if (btrfs_should_cancel_balance(fs_info)) { 3760 err = -ECANCELED; 3761 break; 3762 } 3763 } 3764 if (trans && progress && err == -ENOSPC) { 3765 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 3766 if (ret == 1) { 3767 err = 0; 3768 progress = 0; 3769 goto restart; 3770 } 3771 } 3772 3773 btrfs_release_path(path); 3774 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 3775 3776 if (trans) { 3777 btrfs_end_transaction_throttle(trans); 3778 btrfs_btree_balance_dirty(fs_info); 3779 } 3780 3781 if (!err) { 3782 ret = relocate_file_extent_cluster(rc); 3783 if (ret < 0) 3784 err = ret; 3785 } 3786 3787 rc->create_reloc_tree = false; 3788 set_reloc_control(rc); 3789 3790 btrfs_backref_release_cache(&rc->backref_cache); 3791 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3792 3793 /* 3794 * Even in the case when the relocation is cancelled, we should all go 3795 * through prepare_to_merge() and merge_reloc_roots(). 3796 * 3797 * For error (including cancelled balance), prepare_to_merge() will 3798 * mark all reloc trees orphan, then queue them for cleanup in 3799 * merge_reloc_roots() 3800 */ 3801 err = prepare_to_merge(rc, err); 3802 3803 merge_reloc_roots(rc); 3804 3805 rc->merge_reloc_tree = false; 3806 unset_reloc_control(rc); 3807 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3808 3809 /* get rid of pinned extents */ 3810 trans = btrfs_join_transaction(rc->extent_root); 3811 if (IS_ERR(trans)) { 3812 err = PTR_ERR(trans); 3813 goto out_free; 3814 } 3815 ret = btrfs_commit_transaction(trans); 3816 if (ret && !err) 3817 err = ret; 3818 out_free: 3819 ret = clean_dirty_subvols(rc); 3820 if (ret < 0 && !err) 3821 err = ret; 3822 btrfs_free_block_rsv(fs_info, rc->block_rsv); 3823 btrfs_free_path(path); 3824 return err; 3825 } 3826 3827 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3828 struct btrfs_root *root, u64 objectid) 3829 { 3830 struct btrfs_path *path; 3831 struct btrfs_inode_item *item; 3832 struct extent_buffer *leaf; 3833 int ret; 3834 3835 path = btrfs_alloc_path(); 3836 if (!path) 3837 return -ENOMEM; 3838 3839 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3840 if (ret) 3841 goto out; 3842 3843 leaf = path->nodes[0]; 3844 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3845 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3846 btrfs_set_inode_generation(leaf, item, 1); 3847 btrfs_set_inode_size(leaf, item, 0); 3848 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3849 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 3850 BTRFS_INODE_PREALLOC); 3851 btrfs_mark_buffer_dirty(trans, leaf); 3852 out: 3853 btrfs_free_path(path); 3854 return ret; 3855 } 3856 3857 static void delete_orphan_inode(struct btrfs_trans_handle *trans, 3858 struct btrfs_root *root, u64 objectid) 3859 { 3860 struct btrfs_path *path; 3861 struct btrfs_key key; 3862 int ret = 0; 3863 3864 path = btrfs_alloc_path(); 3865 if (!path) { 3866 ret = -ENOMEM; 3867 goto out; 3868 } 3869 3870 key.objectid = objectid; 3871 key.type = BTRFS_INODE_ITEM_KEY; 3872 key.offset = 0; 3873 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3874 if (ret) { 3875 if (ret > 0) 3876 ret = -ENOENT; 3877 goto out; 3878 } 3879 ret = btrfs_del_item(trans, root, path); 3880 out: 3881 if (ret) 3882 btrfs_abort_transaction(trans, ret); 3883 btrfs_free_path(path); 3884 } 3885 3886 /* 3887 * helper to create inode for data relocation. 3888 * the inode is in data relocation tree and its link count is 0 3889 */ 3890 static noinline_for_stack struct inode *create_reloc_inode( 3891 struct btrfs_fs_info *fs_info, 3892 const struct btrfs_block_group *group) 3893 { 3894 struct inode *inode = NULL; 3895 struct btrfs_trans_handle *trans; 3896 struct btrfs_root *root; 3897 u64 objectid; 3898 int ret = 0; 3899 3900 root = btrfs_grab_root(fs_info->data_reloc_root); 3901 trans = btrfs_start_transaction(root, 6); 3902 if (IS_ERR(trans)) { 3903 btrfs_put_root(root); 3904 return ERR_CAST(trans); 3905 } 3906 3907 ret = btrfs_get_free_objectid(root, &objectid); 3908 if (ret) 3909 goto out; 3910 3911 ret = __insert_orphan_inode(trans, root, objectid); 3912 if (ret) 3913 goto out; 3914 3915 inode = btrfs_iget(objectid, root); 3916 if (IS_ERR(inode)) { 3917 delete_orphan_inode(trans, root, objectid); 3918 ret = PTR_ERR(inode); 3919 inode = NULL; 3920 goto out; 3921 } 3922 BTRFS_I(inode)->reloc_block_group_start = group->start; 3923 3924 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3925 out: 3926 btrfs_put_root(root); 3927 btrfs_end_transaction(trans); 3928 btrfs_btree_balance_dirty(fs_info); 3929 if (ret) { 3930 iput(inode); 3931 inode = ERR_PTR(ret); 3932 } 3933 return inode; 3934 } 3935 3936 /* 3937 * Mark start of chunk relocation that is cancellable. Check if the cancellation 3938 * has been requested meanwhile and don't start in that case. 3939 * 3940 * Return: 3941 * 0 success 3942 * -EINPROGRESS operation is already in progress, that's probably a bug 3943 * -ECANCELED cancellation request was set before the operation started 3944 */ 3945 static int reloc_chunk_start(struct btrfs_fs_info *fs_info) 3946 { 3947 if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) { 3948 /* This should not happen */ 3949 btrfs_err(fs_info, "reloc already running, cannot start"); 3950 return -EINPROGRESS; 3951 } 3952 3953 if (atomic_read(&fs_info->reloc_cancel_req) > 0) { 3954 btrfs_info(fs_info, "chunk relocation canceled on start"); 3955 /* 3956 * On cancel, clear all requests but let the caller mark 3957 * the end after cleanup operations. 3958 */ 3959 atomic_set(&fs_info->reloc_cancel_req, 0); 3960 return -ECANCELED; 3961 } 3962 return 0; 3963 } 3964 3965 /* 3966 * Mark end of chunk relocation that is cancellable and wake any waiters. 3967 */ 3968 static void reloc_chunk_end(struct btrfs_fs_info *fs_info) 3969 { 3970 /* Requested after start, clear bit first so any waiters can continue */ 3971 if (atomic_read(&fs_info->reloc_cancel_req) > 0) 3972 btrfs_info(fs_info, "chunk relocation canceled during operation"); 3973 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags); 3974 atomic_set(&fs_info->reloc_cancel_req, 0); 3975 } 3976 3977 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 3978 { 3979 struct reloc_control *rc; 3980 3981 rc = kzalloc(sizeof(*rc), GFP_NOFS); 3982 if (!rc) 3983 return NULL; 3984 3985 INIT_LIST_HEAD(&rc->reloc_roots); 3986 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 3987 btrfs_backref_init_cache(fs_info, &rc->backref_cache, true); 3988 rc->reloc_root_tree.rb_root = RB_ROOT; 3989 spin_lock_init(&rc->reloc_root_tree.lock); 3990 extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS); 3991 return rc; 3992 } 3993 3994 static void free_reloc_control(struct reloc_control *rc) 3995 { 3996 struct mapping_node *node, *tmp; 3997 3998 free_reloc_roots(&rc->reloc_roots); 3999 rbtree_postorder_for_each_entry_safe(node, tmp, 4000 &rc->reloc_root_tree.rb_root, rb_node) 4001 kfree(node); 4002 4003 kfree(rc); 4004 } 4005 4006 /* 4007 * Print the block group being relocated 4008 */ 4009 static void describe_relocation(struct btrfs_block_group *block_group) 4010 { 4011 char buf[128] = {'\0'}; 4012 4013 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 4014 4015 btrfs_info(block_group->fs_info, "relocating block group %llu flags %s", 4016 block_group->start, buf); 4017 } 4018 4019 static const char *stage_to_string(enum reloc_stage stage) 4020 { 4021 if (stage == MOVE_DATA_EXTENTS) 4022 return "move data extents"; 4023 if (stage == UPDATE_DATA_PTRS) 4024 return "update data pointers"; 4025 return "unknown"; 4026 } 4027 4028 /* 4029 * function to relocate all extents in a block group. 4030 */ 4031 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 4032 { 4033 struct btrfs_block_group *bg; 4034 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start); 4035 struct reloc_control *rc; 4036 struct inode *inode; 4037 struct btrfs_path *path; 4038 int ret; 4039 int rw = 0; 4040 int err = 0; 4041 4042 /* 4043 * This only gets set if we had a half-deleted snapshot on mount. We 4044 * cannot allow relocation to start while we're still trying to clean up 4045 * these pending deletions. 4046 */ 4047 ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE); 4048 if (ret) 4049 return ret; 4050 4051 /* We may have been woken up by close_ctree, so bail if we're closing. */ 4052 if (btrfs_fs_closing(fs_info)) 4053 return -EINTR; 4054 4055 bg = btrfs_lookup_block_group(fs_info, group_start); 4056 if (!bg) 4057 return -ENOENT; 4058 4059 /* 4060 * Relocation of a data block group creates ordered extents. Without 4061 * sb_start_write(), we can freeze the filesystem while unfinished 4062 * ordered extents are left. Such ordered extents can cause a deadlock 4063 * e.g. when syncfs() is waiting for their completion but they can't 4064 * finish because they block when joining a transaction, due to the 4065 * fact that the freeze locks are being held in write mode. 4066 */ 4067 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) 4068 ASSERT(sb_write_started(fs_info->sb)); 4069 4070 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 4071 btrfs_put_block_group(bg); 4072 return -ETXTBSY; 4073 } 4074 4075 rc = alloc_reloc_control(fs_info); 4076 if (!rc) { 4077 btrfs_put_block_group(bg); 4078 return -ENOMEM; 4079 } 4080 4081 ret = reloc_chunk_start(fs_info); 4082 if (ret < 0) { 4083 err = ret; 4084 goto out_put_bg; 4085 } 4086 4087 rc->extent_root = extent_root; 4088 rc->block_group = bg; 4089 4090 ret = btrfs_inc_block_group_ro(rc->block_group, true); 4091 if (ret) { 4092 err = ret; 4093 goto out; 4094 } 4095 rw = 1; 4096 4097 path = btrfs_alloc_path(); 4098 if (!path) { 4099 err = -ENOMEM; 4100 goto out; 4101 } 4102 4103 inode = lookup_free_space_inode(rc->block_group, path); 4104 btrfs_free_path(path); 4105 4106 if (!IS_ERR(inode)) 4107 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4108 else 4109 ret = PTR_ERR(inode); 4110 4111 if (ret && ret != -ENOENT) { 4112 err = ret; 4113 goto out; 4114 } 4115 4116 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4117 if (IS_ERR(rc->data_inode)) { 4118 err = PTR_ERR(rc->data_inode); 4119 rc->data_inode = NULL; 4120 goto out; 4121 } 4122 4123 describe_relocation(rc->block_group); 4124 4125 btrfs_wait_block_group_reservations(rc->block_group); 4126 btrfs_wait_nocow_writers(rc->block_group); 4127 btrfs_wait_ordered_roots(fs_info, U64_MAX, rc->block_group); 4128 4129 ret = btrfs_zone_finish(rc->block_group); 4130 WARN_ON(ret && ret != -EAGAIN); 4131 4132 while (1) { 4133 enum reloc_stage finishes_stage; 4134 4135 mutex_lock(&fs_info->cleaner_mutex); 4136 ret = relocate_block_group(rc); 4137 mutex_unlock(&fs_info->cleaner_mutex); 4138 if (ret < 0) 4139 err = ret; 4140 4141 finishes_stage = rc->stage; 4142 /* 4143 * We may have gotten ENOSPC after we already dirtied some 4144 * extents. If writeout happens while we're relocating a 4145 * different block group we could end up hitting the 4146 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 4147 * btrfs_reloc_cow_block. Make sure we write everything out 4148 * properly so we don't trip over this problem, and then break 4149 * out of the loop if we hit an error. 4150 */ 4151 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4152 ret = btrfs_wait_ordered_range(BTRFS_I(rc->data_inode), 0, 4153 (u64)-1); 4154 if (ret) 4155 err = ret; 4156 invalidate_mapping_pages(rc->data_inode->i_mapping, 4157 0, -1); 4158 rc->stage = UPDATE_DATA_PTRS; 4159 } 4160 4161 if (err < 0) 4162 goto out; 4163 4164 if (rc->extents_found == 0) 4165 break; 4166 4167 btrfs_info(fs_info, "found %llu extents, stage: %s", 4168 rc->extents_found, stage_to_string(finishes_stage)); 4169 } 4170 4171 WARN_ON(rc->block_group->pinned > 0); 4172 WARN_ON(rc->block_group->reserved > 0); 4173 WARN_ON(rc->block_group->used > 0); 4174 out: 4175 if (err && rw) 4176 btrfs_dec_block_group_ro(rc->block_group); 4177 iput(rc->data_inode); 4178 out_put_bg: 4179 btrfs_put_block_group(bg); 4180 reloc_chunk_end(fs_info); 4181 free_reloc_control(rc); 4182 return err; 4183 } 4184 4185 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4186 { 4187 struct btrfs_fs_info *fs_info = root->fs_info; 4188 struct btrfs_trans_handle *trans; 4189 int ret, err; 4190 4191 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4192 if (IS_ERR(trans)) 4193 return PTR_ERR(trans); 4194 4195 memset(&root->root_item.drop_progress, 0, 4196 sizeof(root->root_item.drop_progress)); 4197 btrfs_set_root_drop_level(&root->root_item, 0); 4198 btrfs_set_root_refs(&root->root_item, 0); 4199 ret = btrfs_update_root(trans, fs_info->tree_root, 4200 &root->root_key, &root->root_item); 4201 4202 err = btrfs_end_transaction(trans); 4203 if (err) 4204 return err; 4205 return ret; 4206 } 4207 4208 /* 4209 * recover relocation interrupted by system crash. 4210 * 4211 * this function resumes merging reloc trees with corresponding fs trees. 4212 * this is important for keeping the sharing of tree blocks 4213 */ 4214 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info) 4215 { 4216 LIST_HEAD(reloc_roots); 4217 struct btrfs_key key; 4218 struct btrfs_root *fs_root; 4219 struct btrfs_root *reloc_root; 4220 struct btrfs_path *path; 4221 struct extent_buffer *leaf; 4222 struct reloc_control *rc = NULL; 4223 struct btrfs_trans_handle *trans; 4224 int ret2; 4225 int ret = 0; 4226 4227 path = btrfs_alloc_path(); 4228 if (!path) 4229 return -ENOMEM; 4230 path->reada = READA_BACK; 4231 4232 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4233 key.type = BTRFS_ROOT_ITEM_KEY; 4234 key.offset = (u64)-1; 4235 4236 while (1) { 4237 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 4238 path, 0, 0); 4239 if (ret < 0) 4240 goto out; 4241 if (ret > 0) { 4242 if (path->slots[0] == 0) 4243 break; 4244 path->slots[0]--; 4245 } 4246 ret = 0; 4247 leaf = path->nodes[0]; 4248 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4249 btrfs_release_path(path); 4250 4251 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4252 key.type != BTRFS_ROOT_ITEM_KEY) 4253 break; 4254 4255 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key); 4256 if (IS_ERR(reloc_root)) { 4257 ret = PTR_ERR(reloc_root); 4258 goto out; 4259 } 4260 4261 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 4262 list_add(&reloc_root->root_list, &reloc_roots); 4263 4264 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4265 fs_root = btrfs_get_fs_root(fs_info, 4266 reloc_root->root_key.offset, false); 4267 if (IS_ERR(fs_root)) { 4268 ret = PTR_ERR(fs_root); 4269 if (ret != -ENOENT) 4270 goto out; 4271 ret = mark_garbage_root(reloc_root); 4272 if (ret < 0) 4273 goto out; 4274 ret = 0; 4275 } else { 4276 btrfs_put_root(fs_root); 4277 } 4278 } 4279 4280 if (key.offset == 0) 4281 break; 4282 4283 key.offset--; 4284 } 4285 btrfs_release_path(path); 4286 4287 if (list_empty(&reloc_roots)) 4288 goto out; 4289 4290 rc = alloc_reloc_control(fs_info); 4291 if (!rc) { 4292 ret = -ENOMEM; 4293 goto out; 4294 } 4295 4296 ret = reloc_chunk_start(fs_info); 4297 if (ret < 0) 4298 goto out_end; 4299 4300 rc->extent_root = btrfs_extent_root(fs_info, 0); 4301 4302 set_reloc_control(rc); 4303 4304 trans = btrfs_join_transaction(rc->extent_root); 4305 if (IS_ERR(trans)) { 4306 ret = PTR_ERR(trans); 4307 goto out_unset; 4308 } 4309 4310 rc->merge_reloc_tree = true; 4311 4312 while (!list_empty(&reloc_roots)) { 4313 reloc_root = list_entry(reloc_roots.next, 4314 struct btrfs_root, root_list); 4315 list_del(&reloc_root->root_list); 4316 4317 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4318 list_add_tail(&reloc_root->root_list, 4319 &rc->reloc_roots); 4320 continue; 4321 } 4322 4323 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 4324 false); 4325 if (IS_ERR(fs_root)) { 4326 ret = PTR_ERR(fs_root); 4327 list_add_tail(&reloc_root->root_list, &reloc_roots); 4328 btrfs_end_transaction(trans); 4329 goto out_unset; 4330 } 4331 4332 ret = __add_reloc_root(reloc_root); 4333 ASSERT(ret != -EEXIST); 4334 if (ret) { 4335 list_add_tail(&reloc_root->root_list, &reloc_roots); 4336 btrfs_put_root(fs_root); 4337 btrfs_end_transaction(trans); 4338 goto out_unset; 4339 } 4340 fs_root->reloc_root = btrfs_grab_root(reloc_root); 4341 btrfs_put_root(fs_root); 4342 } 4343 4344 ret = btrfs_commit_transaction(trans); 4345 if (ret) 4346 goto out_unset; 4347 4348 merge_reloc_roots(rc); 4349 4350 unset_reloc_control(rc); 4351 4352 trans = btrfs_join_transaction(rc->extent_root); 4353 if (IS_ERR(trans)) { 4354 ret = PTR_ERR(trans); 4355 goto out_clean; 4356 } 4357 ret = btrfs_commit_transaction(trans); 4358 out_clean: 4359 ret2 = clean_dirty_subvols(rc); 4360 if (ret2 < 0 && !ret) 4361 ret = ret2; 4362 out_unset: 4363 unset_reloc_control(rc); 4364 out_end: 4365 reloc_chunk_end(fs_info); 4366 free_reloc_control(rc); 4367 out: 4368 free_reloc_roots(&reloc_roots); 4369 4370 btrfs_free_path(path); 4371 4372 if (ret == 0) { 4373 /* cleanup orphan inode in data relocation tree */ 4374 fs_root = btrfs_grab_root(fs_info->data_reloc_root); 4375 ASSERT(fs_root); 4376 ret = btrfs_orphan_cleanup(fs_root); 4377 btrfs_put_root(fs_root); 4378 } 4379 return ret; 4380 } 4381 4382 /* 4383 * helper to add ordered checksum for data relocation. 4384 * 4385 * cloning checksum properly handles the nodatasum extents. 4386 * it also saves CPU time to re-calculate the checksum. 4387 */ 4388 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered) 4389 { 4390 struct btrfs_inode *inode = ordered->inode; 4391 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4392 u64 disk_bytenr = ordered->file_offset + inode->reloc_block_group_start; 4393 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr); 4394 LIST_HEAD(list); 4395 int ret; 4396 4397 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr, 4398 disk_bytenr + ordered->num_bytes - 1, 4399 &list, false); 4400 if (ret < 0) { 4401 btrfs_mark_ordered_extent_error(ordered); 4402 return ret; 4403 } 4404 4405 while (!list_empty(&list)) { 4406 struct btrfs_ordered_sum *sums = 4407 list_entry(list.next, struct btrfs_ordered_sum, list); 4408 4409 list_del_init(&sums->list); 4410 4411 /* 4412 * We need to offset the new_bytenr based on where the csum is. 4413 * We need to do this because we will read in entire prealloc 4414 * extents but we may have written to say the middle of the 4415 * prealloc extent, so we need to make sure the csum goes with 4416 * the right disk offset. 4417 * 4418 * We can do this because the data reloc inode refers strictly 4419 * to the on disk bytes, so we don't have to worry about 4420 * disk_len vs real len like with real inodes since it's all 4421 * disk length. 4422 */ 4423 sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr; 4424 btrfs_add_ordered_sum(ordered, sums); 4425 } 4426 4427 return 0; 4428 } 4429 4430 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4431 struct btrfs_root *root, 4432 const struct extent_buffer *buf, 4433 struct extent_buffer *cow) 4434 { 4435 struct btrfs_fs_info *fs_info = root->fs_info; 4436 struct reloc_control *rc; 4437 struct btrfs_backref_node *node; 4438 int first_cow = 0; 4439 int level; 4440 int ret = 0; 4441 4442 rc = fs_info->reloc_ctl; 4443 if (!rc) 4444 return 0; 4445 4446 BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root)); 4447 4448 level = btrfs_header_level(buf); 4449 if (btrfs_header_generation(buf) <= 4450 btrfs_root_last_snapshot(&root->root_item)) 4451 first_cow = 1; 4452 4453 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID && rc->create_reloc_tree) { 4454 WARN_ON(!first_cow && level == 0); 4455 4456 node = rc->backref_cache.path[level]; 4457 BUG_ON(node->bytenr != buf->start && 4458 node->new_bytenr != buf->start); 4459 4460 btrfs_backref_drop_node_buffer(node); 4461 atomic_inc(&cow->refs); 4462 node->eb = cow; 4463 node->new_bytenr = cow->start; 4464 4465 if (!node->pending) { 4466 list_move_tail(&node->list, 4467 &rc->backref_cache.pending[level]); 4468 node->pending = 1; 4469 } 4470 4471 if (first_cow) 4472 mark_block_processed(rc, node); 4473 4474 if (first_cow && level > 0) 4475 rc->nodes_relocated += buf->len; 4476 } 4477 4478 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4479 ret = replace_file_extents(trans, rc, root, cow); 4480 return ret; 4481 } 4482 4483 /* 4484 * called before creating snapshot. it calculates metadata reservation 4485 * required for relocating tree blocks in the snapshot 4486 */ 4487 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4488 u64 *bytes_to_reserve) 4489 { 4490 struct btrfs_root *root = pending->root; 4491 struct reloc_control *rc = root->fs_info->reloc_ctl; 4492 4493 if (!rc || !have_reloc_root(root)) 4494 return; 4495 4496 if (!rc->merge_reloc_tree) 4497 return; 4498 4499 root = root->reloc_root; 4500 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4501 /* 4502 * relocation is in the stage of merging trees. the space 4503 * used by merging a reloc tree is twice the size of 4504 * relocated tree nodes in the worst case. half for cowing 4505 * the reloc tree, half for cowing the fs tree. the space 4506 * used by cowing the reloc tree will be freed after the 4507 * tree is dropped. if we create snapshot, cowing the fs 4508 * tree may use more space than it frees. so we need 4509 * reserve extra space. 4510 */ 4511 *bytes_to_reserve += rc->nodes_relocated; 4512 } 4513 4514 /* 4515 * called after snapshot is created. migrate block reservation 4516 * and create reloc root for the newly created snapshot 4517 * 4518 * This is similar to btrfs_init_reloc_root(), we come out of here with two 4519 * references held on the reloc_root, one for root->reloc_root and one for 4520 * rc->reloc_roots. 4521 */ 4522 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4523 struct btrfs_pending_snapshot *pending) 4524 { 4525 struct btrfs_root *root = pending->root; 4526 struct btrfs_root *reloc_root; 4527 struct btrfs_root *new_root; 4528 struct reloc_control *rc = root->fs_info->reloc_ctl; 4529 int ret; 4530 4531 if (!rc || !have_reloc_root(root)) 4532 return 0; 4533 4534 rc = root->fs_info->reloc_ctl; 4535 rc->merging_rsv_size += rc->nodes_relocated; 4536 4537 if (rc->merge_reloc_tree) { 4538 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4539 rc->block_rsv, 4540 rc->nodes_relocated, true); 4541 if (ret) 4542 return ret; 4543 } 4544 4545 new_root = pending->snap; 4546 reloc_root = create_reloc_root(trans, root->reloc_root, btrfs_root_id(new_root)); 4547 if (IS_ERR(reloc_root)) 4548 return PTR_ERR(reloc_root); 4549 4550 ret = __add_reloc_root(reloc_root); 4551 ASSERT(ret != -EEXIST); 4552 if (ret) { 4553 /* Pairs with create_reloc_root */ 4554 btrfs_put_root(reloc_root); 4555 return ret; 4556 } 4557 new_root->reloc_root = btrfs_grab_root(reloc_root); 4558 4559 if (rc->create_reloc_tree) 4560 ret = clone_backref_node(trans, rc, root, reloc_root); 4561 return ret; 4562 } 4563 4564 /* 4565 * Get the current bytenr for the block group which is being relocated. 4566 * 4567 * Return U64_MAX if no running relocation. 4568 */ 4569 u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info) 4570 { 4571 u64 logical = U64_MAX; 4572 4573 lockdep_assert_held(&fs_info->reloc_mutex); 4574 4575 if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group) 4576 logical = fs_info->reloc_ctl->block_group->start; 4577 return logical; 4578 } 4579