1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include "ctree.h" 13 #include "disk-io.h" 14 #include "transaction.h" 15 #include "volumes.h" 16 #include "locking.h" 17 #include "btrfs_inode.h" 18 #include "async-thread.h" 19 #include "free-space-cache.h" 20 #include "inode-map.h" 21 #include "qgroup.h" 22 #include "print-tree.h" 23 #include "delalloc-space.h" 24 #include "block-group.h" 25 26 /* 27 * backref_node, mapping_node and tree_block start with this 28 */ 29 struct tree_entry { 30 struct rb_node rb_node; 31 u64 bytenr; 32 }; 33 34 /* 35 * present a tree block in the backref cache 36 */ 37 struct backref_node { 38 struct rb_node rb_node; 39 u64 bytenr; 40 41 u64 new_bytenr; 42 /* objectid of tree block owner, can be not uptodate */ 43 u64 owner; 44 /* link to pending, changed or detached list */ 45 struct list_head list; 46 /* list of upper level blocks reference this block */ 47 struct list_head upper; 48 /* list of child blocks in the cache */ 49 struct list_head lower; 50 /* NULL if this node is not tree root */ 51 struct btrfs_root *root; 52 /* extent buffer got by COW the block */ 53 struct extent_buffer *eb; 54 /* level of tree block */ 55 unsigned int level:8; 56 /* is the block in non-reference counted tree */ 57 unsigned int cowonly:1; 58 /* 1 if no child node in the cache */ 59 unsigned int lowest:1; 60 /* is the extent buffer locked */ 61 unsigned int locked:1; 62 /* has the block been processed */ 63 unsigned int processed:1; 64 /* have backrefs of this block been checked */ 65 unsigned int checked:1; 66 /* 67 * 1 if corresponding block has been cowed but some upper 68 * level block pointers may not point to the new location 69 */ 70 unsigned int pending:1; 71 /* 72 * 1 if the backref node isn't connected to any other 73 * backref node. 74 */ 75 unsigned int detached:1; 76 }; 77 78 /* 79 * present a block pointer in the backref cache 80 */ 81 struct backref_edge { 82 struct list_head list[2]; 83 struct backref_node *node[2]; 84 }; 85 86 #define LOWER 0 87 #define UPPER 1 88 #define RELOCATION_RESERVED_NODES 256 89 90 struct backref_cache { 91 /* red black tree of all backref nodes in the cache */ 92 struct rb_root rb_root; 93 /* for passing backref nodes to btrfs_reloc_cow_block */ 94 struct backref_node *path[BTRFS_MAX_LEVEL]; 95 /* 96 * list of blocks that have been cowed but some block 97 * pointers in upper level blocks may not reflect the 98 * new location 99 */ 100 struct list_head pending[BTRFS_MAX_LEVEL]; 101 /* list of backref nodes with no child node */ 102 struct list_head leaves; 103 /* list of blocks that have been cowed in current transaction */ 104 struct list_head changed; 105 /* list of detached backref node. */ 106 struct list_head detached; 107 108 u64 last_trans; 109 110 int nr_nodes; 111 int nr_edges; 112 }; 113 114 /* 115 * map address of tree root to tree 116 */ 117 struct mapping_node { 118 struct rb_node rb_node; 119 u64 bytenr; 120 void *data; 121 }; 122 123 struct mapping_tree { 124 struct rb_root rb_root; 125 spinlock_t lock; 126 }; 127 128 /* 129 * present a tree block to process 130 */ 131 struct tree_block { 132 struct rb_node rb_node; 133 u64 bytenr; 134 struct btrfs_key key; 135 unsigned int level:8; 136 unsigned int key_ready:1; 137 }; 138 139 #define MAX_EXTENTS 128 140 141 struct file_extent_cluster { 142 u64 start; 143 u64 end; 144 u64 boundary[MAX_EXTENTS]; 145 unsigned int nr; 146 }; 147 148 struct reloc_control { 149 /* block group to relocate */ 150 struct btrfs_block_group_cache *block_group; 151 /* extent tree */ 152 struct btrfs_root *extent_root; 153 /* inode for moving data */ 154 struct inode *data_inode; 155 156 struct btrfs_block_rsv *block_rsv; 157 158 struct backref_cache backref_cache; 159 160 struct file_extent_cluster cluster; 161 /* tree blocks have been processed */ 162 struct extent_io_tree processed_blocks; 163 /* map start of tree root to corresponding reloc tree */ 164 struct mapping_tree reloc_root_tree; 165 /* list of reloc trees */ 166 struct list_head reloc_roots; 167 /* list of subvolume trees that get relocated */ 168 struct list_head dirty_subvol_roots; 169 /* size of metadata reservation for merging reloc trees */ 170 u64 merging_rsv_size; 171 /* size of relocated tree nodes */ 172 u64 nodes_relocated; 173 /* reserved size for block group relocation*/ 174 u64 reserved_bytes; 175 176 u64 search_start; 177 u64 extents_found; 178 179 unsigned int stage:8; 180 unsigned int create_reloc_tree:1; 181 unsigned int merge_reloc_tree:1; 182 unsigned int found_file_extent:1; 183 }; 184 185 /* stages of data relocation */ 186 #define MOVE_DATA_EXTENTS 0 187 #define UPDATE_DATA_PTRS 1 188 189 static void remove_backref_node(struct backref_cache *cache, 190 struct backref_node *node); 191 static void __mark_block_processed(struct reloc_control *rc, 192 struct backref_node *node); 193 194 static void mapping_tree_init(struct mapping_tree *tree) 195 { 196 tree->rb_root = RB_ROOT; 197 spin_lock_init(&tree->lock); 198 } 199 200 static void backref_cache_init(struct backref_cache *cache) 201 { 202 int i; 203 cache->rb_root = RB_ROOT; 204 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 205 INIT_LIST_HEAD(&cache->pending[i]); 206 INIT_LIST_HEAD(&cache->changed); 207 INIT_LIST_HEAD(&cache->detached); 208 INIT_LIST_HEAD(&cache->leaves); 209 } 210 211 static void backref_cache_cleanup(struct backref_cache *cache) 212 { 213 struct backref_node *node; 214 int i; 215 216 while (!list_empty(&cache->detached)) { 217 node = list_entry(cache->detached.next, 218 struct backref_node, list); 219 remove_backref_node(cache, node); 220 } 221 222 while (!list_empty(&cache->leaves)) { 223 node = list_entry(cache->leaves.next, 224 struct backref_node, lower); 225 remove_backref_node(cache, node); 226 } 227 228 cache->last_trans = 0; 229 230 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 231 ASSERT(list_empty(&cache->pending[i])); 232 ASSERT(list_empty(&cache->changed)); 233 ASSERT(list_empty(&cache->detached)); 234 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 235 ASSERT(!cache->nr_nodes); 236 ASSERT(!cache->nr_edges); 237 } 238 239 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 240 { 241 struct backref_node *node; 242 243 node = kzalloc(sizeof(*node), GFP_NOFS); 244 if (node) { 245 INIT_LIST_HEAD(&node->list); 246 INIT_LIST_HEAD(&node->upper); 247 INIT_LIST_HEAD(&node->lower); 248 RB_CLEAR_NODE(&node->rb_node); 249 cache->nr_nodes++; 250 } 251 return node; 252 } 253 254 static void free_backref_node(struct backref_cache *cache, 255 struct backref_node *node) 256 { 257 if (node) { 258 cache->nr_nodes--; 259 kfree(node); 260 } 261 } 262 263 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 264 { 265 struct backref_edge *edge; 266 267 edge = kzalloc(sizeof(*edge), GFP_NOFS); 268 if (edge) 269 cache->nr_edges++; 270 return edge; 271 } 272 273 static void free_backref_edge(struct backref_cache *cache, 274 struct backref_edge *edge) 275 { 276 if (edge) { 277 cache->nr_edges--; 278 kfree(edge); 279 } 280 } 281 282 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 283 struct rb_node *node) 284 { 285 struct rb_node **p = &root->rb_node; 286 struct rb_node *parent = NULL; 287 struct tree_entry *entry; 288 289 while (*p) { 290 parent = *p; 291 entry = rb_entry(parent, struct tree_entry, rb_node); 292 293 if (bytenr < entry->bytenr) 294 p = &(*p)->rb_left; 295 else if (bytenr > entry->bytenr) 296 p = &(*p)->rb_right; 297 else 298 return parent; 299 } 300 301 rb_link_node(node, parent, p); 302 rb_insert_color(node, root); 303 return NULL; 304 } 305 306 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 307 { 308 struct rb_node *n = root->rb_node; 309 struct tree_entry *entry; 310 311 while (n) { 312 entry = rb_entry(n, struct tree_entry, rb_node); 313 314 if (bytenr < entry->bytenr) 315 n = n->rb_left; 316 else if (bytenr > entry->bytenr) 317 n = n->rb_right; 318 else 319 return n; 320 } 321 return NULL; 322 } 323 324 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr) 325 { 326 327 struct btrfs_fs_info *fs_info = NULL; 328 struct backref_node *bnode = rb_entry(rb_node, struct backref_node, 329 rb_node); 330 if (bnode->root) 331 fs_info = bnode->root->fs_info; 332 btrfs_panic(fs_info, errno, 333 "Inconsistency in backref cache found at offset %llu", 334 bytenr); 335 } 336 337 /* 338 * walk up backref nodes until reach node presents tree root 339 */ 340 static struct backref_node *walk_up_backref(struct backref_node *node, 341 struct backref_edge *edges[], 342 int *index) 343 { 344 struct backref_edge *edge; 345 int idx = *index; 346 347 while (!list_empty(&node->upper)) { 348 edge = list_entry(node->upper.next, 349 struct backref_edge, list[LOWER]); 350 edges[idx++] = edge; 351 node = edge->node[UPPER]; 352 } 353 BUG_ON(node->detached); 354 *index = idx; 355 return node; 356 } 357 358 /* 359 * walk down backref nodes to find start of next reference path 360 */ 361 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 362 int *index) 363 { 364 struct backref_edge *edge; 365 struct backref_node *lower; 366 int idx = *index; 367 368 while (idx > 0) { 369 edge = edges[idx - 1]; 370 lower = edge->node[LOWER]; 371 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 372 idx--; 373 continue; 374 } 375 edge = list_entry(edge->list[LOWER].next, 376 struct backref_edge, list[LOWER]); 377 edges[idx - 1] = edge; 378 *index = idx; 379 return edge->node[UPPER]; 380 } 381 *index = 0; 382 return NULL; 383 } 384 385 static void unlock_node_buffer(struct backref_node *node) 386 { 387 if (node->locked) { 388 btrfs_tree_unlock(node->eb); 389 node->locked = 0; 390 } 391 } 392 393 static void drop_node_buffer(struct backref_node *node) 394 { 395 if (node->eb) { 396 unlock_node_buffer(node); 397 free_extent_buffer(node->eb); 398 node->eb = NULL; 399 } 400 } 401 402 static void drop_backref_node(struct backref_cache *tree, 403 struct backref_node *node) 404 { 405 BUG_ON(!list_empty(&node->upper)); 406 407 drop_node_buffer(node); 408 list_del(&node->list); 409 list_del(&node->lower); 410 if (!RB_EMPTY_NODE(&node->rb_node)) 411 rb_erase(&node->rb_node, &tree->rb_root); 412 free_backref_node(tree, node); 413 } 414 415 /* 416 * remove a backref node from the backref cache 417 */ 418 static void remove_backref_node(struct backref_cache *cache, 419 struct backref_node *node) 420 { 421 struct backref_node *upper; 422 struct backref_edge *edge; 423 424 if (!node) 425 return; 426 427 BUG_ON(!node->lowest && !node->detached); 428 while (!list_empty(&node->upper)) { 429 edge = list_entry(node->upper.next, struct backref_edge, 430 list[LOWER]); 431 upper = edge->node[UPPER]; 432 list_del(&edge->list[LOWER]); 433 list_del(&edge->list[UPPER]); 434 free_backref_edge(cache, edge); 435 436 if (RB_EMPTY_NODE(&upper->rb_node)) { 437 BUG_ON(!list_empty(&node->upper)); 438 drop_backref_node(cache, node); 439 node = upper; 440 node->lowest = 1; 441 continue; 442 } 443 /* 444 * add the node to leaf node list if no other 445 * child block cached. 446 */ 447 if (list_empty(&upper->lower)) { 448 list_add_tail(&upper->lower, &cache->leaves); 449 upper->lowest = 1; 450 } 451 } 452 453 drop_backref_node(cache, node); 454 } 455 456 static void update_backref_node(struct backref_cache *cache, 457 struct backref_node *node, u64 bytenr) 458 { 459 struct rb_node *rb_node; 460 rb_erase(&node->rb_node, &cache->rb_root); 461 node->bytenr = bytenr; 462 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 463 if (rb_node) 464 backref_tree_panic(rb_node, -EEXIST, bytenr); 465 } 466 467 /* 468 * update backref cache after a transaction commit 469 */ 470 static int update_backref_cache(struct btrfs_trans_handle *trans, 471 struct backref_cache *cache) 472 { 473 struct backref_node *node; 474 int level = 0; 475 476 if (cache->last_trans == 0) { 477 cache->last_trans = trans->transid; 478 return 0; 479 } 480 481 if (cache->last_trans == trans->transid) 482 return 0; 483 484 /* 485 * detached nodes are used to avoid unnecessary backref 486 * lookup. transaction commit changes the extent tree. 487 * so the detached nodes are no longer useful. 488 */ 489 while (!list_empty(&cache->detached)) { 490 node = list_entry(cache->detached.next, 491 struct backref_node, list); 492 remove_backref_node(cache, node); 493 } 494 495 while (!list_empty(&cache->changed)) { 496 node = list_entry(cache->changed.next, 497 struct backref_node, list); 498 list_del_init(&node->list); 499 BUG_ON(node->pending); 500 update_backref_node(cache, node, node->new_bytenr); 501 } 502 503 /* 504 * some nodes can be left in the pending list if there were 505 * errors during processing the pending nodes. 506 */ 507 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 508 list_for_each_entry(node, &cache->pending[level], list) { 509 BUG_ON(!node->pending); 510 if (node->bytenr == node->new_bytenr) 511 continue; 512 update_backref_node(cache, node, node->new_bytenr); 513 } 514 } 515 516 cache->last_trans = 0; 517 return 1; 518 } 519 520 521 static int should_ignore_root(struct btrfs_root *root) 522 { 523 struct btrfs_root *reloc_root; 524 525 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 526 return 0; 527 528 reloc_root = root->reloc_root; 529 if (!reloc_root) 530 return 0; 531 532 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 533 root->fs_info->running_transaction->transid - 1) 534 return 0; 535 /* 536 * if there is reloc tree and it was created in previous 537 * transaction backref lookup can find the reloc tree, 538 * so backref node for the fs tree root is useless for 539 * relocation. 540 */ 541 return 1; 542 } 543 /* 544 * find reloc tree by address of tree root 545 */ 546 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 547 u64 bytenr) 548 { 549 struct rb_node *rb_node; 550 struct mapping_node *node; 551 struct btrfs_root *root = NULL; 552 553 spin_lock(&rc->reloc_root_tree.lock); 554 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 555 if (rb_node) { 556 node = rb_entry(rb_node, struct mapping_node, rb_node); 557 root = (struct btrfs_root *)node->data; 558 } 559 spin_unlock(&rc->reloc_root_tree.lock); 560 return root; 561 } 562 563 static int is_cowonly_root(u64 root_objectid) 564 { 565 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 566 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 567 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 568 root_objectid == BTRFS_DEV_TREE_OBJECTID || 569 root_objectid == BTRFS_TREE_LOG_OBJECTID || 570 root_objectid == BTRFS_CSUM_TREE_OBJECTID || 571 root_objectid == BTRFS_UUID_TREE_OBJECTID || 572 root_objectid == BTRFS_QUOTA_TREE_OBJECTID || 573 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 574 return 1; 575 return 0; 576 } 577 578 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 579 u64 root_objectid) 580 { 581 struct btrfs_key key; 582 583 key.objectid = root_objectid; 584 key.type = BTRFS_ROOT_ITEM_KEY; 585 if (is_cowonly_root(root_objectid)) 586 key.offset = 0; 587 else 588 key.offset = (u64)-1; 589 590 return btrfs_get_fs_root(fs_info, &key, false); 591 } 592 593 static noinline_for_stack 594 int find_inline_backref(struct extent_buffer *leaf, int slot, 595 unsigned long *ptr, unsigned long *end) 596 { 597 struct btrfs_key key; 598 struct btrfs_extent_item *ei; 599 struct btrfs_tree_block_info *bi; 600 u32 item_size; 601 602 btrfs_item_key_to_cpu(leaf, &key, slot); 603 604 item_size = btrfs_item_size_nr(leaf, slot); 605 if (item_size < sizeof(*ei)) { 606 btrfs_print_v0_err(leaf->fs_info); 607 btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL); 608 return 1; 609 } 610 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 611 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 612 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 613 614 if (key.type == BTRFS_EXTENT_ITEM_KEY && 615 item_size <= sizeof(*ei) + sizeof(*bi)) { 616 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 617 return 1; 618 } 619 if (key.type == BTRFS_METADATA_ITEM_KEY && 620 item_size <= sizeof(*ei)) { 621 WARN_ON(item_size < sizeof(*ei)); 622 return 1; 623 } 624 625 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 626 bi = (struct btrfs_tree_block_info *)(ei + 1); 627 *ptr = (unsigned long)(bi + 1); 628 } else { 629 *ptr = (unsigned long)(ei + 1); 630 } 631 *end = (unsigned long)ei + item_size; 632 return 0; 633 } 634 635 /* 636 * build backref tree for a given tree block. root of the backref tree 637 * corresponds the tree block, leaves of the backref tree correspond 638 * roots of b-trees that reference the tree block. 639 * 640 * the basic idea of this function is check backrefs of a given block 641 * to find upper level blocks that reference the block, and then check 642 * backrefs of these upper level blocks recursively. the recursion stop 643 * when tree root is reached or backrefs for the block is cached. 644 * 645 * NOTE: if we find backrefs for a block are cached, we know backrefs 646 * for all upper level blocks that directly/indirectly reference the 647 * block are also cached. 648 */ 649 static noinline_for_stack 650 struct backref_node *build_backref_tree(struct reloc_control *rc, 651 struct btrfs_key *node_key, 652 int level, u64 bytenr) 653 { 654 struct backref_cache *cache = &rc->backref_cache; 655 struct btrfs_path *path1; /* For searching extent root */ 656 struct btrfs_path *path2; /* For searching parent of TREE_BLOCK_REF */ 657 struct extent_buffer *eb; 658 struct btrfs_root *root; 659 struct backref_node *cur; 660 struct backref_node *upper; 661 struct backref_node *lower; 662 struct backref_node *node = NULL; 663 struct backref_node *exist = NULL; 664 struct backref_edge *edge; 665 struct rb_node *rb_node; 666 struct btrfs_key key; 667 unsigned long end; 668 unsigned long ptr; 669 LIST_HEAD(list); /* Pending edge list, upper node needs to be checked */ 670 LIST_HEAD(useless); 671 int cowonly; 672 int ret; 673 int err = 0; 674 bool need_check = true; 675 676 path1 = btrfs_alloc_path(); 677 path2 = btrfs_alloc_path(); 678 if (!path1 || !path2) { 679 err = -ENOMEM; 680 goto out; 681 } 682 path1->reada = READA_FORWARD; 683 path2->reada = READA_FORWARD; 684 685 node = alloc_backref_node(cache); 686 if (!node) { 687 err = -ENOMEM; 688 goto out; 689 } 690 691 node->bytenr = bytenr; 692 node->level = level; 693 node->lowest = 1; 694 cur = node; 695 again: 696 end = 0; 697 ptr = 0; 698 key.objectid = cur->bytenr; 699 key.type = BTRFS_METADATA_ITEM_KEY; 700 key.offset = (u64)-1; 701 702 path1->search_commit_root = 1; 703 path1->skip_locking = 1; 704 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 705 0, 0); 706 if (ret < 0) { 707 err = ret; 708 goto out; 709 } 710 ASSERT(ret); 711 ASSERT(path1->slots[0]); 712 713 path1->slots[0]--; 714 715 WARN_ON(cur->checked); 716 if (!list_empty(&cur->upper)) { 717 /* 718 * the backref was added previously when processing 719 * backref of type BTRFS_TREE_BLOCK_REF_KEY 720 */ 721 ASSERT(list_is_singular(&cur->upper)); 722 edge = list_entry(cur->upper.next, struct backref_edge, 723 list[LOWER]); 724 ASSERT(list_empty(&edge->list[UPPER])); 725 exist = edge->node[UPPER]; 726 /* 727 * add the upper level block to pending list if we need 728 * check its backrefs 729 */ 730 if (!exist->checked) 731 list_add_tail(&edge->list[UPPER], &list); 732 } else { 733 exist = NULL; 734 } 735 736 while (1) { 737 cond_resched(); 738 eb = path1->nodes[0]; 739 740 if (ptr >= end) { 741 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 742 ret = btrfs_next_leaf(rc->extent_root, path1); 743 if (ret < 0) { 744 err = ret; 745 goto out; 746 } 747 if (ret > 0) 748 break; 749 eb = path1->nodes[0]; 750 } 751 752 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 753 if (key.objectid != cur->bytenr) { 754 WARN_ON(exist); 755 break; 756 } 757 758 if (key.type == BTRFS_EXTENT_ITEM_KEY || 759 key.type == BTRFS_METADATA_ITEM_KEY) { 760 ret = find_inline_backref(eb, path1->slots[0], 761 &ptr, &end); 762 if (ret) 763 goto next; 764 } 765 } 766 767 if (ptr < end) { 768 /* update key for inline back ref */ 769 struct btrfs_extent_inline_ref *iref; 770 int type; 771 iref = (struct btrfs_extent_inline_ref *)ptr; 772 type = btrfs_get_extent_inline_ref_type(eb, iref, 773 BTRFS_REF_TYPE_BLOCK); 774 if (type == BTRFS_REF_TYPE_INVALID) { 775 err = -EUCLEAN; 776 goto out; 777 } 778 key.type = type; 779 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 780 781 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 782 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 783 } 784 785 /* 786 * Parent node found and matches current inline ref, no need to 787 * rebuild this node for this inline ref. 788 */ 789 if (exist && 790 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 791 exist->owner == key.offset) || 792 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 793 exist->bytenr == key.offset))) { 794 exist = NULL; 795 goto next; 796 } 797 798 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 799 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 800 if (key.objectid == key.offset) { 801 /* 802 * Only root blocks of reloc trees use backref 803 * pointing to itself. 804 */ 805 root = find_reloc_root(rc, cur->bytenr); 806 ASSERT(root); 807 cur->root = root; 808 break; 809 } 810 811 edge = alloc_backref_edge(cache); 812 if (!edge) { 813 err = -ENOMEM; 814 goto out; 815 } 816 rb_node = tree_search(&cache->rb_root, key.offset); 817 if (!rb_node) { 818 upper = alloc_backref_node(cache); 819 if (!upper) { 820 free_backref_edge(cache, edge); 821 err = -ENOMEM; 822 goto out; 823 } 824 upper->bytenr = key.offset; 825 upper->level = cur->level + 1; 826 /* 827 * backrefs for the upper level block isn't 828 * cached, add the block to pending list 829 */ 830 list_add_tail(&edge->list[UPPER], &list); 831 } else { 832 upper = rb_entry(rb_node, struct backref_node, 833 rb_node); 834 ASSERT(upper->checked); 835 INIT_LIST_HEAD(&edge->list[UPPER]); 836 } 837 list_add_tail(&edge->list[LOWER], &cur->upper); 838 edge->node[LOWER] = cur; 839 edge->node[UPPER] = upper; 840 841 goto next; 842 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 843 err = -EINVAL; 844 btrfs_print_v0_err(rc->extent_root->fs_info); 845 btrfs_handle_fs_error(rc->extent_root->fs_info, err, 846 NULL); 847 goto out; 848 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 849 goto next; 850 } 851 852 /* 853 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 854 * means the root objectid. We need to search the tree to get 855 * its parent bytenr. 856 */ 857 root = read_fs_root(rc->extent_root->fs_info, key.offset); 858 if (IS_ERR(root)) { 859 err = PTR_ERR(root); 860 goto out; 861 } 862 863 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 864 cur->cowonly = 1; 865 866 if (btrfs_root_level(&root->root_item) == cur->level) { 867 /* tree root */ 868 ASSERT(btrfs_root_bytenr(&root->root_item) == 869 cur->bytenr); 870 if (should_ignore_root(root)) 871 list_add(&cur->list, &useless); 872 else 873 cur->root = root; 874 break; 875 } 876 877 level = cur->level + 1; 878 879 /* Search the tree to find parent blocks referring the block. */ 880 path2->search_commit_root = 1; 881 path2->skip_locking = 1; 882 path2->lowest_level = level; 883 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 884 path2->lowest_level = 0; 885 if (ret < 0) { 886 err = ret; 887 goto out; 888 } 889 if (ret > 0 && path2->slots[level] > 0) 890 path2->slots[level]--; 891 892 eb = path2->nodes[level]; 893 if (btrfs_node_blockptr(eb, path2->slots[level]) != 894 cur->bytenr) { 895 btrfs_err(root->fs_info, 896 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 897 cur->bytenr, level - 1, 898 root->root_key.objectid, 899 node_key->objectid, node_key->type, 900 node_key->offset); 901 err = -ENOENT; 902 goto out; 903 } 904 lower = cur; 905 need_check = true; 906 907 /* Add all nodes and edges in the path */ 908 for (; level < BTRFS_MAX_LEVEL; level++) { 909 if (!path2->nodes[level]) { 910 ASSERT(btrfs_root_bytenr(&root->root_item) == 911 lower->bytenr); 912 if (should_ignore_root(root)) 913 list_add(&lower->list, &useless); 914 else 915 lower->root = root; 916 break; 917 } 918 919 edge = alloc_backref_edge(cache); 920 if (!edge) { 921 err = -ENOMEM; 922 goto out; 923 } 924 925 eb = path2->nodes[level]; 926 rb_node = tree_search(&cache->rb_root, eb->start); 927 if (!rb_node) { 928 upper = alloc_backref_node(cache); 929 if (!upper) { 930 free_backref_edge(cache, edge); 931 err = -ENOMEM; 932 goto out; 933 } 934 upper->bytenr = eb->start; 935 upper->owner = btrfs_header_owner(eb); 936 upper->level = lower->level + 1; 937 if (!test_bit(BTRFS_ROOT_REF_COWS, 938 &root->state)) 939 upper->cowonly = 1; 940 941 /* 942 * if we know the block isn't shared 943 * we can void checking its backrefs. 944 */ 945 if (btrfs_block_can_be_shared(root, eb)) 946 upper->checked = 0; 947 else 948 upper->checked = 1; 949 950 /* 951 * add the block to pending list if we 952 * need check its backrefs, we only do this once 953 * while walking up a tree as we will catch 954 * anything else later on. 955 */ 956 if (!upper->checked && need_check) { 957 need_check = false; 958 list_add_tail(&edge->list[UPPER], 959 &list); 960 } else { 961 if (upper->checked) 962 need_check = true; 963 INIT_LIST_HEAD(&edge->list[UPPER]); 964 } 965 } else { 966 upper = rb_entry(rb_node, struct backref_node, 967 rb_node); 968 ASSERT(upper->checked); 969 INIT_LIST_HEAD(&edge->list[UPPER]); 970 if (!upper->owner) 971 upper->owner = btrfs_header_owner(eb); 972 } 973 list_add_tail(&edge->list[LOWER], &lower->upper); 974 edge->node[LOWER] = lower; 975 edge->node[UPPER] = upper; 976 977 if (rb_node) 978 break; 979 lower = upper; 980 upper = NULL; 981 } 982 btrfs_release_path(path2); 983 next: 984 if (ptr < end) { 985 ptr += btrfs_extent_inline_ref_size(key.type); 986 if (ptr >= end) { 987 WARN_ON(ptr > end); 988 ptr = 0; 989 end = 0; 990 } 991 } 992 if (ptr >= end) 993 path1->slots[0]++; 994 } 995 btrfs_release_path(path1); 996 997 cur->checked = 1; 998 WARN_ON(exist); 999 1000 /* the pending list isn't empty, take the first block to process */ 1001 if (!list_empty(&list)) { 1002 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1003 list_del_init(&edge->list[UPPER]); 1004 cur = edge->node[UPPER]; 1005 goto again; 1006 } 1007 1008 /* 1009 * everything goes well, connect backref nodes and insert backref nodes 1010 * into the cache. 1011 */ 1012 ASSERT(node->checked); 1013 cowonly = node->cowonly; 1014 if (!cowonly) { 1015 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1016 &node->rb_node); 1017 if (rb_node) 1018 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1019 list_add_tail(&node->lower, &cache->leaves); 1020 } 1021 1022 list_for_each_entry(edge, &node->upper, list[LOWER]) 1023 list_add_tail(&edge->list[UPPER], &list); 1024 1025 while (!list_empty(&list)) { 1026 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1027 list_del_init(&edge->list[UPPER]); 1028 upper = edge->node[UPPER]; 1029 if (upper->detached) { 1030 list_del(&edge->list[LOWER]); 1031 lower = edge->node[LOWER]; 1032 free_backref_edge(cache, edge); 1033 if (list_empty(&lower->upper)) 1034 list_add(&lower->list, &useless); 1035 continue; 1036 } 1037 1038 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1039 if (upper->lowest) { 1040 list_del_init(&upper->lower); 1041 upper->lowest = 0; 1042 } 1043 1044 list_add_tail(&edge->list[UPPER], &upper->lower); 1045 continue; 1046 } 1047 1048 if (!upper->checked) { 1049 /* 1050 * Still want to blow up for developers since this is a 1051 * logic bug. 1052 */ 1053 ASSERT(0); 1054 err = -EINVAL; 1055 goto out; 1056 } 1057 if (cowonly != upper->cowonly) { 1058 ASSERT(0); 1059 err = -EINVAL; 1060 goto out; 1061 } 1062 1063 if (!cowonly) { 1064 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1065 &upper->rb_node); 1066 if (rb_node) 1067 backref_tree_panic(rb_node, -EEXIST, 1068 upper->bytenr); 1069 } 1070 1071 list_add_tail(&edge->list[UPPER], &upper->lower); 1072 1073 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1074 list_add_tail(&edge->list[UPPER], &list); 1075 } 1076 /* 1077 * process useless backref nodes. backref nodes for tree leaves 1078 * are deleted from the cache. backref nodes for upper level 1079 * tree blocks are left in the cache to avoid unnecessary backref 1080 * lookup. 1081 */ 1082 while (!list_empty(&useless)) { 1083 upper = list_entry(useless.next, struct backref_node, list); 1084 list_del_init(&upper->list); 1085 ASSERT(list_empty(&upper->upper)); 1086 if (upper == node) 1087 node = NULL; 1088 if (upper->lowest) { 1089 list_del_init(&upper->lower); 1090 upper->lowest = 0; 1091 } 1092 while (!list_empty(&upper->lower)) { 1093 edge = list_entry(upper->lower.next, 1094 struct backref_edge, list[UPPER]); 1095 list_del(&edge->list[UPPER]); 1096 list_del(&edge->list[LOWER]); 1097 lower = edge->node[LOWER]; 1098 free_backref_edge(cache, edge); 1099 1100 if (list_empty(&lower->upper)) 1101 list_add(&lower->list, &useless); 1102 } 1103 __mark_block_processed(rc, upper); 1104 if (upper->level > 0) { 1105 list_add(&upper->list, &cache->detached); 1106 upper->detached = 1; 1107 } else { 1108 rb_erase(&upper->rb_node, &cache->rb_root); 1109 free_backref_node(cache, upper); 1110 } 1111 } 1112 out: 1113 btrfs_free_path(path1); 1114 btrfs_free_path(path2); 1115 if (err) { 1116 while (!list_empty(&useless)) { 1117 lower = list_entry(useless.next, 1118 struct backref_node, list); 1119 list_del_init(&lower->list); 1120 } 1121 while (!list_empty(&list)) { 1122 edge = list_first_entry(&list, struct backref_edge, 1123 list[UPPER]); 1124 list_del(&edge->list[UPPER]); 1125 list_del(&edge->list[LOWER]); 1126 lower = edge->node[LOWER]; 1127 upper = edge->node[UPPER]; 1128 free_backref_edge(cache, edge); 1129 1130 /* 1131 * Lower is no longer linked to any upper backref nodes 1132 * and isn't in the cache, we can free it ourselves. 1133 */ 1134 if (list_empty(&lower->upper) && 1135 RB_EMPTY_NODE(&lower->rb_node)) 1136 list_add(&lower->list, &useless); 1137 1138 if (!RB_EMPTY_NODE(&upper->rb_node)) 1139 continue; 1140 1141 /* Add this guy's upper edges to the list to process */ 1142 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1143 list_add_tail(&edge->list[UPPER], &list); 1144 if (list_empty(&upper->upper)) 1145 list_add(&upper->list, &useless); 1146 } 1147 1148 while (!list_empty(&useless)) { 1149 lower = list_entry(useless.next, 1150 struct backref_node, list); 1151 list_del_init(&lower->list); 1152 if (lower == node) 1153 node = NULL; 1154 free_backref_node(cache, lower); 1155 } 1156 1157 free_backref_node(cache, node); 1158 return ERR_PTR(err); 1159 } 1160 ASSERT(!node || !node->detached); 1161 return node; 1162 } 1163 1164 /* 1165 * helper to add backref node for the newly created snapshot. 1166 * the backref node is created by cloning backref node that 1167 * corresponds to root of source tree 1168 */ 1169 static int clone_backref_node(struct btrfs_trans_handle *trans, 1170 struct reloc_control *rc, 1171 struct btrfs_root *src, 1172 struct btrfs_root *dest) 1173 { 1174 struct btrfs_root *reloc_root = src->reloc_root; 1175 struct backref_cache *cache = &rc->backref_cache; 1176 struct backref_node *node = NULL; 1177 struct backref_node *new_node; 1178 struct backref_edge *edge; 1179 struct backref_edge *new_edge; 1180 struct rb_node *rb_node; 1181 1182 if (cache->last_trans > 0) 1183 update_backref_cache(trans, cache); 1184 1185 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1186 if (rb_node) { 1187 node = rb_entry(rb_node, struct backref_node, rb_node); 1188 if (node->detached) 1189 node = NULL; 1190 else 1191 BUG_ON(node->new_bytenr != reloc_root->node->start); 1192 } 1193 1194 if (!node) { 1195 rb_node = tree_search(&cache->rb_root, 1196 reloc_root->commit_root->start); 1197 if (rb_node) { 1198 node = rb_entry(rb_node, struct backref_node, 1199 rb_node); 1200 BUG_ON(node->detached); 1201 } 1202 } 1203 1204 if (!node) 1205 return 0; 1206 1207 new_node = alloc_backref_node(cache); 1208 if (!new_node) 1209 return -ENOMEM; 1210 1211 new_node->bytenr = dest->node->start; 1212 new_node->level = node->level; 1213 new_node->lowest = node->lowest; 1214 new_node->checked = 1; 1215 new_node->root = dest; 1216 1217 if (!node->lowest) { 1218 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1219 new_edge = alloc_backref_edge(cache); 1220 if (!new_edge) 1221 goto fail; 1222 1223 new_edge->node[UPPER] = new_node; 1224 new_edge->node[LOWER] = edge->node[LOWER]; 1225 list_add_tail(&new_edge->list[UPPER], 1226 &new_node->lower); 1227 } 1228 } else { 1229 list_add_tail(&new_node->lower, &cache->leaves); 1230 } 1231 1232 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1233 &new_node->rb_node); 1234 if (rb_node) 1235 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr); 1236 1237 if (!new_node->lowest) { 1238 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1239 list_add_tail(&new_edge->list[LOWER], 1240 &new_edge->node[LOWER]->upper); 1241 } 1242 } 1243 return 0; 1244 fail: 1245 while (!list_empty(&new_node->lower)) { 1246 new_edge = list_entry(new_node->lower.next, 1247 struct backref_edge, list[UPPER]); 1248 list_del(&new_edge->list[UPPER]); 1249 free_backref_edge(cache, new_edge); 1250 } 1251 free_backref_node(cache, new_node); 1252 return -ENOMEM; 1253 } 1254 1255 /* 1256 * helper to add 'address of tree root -> reloc tree' mapping 1257 */ 1258 static int __must_check __add_reloc_root(struct btrfs_root *root) 1259 { 1260 struct btrfs_fs_info *fs_info = root->fs_info; 1261 struct rb_node *rb_node; 1262 struct mapping_node *node; 1263 struct reloc_control *rc = fs_info->reloc_ctl; 1264 1265 node = kmalloc(sizeof(*node), GFP_NOFS); 1266 if (!node) 1267 return -ENOMEM; 1268 1269 node->bytenr = root->node->start; 1270 node->data = root; 1271 1272 spin_lock(&rc->reloc_root_tree.lock); 1273 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1274 node->bytenr, &node->rb_node); 1275 spin_unlock(&rc->reloc_root_tree.lock); 1276 if (rb_node) { 1277 btrfs_panic(fs_info, -EEXIST, 1278 "Duplicate root found for start=%llu while inserting into relocation tree", 1279 node->bytenr); 1280 } 1281 1282 list_add_tail(&root->root_list, &rc->reloc_roots); 1283 return 0; 1284 } 1285 1286 /* 1287 * helper to delete the 'address of tree root -> reloc tree' 1288 * mapping 1289 */ 1290 static void __del_reloc_root(struct btrfs_root *root) 1291 { 1292 struct btrfs_fs_info *fs_info = root->fs_info; 1293 struct rb_node *rb_node; 1294 struct mapping_node *node = NULL; 1295 struct reloc_control *rc = fs_info->reloc_ctl; 1296 1297 if (rc && root->node) { 1298 spin_lock(&rc->reloc_root_tree.lock); 1299 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1300 root->node->start); 1301 if (rb_node) { 1302 node = rb_entry(rb_node, struct mapping_node, rb_node); 1303 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1304 } 1305 spin_unlock(&rc->reloc_root_tree.lock); 1306 if (!node) 1307 return; 1308 BUG_ON((struct btrfs_root *)node->data != root); 1309 } 1310 1311 spin_lock(&fs_info->trans_lock); 1312 list_del_init(&root->root_list); 1313 spin_unlock(&fs_info->trans_lock); 1314 kfree(node); 1315 } 1316 1317 /* 1318 * helper to update the 'address of tree root -> reloc tree' 1319 * mapping 1320 */ 1321 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr) 1322 { 1323 struct btrfs_fs_info *fs_info = root->fs_info; 1324 struct rb_node *rb_node; 1325 struct mapping_node *node = NULL; 1326 struct reloc_control *rc = fs_info->reloc_ctl; 1327 1328 spin_lock(&rc->reloc_root_tree.lock); 1329 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1330 root->node->start); 1331 if (rb_node) { 1332 node = rb_entry(rb_node, struct mapping_node, rb_node); 1333 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1334 } 1335 spin_unlock(&rc->reloc_root_tree.lock); 1336 1337 if (!node) 1338 return 0; 1339 BUG_ON((struct btrfs_root *)node->data != root); 1340 1341 spin_lock(&rc->reloc_root_tree.lock); 1342 node->bytenr = new_bytenr; 1343 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1344 node->bytenr, &node->rb_node); 1345 spin_unlock(&rc->reloc_root_tree.lock); 1346 if (rb_node) 1347 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1348 return 0; 1349 } 1350 1351 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1352 struct btrfs_root *root, u64 objectid) 1353 { 1354 struct btrfs_fs_info *fs_info = root->fs_info; 1355 struct btrfs_root *reloc_root; 1356 struct extent_buffer *eb; 1357 struct btrfs_root_item *root_item; 1358 struct btrfs_key root_key; 1359 int ret; 1360 1361 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1362 BUG_ON(!root_item); 1363 1364 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1365 root_key.type = BTRFS_ROOT_ITEM_KEY; 1366 root_key.offset = objectid; 1367 1368 if (root->root_key.objectid == objectid) { 1369 u64 commit_root_gen; 1370 1371 /* called by btrfs_init_reloc_root */ 1372 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1373 BTRFS_TREE_RELOC_OBJECTID); 1374 BUG_ON(ret); 1375 /* 1376 * Set the last_snapshot field to the generation of the commit 1377 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 1378 * correctly (returns true) when the relocation root is created 1379 * either inside the critical section of a transaction commit 1380 * (through transaction.c:qgroup_account_snapshot()) and when 1381 * it's created before the transaction commit is started. 1382 */ 1383 commit_root_gen = btrfs_header_generation(root->commit_root); 1384 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 1385 } else { 1386 /* 1387 * called by btrfs_reloc_post_snapshot_hook. 1388 * the source tree is a reloc tree, all tree blocks 1389 * modified after it was created have RELOC flag 1390 * set in their headers. so it's OK to not update 1391 * the 'last_snapshot'. 1392 */ 1393 ret = btrfs_copy_root(trans, root, root->node, &eb, 1394 BTRFS_TREE_RELOC_OBJECTID); 1395 BUG_ON(ret); 1396 } 1397 1398 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1399 btrfs_set_root_bytenr(root_item, eb->start); 1400 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1401 btrfs_set_root_generation(root_item, trans->transid); 1402 1403 if (root->root_key.objectid == objectid) { 1404 btrfs_set_root_refs(root_item, 0); 1405 memset(&root_item->drop_progress, 0, 1406 sizeof(struct btrfs_disk_key)); 1407 root_item->drop_level = 0; 1408 } 1409 1410 btrfs_tree_unlock(eb); 1411 free_extent_buffer(eb); 1412 1413 ret = btrfs_insert_root(trans, fs_info->tree_root, 1414 &root_key, root_item); 1415 BUG_ON(ret); 1416 kfree(root_item); 1417 1418 reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key); 1419 BUG_ON(IS_ERR(reloc_root)); 1420 reloc_root->last_trans = trans->transid; 1421 return reloc_root; 1422 } 1423 1424 /* 1425 * create reloc tree for a given fs tree. reloc tree is just a 1426 * snapshot of the fs tree with special root objectid. 1427 */ 1428 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1429 struct btrfs_root *root) 1430 { 1431 struct btrfs_fs_info *fs_info = root->fs_info; 1432 struct btrfs_root *reloc_root; 1433 struct reloc_control *rc = fs_info->reloc_ctl; 1434 struct btrfs_block_rsv *rsv; 1435 int clear_rsv = 0; 1436 int ret; 1437 1438 /* 1439 * The subvolume has reloc tree but the swap is finished, no need to 1440 * create/update the dead reloc tree 1441 */ 1442 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) 1443 return 0; 1444 1445 if (root->reloc_root) { 1446 reloc_root = root->reloc_root; 1447 reloc_root->last_trans = trans->transid; 1448 return 0; 1449 } 1450 1451 if (!rc || !rc->create_reloc_tree || 1452 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1453 return 0; 1454 1455 if (!trans->reloc_reserved) { 1456 rsv = trans->block_rsv; 1457 trans->block_rsv = rc->block_rsv; 1458 clear_rsv = 1; 1459 } 1460 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1461 if (clear_rsv) 1462 trans->block_rsv = rsv; 1463 1464 ret = __add_reloc_root(reloc_root); 1465 BUG_ON(ret < 0); 1466 root->reloc_root = reloc_root; 1467 return 0; 1468 } 1469 1470 /* 1471 * update root item of reloc tree 1472 */ 1473 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1474 struct btrfs_root *root) 1475 { 1476 struct btrfs_fs_info *fs_info = root->fs_info; 1477 struct btrfs_root *reloc_root; 1478 struct btrfs_root_item *root_item; 1479 int ret; 1480 1481 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state) || 1482 !root->reloc_root) 1483 goto out; 1484 1485 reloc_root = root->reloc_root; 1486 root_item = &reloc_root->root_item; 1487 1488 /* root->reloc_root will stay until current relocation finished */ 1489 if (fs_info->reloc_ctl->merge_reloc_tree && 1490 btrfs_root_refs(root_item) == 0) { 1491 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1492 __del_reloc_root(reloc_root); 1493 } 1494 1495 if (reloc_root->commit_root != reloc_root->node) { 1496 btrfs_set_root_node(root_item, reloc_root->node); 1497 free_extent_buffer(reloc_root->commit_root); 1498 reloc_root->commit_root = btrfs_root_node(reloc_root); 1499 } 1500 1501 ret = btrfs_update_root(trans, fs_info->tree_root, 1502 &reloc_root->root_key, root_item); 1503 BUG_ON(ret); 1504 1505 out: 1506 return 0; 1507 } 1508 1509 /* 1510 * helper to find first cached inode with inode number >= objectid 1511 * in a subvolume 1512 */ 1513 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1514 { 1515 struct rb_node *node; 1516 struct rb_node *prev; 1517 struct btrfs_inode *entry; 1518 struct inode *inode; 1519 1520 spin_lock(&root->inode_lock); 1521 again: 1522 node = root->inode_tree.rb_node; 1523 prev = NULL; 1524 while (node) { 1525 prev = node; 1526 entry = rb_entry(node, struct btrfs_inode, rb_node); 1527 1528 if (objectid < btrfs_ino(entry)) 1529 node = node->rb_left; 1530 else if (objectid > btrfs_ino(entry)) 1531 node = node->rb_right; 1532 else 1533 break; 1534 } 1535 if (!node) { 1536 while (prev) { 1537 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1538 if (objectid <= btrfs_ino(entry)) { 1539 node = prev; 1540 break; 1541 } 1542 prev = rb_next(prev); 1543 } 1544 } 1545 while (node) { 1546 entry = rb_entry(node, struct btrfs_inode, rb_node); 1547 inode = igrab(&entry->vfs_inode); 1548 if (inode) { 1549 spin_unlock(&root->inode_lock); 1550 return inode; 1551 } 1552 1553 objectid = btrfs_ino(entry) + 1; 1554 if (cond_resched_lock(&root->inode_lock)) 1555 goto again; 1556 1557 node = rb_next(node); 1558 } 1559 spin_unlock(&root->inode_lock); 1560 return NULL; 1561 } 1562 1563 static int in_block_group(u64 bytenr, 1564 struct btrfs_block_group_cache *block_group) 1565 { 1566 if (bytenr >= block_group->key.objectid && 1567 bytenr < block_group->key.objectid + block_group->key.offset) 1568 return 1; 1569 return 0; 1570 } 1571 1572 /* 1573 * get new location of data 1574 */ 1575 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1576 u64 bytenr, u64 num_bytes) 1577 { 1578 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1579 struct btrfs_path *path; 1580 struct btrfs_file_extent_item *fi; 1581 struct extent_buffer *leaf; 1582 int ret; 1583 1584 path = btrfs_alloc_path(); 1585 if (!path) 1586 return -ENOMEM; 1587 1588 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1589 ret = btrfs_lookup_file_extent(NULL, root, path, 1590 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 1591 if (ret < 0) 1592 goto out; 1593 if (ret > 0) { 1594 ret = -ENOENT; 1595 goto out; 1596 } 1597 1598 leaf = path->nodes[0]; 1599 fi = btrfs_item_ptr(leaf, path->slots[0], 1600 struct btrfs_file_extent_item); 1601 1602 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1603 btrfs_file_extent_compression(leaf, fi) || 1604 btrfs_file_extent_encryption(leaf, fi) || 1605 btrfs_file_extent_other_encoding(leaf, fi)); 1606 1607 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1608 ret = -EINVAL; 1609 goto out; 1610 } 1611 1612 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1613 ret = 0; 1614 out: 1615 btrfs_free_path(path); 1616 return ret; 1617 } 1618 1619 /* 1620 * update file extent items in the tree leaf to point to 1621 * the new locations. 1622 */ 1623 static noinline_for_stack 1624 int replace_file_extents(struct btrfs_trans_handle *trans, 1625 struct reloc_control *rc, 1626 struct btrfs_root *root, 1627 struct extent_buffer *leaf) 1628 { 1629 struct btrfs_fs_info *fs_info = root->fs_info; 1630 struct btrfs_key key; 1631 struct btrfs_file_extent_item *fi; 1632 struct inode *inode = NULL; 1633 u64 parent; 1634 u64 bytenr; 1635 u64 new_bytenr = 0; 1636 u64 num_bytes; 1637 u64 end; 1638 u32 nritems; 1639 u32 i; 1640 int ret = 0; 1641 int first = 1; 1642 int dirty = 0; 1643 1644 if (rc->stage != UPDATE_DATA_PTRS) 1645 return 0; 1646 1647 /* reloc trees always use full backref */ 1648 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1649 parent = leaf->start; 1650 else 1651 parent = 0; 1652 1653 nritems = btrfs_header_nritems(leaf); 1654 for (i = 0; i < nritems; i++) { 1655 struct btrfs_ref ref = { 0 }; 1656 1657 cond_resched(); 1658 btrfs_item_key_to_cpu(leaf, &key, i); 1659 if (key.type != BTRFS_EXTENT_DATA_KEY) 1660 continue; 1661 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1662 if (btrfs_file_extent_type(leaf, fi) == 1663 BTRFS_FILE_EXTENT_INLINE) 1664 continue; 1665 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1666 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1667 if (bytenr == 0) 1668 continue; 1669 if (!in_block_group(bytenr, rc->block_group)) 1670 continue; 1671 1672 /* 1673 * if we are modifying block in fs tree, wait for readpage 1674 * to complete and drop the extent cache 1675 */ 1676 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1677 if (first) { 1678 inode = find_next_inode(root, key.objectid); 1679 first = 0; 1680 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1681 btrfs_add_delayed_iput(inode); 1682 inode = find_next_inode(root, key.objectid); 1683 } 1684 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1685 end = key.offset + 1686 btrfs_file_extent_num_bytes(leaf, fi); 1687 WARN_ON(!IS_ALIGNED(key.offset, 1688 fs_info->sectorsize)); 1689 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1690 end--; 1691 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1692 key.offset, end); 1693 if (!ret) 1694 continue; 1695 1696 btrfs_drop_extent_cache(BTRFS_I(inode), 1697 key.offset, end, 1); 1698 unlock_extent(&BTRFS_I(inode)->io_tree, 1699 key.offset, end); 1700 } 1701 } 1702 1703 ret = get_new_location(rc->data_inode, &new_bytenr, 1704 bytenr, num_bytes); 1705 if (ret) { 1706 /* 1707 * Don't have to abort since we've not changed anything 1708 * in the file extent yet. 1709 */ 1710 break; 1711 } 1712 1713 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1714 dirty = 1; 1715 1716 key.offset -= btrfs_file_extent_offset(leaf, fi); 1717 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1718 num_bytes, parent); 1719 ref.real_root = root->root_key.objectid; 1720 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1721 key.objectid, key.offset); 1722 ret = btrfs_inc_extent_ref(trans, &ref); 1723 if (ret) { 1724 btrfs_abort_transaction(trans, ret); 1725 break; 1726 } 1727 1728 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1729 num_bytes, parent); 1730 ref.real_root = root->root_key.objectid; 1731 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1732 key.objectid, key.offset); 1733 ret = btrfs_free_extent(trans, &ref); 1734 if (ret) { 1735 btrfs_abort_transaction(trans, ret); 1736 break; 1737 } 1738 } 1739 if (dirty) 1740 btrfs_mark_buffer_dirty(leaf); 1741 if (inode) 1742 btrfs_add_delayed_iput(inode); 1743 return ret; 1744 } 1745 1746 static noinline_for_stack 1747 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1748 struct btrfs_path *path, int level) 1749 { 1750 struct btrfs_disk_key key1; 1751 struct btrfs_disk_key key2; 1752 btrfs_node_key(eb, &key1, slot); 1753 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1754 return memcmp(&key1, &key2, sizeof(key1)); 1755 } 1756 1757 /* 1758 * try to replace tree blocks in fs tree with the new blocks 1759 * in reloc tree. tree blocks haven't been modified since the 1760 * reloc tree was create can be replaced. 1761 * 1762 * if a block was replaced, level of the block + 1 is returned. 1763 * if no block got replaced, 0 is returned. if there are other 1764 * errors, a negative error number is returned. 1765 */ 1766 static noinline_for_stack 1767 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1768 struct btrfs_root *dest, struct btrfs_root *src, 1769 struct btrfs_path *path, struct btrfs_key *next_key, 1770 int lowest_level, int max_level) 1771 { 1772 struct btrfs_fs_info *fs_info = dest->fs_info; 1773 struct extent_buffer *eb; 1774 struct extent_buffer *parent; 1775 struct btrfs_ref ref = { 0 }; 1776 struct btrfs_key key; 1777 u64 old_bytenr; 1778 u64 new_bytenr; 1779 u64 old_ptr_gen; 1780 u64 new_ptr_gen; 1781 u64 last_snapshot; 1782 u32 blocksize; 1783 int cow = 0; 1784 int level; 1785 int ret; 1786 int slot; 1787 1788 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1789 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1790 1791 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1792 again: 1793 slot = path->slots[lowest_level]; 1794 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1795 1796 eb = btrfs_lock_root_node(dest); 1797 btrfs_set_lock_blocking_write(eb); 1798 level = btrfs_header_level(eb); 1799 1800 if (level < lowest_level) { 1801 btrfs_tree_unlock(eb); 1802 free_extent_buffer(eb); 1803 return 0; 1804 } 1805 1806 if (cow) { 1807 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1808 BUG_ON(ret); 1809 } 1810 btrfs_set_lock_blocking_write(eb); 1811 1812 if (next_key) { 1813 next_key->objectid = (u64)-1; 1814 next_key->type = (u8)-1; 1815 next_key->offset = (u64)-1; 1816 } 1817 1818 parent = eb; 1819 while (1) { 1820 struct btrfs_key first_key; 1821 1822 level = btrfs_header_level(parent); 1823 BUG_ON(level < lowest_level); 1824 1825 ret = btrfs_bin_search(parent, &key, level, &slot); 1826 if (ret < 0) 1827 break; 1828 if (ret && slot > 0) 1829 slot--; 1830 1831 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1832 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1833 1834 old_bytenr = btrfs_node_blockptr(parent, slot); 1835 blocksize = fs_info->nodesize; 1836 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1837 btrfs_node_key_to_cpu(parent, &first_key, slot); 1838 1839 if (level <= max_level) { 1840 eb = path->nodes[level]; 1841 new_bytenr = btrfs_node_blockptr(eb, 1842 path->slots[level]); 1843 new_ptr_gen = btrfs_node_ptr_generation(eb, 1844 path->slots[level]); 1845 } else { 1846 new_bytenr = 0; 1847 new_ptr_gen = 0; 1848 } 1849 1850 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1851 ret = level; 1852 break; 1853 } 1854 1855 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1856 memcmp_node_keys(parent, slot, path, level)) { 1857 if (level <= lowest_level) { 1858 ret = 0; 1859 break; 1860 } 1861 1862 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen, 1863 level - 1, &first_key); 1864 if (IS_ERR(eb)) { 1865 ret = PTR_ERR(eb); 1866 break; 1867 } else if (!extent_buffer_uptodate(eb)) { 1868 ret = -EIO; 1869 free_extent_buffer(eb); 1870 break; 1871 } 1872 btrfs_tree_lock(eb); 1873 if (cow) { 1874 ret = btrfs_cow_block(trans, dest, eb, parent, 1875 slot, &eb); 1876 BUG_ON(ret); 1877 } 1878 btrfs_set_lock_blocking_write(eb); 1879 1880 btrfs_tree_unlock(parent); 1881 free_extent_buffer(parent); 1882 1883 parent = eb; 1884 continue; 1885 } 1886 1887 if (!cow) { 1888 btrfs_tree_unlock(parent); 1889 free_extent_buffer(parent); 1890 cow = 1; 1891 goto again; 1892 } 1893 1894 btrfs_node_key_to_cpu(path->nodes[level], &key, 1895 path->slots[level]); 1896 btrfs_release_path(path); 1897 1898 path->lowest_level = level; 1899 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1900 path->lowest_level = 0; 1901 BUG_ON(ret); 1902 1903 /* 1904 * Info qgroup to trace both subtrees. 1905 * 1906 * We must trace both trees. 1907 * 1) Tree reloc subtree 1908 * If not traced, we will leak data numbers 1909 * 2) Fs subtree 1910 * If not traced, we will double count old data 1911 * 1912 * We don't scan the subtree right now, but only record 1913 * the swapped tree blocks. 1914 * The real subtree rescan is delayed until we have new 1915 * CoW on the subtree root node before transaction commit. 1916 */ 1917 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 1918 rc->block_group, parent, slot, 1919 path->nodes[level], path->slots[level], 1920 last_snapshot); 1921 if (ret < 0) 1922 break; 1923 /* 1924 * swap blocks in fs tree and reloc tree. 1925 */ 1926 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1927 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1928 btrfs_mark_buffer_dirty(parent); 1929 1930 btrfs_set_node_blockptr(path->nodes[level], 1931 path->slots[level], old_bytenr); 1932 btrfs_set_node_ptr_generation(path->nodes[level], 1933 path->slots[level], old_ptr_gen); 1934 btrfs_mark_buffer_dirty(path->nodes[level]); 1935 1936 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, 1937 blocksize, path->nodes[level]->start); 1938 ref.skip_qgroup = true; 1939 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1940 ret = btrfs_inc_extent_ref(trans, &ref); 1941 BUG_ON(ret); 1942 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1943 blocksize, 0); 1944 ref.skip_qgroup = true; 1945 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1946 ret = btrfs_inc_extent_ref(trans, &ref); 1947 BUG_ON(ret); 1948 1949 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, 1950 blocksize, path->nodes[level]->start); 1951 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1952 ref.skip_qgroup = true; 1953 ret = btrfs_free_extent(trans, &ref); 1954 BUG_ON(ret); 1955 1956 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, 1957 blocksize, 0); 1958 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1959 ref.skip_qgroup = true; 1960 ret = btrfs_free_extent(trans, &ref); 1961 BUG_ON(ret); 1962 1963 btrfs_unlock_up_safe(path, 0); 1964 1965 ret = level; 1966 break; 1967 } 1968 btrfs_tree_unlock(parent); 1969 free_extent_buffer(parent); 1970 return ret; 1971 } 1972 1973 /* 1974 * helper to find next relocated block in reloc tree 1975 */ 1976 static noinline_for_stack 1977 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1978 int *level) 1979 { 1980 struct extent_buffer *eb; 1981 int i; 1982 u64 last_snapshot; 1983 u32 nritems; 1984 1985 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1986 1987 for (i = 0; i < *level; i++) { 1988 free_extent_buffer(path->nodes[i]); 1989 path->nodes[i] = NULL; 1990 } 1991 1992 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1993 eb = path->nodes[i]; 1994 nritems = btrfs_header_nritems(eb); 1995 while (path->slots[i] + 1 < nritems) { 1996 path->slots[i]++; 1997 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1998 last_snapshot) 1999 continue; 2000 2001 *level = i; 2002 return 0; 2003 } 2004 free_extent_buffer(path->nodes[i]); 2005 path->nodes[i] = NULL; 2006 } 2007 return 1; 2008 } 2009 2010 /* 2011 * walk down reloc tree to find relocated block of lowest level 2012 */ 2013 static noinline_for_stack 2014 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 2015 int *level) 2016 { 2017 struct btrfs_fs_info *fs_info = root->fs_info; 2018 struct extent_buffer *eb = NULL; 2019 int i; 2020 u64 bytenr; 2021 u64 ptr_gen = 0; 2022 u64 last_snapshot; 2023 u32 nritems; 2024 2025 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2026 2027 for (i = *level; i > 0; i--) { 2028 struct btrfs_key first_key; 2029 2030 eb = path->nodes[i]; 2031 nritems = btrfs_header_nritems(eb); 2032 while (path->slots[i] < nritems) { 2033 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 2034 if (ptr_gen > last_snapshot) 2035 break; 2036 path->slots[i]++; 2037 } 2038 if (path->slots[i] >= nritems) { 2039 if (i == *level) 2040 break; 2041 *level = i + 1; 2042 return 0; 2043 } 2044 if (i == 1) { 2045 *level = i; 2046 return 0; 2047 } 2048 2049 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 2050 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]); 2051 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1, 2052 &first_key); 2053 if (IS_ERR(eb)) { 2054 return PTR_ERR(eb); 2055 } else if (!extent_buffer_uptodate(eb)) { 2056 free_extent_buffer(eb); 2057 return -EIO; 2058 } 2059 BUG_ON(btrfs_header_level(eb) != i - 1); 2060 path->nodes[i - 1] = eb; 2061 path->slots[i - 1] = 0; 2062 } 2063 return 1; 2064 } 2065 2066 /* 2067 * invalidate extent cache for file extents whose key in range of 2068 * [min_key, max_key) 2069 */ 2070 static int invalidate_extent_cache(struct btrfs_root *root, 2071 struct btrfs_key *min_key, 2072 struct btrfs_key *max_key) 2073 { 2074 struct btrfs_fs_info *fs_info = root->fs_info; 2075 struct inode *inode = NULL; 2076 u64 objectid; 2077 u64 start, end; 2078 u64 ino; 2079 2080 objectid = min_key->objectid; 2081 while (1) { 2082 cond_resched(); 2083 iput(inode); 2084 2085 if (objectid > max_key->objectid) 2086 break; 2087 2088 inode = find_next_inode(root, objectid); 2089 if (!inode) 2090 break; 2091 ino = btrfs_ino(BTRFS_I(inode)); 2092 2093 if (ino > max_key->objectid) { 2094 iput(inode); 2095 break; 2096 } 2097 2098 objectid = ino + 1; 2099 if (!S_ISREG(inode->i_mode)) 2100 continue; 2101 2102 if (unlikely(min_key->objectid == ino)) { 2103 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 2104 continue; 2105 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 2106 start = 0; 2107 else { 2108 start = min_key->offset; 2109 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 2110 } 2111 } else { 2112 start = 0; 2113 } 2114 2115 if (unlikely(max_key->objectid == ino)) { 2116 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 2117 continue; 2118 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 2119 end = (u64)-1; 2120 } else { 2121 if (max_key->offset == 0) 2122 continue; 2123 end = max_key->offset; 2124 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 2125 end--; 2126 } 2127 } else { 2128 end = (u64)-1; 2129 } 2130 2131 /* the lock_extent waits for readpage to complete */ 2132 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2133 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1); 2134 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2135 } 2136 return 0; 2137 } 2138 2139 static int find_next_key(struct btrfs_path *path, int level, 2140 struct btrfs_key *key) 2141 2142 { 2143 while (level < BTRFS_MAX_LEVEL) { 2144 if (!path->nodes[level]) 2145 break; 2146 if (path->slots[level] + 1 < 2147 btrfs_header_nritems(path->nodes[level])) { 2148 btrfs_node_key_to_cpu(path->nodes[level], key, 2149 path->slots[level] + 1); 2150 return 0; 2151 } 2152 level++; 2153 } 2154 return 1; 2155 } 2156 2157 /* 2158 * Insert current subvolume into reloc_control::dirty_subvol_roots 2159 */ 2160 static void insert_dirty_subvol(struct btrfs_trans_handle *trans, 2161 struct reloc_control *rc, 2162 struct btrfs_root *root) 2163 { 2164 struct btrfs_root *reloc_root = root->reloc_root; 2165 struct btrfs_root_item *reloc_root_item; 2166 2167 /* @root must be a subvolume tree root with a valid reloc tree */ 2168 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 2169 ASSERT(reloc_root); 2170 2171 reloc_root_item = &reloc_root->root_item; 2172 memset(&reloc_root_item->drop_progress, 0, 2173 sizeof(reloc_root_item->drop_progress)); 2174 reloc_root_item->drop_level = 0; 2175 btrfs_set_root_refs(reloc_root_item, 0); 2176 btrfs_update_reloc_root(trans, root); 2177 2178 if (list_empty(&root->reloc_dirty_list)) { 2179 btrfs_grab_fs_root(root); 2180 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 2181 } 2182 } 2183 2184 static int clean_dirty_subvols(struct reloc_control *rc) 2185 { 2186 struct btrfs_root *root; 2187 struct btrfs_root *next; 2188 int ret = 0; 2189 int ret2; 2190 2191 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 2192 reloc_dirty_list) { 2193 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 2194 /* Merged subvolume, cleanup its reloc root */ 2195 struct btrfs_root *reloc_root = root->reloc_root; 2196 2197 list_del_init(&root->reloc_dirty_list); 2198 root->reloc_root = NULL; 2199 if (reloc_root) { 2200 2201 ret2 = btrfs_drop_snapshot(reloc_root, NULL, 0, 1); 2202 if (ret2 < 0 && !ret) 2203 ret = ret2; 2204 } 2205 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 2206 btrfs_put_fs_root(root); 2207 } else { 2208 /* Orphan reloc tree, just clean it up */ 2209 ret2 = btrfs_drop_snapshot(root, NULL, 0, 1); 2210 if (ret2 < 0 && !ret) 2211 ret = ret2; 2212 } 2213 } 2214 return ret; 2215 } 2216 2217 /* 2218 * merge the relocated tree blocks in reloc tree with corresponding 2219 * fs tree. 2220 */ 2221 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 2222 struct btrfs_root *root) 2223 { 2224 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2225 struct btrfs_key key; 2226 struct btrfs_key next_key; 2227 struct btrfs_trans_handle *trans = NULL; 2228 struct btrfs_root *reloc_root; 2229 struct btrfs_root_item *root_item; 2230 struct btrfs_path *path; 2231 struct extent_buffer *leaf; 2232 int level; 2233 int max_level; 2234 int replaced = 0; 2235 int ret; 2236 int err = 0; 2237 u32 min_reserved; 2238 2239 path = btrfs_alloc_path(); 2240 if (!path) 2241 return -ENOMEM; 2242 path->reada = READA_FORWARD; 2243 2244 reloc_root = root->reloc_root; 2245 root_item = &reloc_root->root_item; 2246 2247 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2248 level = btrfs_root_level(root_item); 2249 extent_buffer_get(reloc_root->node); 2250 path->nodes[level] = reloc_root->node; 2251 path->slots[level] = 0; 2252 } else { 2253 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2254 2255 level = root_item->drop_level; 2256 BUG_ON(level == 0); 2257 path->lowest_level = level; 2258 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2259 path->lowest_level = 0; 2260 if (ret < 0) { 2261 btrfs_free_path(path); 2262 return ret; 2263 } 2264 2265 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2266 path->slots[level]); 2267 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2268 2269 btrfs_unlock_up_safe(path, 0); 2270 } 2271 2272 min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2273 memset(&next_key, 0, sizeof(next_key)); 2274 2275 while (1) { 2276 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 2277 BTRFS_RESERVE_FLUSH_ALL); 2278 if (ret) { 2279 err = ret; 2280 goto out; 2281 } 2282 trans = btrfs_start_transaction(root, 0); 2283 if (IS_ERR(trans)) { 2284 err = PTR_ERR(trans); 2285 trans = NULL; 2286 goto out; 2287 } 2288 trans->block_rsv = rc->block_rsv; 2289 2290 replaced = 0; 2291 max_level = level; 2292 2293 ret = walk_down_reloc_tree(reloc_root, path, &level); 2294 if (ret < 0) { 2295 err = ret; 2296 goto out; 2297 } 2298 if (ret > 0) 2299 break; 2300 2301 if (!find_next_key(path, level, &key) && 2302 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2303 ret = 0; 2304 } else { 2305 ret = replace_path(trans, rc, root, reloc_root, path, 2306 &next_key, level, max_level); 2307 } 2308 if (ret < 0) { 2309 err = ret; 2310 goto out; 2311 } 2312 2313 if (ret > 0) { 2314 level = ret; 2315 btrfs_node_key_to_cpu(path->nodes[level], &key, 2316 path->slots[level]); 2317 replaced = 1; 2318 } 2319 2320 ret = walk_up_reloc_tree(reloc_root, path, &level); 2321 if (ret > 0) 2322 break; 2323 2324 BUG_ON(level == 0); 2325 /* 2326 * save the merging progress in the drop_progress. 2327 * this is OK since root refs == 1 in this case. 2328 */ 2329 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2330 path->slots[level]); 2331 root_item->drop_level = level; 2332 2333 btrfs_end_transaction_throttle(trans); 2334 trans = NULL; 2335 2336 btrfs_btree_balance_dirty(fs_info); 2337 2338 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2339 invalidate_extent_cache(root, &key, &next_key); 2340 } 2341 2342 /* 2343 * handle the case only one block in the fs tree need to be 2344 * relocated and the block is tree root. 2345 */ 2346 leaf = btrfs_lock_root_node(root); 2347 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2348 btrfs_tree_unlock(leaf); 2349 free_extent_buffer(leaf); 2350 if (ret < 0) 2351 err = ret; 2352 out: 2353 btrfs_free_path(path); 2354 2355 if (err == 0) 2356 insert_dirty_subvol(trans, rc, root); 2357 2358 if (trans) 2359 btrfs_end_transaction_throttle(trans); 2360 2361 btrfs_btree_balance_dirty(fs_info); 2362 2363 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2364 invalidate_extent_cache(root, &key, &next_key); 2365 2366 return err; 2367 } 2368 2369 static noinline_for_stack 2370 int prepare_to_merge(struct reloc_control *rc, int err) 2371 { 2372 struct btrfs_root *root = rc->extent_root; 2373 struct btrfs_fs_info *fs_info = root->fs_info; 2374 struct btrfs_root *reloc_root; 2375 struct btrfs_trans_handle *trans; 2376 LIST_HEAD(reloc_roots); 2377 u64 num_bytes = 0; 2378 int ret; 2379 2380 mutex_lock(&fs_info->reloc_mutex); 2381 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2382 rc->merging_rsv_size += rc->nodes_relocated * 2; 2383 mutex_unlock(&fs_info->reloc_mutex); 2384 2385 again: 2386 if (!err) { 2387 num_bytes = rc->merging_rsv_size; 2388 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2389 BTRFS_RESERVE_FLUSH_ALL); 2390 if (ret) 2391 err = ret; 2392 } 2393 2394 trans = btrfs_join_transaction(rc->extent_root); 2395 if (IS_ERR(trans)) { 2396 if (!err) 2397 btrfs_block_rsv_release(fs_info, rc->block_rsv, 2398 num_bytes); 2399 return PTR_ERR(trans); 2400 } 2401 2402 if (!err) { 2403 if (num_bytes != rc->merging_rsv_size) { 2404 btrfs_end_transaction(trans); 2405 btrfs_block_rsv_release(fs_info, rc->block_rsv, 2406 num_bytes); 2407 goto again; 2408 } 2409 } 2410 2411 rc->merge_reloc_tree = 1; 2412 2413 while (!list_empty(&rc->reloc_roots)) { 2414 reloc_root = list_entry(rc->reloc_roots.next, 2415 struct btrfs_root, root_list); 2416 list_del_init(&reloc_root->root_list); 2417 2418 root = read_fs_root(fs_info, reloc_root->root_key.offset); 2419 BUG_ON(IS_ERR(root)); 2420 BUG_ON(root->reloc_root != reloc_root); 2421 2422 /* 2423 * set reference count to 1, so btrfs_recover_relocation 2424 * knows it should resumes merging 2425 */ 2426 if (!err) 2427 btrfs_set_root_refs(&reloc_root->root_item, 1); 2428 btrfs_update_reloc_root(trans, root); 2429 2430 list_add(&reloc_root->root_list, &reloc_roots); 2431 } 2432 2433 list_splice(&reloc_roots, &rc->reloc_roots); 2434 2435 if (!err) 2436 btrfs_commit_transaction(trans); 2437 else 2438 btrfs_end_transaction(trans); 2439 return err; 2440 } 2441 2442 static noinline_for_stack 2443 void free_reloc_roots(struct list_head *list) 2444 { 2445 struct btrfs_root *reloc_root; 2446 2447 while (!list_empty(list)) { 2448 reloc_root = list_entry(list->next, struct btrfs_root, 2449 root_list); 2450 __del_reloc_root(reloc_root); 2451 free_extent_buffer(reloc_root->node); 2452 free_extent_buffer(reloc_root->commit_root); 2453 reloc_root->node = NULL; 2454 reloc_root->commit_root = NULL; 2455 } 2456 } 2457 2458 static noinline_for_stack 2459 void merge_reloc_roots(struct reloc_control *rc) 2460 { 2461 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2462 struct btrfs_root *root; 2463 struct btrfs_root *reloc_root; 2464 LIST_HEAD(reloc_roots); 2465 int found = 0; 2466 int ret = 0; 2467 again: 2468 root = rc->extent_root; 2469 2470 /* 2471 * this serializes us with btrfs_record_root_in_transaction, 2472 * we have to make sure nobody is in the middle of 2473 * adding their roots to the list while we are 2474 * doing this splice 2475 */ 2476 mutex_lock(&fs_info->reloc_mutex); 2477 list_splice_init(&rc->reloc_roots, &reloc_roots); 2478 mutex_unlock(&fs_info->reloc_mutex); 2479 2480 while (!list_empty(&reloc_roots)) { 2481 found = 1; 2482 reloc_root = list_entry(reloc_roots.next, 2483 struct btrfs_root, root_list); 2484 2485 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2486 root = read_fs_root(fs_info, 2487 reloc_root->root_key.offset); 2488 BUG_ON(IS_ERR(root)); 2489 BUG_ON(root->reloc_root != reloc_root); 2490 2491 ret = merge_reloc_root(rc, root); 2492 if (ret) { 2493 if (list_empty(&reloc_root->root_list)) 2494 list_add_tail(&reloc_root->root_list, 2495 &reloc_roots); 2496 goto out; 2497 } 2498 } else { 2499 list_del_init(&reloc_root->root_list); 2500 /* Don't forget to queue this reloc root for cleanup */ 2501 list_add_tail(&reloc_root->reloc_dirty_list, 2502 &rc->dirty_subvol_roots); 2503 } 2504 } 2505 2506 if (found) { 2507 found = 0; 2508 goto again; 2509 } 2510 out: 2511 if (ret) { 2512 btrfs_handle_fs_error(fs_info, ret, NULL); 2513 if (!list_empty(&reloc_roots)) 2514 free_reloc_roots(&reloc_roots); 2515 2516 /* new reloc root may be added */ 2517 mutex_lock(&fs_info->reloc_mutex); 2518 list_splice_init(&rc->reloc_roots, &reloc_roots); 2519 mutex_unlock(&fs_info->reloc_mutex); 2520 if (!list_empty(&reloc_roots)) 2521 free_reloc_roots(&reloc_roots); 2522 } 2523 2524 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2525 } 2526 2527 static void free_block_list(struct rb_root *blocks) 2528 { 2529 struct tree_block *block; 2530 struct rb_node *rb_node; 2531 while ((rb_node = rb_first(blocks))) { 2532 block = rb_entry(rb_node, struct tree_block, rb_node); 2533 rb_erase(rb_node, blocks); 2534 kfree(block); 2535 } 2536 } 2537 2538 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2539 struct btrfs_root *reloc_root) 2540 { 2541 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 2542 struct btrfs_root *root; 2543 2544 if (reloc_root->last_trans == trans->transid) 2545 return 0; 2546 2547 root = read_fs_root(fs_info, reloc_root->root_key.offset); 2548 BUG_ON(IS_ERR(root)); 2549 BUG_ON(root->reloc_root != reloc_root); 2550 2551 return btrfs_record_root_in_trans(trans, root); 2552 } 2553 2554 static noinline_for_stack 2555 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2556 struct reloc_control *rc, 2557 struct backref_node *node, 2558 struct backref_edge *edges[]) 2559 { 2560 struct backref_node *next; 2561 struct btrfs_root *root; 2562 int index = 0; 2563 2564 next = node; 2565 while (1) { 2566 cond_resched(); 2567 next = walk_up_backref(next, edges, &index); 2568 root = next->root; 2569 BUG_ON(!root); 2570 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state)); 2571 2572 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2573 record_reloc_root_in_trans(trans, root); 2574 break; 2575 } 2576 2577 btrfs_record_root_in_trans(trans, root); 2578 root = root->reloc_root; 2579 2580 if (next->new_bytenr != root->node->start) { 2581 BUG_ON(next->new_bytenr); 2582 BUG_ON(!list_empty(&next->list)); 2583 next->new_bytenr = root->node->start; 2584 next->root = root; 2585 list_add_tail(&next->list, 2586 &rc->backref_cache.changed); 2587 __mark_block_processed(rc, next); 2588 break; 2589 } 2590 2591 WARN_ON(1); 2592 root = NULL; 2593 next = walk_down_backref(edges, &index); 2594 if (!next || next->level <= node->level) 2595 break; 2596 } 2597 if (!root) 2598 return NULL; 2599 2600 next = node; 2601 /* setup backref node path for btrfs_reloc_cow_block */ 2602 while (1) { 2603 rc->backref_cache.path[next->level] = next; 2604 if (--index < 0) 2605 break; 2606 next = edges[index]->node[UPPER]; 2607 } 2608 return root; 2609 } 2610 2611 /* 2612 * select a tree root for relocation. return NULL if the block 2613 * is reference counted. we should use do_relocation() in this 2614 * case. return a tree root pointer if the block isn't reference 2615 * counted. return -ENOENT if the block is root of reloc tree. 2616 */ 2617 static noinline_for_stack 2618 struct btrfs_root *select_one_root(struct backref_node *node) 2619 { 2620 struct backref_node *next; 2621 struct btrfs_root *root; 2622 struct btrfs_root *fs_root = NULL; 2623 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2624 int index = 0; 2625 2626 next = node; 2627 while (1) { 2628 cond_resched(); 2629 next = walk_up_backref(next, edges, &index); 2630 root = next->root; 2631 BUG_ON(!root); 2632 2633 /* no other choice for non-references counted tree */ 2634 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 2635 return root; 2636 2637 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2638 fs_root = root; 2639 2640 if (next != node) 2641 return NULL; 2642 2643 next = walk_down_backref(edges, &index); 2644 if (!next || next->level <= node->level) 2645 break; 2646 } 2647 2648 if (!fs_root) 2649 return ERR_PTR(-ENOENT); 2650 return fs_root; 2651 } 2652 2653 static noinline_for_stack 2654 u64 calcu_metadata_size(struct reloc_control *rc, 2655 struct backref_node *node, int reserve) 2656 { 2657 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2658 struct backref_node *next = node; 2659 struct backref_edge *edge; 2660 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2661 u64 num_bytes = 0; 2662 int index = 0; 2663 2664 BUG_ON(reserve && node->processed); 2665 2666 while (next) { 2667 cond_resched(); 2668 while (1) { 2669 if (next->processed && (reserve || next != node)) 2670 break; 2671 2672 num_bytes += fs_info->nodesize; 2673 2674 if (list_empty(&next->upper)) 2675 break; 2676 2677 edge = list_entry(next->upper.next, 2678 struct backref_edge, list[LOWER]); 2679 edges[index++] = edge; 2680 next = edge->node[UPPER]; 2681 } 2682 next = walk_down_backref(edges, &index); 2683 } 2684 return num_bytes; 2685 } 2686 2687 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2688 struct reloc_control *rc, 2689 struct backref_node *node) 2690 { 2691 struct btrfs_root *root = rc->extent_root; 2692 struct btrfs_fs_info *fs_info = root->fs_info; 2693 u64 num_bytes; 2694 int ret; 2695 u64 tmp; 2696 2697 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2698 2699 trans->block_rsv = rc->block_rsv; 2700 rc->reserved_bytes += num_bytes; 2701 2702 /* 2703 * We are under a transaction here so we can only do limited flushing. 2704 * If we get an enospc just kick back -EAGAIN so we know to drop the 2705 * transaction and try to refill when we can flush all the things. 2706 */ 2707 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2708 BTRFS_RESERVE_FLUSH_LIMIT); 2709 if (ret) { 2710 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2711 while (tmp <= rc->reserved_bytes) 2712 tmp <<= 1; 2713 /* 2714 * only one thread can access block_rsv at this point, 2715 * so we don't need hold lock to protect block_rsv. 2716 * we expand more reservation size here to allow enough 2717 * space for relocation and we will return earlier in 2718 * enospc case. 2719 */ 2720 rc->block_rsv->size = tmp + fs_info->nodesize * 2721 RELOCATION_RESERVED_NODES; 2722 return -EAGAIN; 2723 } 2724 2725 return 0; 2726 } 2727 2728 /* 2729 * relocate a block tree, and then update pointers in upper level 2730 * blocks that reference the block to point to the new location. 2731 * 2732 * if called by link_to_upper, the block has already been relocated. 2733 * in that case this function just updates pointers. 2734 */ 2735 static int do_relocation(struct btrfs_trans_handle *trans, 2736 struct reloc_control *rc, 2737 struct backref_node *node, 2738 struct btrfs_key *key, 2739 struct btrfs_path *path, int lowest) 2740 { 2741 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2742 struct backref_node *upper; 2743 struct backref_edge *edge; 2744 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2745 struct btrfs_root *root; 2746 struct extent_buffer *eb; 2747 u32 blocksize; 2748 u64 bytenr; 2749 u64 generation; 2750 int slot; 2751 int ret; 2752 int err = 0; 2753 2754 BUG_ON(lowest && node->eb); 2755 2756 path->lowest_level = node->level + 1; 2757 rc->backref_cache.path[node->level] = node; 2758 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2759 struct btrfs_key first_key; 2760 struct btrfs_ref ref = { 0 }; 2761 2762 cond_resched(); 2763 2764 upper = edge->node[UPPER]; 2765 root = select_reloc_root(trans, rc, upper, edges); 2766 BUG_ON(!root); 2767 2768 if (upper->eb && !upper->locked) { 2769 if (!lowest) { 2770 ret = btrfs_bin_search(upper->eb, key, 2771 upper->level, &slot); 2772 if (ret < 0) { 2773 err = ret; 2774 goto next; 2775 } 2776 BUG_ON(ret); 2777 bytenr = btrfs_node_blockptr(upper->eb, slot); 2778 if (node->eb->start == bytenr) 2779 goto next; 2780 } 2781 drop_node_buffer(upper); 2782 } 2783 2784 if (!upper->eb) { 2785 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2786 if (ret) { 2787 if (ret < 0) 2788 err = ret; 2789 else 2790 err = -ENOENT; 2791 2792 btrfs_release_path(path); 2793 break; 2794 } 2795 2796 if (!upper->eb) { 2797 upper->eb = path->nodes[upper->level]; 2798 path->nodes[upper->level] = NULL; 2799 } else { 2800 BUG_ON(upper->eb != path->nodes[upper->level]); 2801 } 2802 2803 upper->locked = 1; 2804 path->locks[upper->level] = 0; 2805 2806 slot = path->slots[upper->level]; 2807 btrfs_release_path(path); 2808 } else { 2809 ret = btrfs_bin_search(upper->eb, key, upper->level, 2810 &slot); 2811 if (ret < 0) { 2812 err = ret; 2813 goto next; 2814 } 2815 BUG_ON(ret); 2816 } 2817 2818 bytenr = btrfs_node_blockptr(upper->eb, slot); 2819 if (lowest) { 2820 if (bytenr != node->bytenr) { 2821 btrfs_err(root->fs_info, 2822 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2823 bytenr, node->bytenr, slot, 2824 upper->eb->start); 2825 err = -EIO; 2826 goto next; 2827 } 2828 } else { 2829 if (node->eb->start == bytenr) 2830 goto next; 2831 } 2832 2833 blocksize = root->fs_info->nodesize; 2834 generation = btrfs_node_ptr_generation(upper->eb, slot); 2835 btrfs_node_key_to_cpu(upper->eb, &first_key, slot); 2836 eb = read_tree_block(fs_info, bytenr, generation, 2837 upper->level - 1, &first_key); 2838 if (IS_ERR(eb)) { 2839 err = PTR_ERR(eb); 2840 goto next; 2841 } else if (!extent_buffer_uptodate(eb)) { 2842 free_extent_buffer(eb); 2843 err = -EIO; 2844 goto next; 2845 } 2846 btrfs_tree_lock(eb); 2847 btrfs_set_lock_blocking_write(eb); 2848 2849 if (!node->eb) { 2850 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2851 slot, &eb); 2852 btrfs_tree_unlock(eb); 2853 free_extent_buffer(eb); 2854 if (ret < 0) { 2855 err = ret; 2856 goto next; 2857 } 2858 BUG_ON(node->eb != eb); 2859 } else { 2860 btrfs_set_node_blockptr(upper->eb, slot, 2861 node->eb->start); 2862 btrfs_set_node_ptr_generation(upper->eb, slot, 2863 trans->transid); 2864 btrfs_mark_buffer_dirty(upper->eb); 2865 2866 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2867 node->eb->start, blocksize, 2868 upper->eb->start); 2869 ref.real_root = root->root_key.objectid; 2870 btrfs_init_tree_ref(&ref, node->level, 2871 btrfs_header_owner(upper->eb)); 2872 ret = btrfs_inc_extent_ref(trans, &ref); 2873 BUG_ON(ret); 2874 2875 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2876 BUG_ON(ret); 2877 } 2878 next: 2879 if (!upper->pending) 2880 drop_node_buffer(upper); 2881 else 2882 unlock_node_buffer(upper); 2883 if (err) 2884 break; 2885 } 2886 2887 if (!err && node->pending) { 2888 drop_node_buffer(node); 2889 list_move_tail(&node->list, &rc->backref_cache.changed); 2890 node->pending = 0; 2891 } 2892 2893 path->lowest_level = 0; 2894 BUG_ON(err == -ENOSPC); 2895 return err; 2896 } 2897 2898 static int link_to_upper(struct btrfs_trans_handle *trans, 2899 struct reloc_control *rc, 2900 struct backref_node *node, 2901 struct btrfs_path *path) 2902 { 2903 struct btrfs_key key; 2904 2905 btrfs_node_key_to_cpu(node->eb, &key, 0); 2906 return do_relocation(trans, rc, node, &key, path, 0); 2907 } 2908 2909 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2910 struct reloc_control *rc, 2911 struct btrfs_path *path, int err) 2912 { 2913 LIST_HEAD(list); 2914 struct backref_cache *cache = &rc->backref_cache; 2915 struct backref_node *node; 2916 int level; 2917 int ret; 2918 2919 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2920 while (!list_empty(&cache->pending[level])) { 2921 node = list_entry(cache->pending[level].next, 2922 struct backref_node, list); 2923 list_move_tail(&node->list, &list); 2924 BUG_ON(!node->pending); 2925 2926 if (!err) { 2927 ret = link_to_upper(trans, rc, node, path); 2928 if (ret < 0) 2929 err = ret; 2930 } 2931 } 2932 list_splice_init(&list, &cache->pending[level]); 2933 } 2934 return err; 2935 } 2936 2937 static void mark_block_processed(struct reloc_control *rc, 2938 u64 bytenr, u32 blocksize) 2939 { 2940 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2941 EXTENT_DIRTY); 2942 } 2943 2944 static void __mark_block_processed(struct reloc_control *rc, 2945 struct backref_node *node) 2946 { 2947 u32 blocksize; 2948 if (node->level == 0 || 2949 in_block_group(node->bytenr, rc->block_group)) { 2950 blocksize = rc->extent_root->fs_info->nodesize; 2951 mark_block_processed(rc, node->bytenr, blocksize); 2952 } 2953 node->processed = 1; 2954 } 2955 2956 /* 2957 * mark a block and all blocks directly/indirectly reference the block 2958 * as processed. 2959 */ 2960 static void update_processed_blocks(struct reloc_control *rc, 2961 struct backref_node *node) 2962 { 2963 struct backref_node *next = node; 2964 struct backref_edge *edge; 2965 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2966 int index = 0; 2967 2968 while (next) { 2969 cond_resched(); 2970 while (1) { 2971 if (next->processed) 2972 break; 2973 2974 __mark_block_processed(rc, next); 2975 2976 if (list_empty(&next->upper)) 2977 break; 2978 2979 edge = list_entry(next->upper.next, 2980 struct backref_edge, list[LOWER]); 2981 edges[index++] = edge; 2982 next = edge->node[UPPER]; 2983 } 2984 next = walk_down_backref(edges, &index); 2985 } 2986 } 2987 2988 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2989 { 2990 u32 blocksize = rc->extent_root->fs_info->nodesize; 2991 2992 if (test_range_bit(&rc->processed_blocks, bytenr, 2993 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2994 return 1; 2995 return 0; 2996 } 2997 2998 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2999 struct tree_block *block) 3000 { 3001 struct extent_buffer *eb; 3002 3003 BUG_ON(block->key_ready); 3004 eb = read_tree_block(fs_info, block->bytenr, block->key.offset, 3005 block->level, NULL); 3006 if (IS_ERR(eb)) { 3007 return PTR_ERR(eb); 3008 } else if (!extent_buffer_uptodate(eb)) { 3009 free_extent_buffer(eb); 3010 return -EIO; 3011 } 3012 if (block->level == 0) 3013 btrfs_item_key_to_cpu(eb, &block->key, 0); 3014 else 3015 btrfs_node_key_to_cpu(eb, &block->key, 0); 3016 free_extent_buffer(eb); 3017 block->key_ready = 1; 3018 return 0; 3019 } 3020 3021 /* 3022 * helper function to relocate a tree block 3023 */ 3024 static int relocate_tree_block(struct btrfs_trans_handle *trans, 3025 struct reloc_control *rc, 3026 struct backref_node *node, 3027 struct btrfs_key *key, 3028 struct btrfs_path *path) 3029 { 3030 struct btrfs_root *root; 3031 int ret = 0; 3032 3033 if (!node) 3034 return 0; 3035 3036 BUG_ON(node->processed); 3037 root = select_one_root(node); 3038 if (root == ERR_PTR(-ENOENT)) { 3039 update_processed_blocks(rc, node); 3040 goto out; 3041 } 3042 3043 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 3044 ret = reserve_metadata_space(trans, rc, node); 3045 if (ret) 3046 goto out; 3047 } 3048 3049 if (root) { 3050 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 3051 BUG_ON(node->new_bytenr); 3052 BUG_ON(!list_empty(&node->list)); 3053 btrfs_record_root_in_trans(trans, root); 3054 root = root->reloc_root; 3055 node->new_bytenr = root->node->start; 3056 node->root = root; 3057 list_add_tail(&node->list, &rc->backref_cache.changed); 3058 } else { 3059 path->lowest_level = node->level; 3060 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 3061 btrfs_release_path(path); 3062 if (ret > 0) 3063 ret = 0; 3064 } 3065 if (!ret) 3066 update_processed_blocks(rc, node); 3067 } else { 3068 ret = do_relocation(trans, rc, node, key, path, 1); 3069 } 3070 out: 3071 if (ret || node->level == 0 || node->cowonly) 3072 remove_backref_node(&rc->backref_cache, node); 3073 return ret; 3074 } 3075 3076 /* 3077 * relocate a list of blocks 3078 */ 3079 static noinline_for_stack 3080 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 3081 struct reloc_control *rc, struct rb_root *blocks) 3082 { 3083 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3084 struct backref_node *node; 3085 struct btrfs_path *path; 3086 struct tree_block *block; 3087 struct tree_block *next; 3088 int ret; 3089 int err = 0; 3090 3091 path = btrfs_alloc_path(); 3092 if (!path) { 3093 err = -ENOMEM; 3094 goto out_free_blocks; 3095 } 3096 3097 /* Kick in readahead for tree blocks with missing keys */ 3098 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 3099 if (!block->key_ready) 3100 readahead_tree_block(fs_info, block->bytenr); 3101 } 3102 3103 /* Get first keys */ 3104 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 3105 if (!block->key_ready) { 3106 err = get_tree_block_key(fs_info, block); 3107 if (err) 3108 goto out_free_path; 3109 } 3110 } 3111 3112 /* Do tree relocation */ 3113 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 3114 node = build_backref_tree(rc, &block->key, 3115 block->level, block->bytenr); 3116 if (IS_ERR(node)) { 3117 err = PTR_ERR(node); 3118 goto out; 3119 } 3120 3121 ret = relocate_tree_block(trans, rc, node, &block->key, 3122 path); 3123 if (ret < 0) { 3124 if (ret != -EAGAIN || &block->rb_node == rb_first(blocks)) 3125 err = ret; 3126 goto out; 3127 } 3128 } 3129 out: 3130 err = finish_pending_nodes(trans, rc, path, err); 3131 3132 out_free_path: 3133 btrfs_free_path(path); 3134 out_free_blocks: 3135 free_block_list(blocks); 3136 return err; 3137 } 3138 3139 static noinline_for_stack 3140 int prealloc_file_extent_cluster(struct inode *inode, 3141 struct file_extent_cluster *cluster) 3142 { 3143 u64 alloc_hint = 0; 3144 u64 start; 3145 u64 end; 3146 u64 offset = BTRFS_I(inode)->index_cnt; 3147 u64 num_bytes; 3148 int nr = 0; 3149 int ret = 0; 3150 u64 prealloc_start = cluster->start - offset; 3151 u64 prealloc_end = cluster->end - offset; 3152 u64 cur_offset; 3153 struct extent_changeset *data_reserved = NULL; 3154 3155 BUG_ON(cluster->start != cluster->boundary[0]); 3156 inode_lock(inode); 3157 3158 ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start, 3159 prealloc_end + 1 - prealloc_start); 3160 if (ret) 3161 goto out; 3162 3163 cur_offset = prealloc_start; 3164 while (nr < cluster->nr) { 3165 start = cluster->boundary[nr] - offset; 3166 if (nr + 1 < cluster->nr) 3167 end = cluster->boundary[nr + 1] - 1 - offset; 3168 else 3169 end = cluster->end - offset; 3170 3171 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3172 num_bytes = end + 1 - start; 3173 if (cur_offset < start) 3174 btrfs_free_reserved_data_space(inode, data_reserved, 3175 cur_offset, start - cur_offset); 3176 ret = btrfs_prealloc_file_range(inode, 0, start, 3177 num_bytes, num_bytes, 3178 end + 1, &alloc_hint); 3179 cur_offset = end + 1; 3180 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3181 if (ret) 3182 break; 3183 nr++; 3184 } 3185 if (cur_offset < prealloc_end) 3186 btrfs_free_reserved_data_space(inode, data_reserved, 3187 cur_offset, prealloc_end + 1 - cur_offset); 3188 out: 3189 inode_unlock(inode); 3190 extent_changeset_free(data_reserved); 3191 return ret; 3192 } 3193 3194 static noinline_for_stack 3195 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 3196 u64 block_start) 3197 { 3198 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3199 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3200 struct extent_map *em; 3201 int ret = 0; 3202 3203 em = alloc_extent_map(); 3204 if (!em) 3205 return -ENOMEM; 3206 3207 em->start = start; 3208 em->len = end + 1 - start; 3209 em->block_len = em->len; 3210 em->block_start = block_start; 3211 em->bdev = fs_info->fs_devices->latest_bdev; 3212 set_bit(EXTENT_FLAG_PINNED, &em->flags); 3213 3214 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3215 while (1) { 3216 write_lock(&em_tree->lock); 3217 ret = add_extent_mapping(em_tree, em, 0); 3218 write_unlock(&em_tree->lock); 3219 if (ret != -EEXIST) { 3220 free_extent_map(em); 3221 break; 3222 } 3223 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3224 } 3225 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3226 return ret; 3227 } 3228 3229 static int relocate_file_extent_cluster(struct inode *inode, 3230 struct file_extent_cluster *cluster) 3231 { 3232 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3233 u64 page_start; 3234 u64 page_end; 3235 u64 offset = BTRFS_I(inode)->index_cnt; 3236 unsigned long index; 3237 unsigned long last_index; 3238 struct page *page; 3239 struct file_ra_state *ra; 3240 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 3241 int nr = 0; 3242 int ret = 0; 3243 3244 if (!cluster->nr) 3245 return 0; 3246 3247 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3248 if (!ra) 3249 return -ENOMEM; 3250 3251 ret = prealloc_file_extent_cluster(inode, cluster); 3252 if (ret) 3253 goto out; 3254 3255 file_ra_state_init(ra, inode->i_mapping); 3256 3257 ret = setup_extent_mapping(inode, cluster->start - offset, 3258 cluster->end - offset, cluster->start); 3259 if (ret) 3260 goto out; 3261 3262 index = (cluster->start - offset) >> PAGE_SHIFT; 3263 last_index = (cluster->end - offset) >> PAGE_SHIFT; 3264 while (index <= last_index) { 3265 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 3266 PAGE_SIZE); 3267 if (ret) 3268 goto out; 3269 3270 page = find_lock_page(inode->i_mapping, index); 3271 if (!page) { 3272 page_cache_sync_readahead(inode->i_mapping, 3273 ra, NULL, index, 3274 last_index + 1 - index); 3275 page = find_or_create_page(inode->i_mapping, index, 3276 mask); 3277 if (!page) { 3278 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3279 PAGE_SIZE, true); 3280 btrfs_delalloc_release_extents(BTRFS_I(inode), 3281 PAGE_SIZE); 3282 ret = -ENOMEM; 3283 goto out; 3284 } 3285 } 3286 3287 if (PageReadahead(page)) { 3288 page_cache_async_readahead(inode->i_mapping, 3289 ra, NULL, page, index, 3290 last_index + 1 - index); 3291 } 3292 3293 if (!PageUptodate(page)) { 3294 btrfs_readpage(NULL, page); 3295 lock_page(page); 3296 if (!PageUptodate(page)) { 3297 unlock_page(page); 3298 put_page(page); 3299 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3300 PAGE_SIZE, true); 3301 btrfs_delalloc_release_extents(BTRFS_I(inode), 3302 PAGE_SIZE); 3303 ret = -EIO; 3304 goto out; 3305 } 3306 } 3307 3308 page_start = page_offset(page); 3309 page_end = page_start + PAGE_SIZE - 1; 3310 3311 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 3312 3313 set_page_extent_mapped(page); 3314 3315 if (nr < cluster->nr && 3316 page_start + offset == cluster->boundary[nr]) { 3317 set_extent_bits(&BTRFS_I(inode)->io_tree, 3318 page_start, page_end, 3319 EXTENT_BOUNDARY); 3320 nr++; 3321 } 3322 3323 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 3324 NULL); 3325 if (ret) { 3326 unlock_page(page); 3327 put_page(page); 3328 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3329 PAGE_SIZE, true); 3330 btrfs_delalloc_release_extents(BTRFS_I(inode), 3331 PAGE_SIZE); 3332 3333 clear_extent_bits(&BTRFS_I(inode)->io_tree, 3334 page_start, page_end, 3335 EXTENT_LOCKED | EXTENT_BOUNDARY); 3336 goto out; 3337 3338 } 3339 set_page_dirty(page); 3340 3341 unlock_extent(&BTRFS_I(inode)->io_tree, 3342 page_start, page_end); 3343 unlock_page(page); 3344 put_page(page); 3345 3346 index++; 3347 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 3348 balance_dirty_pages_ratelimited(inode->i_mapping); 3349 btrfs_throttle(fs_info); 3350 } 3351 WARN_ON(nr != cluster->nr); 3352 out: 3353 kfree(ra); 3354 return ret; 3355 } 3356 3357 static noinline_for_stack 3358 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3359 struct file_extent_cluster *cluster) 3360 { 3361 int ret; 3362 3363 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3364 ret = relocate_file_extent_cluster(inode, cluster); 3365 if (ret) 3366 return ret; 3367 cluster->nr = 0; 3368 } 3369 3370 if (!cluster->nr) 3371 cluster->start = extent_key->objectid; 3372 else 3373 BUG_ON(cluster->nr >= MAX_EXTENTS); 3374 cluster->end = extent_key->objectid + extent_key->offset - 1; 3375 cluster->boundary[cluster->nr] = extent_key->objectid; 3376 cluster->nr++; 3377 3378 if (cluster->nr >= MAX_EXTENTS) { 3379 ret = relocate_file_extent_cluster(inode, cluster); 3380 if (ret) 3381 return ret; 3382 cluster->nr = 0; 3383 } 3384 return 0; 3385 } 3386 3387 /* 3388 * helper to add a tree block to the list. 3389 * the major work is getting the generation and level of the block 3390 */ 3391 static int add_tree_block(struct reloc_control *rc, 3392 struct btrfs_key *extent_key, 3393 struct btrfs_path *path, 3394 struct rb_root *blocks) 3395 { 3396 struct extent_buffer *eb; 3397 struct btrfs_extent_item *ei; 3398 struct btrfs_tree_block_info *bi; 3399 struct tree_block *block; 3400 struct rb_node *rb_node; 3401 u32 item_size; 3402 int level = -1; 3403 u64 generation; 3404 3405 eb = path->nodes[0]; 3406 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3407 3408 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3409 item_size >= sizeof(*ei) + sizeof(*bi)) { 3410 ei = btrfs_item_ptr(eb, path->slots[0], 3411 struct btrfs_extent_item); 3412 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3413 bi = (struct btrfs_tree_block_info *)(ei + 1); 3414 level = btrfs_tree_block_level(eb, bi); 3415 } else { 3416 level = (int)extent_key->offset; 3417 } 3418 generation = btrfs_extent_generation(eb, ei); 3419 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 3420 btrfs_print_v0_err(eb->fs_info); 3421 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 3422 return -EINVAL; 3423 } else { 3424 BUG(); 3425 } 3426 3427 btrfs_release_path(path); 3428 3429 BUG_ON(level == -1); 3430 3431 block = kmalloc(sizeof(*block), GFP_NOFS); 3432 if (!block) 3433 return -ENOMEM; 3434 3435 block->bytenr = extent_key->objectid; 3436 block->key.objectid = rc->extent_root->fs_info->nodesize; 3437 block->key.offset = generation; 3438 block->level = level; 3439 block->key_ready = 0; 3440 3441 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3442 if (rb_node) 3443 backref_tree_panic(rb_node, -EEXIST, block->bytenr); 3444 3445 return 0; 3446 } 3447 3448 /* 3449 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3450 */ 3451 static int __add_tree_block(struct reloc_control *rc, 3452 u64 bytenr, u32 blocksize, 3453 struct rb_root *blocks) 3454 { 3455 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3456 struct btrfs_path *path; 3457 struct btrfs_key key; 3458 int ret; 3459 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 3460 3461 if (tree_block_processed(bytenr, rc)) 3462 return 0; 3463 3464 if (tree_search(blocks, bytenr)) 3465 return 0; 3466 3467 path = btrfs_alloc_path(); 3468 if (!path) 3469 return -ENOMEM; 3470 again: 3471 key.objectid = bytenr; 3472 if (skinny) { 3473 key.type = BTRFS_METADATA_ITEM_KEY; 3474 key.offset = (u64)-1; 3475 } else { 3476 key.type = BTRFS_EXTENT_ITEM_KEY; 3477 key.offset = blocksize; 3478 } 3479 3480 path->search_commit_root = 1; 3481 path->skip_locking = 1; 3482 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3483 if (ret < 0) 3484 goto out; 3485 3486 if (ret > 0 && skinny) { 3487 if (path->slots[0]) { 3488 path->slots[0]--; 3489 btrfs_item_key_to_cpu(path->nodes[0], &key, 3490 path->slots[0]); 3491 if (key.objectid == bytenr && 3492 (key.type == BTRFS_METADATA_ITEM_KEY || 3493 (key.type == BTRFS_EXTENT_ITEM_KEY && 3494 key.offset == blocksize))) 3495 ret = 0; 3496 } 3497 3498 if (ret) { 3499 skinny = false; 3500 btrfs_release_path(path); 3501 goto again; 3502 } 3503 } 3504 if (ret) { 3505 ASSERT(ret == 1); 3506 btrfs_print_leaf(path->nodes[0]); 3507 btrfs_err(fs_info, 3508 "tree block extent item (%llu) is not found in extent tree", 3509 bytenr); 3510 WARN_ON(1); 3511 ret = -EINVAL; 3512 goto out; 3513 } 3514 3515 ret = add_tree_block(rc, &key, path, blocks); 3516 out: 3517 btrfs_free_path(path); 3518 return ret; 3519 } 3520 3521 /* 3522 * helper to check if the block use full backrefs for pointers in it 3523 */ 3524 static int block_use_full_backref(struct reloc_control *rc, 3525 struct extent_buffer *eb) 3526 { 3527 u64 flags; 3528 int ret; 3529 3530 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3531 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3532 return 1; 3533 3534 ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info, 3535 eb->start, btrfs_header_level(eb), 1, 3536 NULL, &flags); 3537 BUG_ON(ret); 3538 3539 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3540 ret = 1; 3541 else 3542 ret = 0; 3543 return ret; 3544 } 3545 3546 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3547 struct btrfs_block_group_cache *block_group, 3548 struct inode *inode, 3549 u64 ino) 3550 { 3551 struct btrfs_key key; 3552 struct btrfs_root *root = fs_info->tree_root; 3553 struct btrfs_trans_handle *trans; 3554 int ret = 0; 3555 3556 if (inode) 3557 goto truncate; 3558 3559 key.objectid = ino; 3560 key.type = BTRFS_INODE_ITEM_KEY; 3561 key.offset = 0; 3562 3563 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3564 if (IS_ERR(inode)) 3565 return -ENOENT; 3566 3567 truncate: 3568 ret = btrfs_check_trunc_cache_free_space(fs_info, 3569 &fs_info->global_block_rsv); 3570 if (ret) 3571 goto out; 3572 3573 trans = btrfs_join_transaction(root); 3574 if (IS_ERR(trans)) { 3575 ret = PTR_ERR(trans); 3576 goto out; 3577 } 3578 3579 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3580 3581 btrfs_end_transaction(trans); 3582 btrfs_btree_balance_dirty(fs_info); 3583 out: 3584 iput(inode); 3585 return ret; 3586 } 3587 3588 /* 3589 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3590 * this function scans fs tree to find blocks reference the data extent 3591 */ 3592 static int find_data_references(struct reloc_control *rc, 3593 struct btrfs_key *extent_key, 3594 struct extent_buffer *leaf, 3595 struct btrfs_extent_data_ref *ref, 3596 struct rb_root *blocks) 3597 { 3598 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3599 struct btrfs_path *path; 3600 struct tree_block *block; 3601 struct btrfs_root *root; 3602 struct btrfs_file_extent_item *fi; 3603 struct rb_node *rb_node; 3604 struct btrfs_key key; 3605 u64 ref_root; 3606 u64 ref_objectid; 3607 u64 ref_offset; 3608 u32 ref_count; 3609 u32 nritems; 3610 int err = 0; 3611 int added = 0; 3612 int counted; 3613 int ret; 3614 3615 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3616 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3617 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3618 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3619 3620 /* 3621 * This is an extent belonging to the free space cache, lets just delete 3622 * it and redo the search. 3623 */ 3624 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3625 ret = delete_block_group_cache(fs_info, rc->block_group, 3626 NULL, ref_objectid); 3627 if (ret != -ENOENT) 3628 return ret; 3629 ret = 0; 3630 } 3631 3632 path = btrfs_alloc_path(); 3633 if (!path) 3634 return -ENOMEM; 3635 path->reada = READA_FORWARD; 3636 3637 root = read_fs_root(fs_info, ref_root); 3638 if (IS_ERR(root)) { 3639 err = PTR_ERR(root); 3640 goto out; 3641 } 3642 3643 key.objectid = ref_objectid; 3644 key.type = BTRFS_EXTENT_DATA_KEY; 3645 if (ref_offset > ((u64)-1 << 32)) 3646 key.offset = 0; 3647 else 3648 key.offset = ref_offset; 3649 3650 path->search_commit_root = 1; 3651 path->skip_locking = 1; 3652 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3653 if (ret < 0) { 3654 err = ret; 3655 goto out; 3656 } 3657 3658 leaf = path->nodes[0]; 3659 nritems = btrfs_header_nritems(leaf); 3660 /* 3661 * the references in tree blocks that use full backrefs 3662 * are not counted in 3663 */ 3664 if (block_use_full_backref(rc, leaf)) 3665 counted = 0; 3666 else 3667 counted = 1; 3668 rb_node = tree_search(blocks, leaf->start); 3669 if (rb_node) { 3670 if (counted) 3671 added = 1; 3672 else 3673 path->slots[0] = nritems; 3674 } 3675 3676 while (ref_count > 0) { 3677 while (path->slots[0] >= nritems) { 3678 ret = btrfs_next_leaf(root, path); 3679 if (ret < 0) { 3680 err = ret; 3681 goto out; 3682 } 3683 if (WARN_ON(ret > 0)) 3684 goto out; 3685 3686 leaf = path->nodes[0]; 3687 nritems = btrfs_header_nritems(leaf); 3688 added = 0; 3689 3690 if (block_use_full_backref(rc, leaf)) 3691 counted = 0; 3692 else 3693 counted = 1; 3694 rb_node = tree_search(blocks, leaf->start); 3695 if (rb_node) { 3696 if (counted) 3697 added = 1; 3698 else 3699 path->slots[0] = nritems; 3700 } 3701 } 3702 3703 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3704 if (WARN_ON(key.objectid != ref_objectid || 3705 key.type != BTRFS_EXTENT_DATA_KEY)) 3706 break; 3707 3708 fi = btrfs_item_ptr(leaf, path->slots[0], 3709 struct btrfs_file_extent_item); 3710 3711 if (btrfs_file_extent_type(leaf, fi) == 3712 BTRFS_FILE_EXTENT_INLINE) 3713 goto next; 3714 3715 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3716 extent_key->objectid) 3717 goto next; 3718 3719 key.offset -= btrfs_file_extent_offset(leaf, fi); 3720 if (key.offset != ref_offset) 3721 goto next; 3722 3723 if (counted) 3724 ref_count--; 3725 if (added) 3726 goto next; 3727 3728 if (!tree_block_processed(leaf->start, rc)) { 3729 block = kmalloc(sizeof(*block), GFP_NOFS); 3730 if (!block) { 3731 err = -ENOMEM; 3732 break; 3733 } 3734 block->bytenr = leaf->start; 3735 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3736 block->level = 0; 3737 block->key_ready = 1; 3738 rb_node = tree_insert(blocks, block->bytenr, 3739 &block->rb_node); 3740 if (rb_node) 3741 backref_tree_panic(rb_node, -EEXIST, 3742 block->bytenr); 3743 } 3744 if (counted) 3745 added = 1; 3746 else 3747 path->slots[0] = nritems; 3748 next: 3749 path->slots[0]++; 3750 3751 } 3752 out: 3753 btrfs_free_path(path); 3754 return err; 3755 } 3756 3757 /* 3758 * helper to find all tree blocks that reference a given data extent 3759 */ 3760 static noinline_for_stack 3761 int add_data_references(struct reloc_control *rc, 3762 struct btrfs_key *extent_key, 3763 struct btrfs_path *path, 3764 struct rb_root *blocks) 3765 { 3766 struct btrfs_key key; 3767 struct extent_buffer *eb; 3768 struct btrfs_extent_data_ref *dref; 3769 struct btrfs_extent_inline_ref *iref; 3770 unsigned long ptr; 3771 unsigned long end; 3772 u32 blocksize = rc->extent_root->fs_info->nodesize; 3773 int ret = 0; 3774 int err = 0; 3775 3776 eb = path->nodes[0]; 3777 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3778 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3779 ptr += sizeof(struct btrfs_extent_item); 3780 3781 while (ptr < end) { 3782 iref = (struct btrfs_extent_inline_ref *)ptr; 3783 key.type = btrfs_get_extent_inline_ref_type(eb, iref, 3784 BTRFS_REF_TYPE_DATA); 3785 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3786 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3787 ret = __add_tree_block(rc, key.offset, blocksize, 3788 blocks); 3789 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3790 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3791 ret = find_data_references(rc, extent_key, 3792 eb, dref, blocks); 3793 } else { 3794 ret = -EUCLEAN; 3795 btrfs_err(rc->extent_root->fs_info, 3796 "extent %llu slot %d has an invalid inline ref type", 3797 eb->start, path->slots[0]); 3798 } 3799 if (ret) { 3800 err = ret; 3801 goto out; 3802 } 3803 ptr += btrfs_extent_inline_ref_size(key.type); 3804 } 3805 WARN_ON(ptr > end); 3806 3807 while (1) { 3808 cond_resched(); 3809 eb = path->nodes[0]; 3810 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3811 ret = btrfs_next_leaf(rc->extent_root, path); 3812 if (ret < 0) { 3813 err = ret; 3814 break; 3815 } 3816 if (ret > 0) 3817 break; 3818 eb = path->nodes[0]; 3819 } 3820 3821 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3822 if (key.objectid != extent_key->objectid) 3823 break; 3824 3825 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3826 ret = __add_tree_block(rc, key.offset, blocksize, 3827 blocks); 3828 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3829 dref = btrfs_item_ptr(eb, path->slots[0], 3830 struct btrfs_extent_data_ref); 3831 ret = find_data_references(rc, extent_key, 3832 eb, dref, blocks); 3833 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 3834 btrfs_print_v0_err(eb->fs_info); 3835 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 3836 ret = -EINVAL; 3837 } else { 3838 ret = 0; 3839 } 3840 if (ret) { 3841 err = ret; 3842 break; 3843 } 3844 path->slots[0]++; 3845 } 3846 out: 3847 btrfs_release_path(path); 3848 if (err) 3849 free_block_list(blocks); 3850 return err; 3851 } 3852 3853 /* 3854 * helper to find next unprocessed extent 3855 */ 3856 static noinline_for_stack 3857 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3858 struct btrfs_key *extent_key) 3859 { 3860 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3861 struct btrfs_key key; 3862 struct extent_buffer *leaf; 3863 u64 start, end, last; 3864 int ret; 3865 3866 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3867 while (1) { 3868 cond_resched(); 3869 if (rc->search_start >= last) { 3870 ret = 1; 3871 break; 3872 } 3873 3874 key.objectid = rc->search_start; 3875 key.type = BTRFS_EXTENT_ITEM_KEY; 3876 key.offset = 0; 3877 3878 path->search_commit_root = 1; 3879 path->skip_locking = 1; 3880 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3881 0, 0); 3882 if (ret < 0) 3883 break; 3884 next: 3885 leaf = path->nodes[0]; 3886 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3887 ret = btrfs_next_leaf(rc->extent_root, path); 3888 if (ret != 0) 3889 break; 3890 leaf = path->nodes[0]; 3891 } 3892 3893 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3894 if (key.objectid >= last) { 3895 ret = 1; 3896 break; 3897 } 3898 3899 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3900 key.type != BTRFS_METADATA_ITEM_KEY) { 3901 path->slots[0]++; 3902 goto next; 3903 } 3904 3905 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3906 key.objectid + key.offset <= rc->search_start) { 3907 path->slots[0]++; 3908 goto next; 3909 } 3910 3911 if (key.type == BTRFS_METADATA_ITEM_KEY && 3912 key.objectid + fs_info->nodesize <= 3913 rc->search_start) { 3914 path->slots[0]++; 3915 goto next; 3916 } 3917 3918 ret = find_first_extent_bit(&rc->processed_blocks, 3919 key.objectid, &start, &end, 3920 EXTENT_DIRTY, NULL); 3921 3922 if (ret == 0 && start <= key.objectid) { 3923 btrfs_release_path(path); 3924 rc->search_start = end + 1; 3925 } else { 3926 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3927 rc->search_start = key.objectid + key.offset; 3928 else 3929 rc->search_start = key.objectid + 3930 fs_info->nodesize; 3931 memcpy(extent_key, &key, sizeof(key)); 3932 return 0; 3933 } 3934 } 3935 btrfs_release_path(path); 3936 return ret; 3937 } 3938 3939 static void set_reloc_control(struct reloc_control *rc) 3940 { 3941 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3942 3943 mutex_lock(&fs_info->reloc_mutex); 3944 fs_info->reloc_ctl = rc; 3945 mutex_unlock(&fs_info->reloc_mutex); 3946 } 3947 3948 static void unset_reloc_control(struct reloc_control *rc) 3949 { 3950 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3951 3952 mutex_lock(&fs_info->reloc_mutex); 3953 fs_info->reloc_ctl = NULL; 3954 mutex_unlock(&fs_info->reloc_mutex); 3955 } 3956 3957 static int check_extent_flags(u64 flags) 3958 { 3959 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3960 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3961 return 1; 3962 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3963 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3964 return 1; 3965 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3966 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3967 return 1; 3968 return 0; 3969 } 3970 3971 static noinline_for_stack 3972 int prepare_to_relocate(struct reloc_control *rc) 3973 { 3974 struct btrfs_trans_handle *trans; 3975 int ret; 3976 3977 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3978 BTRFS_BLOCK_RSV_TEMP); 3979 if (!rc->block_rsv) 3980 return -ENOMEM; 3981 3982 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3983 rc->search_start = rc->block_group->key.objectid; 3984 rc->extents_found = 0; 3985 rc->nodes_relocated = 0; 3986 rc->merging_rsv_size = 0; 3987 rc->reserved_bytes = 0; 3988 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3989 RELOCATION_RESERVED_NODES; 3990 ret = btrfs_block_rsv_refill(rc->extent_root, 3991 rc->block_rsv, rc->block_rsv->size, 3992 BTRFS_RESERVE_FLUSH_ALL); 3993 if (ret) 3994 return ret; 3995 3996 rc->create_reloc_tree = 1; 3997 set_reloc_control(rc); 3998 3999 trans = btrfs_join_transaction(rc->extent_root); 4000 if (IS_ERR(trans)) { 4001 unset_reloc_control(rc); 4002 /* 4003 * extent tree is not a ref_cow tree and has no reloc_root to 4004 * cleanup. And callers are responsible to free the above 4005 * block rsv. 4006 */ 4007 return PTR_ERR(trans); 4008 } 4009 btrfs_commit_transaction(trans); 4010 return 0; 4011 } 4012 4013 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 4014 { 4015 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 4016 struct rb_root blocks = RB_ROOT; 4017 struct btrfs_key key; 4018 struct btrfs_trans_handle *trans = NULL; 4019 struct btrfs_path *path; 4020 struct btrfs_extent_item *ei; 4021 u64 flags; 4022 u32 item_size; 4023 int ret; 4024 int err = 0; 4025 int progress = 0; 4026 4027 path = btrfs_alloc_path(); 4028 if (!path) 4029 return -ENOMEM; 4030 path->reada = READA_FORWARD; 4031 4032 ret = prepare_to_relocate(rc); 4033 if (ret) { 4034 err = ret; 4035 goto out_free; 4036 } 4037 4038 while (1) { 4039 rc->reserved_bytes = 0; 4040 ret = btrfs_block_rsv_refill(rc->extent_root, 4041 rc->block_rsv, rc->block_rsv->size, 4042 BTRFS_RESERVE_FLUSH_ALL); 4043 if (ret) { 4044 err = ret; 4045 break; 4046 } 4047 progress++; 4048 trans = btrfs_start_transaction(rc->extent_root, 0); 4049 if (IS_ERR(trans)) { 4050 err = PTR_ERR(trans); 4051 trans = NULL; 4052 break; 4053 } 4054 restart: 4055 if (update_backref_cache(trans, &rc->backref_cache)) { 4056 btrfs_end_transaction(trans); 4057 trans = NULL; 4058 continue; 4059 } 4060 4061 ret = find_next_extent(rc, path, &key); 4062 if (ret < 0) 4063 err = ret; 4064 if (ret != 0) 4065 break; 4066 4067 rc->extents_found++; 4068 4069 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 4070 struct btrfs_extent_item); 4071 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 4072 if (item_size >= sizeof(*ei)) { 4073 flags = btrfs_extent_flags(path->nodes[0], ei); 4074 ret = check_extent_flags(flags); 4075 BUG_ON(ret); 4076 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 4077 err = -EINVAL; 4078 btrfs_print_v0_err(trans->fs_info); 4079 btrfs_abort_transaction(trans, err); 4080 break; 4081 } else { 4082 BUG(); 4083 } 4084 4085 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 4086 ret = add_tree_block(rc, &key, path, &blocks); 4087 } else if (rc->stage == UPDATE_DATA_PTRS && 4088 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4089 ret = add_data_references(rc, &key, path, &blocks); 4090 } else { 4091 btrfs_release_path(path); 4092 ret = 0; 4093 } 4094 if (ret < 0) { 4095 err = ret; 4096 break; 4097 } 4098 4099 if (!RB_EMPTY_ROOT(&blocks)) { 4100 ret = relocate_tree_blocks(trans, rc, &blocks); 4101 if (ret < 0) { 4102 /* 4103 * if we fail to relocate tree blocks, force to update 4104 * backref cache when committing transaction. 4105 */ 4106 rc->backref_cache.last_trans = trans->transid - 1; 4107 4108 if (ret != -EAGAIN) { 4109 err = ret; 4110 break; 4111 } 4112 rc->extents_found--; 4113 rc->search_start = key.objectid; 4114 } 4115 } 4116 4117 btrfs_end_transaction_throttle(trans); 4118 btrfs_btree_balance_dirty(fs_info); 4119 trans = NULL; 4120 4121 if (rc->stage == MOVE_DATA_EXTENTS && 4122 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4123 rc->found_file_extent = 1; 4124 ret = relocate_data_extent(rc->data_inode, 4125 &key, &rc->cluster); 4126 if (ret < 0) { 4127 err = ret; 4128 break; 4129 } 4130 } 4131 } 4132 if (trans && progress && err == -ENOSPC) { 4133 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 4134 if (ret == 1) { 4135 err = 0; 4136 progress = 0; 4137 goto restart; 4138 } 4139 } 4140 4141 btrfs_release_path(path); 4142 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 4143 4144 if (trans) { 4145 btrfs_end_transaction_throttle(trans); 4146 btrfs_btree_balance_dirty(fs_info); 4147 } 4148 4149 if (!err) { 4150 ret = relocate_file_extent_cluster(rc->data_inode, 4151 &rc->cluster); 4152 if (ret < 0) 4153 err = ret; 4154 } 4155 4156 rc->create_reloc_tree = 0; 4157 set_reloc_control(rc); 4158 4159 backref_cache_cleanup(&rc->backref_cache); 4160 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1); 4161 4162 err = prepare_to_merge(rc, err); 4163 4164 merge_reloc_roots(rc); 4165 4166 rc->merge_reloc_tree = 0; 4167 unset_reloc_control(rc); 4168 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1); 4169 4170 /* get rid of pinned extents */ 4171 trans = btrfs_join_transaction(rc->extent_root); 4172 if (IS_ERR(trans)) { 4173 err = PTR_ERR(trans); 4174 goto out_free; 4175 } 4176 btrfs_commit_transaction(trans); 4177 ret = clean_dirty_subvols(rc); 4178 if (ret < 0 && !err) 4179 err = ret; 4180 out_free: 4181 btrfs_free_block_rsv(fs_info, rc->block_rsv); 4182 btrfs_free_path(path); 4183 return err; 4184 } 4185 4186 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 4187 struct btrfs_root *root, u64 objectid) 4188 { 4189 struct btrfs_path *path; 4190 struct btrfs_inode_item *item; 4191 struct extent_buffer *leaf; 4192 int ret; 4193 4194 path = btrfs_alloc_path(); 4195 if (!path) 4196 return -ENOMEM; 4197 4198 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 4199 if (ret) 4200 goto out; 4201 4202 leaf = path->nodes[0]; 4203 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 4204 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 4205 btrfs_set_inode_generation(leaf, item, 1); 4206 btrfs_set_inode_size(leaf, item, 0); 4207 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 4208 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 4209 BTRFS_INODE_PREALLOC); 4210 btrfs_mark_buffer_dirty(leaf); 4211 out: 4212 btrfs_free_path(path); 4213 return ret; 4214 } 4215 4216 /* 4217 * helper to create inode for data relocation. 4218 * the inode is in data relocation tree and its link count is 0 4219 */ 4220 static noinline_for_stack 4221 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 4222 struct btrfs_block_group_cache *group) 4223 { 4224 struct inode *inode = NULL; 4225 struct btrfs_trans_handle *trans; 4226 struct btrfs_root *root; 4227 struct btrfs_key key; 4228 u64 objectid; 4229 int err = 0; 4230 4231 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4232 if (IS_ERR(root)) 4233 return ERR_CAST(root); 4234 4235 trans = btrfs_start_transaction(root, 6); 4236 if (IS_ERR(trans)) 4237 return ERR_CAST(trans); 4238 4239 err = btrfs_find_free_objectid(root, &objectid); 4240 if (err) 4241 goto out; 4242 4243 err = __insert_orphan_inode(trans, root, objectid); 4244 BUG_ON(err); 4245 4246 key.objectid = objectid; 4247 key.type = BTRFS_INODE_ITEM_KEY; 4248 key.offset = 0; 4249 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4250 BUG_ON(IS_ERR(inode)); 4251 BTRFS_I(inode)->index_cnt = group->key.objectid; 4252 4253 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4254 out: 4255 btrfs_end_transaction(trans); 4256 btrfs_btree_balance_dirty(fs_info); 4257 if (err) { 4258 if (inode) 4259 iput(inode); 4260 inode = ERR_PTR(err); 4261 } 4262 return inode; 4263 } 4264 4265 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 4266 { 4267 struct reloc_control *rc; 4268 4269 rc = kzalloc(sizeof(*rc), GFP_NOFS); 4270 if (!rc) 4271 return NULL; 4272 4273 INIT_LIST_HEAD(&rc->reloc_roots); 4274 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 4275 backref_cache_init(&rc->backref_cache); 4276 mapping_tree_init(&rc->reloc_root_tree); 4277 extent_io_tree_init(fs_info, &rc->processed_blocks, 4278 IO_TREE_RELOC_BLOCKS, NULL); 4279 return rc; 4280 } 4281 4282 /* 4283 * Print the block group being relocated 4284 */ 4285 static void describe_relocation(struct btrfs_fs_info *fs_info, 4286 struct btrfs_block_group_cache *block_group) 4287 { 4288 char buf[128] = {'\0'}; 4289 4290 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 4291 4292 btrfs_info(fs_info, 4293 "relocating block group %llu flags %s", 4294 block_group->key.objectid, buf); 4295 } 4296 4297 /* 4298 * function to relocate all extents in a block group. 4299 */ 4300 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 4301 { 4302 struct btrfs_block_group_cache *bg; 4303 struct btrfs_root *extent_root = fs_info->extent_root; 4304 struct reloc_control *rc; 4305 struct inode *inode; 4306 struct btrfs_path *path; 4307 int ret; 4308 int rw = 0; 4309 int err = 0; 4310 4311 bg = btrfs_lookup_block_group(fs_info, group_start); 4312 if (!bg) 4313 return -ENOENT; 4314 4315 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 4316 btrfs_put_block_group(bg); 4317 return -ETXTBSY; 4318 } 4319 4320 rc = alloc_reloc_control(fs_info); 4321 if (!rc) { 4322 btrfs_put_block_group(bg); 4323 return -ENOMEM; 4324 } 4325 4326 rc->extent_root = extent_root; 4327 rc->block_group = bg; 4328 4329 ret = btrfs_inc_block_group_ro(rc->block_group); 4330 if (ret) { 4331 err = ret; 4332 goto out; 4333 } 4334 rw = 1; 4335 4336 path = btrfs_alloc_path(); 4337 if (!path) { 4338 err = -ENOMEM; 4339 goto out; 4340 } 4341 4342 inode = lookup_free_space_inode(rc->block_group, path); 4343 btrfs_free_path(path); 4344 4345 if (!IS_ERR(inode)) 4346 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4347 else 4348 ret = PTR_ERR(inode); 4349 4350 if (ret && ret != -ENOENT) { 4351 err = ret; 4352 goto out; 4353 } 4354 4355 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4356 if (IS_ERR(rc->data_inode)) { 4357 err = PTR_ERR(rc->data_inode); 4358 rc->data_inode = NULL; 4359 goto out; 4360 } 4361 4362 describe_relocation(fs_info, rc->block_group); 4363 4364 btrfs_wait_block_group_reservations(rc->block_group); 4365 btrfs_wait_nocow_writers(rc->block_group); 4366 btrfs_wait_ordered_roots(fs_info, U64_MAX, 4367 rc->block_group->key.objectid, 4368 rc->block_group->key.offset); 4369 4370 while (1) { 4371 mutex_lock(&fs_info->cleaner_mutex); 4372 ret = relocate_block_group(rc); 4373 mutex_unlock(&fs_info->cleaner_mutex); 4374 if (ret < 0) 4375 err = ret; 4376 4377 /* 4378 * We may have gotten ENOSPC after we already dirtied some 4379 * extents. If writeout happens while we're relocating a 4380 * different block group we could end up hitting the 4381 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 4382 * btrfs_reloc_cow_block. Make sure we write everything out 4383 * properly so we don't trip over this problem, and then break 4384 * out of the loop if we hit an error. 4385 */ 4386 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4387 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4388 (u64)-1); 4389 if (ret) 4390 err = ret; 4391 invalidate_mapping_pages(rc->data_inode->i_mapping, 4392 0, -1); 4393 rc->stage = UPDATE_DATA_PTRS; 4394 } 4395 4396 if (err < 0) 4397 goto out; 4398 4399 if (rc->extents_found == 0) 4400 break; 4401 4402 btrfs_info(fs_info, "found %llu extents", rc->extents_found); 4403 4404 } 4405 4406 WARN_ON(rc->block_group->pinned > 0); 4407 WARN_ON(rc->block_group->reserved > 0); 4408 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4409 out: 4410 if (err && rw) 4411 btrfs_dec_block_group_ro(rc->block_group); 4412 iput(rc->data_inode); 4413 btrfs_put_block_group(rc->block_group); 4414 kfree(rc); 4415 return err; 4416 } 4417 4418 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4419 { 4420 struct btrfs_fs_info *fs_info = root->fs_info; 4421 struct btrfs_trans_handle *trans; 4422 int ret, err; 4423 4424 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4425 if (IS_ERR(trans)) 4426 return PTR_ERR(trans); 4427 4428 memset(&root->root_item.drop_progress, 0, 4429 sizeof(root->root_item.drop_progress)); 4430 root->root_item.drop_level = 0; 4431 btrfs_set_root_refs(&root->root_item, 0); 4432 ret = btrfs_update_root(trans, fs_info->tree_root, 4433 &root->root_key, &root->root_item); 4434 4435 err = btrfs_end_transaction(trans); 4436 if (err) 4437 return err; 4438 return ret; 4439 } 4440 4441 /* 4442 * recover relocation interrupted by system crash. 4443 * 4444 * this function resumes merging reloc trees with corresponding fs trees. 4445 * this is important for keeping the sharing of tree blocks 4446 */ 4447 int btrfs_recover_relocation(struct btrfs_root *root) 4448 { 4449 struct btrfs_fs_info *fs_info = root->fs_info; 4450 LIST_HEAD(reloc_roots); 4451 struct btrfs_key key; 4452 struct btrfs_root *fs_root; 4453 struct btrfs_root *reloc_root; 4454 struct btrfs_path *path; 4455 struct extent_buffer *leaf; 4456 struct reloc_control *rc = NULL; 4457 struct btrfs_trans_handle *trans; 4458 int ret; 4459 int err = 0; 4460 4461 path = btrfs_alloc_path(); 4462 if (!path) 4463 return -ENOMEM; 4464 path->reada = READA_BACK; 4465 4466 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4467 key.type = BTRFS_ROOT_ITEM_KEY; 4468 key.offset = (u64)-1; 4469 4470 while (1) { 4471 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 4472 path, 0, 0); 4473 if (ret < 0) { 4474 err = ret; 4475 goto out; 4476 } 4477 if (ret > 0) { 4478 if (path->slots[0] == 0) 4479 break; 4480 path->slots[0]--; 4481 } 4482 leaf = path->nodes[0]; 4483 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4484 btrfs_release_path(path); 4485 4486 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4487 key.type != BTRFS_ROOT_ITEM_KEY) 4488 break; 4489 4490 reloc_root = btrfs_read_fs_root(root, &key); 4491 if (IS_ERR(reloc_root)) { 4492 err = PTR_ERR(reloc_root); 4493 goto out; 4494 } 4495 4496 list_add(&reloc_root->root_list, &reloc_roots); 4497 4498 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4499 fs_root = read_fs_root(fs_info, 4500 reloc_root->root_key.offset); 4501 if (IS_ERR(fs_root)) { 4502 ret = PTR_ERR(fs_root); 4503 if (ret != -ENOENT) { 4504 err = ret; 4505 goto out; 4506 } 4507 ret = mark_garbage_root(reloc_root); 4508 if (ret < 0) { 4509 err = ret; 4510 goto out; 4511 } 4512 } 4513 } 4514 4515 if (key.offset == 0) 4516 break; 4517 4518 key.offset--; 4519 } 4520 btrfs_release_path(path); 4521 4522 if (list_empty(&reloc_roots)) 4523 goto out; 4524 4525 rc = alloc_reloc_control(fs_info); 4526 if (!rc) { 4527 err = -ENOMEM; 4528 goto out; 4529 } 4530 4531 rc->extent_root = fs_info->extent_root; 4532 4533 set_reloc_control(rc); 4534 4535 trans = btrfs_join_transaction(rc->extent_root); 4536 if (IS_ERR(trans)) { 4537 unset_reloc_control(rc); 4538 err = PTR_ERR(trans); 4539 goto out_free; 4540 } 4541 4542 rc->merge_reloc_tree = 1; 4543 4544 while (!list_empty(&reloc_roots)) { 4545 reloc_root = list_entry(reloc_roots.next, 4546 struct btrfs_root, root_list); 4547 list_del(&reloc_root->root_list); 4548 4549 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4550 list_add_tail(&reloc_root->root_list, 4551 &rc->reloc_roots); 4552 continue; 4553 } 4554 4555 fs_root = read_fs_root(fs_info, reloc_root->root_key.offset); 4556 if (IS_ERR(fs_root)) { 4557 err = PTR_ERR(fs_root); 4558 goto out_free; 4559 } 4560 4561 err = __add_reloc_root(reloc_root); 4562 BUG_ON(err < 0); /* -ENOMEM or logic error */ 4563 fs_root->reloc_root = reloc_root; 4564 } 4565 4566 err = btrfs_commit_transaction(trans); 4567 if (err) 4568 goto out_free; 4569 4570 merge_reloc_roots(rc); 4571 4572 unset_reloc_control(rc); 4573 4574 trans = btrfs_join_transaction(rc->extent_root); 4575 if (IS_ERR(trans)) { 4576 err = PTR_ERR(trans); 4577 goto out_free; 4578 } 4579 err = btrfs_commit_transaction(trans); 4580 4581 ret = clean_dirty_subvols(rc); 4582 if (ret < 0 && !err) 4583 err = ret; 4584 out_free: 4585 kfree(rc); 4586 out: 4587 if (!list_empty(&reloc_roots)) 4588 free_reloc_roots(&reloc_roots); 4589 4590 btrfs_free_path(path); 4591 4592 if (err == 0) { 4593 /* cleanup orphan inode in data relocation tree */ 4594 fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4595 if (IS_ERR(fs_root)) 4596 err = PTR_ERR(fs_root); 4597 else 4598 err = btrfs_orphan_cleanup(fs_root); 4599 } 4600 return err; 4601 } 4602 4603 /* 4604 * helper to add ordered checksum for data relocation. 4605 * 4606 * cloning checksum properly handles the nodatasum extents. 4607 * it also saves CPU time to re-calculate the checksum. 4608 */ 4609 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4610 { 4611 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4612 struct btrfs_ordered_sum *sums; 4613 struct btrfs_ordered_extent *ordered; 4614 int ret; 4615 u64 disk_bytenr; 4616 u64 new_bytenr; 4617 LIST_HEAD(list); 4618 4619 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4620 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4621 4622 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4623 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr, 4624 disk_bytenr + len - 1, &list, 0); 4625 if (ret) 4626 goto out; 4627 4628 while (!list_empty(&list)) { 4629 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4630 list_del_init(&sums->list); 4631 4632 /* 4633 * We need to offset the new_bytenr based on where the csum is. 4634 * We need to do this because we will read in entire prealloc 4635 * extents but we may have written to say the middle of the 4636 * prealloc extent, so we need to make sure the csum goes with 4637 * the right disk offset. 4638 * 4639 * We can do this because the data reloc inode refers strictly 4640 * to the on disk bytes, so we don't have to worry about 4641 * disk_len vs real len like with real inodes since it's all 4642 * disk length. 4643 */ 4644 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr); 4645 sums->bytenr = new_bytenr; 4646 4647 btrfs_add_ordered_sum(ordered, sums); 4648 } 4649 out: 4650 btrfs_put_ordered_extent(ordered); 4651 return ret; 4652 } 4653 4654 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4655 struct btrfs_root *root, struct extent_buffer *buf, 4656 struct extent_buffer *cow) 4657 { 4658 struct btrfs_fs_info *fs_info = root->fs_info; 4659 struct reloc_control *rc; 4660 struct backref_node *node; 4661 int first_cow = 0; 4662 int level; 4663 int ret = 0; 4664 4665 rc = fs_info->reloc_ctl; 4666 if (!rc) 4667 return 0; 4668 4669 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4670 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4671 4672 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 4673 if (buf == root->node) 4674 __update_reloc_root(root, cow->start); 4675 } 4676 4677 level = btrfs_header_level(buf); 4678 if (btrfs_header_generation(buf) <= 4679 btrfs_root_last_snapshot(&root->root_item)) 4680 first_cow = 1; 4681 4682 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4683 rc->create_reloc_tree) { 4684 WARN_ON(!first_cow && level == 0); 4685 4686 node = rc->backref_cache.path[level]; 4687 BUG_ON(node->bytenr != buf->start && 4688 node->new_bytenr != buf->start); 4689 4690 drop_node_buffer(node); 4691 extent_buffer_get(cow); 4692 node->eb = cow; 4693 node->new_bytenr = cow->start; 4694 4695 if (!node->pending) { 4696 list_move_tail(&node->list, 4697 &rc->backref_cache.pending[level]); 4698 node->pending = 1; 4699 } 4700 4701 if (first_cow) 4702 __mark_block_processed(rc, node); 4703 4704 if (first_cow && level > 0) 4705 rc->nodes_relocated += buf->len; 4706 } 4707 4708 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4709 ret = replace_file_extents(trans, rc, root, cow); 4710 return ret; 4711 } 4712 4713 /* 4714 * called before creating snapshot. it calculates metadata reservation 4715 * required for relocating tree blocks in the snapshot 4716 */ 4717 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4718 u64 *bytes_to_reserve) 4719 { 4720 struct btrfs_root *root = pending->root; 4721 struct reloc_control *rc = root->fs_info->reloc_ctl; 4722 4723 if (!root->reloc_root || !rc) 4724 return; 4725 4726 if (!rc->merge_reloc_tree) 4727 return; 4728 4729 root = root->reloc_root; 4730 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4731 /* 4732 * relocation is in the stage of merging trees. the space 4733 * used by merging a reloc tree is twice the size of 4734 * relocated tree nodes in the worst case. half for cowing 4735 * the reloc tree, half for cowing the fs tree. the space 4736 * used by cowing the reloc tree will be freed after the 4737 * tree is dropped. if we create snapshot, cowing the fs 4738 * tree may use more space than it frees. so we need 4739 * reserve extra space. 4740 */ 4741 *bytes_to_reserve += rc->nodes_relocated; 4742 } 4743 4744 /* 4745 * called after snapshot is created. migrate block reservation 4746 * and create reloc root for the newly created snapshot 4747 */ 4748 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4749 struct btrfs_pending_snapshot *pending) 4750 { 4751 struct btrfs_root *root = pending->root; 4752 struct btrfs_root *reloc_root; 4753 struct btrfs_root *new_root; 4754 struct reloc_control *rc = root->fs_info->reloc_ctl; 4755 int ret; 4756 4757 if (!root->reloc_root || !rc) 4758 return 0; 4759 4760 rc = root->fs_info->reloc_ctl; 4761 rc->merging_rsv_size += rc->nodes_relocated; 4762 4763 if (rc->merge_reloc_tree) { 4764 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4765 rc->block_rsv, 4766 rc->nodes_relocated, true); 4767 if (ret) 4768 return ret; 4769 } 4770 4771 new_root = pending->snap; 4772 reloc_root = create_reloc_root(trans, root->reloc_root, 4773 new_root->root_key.objectid); 4774 if (IS_ERR(reloc_root)) 4775 return PTR_ERR(reloc_root); 4776 4777 ret = __add_reloc_root(reloc_root); 4778 BUG_ON(ret < 0); 4779 new_root->reloc_root = reloc_root; 4780 4781 if (rc->create_reloc_tree) 4782 ret = clone_backref_node(trans, rc, root, reloc_root); 4783 return ret; 4784 } 4785