1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include "ctree.h" 13 #include "disk-io.h" 14 #include "transaction.h" 15 #include "volumes.h" 16 #include "locking.h" 17 #include "btrfs_inode.h" 18 #include "async-thread.h" 19 #include "free-space-cache.h" 20 #include "inode-map.h" 21 #include "qgroup.h" 22 #include "print-tree.h" 23 #include "delalloc-space.h" 24 25 /* 26 * backref_node, mapping_node and tree_block start with this 27 */ 28 struct tree_entry { 29 struct rb_node rb_node; 30 u64 bytenr; 31 }; 32 33 /* 34 * present a tree block in the backref cache 35 */ 36 struct backref_node { 37 struct rb_node rb_node; 38 u64 bytenr; 39 40 u64 new_bytenr; 41 /* objectid of tree block owner, can be not uptodate */ 42 u64 owner; 43 /* link to pending, changed or detached list */ 44 struct list_head list; 45 /* list of upper level blocks reference this block */ 46 struct list_head upper; 47 /* list of child blocks in the cache */ 48 struct list_head lower; 49 /* NULL if this node is not tree root */ 50 struct btrfs_root *root; 51 /* extent buffer got by COW the block */ 52 struct extent_buffer *eb; 53 /* level of tree block */ 54 unsigned int level:8; 55 /* is the block in non-reference counted tree */ 56 unsigned int cowonly:1; 57 /* 1 if no child node in the cache */ 58 unsigned int lowest:1; 59 /* is the extent buffer locked */ 60 unsigned int locked:1; 61 /* has the block been processed */ 62 unsigned int processed:1; 63 /* have backrefs of this block been checked */ 64 unsigned int checked:1; 65 /* 66 * 1 if corresponding block has been cowed but some upper 67 * level block pointers may not point to the new location 68 */ 69 unsigned int pending:1; 70 /* 71 * 1 if the backref node isn't connected to any other 72 * backref node. 73 */ 74 unsigned int detached:1; 75 }; 76 77 /* 78 * present a block pointer in the backref cache 79 */ 80 struct backref_edge { 81 struct list_head list[2]; 82 struct backref_node *node[2]; 83 }; 84 85 #define LOWER 0 86 #define UPPER 1 87 #define RELOCATION_RESERVED_NODES 256 88 89 struct backref_cache { 90 /* red black tree of all backref nodes in the cache */ 91 struct rb_root rb_root; 92 /* for passing backref nodes to btrfs_reloc_cow_block */ 93 struct backref_node *path[BTRFS_MAX_LEVEL]; 94 /* 95 * list of blocks that have been cowed but some block 96 * pointers in upper level blocks may not reflect the 97 * new location 98 */ 99 struct list_head pending[BTRFS_MAX_LEVEL]; 100 /* list of backref nodes with no child node */ 101 struct list_head leaves; 102 /* list of blocks that have been cowed in current transaction */ 103 struct list_head changed; 104 /* list of detached backref node. */ 105 struct list_head detached; 106 107 u64 last_trans; 108 109 int nr_nodes; 110 int nr_edges; 111 }; 112 113 /* 114 * map address of tree root to tree 115 */ 116 struct mapping_node { 117 struct rb_node rb_node; 118 u64 bytenr; 119 void *data; 120 }; 121 122 struct mapping_tree { 123 struct rb_root rb_root; 124 spinlock_t lock; 125 }; 126 127 /* 128 * present a tree block to process 129 */ 130 struct tree_block { 131 struct rb_node rb_node; 132 u64 bytenr; 133 struct btrfs_key key; 134 unsigned int level:8; 135 unsigned int key_ready:1; 136 }; 137 138 #define MAX_EXTENTS 128 139 140 struct file_extent_cluster { 141 u64 start; 142 u64 end; 143 u64 boundary[MAX_EXTENTS]; 144 unsigned int nr; 145 }; 146 147 struct reloc_control { 148 /* block group to relocate */ 149 struct btrfs_block_group_cache *block_group; 150 /* extent tree */ 151 struct btrfs_root *extent_root; 152 /* inode for moving data */ 153 struct inode *data_inode; 154 155 struct btrfs_block_rsv *block_rsv; 156 157 struct backref_cache backref_cache; 158 159 struct file_extent_cluster cluster; 160 /* tree blocks have been processed */ 161 struct extent_io_tree processed_blocks; 162 /* map start of tree root to corresponding reloc tree */ 163 struct mapping_tree reloc_root_tree; 164 /* list of reloc trees */ 165 struct list_head reloc_roots; 166 /* list of subvolume trees that get relocated */ 167 struct list_head dirty_subvol_roots; 168 /* size of metadata reservation for merging reloc trees */ 169 u64 merging_rsv_size; 170 /* size of relocated tree nodes */ 171 u64 nodes_relocated; 172 /* reserved size for block group relocation*/ 173 u64 reserved_bytes; 174 175 u64 search_start; 176 u64 extents_found; 177 178 unsigned int stage:8; 179 unsigned int create_reloc_tree:1; 180 unsigned int merge_reloc_tree:1; 181 unsigned int found_file_extent:1; 182 }; 183 184 /* stages of data relocation */ 185 #define MOVE_DATA_EXTENTS 0 186 #define UPDATE_DATA_PTRS 1 187 188 static void remove_backref_node(struct backref_cache *cache, 189 struct backref_node *node); 190 static void __mark_block_processed(struct reloc_control *rc, 191 struct backref_node *node); 192 193 static void mapping_tree_init(struct mapping_tree *tree) 194 { 195 tree->rb_root = RB_ROOT; 196 spin_lock_init(&tree->lock); 197 } 198 199 static void backref_cache_init(struct backref_cache *cache) 200 { 201 int i; 202 cache->rb_root = RB_ROOT; 203 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 204 INIT_LIST_HEAD(&cache->pending[i]); 205 INIT_LIST_HEAD(&cache->changed); 206 INIT_LIST_HEAD(&cache->detached); 207 INIT_LIST_HEAD(&cache->leaves); 208 } 209 210 static void backref_cache_cleanup(struct backref_cache *cache) 211 { 212 struct backref_node *node; 213 int i; 214 215 while (!list_empty(&cache->detached)) { 216 node = list_entry(cache->detached.next, 217 struct backref_node, list); 218 remove_backref_node(cache, node); 219 } 220 221 while (!list_empty(&cache->leaves)) { 222 node = list_entry(cache->leaves.next, 223 struct backref_node, lower); 224 remove_backref_node(cache, node); 225 } 226 227 cache->last_trans = 0; 228 229 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 230 ASSERT(list_empty(&cache->pending[i])); 231 ASSERT(list_empty(&cache->changed)); 232 ASSERT(list_empty(&cache->detached)); 233 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 234 ASSERT(!cache->nr_nodes); 235 ASSERT(!cache->nr_edges); 236 } 237 238 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 239 { 240 struct backref_node *node; 241 242 node = kzalloc(sizeof(*node), GFP_NOFS); 243 if (node) { 244 INIT_LIST_HEAD(&node->list); 245 INIT_LIST_HEAD(&node->upper); 246 INIT_LIST_HEAD(&node->lower); 247 RB_CLEAR_NODE(&node->rb_node); 248 cache->nr_nodes++; 249 } 250 return node; 251 } 252 253 static void free_backref_node(struct backref_cache *cache, 254 struct backref_node *node) 255 { 256 if (node) { 257 cache->nr_nodes--; 258 kfree(node); 259 } 260 } 261 262 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 263 { 264 struct backref_edge *edge; 265 266 edge = kzalloc(sizeof(*edge), GFP_NOFS); 267 if (edge) 268 cache->nr_edges++; 269 return edge; 270 } 271 272 static void free_backref_edge(struct backref_cache *cache, 273 struct backref_edge *edge) 274 { 275 if (edge) { 276 cache->nr_edges--; 277 kfree(edge); 278 } 279 } 280 281 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 282 struct rb_node *node) 283 { 284 struct rb_node **p = &root->rb_node; 285 struct rb_node *parent = NULL; 286 struct tree_entry *entry; 287 288 while (*p) { 289 parent = *p; 290 entry = rb_entry(parent, struct tree_entry, rb_node); 291 292 if (bytenr < entry->bytenr) 293 p = &(*p)->rb_left; 294 else if (bytenr > entry->bytenr) 295 p = &(*p)->rb_right; 296 else 297 return parent; 298 } 299 300 rb_link_node(node, parent, p); 301 rb_insert_color(node, root); 302 return NULL; 303 } 304 305 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 306 { 307 struct rb_node *n = root->rb_node; 308 struct tree_entry *entry; 309 310 while (n) { 311 entry = rb_entry(n, struct tree_entry, rb_node); 312 313 if (bytenr < entry->bytenr) 314 n = n->rb_left; 315 else if (bytenr > entry->bytenr) 316 n = n->rb_right; 317 else 318 return n; 319 } 320 return NULL; 321 } 322 323 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr) 324 { 325 326 struct btrfs_fs_info *fs_info = NULL; 327 struct backref_node *bnode = rb_entry(rb_node, struct backref_node, 328 rb_node); 329 if (bnode->root) 330 fs_info = bnode->root->fs_info; 331 btrfs_panic(fs_info, errno, 332 "Inconsistency in backref cache found at offset %llu", 333 bytenr); 334 } 335 336 /* 337 * walk up backref nodes until reach node presents tree root 338 */ 339 static struct backref_node *walk_up_backref(struct backref_node *node, 340 struct backref_edge *edges[], 341 int *index) 342 { 343 struct backref_edge *edge; 344 int idx = *index; 345 346 while (!list_empty(&node->upper)) { 347 edge = list_entry(node->upper.next, 348 struct backref_edge, list[LOWER]); 349 edges[idx++] = edge; 350 node = edge->node[UPPER]; 351 } 352 BUG_ON(node->detached); 353 *index = idx; 354 return node; 355 } 356 357 /* 358 * walk down backref nodes to find start of next reference path 359 */ 360 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 361 int *index) 362 { 363 struct backref_edge *edge; 364 struct backref_node *lower; 365 int idx = *index; 366 367 while (idx > 0) { 368 edge = edges[idx - 1]; 369 lower = edge->node[LOWER]; 370 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 371 idx--; 372 continue; 373 } 374 edge = list_entry(edge->list[LOWER].next, 375 struct backref_edge, list[LOWER]); 376 edges[idx - 1] = edge; 377 *index = idx; 378 return edge->node[UPPER]; 379 } 380 *index = 0; 381 return NULL; 382 } 383 384 static void unlock_node_buffer(struct backref_node *node) 385 { 386 if (node->locked) { 387 btrfs_tree_unlock(node->eb); 388 node->locked = 0; 389 } 390 } 391 392 static void drop_node_buffer(struct backref_node *node) 393 { 394 if (node->eb) { 395 unlock_node_buffer(node); 396 free_extent_buffer(node->eb); 397 node->eb = NULL; 398 } 399 } 400 401 static void drop_backref_node(struct backref_cache *tree, 402 struct backref_node *node) 403 { 404 BUG_ON(!list_empty(&node->upper)); 405 406 drop_node_buffer(node); 407 list_del(&node->list); 408 list_del(&node->lower); 409 if (!RB_EMPTY_NODE(&node->rb_node)) 410 rb_erase(&node->rb_node, &tree->rb_root); 411 free_backref_node(tree, node); 412 } 413 414 /* 415 * remove a backref node from the backref cache 416 */ 417 static void remove_backref_node(struct backref_cache *cache, 418 struct backref_node *node) 419 { 420 struct backref_node *upper; 421 struct backref_edge *edge; 422 423 if (!node) 424 return; 425 426 BUG_ON(!node->lowest && !node->detached); 427 while (!list_empty(&node->upper)) { 428 edge = list_entry(node->upper.next, struct backref_edge, 429 list[LOWER]); 430 upper = edge->node[UPPER]; 431 list_del(&edge->list[LOWER]); 432 list_del(&edge->list[UPPER]); 433 free_backref_edge(cache, edge); 434 435 if (RB_EMPTY_NODE(&upper->rb_node)) { 436 BUG_ON(!list_empty(&node->upper)); 437 drop_backref_node(cache, node); 438 node = upper; 439 node->lowest = 1; 440 continue; 441 } 442 /* 443 * add the node to leaf node list if no other 444 * child block cached. 445 */ 446 if (list_empty(&upper->lower)) { 447 list_add_tail(&upper->lower, &cache->leaves); 448 upper->lowest = 1; 449 } 450 } 451 452 drop_backref_node(cache, node); 453 } 454 455 static void update_backref_node(struct backref_cache *cache, 456 struct backref_node *node, u64 bytenr) 457 { 458 struct rb_node *rb_node; 459 rb_erase(&node->rb_node, &cache->rb_root); 460 node->bytenr = bytenr; 461 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 462 if (rb_node) 463 backref_tree_panic(rb_node, -EEXIST, bytenr); 464 } 465 466 /* 467 * update backref cache after a transaction commit 468 */ 469 static int update_backref_cache(struct btrfs_trans_handle *trans, 470 struct backref_cache *cache) 471 { 472 struct backref_node *node; 473 int level = 0; 474 475 if (cache->last_trans == 0) { 476 cache->last_trans = trans->transid; 477 return 0; 478 } 479 480 if (cache->last_trans == trans->transid) 481 return 0; 482 483 /* 484 * detached nodes are used to avoid unnecessary backref 485 * lookup. transaction commit changes the extent tree. 486 * so the detached nodes are no longer useful. 487 */ 488 while (!list_empty(&cache->detached)) { 489 node = list_entry(cache->detached.next, 490 struct backref_node, list); 491 remove_backref_node(cache, node); 492 } 493 494 while (!list_empty(&cache->changed)) { 495 node = list_entry(cache->changed.next, 496 struct backref_node, list); 497 list_del_init(&node->list); 498 BUG_ON(node->pending); 499 update_backref_node(cache, node, node->new_bytenr); 500 } 501 502 /* 503 * some nodes can be left in the pending list if there were 504 * errors during processing the pending nodes. 505 */ 506 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 507 list_for_each_entry(node, &cache->pending[level], list) { 508 BUG_ON(!node->pending); 509 if (node->bytenr == node->new_bytenr) 510 continue; 511 update_backref_node(cache, node, node->new_bytenr); 512 } 513 } 514 515 cache->last_trans = 0; 516 return 1; 517 } 518 519 520 static int should_ignore_root(struct btrfs_root *root) 521 { 522 struct btrfs_root *reloc_root; 523 524 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 525 return 0; 526 527 reloc_root = root->reloc_root; 528 if (!reloc_root) 529 return 0; 530 531 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 532 root->fs_info->running_transaction->transid - 1) 533 return 0; 534 /* 535 * if there is reloc tree and it was created in previous 536 * transaction backref lookup can find the reloc tree, 537 * so backref node for the fs tree root is useless for 538 * relocation. 539 */ 540 return 1; 541 } 542 /* 543 * find reloc tree by address of tree root 544 */ 545 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 546 u64 bytenr) 547 { 548 struct rb_node *rb_node; 549 struct mapping_node *node; 550 struct btrfs_root *root = NULL; 551 552 spin_lock(&rc->reloc_root_tree.lock); 553 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 554 if (rb_node) { 555 node = rb_entry(rb_node, struct mapping_node, rb_node); 556 root = (struct btrfs_root *)node->data; 557 } 558 spin_unlock(&rc->reloc_root_tree.lock); 559 return root; 560 } 561 562 static int is_cowonly_root(u64 root_objectid) 563 { 564 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 565 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 566 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 567 root_objectid == BTRFS_DEV_TREE_OBJECTID || 568 root_objectid == BTRFS_TREE_LOG_OBJECTID || 569 root_objectid == BTRFS_CSUM_TREE_OBJECTID || 570 root_objectid == BTRFS_UUID_TREE_OBJECTID || 571 root_objectid == BTRFS_QUOTA_TREE_OBJECTID || 572 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 573 return 1; 574 return 0; 575 } 576 577 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 578 u64 root_objectid) 579 { 580 struct btrfs_key key; 581 582 key.objectid = root_objectid; 583 key.type = BTRFS_ROOT_ITEM_KEY; 584 if (is_cowonly_root(root_objectid)) 585 key.offset = 0; 586 else 587 key.offset = (u64)-1; 588 589 return btrfs_get_fs_root(fs_info, &key, false); 590 } 591 592 static noinline_for_stack 593 int find_inline_backref(struct extent_buffer *leaf, int slot, 594 unsigned long *ptr, unsigned long *end) 595 { 596 struct btrfs_key key; 597 struct btrfs_extent_item *ei; 598 struct btrfs_tree_block_info *bi; 599 u32 item_size; 600 601 btrfs_item_key_to_cpu(leaf, &key, slot); 602 603 item_size = btrfs_item_size_nr(leaf, slot); 604 if (item_size < sizeof(*ei)) { 605 btrfs_print_v0_err(leaf->fs_info); 606 btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL); 607 return 1; 608 } 609 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 610 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 611 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 612 613 if (key.type == BTRFS_EXTENT_ITEM_KEY && 614 item_size <= sizeof(*ei) + sizeof(*bi)) { 615 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 616 return 1; 617 } 618 if (key.type == BTRFS_METADATA_ITEM_KEY && 619 item_size <= sizeof(*ei)) { 620 WARN_ON(item_size < sizeof(*ei)); 621 return 1; 622 } 623 624 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 625 bi = (struct btrfs_tree_block_info *)(ei + 1); 626 *ptr = (unsigned long)(bi + 1); 627 } else { 628 *ptr = (unsigned long)(ei + 1); 629 } 630 *end = (unsigned long)ei + item_size; 631 return 0; 632 } 633 634 /* 635 * build backref tree for a given tree block. root of the backref tree 636 * corresponds the tree block, leaves of the backref tree correspond 637 * roots of b-trees that reference the tree block. 638 * 639 * the basic idea of this function is check backrefs of a given block 640 * to find upper level blocks that reference the block, and then check 641 * backrefs of these upper level blocks recursively. the recursion stop 642 * when tree root is reached or backrefs for the block is cached. 643 * 644 * NOTE: if we find backrefs for a block are cached, we know backrefs 645 * for all upper level blocks that directly/indirectly reference the 646 * block are also cached. 647 */ 648 static noinline_for_stack 649 struct backref_node *build_backref_tree(struct reloc_control *rc, 650 struct btrfs_key *node_key, 651 int level, u64 bytenr) 652 { 653 struct backref_cache *cache = &rc->backref_cache; 654 struct btrfs_path *path1; /* For searching extent root */ 655 struct btrfs_path *path2; /* For searching parent of TREE_BLOCK_REF */ 656 struct extent_buffer *eb; 657 struct btrfs_root *root; 658 struct backref_node *cur; 659 struct backref_node *upper; 660 struct backref_node *lower; 661 struct backref_node *node = NULL; 662 struct backref_node *exist = NULL; 663 struct backref_edge *edge; 664 struct rb_node *rb_node; 665 struct btrfs_key key; 666 unsigned long end; 667 unsigned long ptr; 668 LIST_HEAD(list); /* Pending edge list, upper node needs to be checked */ 669 LIST_HEAD(useless); 670 int cowonly; 671 int ret; 672 int err = 0; 673 bool need_check = true; 674 675 path1 = btrfs_alloc_path(); 676 path2 = btrfs_alloc_path(); 677 if (!path1 || !path2) { 678 err = -ENOMEM; 679 goto out; 680 } 681 path1->reada = READA_FORWARD; 682 path2->reada = READA_FORWARD; 683 684 node = alloc_backref_node(cache); 685 if (!node) { 686 err = -ENOMEM; 687 goto out; 688 } 689 690 node->bytenr = bytenr; 691 node->level = level; 692 node->lowest = 1; 693 cur = node; 694 again: 695 end = 0; 696 ptr = 0; 697 key.objectid = cur->bytenr; 698 key.type = BTRFS_METADATA_ITEM_KEY; 699 key.offset = (u64)-1; 700 701 path1->search_commit_root = 1; 702 path1->skip_locking = 1; 703 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 704 0, 0); 705 if (ret < 0) { 706 err = ret; 707 goto out; 708 } 709 ASSERT(ret); 710 ASSERT(path1->slots[0]); 711 712 path1->slots[0]--; 713 714 WARN_ON(cur->checked); 715 if (!list_empty(&cur->upper)) { 716 /* 717 * the backref was added previously when processing 718 * backref of type BTRFS_TREE_BLOCK_REF_KEY 719 */ 720 ASSERT(list_is_singular(&cur->upper)); 721 edge = list_entry(cur->upper.next, struct backref_edge, 722 list[LOWER]); 723 ASSERT(list_empty(&edge->list[UPPER])); 724 exist = edge->node[UPPER]; 725 /* 726 * add the upper level block to pending list if we need 727 * check its backrefs 728 */ 729 if (!exist->checked) 730 list_add_tail(&edge->list[UPPER], &list); 731 } else { 732 exist = NULL; 733 } 734 735 while (1) { 736 cond_resched(); 737 eb = path1->nodes[0]; 738 739 if (ptr >= end) { 740 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 741 ret = btrfs_next_leaf(rc->extent_root, path1); 742 if (ret < 0) { 743 err = ret; 744 goto out; 745 } 746 if (ret > 0) 747 break; 748 eb = path1->nodes[0]; 749 } 750 751 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 752 if (key.objectid != cur->bytenr) { 753 WARN_ON(exist); 754 break; 755 } 756 757 if (key.type == BTRFS_EXTENT_ITEM_KEY || 758 key.type == BTRFS_METADATA_ITEM_KEY) { 759 ret = find_inline_backref(eb, path1->slots[0], 760 &ptr, &end); 761 if (ret) 762 goto next; 763 } 764 } 765 766 if (ptr < end) { 767 /* update key for inline back ref */ 768 struct btrfs_extent_inline_ref *iref; 769 int type; 770 iref = (struct btrfs_extent_inline_ref *)ptr; 771 type = btrfs_get_extent_inline_ref_type(eb, iref, 772 BTRFS_REF_TYPE_BLOCK); 773 if (type == BTRFS_REF_TYPE_INVALID) { 774 err = -EUCLEAN; 775 goto out; 776 } 777 key.type = type; 778 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 779 780 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 781 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 782 } 783 784 /* 785 * Parent node found and matches current inline ref, no need to 786 * rebuild this node for this inline ref. 787 */ 788 if (exist && 789 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 790 exist->owner == key.offset) || 791 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 792 exist->bytenr == key.offset))) { 793 exist = NULL; 794 goto next; 795 } 796 797 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 798 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 799 if (key.objectid == key.offset) { 800 /* 801 * Only root blocks of reloc trees use backref 802 * pointing to itself. 803 */ 804 root = find_reloc_root(rc, cur->bytenr); 805 ASSERT(root); 806 cur->root = root; 807 break; 808 } 809 810 edge = alloc_backref_edge(cache); 811 if (!edge) { 812 err = -ENOMEM; 813 goto out; 814 } 815 rb_node = tree_search(&cache->rb_root, key.offset); 816 if (!rb_node) { 817 upper = alloc_backref_node(cache); 818 if (!upper) { 819 free_backref_edge(cache, edge); 820 err = -ENOMEM; 821 goto out; 822 } 823 upper->bytenr = key.offset; 824 upper->level = cur->level + 1; 825 /* 826 * backrefs for the upper level block isn't 827 * cached, add the block to pending list 828 */ 829 list_add_tail(&edge->list[UPPER], &list); 830 } else { 831 upper = rb_entry(rb_node, struct backref_node, 832 rb_node); 833 ASSERT(upper->checked); 834 INIT_LIST_HEAD(&edge->list[UPPER]); 835 } 836 list_add_tail(&edge->list[LOWER], &cur->upper); 837 edge->node[LOWER] = cur; 838 edge->node[UPPER] = upper; 839 840 goto next; 841 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 842 err = -EINVAL; 843 btrfs_print_v0_err(rc->extent_root->fs_info); 844 btrfs_handle_fs_error(rc->extent_root->fs_info, err, 845 NULL); 846 goto out; 847 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 848 goto next; 849 } 850 851 /* 852 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 853 * means the root objectid. We need to search the tree to get 854 * its parent bytenr. 855 */ 856 root = read_fs_root(rc->extent_root->fs_info, key.offset); 857 if (IS_ERR(root)) { 858 err = PTR_ERR(root); 859 goto out; 860 } 861 862 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 863 cur->cowonly = 1; 864 865 if (btrfs_root_level(&root->root_item) == cur->level) { 866 /* tree root */ 867 ASSERT(btrfs_root_bytenr(&root->root_item) == 868 cur->bytenr); 869 if (should_ignore_root(root)) 870 list_add(&cur->list, &useless); 871 else 872 cur->root = root; 873 break; 874 } 875 876 level = cur->level + 1; 877 878 /* Search the tree to find parent blocks referring the block. */ 879 path2->search_commit_root = 1; 880 path2->skip_locking = 1; 881 path2->lowest_level = level; 882 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 883 path2->lowest_level = 0; 884 if (ret < 0) { 885 err = ret; 886 goto out; 887 } 888 if (ret > 0 && path2->slots[level] > 0) 889 path2->slots[level]--; 890 891 eb = path2->nodes[level]; 892 if (btrfs_node_blockptr(eb, path2->slots[level]) != 893 cur->bytenr) { 894 btrfs_err(root->fs_info, 895 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 896 cur->bytenr, level - 1, 897 root->root_key.objectid, 898 node_key->objectid, node_key->type, 899 node_key->offset); 900 err = -ENOENT; 901 goto out; 902 } 903 lower = cur; 904 need_check = true; 905 906 /* Add all nodes and edges in the path */ 907 for (; level < BTRFS_MAX_LEVEL; level++) { 908 if (!path2->nodes[level]) { 909 ASSERT(btrfs_root_bytenr(&root->root_item) == 910 lower->bytenr); 911 if (should_ignore_root(root)) 912 list_add(&lower->list, &useless); 913 else 914 lower->root = root; 915 break; 916 } 917 918 edge = alloc_backref_edge(cache); 919 if (!edge) { 920 err = -ENOMEM; 921 goto out; 922 } 923 924 eb = path2->nodes[level]; 925 rb_node = tree_search(&cache->rb_root, eb->start); 926 if (!rb_node) { 927 upper = alloc_backref_node(cache); 928 if (!upper) { 929 free_backref_edge(cache, edge); 930 err = -ENOMEM; 931 goto out; 932 } 933 upper->bytenr = eb->start; 934 upper->owner = btrfs_header_owner(eb); 935 upper->level = lower->level + 1; 936 if (!test_bit(BTRFS_ROOT_REF_COWS, 937 &root->state)) 938 upper->cowonly = 1; 939 940 /* 941 * if we know the block isn't shared 942 * we can void checking its backrefs. 943 */ 944 if (btrfs_block_can_be_shared(root, eb)) 945 upper->checked = 0; 946 else 947 upper->checked = 1; 948 949 /* 950 * add the block to pending list if we 951 * need check its backrefs, we only do this once 952 * while walking up a tree as we will catch 953 * anything else later on. 954 */ 955 if (!upper->checked && need_check) { 956 need_check = false; 957 list_add_tail(&edge->list[UPPER], 958 &list); 959 } else { 960 if (upper->checked) 961 need_check = true; 962 INIT_LIST_HEAD(&edge->list[UPPER]); 963 } 964 } else { 965 upper = rb_entry(rb_node, struct backref_node, 966 rb_node); 967 ASSERT(upper->checked); 968 INIT_LIST_HEAD(&edge->list[UPPER]); 969 if (!upper->owner) 970 upper->owner = btrfs_header_owner(eb); 971 } 972 list_add_tail(&edge->list[LOWER], &lower->upper); 973 edge->node[LOWER] = lower; 974 edge->node[UPPER] = upper; 975 976 if (rb_node) 977 break; 978 lower = upper; 979 upper = NULL; 980 } 981 btrfs_release_path(path2); 982 next: 983 if (ptr < end) { 984 ptr += btrfs_extent_inline_ref_size(key.type); 985 if (ptr >= end) { 986 WARN_ON(ptr > end); 987 ptr = 0; 988 end = 0; 989 } 990 } 991 if (ptr >= end) 992 path1->slots[0]++; 993 } 994 btrfs_release_path(path1); 995 996 cur->checked = 1; 997 WARN_ON(exist); 998 999 /* the pending list isn't empty, take the first block to process */ 1000 if (!list_empty(&list)) { 1001 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1002 list_del_init(&edge->list[UPPER]); 1003 cur = edge->node[UPPER]; 1004 goto again; 1005 } 1006 1007 /* 1008 * everything goes well, connect backref nodes and insert backref nodes 1009 * into the cache. 1010 */ 1011 ASSERT(node->checked); 1012 cowonly = node->cowonly; 1013 if (!cowonly) { 1014 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1015 &node->rb_node); 1016 if (rb_node) 1017 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1018 list_add_tail(&node->lower, &cache->leaves); 1019 } 1020 1021 list_for_each_entry(edge, &node->upper, list[LOWER]) 1022 list_add_tail(&edge->list[UPPER], &list); 1023 1024 while (!list_empty(&list)) { 1025 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1026 list_del_init(&edge->list[UPPER]); 1027 upper = edge->node[UPPER]; 1028 if (upper->detached) { 1029 list_del(&edge->list[LOWER]); 1030 lower = edge->node[LOWER]; 1031 free_backref_edge(cache, edge); 1032 if (list_empty(&lower->upper)) 1033 list_add(&lower->list, &useless); 1034 continue; 1035 } 1036 1037 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1038 if (upper->lowest) { 1039 list_del_init(&upper->lower); 1040 upper->lowest = 0; 1041 } 1042 1043 list_add_tail(&edge->list[UPPER], &upper->lower); 1044 continue; 1045 } 1046 1047 if (!upper->checked) { 1048 /* 1049 * Still want to blow up for developers since this is a 1050 * logic bug. 1051 */ 1052 ASSERT(0); 1053 err = -EINVAL; 1054 goto out; 1055 } 1056 if (cowonly != upper->cowonly) { 1057 ASSERT(0); 1058 err = -EINVAL; 1059 goto out; 1060 } 1061 1062 if (!cowonly) { 1063 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1064 &upper->rb_node); 1065 if (rb_node) 1066 backref_tree_panic(rb_node, -EEXIST, 1067 upper->bytenr); 1068 } 1069 1070 list_add_tail(&edge->list[UPPER], &upper->lower); 1071 1072 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1073 list_add_tail(&edge->list[UPPER], &list); 1074 } 1075 /* 1076 * process useless backref nodes. backref nodes for tree leaves 1077 * are deleted from the cache. backref nodes for upper level 1078 * tree blocks are left in the cache to avoid unnecessary backref 1079 * lookup. 1080 */ 1081 while (!list_empty(&useless)) { 1082 upper = list_entry(useless.next, struct backref_node, list); 1083 list_del_init(&upper->list); 1084 ASSERT(list_empty(&upper->upper)); 1085 if (upper == node) 1086 node = NULL; 1087 if (upper->lowest) { 1088 list_del_init(&upper->lower); 1089 upper->lowest = 0; 1090 } 1091 while (!list_empty(&upper->lower)) { 1092 edge = list_entry(upper->lower.next, 1093 struct backref_edge, list[UPPER]); 1094 list_del(&edge->list[UPPER]); 1095 list_del(&edge->list[LOWER]); 1096 lower = edge->node[LOWER]; 1097 free_backref_edge(cache, edge); 1098 1099 if (list_empty(&lower->upper)) 1100 list_add(&lower->list, &useless); 1101 } 1102 __mark_block_processed(rc, upper); 1103 if (upper->level > 0) { 1104 list_add(&upper->list, &cache->detached); 1105 upper->detached = 1; 1106 } else { 1107 rb_erase(&upper->rb_node, &cache->rb_root); 1108 free_backref_node(cache, upper); 1109 } 1110 } 1111 out: 1112 btrfs_free_path(path1); 1113 btrfs_free_path(path2); 1114 if (err) { 1115 while (!list_empty(&useless)) { 1116 lower = list_entry(useless.next, 1117 struct backref_node, list); 1118 list_del_init(&lower->list); 1119 } 1120 while (!list_empty(&list)) { 1121 edge = list_first_entry(&list, struct backref_edge, 1122 list[UPPER]); 1123 list_del(&edge->list[UPPER]); 1124 list_del(&edge->list[LOWER]); 1125 lower = edge->node[LOWER]; 1126 upper = edge->node[UPPER]; 1127 free_backref_edge(cache, edge); 1128 1129 /* 1130 * Lower is no longer linked to any upper backref nodes 1131 * and isn't in the cache, we can free it ourselves. 1132 */ 1133 if (list_empty(&lower->upper) && 1134 RB_EMPTY_NODE(&lower->rb_node)) 1135 list_add(&lower->list, &useless); 1136 1137 if (!RB_EMPTY_NODE(&upper->rb_node)) 1138 continue; 1139 1140 /* Add this guy's upper edges to the list to process */ 1141 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1142 list_add_tail(&edge->list[UPPER], &list); 1143 if (list_empty(&upper->upper)) 1144 list_add(&upper->list, &useless); 1145 } 1146 1147 while (!list_empty(&useless)) { 1148 lower = list_entry(useless.next, 1149 struct backref_node, list); 1150 list_del_init(&lower->list); 1151 if (lower == node) 1152 node = NULL; 1153 free_backref_node(cache, lower); 1154 } 1155 1156 free_backref_node(cache, node); 1157 return ERR_PTR(err); 1158 } 1159 ASSERT(!node || !node->detached); 1160 return node; 1161 } 1162 1163 /* 1164 * helper to add backref node for the newly created snapshot. 1165 * the backref node is created by cloning backref node that 1166 * corresponds to root of source tree 1167 */ 1168 static int clone_backref_node(struct btrfs_trans_handle *trans, 1169 struct reloc_control *rc, 1170 struct btrfs_root *src, 1171 struct btrfs_root *dest) 1172 { 1173 struct btrfs_root *reloc_root = src->reloc_root; 1174 struct backref_cache *cache = &rc->backref_cache; 1175 struct backref_node *node = NULL; 1176 struct backref_node *new_node; 1177 struct backref_edge *edge; 1178 struct backref_edge *new_edge; 1179 struct rb_node *rb_node; 1180 1181 if (cache->last_trans > 0) 1182 update_backref_cache(trans, cache); 1183 1184 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1185 if (rb_node) { 1186 node = rb_entry(rb_node, struct backref_node, rb_node); 1187 if (node->detached) 1188 node = NULL; 1189 else 1190 BUG_ON(node->new_bytenr != reloc_root->node->start); 1191 } 1192 1193 if (!node) { 1194 rb_node = tree_search(&cache->rb_root, 1195 reloc_root->commit_root->start); 1196 if (rb_node) { 1197 node = rb_entry(rb_node, struct backref_node, 1198 rb_node); 1199 BUG_ON(node->detached); 1200 } 1201 } 1202 1203 if (!node) 1204 return 0; 1205 1206 new_node = alloc_backref_node(cache); 1207 if (!new_node) 1208 return -ENOMEM; 1209 1210 new_node->bytenr = dest->node->start; 1211 new_node->level = node->level; 1212 new_node->lowest = node->lowest; 1213 new_node->checked = 1; 1214 new_node->root = dest; 1215 1216 if (!node->lowest) { 1217 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1218 new_edge = alloc_backref_edge(cache); 1219 if (!new_edge) 1220 goto fail; 1221 1222 new_edge->node[UPPER] = new_node; 1223 new_edge->node[LOWER] = edge->node[LOWER]; 1224 list_add_tail(&new_edge->list[UPPER], 1225 &new_node->lower); 1226 } 1227 } else { 1228 list_add_tail(&new_node->lower, &cache->leaves); 1229 } 1230 1231 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1232 &new_node->rb_node); 1233 if (rb_node) 1234 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr); 1235 1236 if (!new_node->lowest) { 1237 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1238 list_add_tail(&new_edge->list[LOWER], 1239 &new_edge->node[LOWER]->upper); 1240 } 1241 } 1242 return 0; 1243 fail: 1244 while (!list_empty(&new_node->lower)) { 1245 new_edge = list_entry(new_node->lower.next, 1246 struct backref_edge, list[UPPER]); 1247 list_del(&new_edge->list[UPPER]); 1248 free_backref_edge(cache, new_edge); 1249 } 1250 free_backref_node(cache, new_node); 1251 return -ENOMEM; 1252 } 1253 1254 /* 1255 * helper to add 'address of tree root -> reloc tree' mapping 1256 */ 1257 static int __must_check __add_reloc_root(struct btrfs_root *root) 1258 { 1259 struct btrfs_fs_info *fs_info = root->fs_info; 1260 struct rb_node *rb_node; 1261 struct mapping_node *node; 1262 struct reloc_control *rc = fs_info->reloc_ctl; 1263 1264 node = kmalloc(sizeof(*node), GFP_NOFS); 1265 if (!node) 1266 return -ENOMEM; 1267 1268 node->bytenr = root->node->start; 1269 node->data = root; 1270 1271 spin_lock(&rc->reloc_root_tree.lock); 1272 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1273 node->bytenr, &node->rb_node); 1274 spin_unlock(&rc->reloc_root_tree.lock); 1275 if (rb_node) { 1276 btrfs_panic(fs_info, -EEXIST, 1277 "Duplicate root found for start=%llu while inserting into relocation tree", 1278 node->bytenr); 1279 } 1280 1281 list_add_tail(&root->root_list, &rc->reloc_roots); 1282 return 0; 1283 } 1284 1285 /* 1286 * helper to delete the 'address of tree root -> reloc tree' 1287 * mapping 1288 */ 1289 static void __del_reloc_root(struct btrfs_root *root) 1290 { 1291 struct btrfs_fs_info *fs_info = root->fs_info; 1292 struct rb_node *rb_node; 1293 struct mapping_node *node = NULL; 1294 struct reloc_control *rc = fs_info->reloc_ctl; 1295 1296 if (rc && root->node) { 1297 spin_lock(&rc->reloc_root_tree.lock); 1298 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1299 root->node->start); 1300 if (rb_node) { 1301 node = rb_entry(rb_node, struct mapping_node, rb_node); 1302 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1303 } 1304 spin_unlock(&rc->reloc_root_tree.lock); 1305 if (!node) 1306 return; 1307 BUG_ON((struct btrfs_root *)node->data != root); 1308 } 1309 1310 spin_lock(&fs_info->trans_lock); 1311 list_del_init(&root->root_list); 1312 spin_unlock(&fs_info->trans_lock); 1313 kfree(node); 1314 } 1315 1316 /* 1317 * helper to update the 'address of tree root -> reloc tree' 1318 * mapping 1319 */ 1320 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr) 1321 { 1322 struct btrfs_fs_info *fs_info = root->fs_info; 1323 struct rb_node *rb_node; 1324 struct mapping_node *node = NULL; 1325 struct reloc_control *rc = fs_info->reloc_ctl; 1326 1327 spin_lock(&rc->reloc_root_tree.lock); 1328 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1329 root->node->start); 1330 if (rb_node) { 1331 node = rb_entry(rb_node, struct mapping_node, rb_node); 1332 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1333 } 1334 spin_unlock(&rc->reloc_root_tree.lock); 1335 1336 if (!node) 1337 return 0; 1338 BUG_ON((struct btrfs_root *)node->data != root); 1339 1340 spin_lock(&rc->reloc_root_tree.lock); 1341 node->bytenr = new_bytenr; 1342 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1343 node->bytenr, &node->rb_node); 1344 spin_unlock(&rc->reloc_root_tree.lock); 1345 if (rb_node) 1346 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1347 return 0; 1348 } 1349 1350 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1351 struct btrfs_root *root, u64 objectid) 1352 { 1353 struct btrfs_fs_info *fs_info = root->fs_info; 1354 struct btrfs_root *reloc_root; 1355 struct extent_buffer *eb; 1356 struct btrfs_root_item *root_item; 1357 struct btrfs_key root_key; 1358 int ret; 1359 1360 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1361 BUG_ON(!root_item); 1362 1363 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1364 root_key.type = BTRFS_ROOT_ITEM_KEY; 1365 root_key.offset = objectid; 1366 1367 if (root->root_key.objectid == objectid) { 1368 u64 commit_root_gen; 1369 1370 /* called by btrfs_init_reloc_root */ 1371 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1372 BTRFS_TREE_RELOC_OBJECTID); 1373 BUG_ON(ret); 1374 /* 1375 * Set the last_snapshot field to the generation of the commit 1376 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 1377 * correctly (returns true) when the relocation root is created 1378 * either inside the critical section of a transaction commit 1379 * (through transaction.c:qgroup_account_snapshot()) and when 1380 * it's created before the transaction commit is started. 1381 */ 1382 commit_root_gen = btrfs_header_generation(root->commit_root); 1383 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 1384 } else { 1385 /* 1386 * called by btrfs_reloc_post_snapshot_hook. 1387 * the source tree is a reloc tree, all tree blocks 1388 * modified after it was created have RELOC flag 1389 * set in their headers. so it's OK to not update 1390 * the 'last_snapshot'. 1391 */ 1392 ret = btrfs_copy_root(trans, root, root->node, &eb, 1393 BTRFS_TREE_RELOC_OBJECTID); 1394 BUG_ON(ret); 1395 } 1396 1397 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1398 btrfs_set_root_bytenr(root_item, eb->start); 1399 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1400 btrfs_set_root_generation(root_item, trans->transid); 1401 1402 if (root->root_key.objectid == objectid) { 1403 btrfs_set_root_refs(root_item, 0); 1404 memset(&root_item->drop_progress, 0, 1405 sizeof(struct btrfs_disk_key)); 1406 root_item->drop_level = 0; 1407 } 1408 1409 btrfs_tree_unlock(eb); 1410 free_extent_buffer(eb); 1411 1412 ret = btrfs_insert_root(trans, fs_info->tree_root, 1413 &root_key, root_item); 1414 BUG_ON(ret); 1415 kfree(root_item); 1416 1417 reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key); 1418 BUG_ON(IS_ERR(reloc_root)); 1419 reloc_root->last_trans = trans->transid; 1420 return reloc_root; 1421 } 1422 1423 /* 1424 * create reloc tree for a given fs tree. reloc tree is just a 1425 * snapshot of the fs tree with special root objectid. 1426 */ 1427 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1428 struct btrfs_root *root) 1429 { 1430 struct btrfs_fs_info *fs_info = root->fs_info; 1431 struct btrfs_root *reloc_root; 1432 struct reloc_control *rc = fs_info->reloc_ctl; 1433 struct btrfs_block_rsv *rsv; 1434 int clear_rsv = 0; 1435 int ret; 1436 1437 if (root->reloc_root) { 1438 reloc_root = root->reloc_root; 1439 reloc_root->last_trans = trans->transid; 1440 return 0; 1441 } 1442 1443 if (!rc || !rc->create_reloc_tree || 1444 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1445 return 0; 1446 1447 if (!trans->reloc_reserved) { 1448 rsv = trans->block_rsv; 1449 trans->block_rsv = rc->block_rsv; 1450 clear_rsv = 1; 1451 } 1452 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1453 if (clear_rsv) 1454 trans->block_rsv = rsv; 1455 1456 ret = __add_reloc_root(reloc_root); 1457 BUG_ON(ret < 0); 1458 root->reloc_root = reloc_root; 1459 return 0; 1460 } 1461 1462 /* 1463 * update root item of reloc tree 1464 */ 1465 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1466 struct btrfs_root *root) 1467 { 1468 struct btrfs_fs_info *fs_info = root->fs_info; 1469 struct btrfs_root *reloc_root; 1470 struct btrfs_root_item *root_item; 1471 int ret; 1472 1473 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state) || 1474 !root->reloc_root) 1475 goto out; 1476 1477 reloc_root = root->reloc_root; 1478 root_item = &reloc_root->root_item; 1479 1480 /* root->reloc_root will stay until current relocation finished */ 1481 if (fs_info->reloc_ctl->merge_reloc_tree && 1482 btrfs_root_refs(root_item) == 0) { 1483 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1484 __del_reloc_root(reloc_root); 1485 } 1486 1487 if (reloc_root->commit_root != reloc_root->node) { 1488 btrfs_set_root_node(root_item, reloc_root->node); 1489 free_extent_buffer(reloc_root->commit_root); 1490 reloc_root->commit_root = btrfs_root_node(reloc_root); 1491 } 1492 1493 ret = btrfs_update_root(trans, fs_info->tree_root, 1494 &reloc_root->root_key, root_item); 1495 BUG_ON(ret); 1496 1497 out: 1498 return 0; 1499 } 1500 1501 /* 1502 * helper to find first cached inode with inode number >= objectid 1503 * in a subvolume 1504 */ 1505 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1506 { 1507 struct rb_node *node; 1508 struct rb_node *prev; 1509 struct btrfs_inode *entry; 1510 struct inode *inode; 1511 1512 spin_lock(&root->inode_lock); 1513 again: 1514 node = root->inode_tree.rb_node; 1515 prev = NULL; 1516 while (node) { 1517 prev = node; 1518 entry = rb_entry(node, struct btrfs_inode, rb_node); 1519 1520 if (objectid < btrfs_ino(entry)) 1521 node = node->rb_left; 1522 else if (objectid > btrfs_ino(entry)) 1523 node = node->rb_right; 1524 else 1525 break; 1526 } 1527 if (!node) { 1528 while (prev) { 1529 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1530 if (objectid <= btrfs_ino(entry)) { 1531 node = prev; 1532 break; 1533 } 1534 prev = rb_next(prev); 1535 } 1536 } 1537 while (node) { 1538 entry = rb_entry(node, struct btrfs_inode, rb_node); 1539 inode = igrab(&entry->vfs_inode); 1540 if (inode) { 1541 spin_unlock(&root->inode_lock); 1542 return inode; 1543 } 1544 1545 objectid = btrfs_ino(entry) + 1; 1546 if (cond_resched_lock(&root->inode_lock)) 1547 goto again; 1548 1549 node = rb_next(node); 1550 } 1551 spin_unlock(&root->inode_lock); 1552 return NULL; 1553 } 1554 1555 static int in_block_group(u64 bytenr, 1556 struct btrfs_block_group_cache *block_group) 1557 { 1558 if (bytenr >= block_group->key.objectid && 1559 bytenr < block_group->key.objectid + block_group->key.offset) 1560 return 1; 1561 return 0; 1562 } 1563 1564 /* 1565 * get new location of data 1566 */ 1567 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1568 u64 bytenr, u64 num_bytes) 1569 { 1570 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1571 struct btrfs_path *path; 1572 struct btrfs_file_extent_item *fi; 1573 struct extent_buffer *leaf; 1574 int ret; 1575 1576 path = btrfs_alloc_path(); 1577 if (!path) 1578 return -ENOMEM; 1579 1580 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1581 ret = btrfs_lookup_file_extent(NULL, root, path, 1582 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 1583 if (ret < 0) 1584 goto out; 1585 if (ret > 0) { 1586 ret = -ENOENT; 1587 goto out; 1588 } 1589 1590 leaf = path->nodes[0]; 1591 fi = btrfs_item_ptr(leaf, path->slots[0], 1592 struct btrfs_file_extent_item); 1593 1594 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1595 btrfs_file_extent_compression(leaf, fi) || 1596 btrfs_file_extent_encryption(leaf, fi) || 1597 btrfs_file_extent_other_encoding(leaf, fi)); 1598 1599 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1600 ret = -EINVAL; 1601 goto out; 1602 } 1603 1604 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1605 ret = 0; 1606 out: 1607 btrfs_free_path(path); 1608 return ret; 1609 } 1610 1611 /* 1612 * update file extent items in the tree leaf to point to 1613 * the new locations. 1614 */ 1615 static noinline_for_stack 1616 int replace_file_extents(struct btrfs_trans_handle *trans, 1617 struct reloc_control *rc, 1618 struct btrfs_root *root, 1619 struct extent_buffer *leaf) 1620 { 1621 struct btrfs_fs_info *fs_info = root->fs_info; 1622 struct btrfs_key key; 1623 struct btrfs_file_extent_item *fi; 1624 struct inode *inode = NULL; 1625 u64 parent; 1626 u64 bytenr; 1627 u64 new_bytenr = 0; 1628 u64 num_bytes; 1629 u64 end; 1630 u32 nritems; 1631 u32 i; 1632 int ret = 0; 1633 int first = 1; 1634 int dirty = 0; 1635 1636 if (rc->stage != UPDATE_DATA_PTRS) 1637 return 0; 1638 1639 /* reloc trees always use full backref */ 1640 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1641 parent = leaf->start; 1642 else 1643 parent = 0; 1644 1645 nritems = btrfs_header_nritems(leaf); 1646 for (i = 0; i < nritems; i++) { 1647 struct btrfs_ref ref = { 0 }; 1648 1649 cond_resched(); 1650 btrfs_item_key_to_cpu(leaf, &key, i); 1651 if (key.type != BTRFS_EXTENT_DATA_KEY) 1652 continue; 1653 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1654 if (btrfs_file_extent_type(leaf, fi) == 1655 BTRFS_FILE_EXTENT_INLINE) 1656 continue; 1657 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1658 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1659 if (bytenr == 0) 1660 continue; 1661 if (!in_block_group(bytenr, rc->block_group)) 1662 continue; 1663 1664 /* 1665 * if we are modifying block in fs tree, wait for readpage 1666 * to complete and drop the extent cache 1667 */ 1668 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1669 if (first) { 1670 inode = find_next_inode(root, key.objectid); 1671 first = 0; 1672 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1673 btrfs_add_delayed_iput(inode); 1674 inode = find_next_inode(root, key.objectid); 1675 } 1676 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1677 end = key.offset + 1678 btrfs_file_extent_num_bytes(leaf, fi); 1679 WARN_ON(!IS_ALIGNED(key.offset, 1680 fs_info->sectorsize)); 1681 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1682 end--; 1683 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1684 key.offset, end); 1685 if (!ret) 1686 continue; 1687 1688 btrfs_drop_extent_cache(BTRFS_I(inode), 1689 key.offset, end, 1); 1690 unlock_extent(&BTRFS_I(inode)->io_tree, 1691 key.offset, end); 1692 } 1693 } 1694 1695 ret = get_new_location(rc->data_inode, &new_bytenr, 1696 bytenr, num_bytes); 1697 if (ret) { 1698 /* 1699 * Don't have to abort since we've not changed anything 1700 * in the file extent yet. 1701 */ 1702 break; 1703 } 1704 1705 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1706 dirty = 1; 1707 1708 key.offset -= btrfs_file_extent_offset(leaf, fi); 1709 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1710 num_bytes, parent); 1711 ref.real_root = root->root_key.objectid; 1712 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1713 key.objectid, key.offset); 1714 ret = btrfs_inc_extent_ref(trans, &ref); 1715 if (ret) { 1716 btrfs_abort_transaction(trans, ret); 1717 break; 1718 } 1719 1720 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1721 num_bytes, parent); 1722 ref.real_root = root->root_key.objectid; 1723 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1724 key.objectid, key.offset); 1725 ret = btrfs_free_extent(trans, &ref); 1726 if (ret) { 1727 btrfs_abort_transaction(trans, ret); 1728 break; 1729 } 1730 } 1731 if (dirty) 1732 btrfs_mark_buffer_dirty(leaf); 1733 if (inode) 1734 btrfs_add_delayed_iput(inode); 1735 return ret; 1736 } 1737 1738 static noinline_for_stack 1739 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1740 struct btrfs_path *path, int level) 1741 { 1742 struct btrfs_disk_key key1; 1743 struct btrfs_disk_key key2; 1744 btrfs_node_key(eb, &key1, slot); 1745 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1746 return memcmp(&key1, &key2, sizeof(key1)); 1747 } 1748 1749 /* 1750 * try to replace tree blocks in fs tree with the new blocks 1751 * in reloc tree. tree blocks haven't been modified since the 1752 * reloc tree was create can be replaced. 1753 * 1754 * if a block was replaced, level of the block + 1 is returned. 1755 * if no block got replaced, 0 is returned. if there are other 1756 * errors, a negative error number is returned. 1757 */ 1758 static noinline_for_stack 1759 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1760 struct btrfs_root *dest, struct btrfs_root *src, 1761 struct btrfs_path *path, struct btrfs_key *next_key, 1762 int lowest_level, int max_level) 1763 { 1764 struct btrfs_fs_info *fs_info = dest->fs_info; 1765 struct extent_buffer *eb; 1766 struct extent_buffer *parent; 1767 struct btrfs_ref ref = { 0 }; 1768 struct btrfs_key key; 1769 u64 old_bytenr; 1770 u64 new_bytenr; 1771 u64 old_ptr_gen; 1772 u64 new_ptr_gen; 1773 u64 last_snapshot; 1774 u32 blocksize; 1775 int cow = 0; 1776 int level; 1777 int ret; 1778 int slot; 1779 1780 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1781 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1782 1783 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1784 again: 1785 slot = path->slots[lowest_level]; 1786 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1787 1788 eb = btrfs_lock_root_node(dest); 1789 btrfs_set_lock_blocking_write(eb); 1790 level = btrfs_header_level(eb); 1791 1792 if (level < lowest_level) { 1793 btrfs_tree_unlock(eb); 1794 free_extent_buffer(eb); 1795 return 0; 1796 } 1797 1798 if (cow) { 1799 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1800 BUG_ON(ret); 1801 } 1802 btrfs_set_lock_blocking_write(eb); 1803 1804 if (next_key) { 1805 next_key->objectid = (u64)-1; 1806 next_key->type = (u8)-1; 1807 next_key->offset = (u64)-1; 1808 } 1809 1810 parent = eb; 1811 while (1) { 1812 struct btrfs_key first_key; 1813 1814 level = btrfs_header_level(parent); 1815 BUG_ON(level < lowest_level); 1816 1817 ret = btrfs_bin_search(parent, &key, level, &slot); 1818 if (ret < 0) 1819 break; 1820 if (ret && slot > 0) 1821 slot--; 1822 1823 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1824 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1825 1826 old_bytenr = btrfs_node_blockptr(parent, slot); 1827 blocksize = fs_info->nodesize; 1828 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1829 btrfs_node_key_to_cpu(parent, &first_key, slot); 1830 1831 if (level <= max_level) { 1832 eb = path->nodes[level]; 1833 new_bytenr = btrfs_node_blockptr(eb, 1834 path->slots[level]); 1835 new_ptr_gen = btrfs_node_ptr_generation(eb, 1836 path->slots[level]); 1837 } else { 1838 new_bytenr = 0; 1839 new_ptr_gen = 0; 1840 } 1841 1842 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1843 ret = level; 1844 break; 1845 } 1846 1847 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1848 memcmp_node_keys(parent, slot, path, level)) { 1849 if (level <= lowest_level) { 1850 ret = 0; 1851 break; 1852 } 1853 1854 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen, 1855 level - 1, &first_key); 1856 if (IS_ERR(eb)) { 1857 ret = PTR_ERR(eb); 1858 break; 1859 } else if (!extent_buffer_uptodate(eb)) { 1860 ret = -EIO; 1861 free_extent_buffer(eb); 1862 break; 1863 } 1864 btrfs_tree_lock(eb); 1865 if (cow) { 1866 ret = btrfs_cow_block(trans, dest, eb, parent, 1867 slot, &eb); 1868 BUG_ON(ret); 1869 } 1870 btrfs_set_lock_blocking_write(eb); 1871 1872 btrfs_tree_unlock(parent); 1873 free_extent_buffer(parent); 1874 1875 parent = eb; 1876 continue; 1877 } 1878 1879 if (!cow) { 1880 btrfs_tree_unlock(parent); 1881 free_extent_buffer(parent); 1882 cow = 1; 1883 goto again; 1884 } 1885 1886 btrfs_node_key_to_cpu(path->nodes[level], &key, 1887 path->slots[level]); 1888 btrfs_release_path(path); 1889 1890 path->lowest_level = level; 1891 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1892 path->lowest_level = 0; 1893 BUG_ON(ret); 1894 1895 /* 1896 * Info qgroup to trace both subtrees. 1897 * 1898 * We must trace both trees. 1899 * 1) Tree reloc subtree 1900 * If not traced, we will leak data numbers 1901 * 2) Fs subtree 1902 * If not traced, we will double count old data 1903 * 1904 * We don't scan the subtree right now, but only record 1905 * the swapped tree blocks. 1906 * The real subtree rescan is delayed until we have new 1907 * CoW on the subtree root node before transaction commit. 1908 */ 1909 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 1910 rc->block_group, parent, slot, 1911 path->nodes[level], path->slots[level], 1912 last_snapshot); 1913 if (ret < 0) 1914 break; 1915 /* 1916 * swap blocks in fs tree and reloc tree. 1917 */ 1918 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1919 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1920 btrfs_mark_buffer_dirty(parent); 1921 1922 btrfs_set_node_blockptr(path->nodes[level], 1923 path->slots[level], old_bytenr); 1924 btrfs_set_node_ptr_generation(path->nodes[level], 1925 path->slots[level], old_ptr_gen); 1926 btrfs_mark_buffer_dirty(path->nodes[level]); 1927 1928 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, 1929 blocksize, path->nodes[level]->start); 1930 ref.skip_qgroup = true; 1931 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1932 ret = btrfs_inc_extent_ref(trans, &ref); 1933 BUG_ON(ret); 1934 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1935 blocksize, 0); 1936 ref.skip_qgroup = true; 1937 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1938 ret = btrfs_inc_extent_ref(trans, &ref); 1939 BUG_ON(ret); 1940 1941 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, 1942 blocksize, path->nodes[level]->start); 1943 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1944 ref.skip_qgroup = true; 1945 ret = btrfs_free_extent(trans, &ref); 1946 BUG_ON(ret); 1947 1948 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, 1949 blocksize, 0); 1950 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1951 ref.skip_qgroup = true; 1952 ret = btrfs_free_extent(trans, &ref); 1953 BUG_ON(ret); 1954 1955 btrfs_unlock_up_safe(path, 0); 1956 1957 ret = level; 1958 break; 1959 } 1960 btrfs_tree_unlock(parent); 1961 free_extent_buffer(parent); 1962 return ret; 1963 } 1964 1965 /* 1966 * helper to find next relocated block in reloc tree 1967 */ 1968 static noinline_for_stack 1969 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1970 int *level) 1971 { 1972 struct extent_buffer *eb; 1973 int i; 1974 u64 last_snapshot; 1975 u32 nritems; 1976 1977 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1978 1979 for (i = 0; i < *level; i++) { 1980 free_extent_buffer(path->nodes[i]); 1981 path->nodes[i] = NULL; 1982 } 1983 1984 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1985 eb = path->nodes[i]; 1986 nritems = btrfs_header_nritems(eb); 1987 while (path->slots[i] + 1 < nritems) { 1988 path->slots[i]++; 1989 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1990 last_snapshot) 1991 continue; 1992 1993 *level = i; 1994 return 0; 1995 } 1996 free_extent_buffer(path->nodes[i]); 1997 path->nodes[i] = NULL; 1998 } 1999 return 1; 2000 } 2001 2002 /* 2003 * walk down reloc tree to find relocated block of lowest level 2004 */ 2005 static noinline_for_stack 2006 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 2007 int *level) 2008 { 2009 struct btrfs_fs_info *fs_info = root->fs_info; 2010 struct extent_buffer *eb = NULL; 2011 int i; 2012 u64 bytenr; 2013 u64 ptr_gen = 0; 2014 u64 last_snapshot; 2015 u32 nritems; 2016 2017 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2018 2019 for (i = *level; i > 0; i--) { 2020 struct btrfs_key first_key; 2021 2022 eb = path->nodes[i]; 2023 nritems = btrfs_header_nritems(eb); 2024 while (path->slots[i] < nritems) { 2025 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 2026 if (ptr_gen > last_snapshot) 2027 break; 2028 path->slots[i]++; 2029 } 2030 if (path->slots[i] >= nritems) { 2031 if (i == *level) 2032 break; 2033 *level = i + 1; 2034 return 0; 2035 } 2036 if (i == 1) { 2037 *level = i; 2038 return 0; 2039 } 2040 2041 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 2042 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]); 2043 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1, 2044 &first_key); 2045 if (IS_ERR(eb)) { 2046 return PTR_ERR(eb); 2047 } else if (!extent_buffer_uptodate(eb)) { 2048 free_extent_buffer(eb); 2049 return -EIO; 2050 } 2051 BUG_ON(btrfs_header_level(eb) != i - 1); 2052 path->nodes[i - 1] = eb; 2053 path->slots[i - 1] = 0; 2054 } 2055 return 1; 2056 } 2057 2058 /* 2059 * invalidate extent cache for file extents whose key in range of 2060 * [min_key, max_key) 2061 */ 2062 static int invalidate_extent_cache(struct btrfs_root *root, 2063 struct btrfs_key *min_key, 2064 struct btrfs_key *max_key) 2065 { 2066 struct btrfs_fs_info *fs_info = root->fs_info; 2067 struct inode *inode = NULL; 2068 u64 objectid; 2069 u64 start, end; 2070 u64 ino; 2071 2072 objectid = min_key->objectid; 2073 while (1) { 2074 cond_resched(); 2075 iput(inode); 2076 2077 if (objectid > max_key->objectid) 2078 break; 2079 2080 inode = find_next_inode(root, objectid); 2081 if (!inode) 2082 break; 2083 ino = btrfs_ino(BTRFS_I(inode)); 2084 2085 if (ino > max_key->objectid) { 2086 iput(inode); 2087 break; 2088 } 2089 2090 objectid = ino + 1; 2091 if (!S_ISREG(inode->i_mode)) 2092 continue; 2093 2094 if (unlikely(min_key->objectid == ino)) { 2095 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 2096 continue; 2097 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 2098 start = 0; 2099 else { 2100 start = min_key->offset; 2101 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 2102 } 2103 } else { 2104 start = 0; 2105 } 2106 2107 if (unlikely(max_key->objectid == ino)) { 2108 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 2109 continue; 2110 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 2111 end = (u64)-1; 2112 } else { 2113 if (max_key->offset == 0) 2114 continue; 2115 end = max_key->offset; 2116 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 2117 end--; 2118 } 2119 } else { 2120 end = (u64)-1; 2121 } 2122 2123 /* the lock_extent waits for readpage to complete */ 2124 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2125 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1); 2126 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2127 } 2128 return 0; 2129 } 2130 2131 static int find_next_key(struct btrfs_path *path, int level, 2132 struct btrfs_key *key) 2133 2134 { 2135 while (level < BTRFS_MAX_LEVEL) { 2136 if (!path->nodes[level]) 2137 break; 2138 if (path->slots[level] + 1 < 2139 btrfs_header_nritems(path->nodes[level])) { 2140 btrfs_node_key_to_cpu(path->nodes[level], key, 2141 path->slots[level] + 1); 2142 return 0; 2143 } 2144 level++; 2145 } 2146 return 1; 2147 } 2148 2149 /* 2150 * Insert current subvolume into reloc_control::dirty_subvol_roots 2151 */ 2152 static void insert_dirty_subvol(struct btrfs_trans_handle *trans, 2153 struct reloc_control *rc, 2154 struct btrfs_root *root) 2155 { 2156 struct btrfs_root *reloc_root = root->reloc_root; 2157 struct btrfs_root_item *reloc_root_item; 2158 2159 /* @root must be a subvolume tree root with a valid reloc tree */ 2160 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 2161 ASSERT(reloc_root); 2162 2163 reloc_root_item = &reloc_root->root_item; 2164 memset(&reloc_root_item->drop_progress, 0, 2165 sizeof(reloc_root_item->drop_progress)); 2166 reloc_root_item->drop_level = 0; 2167 btrfs_set_root_refs(reloc_root_item, 0); 2168 btrfs_update_reloc_root(trans, root); 2169 2170 if (list_empty(&root->reloc_dirty_list)) { 2171 btrfs_grab_fs_root(root); 2172 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 2173 } 2174 } 2175 2176 static int clean_dirty_subvols(struct reloc_control *rc) 2177 { 2178 struct btrfs_root *root; 2179 struct btrfs_root *next; 2180 int ret = 0; 2181 int ret2; 2182 2183 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 2184 reloc_dirty_list) { 2185 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 2186 /* Merged subvolume, cleanup its reloc root */ 2187 struct btrfs_root *reloc_root = root->reloc_root; 2188 2189 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 2190 list_del_init(&root->reloc_dirty_list); 2191 root->reloc_root = NULL; 2192 if (reloc_root) { 2193 2194 ret2 = btrfs_drop_snapshot(reloc_root, NULL, 0, 1); 2195 if (ret2 < 0 && !ret) 2196 ret = ret2; 2197 } 2198 btrfs_put_fs_root(root); 2199 } else { 2200 /* Orphan reloc tree, just clean it up */ 2201 ret2 = btrfs_drop_snapshot(root, NULL, 0, 1); 2202 if (ret2 < 0 && !ret) 2203 ret = ret2; 2204 } 2205 } 2206 return ret; 2207 } 2208 2209 /* 2210 * merge the relocated tree blocks in reloc tree with corresponding 2211 * fs tree. 2212 */ 2213 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 2214 struct btrfs_root *root) 2215 { 2216 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2217 struct btrfs_key key; 2218 struct btrfs_key next_key; 2219 struct btrfs_trans_handle *trans = NULL; 2220 struct btrfs_root *reloc_root; 2221 struct btrfs_root_item *root_item; 2222 struct btrfs_path *path; 2223 struct extent_buffer *leaf; 2224 int level; 2225 int max_level; 2226 int replaced = 0; 2227 int ret; 2228 int err = 0; 2229 u32 min_reserved; 2230 2231 path = btrfs_alloc_path(); 2232 if (!path) 2233 return -ENOMEM; 2234 path->reada = READA_FORWARD; 2235 2236 reloc_root = root->reloc_root; 2237 root_item = &reloc_root->root_item; 2238 2239 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2240 level = btrfs_root_level(root_item); 2241 extent_buffer_get(reloc_root->node); 2242 path->nodes[level] = reloc_root->node; 2243 path->slots[level] = 0; 2244 } else { 2245 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2246 2247 level = root_item->drop_level; 2248 BUG_ON(level == 0); 2249 path->lowest_level = level; 2250 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2251 path->lowest_level = 0; 2252 if (ret < 0) { 2253 btrfs_free_path(path); 2254 return ret; 2255 } 2256 2257 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2258 path->slots[level]); 2259 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2260 2261 btrfs_unlock_up_safe(path, 0); 2262 } 2263 2264 min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2265 memset(&next_key, 0, sizeof(next_key)); 2266 2267 while (1) { 2268 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 2269 BTRFS_RESERVE_FLUSH_ALL); 2270 if (ret) { 2271 err = ret; 2272 goto out; 2273 } 2274 trans = btrfs_start_transaction(root, 0); 2275 if (IS_ERR(trans)) { 2276 err = PTR_ERR(trans); 2277 trans = NULL; 2278 goto out; 2279 } 2280 trans->block_rsv = rc->block_rsv; 2281 2282 replaced = 0; 2283 max_level = level; 2284 2285 ret = walk_down_reloc_tree(reloc_root, path, &level); 2286 if (ret < 0) { 2287 err = ret; 2288 goto out; 2289 } 2290 if (ret > 0) 2291 break; 2292 2293 if (!find_next_key(path, level, &key) && 2294 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2295 ret = 0; 2296 } else { 2297 ret = replace_path(trans, rc, root, reloc_root, path, 2298 &next_key, level, max_level); 2299 } 2300 if (ret < 0) { 2301 err = ret; 2302 goto out; 2303 } 2304 2305 if (ret > 0) { 2306 level = ret; 2307 btrfs_node_key_to_cpu(path->nodes[level], &key, 2308 path->slots[level]); 2309 replaced = 1; 2310 } 2311 2312 ret = walk_up_reloc_tree(reloc_root, path, &level); 2313 if (ret > 0) 2314 break; 2315 2316 BUG_ON(level == 0); 2317 /* 2318 * save the merging progress in the drop_progress. 2319 * this is OK since root refs == 1 in this case. 2320 */ 2321 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2322 path->slots[level]); 2323 root_item->drop_level = level; 2324 2325 btrfs_end_transaction_throttle(trans); 2326 trans = NULL; 2327 2328 btrfs_btree_balance_dirty(fs_info); 2329 2330 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2331 invalidate_extent_cache(root, &key, &next_key); 2332 } 2333 2334 /* 2335 * handle the case only one block in the fs tree need to be 2336 * relocated and the block is tree root. 2337 */ 2338 leaf = btrfs_lock_root_node(root); 2339 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2340 btrfs_tree_unlock(leaf); 2341 free_extent_buffer(leaf); 2342 if (ret < 0) 2343 err = ret; 2344 out: 2345 btrfs_free_path(path); 2346 2347 if (err == 0) 2348 insert_dirty_subvol(trans, rc, root); 2349 2350 if (trans) 2351 btrfs_end_transaction_throttle(trans); 2352 2353 btrfs_btree_balance_dirty(fs_info); 2354 2355 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2356 invalidate_extent_cache(root, &key, &next_key); 2357 2358 return err; 2359 } 2360 2361 static noinline_for_stack 2362 int prepare_to_merge(struct reloc_control *rc, int err) 2363 { 2364 struct btrfs_root *root = rc->extent_root; 2365 struct btrfs_fs_info *fs_info = root->fs_info; 2366 struct btrfs_root *reloc_root; 2367 struct btrfs_trans_handle *trans; 2368 LIST_HEAD(reloc_roots); 2369 u64 num_bytes = 0; 2370 int ret; 2371 2372 mutex_lock(&fs_info->reloc_mutex); 2373 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2374 rc->merging_rsv_size += rc->nodes_relocated * 2; 2375 mutex_unlock(&fs_info->reloc_mutex); 2376 2377 again: 2378 if (!err) { 2379 num_bytes = rc->merging_rsv_size; 2380 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2381 BTRFS_RESERVE_FLUSH_ALL); 2382 if (ret) 2383 err = ret; 2384 } 2385 2386 trans = btrfs_join_transaction(rc->extent_root); 2387 if (IS_ERR(trans)) { 2388 if (!err) 2389 btrfs_block_rsv_release(fs_info, rc->block_rsv, 2390 num_bytes); 2391 return PTR_ERR(trans); 2392 } 2393 2394 if (!err) { 2395 if (num_bytes != rc->merging_rsv_size) { 2396 btrfs_end_transaction(trans); 2397 btrfs_block_rsv_release(fs_info, rc->block_rsv, 2398 num_bytes); 2399 goto again; 2400 } 2401 } 2402 2403 rc->merge_reloc_tree = 1; 2404 2405 while (!list_empty(&rc->reloc_roots)) { 2406 reloc_root = list_entry(rc->reloc_roots.next, 2407 struct btrfs_root, root_list); 2408 list_del_init(&reloc_root->root_list); 2409 2410 root = read_fs_root(fs_info, reloc_root->root_key.offset); 2411 BUG_ON(IS_ERR(root)); 2412 BUG_ON(root->reloc_root != reloc_root); 2413 2414 /* 2415 * set reference count to 1, so btrfs_recover_relocation 2416 * knows it should resumes merging 2417 */ 2418 if (!err) 2419 btrfs_set_root_refs(&reloc_root->root_item, 1); 2420 btrfs_update_reloc_root(trans, root); 2421 2422 list_add(&reloc_root->root_list, &reloc_roots); 2423 } 2424 2425 list_splice(&reloc_roots, &rc->reloc_roots); 2426 2427 if (!err) 2428 btrfs_commit_transaction(trans); 2429 else 2430 btrfs_end_transaction(trans); 2431 return err; 2432 } 2433 2434 static noinline_for_stack 2435 void free_reloc_roots(struct list_head *list) 2436 { 2437 struct btrfs_root *reloc_root; 2438 2439 while (!list_empty(list)) { 2440 reloc_root = list_entry(list->next, struct btrfs_root, 2441 root_list); 2442 __del_reloc_root(reloc_root); 2443 free_extent_buffer(reloc_root->node); 2444 free_extent_buffer(reloc_root->commit_root); 2445 reloc_root->node = NULL; 2446 reloc_root->commit_root = NULL; 2447 } 2448 } 2449 2450 static noinline_for_stack 2451 void merge_reloc_roots(struct reloc_control *rc) 2452 { 2453 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2454 struct btrfs_root *root; 2455 struct btrfs_root *reloc_root; 2456 LIST_HEAD(reloc_roots); 2457 int found = 0; 2458 int ret = 0; 2459 again: 2460 root = rc->extent_root; 2461 2462 /* 2463 * this serializes us with btrfs_record_root_in_transaction, 2464 * we have to make sure nobody is in the middle of 2465 * adding their roots to the list while we are 2466 * doing this splice 2467 */ 2468 mutex_lock(&fs_info->reloc_mutex); 2469 list_splice_init(&rc->reloc_roots, &reloc_roots); 2470 mutex_unlock(&fs_info->reloc_mutex); 2471 2472 while (!list_empty(&reloc_roots)) { 2473 found = 1; 2474 reloc_root = list_entry(reloc_roots.next, 2475 struct btrfs_root, root_list); 2476 2477 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2478 root = read_fs_root(fs_info, 2479 reloc_root->root_key.offset); 2480 BUG_ON(IS_ERR(root)); 2481 BUG_ON(root->reloc_root != reloc_root); 2482 2483 ret = merge_reloc_root(rc, root); 2484 if (ret) { 2485 if (list_empty(&reloc_root->root_list)) 2486 list_add_tail(&reloc_root->root_list, 2487 &reloc_roots); 2488 goto out; 2489 } 2490 } else { 2491 list_del_init(&reloc_root->root_list); 2492 /* Don't forget to queue this reloc root for cleanup */ 2493 list_add_tail(&reloc_root->reloc_dirty_list, 2494 &rc->dirty_subvol_roots); 2495 } 2496 } 2497 2498 if (found) { 2499 found = 0; 2500 goto again; 2501 } 2502 out: 2503 if (ret) { 2504 btrfs_handle_fs_error(fs_info, ret, NULL); 2505 if (!list_empty(&reloc_roots)) 2506 free_reloc_roots(&reloc_roots); 2507 2508 /* new reloc root may be added */ 2509 mutex_lock(&fs_info->reloc_mutex); 2510 list_splice_init(&rc->reloc_roots, &reloc_roots); 2511 mutex_unlock(&fs_info->reloc_mutex); 2512 if (!list_empty(&reloc_roots)) 2513 free_reloc_roots(&reloc_roots); 2514 } 2515 2516 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2517 } 2518 2519 static void free_block_list(struct rb_root *blocks) 2520 { 2521 struct tree_block *block; 2522 struct rb_node *rb_node; 2523 while ((rb_node = rb_first(blocks))) { 2524 block = rb_entry(rb_node, struct tree_block, rb_node); 2525 rb_erase(rb_node, blocks); 2526 kfree(block); 2527 } 2528 } 2529 2530 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2531 struct btrfs_root *reloc_root) 2532 { 2533 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 2534 struct btrfs_root *root; 2535 2536 if (reloc_root->last_trans == trans->transid) 2537 return 0; 2538 2539 root = read_fs_root(fs_info, reloc_root->root_key.offset); 2540 BUG_ON(IS_ERR(root)); 2541 BUG_ON(root->reloc_root != reloc_root); 2542 2543 return btrfs_record_root_in_trans(trans, root); 2544 } 2545 2546 static noinline_for_stack 2547 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2548 struct reloc_control *rc, 2549 struct backref_node *node, 2550 struct backref_edge *edges[]) 2551 { 2552 struct backref_node *next; 2553 struct btrfs_root *root; 2554 int index = 0; 2555 2556 next = node; 2557 while (1) { 2558 cond_resched(); 2559 next = walk_up_backref(next, edges, &index); 2560 root = next->root; 2561 BUG_ON(!root); 2562 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state)); 2563 2564 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2565 record_reloc_root_in_trans(trans, root); 2566 break; 2567 } 2568 2569 btrfs_record_root_in_trans(trans, root); 2570 root = root->reloc_root; 2571 2572 if (next->new_bytenr != root->node->start) { 2573 BUG_ON(next->new_bytenr); 2574 BUG_ON(!list_empty(&next->list)); 2575 next->new_bytenr = root->node->start; 2576 next->root = root; 2577 list_add_tail(&next->list, 2578 &rc->backref_cache.changed); 2579 __mark_block_processed(rc, next); 2580 break; 2581 } 2582 2583 WARN_ON(1); 2584 root = NULL; 2585 next = walk_down_backref(edges, &index); 2586 if (!next || next->level <= node->level) 2587 break; 2588 } 2589 if (!root) 2590 return NULL; 2591 2592 next = node; 2593 /* setup backref node path for btrfs_reloc_cow_block */ 2594 while (1) { 2595 rc->backref_cache.path[next->level] = next; 2596 if (--index < 0) 2597 break; 2598 next = edges[index]->node[UPPER]; 2599 } 2600 return root; 2601 } 2602 2603 /* 2604 * select a tree root for relocation. return NULL if the block 2605 * is reference counted. we should use do_relocation() in this 2606 * case. return a tree root pointer if the block isn't reference 2607 * counted. return -ENOENT if the block is root of reloc tree. 2608 */ 2609 static noinline_for_stack 2610 struct btrfs_root *select_one_root(struct backref_node *node) 2611 { 2612 struct backref_node *next; 2613 struct btrfs_root *root; 2614 struct btrfs_root *fs_root = NULL; 2615 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2616 int index = 0; 2617 2618 next = node; 2619 while (1) { 2620 cond_resched(); 2621 next = walk_up_backref(next, edges, &index); 2622 root = next->root; 2623 BUG_ON(!root); 2624 2625 /* no other choice for non-references counted tree */ 2626 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 2627 return root; 2628 2629 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2630 fs_root = root; 2631 2632 if (next != node) 2633 return NULL; 2634 2635 next = walk_down_backref(edges, &index); 2636 if (!next || next->level <= node->level) 2637 break; 2638 } 2639 2640 if (!fs_root) 2641 return ERR_PTR(-ENOENT); 2642 return fs_root; 2643 } 2644 2645 static noinline_for_stack 2646 u64 calcu_metadata_size(struct reloc_control *rc, 2647 struct backref_node *node, int reserve) 2648 { 2649 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2650 struct backref_node *next = node; 2651 struct backref_edge *edge; 2652 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2653 u64 num_bytes = 0; 2654 int index = 0; 2655 2656 BUG_ON(reserve && node->processed); 2657 2658 while (next) { 2659 cond_resched(); 2660 while (1) { 2661 if (next->processed && (reserve || next != node)) 2662 break; 2663 2664 num_bytes += fs_info->nodesize; 2665 2666 if (list_empty(&next->upper)) 2667 break; 2668 2669 edge = list_entry(next->upper.next, 2670 struct backref_edge, list[LOWER]); 2671 edges[index++] = edge; 2672 next = edge->node[UPPER]; 2673 } 2674 next = walk_down_backref(edges, &index); 2675 } 2676 return num_bytes; 2677 } 2678 2679 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2680 struct reloc_control *rc, 2681 struct backref_node *node) 2682 { 2683 struct btrfs_root *root = rc->extent_root; 2684 struct btrfs_fs_info *fs_info = root->fs_info; 2685 u64 num_bytes; 2686 int ret; 2687 u64 tmp; 2688 2689 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2690 2691 trans->block_rsv = rc->block_rsv; 2692 rc->reserved_bytes += num_bytes; 2693 2694 /* 2695 * We are under a transaction here so we can only do limited flushing. 2696 * If we get an enospc just kick back -EAGAIN so we know to drop the 2697 * transaction and try to refill when we can flush all the things. 2698 */ 2699 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2700 BTRFS_RESERVE_FLUSH_LIMIT); 2701 if (ret) { 2702 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2703 while (tmp <= rc->reserved_bytes) 2704 tmp <<= 1; 2705 /* 2706 * only one thread can access block_rsv at this point, 2707 * so we don't need hold lock to protect block_rsv. 2708 * we expand more reservation size here to allow enough 2709 * space for relocation and we will return earlier in 2710 * enospc case. 2711 */ 2712 rc->block_rsv->size = tmp + fs_info->nodesize * 2713 RELOCATION_RESERVED_NODES; 2714 return -EAGAIN; 2715 } 2716 2717 return 0; 2718 } 2719 2720 /* 2721 * relocate a block tree, and then update pointers in upper level 2722 * blocks that reference the block to point to the new location. 2723 * 2724 * if called by link_to_upper, the block has already been relocated. 2725 * in that case this function just updates pointers. 2726 */ 2727 static int do_relocation(struct btrfs_trans_handle *trans, 2728 struct reloc_control *rc, 2729 struct backref_node *node, 2730 struct btrfs_key *key, 2731 struct btrfs_path *path, int lowest) 2732 { 2733 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2734 struct backref_node *upper; 2735 struct backref_edge *edge; 2736 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2737 struct btrfs_root *root; 2738 struct extent_buffer *eb; 2739 u32 blocksize; 2740 u64 bytenr; 2741 u64 generation; 2742 int slot; 2743 int ret; 2744 int err = 0; 2745 2746 BUG_ON(lowest && node->eb); 2747 2748 path->lowest_level = node->level + 1; 2749 rc->backref_cache.path[node->level] = node; 2750 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2751 struct btrfs_key first_key; 2752 struct btrfs_ref ref = { 0 }; 2753 2754 cond_resched(); 2755 2756 upper = edge->node[UPPER]; 2757 root = select_reloc_root(trans, rc, upper, edges); 2758 BUG_ON(!root); 2759 2760 if (upper->eb && !upper->locked) { 2761 if (!lowest) { 2762 ret = btrfs_bin_search(upper->eb, key, 2763 upper->level, &slot); 2764 if (ret < 0) { 2765 err = ret; 2766 goto next; 2767 } 2768 BUG_ON(ret); 2769 bytenr = btrfs_node_blockptr(upper->eb, slot); 2770 if (node->eb->start == bytenr) 2771 goto next; 2772 } 2773 drop_node_buffer(upper); 2774 } 2775 2776 if (!upper->eb) { 2777 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2778 if (ret) { 2779 if (ret < 0) 2780 err = ret; 2781 else 2782 err = -ENOENT; 2783 2784 btrfs_release_path(path); 2785 break; 2786 } 2787 2788 if (!upper->eb) { 2789 upper->eb = path->nodes[upper->level]; 2790 path->nodes[upper->level] = NULL; 2791 } else { 2792 BUG_ON(upper->eb != path->nodes[upper->level]); 2793 } 2794 2795 upper->locked = 1; 2796 path->locks[upper->level] = 0; 2797 2798 slot = path->slots[upper->level]; 2799 btrfs_release_path(path); 2800 } else { 2801 ret = btrfs_bin_search(upper->eb, key, upper->level, 2802 &slot); 2803 if (ret < 0) { 2804 err = ret; 2805 goto next; 2806 } 2807 BUG_ON(ret); 2808 } 2809 2810 bytenr = btrfs_node_blockptr(upper->eb, slot); 2811 if (lowest) { 2812 if (bytenr != node->bytenr) { 2813 btrfs_err(root->fs_info, 2814 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2815 bytenr, node->bytenr, slot, 2816 upper->eb->start); 2817 err = -EIO; 2818 goto next; 2819 } 2820 } else { 2821 if (node->eb->start == bytenr) 2822 goto next; 2823 } 2824 2825 blocksize = root->fs_info->nodesize; 2826 generation = btrfs_node_ptr_generation(upper->eb, slot); 2827 btrfs_node_key_to_cpu(upper->eb, &first_key, slot); 2828 eb = read_tree_block(fs_info, bytenr, generation, 2829 upper->level - 1, &first_key); 2830 if (IS_ERR(eb)) { 2831 err = PTR_ERR(eb); 2832 goto next; 2833 } else if (!extent_buffer_uptodate(eb)) { 2834 free_extent_buffer(eb); 2835 err = -EIO; 2836 goto next; 2837 } 2838 btrfs_tree_lock(eb); 2839 btrfs_set_lock_blocking_write(eb); 2840 2841 if (!node->eb) { 2842 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2843 slot, &eb); 2844 btrfs_tree_unlock(eb); 2845 free_extent_buffer(eb); 2846 if (ret < 0) { 2847 err = ret; 2848 goto next; 2849 } 2850 BUG_ON(node->eb != eb); 2851 } else { 2852 btrfs_set_node_blockptr(upper->eb, slot, 2853 node->eb->start); 2854 btrfs_set_node_ptr_generation(upper->eb, slot, 2855 trans->transid); 2856 btrfs_mark_buffer_dirty(upper->eb); 2857 2858 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2859 node->eb->start, blocksize, 2860 upper->eb->start); 2861 ref.real_root = root->root_key.objectid; 2862 btrfs_init_tree_ref(&ref, node->level, 2863 btrfs_header_owner(upper->eb)); 2864 ret = btrfs_inc_extent_ref(trans, &ref); 2865 BUG_ON(ret); 2866 2867 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2868 BUG_ON(ret); 2869 } 2870 next: 2871 if (!upper->pending) 2872 drop_node_buffer(upper); 2873 else 2874 unlock_node_buffer(upper); 2875 if (err) 2876 break; 2877 } 2878 2879 if (!err && node->pending) { 2880 drop_node_buffer(node); 2881 list_move_tail(&node->list, &rc->backref_cache.changed); 2882 node->pending = 0; 2883 } 2884 2885 path->lowest_level = 0; 2886 BUG_ON(err == -ENOSPC); 2887 return err; 2888 } 2889 2890 static int link_to_upper(struct btrfs_trans_handle *trans, 2891 struct reloc_control *rc, 2892 struct backref_node *node, 2893 struct btrfs_path *path) 2894 { 2895 struct btrfs_key key; 2896 2897 btrfs_node_key_to_cpu(node->eb, &key, 0); 2898 return do_relocation(trans, rc, node, &key, path, 0); 2899 } 2900 2901 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2902 struct reloc_control *rc, 2903 struct btrfs_path *path, int err) 2904 { 2905 LIST_HEAD(list); 2906 struct backref_cache *cache = &rc->backref_cache; 2907 struct backref_node *node; 2908 int level; 2909 int ret; 2910 2911 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2912 while (!list_empty(&cache->pending[level])) { 2913 node = list_entry(cache->pending[level].next, 2914 struct backref_node, list); 2915 list_move_tail(&node->list, &list); 2916 BUG_ON(!node->pending); 2917 2918 if (!err) { 2919 ret = link_to_upper(trans, rc, node, path); 2920 if (ret < 0) 2921 err = ret; 2922 } 2923 } 2924 list_splice_init(&list, &cache->pending[level]); 2925 } 2926 return err; 2927 } 2928 2929 static void mark_block_processed(struct reloc_control *rc, 2930 u64 bytenr, u32 blocksize) 2931 { 2932 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2933 EXTENT_DIRTY); 2934 } 2935 2936 static void __mark_block_processed(struct reloc_control *rc, 2937 struct backref_node *node) 2938 { 2939 u32 blocksize; 2940 if (node->level == 0 || 2941 in_block_group(node->bytenr, rc->block_group)) { 2942 blocksize = rc->extent_root->fs_info->nodesize; 2943 mark_block_processed(rc, node->bytenr, blocksize); 2944 } 2945 node->processed = 1; 2946 } 2947 2948 /* 2949 * mark a block and all blocks directly/indirectly reference the block 2950 * as processed. 2951 */ 2952 static void update_processed_blocks(struct reloc_control *rc, 2953 struct backref_node *node) 2954 { 2955 struct backref_node *next = node; 2956 struct backref_edge *edge; 2957 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2958 int index = 0; 2959 2960 while (next) { 2961 cond_resched(); 2962 while (1) { 2963 if (next->processed) 2964 break; 2965 2966 __mark_block_processed(rc, next); 2967 2968 if (list_empty(&next->upper)) 2969 break; 2970 2971 edge = list_entry(next->upper.next, 2972 struct backref_edge, list[LOWER]); 2973 edges[index++] = edge; 2974 next = edge->node[UPPER]; 2975 } 2976 next = walk_down_backref(edges, &index); 2977 } 2978 } 2979 2980 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2981 { 2982 u32 blocksize = rc->extent_root->fs_info->nodesize; 2983 2984 if (test_range_bit(&rc->processed_blocks, bytenr, 2985 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2986 return 1; 2987 return 0; 2988 } 2989 2990 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2991 struct tree_block *block) 2992 { 2993 struct extent_buffer *eb; 2994 2995 BUG_ON(block->key_ready); 2996 eb = read_tree_block(fs_info, block->bytenr, block->key.offset, 2997 block->level, NULL); 2998 if (IS_ERR(eb)) { 2999 return PTR_ERR(eb); 3000 } else if (!extent_buffer_uptodate(eb)) { 3001 free_extent_buffer(eb); 3002 return -EIO; 3003 } 3004 if (block->level == 0) 3005 btrfs_item_key_to_cpu(eb, &block->key, 0); 3006 else 3007 btrfs_node_key_to_cpu(eb, &block->key, 0); 3008 free_extent_buffer(eb); 3009 block->key_ready = 1; 3010 return 0; 3011 } 3012 3013 /* 3014 * helper function to relocate a tree block 3015 */ 3016 static int relocate_tree_block(struct btrfs_trans_handle *trans, 3017 struct reloc_control *rc, 3018 struct backref_node *node, 3019 struct btrfs_key *key, 3020 struct btrfs_path *path) 3021 { 3022 struct btrfs_root *root; 3023 int ret = 0; 3024 3025 if (!node) 3026 return 0; 3027 3028 BUG_ON(node->processed); 3029 root = select_one_root(node); 3030 if (root == ERR_PTR(-ENOENT)) { 3031 update_processed_blocks(rc, node); 3032 goto out; 3033 } 3034 3035 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 3036 ret = reserve_metadata_space(trans, rc, node); 3037 if (ret) 3038 goto out; 3039 } 3040 3041 if (root) { 3042 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 3043 BUG_ON(node->new_bytenr); 3044 BUG_ON(!list_empty(&node->list)); 3045 btrfs_record_root_in_trans(trans, root); 3046 root = root->reloc_root; 3047 node->new_bytenr = root->node->start; 3048 node->root = root; 3049 list_add_tail(&node->list, &rc->backref_cache.changed); 3050 } else { 3051 path->lowest_level = node->level; 3052 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 3053 btrfs_release_path(path); 3054 if (ret > 0) 3055 ret = 0; 3056 } 3057 if (!ret) 3058 update_processed_blocks(rc, node); 3059 } else { 3060 ret = do_relocation(trans, rc, node, key, path, 1); 3061 } 3062 out: 3063 if (ret || node->level == 0 || node->cowonly) 3064 remove_backref_node(&rc->backref_cache, node); 3065 return ret; 3066 } 3067 3068 /* 3069 * relocate a list of blocks 3070 */ 3071 static noinline_for_stack 3072 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 3073 struct reloc_control *rc, struct rb_root *blocks) 3074 { 3075 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3076 struct backref_node *node; 3077 struct btrfs_path *path; 3078 struct tree_block *block; 3079 struct tree_block *next; 3080 int ret; 3081 int err = 0; 3082 3083 path = btrfs_alloc_path(); 3084 if (!path) { 3085 err = -ENOMEM; 3086 goto out_free_blocks; 3087 } 3088 3089 /* Kick in readahead for tree blocks with missing keys */ 3090 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 3091 if (!block->key_ready) 3092 readahead_tree_block(fs_info, block->bytenr); 3093 } 3094 3095 /* Get first keys */ 3096 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 3097 if (!block->key_ready) { 3098 err = get_tree_block_key(fs_info, block); 3099 if (err) 3100 goto out_free_path; 3101 } 3102 } 3103 3104 /* Do tree relocation */ 3105 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 3106 node = build_backref_tree(rc, &block->key, 3107 block->level, block->bytenr); 3108 if (IS_ERR(node)) { 3109 err = PTR_ERR(node); 3110 goto out; 3111 } 3112 3113 ret = relocate_tree_block(trans, rc, node, &block->key, 3114 path); 3115 if (ret < 0) { 3116 if (ret != -EAGAIN || &block->rb_node == rb_first(blocks)) 3117 err = ret; 3118 goto out; 3119 } 3120 } 3121 out: 3122 err = finish_pending_nodes(trans, rc, path, err); 3123 3124 out_free_path: 3125 btrfs_free_path(path); 3126 out_free_blocks: 3127 free_block_list(blocks); 3128 return err; 3129 } 3130 3131 static noinline_for_stack 3132 int prealloc_file_extent_cluster(struct inode *inode, 3133 struct file_extent_cluster *cluster) 3134 { 3135 u64 alloc_hint = 0; 3136 u64 start; 3137 u64 end; 3138 u64 offset = BTRFS_I(inode)->index_cnt; 3139 u64 num_bytes; 3140 int nr = 0; 3141 int ret = 0; 3142 u64 prealloc_start = cluster->start - offset; 3143 u64 prealloc_end = cluster->end - offset; 3144 u64 cur_offset; 3145 struct extent_changeset *data_reserved = NULL; 3146 3147 BUG_ON(cluster->start != cluster->boundary[0]); 3148 inode_lock(inode); 3149 3150 ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start, 3151 prealloc_end + 1 - prealloc_start); 3152 if (ret) 3153 goto out; 3154 3155 cur_offset = prealloc_start; 3156 while (nr < cluster->nr) { 3157 start = cluster->boundary[nr] - offset; 3158 if (nr + 1 < cluster->nr) 3159 end = cluster->boundary[nr + 1] - 1 - offset; 3160 else 3161 end = cluster->end - offset; 3162 3163 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3164 num_bytes = end + 1 - start; 3165 if (cur_offset < start) 3166 btrfs_free_reserved_data_space(inode, data_reserved, 3167 cur_offset, start - cur_offset); 3168 ret = btrfs_prealloc_file_range(inode, 0, start, 3169 num_bytes, num_bytes, 3170 end + 1, &alloc_hint); 3171 cur_offset = end + 1; 3172 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3173 if (ret) 3174 break; 3175 nr++; 3176 } 3177 if (cur_offset < prealloc_end) 3178 btrfs_free_reserved_data_space(inode, data_reserved, 3179 cur_offset, prealloc_end + 1 - cur_offset); 3180 out: 3181 inode_unlock(inode); 3182 extent_changeset_free(data_reserved); 3183 return ret; 3184 } 3185 3186 static noinline_for_stack 3187 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 3188 u64 block_start) 3189 { 3190 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3191 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3192 struct extent_map *em; 3193 int ret = 0; 3194 3195 em = alloc_extent_map(); 3196 if (!em) 3197 return -ENOMEM; 3198 3199 em->start = start; 3200 em->len = end + 1 - start; 3201 em->block_len = em->len; 3202 em->block_start = block_start; 3203 em->bdev = fs_info->fs_devices->latest_bdev; 3204 set_bit(EXTENT_FLAG_PINNED, &em->flags); 3205 3206 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3207 while (1) { 3208 write_lock(&em_tree->lock); 3209 ret = add_extent_mapping(em_tree, em, 0); 3210 write_unlock(&em_tree->lock); 3211 if (ret != -EEXIST) { 3212 free_extent_map(em); 3213 break; 3214 } 3215 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3216 } 3217 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3218 return ret; 3219 } 3220 3221 static int relocate_file_extent_cluster(struct inode *inode, 3222 struct file_extent_cluster *cluster) 3223 { 3224 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3225 u64 page_start; 3226 u64 page_end; 3227 u64 offset = BTRFS_I(inode)->index_cnt; 3228 unsigned long index; 3229 unsigned long last_index; 3230 struct page *page; 3231 struct file_ra_state *ra; 3232 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 3233 int nr = 0; 3234 int ret = 0; 3235 3236 if (!cluster->nr) 3237 return 0; 3238 3239 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3240 if (!ra) 3241 return -ENOMEM; 3242 3243 ret = prealloc_file_extent_cluster(inode, cluster); 3244 if (ret) 3245 goto out; 3246 3247 file_ra_state_init(ra, inode->i_mapping); 3248 3249 ret = setup_extent_mapping(inode, cluster->start - offset, 3250 cluster->end - offset, cluster->start); 3251 if (ret) 3252 goto out; 3253 3254 index = (cluster->start - offset) >> PAGE_SHIFT; 3255 last_index = (cluster->end - offset) >> PAGE_SHIFT; 3256 while (index <= last_index) { 3257 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 3258 PAGE_SIZE); 3259 if (ret) 3260 goto out; 3261 3262 page = find_lock_page(inode->i_mapping, index); 3263 if (!page) { 3264 page_cache_sync_readahead(inode->i_mapping, 3265 ra, NULL, index, 3266 last_index + 1 - index); 3267 page = find_or_create_page(inode->i_mapping, index, 3268 mask); 3269 if (!page) { 3270 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3271 PAGE_SIZE, true); 3272 ret = -ENOMEM; 3273 goto out; 3274 } 3275 } 3276 3277 if (PageReadahead(page)) { 3278 page_cache_async_readahead(inode->i_mapping, 3279 ra, NULL, page, index, 3280 last_index + 1 - index); 3281 } 3282 3283 if (!PageUptodate(page)) { 3284 btrfs_readpage(NULL, page); 3285 lock_page(page); 3286 if (!PageUptodate(page)) { 3287 unlock_page(page); 3288 put_page(page); 3289 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3290 PAGE_SIZE, true); 3291 btrfs_delalloc_release_extents(BTRFS_I(inode), 3292 PAGE_SIZE, true); 3293 ret = -EIO; 3294 goto out; 3295 } 3296 } 3297 3298 page_start = page_offset(page); 3299 page_end = page_start + PAGE_SIZE - 1; 3300 3301 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 3302 3303 set_page_extent_mapped(page); 3304 3305 if (nr < cluster->nr && 3306 page_start + offset == cluster->boundary[nr]) { 3307 set_extent_bits(&BTRFS_I(inode)->io_tree, 3308 page_start, page_end, 3309 EXTENT_BOUNDARY); 3310 nr++; 3311 } 3312 3313 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 3314 NULL, 0); 3315 if (ret) { 3316 unlock_page(page); 3317 put_page(page); 3318 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3319 PAGE_SIZE, true); 3320 btrfs_delalloc_release_extents(BTRFS_I(inode), 3321 PAGE_SIZE, true); 3322 3323 clear_extent_bits(&BTRFS_I(inode)->io_tree, 3324 page_start, page_end, 3325 EXTENT_LOCKED | EXTENT_BOUNDARY); 3326 goto out; 3327 3328 } 3329 set_page_dirty(page); 3330 3331 unlock_extent(&BTRFS_I(inode)->io_tree, 3332 page_start, page_end); 3333 unlock_page(page); 3334 put_page(page); 3335 3336 index++; 3337 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, 3338 false); 3339 balance_dirty_pages_ratelimited(inode->i_mapping); 3340 btrfs_throttle(fs_info); 3341 } 3342 WARN_ON(nr != cluster->nr); 3343 out: 3344 kfree(ra); 3345 return ret; 3346 } 3347 3348 static noinline_for_stack 3349 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3350 struct file_extent_cluster *cluster) 3351 { 3352 int ret; 3353 3354 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3355 ret = relocate_file_extent_cluster(inode, cluster); 3356 if (ret) 3357 return ret; 3358 cluster->nr = 0; 3359 } 3360 3361 if (!cluster->nr) 3362 cluster->start = extent_key->objectid; 3363 else 3364 BUG_ON(cluster->nr >= MAX_EXTENTS); 3365 cluster->end = extent_key->objectid + extent_key->offset - 1; 3366 cluster->boundary[cluster->nr] = extent_key->objectid; 3367 cluster->nr++; 3368 3369 if (cluster->nr >= MAX_EXTENTS) { 3370 ret = relocate_file_extent_cluster(inode, cluster); 3371 if (ret) 3372 return ret; 3373 cluster->nr = 0; 3374 } 3375 return 0; 3376 } 3377 3378 /* 3379 * helper to add a tree block to the list. 3380 * the major work is getting the generation and level of the block 3381 */ 3382 static int add_tree_block(struct reloc_control *rc, 3383 struct btrfs_key *extent_key, 3384 struct btrfs_path *path, 3385 struct rb_root *blocks) 3386 { 3387 struct extent_buffer *eb; 3388 struct btrfs_extent_item *ei; 3389 struct btrfs_tree_block_info *bi; 3390 struct tree_block *block; 3391 struct rb_node *rb_node; 3392 u32 item_size; 3393 int level = -1; 3394 u64 generation; 3395 3396 eb = path->nodes[0]; 3397 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3398 3399 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3400 item_size >= sizeof(*ei) + sizeof(*bi)) { 3401 ei = btrfs_item_ptr(eb, path->slots[0], 3402 struct btrfs_extent_item); 3403 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3404 bi = (struct btrfs_tree_block_info *)(ei + 1); 3405 level = btrfs_tree_block_level(eb, bi); 3406 } else { 3407 level = (int)extent_key->offset; 3408 } 3409 generation = btrfs_extent_generation(eb, ei); 3410 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 3411 btrfs_print_v0_err(eb->fs_info); 3412 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 3413 return -EINVAL; 3414 } else { 3415 BUG(); 3416 } 3417 3418 btrfs_release_path(path); 3419 3420 BUG_ON(level == -1); 3421 3422 block = kmalloc(sizeof(*block), GFP_NOFS); 3423 if (!block) 3424 return -ENOMEM; 3425 3426 block->bytenr = extent_key->objectid; 3427 block->key.objectid = rc->extent_root->fs_info->nodesize; 3428 block->key.offset = generation; 3429 block->level = level; 3430 block->key_ready = 0; 3431 3432 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3433 if (rb_node) 3434 backref_tree_panic(rb_node, -EEXIST, block->bytenr); 3435 3436 return 0; 3437 } 3438 3439 /* 3440 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3441 */ 3442 static int __add_tree_block(struct reloc_control *rc, 3443 u64 bytenr, u32 blocksize, 3444 struct rb_root *blocks) 3445 { 3446 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3447 struct btrfs_path *path; 3448 struct btrfs_key key; 3449 int ret; 3450 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 3451 3452 if (tree_block_processed(bytenr, rc)) 3453 return 0; 3454 3455 if (tree_search(blocks, bytenr)) 3456 return 0; 3457 3458 path = btrfs_alloc_path(); 3459 if (!path) 3460 return -ENOMEM; 3461 again: 3462 key.objectid = bytenr; 3463 if (skinny) { 3464 key.type = BTRFS_METADATA_ITEM_KEY; 3465 key.offset = (u64)-1; 3466 } else { 3467 key.type = BTRFS_EXTENT_ITEM_KEY; 3468 key.offset = blocksize; 3469 } 3470 3471 path->search_commit_root = 1; 3472 path->skip_locking = 1; 3473 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3474 if (ret < 0) 3475 goto out; 3476 3477 if (ret > 0 && skinny) { 3478 if (path->slots[0]) { 3479 path->slots[0]--; 3480 btrfs_item_key_to_cpu(path->nodes[0], &key, 3481 path->slots[0]); 3482 if (key.objectid == bytenr && 3483 (key.type == BTRFS_METADATA_ITEM_KEY || 3484 (key.type == BTRFS_EXTENT_ITEM_KEY && 3485 key.offset == blocksize))) 3486 ret = 0; 3487 } 3488 3489 if (ret) { 3490 skinny = false; 3491 btrfs_release_path(path); 3492 goto again; 3493 } 3494 } 3495 if (ret) { 3496 ASSERT(ret == 1); 3497 btrfs_print_leaf(path->nodes[0]); 3498 btrfs_err(fs_info, 3499 "tree block extent item (%llu) is not found in extent tree", 3500 bytenr); 3501 WARN_ON(1); 3502 ret = -EINVAL; 3503 goto out; 3504 } 3505 3506 ret = add_tree_block(rc, &key, path, blocks); 3507 out: 3508 btrfs_free_path(path); 3509 return ret; 3510 } 3511 3512 /* 3513 * helper to check if the block use full backrefs for pointers in it 3514 */ 3515 static int block_use_full_backref(struct reloc_control *rc, 3516 struct extent_buffer *eb) 3517 { 3518 u64 flags; 3519 int ret; 3520 3521 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3522 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3523 return 1; 3524 3525 ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info, 3526 eb->start, btrfs_header_level(eb), 1, 3527 NULL, &flags); 3528 BUG_ON(ret); 3529 3530 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3531 ret = 1; 3532 else 3533 ret = 0; 3534 return ret; 3535 } 3536 3537 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3538 struct btrfs_block_group_cache *block_group, 3539 struct inode *inode, 3540 u64 ino) 3541 { 3542 struct btrfs_key key; 3543 struct btrfs_root *root = fs_info->tree_root; 3544 struct btrfs_trans_handle *trans; 3545 int ret = 0; 3546 3547 if (inode) 3548 goto truncate; 3549 3550 key.objectid = ino; 3551 key.type = BTRFS_INODE_ITEM_KEY; 3552 key.offset = 0; 3553 3554 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3555 if (IS_ERR(inode)) 3556 return -ENOENT; 3557 3558 truncate: 3559 ret = btrfs_check_trunc_cache_free_space(fs_info, 3560 &fs_info->global_block_rsv); 3561 if (ret) 3562 goto out; 3563 3564 trans = btrfs_join_transaction(root); 3565 if (IS_ERR(trans)) { 3566 ret = PTR_ERR(trans); 3567 goto out; 3568 } 3569 3570 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3571 3572 btrfs_end_transaction(trans); 3573 btrfs_btree_balance_dirty(fs_info); 3574 out: 3575 iput(inode); 3576 return ret; 3577 } 3578 3579 /* 3580 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3581 * this function scans fs tree to find blocks reference the data extent 3582 */ 3583 static int find_data_references(struct reloc_control *rc, 3584 struct btrfs_key *extent_key, 3585 struct extent_buffer *leaf, 3586 struct btrfs_extent_data_ref *ref, 3587 struct rb_root *blocks) 3588 { 3589 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3590 struct btrfs_path *path; 3591 struct tree_block *block; 3592 struct btrfs_root *root; 3593 struct btrfs_file_extent_item *fi; 3594 struct rb_node *rb_node; 3595 struct btrfs_key key; 3596 u64 ref_root; 3597 u64 ref_objectid; 3598 u64 ref_offset; 3599 u32 ref_count; 3600 u32 nritems; 3601 int err = 0; 3602 int added = 0; 3603 int counted; 3604 int ret; 3605 3606 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3607 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3608 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3609 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3610 3611 /* 3612 * This is an extent belonging to the free space cache, lets just delete 3613 * it and redo the search. 3614 */ 3615 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3616 ret = delete_block_group_cache(fs_info, rc->block_group, 3617 NULL, ref_objectid); 3618 if (ret != -ENOENT) 3619 return ret; 3620 ret = 0; 3621 } 3622 3623 path = btrfs_alloc_path(); 3624 if (!path) 3625 return -ENOMEM; 3626 path->reada = READA_FORWARD; 3627 3628 root = read_fs_root(fs_info, ref_root); 3629 if (IS_ERR(root)) { 3630 err = PTR_ERR(root); 3631 goto out; 3632 } 3633 3634 key.objectid = ref_objectid; 3635 key.type = BTRFS_EXTENT_DATA_KEY; 3636 if (ref_offset > ((u64)-1 << 32)) 3637 key.offset = 0; 3638 else 3639 key.offset = ref_offset; 3640 3641 path->search_commit_root = 1; 3642 path->skip_locking = 1; 3643 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3644 if (ret < 0) { 3645 err = ret; 3646 goto out; 3647 } 3648 3649 leaf = path->nodes[0]; 3650 nritems = btrfs_header_nritems(leaf); 3651 /* 3652 * the references in tree blocks that use full backrefs 3653 * are not counted in 3654 */ 3655 if (block_use_full_backref(rc, leaf)) 3656 counted = 0; 3657 else 3658 counted = 1; 3659 rb_node = tree_search(blocks, leaf->start); 3660 if (rb_node) { 3661 if (counted) 3662 added = 1; 3663 else 3664 path->slots[0] = nritems; 3665 } 3666 3667 while (ref_count > 0) { 3668 while (path->slots[0] >= nritems) { 3669 ret = btrfs_next_leaf(root, path); 3670 if (ret < 0) { 3671 err = ret; 3672 goto out; 3673 } 3674 if (WARN_ON(ret > 0)) 3675 goto out; 3676 3677 leaf = path->nodes[0]; 3678 nritems = btrfs_header_nritems(leaf); 3679 added = 0; 3680 3681 if (block_use_full_backref(rc, leaf)) 3682 counted = 0; 3683 else 3684 counted = 1; 3685 rb_node = tree_search(blocks, leaf->start); 3686 if (rb_node) { 3687 if (counted) 3688 added = 1; 3689 else 3690 path->slots[0] = nritems; 3691 } 3692 } 3693 3694 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3695 if (WARN_ON(key.objectid != ref_objectid || 3696 key.type != BTRFS_EXTENT_DATA_KEY)) 3697 break; 3698 3699 fi = btrfs_item_ptr(leaf, path->slots[0], 3700 struct btrfs_file_extent_item); 3701 3702 if (btrfs_file_extent_type(leaf, fi) == 3703 BTRFS_FILE_EXTENT_INLINE) 3704 goto next; 3705 3706 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3707 extent_key->objectid) 3708 goto next; 3709 3710 key.offset -= btrfs_file_extent_offset(leaf, fi); 3711 if (key.offset != ref_offset) 3712 goto next; 3713 3714 if (counted) 3715 ref_count--; 3716 if (added) 3717 goto next; 3718 3719 if (!tree_block_processed(leaf->start, rc)) { 3720 block = kmalloc(sizeof(*block), GFP_NOFS); 3721 if (!block) { 3722 err = -ENOMEM; 3723 break; 3724 } 3725 block->bytenr = leaf->start; 3726 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3727 block->level = 0; 3728 block->key_ready = 1; 3729 rb_node = tree_insert(blocks, block->bytenr, 3730 &block->rb_node); 3731 if (rb_node) 3732 backref_tree_panic(rb_node, -EEXIST, 3733 block->bytenr); 3734 } 3735 if (counted) 3736 added = 1; 3737 else 3738 path->slots[0] = nritems; 3739 next: 3740 path->slots[0]++; 3741 3742 } 3743 out: 3744 btrfs_free_path(path); 3745 return err; 3746 } 3747 3748 /* 3749 * helper to find all tree blocks that reference a given data extent 3750 */ 3751 static noinline_for_stack 3752 int add_data_references(struct reloc_control *rc, 3753 struct btrfs_key *extent_key, 3754 struct btrfs_path *path, 3755 struct rb_root *blocks) 3756 { 3757 struct btrfs_key key; 3758 struct extent_buffer *eb; 3759 struct btrfs_extent_data_ref *dref; 3760 struct btrfs_extent_inline_ref *iref; 3761 unsigned long ptr; 3762 unsigned long end; 3763 u32 blocksize = rc->extent_root->fs_info->nodesize; 3764 int ret = 0; 3765 int err = 0; 3766 3767 eb = path->nodes[0]; 3768 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3769 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3770 ptr += sizeof(struct btrfs_extent_item); 3771 3772 while (ptr < end) { 3773 iref = (struct btrfs_extent_inline_ref *)ptr; 3774 key.type = btrfs_get_extent_inline_ref_type(eb, iref, 3775 BTRFS_REF_TYPE_DATA); 3776 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3777 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3778 ret = __add_tree_block(rc, key.offset, blocksize, 3779 blocks); 3780 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3781 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3782 ret = find_data_references(rc, extent_key, 3783 eb, dref, blocks); 3784 } else { 3785 ret = -EUCLEAN; 3786 btrfs_err(rc->extent_root->fs_info, 3787 "extent %llu slot %d has an invalid inline ref type", 3788 eb->start, path->slots[0]); 3789 } 3790 if (ret) { 3791 err = ret; 3792 goto out; 3793 } 3794 ptr += btrfs_extent_inline_ref_size(key.type); 3795 } 3796 WARN_ON(ptr > end); 3797 3798 while (1) { 3799 cond_resched(); 3800 eb = path->nodes[0]; 3801 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3802 ret = btrfs_next_leaf(rc->extent_root, path); 3803 if (ret < 0) { 3804 err = ret; 3805 break; 3806 } 3807 if (ret > 0) 3808 break; 3809 eb = path->nodes[0]; 3810 } 3811 3812 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3813 if (key.objectid != extent_key->objectid) 3814 break; 3815 3816 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3817 ret = __add_tree_block(rc, key.offset, blocksize, 3818 blocks); 3819 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3820 dref = btrfs_item_ptr(eb, path->slots[0], 3821 struct btrfs_extent_data_ref); 3822 ret = find_data_references(rc, extent_key, 3823 eb, dref, blocks); 3824 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 3825 btrfs_print_v0_err(eb->fs_info); 3826 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 3827 ret = -EINVAL; 3828 } else { 3829 ret = 0; 3830 } 3831 if (ret) { 3832 err = ret; 3833 break; 3834 } 3835 path->slots[0]++; 3836 } 3837 out: 3838 btrfs_release_path(path); 3839 if (err) 3840 free_block_list(blocks); 3841 return err; 3842 } 3843 3844 /* 3845 * helper to find next unprocessed extent 3846 */ 3847 static noinline_for_stack 3848 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3849 struct btrfs_key *extent_key) 3850 { 3851 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3852 struct btrfs_key key; 3853 struct extent_buffer *leaf; 3854 u64 start, end, last; 3855 int ret; 3856 3857 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3858 while (1) { 3859 cond_resched(); 3860 if (rc->search_start >= last) { 3861 ret = 1; 3862 break; 3863 } 3864 3865 key.objectid = rc->search_start; 3866 key.type = BTRFS_EXTENT_ITEM_KEY; 3867 key.offset = 0; 3868 3869 path->search_commit_root = 1; 3870 path->skip_locking = 1; 3871 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3872 0, 0); 3873 if (ret < 0) 3874 break; 3875 next: 3876 leaf = path->nodes[0]; 3877 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3878 ret = btrfs_next_leaf(rc->extent_root, path); 3879 if (ret != 0) 3880 break; 3881 leaf = path->nodes[0]; 3882 } 3883 3884 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3885 if (key.objectid >= last) { 3886 ret = 1; 3887 break; 3888 } 3889 3890 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3891 key.type != BTRFS_METADATA_ITEM_KEY) { 3892 path->slots[0]++; 3893 goto next; 3894 } 3895 3896 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3897 key.objectid + key.offset <= rc->search_start) { 3898 path->slots[0]++; 3899 goto next; 3900 } 3901 3902 if (key.type == BTRFS_METADATA_ITEM_KEY && 3903 key.objectid + fs_info->nodesize <= 3904 rc->search_start) { 3905 path->slots[0]++; 3906 goto next; 3907 } 3908 3909 ret = find_first_extent_bit(&rc->processed_blocks, 3910 key.objectid, &start, &end, 3911 EXTENT_DIRTY, NULL); 3912 3913 if (ret == 0 && start <= key.objectid) { 3914 btrfs_release_path(path); 3915 rc->search_start = end + 1; 3916 } else { 3917 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3918 rc->search_start = key.objectid + key.offset; 3919 else 3920 rc->search_start = key.objectid + 3921 fs_info->nodesize; 3922 memcpy(extent_key, &key, sizeof(key)); 3923 return 0; 3924 } 3925 } 3926 btrfs_release_path(path); 3927 return ret; 3928 } 3929 3930 static void set_reloc_control(struct reloc_control *rc) 3931 { 3932 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3933 3934 mutex_lock(&fs_info->reloc_mutex); 3935 fs_info->reloc_ctl = rc; 3936 mutex_unlock(&fs_info->reloc_mutex); 3937 } 3938 3939 static void unset_reloc_control(struct reloc_control *rc) 3940 { 3941 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3942 3943 mutex_lock(&fs_info->reloc_mutex); 3944 fs_info->reloc_ctl = NULL; 3945 mutex_unlock(&fs_info->reloc_mutex); 3946 } 3947 3948 static int check_extent_flags(u64 flags) 3949 { 3950 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3951 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3952 return 1; 3953 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3954 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3955 return 1; 3956 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3957 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3958 return 1; 3959 return 0; 3960 } 3961 3962 static noinline_for_stack 3963 int prepare_to_relocate(struct reloc_control *rc) 3964 { 3965 struct btrfs_trans_handle *trans; 3966 int ret; 3967 3968 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3969 BTRFS_BLOCK_RSV_TEMP); 3970 if (!rc->block_rsv) 3971 return -ENOMEM; 3972 3973 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3974 rc->search_start = rc->block_group->key.objectid; 3975 rc->extents_found = 0; 3976 rc->nodes_relocated = 0; 3977 rc->merging_rsv_size = 0; 3978 rc->reserved_bytes = 0; 3979 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3980 RELOCATION_RESERVED_NODES; 3981 ret = btrfs_block_rsv_refill(rc->extent_root, 3982 rc->block_rsv, rc->block_rsv->size, 3983 BTRFS_RESERVE_FLUSH_ALL); 3984 if (ret) 3985 return ret; 3986 3987 rc->create_reloc_tree = 1; 3988 set_reloc_control(rc); 3989 3990 trans = btrfs_join_transaction(rc->extent_root); 3991 if (IS_ERR(trans)) { 3992 unset_reloc_control(rc); 3993 /* 3994 * extent tree is not a ref_cow tree and has no reloc_root to 3995 * cleanup. And callers are responsible to free the above 3996 * block rsv. 3997 */ 3998 return PTR_ERR(trans); 3999 } 4000 btrfs_commit_transaction(trans); 4001 return 0; 4002 } 4003 4004 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 4005 { 4006 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 4007 struct rb_root blocks = RB_ROOT; 4008 struct btrfs_key key; 4009 struct btrfs_trans_handle *trans = NULL; 4010 struct btrfs_path *path; 4011 struct btrfs_extent_item *ei; 4012 u64 flags; 4013 u32 item_size; 4014 int ret; 4015 int err = 0; 4016 int progress = 0; 4017 4018 path = btrfs_alloc_path(); 4019 if (!path) 4020 return -ENOMEM; 4021 path->reada = READA_FORWARD; 4022 4023 ret = prepare_to_relocate(rc); 4024 if (ret) { 4025 err = ret; 4026 goto out_free; 4027 } 4028 4029 while (1) { 4030 rc->reserved_bytes = 0; 4031 ret = btrfs_block_rsv_refill(rc->extent_root, 4032 rc->block_rsv, rc->block_rsv->size, 4033 BTRFS_RESERVE_FLUSH_ALL); 4034 if (ret) { 4035 err = ret; 4036 break; 4037 } 4038 progress++; 4039 trans = btrfs_start_transaction(rc->extent_root, 0); 4040 if (IS_ERR(trans)) { 4041 err = PTR_ERR(trans); 4042 trans = NULL; 4043 break; 4044 } 4045 restart: 4046 if (update_backref_cache(trans, &rc->backref_cache)) { 4047 btrfs_end_transaction(trans); 4048 trans = NULL; 4049 continue; 4050 } 4051 4052 ret = find_next_extent(rc, path, &key); 4053 if (ret < 0) 4054 err = ret; 4055 if (ret != 0) 4056 break; 4057 4058 rc->extents_found++; 4059 4060 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 4061 struct btrfs_extent_item); 4062 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 4063 if (item_size >= sizeof(*ei)) { 4064 flags = btrfs_extent_flags(path->nodes[0], ei); 4065 ret = check_extent_flags(flags); 4066 BUG_ON(ret); 4067 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 4068 err = -EINVAL; 4069 btrfs_print_v0_err(trans->fs_info); 4070 btrfs_abort_transaction(trans, err); 4071 break; 4072 } else { 4073 BUG(); 4074 } 4075 4076 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 4077 ret = add_tree_block(rc, &key, path, &blocks); 4078 } else if (rc->stage == UPDATE_DATA_PTRS && 4079 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4080 ret = add_data_references(rc, &key, path, &blocks); 4081 } else { 4082 btrfs_release_path(path); 4083 ret = 0; 4084 } 4085 if (ret < 0) { 4086 err = ret; 4087 break; 4088 } 4089 4090 if (!RB_EMPTY_ROOT(&blocks)) { 4091 ret = relocate_tree_blocks(trans, rc, &blocks); 4092 if (ret < 0) { 4093 /* 4094 * if we fail to relocate tree blocks, force to update 4095 * backref cache when committing transaction. 4096 */ 4097 rc->backref_cache.last_trans = trans->transid - 1; 4098 4099 if (ret != -EAGAIN) { 4100 err = ret; 4101 break; 4102 } 4103 rc->extents_found--; 4104 rc->search_start = key.objectid; 4105 } 4106 } 4107 4108 btrfs_end_transaction_throttle(trans); 4109 btrfs_btree_balance_dirty(fs_info); 4110 trans = NULL; 4111 4112 if (rc->stage == MOVE_DATA_EXTENTS && 4113 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4114 rc->found_file_extent = 1; 4115 ret = relocate_data_extent(rc->data_inode, 4116 &key, &rc->cluster); 4117 if (ret < 0) { 4118 err = ret; 4119 break; 4120 } 4121 } 4122 } 4123 if (trans && progress && err == -ENOSPC) { 4124 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 4125 if (ret == 1) { 4126 err = 0; 4127 progress = 0; 4128 goto restart; 4129 } 4130 } 4131 4132 btrfs_release_path(path); 4133 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 4134 4135 if (trans) { 4136 btrfs_end_transaction_throttle(trans); 4137 btrfs_btree_balance_dirty(fs_info); 4138 } 4139 4140 if (!err) { 4141 ret = relocate_file_extent_cluster(rc->data_inode, 4142 &rc->cluster); 4143 if (ret < 0) 4144 err = ret; 4145 } 4146 4147 rc->create_reloc_tree = 0; 4148 set_reloc_control(rc); 4149 4150 backref_cache_cleanup(&rc->backref_cache); 4151 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1); 4152 4153 err = prepare_to_merge(rc, err); 4154 4155 merge_reloc_roots(rc); 4156 4157 rc->merge_reloc_tree = 0; 4158 unset_reloc_control(rc); 4159 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1); 4160 4161 /* get rid of pinned extents */ 4162 trans = btrfs_join_transaction(rc->extent_root); 4163 if (IS_ERR(trans)) { 4164 err = PTR_ERR(trans); 4165 goto out_free; 4166 } 4167 btrfs_commit_transaction(trans); 4168 ret = clean_dirty_subvols(rc); 4169 if (ret < 0 && !err) 4170 err = ret; 4171 out_free: 4172 btrfs_free_block_rsv(fs_info, rc->block_rsv); 4173 btrfs_free_path(path); 4174 return err; 4175 } 4176 4177 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 4178 struct btrfs_root *root, u64 objectid) 4179 { 4180 struct btrfs_path *path; 4181 struct btrfs_inode_item *item; 4182 struct extent_buffer *leaf; 4183 int ret; 4184 4185 path = btrfs_alloc_path(); 4186 if (!path) 4187 return -ENOMEM; 4188 4189 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 4190 if (ret) 4191 goto out; 4192 4193 leaf = path->nodes[0]; 4194 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 4195 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 4196 btrfs_set_inode_generation(leaf, item, 1); 4197 btrfs_set_inode_size(leaf, item, 0); 4198 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 4199 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 4200 BTRFS_INODE_PREALLOC); 4201 btrfs_mark_buffer_dirty(leaf); 4202 out: 4203 btrfs_free_path(path); 4204 return ret; 4205 } 4206 4207 /* 4208 * helper to create inode for data relocation. 4209 * the inode is in data relocation tree and its link count is 0 4210 */ 4211 static noinline_for_stack 4212 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 4213 struct btrfs_block_group_cache *group) 4214 { 4215 struct inode *inode = NULL; 4216 struct btrfs_trans_handle *trans; 4217 struct btrfs_root *root; 4218 struct btrfs_key key; 4219 u64 objectid; 4220 int err = 0; 4221 4222 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4223 if (IS_ERR(root)) 4224 return ERR_CAST(root); 4225 4226 trans = btrfs_start_transaction(root, 6); 4227 if (IS_ERR(trans)) 4228 return ERR_CAST(trans); 4229 4230 err = btrfs_find_free_objectid(root, &objectid); 4231 if (err) 4232 goto out; 4233 4234 err = __insert_orphan_inode(trans, root, objectid); 4235 BUG_ON(err); 4236 4237 key.objectid = objectid; 4238 key.type = BTRFS_INODE_ITEM_KEY; 4239 key.offset = 0; 4240 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4241 BUG_ON(IS_ERR(inode)); 4242 BTRFS_I(inode)->index_cnt = group->key.objectid; 4243 4244 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4245 out: 4246 btrfs_end_transaction(trans); 4247 btrfs_btree_balance_dirty(fs_info); 4248 if (err) { 4249 if (inode) 4250 iput(inode); 4251 inode = ERR_PTR(err); 4252 } 4253 return inode; 4254 } 4255 4256 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 4257 { 4258 struct reloc_control *rc; 4259 4260 rc = kzalloc(sizeof(*rc), GFP_NOFS); 4261 if (!rc) 4262 return NULL; 4263 4264 INIT_LIST_HEAD(&rc->reloc_roots); 4265 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 4266 backref_cache_init(&rc->backref_cache); 4267 mapping_tree_init(&rc->reloc_root_tree); 4268 extent_io_tree_init(fs_info, &rc->processed_blocks, 4269 IO_TREE_RELOC_BLOCKS, NULL); 4270 return rc; 4271 } 4272 4273 /* 4274 * Print the block group being relocated 4275 */ 4276 static void describe_relocation(struct btrfs_fs_info *fs_info, 4277 struct btrfs_block_group_cache *block_group) 4278 { 4279 char buf[128] = {'\0'}; 4280 4281 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 4282 4283 btrfs_info(fs_info, 4284 "relocating block group %llu flags %s", 4285 block_group->key.objectid, buf); 4286 } 4287 4288 /* 4289 * function to relocate all extents in a block group. 4290 */ 4291 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 4292 { 4293 struct btrfs_block_group_cache *bg; 4294 struct btrfs_root *extent_root = fs_info->extent_root; 4295 struct reloc_control *rc; 4296 struct inode *inode; 4297 struct btrfs_path *path; 4298 int ret; 4299 int rw = 0; 4300 int err = 0; 4301 4302 bg = btrfs_lookup_block_group(fs_info, group_start); 4303 if (!bg) 4304 return -ENOENT; 4305 4306 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 4307 btrfs_put_block_group(bg); 4308 return -ETXTBSY; 4309 } 4310 4311 rc = alloc_reloc_control(fs_info); 4312 if (!rc) { 4313 btrfs_put_block_group(bg); 4314 return -ENOMEM; 4315 } 4316 4317 rc->extent_root = extent_root; 4318 rc->block_group = bg; 4319 4320 ret = btrfs_inc_block_group_ro(rc->block_group); 4321 if (ret) { 4322 err = ret; 4323 goto out; 4324 } 4325 rw = 1; 4326 4327 path = btrfs_alloc_path(); 4328 if (!path) { 4329 err = -ENOMEM; 4330 goto out; 4331 } 4332 4333 inode = lookup_free_space_inode(rc->block_group, path); 4334 btrfs_free_path(path); 4335 4336 if (!IS_ERR(inode)) 4337 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4338 else 4339 ret = PTR_ERR(inode); 4340 4341 if (ret && ret != -ENOENT) { 4342 err = ret; 4343 goto out; 4344 } 4345 4346 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4347 if (IS_ERR(rc->data_inode)) { 4348 err = PTR_ERR(rc->data_inode); 4349 rc->data_inode = NULL; 4350 goto out; 4351 } 4352 4353 describe_relocation(fs_info, rc->block_group); 4354 4355 btrfs_wait_block_group_reservations(rc->block_group); 4356 btrfs_wait_nocow_writers(rc->block_group); 4357 btrfs_wait_ordered_roots(fs_info, U64_MAX, 4358 rc->block_group->key.objectid, 4359 rc->block_group->key.offset); 4360 4361 while (1) { 4362 mutex_lock(&fs_info->cleaner_mutex); 4363 ret = relocate_block_group(rc); 4364 mutex_unlock(&fs_info->cleaner_mutex); 4365 if (ret < 0) 4366 err = ret; 4367 4368 /* 4369 * We may have gotten ENOSPC after we already dirtied some 4370 * extents. If writeout happens while we're relocating a 4371 * different block group we could end up hitting the 4372 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 4373 * btrfs_reloc_cow_block. Make sure we write everything out 4374 * properly so we don't trip over this problem, and then break 4375 * out of the loop if we hit an error. 4376 */ 4377 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4378 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4379 (u64)-1); 4380 if (ret) 4381 err = ret; 4382 invalidate_mapping_pages(rc->data_inode->i_mapping, 4383 0, -1); 4384 rc->stage = UPDATE_DATA_PTRS; 4385 } 4386 4387 if (err < 0) 4388 goto out; 4389 4390 if (rc->extents_found == 0) 4391 break; 4392 4393 btrfs_info(fs_info, "found %llu extents", rc->extents_found); 4394 4395 } 4396 4397 WARN_ON(rc->block_group->pinned > 0); 4398 WARN_ON(rc->block_group->reserved > 0); 4399 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4400 out: 4401 if (err && rw) 4402 btrfs_dec_block_group_ro(rc->block_group); 4403 iput(rc->data_inode); 4404 btrfs_put_block_group(rc->block_group); 4405 kfree(rc); 4406 return err; 4407 } 4408 4409 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4410 { 4411 struct btrfs_fs_info *fs_info = root->fs_info; 4412 struct btrfs_trans_handle *trans; 4413 int ret, err; 4414 4415 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4416 if (IS_ERR(trans)) 4417 return PTR_ERR(trans); 4418 4419 memset(&root->root_item.drop_progress, 0, 4420 sizeof(root->root_item.drop_progress)); 4421 root->root_item.drop_level = 0; 4422 btrfs_set_root_refs(&root->root_item, 0); 4423 ret = btrfs_update_root(trans, fs_info->tree_root, 4424 &root->root_key, &root->root_item); 4425 4426 err = btrfs_end_transaction(trans); 4427 if (err) 4428 return err; 4429 return ret; 4430 } 4431 4432 /* 4433 * recover relocation interrupted by system crash. 4434 * 4435 * this function resumes merging reloc trees with corresponding fs trees. 4436 * this is important for keeping the sharing of tree blocks 4437 */ 4438 int btrfs_recover_relocation(struct btrfs_root *root) 4439 { 4440 struct btrfs_fs_info *fs_info = root->fs_info; 4441 LIST_HEAD(reloc_roots); 4442 struct btrfs_key key; 4443 struct btrfs_root *fs_root; 4444 struct btrfs_root *reloc_root; 4445 struct btrfs_path *path; 4446 struct extent_buffer *leaf; 4447 struct reloc_control *rc = NULL; 4448 struct btrfs_trans_handle *trans; 4449 int ret; 4450 int err = 0; 4451 4452 path = btrfs_alloc_path(); 4453 if (!path) 4454 return -ENOMEM; 4455 path->reada = READA_BACK; 4456 4457 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4458 key.type = BTRFS_ROOT_ITEM_KEY; 4459 key.offset = (u64)-1; 4460 4461 while (1) { 4462 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 4463 path, 0, 0); 4464 if (ret < 0) { 4465 err = ret; 4466 goto out; 4467 } 4468 if (ret > 0) { 4469 if (path->slots[0] == 0) 4470 break; 4471 path->slots[0]--; 4472 } 4473 leaf = path->nodes[0]; 4474 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4475 btrfs_release_path(path); 4476 4477 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4478 key.type != BTRFS_ROOT_ITEM_KEY) 4479 break; 4480 4481 reloc_root = btrfs_read_fs_root(root, &key); 4482 if (IS_ERR(reloc_root)) { 4483 err = PTR_ERR(reloc_root); 4484 goto out; 4485 } 4486 4487 list_add(&reloc_root->root_list, &reloc_roots); 4488 4489 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4490 fs_root = read_fs_root(fs_info, 4491 reloc_root->root_key.offset); 4492 if (IS_ERR(fs_root)) { 4493 ret = PTR_ERR(fs_root); 4494 if (ret != -ENOENT) { 4495 err = ret; 4496 goto out; 4497 } 4498 ret = mark_garbage_root(reloc_root); 4499 if (ret < 0) { 4500 err = ret; 4501 goto out; 4502 } 4503 } 4504 } 4505 4506 if (key.offset == 0) 4507 break; 4508 4509 key.offset--; 4510 } 4511 btrfs_release_path(path); 4512 4513 if (list_empty(&reloc_roots)) 4514 goto out; 4515 4516 rc = alloc_reloc_control(fs_info); 4517 if (!rc) { 4518 err = -ENOMEM; 4519 goto out; 4520 } 4521 4522 rc->extent_root = fs_info->extent_root; 4523 4524 set_reloc_control(rc); 4525 4526 trans = btrfs_join_transaction(rc->extent_root); 4527 if (IS_ERR(trans)) { 4528 unset_reloc_control(rc); 4529 err = PTR_ERR(trans); 4530 goto out_free; 4531 } 4532 4533 rc->merge_reloc_tree = 1; 4534 4535 while (!list_empty(&reloc_roots)) { 4536 reloc_root = list_entry(reloc_roots.next, 4537 struct btrfs_root, root_list); 4538 list_del(&reloc_root->root_list); 4539 4540 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4541 list_add_tail(&reloc_root->root_list, 4542 &rc->reloc_roots); 4543 continue; 4544 } 4545 4546 fs_root = read_fs_root(fs_info, reloc_root->root_key.offset); 4547 if (IS_ERR(fs_root)) { 4548 err = PTR_ERR(fs_root); 4549 goto out_free; 4550 } 4551 4552 err = __add_reloc_root(reloc_root); 4553 BUG_ON(err < 0); /* -ENOMEM or logic error */ 4554 fs_root->reloc_root = reloc_root; 4555 } 4556 4557 err = btrfs_commit_transaction(trans); 4558 if (err) 4559 goto out_free; 4560 4561 merge_reloc_roots(rc); 4562 4563 unset_reloc_control(rc); 4564 4565 trans = btrfs_join_transaction(rc->extent_root); 4566 if (IS_ERR(trans)) { 4567 err = PTR_ERR(trans); 4568 goto out_free; 4569 } 4570 err = btrfs_commit_transaction(trans); 4571 4572 ret = clean_dirty_subvols(rc); 4573 if (ret < 0 && !err) 4574 err = ret; 4575 out_free: 4576 kfree(rc); 4577 out: 4578 if (!list_empty(&reloc_roots)) 4579 free_reloc_roots(&reloc_roots); 4580 4581 btrfs_free_path(path); 4582 4583 if (err == 0) { 4584 /* cleanup orphan inode in data relocation tree */ 4585 fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4586 if (IS_ERR(fs_root)) 4587 err = PTR_ERR(fs_root); 4588 else 4589 err = btrfs_orphan_cleanup(fs_root); 4590 } 4591 return err; 4592 } 4593 4594 /* 4595 * helper to add ordered checksum for data relocation. 4596 * 4597 * cloning checksum properly handles the nodatasum extents. 4598 * it also saves CPU time to re-calculate the checksum. 4599 */ 4600 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4601 { 4602 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4603 struct btrfs_ordered_sum *sums; 4604 struct btrfs_ordered_extent *ordered; 4605 int ret; 4606 u64 disk_bytenr; 4607 u64 new_bytenr; 4608 LIST_HEAD(list); 4609 4610 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4611 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4612 4613 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4614 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr, 4615 disk_bytenr + len - 1, &list, 0); 4616 if (ret) 4617 goto out; 4618 4619 while (!list_empty(&list)) { 4620 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4621 list_del_init(&sums->list); 4622 4623 /* 4624 * We need to offset the new_bytenr based on where the csum is. 4625 * We need to do this because we will read in entire prealloc 4626 * extents but we may have written to say the middle of the 4627 * prealloc extent, so we need to make sure the csum goes with 4628 * the right disk offset. 4629 * 4630 * We can do this because the data reloc inode refers strictly 4631 * to the on disk bytes, so we don't have to worry about 4632 * disk_len vs real len like with real inodes since it's all 4633 * disk length. 4634 */ 4635 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr); 4636 sums->bytenr = new_bytenr; 4637 4638 btrfs_add_ordered_sum(ordered, sums); 4639 } 4640 out: 4641 btrfs_put_ordered_extent(ordered); 4642 return ret; 4643 } 4644 4645 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4646 struct btrfs_root *root, struct extent_buffer *buf, 4647 struct extent_buffer *cow) 4648 { 4649 struct btrfs_fs_info *fs_info = root->fs_info; 4650 struct reloc_control *rc; 4651 struct backref_node *node; 4652 int first_cow = 0; 4653 int level; 4654 int ret = 0; 4655 4656 rc = fs_info->reloc_ctl; 4657 if (!rc) 4658 return 0; 4659 4660 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4661 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4662 4663 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 4664 if (buf == root->node) 4665 __update_reloc_root(root, cow->start); 4666 } 4667 4668 level = btrfs_header_level(buf); 4669 if (btrfs_header_generation(buf) <= 4670 btrfs_root_last_snapshot(&root->root_item)) 4671 first_cow = 1; 4672 4673 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4674 rc->create_reloc_tree) { 4675 WARN_ON(!first_cow && level == 0); 4676 4677 node = rc->backref_cache.path[level]; 4678 BUG_ON(node->bytenr != buf->start && 4679 node->new_bytenr != buf->start); 4680 4681 drop_node_buffer(node); 4682 extent_buffer_get(cow); 4683 node->eb = cow; 4684 node->new_bytenr = cow->start; 4685 4686 if (!node->pending) { 4687 list_move_tail(&node->list, 4688 &rc->backref_cache.pending[level]); 4689 node->pending = 1; 4690 } 4691 4692 if (first_cow) 4693 __mark_block_processed(rc, node); 4694 4695 if (first_cow && level > 0) 4696 rc->nodes_relocated += buf->len; 4697 } 4698 4699 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4700 ret = replace_file_extents(trans, rc, root, cow); 4701 return ret; 4702 } 4703 4704 /* 4705 * called before creating snapshot. it calculates metadata reservation 4706 * required for relocating tree blocks in the snapshot 4707 */ 4708 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4709 u64 *bytes_to_reserve) 4710 { 4711 struct btrfs_root *root = pending->root; 4712 struct reloc_control *rc = root->fs_info->reloc_ctl; 4713 4714 if (!root->reloc_root || !rc) 4715 return; 4716 4717 if (!rc->merge_reloc_tree) 4718 return; 4719 4720 root = root->reloc_root; 4721 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4722 /* 4723 * relocation is in the stage of merging trees. the space 4724 * used by merging a reloc tree is twice the size of 4725 * relocated tree nodes in the worst case. half for cowing 4726 * the reloc tree, half for cowing the fs tree. the space 4727 * used by cowing the reloc tree will be freed after the 4728 * tree is dropped. if we create snapshot, cowing the fs 4729 * tree may use more space than it frees. so we need 4730 * reserve extra space. 4731 */ 4732 *bytes_to_reserve += rc->nodes_relocated; 4733 } 4734 4735 /* 4736 * called after snapshot is created. migrate block reservation 4737 * and create reloc root for the newly created snapshot 4738 */ 4739 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4740 struct btrfs_pending_snapshot *pending) 4741 { 4742 struct btrfs_root *root = pending->root; 4743 struct btrfs_root *reloc_root; 4744 struct btrfs_root *new_root; 4745 struct reloc_control *rc = root->fs_info->reloc_ctl; 4746 int ret; 4747 4748 if (!root->reloc_root || !rc) 4749 return 0; 4750 4751 rc = root->fs_info->reloc_ctl; 4752 rc->merging_rsv_size += rc->nodes_relocated; 4753 4754 if (rc->merge_reloc_tree) { 4755 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4756 rc->block_rsv, 4757 rc->nodes_relocated, true); 4758 if (ret) 4759 return ret; 4760 } 4761 4762 new_root = pending->snap; 4763 reloc_root = create_reloc_root(trans, root->reloc_root, 4764 new_root->root_key.objectid); 4765 if (IS_ERR(reloc_root)) 4766 return PTR_ERR(reloc_root); 4767 4768 ret = __add_reloc_root(reloc_root); 4769 BUG_ON(ret < 0); 4770 new_root->reloc_root = reloc_root; 4771 4772 if (rc->create_reloc_tree) 4773 ret = clone_backref_node(trans, rc, root, reloc_root); 4774 return ret; 4775 } 4776