1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include <linux/error-injection.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "locking.h" 18 #include "btrfs_inode.h" 19 #include "async-thread.h" 20 #include "free-space-cache.h" 21 #include "qgroup.h" 22 #include "print-tree.h" 23 #include "delalloc-space.h" 24 #include "block-group.h" 25 #include "backref.h" 26 #include "misc.h" 27 28 /* 29 * Relocation overview 30 * 31 * [What does relocation do] 32 * 33 * The objective of relocation is to relocate all extents of the target block 34 * group to other block groups. 35 * This is utilized by resize (shrink only), profile converting, compacting 36 * space, or balance routine to spread chunks over devices. 37 * 38 * Before | After 39 * ------------------------------------------------------------------ 40 * BG A: 10 data extents | BG A: deleted 41 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated) 42 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated) 43 * 44 * [How does relocation work] 45 * 46 * 1. Mark the target block group read-only 47 * New extents won't be allocated from the target block group. 48 * 49 * 2.1 Record each extent in the target block group 50 * To build a proper map of extents to be relocated. 51 * 52 * 2.2 Build data reloc tree and reloc trees 53 * Data reloc tree will contain an inode, recording all newly relocated 54 * data extents. 55 * There will be only one data reloc tree for one data block group. 56 * 57 * Reloc tree will be a special snapshot of its source tree, containing 58 * relocated tree blocks. 59 * Each tree referring to a tree block in target block group will get its 60 * reloc tree built. 61 * 62 * 2.3 Swap source tree with its corresponding reloc tree 63 * Each involved tree only refers to new extents after swap. 64 * 65 * 3. Cleanup reloc trees and data reloc tree. 66 * As old extents in the target block group are still referenced by reloc 67 * trees, we need to clean them up before really freeing the target block 68 * group. 69 * 70 * The main complexity is in steps 2.2 and 2.3. 71 * 72 * The entry point of relocation is relocate_block_group() function. 73 */ 74 75 #define RELOCATION_RESERVED_NODES 256 76 /* 77 * map address of tree root to tree 78 */ 79 struct mapping_node { 80 struct { 81 struct rb_node rb_node; 82 u64 bytenr; 83 }; /* Use rb_simle_node for search/insert */ 84 void *data; 85 }; 86 87 struct mapping_tree { 88 struct rb_root rb_root; 89 spinlock_t lock; 90 }; 91 92 /* 93 * present a tree block to process 94 */ 95 struct tree_block { 96 struct { 97 struct rb_node rb_node; 98 u64 bytenr; 99 }; /* Use rb_simple_node for search/insert */ 100 u64 owner; 101 struct btrfs_key key; 102 unsigned int level:8; 103 unsigned int key_ready:1; 104 }; 105 106 #define MAX_EXTENTS 128 107 108 struct file_extent_cluster { 109 u64 start; 110 u64 end; 111 u64 boundary[MAX_EXTENTS]; 112 unsigned int nr; 113 }; 114 115 struct reloc_control { 116 /* block group to relocate */ 117 struct btrfs_block_group *block_group; 118 /* extent tree */ 119 struct btrfs_root *extent_root; 120 /* inode for moving data */ 121 struct inode *data_inode; 122 123 struct btrfs_block_rsv *block_rsv; 124 125 struct btrfs_backref_cache backref_cache; 126 127 struct file_extent_cluster cluster; 128 /* tree blocks have been processed */ 129 struct extent_io_tree processed_blocks; 130 /* map start of tree root to corresponding reloc tree */ 131 struct mapping_tree reloc_root_tree; 132 /* list of reloc trees */ 133 struct list_head reloc_roots; 134 /* list of subvolume trees that get relocated */ 135 struct list_head dirty_subvol_roots; 136 /* size of metadata reservation for merging reloc trees */ 137 u64 merging_rsv_size; 138 /* size of relocated tree nodes */ 139 u64 nodes_relocated; 140 /* reserved size for block group relocation*/ 141 u64 reserved_bytes; 142 143 u64 search_start; 144 u64 extents_found; 145 146 unsigned int stage:8; 147 unsigned int create_reloc_tree:1; 148 unsigned int merge_reloc_tree:1; 149 unsigned int found_file_extent:1; 150 }; 151 152 /* stages of data relocation */ 153 #define MOVE_DATA_EXTENTS 0 154 #define UPDATE_DATA_PTRS 1 155 156 static void mark_block_processed(struct reloc_control *rc, 157 struct btrfs_backref_node *node) 158 { 159 u32 blocksize; 160 161 if (node->level == 0 || 162 in_range(node->bytenr, rc->block_group->start, 163 rc->block_group->length)) { 164 blocksize = rc->extent_root->fs_info->nodesize; 165 set_extent_bits(&rc->processed_blocks, node->bytenr, 166 node->bytenr + blocksize - 1, EXTENT_DIRTY); 167 } 168 node->processed = 1; 169 } 170 171 172 static void mapping_tree_init(struct mapping_tree *tree) 173 { 174 tree->rb_root = RB_ROOT; 175 spin_lock_init(&tree->lock); 176 } 177 178 /* 179 * walk up backref nodes until reach node presents tree root 180 */ 181 static struct btrfs_backref_node *walk_up_backref( 182 struct btrfs_backref_node *node, 183 struct btrfs_backref_edge *edges[], int *index) 184 { 185 struct btrfs_backref_edge *edge; 186 int idx = *index; 187 188 while (!list_empty(&node->upper)) { 189 edge = list_entry(node->upper.next, 190 struct btrfs_backref_edge, list[LOWER]); 191 edges[idx++] = edge; 192 node = edge->node[UPPER]; 193 } 194 BUG_ON(node->detached); 195 *index = idx; 196 return node; 197 } 198 199 /* 200 * walk down backref nodes to find start of next reference path 201 */ 202 static struct btrfs_backref_node *walk_down_backref( 203 struct btrfs_backref_edge *edges[], int *index) 204 { 205 struct btrfs_backref_edge *edge; 206 struct btrfs_backref_node *lower; 207 int idx = *index; 208 209 while (idx > 0) { 210 edge = edges[idx - 1]; 211 lower = edge->node[LOWER]; 212 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 213 idx--; 214 continue; 215 } 216 edge = list_entry(edge->list[LOWER].next, 217 struct btrfs_backref_edge, list[LOWER]); 218 edges[idx - 1] = edge; 219 *index = idx; 220 return edge->node[UPPER]; 221 } 222 *index = 0; 223 return NULL; 224 } 225 226 static void update_backref_node(struct btrfs_backref_cache *cache, 227 struct btrfs_backref_node *node, u64 bytenr) 228 { 229 struct rb_node *rb_node; 230 rb_erase(&node->rb_node, &cache->rb_root); 231 node->bytenr = bytenr; 232 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node); 233 if (rb_node) 234 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST); 235 } 236 237 /* 238 * update backref cache after a transaction commit 239 */ 240 static int update_backref_cache(struct btrfs_trans_handle *trans, 241 struct btrfs_backref_cache *cache) 242 { 243 struct btrfs_backref_node *node; 244 int level = 0; 245 246 if (cache->last_trans == 0) { 247 cache->last_trans = trans->transid; 248 return 0; 249 } 250 251 if (cache->last_trans == trans->transid) 252 return 0; 253 254 /* 255 * detached nodes are used to avoid unnecessary backref 256 * lookup. transaction commit changes the extent tree. 257 * so the detached nodes are no longer useful. 258 */ 259 while (!list_empty(&cache->detached)) { 260 node = list_entry(cache->detached.next, 261 struct btrfs_backref_node, list); 262 btrfs_backref_cleanup_node(cache, node); 263 } 264 265 while (!list_empty(&cache->changed)) { 266 node = list_entry(cache->changed.next, 267 struct btrfs_backref_node, list); 268 list_del_init(&node->list); 269 BUG_ON(node->pending); 270 update_backref_node(cache, node, node->new_bytenr); 271 } 272 273 /* 274 * some nodes can be left in the pending list if there were 275 * errors during processing the pending nodes. 276 */ 277 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 278 list_for_each_entry(node, &cache->pending[level], list) { 279 BUG_ON(!node->pending); 280 if (node->bytenr == node->new_bytenr) 281 continue; 282 update_backref_node(cache, node, node->new_bytenr); 283 } 284 } 285 286 cache->last_trans = 0; 287 return 1; 288 } 289 290 static bool reloc_root_is_dead(struct btrfs_root *root) 291 { 292 /* 293 * Pair with set_bit/clear_bit in clean_dirty_subvols and 294 * btrfs_update_reloc_root. We need to see the updated bit before 295 * trying to access reloc_root 296 */ 297 smp_rmb(); 298 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) 299 return true; 300 return false; 301 } 302 303 /* 304 * Check if this subvolume tree has valid reloc tree. 305 * 306 * Reloc tree after swap is considered dead, thus not considered as valid. 307 * This is enough for most callers, as they don't distinguish dead reloc root 308 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a 309 * special case. 310 */ 311 static bool have_reloc_root(struct btrfs_root *root) 312 { 313 if (reloc_root_is_dead(root)) 314 return false; 315 if (!root->reloc_root) 316 return false; 317 return true; 318 } 319 320 int btrfs_should_ignore_reloc_root(struct btrfs_root *root) 321 { 322 struct btrfs_root *reloc_root; 323 324 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 325 return 0; 326 327 /* This root has been merged with its reloc tree, we can ignore it */ 328 if (reloc_root_is_dead(root)) 329 return 1; 330 331 reloc_root = root->reloc_root; 332 if (!reloc_root) 333 return 0; 334 335 if (btrfs_header_generation(reloc_root->commit_root) == 336 root->fs_info->running_transaction->transid) 337 return 0; 338 /* 339 * if there is reloc tree and it was created in previous 340 * transaction backref lookup can find the reloc tree, 341 * so backref node for the fs tree root is useless for 342 * relocation. 343 */ 344 return 1; 345 } 346 347 /* 348 * find reloc tree by address of tree root 349 */ 350 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr) 351 { 352 struct reloc_control *rc = fs_info->reloc_ctl; 353 struct rb_node *rb_node; 354 struct mapping_node *node; 355 struct btrfs_root *root = NULL; 356 357 ASSERT(rc); 358 spin_lock(&rc->reloc_root_tree.lock); 359 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr); 360 if (rb_node) { 361 node = rb_entry(rb_node, struct mapping_node, rb_node); 362 root = (struct btrfs_root *)node->data; 363 } 364 spin_unlock(&rc->reloc_root_tree.lock); 365 return btrfs_grab_root(root); 366 } 367 368 /* 369 * For useless nodes, do two major clean ups: 370 * 371 * - Cleanup the children edges and nodes 372 * If child node is also orphan (no parent) during cleanup, then the child 373 * node will also be cleaned up. 374 * 375 * - Freeing up leaves (level 0), keeps nodes detached 376 * For nodes, the node is still cached as "detached" 377 * 378 * Return false if @node is not in the @useless_nodes list. 379 * Return true if @node is in the @useless_nodes list. 380 */ 381 static bool handle_useless_nodes(struct reloc_control *rc, 382 struct btrfs_backref_node *node) 383 { 384 struct btrfs_backref_cache *cache = &rc->backref_cache; 385 struct list_head *useless_node = &cache->useless_node; 386 bool ret = false; 387 388 while (!list_empty(useless_node)) { 389 struct btrfs_backref_node *cur; 390 391 cur = list_first_entry(useless_node, struct btrfs_backref_node, 392 list); 393 list_del_init(&cur->list); 394 395 /* Only tree root nodes can be added to @useless_nodes */ 396 ASSERT(list_empty(&cur->upper)); 397 398 if (cur == node) 399 ret = true; 400 401 /* The node is the lowest node */ 402 if (cur->lowest) { 403 list_del_init(&cur->lower); 404 cur->lowest = 0; 405 } 406 407 /* Cleanup the lower edges */ 408 while (!list_empty(&cur->lower)) { 409 struct btrfs_backref_edge *edge; 410 struct btrfs_backref_node *lower; 411 412 edge = list_entry(cur->lower.next, 413 struct btrfs_backref_edge, list[UPPER]); 414 list_del(&edge->list[UPPER]); 415 list_del(&edge->list[LOWER]); 416 lower = edge->node[LOWER]; 417 btrfs_backref_free_edge(cache, edge); 418 419 /* Child node is also orphan, queue for cleanup */ 420 if (list_empty(&lower->upper)) 421 list_add(&lower->list, useless_node); 422 } 423 /* Mark this block processed for relocation */ 424 mark_block_processed(rc, cur); 425 426 /* 427 * Backref nodes for tree leaves are deleted from the cache. 428 * Backref nodes for upper level tree blocks are left in the 429 * cache to avoid unnecessary backref lookup. 430 */ 431 if (cur->level > 0) { 432 list_add(&cur->list, &cache->detached); 433 cur->detached = 1; 434 } else { 435 rb_erase(&cur->rb_node, &cache->rb_root); 436 btrfs_backref_free_node(cache, cur); 437 } 438 } 439 return ret; 440 } 441 442 /* 443 * Build backref tree for a given tree block. Root of the backref tree 444 * corresponds the tree block, leaves of the backref tree correspond roots of 445 * b-trees that reference the tree block. 446 * 447 * The basic idea of this function is check backrefs of a given block to find 448 * upper level blocks that reference the block, and then check backrefs of 449 * these upper level blocks recursively. The recursion stops when tree root is 450 * reached or backrefs for the block is cached. 451 * 452 * NOTE: if we find that backrefs for a block are cached, we know backrefs for 453 * all upper level blocks that directly/indirectly reference the block are also 454 * cached. 455 */ 456 static noinline_for_stack struct btrfs_backref_node *build_backref_tree( 457 struct reloc_control *rc, struct btrfs_key *node_key, 458 int level, u64 bytenr) 459 { 460 struct btrfs_backref_iter *iter; 461 struct btrfs_backref_cache *cache = &rc->backref_cache; 462 /* For searching parent of TREE_BLOCK_REF */ 463 struct btrfs_path *path; 464 struct btrfs_backref_node *cur; 465 struct btrfs_backref_node *node = NULL; 466 struct btrfs_backref_edge *edge; 467 int ret; 468 int err = 0; 469 470 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS); 471 if (!iter) 472 return ERR_PTR(-ENOMEM); 473 path = btrfs_alloc_path(); 474 if (!path) { 475 err = -ENOMEM; 476 goto out; 477 } 478 479 node = btrfs_backref_alloc_node(cache, bytenr, level); 480 if (!node) { 481 err = -ENOMEM; 482 goto out; 483 } 484 485 node->lowest = 1; 486 cur = node; 487 488 /* Breadth-first search to build backref cache */ 489 do { 490 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key, 491 cur); 492 if (ret < 0) { 493 err = ret; 494 goto out; 495 } 496 edge = list_first_entry_or_null(&cache->pending_edge, 497 struct btrfs_backref_edge, list[UPPER]); 498 /* 499 * The pending list isn't empty, take the first block to 500 * process 501 */ 502 if (edge) { 503 list_del_init(&edge->list[UPPER]); 504 cur = edge->node[UPPER]; 505 } 506 } while (edge); 507 508 /* Finish the upper linkage of newly added edges/nodes */ 509 ret = btrfs_backref_finish_upper_links(cache, node); 510 if (ret < 0) { 511 err = ret; 512 goto out; 513 } 514 515 if (handle_useless_nodes(rc, node)) 516 node = NULL; 517 out: 518 btrfs_backref_iter_free(iter); 519 btrfs_free_path(path); 520 if (err) { 521 btrfs_backref_error_cleanup(cache, node); 522 return ERR_PTR(err); 523 } 524 ASSERT(!node || !node->detached); 525 ASSERT(list_empty(&cache->useless_node) && 526 list_empty(&cache->pending_edge)); 527 return node; 528 } 529 530 /* 531 * helper to add backref node for the newly created snapshot. 532 * the backref node is created by cloning backref node that 533 * corresponds to root of source tree 534 */ 535 static int clone_backref_node(struct btrfs_trans_handle *trans, 536 struct reloc_control *rc, 537 struct btrfs_root *src, 538 struct btrfs_root *dest) 539 { 540 struct btrfs_root *reloc_root = src->reloc_root; 541 struct btrfs_backref_cache *cache = &rc->backref_cache; 542 struct btrfs_backref_node *node = NULL; 543 struct btrfs_backref_node *new_node; 544 struct btrfs_backref_edge *edge; 545 struct btrfs_backref_edge *new_edge; 546 struct rb_node *rb_node; 547 548 if (cache->last_trans > 0) 549 update_backref_cache(trans, cache); 550 551 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start); 552 if (rb_node) { 553 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 554 if (node->detached) 555 node = NULL; 556 else 557 BUG_ON(node->new_bytenr != reloc_root->node->start); 558 } 559 560 if (!node) { 561 rb_node = rb_simple_search(&cache->rb_root, 562 reloc_root->commit_root->start); 563 if (rb_node) { 564 node = rb_entry(rb_node, struct btrfs_backref_node, 565 rb_node); 566 BUG_ON(node->detached); 567 } 568 } 569 570 if (!node) 571 return 0; 572 573 new_node = btrfs_backref_alloc_node(cache, dest->node->start, 574 node->level); 575 if (!new_node) 576 return -ENOMEM; 577 578 new_node->lowest = node->lowest; 579 new_node->checked = 1; 580 new_node->root = btrfs_grab_root(dest); 581 ASSERT(new_node->root); 582 583 if (!node->lowest) { 584 list_for_each_entry(edge, &node->lower, list[UPPER]) { 585 new_edge = btrfs_backref_alloc_edge(cache); 586 if (!new_edge) 587 goto fail; 588 589 btrfs_backref_link_edge(new_edge, edge->node[LOWER], 590 new_node, LINK_UPPER); 591 } 592 } else { 593 list_add_tail(&new_node->lower, &cache->leaves); 594 } 595 596 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr, 597 &new_node->rb_node); 598 if (rb_node) 599 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST); 600 601 if (!new_node->lowest) { 602 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 603 list_add_tail(&new_edge->list[LOWER], 604 &new_edge->node[LOWER]->upper); 605 } 606 } 607 return 0; 608 fail: 609 while (!list_empty(&new_node->lower)) { 610 new_edge = list_entry(new_node->lower.next, 611 struct btrfs_backref_edge, list[UPPER]); 612 list_del(&new_edge->list[UPPER]); 613 btrfs_backref_free_edge(cache, new_edge); 614 } 615 btrfs_backref_free_node(cache, new_node); 616 return -ENOMEM; 617 } 618 619 /* 620 * helper to add 'address of tree root -> reloc tree' mapping 621 */ 622 static int __must_check __add_reloc_root(struct btrfs_root *root) 623 { 624 struct btrfs_fs_info *fs_info = root->fs_info; 625 struct rb_node *rb_node; 626 struct mapping_node *node; 627 struct reloc_control *rc = fs_info->reloc_ctl; 628 629 node = kmalloc(sizeof(*node), GFP_NOFS); 630 if (!node) 631 return -ENOMEM; 632 633 node->bytenr = root->commit_root->start; 634 node->data = root; 635 636 spin_lock(&rc->reloc_root_tree.lock); 637 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 638 node->bytenr, &node->rb_node); 639 spin_unlock(&rc->reloc_root_tree.lock); 640 if (rb_node) { 641 btrfs_panic(fs_info, -EEXIST, 642 "Duplicate root found for start=%llu while inserting into relocation tree", 643 node->bytenr); 644 } 645 646 list_add_tail(&root->root_list, &rc->reloc_roots); 647 return 0; 648 } 649 650 /* 651 * helper to delete the 'address of tree root -> reloc tree' 652 * mapping 653 */ 654 static void __del_reloc_root(struct btrfs_root *root) 655 { 656 struct btrfs_fs_info *fs_info = root->fs_info; 657 struct rb_node *rb_node; 658 struct mapping_node *node = NULL; 659 struct reloc_control *rc = fs_info->reloc_ctl; 660 bool put_ref = false; 661 662 if (rc && root->node) { 663 spin_lock(&rc->reloc_root_tree.lock); 664 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 665 root->commit_root->start); 666 if (rb_node) { 667 node = rb_entry(rb_node, struct mapping_node, rb_node); 668 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 669 RB_CLEAR_NODE(&node->rb_node); 670 } 671 spin_unlock(&rc->reloc_root_tree.lock); 672 ASSERT(!node || (struct btrfs_root *)node->data == root); 673 } 674 675 /* 676 * We only put the reloc root here if it's on the list. There's a lot 677 * of places where the pattern is to splice the rc->reloc_roots, process 678 * the reloc roots, and then add the reloc root back onto 679 * rc->reloc_roots. If we call __del_reloc_root while it's off of the 680 * list we don't want the reference being dropped, because the guy 681 * messing with the list is in charge of the reference. 682 */ 683 spin_lock(&fs_info->trans_lock); 684 if (!list_empty(&root->root_list)) { 685 put_ref = true; 686 list_del_init(&root->root_list); 687 } 688 spin_unlock(&fs_info->trans_lock); 689 if (put_ref) 690 btrfs_put_root(root); 691 kfree(node); 692 } 693 694 /* 695 * helper to update the 'address of tree root -> reloc tree' 696 * mapping 697 */ 698 static int __update_reloc_root(struct btrfs_root *root) 699 { 700 struct btrfs_fs_info *fs_info = root->fs_info; 701 struct rb_node *rb_node; 702 struct mapping_node *node = NULL; 703 struct reloc_control *rc = fs_info->reloc_ctl; 704 705 spin_lock(&rc->reloc_root_tree.lock); 706 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 707 root->commit_root->start); 708 if (rb_node) { 709 node = rb_entry(rb_node, struct mapping_node, rb_node); 710 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 711 } 712 spin_unlock(&rc->reloc_root_tree.lock); 713 714 if (!node) 715 return 0; 716 BUG_ON((struct btrfs_root *)node->data != root); 717 718 spin_lock(&rc->reloc_root_tree.lock); 719 node->bytenr = root->node->start; 720 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 721 node->bytenr, &node->rb_node); 722 spin_unlock(&rc->reloc_root_tree.lock); 723 if (rb_node) 724 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST); 725 return 0; 726 } 727 728 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 729 struct btrfs_root *root, u64 objectid) 730 { 731 struct btrfs_fs_info *fs_info = root->fs_info; 732 struct btrfs_root *reloc_root; 733 struct extent_buffer *eb; 734 struct btrfs_root_item *root_item; 735 struct btrfs_key root_key; 736 int ret; 737 738 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 739 BUG_ON(!root_item); 740 741 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 742 root_key.type = BTRFS_ROOT_ITEM_KEY; 743 root_key.offset = objectid; 744 745 if (root->root_key.objectid == objectid) { 746 u64 commit_root_gen; 747 748 /* called by btrfs_init_reloc_root */ 749 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 750 BTRFS_TREE_RELOC_OBJECTID); 751 BUG_ON(ret); 752 /* 753 * Set the last_snapshot field to the generation of the commit 754 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 755 * correctly (returns true) when the relocation root is created 756 * either inside the critical section of a transaction commit 757 * (through transaction.c:qgroup_account_snapshot()) and when 758 * it's created before the transaction commit is started. 759 */ 760 commit_root_gen = btrfs_header_generation(root->commit_root); 761 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 762 } else { 763 /* 764 * called by btrfs_reloc_post_snapshot_hook. 765 * the source tree is a reloc tree, all tree blocks 766 * modified after it was created have RELOC flag 767 * set in their headers. so it's OK to not update 768 * the 'last_snapshot'. 769 */ 770 ret = btrfs_copy_root(trans, root, root->node, &eb, 771 BTRFS_TREE_RELOC_OBJECTID); 772 BUG_ON(ret); 773 } 774 775 memcpy(root_item, &root->root_item, sizeof(*root_item)); 776 btrfs_set_root_bytenr(root_item, eb->start); 777 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 778 btrfs_set_root_generation(root_item, trans->transid); 779 780 if (root->root_key.objectid == objectid) { 781 btrfs_set_root_refs(root_item, 0); 782 memset(&root_item->drop_progress, 0, 783 sizeof(struct btrfs_disk_key)); 784 btrfs_set_root_drop_level(root_item, 0); 785 } 786 787 btrfs_tree_unlock(eb); 788 free_extent_buffer(eb); 789 790 ret = btrfs_insert_root(trans, fs_info->tree_root, 791 &root_key, root_item); 792 BUG_ON(ret); 793 kfree(root_item); 794 795 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); 796 BUG_ON(IS_ERR(reloc_root)); 797 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 798 reloc_root->last_trans = trans->transid; 799 return reloc_root; 800 } 801 802 /* 803 * create reloc tree for a given fs tree. reloc tree is just a 804 * snapshot of the fs tree with special root objectid. 805 * 806 * The reloc_root comes out of here with two references, one for 807 * root->reloc_root, and another for being on the rc->reloc_roots list. 808 */ 809 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 810 struct btrfs_root *root) 811 { 812 struct btrfs_fs_info *fs_info = root->fs_info; 813 struct btrfs_root *reloc_root; 814 struct reloc_control *rc = fs_info->reloc_ctl; 815 struct btrfs_block_rsv *rsv; 816 int clear_rsv = 0; 817 int ret; 818 819 if (!rc) 820 return 0; 821 822 /* 823 * The subvolume has reloc tree but the swap is finished, no need to 824 * create/update the dead reloc tree 825 */ 826 if (reloc_root_is_dead(root)) 827 return 0; 828 829 /* 830 * This is subtle but important. We do not do 831 * record_root_in_transaction for reloc roots, instead we record their 832 * corresponding fs root, and then here we update the last trans for the 833 * reloc root. This means that we have to do this for the entire life 834 * of the reloc root, regardless of which stage of the relocation we are 835 * in. 836 */ 837 if (root->reloc_root) { 838 reloc_root = root->reloc_root; 839 reloc_root->last_trans = trans->transid; 840 return 0; 841 } 842 843 /* 844 * We are merging reloc roots, we do not need new reloc trees. Also 845 * reloc trees never need their own reloc tree. 846 */ 847 if (!rc->create_reloc_tree || 848 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 849 return 0; 850 851 if (!trans->reloc_reserved) { 852 rsv = trans->block_rsv; 853 trans->block_rsv = rc->block_rsv; 854 clear_rsv = 1; 855 } 856 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 857 if (clear_rsv) 858 trans->block_rsv = rsv; 859 860 ret = __add_reloc_root(reloc_root); 861 BUG_ON(ret < 0); 862 root->reloc_root = btrfs_grab_root(reloc_root); 863 return 0; 864 } 865 866 /* 867 * update root item of reloc tree 868 */ 869 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 870 struct btrfs_root *root) 871 { 872 struct btrfs_fs_info *fs_info = root->fs_info; 873 struct btrfs_root *reloc_root; 874 struct btrfs_root_item *root_item; 875 int ret; 876 877 if (!have_reloc_root(root)) 878 goto out; 879 880 reloc_root = root->reloc_root; 881 root_item = &reloc_root->root_item; 882 883 /* 884 * We are probably ok here, but __del_reloc_root() will drop its ref of 885 * the root. We have the ref for root->reloc_root, but just in case 886 * hold it while we update the reloc root. 887 */ 888 btrfs_grab_root(reloc_root); 889 890 /* root->reloc_root will stay until current relocation finished */ 891 if (fs_info->reloc_ctl->merge_reloc_tree && 892 btrfs_root_refs(root_item) == 0) { 893 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 894 /* 895 * Mark the tree as dead before we change reloc_root so 896 * have_reloc_root will not touch it from now on. 897 */ 898 smp_wmb(); 899 __del_reloc_root(reloc_root); 900 } 901 902 if (reloc_root->commit_root != reloc_root->node) { 903 __update_reloc_root(reloc_root); 904 btrfs_set_root_node(root_item, reloc_root->node); 905 free_extent_buffer(reloc_root->commit_root); 906 reloc_root->commit_root = btrfs_root_node(reloc_root); 907 } 908 909 ret = btrfs_update_root(trans, fs_info->tree_root, 910 &reloc_root->root_key, root_item); 911 BUG_ON(ret); 912 btrfs_put_root(reloc_root); 913 out: 914 return 0; 915 } 916 917 /* 918 * helper to find first cached inode with inode number >= objectid 919 * in a subvolume 920 */ 921 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 922 { 923 struct rb_node *node; 924 struct rb_node *prev; 925 struct btrfs_inode *entry; 926 struct inode *inode; 927 928 spin_lock(&root->inode_lock); 929 again: 930 node = root->inode_tree.rb_node; 931 prev = NULL; 932 while (node) { 933 prev = node; 934 entry = rb_entry(node, struct btrfs_inode, rb_node); 935 936 if (objectid < btrfs_ino(entry)) 937 node = node->rb_left; 938 else if (objectid > btrfs_ino(entry)) 939 node = node->rb_right; 940 else 941 break; 942 } 943 if (!node) { 944 while (prev) { 945 entry = rb_entry(prev, struct btrfs_inode, rb_node); 946 if (objectid <= btrfs_ino(entry)) { 947 node = prev; 948 break; 949 } 950 prev = rb_next(prev); 951 } 952 } 953 while (node) { 954 entry = rb_entry(node, struct btrfs_inode, rb_node); 955 inode = igrab(&entry->vfs_inode); 956 if (inode) { 957 spin_unlock(&root->inode_lock); 958 return inode; 959 } 960 961 objectid = btrfs_ino(entry) + 1; 962 if (cond_resched_lock(&root->inode_lock)) 963 goto again; 964 965 node = rb_next(node); 966 } 967 spin_unlock(&root->inode_lock); 968 return NULL; 969 } 970 971 /* 972 * get new location of data 973 */ 974 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 975 u64 bytenr, u64 num_bytes) 976 { 977 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 978 struct btrfs_path *path; 979 struct btrfs_file_extent_item *fi; 980 struct extent_buffer *leaf; 981 int ret; 982 983 path = btrfs_alloc_path(); 984 if (!path) 985 return -ENOMEM; 986 987 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 988 ret = btrfs_lookup_file_extent(NULL, root, path, 989 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 990 if (ret < 0) 991 goto out; 992 if (ret > 0) { 993 ret = -ENOENT; 994 goto out; 995 } 996 997 leaf = path->nodes[0]; 998 fi = btrfs_item_ptr(leaf, path->slots[0], 999 struct btrfs_file_extent_item); 1000 1001 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1002 btrfs_file_extent_compression(leaf, fi) || 1003 btrfs_file_extent_encryption(leaf, fi) || 1004 btrfs_file_extent_other_encoding(leaf, fi)); 1005 1006 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1007 ret = -EINVAL; 1008 goto out; 1009 } 1010 1011 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1012 ret = 0; 1013 out: 1014 btrfs_free_path(path); 1015 return ret; 1016 } 1017 1018 /* 1019 * update file extent items in the tree leaf to point to 1020 * the new locations. 1021 */ 1022 static noinline_for_stack 1023 int replace_file_extents(struct btrfs_trans_handle *trans, 1024 struct reloc_control *rc, 1025 struct btrfs_root *root, 1026 struct extent_buffer *leaf) 1027 { 1028 struct btrfs_fs_info *fs_info = root->fs_info; 1029 struct btrfs_key key; 1030 struct btrfs_file_extent_item *fi; 1031 struct inode *inode = NULL; 1032 u64 parent; 1033 u64 bytenr; 1034 u64 new_bytenr = 0; 1035 u64 num_bytes; 1036 u64 end; 1037 u32 nritems; 1038 u32 i; 1039 int ret = 0; 1040 int first = 1; 1041 int dirty = 0; 1042 1043 if (rc->stage != UPDATE_DATA_PTRS) 1044 return 0; 1045 1046 /* reloc trees always use full backref */ 1047 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1048 parent = leaf->start; 1049 else 1050 parent = 0; 1051 1052 nritems = btrfs_header_nritems(leaf); 1053 for (i = 0; i < nritems; i++) { 1054 struct btrfs_ref ref = { 0 }; 1055 1056 cond_resched(); 1057 btrfs_item_key_to_cpu(leaf, &key, i); 1058 if (key.type != BTRFS_EXTENT_DATA_KEY) 1059 continue; 1060 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1061 if (btrfs_file_extent_type(leaf, fi) == 1062 BTRFS_FILE_EXTENT_INLINE) 1063 continue; 1064 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1065 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1066 if (bytenr == 0) 1067 continue; 1068 if (!in_range(bytenr, rc->block_group->start, 1069 rc->block_group->length)) 1070 continue; 1071 1072 /* 1073 * if we are modifying block in fs tree, wait for readpage 1074 * to complete and drop the extent cache 1075 */ 1076 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1077 if (first) { 1078 inode = find_next_inode(root, key.objectid); 1079 first = 0; 1080 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1081 btrfs_add_delayed_iput(inode); 1082 inode = find_next_inode(root, key.objectid); 1083 } 1084 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1085 end = key.offset + 1086 btrfs_file_extent_num_bytes(leaf, fi); 1087 WARN_ON(!IS_ALIGNED(key.offset, 1088 fs_info->sectorsize)); 1089 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1090 end--; 1091 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1092 key.offset, end); 1093 if (!ret) 1094 continue; 1095 1096 btrfs_drop_extent_cache(BTRFS_I(inode), 1097 key.offset, end, 1); 1098 unlock_extent(&BTRFS_I(inode)->io_tree, 1099 key.offset, end); 1100 } 1101 } 1102 1103 ret = get_new_location(rc->data_inode, &new_bytenr, 1104 bytenr, num_bytes); 1105 if (ret) { 1106 /* 1107 * Don't have to abort since we've not changed anything 1108 * in the file extent yet. 1109 */ 1110 break; 1111 } 1112 1113 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1114 dirty = 1; 1115 1116 key.offset -= btrfs_file_extent_offset(leaf, fi); 1117 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1118 num_bytes, parent); 1119 ref.real_root = root->root_key.objectid; 1120 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1121 key.objectid, key.offset); 1122 ret = btrfs_inc_extent_ref(trans, &ref); 1123 if (ret) { 1124 btrfs_abort_transaction(trans, ret); 1125 break; 1126 } 1127 1128 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1129 num_bytes, parent); 1130 ref.real_root = root->root_key.objectid; 1131 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1132 key.objectid, key.offset); 1133 ret = btrfs_free_extent(trans, &ref); 1134 if (ret) { 1135 btrfs_abort_transaction(trans, ret); 1136 break; 1137 } 1138 } 1139 if (dirty) 1140 btrfs_mark_buffer_dirty(leaf); 1141 if (inode) 1142 btrfs_add_delayed_iput(inode); 1143 return ret; 1144 } 1145 1146 static noinline_for_stack 1147 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1148 struct btrfs_path *path, int level) 1149 { 1150 struct btrfs_disk_key key1; 1151 struct btrfs_disk_key key2; 1152 btrfs_node_key(eb, &key1, slot); 1153 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1154 return memcmp(&key1, &key2, sizeof(key1)); 1155 } 1156 1157 /* 1158 * try to replace tree blocks in fs tree with the new blocks 1159 * in reloc tree. tree blocks haven't been modified since the 1160 * reloc tree was create can be replaced. 1161 * 1162 * if a block was replaced, level of the block + 1 is returned. 1163 * if no block got replaced, 0 is returned. if there are other 1164 * errors, a negative error number is returned. 1165 */ 1166 static noinline_for_stack 1167 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1168 struct btrfs_root *dest, struct btrfs_root *src, 1169 struct btrfs_path *path, struct btrfs_key *next_key, 1170 int lowest_level, int max_level) 1171 { 1172 struct btrfs_fs_info *fs_info = dest->fs_info; 1173 struct extent_buffer *eb; 1174 struct extent_buffer *parent; 1175 struct btrfs_ref ref = { 0 }; 1176 struct btrfs_key key; 1177 u64 old_bytenr; 1178 u64 new_bytenr; 1179 u64 old_ptr_gen; 1180 u64 new_ptr_gen; 1181 u64 last_snapshot; 1182 u32 blocksize; 1183 int cow = 0; 1184 int level; 1185 int ret; 1186 int slot; 1187 1188 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1189 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1190 1191 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1192 again: 1193 slot = path->slots[lowest_level]; 1194 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1195 1196 eb = btrfs_lock_root_node(dest); 1197 level = btrfs_header_level(eb); 1198 1199 if (level < lowest_level) { 1200 btrfs_tree_unlock(eb); 1201 free_extent_buffer(eb); 1202 return 0; 1203 } 1204 1205 if (cow) { 1206 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb, 1207 BTRFS_NESTING_COW); 1208 BUG_ON(ret); 1209 } 1210 1211 if (next_key) { 1212 next_key->objectid = (u64)-1; 1213 next_key->type = (u8)-1; 1214 next_key->offset = (u64)-1; 1215 } 1216 1217 parent = eb; 1218 while (1) { 1219 level = btrfs_header_level(parent); 1220 BUG_ON(level < lowest_level); 1221 1222 ret = btrfs_bin_search(parent, &key, &slot); 1223 if (ret < 0) 1224 break; 1225 if (ret && slot > 0) 1226 slot--; 1227 1228 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1229 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1230 1231 old_bytenr = btrfs_node_blockptr(parent, slot); 1232 blocksize = fs_info->nodesize; 1233 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1234 1235 if (level <= max_level) { 1236 eb = path->nodes[level]; 1237 new_bytenr = btrfs_node_blockptr(eb, 1238 path->slots[level]); 1239 new_ptr_gen = btrfs_node_ptr_generation(eb, 1240 path->slots[level]); 1241 } else { 1242 new_bytenr = 0; 1243 new_ptr_gen = 0; 1244 } 1245 1246 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1247 ret = level; 1248 break; 1249 } 1250 1251 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1252 memcmp_node_keys(parent, slot, path, level)) { 1253 if (level <= lowest_level) { 1254 ret = 0; 1255 break; 1256 } 1257 1258 eb = btrfs_read_node_slot(parent, slot); 1259 if (IS_ERR(eb)) { 1260 ret = PTR_ERR(eb); 1261 break; 1262 } 1263 btrfs_tree_lock(eb); 1264 if (cow) { 1265 ret = btrfs_cow_block(trans, dest, eb, parent, 1266 slot, &eb, 1267 BTRFS_NESTING_COW); 1268 BUG_ON(ret); 1269 } 1270 1271 btrfs_tree_unlock(parent); 1272 free_extent_buffer(parent); 1273 1274 parent = eb; 1275 continue; 1276 } 1277 1278 if (!cow) { 1279 btrfs_tree_unlock(parent); 1280 free_extent_buffer(parent); 1281 cow = 1; 1282 goto again; 1283 } 1284 1285 btrfs_node_key_to_cpu(path->nodes[level], &key, 1286 path->slots[level]); 1287 btrfs_release_path(path); 1288 1289 path->lowest_level = level; 1290 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1291 path->lowest_level = 0; 1292 BUG_ON(ret); 1293 1294 /* 1295 * Info qgroup to trace both subtrees. 1296 * 1297 * We must trace both trees. 1298 * 1) Tree reloc subtree 1299 * If not traced, we will leak data numbers 1300 * 2) Fs subtree 1301 * If not traced, we will double count old data 1302 * 1303 * We don't scan the subtree right now, but only record 1304 * the swapped tree blocks. 1305 * The real subtree rescan is delayed until we have new 1306 * CoW on the subtree root node before transaction commit. 1307 */ 1308 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 1309 rc->block_group, parent, slot, 1310 path->nodes[level], path->slots[level], 1311 last_snapshot); 1312 if (ret < 0) 1313 break; 1314 /* 1315 * swap blocks in fs tree and reloc tree. 1316 */ 1317 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1318 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1319 btrfs_mark_buffer_dirty(parent); 1320 1321 btrfs_set_node_blockptr(path->nodes[level], 1322 path->slots[level], old_bytenr); 1323 btrfs_set_node_ptr_generation(path->nodes[level], 1324 path->slots[level], old_ptr_gen); 1325 btrfs_mark_buffer_dirty(path->nodes[level]); 1326 1327 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, 1328 blocksize, path->nodes[level]->start); 1329 ref.skip_qgroup = true; 1330 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1331 ret = btrfs_inc_extent_ref(trans, &ref); 1332 BUG_ON(ret); 1333 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1334 blocksize, 0); 1335 ref.skip_qgroup = true; 1336 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1337 ret = btrfs_inc_extent_ref(trans, &ref); 1338 BUG_ON(ret); 1339 1340 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, 1341 blocksize, path->nodes[level]->start); 1342 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1343 ref.skip_qgroup = true; 1344 ret = btrfs_free_extent(trans, &ref); 1345 BUG_ON(ret); 1346 1347 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, 1348 blocksize, 0); 1349 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1350 ref.skip_qgroup = true; 1351 ret = btrfs_free_extent(trans, &ref); 1352 BUG_ON(ret); 1353 1354 btrfs_unlock_up_safe(path, 0); 1355 1356 ret = level; 1357 break; 1358 } 1359 btrfs_tree_unlock(parent); 1360 free_extent_buffer(parent); 1361 return ret; 1362 } 1363 1364 /* 1365 * helper to find next relocated block in reloc tree 1366 */ 1367 static noinline_for_stack 1368 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1369 int *level) 1370 { 1371 struct extent_buffer *eb; 1372 int i; 1373 u64 last_snapshot; 1374 u32 nritems; 1375 1376 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1377 1378 for (i = 0; i < *level; i++) { 1379 free_extent_buffer(path->nodes[i]); 1380 path->nodes[i] = NULL; 1381 } 1382 1383 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1384 eb = path->nodes[i]; 1385 nritems = btrfs_header_nritems(eb); 1386 while (path->slots[i] + 1 < nritems) { 1387 path->slots[i]++; 1388 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1389 last_snapshot) 1390 continue; 1391 1392 *level = i; 1393 return 0; 1394 } 1395 free_extent_buffer(path->nodes[i]); 1396 path->nodes[i] = NULL; 1397 } 1398 return 1; 1399 } 1400 1401 /* 1402 * walk down reloc tree to find relocated block of lowest level 1403 */ 1404 static noinline_for_stack 1405 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1406 int *level) 1407 { 1408 struct extent_buffer *eb = NULL; 1409 int i; 1410 u64 ptr_gen = 0; 1411 u64 last_snapshot; 1412 u32 nritems; 1413 1414 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1415 1416 for (i = *level; i > 0; i--) { 1417 eb = path->nodes[i]; 1418 nritems = btrfs_header_nritems(eb); 1419 while (path->slots[i] < nritems) { 1420 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1421 if (ptr_gen > last_snapshot) 1422 break; 1423 path->slots[i]++; 1424 } 1425 if (path->slots[i] >= nritems) { 1426 if (i == *level) 1427 break; 1428 *level = i + 1; 1429 return 0; 1430 } 1431 if (i == 1) { 1432 *level = i; 1433 return 0; 1434 } 1435 1436 eb = btrfs_read_node_slot(eb, path->slots[i]); 1437 if (IS_ERR(eb)) 1438 return PTR_ERR(eb); 1439 BUG_ON(btrfs_header_level(eb) != i - 1); 1440 path->nodes[i - 1] = eb; 1441 path->slots[i - 1] = 0; 1442 } 1443 return 1; 1444 } 1445 1446 /* 1447 * invalidate extent cache for file extents whose key in range of 1448 * [min_key, max_key) 1449 */ 1450 static int invalidate_extent_cache(struct btrfs_root *root, 1451 struct btrfs_key *min_key, 1452 struct btrfs_key *max_key) 1453 { 1454 struct btrfs_fs_info *fs_info = root->fs_info; 1455 struct inode *inode = NULL; 1456 u64 objectid; 1457 u64 start, end; 1458 u64 ino; 1459 1460 objectid = min_key->objectid; 1461 while (1) { 1462 cond_resched(); 1463 iput(inode); 1464 1465 if (objectid > max_key->objectid) 1466 break; 1467 1468 inode = find_next_inode(root, objectid); 1469 if (!inode) 1470 break; 1471 ino = btrfs_ino(BTRFS_I(inode)); 1472 1473 if (ino > max_key->objectid) { 1474 iput(inode); 1475 break; 1476 } 1477 1478 objectid = ino + 1; 1479 if (!S_ISREG(inode->i_mode)) 1480 continue; 1481 1482 if (unlikely(min_key->objectid == ino)) { 1483 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1484 continue; 1485 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1486 start = 0; 1487 else { 1488 start = min_key->offset; 1489 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 1490 } 1491 } else { 1492 start = 0; 1493 } 1494 1495 if (unlikely(max_key->objectid == ino)) { 1496 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1497 continue; 1498 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1499 end = (u64)-1; 1500 } else { 1501 if (max_key->offset == 0) 1502 continue; 1503 end = max_key->offset; 1504 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1505 end--; 1506 } 1507 } else { 1508 end = (u64)-1; 1509 } 1510 1511 /* the lock_extent waits for readpage to complete */ 1512 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 1513 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1); 1514 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1515 } 1516 return 0; 1517 } 1518 1519 static int find_next_key(struct btrfs_path *path, int level, 1520 struct btrfs_key *key) 1521 1522 { 1523 while (level < BTRFS_MAX_LEVEL) { 1524 if (!path->nodes[level]) 1525 break; 1526 if (path->slots[level] + 1 < 1527 btrfs_header_nritems(path->nodes[level])) { 1528 btrfs_node_key_to_cpu(path->nodes[level], key, 1529 path->slots[level] + 1); 1530 return 0; 1531 } 1532 level++; 1533 } 1534 return 1; 1535 } 1536 1537 /* 1538 * Insert current subvolume into reloc_control::dirty_subvol_roots 1539 */ 1540 static void insert_dirty_subvol(struct btrfs_trans_handle *trans, 1541 struct reloc_control *rc, 1542 struct btrfs_root *root) 1543 { 1544 struct btrfs_root *reloc_root = root->reloc_root; 1545 struct btrfs_root_item *reloc_root_item; 1546 1547 /* @root must be a subvolume tree root with a valid reloc tree */ 1548 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1549 ASSERT(reloc_root); 1550 1551 reloc_root_item = &reloc_root->root_item; 1552 memset(&reloc_root_item->drop_progress, 0, 1553 sizeof(reloc_root_item->drop_progress)); 1554 btrfs_set_root_drop_level(reloc_root_item, 0); 1555 btrfs_set_root_refs(reloc_root_item, 0); 1556 btrfs_update_reloc_root(trans, root); 1557 1558 if (list_empty(&root->reloc_dirty_list)) { 1559 btrfs_grab_root(root); 1560 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 1561 } 1562 } 1563 1564 static int clean_dirty_subvols(struct reloc_control *rc) 1565 { 1566 struct btrfs_root *root; 1567 struct btrfs_root *next; 1568 int ret = 0; 1569 int ret2; 1570 1571 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 1572 reloc_dirty_list) { 1573 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1574 /* Merged subvolume, cleanup its reloc root */ 1575 struct btrfs_root *reloc_root = root->reloc_root; 1576 1577 list_del_init(&root->reloc_dirty_list); 1578 root->reloc_root = NULL; 1579 /* 1580 * Need barrier to ensure clear_bit() only happens after 1581 * root->reloc_root = NULL. Pairs with have_reloc_root. 1582 */ 1583 smp_wmb(); 1584 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1585 if (reloc_root) { 1586 /* 1587 * btrfs_drop_snapshot drops our ref we hold for 1588 * ->reloc_root. If it fails however we must 1589 * drop the ref ourselves. 1590 */ 1591 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1); 1592 if (ret2 < 0) { 1593 btrfs_put_root(reloc_root); 1594 if (!ret) 1595 ret = ret2; 1596 } 1597 } 1598 btrfs_put_root(root); 1599 } else { 1600 /* Orphan reloc tree, just clean it up */ 1601 ret2 = btrfs_drop_snapshot(root, 0, 1); 1602 if (ret2 < 0) { 1603 btrfs_put_root(root); 1604 if (!ret) 1605 ret = ret2; 1606 } 1607 } 1608 } 1609 return ret; 1610 } 1611 1612 /* 1613 * merge the relocated tree blocks in reloc tree with corresponding 1614 * fs tree. 1615 */ 1616 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 1617 struct btrfs_root *root) 1618 { 1619 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1620 struct btrfs_key key; 1621 struct btrfs_key next_key; 1622 struct btrfs_trans_handle *trans = NULL; 1623 struct btrfs_root *reloc_root; 1624 struct btrfs_root_item *root_item; 1625 struct btrfs_path *path; 1626 struct extent_buffer *leaf; 1627 int reserve_level; 1628 int level; 1629 int max_level; 1630 int replaced = 0; 1631 int ret = 0; 1632 u32 min_reserved; 1633 1634 path = btrfs_alloc_path(); 1635 if (!path) 1636 return -ENOMEM; 1637 path->reada = READA_FORWARD; 1638 1639 reloc_root = root->reloc_root; 1640 root_item = &reloc_root->root_item; 1641 1642 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 1643 level = btrfs_root_level(root_item); 1644 atomic_inc(&reloc_root->node->refs); 1645 path->nodes[level] = reloc_root->node; 1646 path->slots[level] = 0; 1647 } else { 1648 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 1649 1650 level = btrfs_root_drop_level(root_item); 1651 BUG_ON(level == 0); 1652 path->lowest_level = level; 1653 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 1654 path->lowest_level = 0; 1655 if (ret < 0) { 1656 btrfs_free_path(path); 1657 return ret; 1658 } 1659 1660 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 1661 path->slots[level]); 1662 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 1663 1664 btrfs_unlock_up_safe(path, 0); 1665 } 1666 1667 /* 1668 * In merge_reloc_root(), we modify the upper level pointer to swap the 1669 * tree blocks between reloc tree and subvolume tree. Thus for tree 1670 * block COW, we COW at most from level 1 to root level for each tree. 1671 * 1672 * Thus the needed metadata size is at most root_level * nodesize, 1673 * and * 2 since we have two trees to COW. 1674 */ 1675 reserve_level = max_t(int, 1, btrfs_root_level(root_item)); 1676 min_reserved = fs_info->nodesize * reserve_level * 2; 1677 memset(&next_key, 0, sizeof(next_key)); 1678 1679 while (1) { 1680 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 1681 BTRFS_RESERVE_FLUSH_LIMIT); 1682 if (ret) 1683 goto out; 1684 trans = btrfs_start_transaction(root, 0); 1685 if (IS_ERR(trans)) { 1686 ret = PTR_ERR(trans); 1687 trans = NULL; 1688 goto out; 1689 } 1690 1691 /* 1692 * At this point we no longer have a reloc_control, so we can't 1693 * depend on btrfs_init_reloc_root to update our last_trans. 1694 * 1695 * But that's ok, we started the trans handle on our 1696 * corresponding fs_root, which means it's been added to the 1697 * dirty list. At commit time we'll still call 1698 * btrfs_update_reloc_root() and update our root item 1699 * appropriately. 1700 */ 1701 reloc_root->last_trans = trans->transid; 1702 trans->block_rsv = rc->block_rsv; 1703 1704 replaced = 0; 1705 max_level = level; 1706 1707 ret = walk_down_reloc_tree(reloc_root, path, &level); 1708 if (ret < 0) 1709 goto out; 1710 if (ret > 0) 1711 break; 1712 1713 if (!find_next_key(path, level, &key) && 1714 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 1715 ret = 0; 1716 } else { 1717 ret = replace_path(trans, rc, root, reloc_root, path, 1718 &next_key, level, max_level); 1719 } 1720 if (ret < 0) 1721 goto out; 1722 if (ret > 0) { 1723 level = ret; 1724 btrfs_node_key_to_cpu(path->nodes[level], &key, 1725 path->slots[level]); 1726 replaced = 1; 1727 } 1728 1729 ret = walk_up_reloc_tree(reloc_root, path, &level); 1730 if (ret > 0) 1731 break; 1732 1733 BUG_ON(level == 0); 1734 /* 1735 * save the merging progress in the drop_progress. 1736 * this is OK since root refs == 1 in this case. 1737 */ 1738 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 1739 path->slots[level]); 1740 btrfs_set_root_drop_level(root_item, level); 1741 1742 btrfs_end_transaction_throttle(trans); 1743 trans = NULL; 1744 1745 btrfs_btree_balance_dirty(fs_info); 1746 1747 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1748 invalidate_extent_cache(root, &key, &next_key); 1749 } 1750 1751 /* 1752 * handle the case only one block in the fs tree need to be 1753 * relocated and the block is tree root. 1754 */ 1755 leaf = btrfs_lock_root_node(root); 1756 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf, 1757 BTRFS_NESTING_COW); 1758 btrfs_tree_unlock(leaf); 1759 free_extent_buffer(leaf); 1760 out: 1761 btrfs_free_path(path); 1762 1763 if (ret == 0) 1764 insert_dirty_subvol(trans, rc, root); 1765 1766 if (trans) 1767 btrfs_end_transaction_throttle(trans); 1768 1769 btrfs_btree_balance_dirty(fs_info); 1770 1771 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1772 invalidate_extent_cache(root, &key, &next_key); 1773 1774 return ret; 1775 } 1776 1777 static noinline_for_stack 1778 int prepare_to_merge(struct reloc_control *rc, int err) 1779 { 1780 struct btrfs_root *root = rc->extent_root; 1781 struct btrfs_fs_info *fs_info = root->fs_info; 1782 struct btrfs_root *reloc_root; 1783 struct btrfs_trans_handle *trans; 1784 LIST_HEAD(reloc_roots); 1785 u64 num_bytes = 0; 1786 int ret; 1787 1788 mutex_lock(&fs_info->reloc_mutex); 1789 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 1790 rc->merging_rsv_size += rc->nodes_relocated * 2; 1791 mutex_unlock(&fs_info->reloc_mutex); 1792 1793 again: 1794 if (!err) { 1795 num_bytes = rc->merging_rsv_size; 1796 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 1797 BTRFS_RESERVE_FLUSH_ALL); 1798 if (ret) 1799 err = ret; 1800 } 1801 1802 trans = btrfs_join_transaction(rc->extent_root); 1803 if (IS_ERR(trans)) { 1804 if (!err) 1805 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1806 num_bytes, NULL); 1807 return PTR_ERR(trans); 1808 } 1809 1810 if (!err) { 1811 if (num_bytes != rc->merging_rsv_size) { 1812 btrfs_end_transaction(trans); 1813 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1814 num_bytes, NULL); 1815 goto again; 1816 } 1817 } 1818 1819 rc->merge_reloc_tree = 1; 1820 1821 while (!list_empty(&rc->reloc_roots)) { 1822 reloc_root = list_entry(rc->reloc_roots.next, 1823 struct btrfs_root, root_list); 1824 list_del_init(&reloc_root->root_list); 1825 1826 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1827 false); 1828 BUG_ON(IS_ERR(root)); 1829 BUG_ON(root->reloc_root != reloc_root); 1830 1831 /* 1832 * set reference count to 1, so btrfs_recover_relocation 1833 * knows it should resumes merging 1834 */ 1835 if (!err) 1836 btrfs_set_root_refs(&reloc_root->root_item, 1); 1837 btrfs_update_reloc_root(trans, root); 1838 1839 list_add(&reloc_root->root_list, &reloc_roots); 1840 btrfs_put_root(root); 1841 } 1842 1843 list_splice(&reloc_roots, &rc->reloc_roots); 1844 1845 if (!err) 1846 btrfs_commit_transaction(trans); 1847 else 1848 btrfs_end_transaction(trans); 1849 return err; 1850 } 1851 1852 static noinline_for_stack 1853 void free_reloc_roots(struct list_head *list) 1854 { 1855 struct btrfs_root *reloc_root, *tmp; 1856 1857 list_for_each_entry_safe(reloc_root, tmp, list, root_list) 1858 __del_reloc_root(reloc_root); 1859 } 1860 1861 static noinline_for_stack 1862 void merge_reloc_roots(struct reloc_control *rc) 1863 { 1864 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1865 struct btrfs_root *root; 1866 struct btrfs_root *reloc_root; 1867 LIST_HEAD(reloc_roots); 1868 int found = 0; 1869 int ret = 0; 1870 again: 1871 root = rc->extent_root; 1872 1873 /* 1874 * this serializes us with btrfs_record_root_in_transaction, 1875 * we have to make sure nobody is in the middle of 1876 * adding their roots to the list while we are 1877 * doing this splice 1878 */ 1879 mutex_lock(&fs_info->reloc_mutex); 1880 list_splice_init(&rc->reloc_roots, &reloc_roots); 1881 mutex_unlock(&fs_info->reloc_mutex); 1882 1883 while (!list_empty(&reloc_roots)) { 1884 found = 1; 1885 reloc_root = list_entry(reloc_roots.next, 1886 struct btrfs_root, root_list); 1887 1888 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1889 false); 1890 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 1891 BUG_ON(IS_ERR(root)); 1892 BUG_ON(root->reloc_root != reloc_root); 1893 ret = merge_reloc_root(rc, root); 1894 btrfs_put_root(root); 1895 if (ret) { 1896 if (list_empty(&reloc_root->root_list)) 1897 list_add_tail(&reloc_root->root_list, 1898 &reloc_roots); 1899 goto out; 1900 } 1901 } else { 1902 if (!IS_ERR(root)) { 1903 if (root->reloc_root == reloc_root) { 1904 root->reloc_root = NULL; 1905 btrfs_put_root(reloc_root); 1906 } 1907 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, 1908 &root->state); 1909 btrfs_put_root(root); 1910 } 1911 1912 list_del_init(&reloc_root->root_list); 1913 /* Don't forget to queue this reloc root for cleanup */ 1914 list_add_tail(&reloc_root->reloc_dirty_list, 1915 &rc->dirty_subvol_roots); 1916 } 1917 } 1918 1919 if (found) { 1920 found = 0; 1921 goto again; 1922 } 1923 out: 1924 if (ret) { 1925 btrfs_handle_fs_error(fs_info, ret, NULL); 1926 free_reloc_roots(&reloc_roots); 1927 1928 /* new reloc root may be added */ 1929 mutex_lock(&fs_info->reloc_mutex); 1930 list_splice_init(&rc->reloc_roots, &reloc_roots); 1931 mutex_unlock(&fs_info->reloc_mutex); 1932 free_reloc_roots(&reloc_roots); 1933 } 1934 1935 /* 1936 * We used to have 1937 * 1938 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 1939 * 1940 * here, but it's wrong. If we fail to start the transaction in 1941 * prepare_to_merge() we will have only 0 ref reloc roots, none of which 1942 * have actually been removed from the reloc_root_tree rb tree. This is 1943 * fine because we're bailing here, and we hold a reference on the root 1944 * for the list that holds it, so these roots will be cleaned up when we 1945 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root 1946 * will be cleaned up on unmount. 1947 * 1948 * The remaining nodes will be cleaned up by free_reloc_control. 1949 */ 1950 } 1951 1952 static void free_block_list(struct rb_root *blocks) 1953 { 1954 struct tree_block *block; 1955 struct rb_node *rb_node; 1956 while ((rb_node = rb_first(blocks))) { 1957 block = rb_entry(rb_node, struct tree_block, rb_node); 1958 rb_erase(rb_node, blocks); 1959 kfree(block); 1960 } 1961 } 1962 1963 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 1964 struct btrfs_root *reloc_root) 1965 { 1966 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 1967 struct btrfs_root *root; 1968 int ret; 1969 1970 if (reloc_root->last_trans == trans->transid) 1971 return 0; 1972 1973 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false); 1974 BUG_ON(IS_ERR(root)); 1975 BUG_ON(root->reloc_root != reloc_root); 1976 ret = btrfs_record_root_in_trans(trans, root); 1977 btrfs_put_root(root); 1978 1979 return ret; 1980 } 1981 1982 static noinline_for_stack 1983 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 1984 struct reloc_control *rc, 1985 struct btrfs_backref_node *node, 1986 struct btrfs_backref_edge *edges[]) 1987 { 1988 struct btrfs_backref_node *next; 1989 struct btrfs_root *root; 1990 int index = 0; 1991 1992 next = node; 1993 while (1) { 1994 cond_resched(); 1995 next = walk_up_backref(next, edges, &index); 1996 root = next->root; 1997 BUG_ON(!root); 1998 BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)); 1999 2000 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2001 record_reloc_root_in_trans(trans, root); 2002 break; 2003 } 2004 2005 btrfs_record_root_in_trans(trans, root); 2006 root = root->reloc_root; 2007 2008 if (next->new_bytenr != root->node->start) { 2009 BUG_ON(next->new_bytenr); 2010 BUG_ON(!list_empty(&next->list)); 2011 next->new_bytenr = root->node->start; 2012 btrfs_put_root(next->root); 2013 next->root = btrfs_grab_root(root); 2014 ASSERT(next->root); 2015 list_add_tail(&next->list, 2016 &rc->backref_cache.changed); 2017 mark_block_processed(rc, next); 2018 break; 2019 } 2020 2021 WARN_ON(1); 2022 root = NULL; 2023 next = walk_down_backref(edges, &index); 2024 if (!next || next->level <= node->level) 2025 break; 2026 } 2027 if (!root) 2028 return NULL; 2029 2030 next = node; 2031 /* setup backref node path for btrfs_reloc_cow_block */ 2032 while (1) { 2033 rc->backref_cache.path[next->level] = next; 2034 if (--index < 0) 2035 break; 2036 next = edges[index]->node[UPPER]; 2037 } 2038 return root; 2039 } 2040 2041 /* 2042 * Select a tree root for relocation. 2043 * 2044 * Return NULL if the block is not shareable. We should use do_relocation() in 2045 * this case. 2046 * 2047 * Return a tree root pointer if the block is shareable. 2048 * Return -ENOENT if the block is root of reloc tree. 2049 */ 2050 static noinline_for_stack 2051 struct btrfs_root *select_one_root(struct btrfs_backref_node *node) 2052 { 2053 struct btrfs_backref_node *next; 2054 struct btrfs_root *root; 2055 struct btrfs_root *fs_root = NULL; 2056 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2057 int index = 0; 2058 2059 next = node; 2060 while (1) { 2061 cond_resched(); 2062 next = walk_up_backref(next, edges, &index); 2063 root = next->root; 2064 BUG_ON(!root); 2065 2066 /* No other choice for non-shareable tree */ 2067 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2068 return root; 2069 2070 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2071 fs_root = root; 2072 2073 if (next != node) 2074 return NULL; 2075 2076 next = walk_down_backref(edges, &index); 2077 if (!next || next->level <= node->level) 2078 break; 2079 } 2080 2081 if (!fs_root) 2082 return ERR_PTR(-ENOENT); 2083 return fs_root; 2084 } 2085 2086 static noinline_for_stack 2087 u64 calcu_metadata_size(struct reloc_control *rc, 2088 struct btrfs_backref_node *node, int reserve) 2089 { 2090 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2091 struct btrfs_backref_node *next = node; 2092 struct btrfs_backref_edge *edge; 2093 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2094 u64 num_bytes = 0; 2095 int index = 0; 2096 2097 BUG_ON(reserve && node->processed); 2098 2099 while (next) { 2100 cond_resched(); 2101 while (1) { 2102 if (next->processed && (reserve || next != node)) 2103 break; 2104 2105 num_bytes += fs_info->nodesize; 2106 2107 if (list_empty(&next->upper)) 2108 break; 2109 2110 edge = list_entry(next->upper.next, 2111 struct btrfs_backref_edge, list[LOWER]); 2112 edges[index++] = edge; 2113 next = edge->node[UPPER]; 2114 } 2115 next = walk_down_backref(edges, &index); 2116 } 2117 return num_bytes; 2118 } 2119 2120 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2121 struct reloc_control *rc, 2122 struct btrfs_backref_node *node) 2123 { 2124 struct btrfs_root *root = rc->extent_root; 2125 struct btrfs_fs_info *fs_info = root->fs_info; 2126 u64 num_bytes; 2127 int ret; 2128 u64 tmp; 2129 2130 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2131 2132 trans->block_rsv = rc->block_rsv; 2133 rc->reserved_bytes += num_bytes; 2134 2135 /* 2136 * We are under a transaction here so we can only do limited flushing. 2137 * If we get an enospc just kick back -EAGAIN so we know to drop the 2138 * transaction and try to refill when we can flush all the things. 2139 */ 2140 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2141 BTRFS_RESERVE_FLUSH_LIMIT); 2142 if (ret) { 2143 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2144 while (tmp <= rc->reserved_bytes) 2145 tmp <<= 1; 2146 /* 2147 * only one thread can access block_rsv at this point, 2148 * so we don't need hold lock to protect block_rsv. 2149 * we expand more reservation size here to allow enough 2150 * space for relocation and we will return earlier in 2151 * enospc case. 2152 */ 2153 rc->block_rsv->size = tmp + fs_info->nodesize * 2154 RELOCATION_RESERVED_NODES; 2155 return -EAGAIN; 2156 } 2157 2158 return 0; 2159 } 2160 2161 /* 2162 * relocate a block tree, and then update pointers in upper level 2163 * blocks that reference the block to point to the new location. 2164 * 2165 * if called by link_to_upper, the block has already been relocated. 2166 * in that case this function just updates pointers. 2167 */ 2168 static int do_relocation(struct btrfs_trans_handle *trans, 2169 struct reloc_control *rc, 2170 struct btrfs_backref_node *node, 2171 struct btrfs_key *key, 2172 struct btrfs_path *path, int lowest) 2173 { 2174 struct btrfs_backref_node *upper; 2175 struct btrfs_backref_edge *edge; 2176 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2177 struct btrfs_root *root; 2178 struct extent_buffer *eb; 2179 u32 blocksize; 2180 u64 bytenr; 2181 int slot; 2182 int ret = 0; 2183 2184 BUG_ON(lowest && node->eb); 2185 2186 path->lowest_level = node->level + 1; 2187 rc->backref_cache.path[node->level] = node; 2188 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2189 struct btrfs_ref ref = { 0 }; 2190 2191 cond_resched(); 2192 2193 upper = edge->node[UPPER]; 2194 root = select_reloc_root(trans, rc, upper, edges); 2195 BUG_ON(!root); 2196 2197 if (upper->eb && !upper->locked) { 2198 if (!lowest) { 2199 ret = btrfs_bin_search(upper->eb, key, &slot); 2200 if (ret < 0) 2201 goto next; 2202 BUG_ON(ret); 2203 bytenr = btrfs_node_blockptr(upper->eb, slot); 2204 if (node->eb->start == bytenr) 2205 goto next; 2206 } 2207 btrfs_backref_drop_node_buffer(upper); 2208 } 2209 2210 if (!upper->eb) { 2211 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2212 if (ret) { 2213 if (ret > 0) 2214 ret = -ENOENT; 2215 2216 btrfs_release_path(path); 2217 break; 2218 } 2219 2220 if (!upper->eb) { 2221 upper->eb = path->nodes[upper->level]; 2222 path->nodes[upper->level] = NULL; 2223 } else { 2224 BUG_ON(upper->eb != path->nodes[upper->level]); 2225 } 2226 2227 upper->locked = 1; 2228 path->locks[upper->level] = 0; 2229 2230 slot = path->slots[upper->level]; 2231 btrfs_release_path(path); 2232 } else { 2233 ret = btrfs_bin_search(upper->eb, key, &slot); 2234 if (ret < 0) 2235 goto next; 2236 BUG_ON(ret); 2237 } 2238 2239 bytenr = btrfs_node_blockptr(upper->eb, slot); 2240 if (lowest) { 2241 if (bytenr != node->bytenr) { 2242 btrfs_err(root->fs_info, 2243 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2244 bytenr, node->bytenr, slot, 2245 upper->eb->start); 2246 ret = -EIO; 2247 goto next; 2248 } 2249 } else { 2250 if (node->eb->start == bytenr) 2251 goto next; 2252 } 2253 2254 blocksize = root->fs_info->nodesize; 2255 eb = btrfs_read_node_slot(upper->eb, slot); 2256 if (IS_ERR(eb)) { 2257 ret = PTR_ERR(eb); 2258 goto next; 2259 } 2260 btrfs_tree_lock(eb); 2261 2262 if (!node->eb) { 2263 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2264 slot, &eb, BTRFS_NESTING_COW); 2265 btrfs_tree_unlock(eb); 2266 free_extent_buffer(eb); 2267 if (ret < 0) 2268 goto next; 2269 BUG_ON(node->eb != eb); 2270 } else { 2271 btrfs_set_node_blockptr(upper->eb, slot, 2272 node->eb->start); 2273 btrfs_set_node_ptr_generation(upper->eb, slot, 2274 trans->transid); 2275 btrfs_mark_buffer_dirty(upper->eb); 2276 2277 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2278 node->eb->start, blocksize, 2279 upper->eb->start); 2280 ref.real_root = root->root_key.objectid; 2281 btrfs_init_tree_ref(&ref, node->level, 2282 btrfs_header_owner(upper->eb)); 2283 ret = btrfs_inc_extent_ref(trans, &ref); 2284 BUG_ON(ret); 2285 2286 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2287 BUG_ON(ret); 2288 } 2289 next: 2290 if (!upper->pending) 2291 btrfs_backref_drop_node_buffer(upper); 2292 else 2293 btrfs_backref_unlock_node_buffer(upper); 2294 if (ret) 2295 break; 2296 } 2297 2298 if (!ret && node->pending) { 2299 btrfs_backref_drop_node_buffer(node); 2300 list_move_tail(&node->list, &rc->backref_cache.changed); 2301 node->pending = 0; 2302 } 2303 2304 path->lowest_level = 0; 2305 BUG_ON(ret == -ENOSPC); 2306 return ret; 2307 } 2308 2309 static int link_to_upper(struct btrfs_trans_handle *trans, 2310 struct reloc_control *rc, 2311 struct btrfs_backref_node *node, 2312 struct btrfs_path *path) 2313 { 2314 struct btrfs_key key; 2315 2316 btrfs_node_key_to_cpu(node->eb, &key, 0); 2317 return do_relocation(trans, rc, node, &key, path, 0); 2318 } 2319 2320 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2321 struct reloc_control *rc, 2322 struct btrfs_path *path, int err) 2323 { 2324 LIST_HEAD(list); 2325 struct btrfs_backref_cache *cache = &rc->backref_cache; 2326 struct btrfs_backref_node *node; 2327 int level; 2328 int ret; 2329 2330 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2331 while (!list_empty(&cache->pending[level])) { 2332 node = list_entry(cache->pending[level].next, 2333 struct btrfs_backref_node, list); 2334 list_move_tail(&node->list, &list); 2335 BUG_ON(!node->pending); 2336 2337 if (!err) { 2338 ret = link_to_upper(trans, rc, node, path); 2339 if (ret < 0) 2340 err = ret; 2341 } 2342 } 2343 list_splice_init(&list, &cache->pending[level]); 2344 } 2345 return err; 2346 } 2347 2348 /* 2349 * mark a block and all blocks directly/indirectly reference the block 2350 * as processed. 2351 */ 2352 static void update_processed_blocks(struct reloc_control *rc, 2353 struct btrfs_backref_node *node) 2354 { 2355 struct btrfs_backref_node *next = node; 2356 struct btrfs_backref_edge *edge; 2357 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2358 int index = 0; 2359 2360 while (next) { 2361 cond_resched(); 2362 while (1) { 2363 if (next->processed) 2364 break; 2365 2366 mark_block_processed(rc, next); 2367 2368 if (list_empty(&next->upper)) 2369 break; 2370 2371 edge = list_entry(next->upper.next, 2372 struct btrfs_backref_edge, list[LOWER]); 2373 edges[index++] = edge; 2374 next = edge->node[UPPER]; 2375 } 2376 next = walk_down_backref(edges, &index); 2377 } 2378 } 2379 2380 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2381 { 2382 u32 blocksize = rc->extent_root->fs_info->nodesize; 2383 2384 if (test_range_bit(&rc->processed_blocks, bytenr, 2385 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2386 return 1; 2387 return 0; 2388 } 2389 2390 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2391 struct tree_block *block) 2392 { 2393 struct extent_buffer *eb; 2394 2395 eb = read_tree_block(fs_info, block->bytenr, block->owner, 2396 block->key.offset, block->level, NULL); 2397 if (IS_ERR(eb)) { 2398 return PTR_ERR(eb); 2399 } else if (!extent_buffer_uptodate(eb)) { 2400 free_extent_buffer(eb); 2401 return -EIO; 2402 } 2403 if (block->level == 0) 2404 btrfs_item_key_to_cpu(eb, &block->key, 0); 2405 else 2406 btrfs_node_key_to_cpu(eb, &block->key, 0); 2407 free_extent_buffer(eb); 2408 block->key_ready = 1; 2409 return 0; 2410 } 2411 2412 /* 2413 * helper function to relocate a tree block 2414 */ 2415 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2416 struct reloc_control *rc, 2417 struct btrfs_backref_node *node, 2418 struct btrfs_key *key, 2419 struct btrfs_path *path) 2420 { 2421 struct btrfs_root *root; 2422 int ret = 0; 2423 2424 if (!node) 2425 return 0; 2426 2427 /* 2428 * If we fail here we want to drop our backref_node because we are going 2429 * to start over and regenerate the tree for it. 2430 */ 2431 ret = reserve_metadata_space(trans, rc, node); 2432 if (ret) 2433 goto out; 2434 2435 BUG_ON(node->processed); 2436 root = select_one_root(node); 2437 if (root == ERR_PTR(-ENOENT)) { 2438 update_processed_blocks(rc, node); 2439 goto out; 2440 } 2441 2442 if (root) { 2443 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2444 BUG_ON(node->new_bytenr); 2445 BUG_ON(!list_empty(&node->list)); 2446 btrfs_record_root_in_trans(trans, root); 2447 root = root->reloc_root; 2448 node->new_bytenr = root->node->start; 2449 btrfs_put_root(node->root); 2450 node->root = btrfs_grab_root(root); 2451 ASSERT(node->root); 2452 list_add_tail(&node->list, &rc->backref_cache.changed); 2453 } else { 2454 path->lowest_level = node->level; 2455 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2456 btrfs_release_path(path); 2457 if (ret > 0) 2458 ret = 0; 2459 } 2460 if (!ret) 2461 update_processed_blocks(rc, node); 2462 } else { 2463 ret = do_relocation(trans, rc, node, key, path, 1); 2464 } 2465 out: 2466 if (ret || node->level == 0 || node->cowonly) 2467 btrfs_backref_cleanup_node(&rc->backref_cache, node); 2468 return ret; 2469 } 2470 2471 /* 2472 * relocate a list of blocks 2473 */ 2474 static noinline_for_stack 2475 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2476 struct reloc_control *rc, struct rb_root *blocks) 2477 { 2478 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2479 struct btrfs_backref_node *node; 2480 struct btrfs_path *path; 2481 struct tree_block *block; 2482 struct tree_block *next; 2483 int ret; 2484 int err = 0; 2485 2486 path = btrfs_alloc_path(); 2487 if (!path) { 2488 err = -ENOMEM; 2489 goto out_free_blocks; 2490 } 2491 2492 /* Kick in readahead for tree blocks with missing keys */ 2493 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2494 if (!block->key_ready) 2495 btrfs_readahead_tree_block(fs_info, block->bytenr, 2496 block->owner, 0, 2497 block->level); 2498 } 2499 2500 /* Get first keys */ 2501 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2502 if (!block->key_ready) { 2503 err = get_tree_block_key(fs_info, block); 2504 if (err) 2505 goto out_free_path; 2506 } 2507 } 2508 2509 /* Do tree relocation */ 2510 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2511 node = build_backref_tree(rc, &block->key, 2512 block->level, block->bytenr); 2513 if (IS_ERR(node)) { 2514 err = PTR_ERR(node); 2515 goto out; 2516 } 2517 2518 ret = relocate_tree_block(trans, rc, node, &block->key, 2519 path); 2520 if (ret < 0) { 2521 err = ret; 2522 break; 2523 } 2524 } 2525 out: 2526 err = finish_pending_nodes(trans, rc, path, err); 2527 2528 out_free_path: 2529 btrfs_free_path(path); 2530 out_free_blocks: 2531 free_block_list(blocks); 2532 return err; 2533 } 2534 2535 static noinline_for_stack int prealloc_file_extent_cluster( 2536 struct btrfs_inode *inode, 2537 struct file_extent_cluster *cluster) 2538 { 2539 u64 alloc_hint = 0; 2540 u64 start; 2541 u64 end; 2542 u64 offset = inode->index_cnt; 2543 u64 num_bytes; 2544 int nr; 2545 int ret = 0; 2546 u64 prealloc_start = cluster->start - offset; 2547 u64 prealloc_end = cluster->end - offset; 2548 u64 cur_offset = prealloc_start; 2549 2550 BUG_ON(cluster->start != cluster->boundary[0]); 2551 ret = btrfs_alloc_data_chunk_ondemand(inode, 2552 prealloc_end + 1 - prealloc_start); 2553 if (ret) 2554 return ret; 2555 2556 /* 2557 * On a zoned filesystem, we cannot preallocate the file region. 2558 * Instead, we dirty and fiemap_write the region. 2559 */ 2560 if (btrfs_is_zoned(inode->root->fs_info)) { 2561 struct btrfs_root *root = inode->root; 2562 struct btrfs_trans_handle *trans; 2563 2564 end = cluster->end - offset + 1; 2565 trans = btrfs_start_transaction(root, 1); 2566 if (IS_ERR(trans)) 2567 return PTR_ERR(trans); 2568 2569 inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 2570 i_size_write(&inode->vfs_inode, end); 2571 ret = btrfs_update_inode(trans, root, inode); 2572 if (ret) { 2573 btrfs_abort_transaction(trans, ret); 2574 btrfs_end_transaction(trans); 2575 return ret; 2576 } 2577 2578 return btrfs_end_transaction(trans); 2579 } 2580 2581 inode_lock(&inode->vfs_inode); 2582 for (nr = 0; nr < cluster->nr; nr++) { 2583 start = cluster->boundary[nr] - offset; 2584 if (nr + 1 < cluster->nr) 2585 end = cluster->boundary[nr + 1] - 1 - offset; 2586 else 2587 end = cluster->end - offset; 2588 2589 lock_extent(&inode->io_tree, start, end); 2590 num_bytes = end + 1 - start; 2591 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start, 2592 num_bytes, num_bytes, 2593 end + 1, &alloc_hint); 2594 cur_offset = end + 1; 2595 unlock_extent(&inode->io_tree, start, end); 2596 if (ret) 2597 break; 2598 } 2599 inode_unlock(&inode->vfs_inode); 2600 2601 if (cur_offset < prealloc_end) 2602 btrfs_free_reserved_data_space_noquota(inode->root->fs_info, 2603 prealloc_end + 1 - cur_offset); 2604 return ret; 2605 } 2606 2607 static noinline_for_stack 2608 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 2609 u64 block_start) 2610 { 2611 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2612 struct extent_map *em; 2613 int ret = 0; 2614 2615 em = alloc_extent_map(); 2616 if (!em) 2617 return -ENOMEM; 2618 2619 em->start = start; 2620 em->len = end + 1 - start; 2621 em->block_len = em->len; 2622 em->block_start = block_start; 2623 set_bit(EXTENT_FLAG_PINNED, &em->flags); 2624 2625 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2626 while (1) { 2627 write_lock(&em_tree->lock); 2628 ret = add_extent_mapping(em_tree, em, 0); 2629 write_unlock(&em_tree->lock); 2630 if (ret != -EEXIST) { 2631 free_extent_map(em); 2632 break; 2633 } 2634 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 2635 } 2636 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2637 return ret; 2638 } 2639 2640 /* 2641 * Allow error injection to test balance cancellation 2642 */ 2643 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info) 2644 { 2645 return atomic_read(&fs_info->balance_cancel_req) || 2646 fatal_signal_pending(current); 2647 } 2648 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); 2649 2650 static int relocate_file_extent_cluster(struct inode *inode, 2651 struct file_extent_cluster *cluster) 2652 { 2653 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2654 u64 page_start; 2655 u64 page_end; 2656 u64 offset = BTRFS_I(inode)->index_cnt; 2657 unsigned long index; 2658 unsigned long last_index; 2659 struct page *page; 2660 struct file_ra_state *ra; 2661 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2662 int nr = 0; 2663 int ret = 0; 2664 2665 if (!cluster->nr) 2666 return 0; 2667 2668 ra = kzalloc(sizeof(*ra), GFP_NOFS); 2669 if (!ra) 2670 return -ENOMEM; 2671 2672 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster); 2673 if (ret) 2674 goto out; 2675 2676 file_ra_state_init(ra, inode->i_mapping); 2677 2678 ret = setup_extent_mapping(inode, cluster->start - offset, 2679 cluster->end - offset, cluster->start); 2680 if (ret) 2681 goto out; 2682 2683 index = (cluster->start - offset) >> PAGE_SHIFT; 2684 last_index = (cluster->end - offset) >> PAGE_SHIFT; 2685 while (index <= last_index) { 2686 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 2687 PAGE_SIZE); 2688 if (ret) 2689 goto out; 2690 2691 page = find_lock_page(inode->i_mapping, index); 2692 if (!page) { 2693 page_cache_sync_readahead(inode->i_mapping, 2694 ra, NULL, index, 2695 last_index + 1 - index); 2696 page = find_or_create_page(inode->i_mapping, index, 2697 mask); 2698 if (!page) { 2699 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2700 PAGE_SIZE, true); 2701 btrfs_delalloc_release_extents(BTRFS_I(inode), 2702 PAGE_SIZE); 2703 ret = -ENOMEM; 2704 goto out; 2705 } 2706 } 2707 ret = set_page_extent_mapped(page); 2708 if (ret < 0) { 2709 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2710 PAGE_SIZE, true); 2711 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2712 unlock_page(page); 2713 put_page(page); 2714 goto out; 2715 } 2716 2717 if (PageReadahead(page)) { 2718 page_cache_async_readahead(inode->i_mapping, 2719 ra, NULL, page, index, 2720 last_index + 1 - index); 2721 } 2722 2723 if (!PageUptodate(page)) { 2724 btrfs_readpage(NULL, page); 2725 lock_page(page); 2726 if (!PageUptodate(page)) { 2727 unlock_page(page); 2728 put_page(page); 2729 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2730 PAGE_SIZE, true); 2731 btrfs_delalloc_release_extents(BTRFS_I(inode), 2732 PAGE_SIZE); 2733 ret = -EIO; 2734 goto out; 2735 } 2736 } 2737 2738 page_start = page_offset(page); 2739 page_end = page_start + PAGE_SIZE - 1; 2740 2741 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 2742 2743 if (nr < cluster->nr && 2744 page_start + offset == cluster->boundary[nr]) { 2745 set_extent_bits(&BTRFS_I(inode)->io_tree, 2746 page_start, page_end, 2747 EXTENT_BOUNDARY); 2748 nr++; 2749 } 2750 2751 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, 2752 page_end, 0, NULL); 2753 if (ret) { 2754 unlock_page(page); 2755 put_page(page); 2756 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2757 PAGE_SIZE, true); 2758 btrfs_delalloc_release_extents(BTRFS_I(inode), 2759 PAGE_SIZE); 2760 2761 clear_extent_bits(&BTRFS_I(inode)->io_tree, 2762 page_start, page_end, 2763 EXTENT_LOCKED | EXTENT_BOUNDARY); 2764 goto out; 2765 2766 } 2767 set_page_dirty(page); 2768 2769 unlock_extent(&BTRFS_I(inode)->io_tree, 2770 page_start, page_end); 2771 unlock_page(page); 2772 put_page(page); 2773 2774 index++; 2775 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2776 balance_dirty_pages_ratelimited(inode->i_mapping); 2777 btrfs_throttle(fs_info); 2778 if (btrfs_should_cancel_balance(fs_info)) { 2779 ret = -ECANCELED; 2780 goto out; 2781 } 2782 } 2783 WARN_ON(nr != cluster->nr); 2784 if (btrfs_is_zoned(fs_info) && !ret) 2785 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 2786 out: 2787 kfree(ra); 2788 return ret; 2789 } 2790 2791 static noinline_for_stack 2792 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 2793 struct file_extent_cluster *cluster) 2794 { 2795 int ret; 2796 2797 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 2798 ret = relocate_file_extent_cluster(inode, cluster); 2799 if (ret) 2800 return ret; 2801 cluster->nr = 0; 2802 } 2803 2804 if (!cluster->nr) 2805 cluster->start = extent_key->objectid; 2806 else 2807 BUG_ON(cluster->nr >= MAX_EXTENTS); 2808 cluster->end = extent_key->objectid + extent_key->offset - 1; 2809 cluster->boundary[cluster->nr] = extent_key->objectid; 2810 cluster->nr++; 2811 2812 if (cluster->nr >= MAX_EXTENTS) { 2813 ret = relocate_file_extent_cluster(inode, cluster); 2814 if (ret) 2815 return ret; 2816 cluster->nr = 0; 2817 } 2818 return 0; 2819 } 2820 2821 /* 2822 * helper to add a tree block to the list. 2823 * the major work is getting the generation and level of the block 2824 */ 2825 static int add_tree_block(struct reloc_control *rc, 2826 struct btrfs_key *extent_key, 2827 struct btrfs_path *path, 2828 struct rb_root *blocks) 2829 { 2830 struct extent_buffer *eb; 2831 struct btrfs_extent_item *ei; 2832 struct btrfs_tree_block_info *bi; 2833 struct tree_block *block; 2834 struct rb_node *rb_node; 2835 u32 item_size; 2836 int level = -1; 2837 u64 generation; 2838 u64 owner = 0; 2839 2840 eb = path->nodes[0]; 2841 item_size = btrfs_item_size_nr(eb, path->slots[0]); 2842 2843 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 2844 item_size >= sizeof(*ei) + sizeof(*bi)) { 2845 unsigned long ptr = 0, end; 2846 2847 ei = btrfs_item_ptr(eb, path->slots[0], 2848 struct btrfs_extent_item); 2849 end = (unsigned long)ei + item_size; 2850 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 2851 bi = (struct btrfs_tree_block_info *)(ei + 1); 2852 level = btrfs_tree_block_level(eb, bi); 2853 ptr = (unsigned long)(bi + 1); 2854 } else { 2855 level = (int)extent_key->offset; 2856 ptr = (unsigned long)(ei + 1); 2857 } 2858 generation = btrfs_extent_generation(eb, ei); 2859 2860 /* 2861 * We're reading random blocks without knowing their owner ahead 2862 * of time. This is ok most of the time, as all reloc roots and 2863 * fs roots have the same lock type. However normal trees do 2864 * not, and the only way to know ahead of time is to read the 2865 * inline ref offset. We know it's an fs root if 2866 * 2867 * 1. There's more than one ref. 2868 * 2. There's a SHARED_DATA_REF_KEY set. 2869 * 3. FULL_BACKREF is set on the flags. 2870 * 2871 * Otherwise it's safe to assume that the ref offset == the 2872 * owner of this block, so we can use that when calling 2873 * read_tree_block. 2874 */ 2875 if (btrfs_extent_refs(eb, ei) == 1 && 2876 !(btrfs_extent_flags(eb, ei) & 2877 BTRFS_BLOCK_FLAG_FULL_BACKREF) && 2878 ptr < end) { 2879 struct btrfs_extent_inline_ref *iref; 2880 int type; 2881 2882 iref = (struct btrfs_extent_inline_ref *)ptr; 2883 type = btrfs_get_extent_inline_ref_type(eb, iref, 2884 BTRFS_REF_TYPE_BLOCK); 2885 if (type == BTRFS_REF_TYPE_INVALID) 2886 return -EINVAL; 2887 if (type == BTRFS_TREE_BLOCK_REF_KEY) 2888 owner = btrfs_extent_inline_ref_offset(eb, iref); 2889 } 2890 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 2891 btrfs_print_v0_err(eb->fs_info); 2892 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 2893 return -EINVAL; 2894 } else { 2895 BUG(); 2896 } 2897 2898 btrfs_release_path(path); 2899 2900 BUG_ON(level == -1); 2901 2902 block = kmalloc(sizeof(*block), GFP_NOFS); 2903 if (!block) 2904 return -ENOMEM; 2905 2906 block->bytenr = extent_key->objectid; 2907 block->key.objectid = rc->extent_root->fs_info->nodesize; 2908 block->key.offset = generation; 2909 block->level = level; 2910 block->key_ready = 0; 2911 block->owner = owner; 2912 2913 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node); 2914 if (rb_node) 2915 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr, 2916 -EEXIST); 2917 2918 return 0; 2919 } 2920 2921 /* 2922 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 2923 */ 2924 static int __add_tree_block(struct reloc_control *rc, 2925 u64 bytenr, u32 blocksize, 2926 struct rb_root *blocks) 2927 { 2928 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2929 struct btrfs_path *path; 2930 struct btrfs_key key; 2931 int ret; 2932 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 2933 2934 if (tree_block_processed(bytenr, rc)) 2935 return 0; 2936 2937 if (rb_simple_search(blocks, bytenr)) 2938 return 0; 2939 2940 path = btrfs_alloc_path(); 2941 if (!path) 2942 return -ENOMEM; 2943 again: 2944 key.objectid = bytenr; 2945 if (skinny) { 2946 key.type = BTRFS_METADATA_ITEM_KEY; 2947 key.offset = (u64)-1; 2948 } else { 2949 key.type = BTRFS_EXTENT_ITEM_KEY; 2950 key.offset = blocksize; 2951 } 2952 2953 path->search_commit_root = 1; 2954 path->skip_locking = 1; 2955 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 2956 if (ret < 0) 2957 goto out; 2958 2959 if (ret > 0 && skinny) { 2960 if (path->slots[0]) { 2961 path->slots[0]--; 2962 btrfs_item_key_to_cpu(path->nodes[0], &key, 2963 path->slots[0]); 2964 if (key.objectid == bytenr && 2965 (key.type == BTRFS_METADATA_ITEM_KEY || 2966 (key.type == BTRFS_EXTENT_ITEM_KEY && 2967 key.offset == blocksize))) 2968 ret = 0; 2969 } 2970 2971 if (ret) { 2972 skinny = false; 2973 btrfs_release_path(path); 2974 goto again; 2975 } 2976 } 2977 if (ret) { 2978 ASSERT(ret == 1); 2979 btrfs_print_leaf(path->nodes[0]); 2980 btrfs_err(fs_info, 2981 "tree block extent item (%llu) is not found in extent tree", 2982 bytenr); 2983 WARN_ON(1); 2984 ret = -EINVAL; 2985 goto out; 2986 } 2987 2988 ret = add_tree_block(rc, &key, path, blocks); 2989 out: 2990 btrfs_free_path(path); 2991 return ret; 2992 } 2993 2994 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 2995 struct btrfs_block_group *block_group, 2996 struct inode *inode, 2997 u64 ino) 2998 { 2999 struct btrfs_root *root = fs_info->tree_root; 3000 struct btrfs_trans_handle *trans; 3001 int ret = 0; 3002 3003 if (inode) 3004 goto truncate; 3005 3006 inode = btrfs_iget(fs_info->sb, ino, root); 3007 if (IS_ERR(inode)) 3008 return -ENOENT; 3009 3010 truncate: 3011 ret = btrfs_check_trunc_cache_free_space(fs_info, 3012 &fs_info->global_block_rsv); 3013 if (ret) 3014 goto out; 3015 3016 trans = btrfs_join_transaction(root); 3017 if (IS_ERR(trans)) { 3018 ret = PTR_ERR(trans); 3019 goto out; 3020 } 3021 3022 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3023 3024 btrfs_end_transaction(trans); 3025 btrfs_btree_balance_dirty(fs_info); 3026 out: 3027 iput(inode); 3028 return ret; 3029 } 3030 3031 /* 3032 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the 3033 * cache inode, to avoid free space cache data extent blocking data relocation. 3034 */ 3035 static int delete_v1_space_cache(struct extent_buffer *leaf, 3036 struct btrfs_block_group *block_group, 3037 u64 data_bytenr) 3038 { 3039 u64 space_cache_ino; 3040 struct btrfs_file_extent_item *ei; 3041 struct btrfs_key key; 3042 bool found = false; 3043 int i; 3044 int ret; 3045 3046 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) 3047 return 0; 3048 3049 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 3050 u8 type; 3051 3052 btrfs_item_key_to_cpu(leaf, &key, i); 3053 if (key.type != BTRFS_EXTENT_DATA_KEY) 3054 continue; 3055 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 3056 type = btrfs_file_extent_type(leaf, ei); 3057 3058 if ((type == BTRFS_FILE_EXTENT_REG || 3059 type == BTRFS_FILE_EXTENT_PREALLOC) && 3060 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { 3061 found = true; 3062 space_cache_ino = key.objectid; 3063 break; 3064 } 3065 } 3066 if (!found) 3067 return -ENOENT; 3068 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL, 3069 space_cache_ino); 3070 return ret; 3071 } 3072 3073 /* 3074 * helper to find all tree blocks that reference a given data extent 3075 */ 3076 static noinline_for_stack 3077 int add_data_references(struct reloc_control *rc, 3078 struct btrfs_key *extent_key, 3079 struct btrfs_path *path, 3080 struct rb_root *blocks) 3081 { 3082 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3083 struct ulist *leaves = NULL; 3084 struct ulist_iterator leaf_uiter; 3085 struct ulist_node *ref_node = NULL; 3086 const u32 blocksize = fs_info->nodesize; 3087 int ret = 0; 3088 3089 btrfs_release_path(path); 3090 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid, 3091 0, &leaves, NULL, true); 3092 if (ret < 0) 3093 return ret; 3094 3095 ULIST_ITER_INIT(&leaf_uiter); 3096 while ((ref_node = ulist_next(leaves, &leaf_uiter))) { 3097 struct extent_buffer *eb; 3098 3099 eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL); 3100 if (IS_ERR(eb)) { 3101 ret = PTR_ERR(eb); 3102 break; 3103 } 3104 ret = delete_v1_space_cache(eb, rc->block_group, 3105 extent_key->objectid); 3106 free_extent_buffer(eb); 3107 if (ret < 0) 3108 break; 3109 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); 3110 if (ret < 0) 3111 break; 3112 } 3113 if (ret < 0) 3114 free_block_list(blocks); 3115 ulist_free(leaves); 3116 return ret; 3117 } 3118 3119 /* 3120 * helper to find next unprocessed extent 3121 */ 3122 static noinline_for_stack 3123 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3124 struct btrfs_key *extent_key) 3125 { 3126 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3127 struct btrfs_key key; 3128 struct extent_buffer *leaf; 3129 u64 start, end, last; 3130 int ret; 3131 3132 last = rc->block_group->start + rc->block_group->length; 3133 while (1) { 3134 cond_resched(); 3135 if (rc->search_start >= last) { 3136 ret = 1; 3137 break; 3138 } 3139 3140 key.objectid = rc->search_start; 3141 key.type = BTRFS_EXTENT_ITEM_KEY; 3142 key.offset = 0; 3143 3144 path->search_commit_root = 1; 3145 path->skip_locking = 1; 3146 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3147 0, 0); 3148 if (ret < 0) 3149 break; 3150 next: 3151 leaf = path->nodes[0]; 3152 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3153 ret = btrfs_next_leaf(rc->extent_root, path); 3154 if (ret != 0) 3155 break; 3156 leaf = path->nodes[0]; 3157 } 3158 3159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3160 if (key.objectid >= last) { 3161 ret = 1; 3162 break; 3163 } 3164 3165 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3166 key.type != BTRFS_METADATA_ITEM_KEY) { 3167 path->slots[0]++; 3168 goto next; 3169 } 3170 3171 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3172 key.objectid + key.offset <= rc->search_start) { 3173 path->slots[0]++; 3174 goto next; 3175 } 3176 3177 if (key.type == BTRFS_METADATA_ITEM_KEY && 3178 key.objectid + fs_info->nodesize <= 3179 rc->search_start) { 3180 path->slots[0]++; 3181 goto next; 3182 } 3183 3184 ret = find_first_extent_bit(&rc->processed_blocks, 3185 key.objectid, &start, &end, 3186 EXTENT_DIRTY, NULL); 3187 3188 if (ret == 0 && start <= key.objectid) { 3189 btrfs_release_path(path); 3190 rc->search_start = end + 1; 3191 } else { 3192 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3193 rc->search_start = key.objectid + key.offset; 3194 else 3195 rc->search_start = key.objectid + 3196 fs_info->nodesize; 3197 memcpy(extent_key, &key, sizeof(key)); 3198 return 0; 3199 } 3200 } 3201 btrfs_release_path(path); 3202 return ret; 3203 } 3204 3205 static void set_reloc_control(struct reloc_control *rc) 3206 { 3207 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3208 3209 mutex_lock(&fs_info->reloc_mutex); 3210 fs_info->reloc_ctl = rc; 3211 mutex_unlock(&fs_info->reloc_mutex); 3212 } 3213 3214 static void unset_reloc_control(struct reloc_control *rc) 3215 { 3216 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3217 3218 mutex_lock(&fs_info->reloc_mutex); 3219 fs_info->reloc_ctl = NULL; 3220 mutex_unlock(&fs_info->reloc_mutex); 3221 } 3222 3223 static int check_extent_flags(u64 flags) 3224 { 3225 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3226 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3227 return 1; 3228 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3229 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3230 return 1; 3231 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3232 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3233 return 1; 3234 return 0; 3235 } 3236 3237 static noinline_for_stack 3238 int prepare_to_relocate(struct reloc_control *rc) 3239 { 3240 struct btrfs_trans_handle *trans; 3241 int ret; 3242 3243 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3244 BTRFS_BLOCK_RSV_TEMP); 3245 if (!rc->block_rsv) 3246 return -ENOMEM; 3247 3248 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3249 rc->search_start = rc->block_group->start; 3250 rc->extents_found = 0; 3251 rc->nodes_relocated = 0; 3252 rc->merging_rsv_size = 0; 3253 rc->reserved_bytes = 0; 3254 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3255 RELOCATION_RESERVED_NODES; 3256 ret = btrfs_block_rsv_refill(rc->extent_root, 3257 rc->block_rsv, rc->block_rsv->size, 3258 BTRFS_RESERVE_FLUSH_ALL); 3259 if (ret) 3260 return ret; 3261 3262 rc->create_reloc_tree = 1; 3263 set_reloc_control(rc); 3264 3265 trans = btrfs_join_transaction(rc->extent_root); 3266 if (IS_ERR(trans)) { 3267 unset_reloc_control(rc); 3268 /* 3269 * extent tree is not a ref_cow tree and has no reloc_root to 3270 * cleanup. And callers are responsible to free the above 3271 * block rsv. 3272 */ 3273 return PTR_ERR(trans); 3274 } 3275 btrfs_commit_transaction(trans); 3276 return 0; 3277 } 3278 3279 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3280 { 3281 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3282 struct rb_root blocks = RB_ROOT; 3283 struct btrfs_key key; 3284 struct btrfs_trans_handle *trans = NULL; 3285 struct btrfs_path *path; 3286 struct btrfs_extent_item *ei; 3287 u64 flags; 3288 u32 item_size; 3289 int ret; 3290 int err = 0; 3291 int progress = 0; 3292 3293 path = btrfs_alloc_path(); 3294 if (!path) 3295 return -ENOMEM; 3296 path->reada = READA_FORWARD; 3297 3298 ret = prepare_to_relocate(rc); 3299 if (ret) { 3300 err = ret; 3301 goto out_free; 3302 } 3303 3304 while (1) { 3305 rc->reserved_bytes = 0; 3306 ret = btrfs_block_rsv_refill(rc->extent_root, 3307 rc->block_rsv, rc->block_rsv->size, 3308 BTRFS_RESERVE_FLUSH_ALL); 3309 if (ret) { 3310 err = ret; 3311 break; 3312 } 3313 progress++; 3314 trans = btrfs_start_transaction(rc->extent_root, 0); 3315 if (IS_ERR(trans)) { 3316 err = PTR_ERR(trans); 3317 trans = NULL; 3318 break; 3319 } 3320 restart: 3321 if (update_backref_cache(trans, &rc->backref_cache)) { 3322 btrfs_end_transaction(trans); 3323 trans = NULL; 3324 continue; 3325 } 3326 3327 ret = find_next_extent(rc, path, &key); 3328 if (ret < 0) 3329 err = ret; 3330 if (ret != 0) 3331 break; 3332 3333 rc->extents_found++; 3334 3335 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3336 struct btrfs_extent_item); 3337 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 3338 if (item_size >= sizeof(*ei)) { 3339 flags = btrfs_extent_flags(path->nodes[0], ei); 3340 ret = check_extent_flags(flags); 3341 BUG_ON(ret); 3342 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 3343 err = -EINVAL; 3344 btrfs_print_v0_err(trans->fs_info); 3345 btrfs_abort_transaction(trans, err); 3346 break; 3347 } else { 3348 BUG(); 3349 } 3350 3351 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3352 ret = add_tree_block(rc, &key, path, &blocks); 3353 } else if (rc->stage == UPDATE_DATA_PTRS && 3354 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3355 ret = add_data_references(rc, &key, path, &blocks); 3356 } else { 3357 btrfs_release_path(path); 3358 ret = 0; 3359 } 3360 if (ret < 0) { 3361 err = ret; 3362 break; 3363 } 3364 3365 if (!RB_EMPTY_ROOT(&blocks)) { 3366 ret = relocate_tree_blocks(trans, rc, &blocks); 3367 if (ret < 0) { 3368 if (ret != -EAGAIN) { 3369 err = ret; 3370 break; 3371 } 3372 rc->extents_found--; 3373 rc->search_start = key.objectid; 3374 } 3375 } 3376 3377 btrfs_end_transaction_throttle(trans); 3378 btrfs_btree_balance_dirty(fs_info); 3379 trans = NULL; 3380 3381 if (rc->stage == MOVE_DATA_EXTENTS && 3382 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3383 rc->found_file_extent = 1; 3384 ret = relocate_data_extent(rc->data_inode, 3385 &key, &rc->cluster); 3386 if (ret < 0) { 3387 err = ret; 3388 break; 3389 } 3390 } 3391 if (btrfs_should_cancel_balance(fs_info)) { 3392 err = -ECANCELED; 3393 break; 3394 } 3395 } 3396 if (trans && progress && err == -ENOSPC) { 3397 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 3398 if (ret == 1) { 3399 err = 0; 3400 progress = 0; 3401 goto restart; 3402 } 3403 } 3404 3405 btrfs_release_path(path); 3406 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 3407 3408 if (trans) { 3409 btrfs_end_transaction_throttle(trans); 3410 btrfs_btree_balance_dirty(fs_info); 3411 } 3412 3413 if (!err) { 3414 ret = relocate_file_extent_cluster(rc->data_inode, 3415 &rc->cluster); 3416 if (ret < 0) 3417 err = ret; 3418 } 3419 3420 rc->create_reloc_tree = 0; 3421 set_reloc_control(rc); 3422 3423 btrfs_backref_release_cache(&rc->backref_cache); 3424 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3425 3426 /* 3427 * Even in the case when the relocation is cancelled, we should all go 3428 * through prepare_to_merge() and merge_reloc_roots(). 3429 * 3430 * For error (including cancelled balance), prepare_to_merge() will 3431 * mark all reloc trees orphan, then queue them for cleanup in 3432 * merge_reloc_roots() 3433 */ 3434 err = prepare_to_merge(rc, err); 3435 3436 merge_reloc_roots(rc); 3437 3438 rc->merge_reloc_tree = 0; 3439 unset_reloc_control(rc); 3440 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3441 3442 /* get rid of pinned extents */ 3443 trans = btrfs_join_transaction(rc->extent_root); 3444 if (IS_ERR(trans)) { 3445 err = PTR_ERR(trans); 3446 goto out_free; 3447 } 3448 btrfs_commit_transaction(trans); 3449 out_free: 3450 ret = clean_dirty_subvols(rc); 3451 if (ret < 0 && !err) 3452 err = ret; 3453 btrfs_free_block_rsv(fs_info, rc->block_rsv); 3454 btrfs_free_path(path); 3455 return err; 3456 } 3457 3458 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3459 struct btrfs_root *root, u64 objectid) 3460 { 3461 struct btrfs_path *path; 3462 struct btrfs_inode_item *item; 3463 struct extent_buffer *leaf; 3464 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC; 3465 int ret; 3466 3467 if (btrfs_is_zoned(trans->fs_info)) 3468 flags &= ~BTRFS_INODE_PREALLOC; 3469 3470 path = btrfs_alloc_path(); 3471 if (!path) 3472 return -ENOMEM; 3473 3474 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3475 if (ret) 3476 goto out; 3477 3478 leaf = path->nodes[0]; 3479 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3480 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3481 btrfs_set_inode_generation(leaf, item, 1); 3482 btrfs_set_inode_size(leaf, item, 0); 3483 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3484 btrfs_set_inode_flags(leaf, item, flags); 3485 btrfs_mark_buffer_dirty(leaf); 3486 out: 3487 btrfs_free_path(path); 3488 return ret; 3489 } 3490 3491 /* 3492 * helper to create inode for data relocation. 3493 * the inode is in data relocation tree and its link count is 0 3494 */ 3495 static noinline_for_stack 3496 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 3497 struct btrfs_block_group *group) 3498 { 3499 struct inode *inode = NULL; 3500 struct btrfs_trans_handle *trans; 3501 struct btrfs_root *root; 3502 u64 objectid; 3503 int err = 0; 3504 3505 root = btrfs_grab_root(fs_info->data_reloc_root); 3506 trans = btrfs_start_transaction(root, 6); 3507 if (IS_ERR(trans)) { 3508 btrfs_put_root(root); 3509 return ERR_CAST(trans); 3510 } 3511 3512 err = btrfs_get_free_objectid(root, &objectid); 3513 if (err) 3514 goto out; 3515 3516 err = __insert_orphan_inode(trans, root, objectid); 3517 BUG_ON(err); 3518 3519 inode = btrfs_iget(fs_info->sb, objectid, root); 3520 BUG_ON(IS_ERR(inode)); 3521 BTRFS_I(inode)->index_cnt = group->start; 3522 3523 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 3524 out: 3525 btrfs_put_root(root); 3526 btrfs_end_transaction(trans); 3527 btrfs_btree_balance_dirty(fs_info); 3528 if (err) { 3529 if (inode) 3530 iput(inode); 3531 inode = ERR_PTR(err); 3532 } 3533 return inode; 3534 } 3535 3536 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 3537 { 3538 struct reloc_control *rc; 3539 3540 rc = kzalloc(sizeof(*rc), GFP_NOFS); 3541 if (!rc) 3542 return NULL; 3543 3544 INIT_LIST_HEAD(&rc->reloc_roots); 3545 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 3546 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1); 3547 mapping_tree_init(&rc->reloc_root_tree); 3548 extent_io_tree_init(fs_info, &rc->processed_blocks, 3549 IO_TREE_RELOC_BLOCKS, NULL); 3550 return rc; 3551 } 3552 3553 static void free_reloc_control(struct reloc_control *rc) 3554 { 3555 struct mapping_node *node, *tmp; 3556 3557 free_reloc_roots(&rc->reloc_roots); 3558 rbtree_postorder_for_each_entry_safe(node, tmp, 3559 &rc->reloc_root_tree.rb_root, rb_node) 3560 kfree(node); 3561 3562 kfree(rc); 3563 } 3564 3565 /* 3566 * Print the block group being relocated 3567 */ 3568 static void describe_relocation(struct btrfs_fs_info *fs_info, 3569 struct btrfs_block_group *block_group) 3570 { 3571 char buf[128] = {'\0'}; 3572 3573 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 3574 3575 btrfs_info(fs_info, 3576 "relocating block group %llu flags %s", 3577 block_group->start, buf); 3578 } 3579 3580 static const char *stage_to_string(int stage) 3581 { 3582 if (stage == MOVE_DATA_EXTENTS) 3583 return "move data extents"; 3584 if (stage == UPDATE_DATA_PTRS) 3585 return "update data pointers"; 3586 return "unknown"; 3587 } 3588 3589 /* 3590 * function to relocate all extents in a block group. 3591 */ 3592 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 3593 { 3594 struct btrfs_block_group *bg; 3595 struct btrfs_root *extent_root = fs_info->extent_root; 3596 struct reloc_control *rc; 3597 struct inode *inode; 3598 struct btrfs_path *path; 3599 int ret; 3600 int rw = 0; 3601 int err = 0; 3602 3603 bg = btrfs_lookup_block_group(fs_info, group_start); 3604 if (!bg) 3605 return -ENOENT; 3606 3607 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 3608 btrfs_put_block_group(bg); 3609 return -ETXTBSY; 3610 } 3611 3612 rc = alloc_reloc_control(fs_info); 3613 if (!rc) { 3614 btrfs_put_block_group(bg); 3615 return -ENOMEM; 3616 } 3617 3618 rc->extent_root = extent_root; 3619 rc->block_group = bg; 3620 3621 ret = btrfs_inc_block_group_ro(rc->block_group, true); 3622 if (ret) { 3623 err = ret; 3624 goto out; 3625 } 3626 rw = 1; 3627 3628 path = btrfs_alloc_path(); 3629 if (!path) { 3630 err = -ENOMEM; 3631 goto out; 3632 } 3633 3634 inode = lookup_free_space_inode(rc->block_group, path); 3635 btrfs_free_path(path); 3636 3637 if (!IS_ERR(inode)) 3638 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 3639 else 3640 ret = PTR_ERR(inode); 3641 3642 if (ret && ret != -ENOENT) { 3643 err = ret; 3644 goto out; 3645 } 3646 3647 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 3648 if (IS_ERR(rc->data_inode)) { 3649 err = PTR_ERR(rc->data_inode); 3650 rc->data_inode = NULL; 3651 goto out; 3652 } 3653 3654 describe_relocation(fs_info, rc->block_group); 3655 3656 btrfs_wait_block_group_reservations(rc->block_group); 3657 btrfs_wait_nocow_writers(rc->block_group); 3658 btrfs_wait_ordered_roots(fs_info, U64_MAX, 3659 rc->block_group->start, 3660 rc->block_group->length); 3661 3662 while (1) { 3663 int finishes_stage; 3664 3665 mutex_lock(&fs_info->cleaner_mutex); 3666 ret = relocate_block_group(rc); 3667 mutex_unlock(&fs_info->cleaner_mutex); 3668 if (ret < 0) 3669 err = ret; 3670 3671 finishes_stage = rc->stage; 3672 /* 3673 * We may have gotten ENOSPC after we already dirtied some 3674 * extents. If writeout happens while we're relocating a 3675 * different block group we could end up hitting the 3676 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 3677 * btrfs_reloc_cow_block. Make sure we write everything out 3678 * properly so we don't trip over this problem, and then break 3679 * out of the loop if we hit an error. 3680 */ 3681 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 3682 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 3683 (u64)-1); 3684 if (ret) 3685 err = ret; 3686 invalidate_mapping_pages(rc->data_inode->i_mapping, 3687 0, -1); 3688 rc->stage = UPDATE_DATA_PTRS; 3689 } 3690 3691 if (err < 0) 3692 goto out; 3693 3694 if (rc->extents_found == 0) 3695 break; 3696 3697 btrfs_info(fs_info, "found %llu extents, stage: %s", 3698 rc->extents_found, stage_to_string(finishes_stage)); 3699 } 3700 3701 WARN_ON(rc->block_group->pinned > 0); 3702 WARN_ON(rc->block_group->reserved > 0); 3703 WARN_ON(rc->block_group->used > 0); 3704 out: 3705 if (err && rw) 3706 btrfs_dec_block_group_ro(rc->block_group); 3707 iput(rc->data_inode); 3708 btrfs_put_block_group(rc->block_group); 3709 free_reloc_control(rc); 3710 return err; 3711 } 3712 3713 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 3714 { 3715 struct btrfs_fs_info *fs_info = root->fs_info; 3716 struct btrfs_trans_handle *trans; 3717 int ret, err; 3718 3719 trans = btrfs_start_transaction(fs_info->tree_root, 0); 3720 if (IS_ERR(trans)) 3721 return PTR_ERR(trans); 3722 3723 memset(&root->root_item.drop_progress, 0, 3724 sizeof(root->root_item.drop_progress)); 3725 btrfs_set_root_drop_level(&root->root_item, 0); 3726 btrfs_set_root_refs(&root->root_item, 0); 3727 ret = btrfs_update_root(trans, fs_info->tree_root, 3728 &root->root_key, &root->root_item); 3729 3730 err = btrfs_end_transaction(trans); 3731 if (err) 3732 return err; 3733 return ret; 3734 } 3735 3736 /* 3737 * recover relocation interrupted by system crash. 3738 * 3739 * this function resumes merging reloc trees with corresponding fs trees. 3740 * this is important for keeping the sharing of tree blocks 3741 */ 3742 int btrfs_recover_relocation(struct btrfs_root *root) 3743 { 3744 struct btrfs_fs_info *fs_info = root->fs_info; 3745 LIST_HEAD(reloc_roots); 3746 struct btrfs_key key; 3747 struct btrfs_root *fs_root; 3748 struct btrfs_root *reloc_root; 3749 struct btrfs_path *path; 3750 struct extent_buffer *leaf; 3751 struct reloc_control *rc = NULL; 3752 struct btrfs_trans_handle *trans; 3753 int ret; 3754 int err = 0; 3755 3756 path = btrfs_alloc_path(); 3757 if (!path) 3758 return -ENOMEM; 3759 path->reada = READA_BACK; 3760 3761 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 3762 key.type = BTRFS_ROOT_ITEM_KEY; 3763 key.offset = (u64)-1; 3764 3765 while (1) { 3766 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 3767 path, 0, 0); 3768 if (ret < 0) { 3769 err = ret; 3770 goto out; 3771 } 3772 if (ret > 0) { 3773 if (path->slots[0] == 0) 3774 break; 3775 path->slots[0]--; 3776 } 3777 leaf = path->nodes[0]; 3778 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3779 btrfs_release_path(path); 3780 3781 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 3782 key.type != BTRFS_ROOT_ITEM_KEY) 3783 break; 3784 3785 reloc_root = btrfs_read_tree_root(root, &key); 3786 if (IS_ERR(reloc_root)) { 3787 err = PTR_ERR(reloc_root); 3788 goto out; 3789 } 3790 3791 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 3792 list_add(&reloc_root->root_list, &reloc_roots); 3793 3794 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 3795 fs_root = btrfs_get_fs_root(fs_info, 3796 reloc_root->root_key.offset, false); 3797 if (IS_ERR(fs_root)) { 3798 ret = PTR_ERR(fs_root); 3799 if (ret != -ENOENT) { 3800 err = ret; 3801 goto out; 3802 } 3803 ret = mark_garbage_root(reloc_root); 3804 if (ret < 0) { 3805 err = ret; 3806 goto out; 3807 } 3808 } else { 3809 btrfs_put_root(fs_root); 3810 } 3811 } 3812 3813 if (key.offset == 0) 3814 break; 3815 3816 key.offset--; 3817 } 3818 btrfs_release_path(path); 3819 3820 if (list_empty(&reloc_roots)) 3821 goto out; 3822 3823 rc = alloc_reloc_control(fs_info); 3824 if (!rc) { 3825 err = -ENOMEM; 3826 goto out; 3827 } 3828 3829 rc->extent_root = fs_info->extent_root; 3830 3831 set_reloc_control(rc); 3832 3833 trans = btrfs_join_transaction(rc->extent_root); 3834 if (IS_ERR(trans)) { 3835 err = PTR_ERR(trans); 3836 goto out_unset; 3837 } 3838 3839 rc->merge_reloc_tree = 1; 3840 3841 while (!list_empty(&reloc_roots)) { 3842 reloc_root = list_entry(reloc_roots.next, 3843 struct btrfs_root, root_list); 3844 list_del(&reloc_root->root_list); 3845 3846 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 3847 list_add_tail(&reloc_root->root_list, 3848 &rc->reloc_roots); 3849 continue; 3850 } 3851 3852 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 3853 false); 3854 if (IS_ERR(fs_root)) { 3855 err = PTR_ERR(fs_root); 3856 list_add_tail(&reloc_root->root_list, &reloc_roots); 3857 btrfs_end_transaction(trans); 3858 goto out_unset; 3859 } 3860 3861 err = __add_reloc_root(reloc_root); 3862 BUG_ON(err < 0); /* -ENOMEM or logic error */ 3863 fs_root->reloc_root = btrfs_grab_root(reloc_root); 3864 btrfs_put_root(fs_root); 3865 } 3866 3867 err = btrfs_commit_transaction(trans); 3868 if (err) 3869 goto out_unset; 3870 3871 merge_reloc_roots(rc); 3872 3873 unset_reloc_control(rc); 3874 3875 trans = btrfs_join_transaction(rc->extent_root); 3876 if (IS_ERR(trans)) { 3877 err = PTR_ERR(trans); 3878 goto out_clean; 3879 } 3880 err = btrfs_commit_transaction(trans); 3881 out_clean: 3882 ret = clean_dirty_subvols(rc); 3883 if (ret < 0 && !err) 3884 err = ret; 3885 out_unset: 3886 unset_reloc_control(rc); 3887 free_reloc_control(rc); 3888 out: 3889 free_reloc_roots(&reloc_roots); 3890 3891 btrfs_free_path(path); 3892 3893 if (err == 0) { 3894 /* cleanup orphan inode in data relocation tree */ 3895 fs_root = btrfs_grab_root(fs_info->data_reloc_root); 3896 ASSERT(fs_root); 3897 err = btrfs_orphan_cleanup(fs_root); 3898 btrfs_put_root(fs_root); 3899 } 3900 return err; 3901 } 3902 3903 /* 3904 * helper to add ordered checksum for data relocation. 3905 * 3906 * cloning checksum properly handles the nodatasum extents. 3907 * it also saves CPU time to re-calculate the checksum. 3908 */ 3909 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len) 3910 { 3911 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3912 struct btrfs_ordered_sum *sums; 3913 struct btrfs_ordered_extent *ordered; 3914 int ret; 3915 u64 disk_bytenr; 3916 u64 new_bytenr; 3917 LIST_HEAD(list); 3918 3919 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 3920 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len); 3921 3922 disk_bytenr = file_pos + inode->index_cnt; 3923 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr, 3924 disk_bytenr + len - 1, &list, 0); 3925 if (ret) 3926 goto out; 3927 3928 while (!list_empty(&list)) { 3929 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 3930 list_del_init(&sums->list); 3931 3932 /* 3933 * We need to offset the new_bytenr based on where the csum is. 3934 * We need to do this because we will read in entire prealloc 3935 * extents but we may have written to say the middle of the 3936 * prealloc extent, so we need to make sure the csum goes with 3937 * the right disk offset. 3938 * 3939 * We can do this because the data reloc inode refers strictly 3940 * to the on disk bytes, so we don't have to worry about 3941 * disk_len vs real len like with real inodes since it's all 3942 * disk length. 3943 */ 3944 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr; 3945 sums->bytenr = new_bytenr; 3946 3947 btrfs_add_ordered_sum(ordered, sums); 3948 } 3949 out: 3950 btrfs_put_ordered_extent(ordered); 3951 return ret; 3952 } 3953 3954 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3955 struct btrfs_root *root, struct extent_buffer *buf, 3956 struct extent_buffer *cow) 3957 { 3958 struct btrfs_fs_info *fs_info = root->fs_info; 3959 struct reloc_control *rc; 3960 struct btrfs_backref_node *node; 3961 int first_cow = 0; 3962 int level; 3963 int ret = 0; 3964 3965 rc = fs_info->reloc_ctl; 3966 if (!rc) 3967 return 0; 3968 3969 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 3970 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 3971 3972 level = btrfs_header_level(buf); 3973 if (btrfs_header_generation(buf) <= 3974 btrfs_root_last_snapshot(&root->root_item)) 3975 first_cow = 1; 3976 3977 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 3978 rc->create_reloc_tree) { 3979 WARN_ON(!first_cow && level == 0); 3980 3981 node = rc->backref_cache.path[level]; 3982 BUG_ON(node->bytenr != buf->start && 3983 node->new_bytenr != buf->start); 3984 3985 btrfs_backref_drop_node_buffer(node); 3986 atomic_inc(&cow->refs); 3987 node->eb = cow; 3988 node->new_bytenr = cow->start; 3989 3990 if (!node->pending) { 3991 list_move_tail(&node->list, 3992 &rc->backref_cache.pending[level]); 3993 node->pending = 1; 3994 } 3995 3996 if (first_cow) 3997 mark_block_processed(rc, node); 3998 3999 if (first_cow && level > 0) 4000 rc->nodes_relocated += buf->len; 4001 } 4002 4003 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4004 ret = replace_file_extents(trans, rc, root, cow); 4005 return ret; 4006 } 4007 4008 /* 4009 * called before creating snapshot. it calculates metadata reservation 4010 * required for relocating tree blocks in the snapshot 4011 */ 4012 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4013 u64 *bytes_to_reserve) 4014 { 4015 struct btrfs_root *root = pending->root; 4016 struct reloc_control *rc = root->fs_info->reloc_ctl; 4017 4018 if (!rc || !have_reloc_root(root)) 4019 return; 4020 4021 if (!rc->merge_reloc_tree) 4022 return; 4023 4024 root = root->reloc_root; 4025 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4026 /* 4027 * relocation is in the stage of merging trees. the space 4028 * used by merging a reloc tree is twice the size of 4029 * relocated tree nodes in the worst case. half for cowing 4030 * the reloc tree, half for cowing the fs tree. the space 4031 * used by cowing the reloc tree will be freed after the 4032 * tree is dropped. if we create snapshot, cowing the fs 4033 * tree may use more space than it frees. so we need 4034 * reserve extra space. 4035 */ 4036 *bytes_to_reserve += rc->nodes_relocated; 4037 } 4038 4039 /* 4040 * called after snapshot is created. migrate block reservation 4041 * and create reloc root for the newly created snapshot 4042 * 4043 * This is similar to btrfs_init_reloc_root(), we come out of here with two 4044 * references held on the reloc_root, one for root->reloc_root and one for 4045 * rc->reloc_roots. 4046 */ 4047 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4048 struct btrfs_pending_snapshot *pending) 4049 { 4050 struct btrfs_root *root = pending->root; 4051 struct btrfs_root *reloc_root; 4052 struct btrfs_root *new_root; 4053 struct reloc_control *rc = root->fs_info->reloc_ctl; 4054 int ret; 4055 4056 if (!rc || !have_reloc_root(root)) 4057 return 0; 4058 4059 rc = root->fs_info->reloc_ctl; 4060 rc->merging_rsv_size += rc->nodes_relocated; 4061 4062 if (rc->merge_reloc_tree) { 4063 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4064 rc->block_rsv, 4065 rc->nodes_relocated, true); 4066 if (ret) 4067 return ret; 4068 } 4069 4070 new_root = pending->snap; 4071 reloc_root = create_reloc_root(trans, root->reloc_root, 4072 new_root->root_key.objectid); 4073 if (IS_ERR(reloc_root)) 4074 return PTR_ERR(reloc_root); 4075 4076 ret = __add_reloc_root(reloc_root); 4077 BUG_ON(ret < 0); 4078 new_root->reloc_root = btrfs_grab_root(reloc_root); 4079 4080 if (rc->create_reloc_tree) 4081 ret = clone_backref_node(trans, rc, root, reloc_root); 4082 return ret; 4083 } 4084