xref: /linux/fs/btrfs/relocation.c (revision aaa44952bbd1d4db14a4d676bf9595bb5db7e7b0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 
28 /*
29  * Relocation overview
30  *
31  * [What does relocation do]
32  *
33  * The objective of relocation is to relocate all extents of the target block
34  * group to other block groups.
35  * This is utilized by resize (shrink only), profile converting, compacting
36  * space, or balance routine to spread chunks over devices.
37  *
38  * 		Before		|		After
39  * ------------------------------------------------------------------
40  *  BG A: 10 data extents	| BG A: deleted
41  *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
42  *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
43  *
44  * [How does relocation work]
45  *
46  * 1.   Mark the target block group read-only
47  *      New extents won't be allocated from the target block group.
48  *
49  * 2.1  Record each extent in the target block group
50  *      To build a proper map of extents to be relocated.
51  *
52  * 2.2  Build data reloc tree and reloc trees
53  *      Data reloc tree will contain an inode, recording all newly relocated
54  *      data extents.
55  *      There will be only one data reloc tree for one data block group.
56  *
57  *      Reloc tree will be a special snapshot of its source tree, containing
58  *      relocated tree blocks.
59  *      Each tree referring to a tree block in target block group will get its
60  *      reloc tree built.
61  *
62  * 2.3  Swap source tree with its corresponding reloc tree
63  *      Each involved tree only refers to new extents after swap.
64  *
65  * 3.   Cleanup reloc trees and data reloc tree.
66  *      As old extents in the target block group are still referenced by reloc
67  *      trees, we need to clean them up before really freeing the target block
68  *      group.
69  *
70  * The main complexity is in steps 2.2 and 2.3.
71  *
72  * The entry point of relocation is relocate_block_group() function.
73  */
74 
75 #define RELOCATION_RESERVED_NODES	256
76 /*
77  * map address of tree root to tree
78  */
79 struct mapping_node {
80 	struct {
81 		struct rb_node rb_node;
82 		u64 bytenr;
83 	}; /* Use rb_simle_node for search/insert */
84 	void *data;
85 };
86 
87 struct mapping_tree {
88 	struct rb_root rb_root;
89 	spinlock_t lock;
90 };
91 
92 /*
93  * present a tree block to process
94  */
95 struct tree_block {
96 	struct {
97 		struct rb_node rb_node;
98 		u64 bytenr;
99 	}; /* Use rb_simple_node for search/insert */
100 	u64 owner;
101 	struct btrfs_key key;
102 	unsigned int level:8;
103 	unsigned int key_ready:1;
104 };
105 
106 #define MAX_EXTENTS 128
107 
108 struct file_extent_cluster {
109 	u64 start;
110 	u64 end;
111 	u64 boundary[MAX_EXTENTS];
112 	unsigned int nr;
113 };
114 
115 struct reloc_control {
116 	/* block group to relocate */
117 	struct btrfs_block_group *block_group;
118 	/* extent tree */
119 	struct btrfs_root *extent_root;
120 	/* inode for moving data */
121 	struct inode *data_inode;
122 
123 	struct btrfs_block_rsv *block_rsv;
124 
125 	struct btrfs_backref_cache backref_cache;
126 
127 	struct file_extent_cluster cluster;
128 	/* tree blocks have been processed */
129 	struct extent_io_tree processed_blocks;
130 	/* map start of tree root to corresponding reloc tree */
131 	struct mapping_tree reloc_root_tree;
132 	/* list of reloc trees */
133 	struct list_head reloc_roots;
134 	/* list of subvolume trees that get relocated */
135 	struct list_head dirty_subvol_roots;
136 	/* size of metadata reservation for merging reloc trees */
137 	u64 merging_rsv_size;
138 	/* size of relocated tree nodes */
139 	u64 nodes_relocated;
140 	/* reserved size for block group relocation*/
141 	u64 reserved_bytes;
142 
143 	u64 search_start;
144 	u64 extents_found;
145 
146 	unsigned int stage:8;
147 	unsigned int create_reloc_tree:1;
148 	unsigned int merge_reloc_tree:1;
149 	unsigned int found_file_extent:1;
150 };
151 
152 /* stages of data relocation */
153 #define MOVE_DATA_EXTENTS	0
154 #define UPDATE_DATA_PTRS	1
155 
156 static void mark_block_processed(struct reloc_control *rc,
157 				 struct btrfs_backref_node *node)
158 {
159 	u32 blocksize;
160 
161 	if (node->level == 0 ||
162 	    in_range(node->bytenr, rc->block_group->start,
163 		     rc->block_group->length)) {
164 		blocksize = rc->extent_root->fs_info->nodesize;
165 		set_extent_bits(&rc->processed_blocks, node->bytenr,
166 				node->bytenr + blocksize - 1, EXTENT_DIRTY);
167 	}
168 	node->processed = 1;
169 }
170 
171 
172 static void mapping_tree_init(struct mapping_tree *tree)
173 {
174 	tree->rb_root = RB_ROOT;
175 	spin_lock_init(&tree->lock);
176 }
177 
178 /*
179  * walk up backref nodes until reach node presents tree root
180  */
181 static struct btrfs_backref_node *walk_up_backref(
182 		struct btrfs_backref_node *node,
183 		struct btrfs_backref_edge *edges[], int *index)
184 {
185 	struct btrfs_backref_edge *edge;
186 	int idx = *index;
187 
188 	while (!list_empty(&node->upper)) {
189 		edge = list_entry(node->upper.next,
190 				  struct btrfs_backref_edge, list[LOWER]);
191 		edges[idx++] = edge;
192 		node = edge->node[UPPER];
193 	}
194 	BUG_ON(node->detached);
195 	*index = idx;
196 	return node;
197 }
198 
199 /*
200  * walk down backref nodes to find start of next reference path
201  */
202 static struct btrfs_backref_node *walk_down_backref(
203 		struct btrfs_backref_edge *edges[], int *index)
204 {
205 	struct btrfs_backref_edge *edge;
206 	struct btrfs_backref_node *lower;
207 	int idx = *index;
208 
209 	while (idx > 0) {
210 		edge = edges[idx - 1];
211 		lower = edge->node[LOWER];
212 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
213 			idx--;
214 			continue;
215 		}
216 		edge = list_entry(edge->list[LOWER].next,
217 				  struct btrfs_backref_edge, list[LOWER]);
218 		edges[idx - 1] = edge;
219 		*index = idx;
220 		return edge->node[UPPER];
221 	}
222 	*index = 0;
223 	return NULL;
224 }
225 
226 static void update_backref_node(struct btrfs_backref_cache *cache,
227 				struct btrfs_backref_node *node, u64 bytenr)
228 {
229 	struct rb_node *rb_node;
230 	rb_erase(&node->rb_node, &cache->rb_root);
231 	node->bytenr = bytenr;
232 	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
233 	if (rb_node)
234 		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
235 }
236 
237 /*
238  * update backref cache after a transaction commit
239  */
240 static int update_backref_cache(struct btrfs_trans_handle *trans,
241 				struct btrfs_backref_cache *cache)
242 {
243 	struct btrfs_backref_node *node;
244 	int level = 0;
245 
246 	if (cache->last_trans == 0) {
247 		cache->last_trans = trans->transid;
248 		return 0;
249 	}
250 
251 	if (cache->last_trans == trans->transid)
252 		return 0;
253 
254 	/*
255 	 * detached nodes are used to avoid unnecessary backref
256 	 * lookup. transaction commit changes the extent tree.
257 	 * so the detached nodes are no longer useful.
258 	 */
259 	while (!list_empty(&cache->detached)) {
260 		node = list_entry(cache->detached.next,
261 				  struct btrfs_backref_node, list);
262 		btrfs_backref_cleanup_node(cache, node);
263 	}
264 
265 	while (!list_empty(&cache->changed)) {
266 		node = list_entry(cache->changed.next,
267 				  struct btrfs_backref_node, list);
268 		list_del_init(&node->list);
269 		BUG_ON(node->pending);
270 		update_backref_node(cache, node, node->new_bytenr);
271 	}
272 
273 	/*
274 	 * some nodes can be left in the pending list if there were
275 	 * errors during processing the pending nodes.
276 	 */
277 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
278 		list_for_each_entry(node, &cache->pending[level], list) {
279 			BUG_ON(!node->pending);
280 			if (node->bytenr == node->new_bytenr)
281 				continue;
282 			update_backref_node(cache, node, node->new_bytenr);
283 		}
284 	}
285 
286 	cache->last_trans = 0;
287 	return 1;
288 }
289 
290 static bool reloc_root_is_dead(struct btrfs_root *root)
291 {
292 	/*
293 	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
294 	 * btrfs_update_reloc_root. We need to see the updated bit before
295 	 * trying to access reloc_root
296 	 */
297 	smp_rmb();
298 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
299 		return true;
300 	return false;
301 }
302 
303 /*
304  * Check if this subvolume tree has valid reloc tree.
305  *
306  * Reloc tree after swap is considered dead, thus not considered as valid.
307  * This is enough for most callers, as they don't distinguish dead reloc root
308  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
309  * special case.
310  */
311 static bool have_reloc_root(struct btrfs_root *root)
312 {
313 	if (reloc_root_is_dead(root))
314 		return false;
315 	if (!root->reloc_root)
316 		return false;
317 	return true;
318 }
319 
320 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
321 {
322 	struct btrfs_root *reloc_root;
323 
324 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
325 		return 0;
326 
327 	/* This root has been merged with its reloc tree, we can ignore it */
328 	if (reloc_root_is_dead(root))
329 		return 1;
330 
331 	reloc_root = root->reloc_root;
332 	if (!reloc_root)
333 		return 0;
334 
335 	if (btrfs_header_generation(reloc_root->commit_root) ==
336 	    root->fs_info->running_transaction->transid)
337 		return 0;
338 	/*
339 	 * if there is reloc tree and it was created in previous
340 	 * transaction backref lookup can find the reloc tree,
341 	 * so backref node for the fs tree root is useless for
342 	 * relocation.
343 	 */
344 	return 1;
345 }
346 
347 /*
348  * find reloc tree by address of tree root
349  */
350 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
351 {
352 	struct reloc_control *rc = fs_info->reloc_ctl;
353 	struct rb_node *rb_node;
354 	struct mapping_node *node;
355 	struct btrfs_root *root = NULL;
356 
357 	ASSERT(rc);
358 	spin_lock(&rc->reloc_root_tree.lock);
359 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
360 	if (rb_node) {
361 		node = rb_entry(rb_node, struct mapping_node, rb_node);
362 		root = (struct btrfs_root *)node->data;
363 	}
364 	spin_unlock(&rc->reloc_root_tree.lock);
365 	return btrfs_grab_root(root);
366 }
367 
368 /*
369  * For useless nodes, do two major clean ups:
370  *
371  * - Cleanup the children edges and nodes
372  *   If child node is also orphan (no parent) during cleanup, then the child
373  *   node will also be cleaned up.
374  *
375  * - Freeing up leaves (level 0), keeps nodes detached
376  *   For nodes, the node is still cached as "detached"
377  *
378  * Return false if @node is not in the @useless_nodes list.
379  * Return true if @node is in the @useless_nodes list.
380  */
381 static bool handle_useless_nodes(struct reloc_control *rc,
382 				 struct btrfs_backref_node *node)
383 {
384 	struct btrfs_backref_cache *cache = &rc->backref_cache;
385 	struct list_head *useless_node = &cache->useless_node;
386 	bool ret = false;
387 
388 	while (!list_empty(useless_node)) {
389 		struct btrfs_backref_node *cur;
390 
391 		cur = list_first_entry(useless_node, struct btrfs_backref_node,
392 				 list);
393 		list_del_init(&cur->list);
394 
395 		/* Only tree root nodes can be added to @useless_nodes */
396 		ASSERT(list_empty(&cur->upper));
397 
398 		if (cur == node)
399 			ret = true;
400 
401 		/* The node is the lowest node */
402 		if (cur->lowest) {
403 			list_del_init(&cur->lower);
404 			cur->lowest = 0;
405 		}
406 
407 		/* Cleanup the lower edges */
408 		while (!list_empty(&cur->lower)) {
409 			struct btrfs_backref_edge *edge;
410 			struct btrfs_backref_node *lower;
411 
412 			edge = list_entry(cur->lower.next,
413 					struct btrfs_backref_edge, list[UPPER]);
414 			list_del(&edge->list[UPPER]);
415 			list_del(&edge->list[LOWER]);
416 			lower = edge->node[LOWER];
417 			btrfs_backref_free_edge(cache, edge);
418 
419 			/* Child node is also orphan, queue for cleanup */
420 			if (list_empty(&lower->upper))
421 				list_add(&lower->list, useless_node);
422 		}
423 		/* Mark this block processed for relocation */
424 		mark_block_processed(rc, cur);
425 
426 		/*
427 		 * Backref nodes for tree leaves are deleted from the cache.
428 		 * Backref nodes for upper level tree blocks are left in the
429 		 * cache to avoid unnecessary backref lookup.
430 		 */
431 		if (cur->level > 0) {
432 			list_add(&cur->list, &cache->detached);
433 			cur->detached = 1;
434 		} else {
435 			rb_erase(&cur->rb_node, &cache->rb_root);
436 			btrfs_backref_free_node(cache, cur);
437 		}
438 	}
439 	return ret;
440 }
441 
442 /*
443  * Build backref tree for a given tree block. Root of the backref tree
444  * corresponds the tree block, leaves of the backref tree correspond roots of
445  * b-trees that reference the tree block.
446  *
447  * The basic idea of this function is check backrefs of a given block to find
448  * upper level blocks that reference the block, and then check backrefs of
449  * these upper level blocks recursively. The recursion stops when tree root is
450  * reached or backrefs for the block is cached.
451  *
452  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
453  * all upper level blocks that directly/indirectly reference the block are also
454  * cached.
455  */
456 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
457 			struct reloc_control *rc, struct btrfs_key *node_key,
458 			int level, u64 bytenr)
459 {
460 	struct btrfs_backref_iter *iter;
461 	struct btrfs_backref_cache *cache = &rc->backref_cache;
462 	/* For searching parent of TREE_BLOCK_REF */
463 	struct btrfs_path *path;
464 	struct btrfs_backref_node *cur;
465 	struct btrfs_backref_node *node = NULL;
466 	struct btrfs_backref_edge *edge;
467 	int ret;
468 	int err = 0;
469 
470 	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
471 	if (!iter)
472 		return ERR_PTR(-ENOMEM);
473 	path = btrfs_alloc_path();
474 	if (!path) {
475 		err = -ENOMEM;
476 		goto out;
477 	}
478 
479 	node = btrfs_backref_alloc_node(cache, bytenr, level);
480 	if (!node) {
481 		err = -ENOMEM;
482 		goto out;
483 	}
484 
485 	node->lowest = 1;
486 	cur = node;
487 
488 	/* Breadth-first search to build backref cache */
489 	do {
490 		ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
491 						  cur);
492 		if (ret < 0) {
493 			err = ret;
494 			goto out;
495 		}
496 		edge = list_first_entry_or_null(&cache->pending_edge,
497 				struct btrfs_backref_edge, list[UPPER]);
498 		/*
499 		 * The pending list isn't empty, take the first block to
500 		 * process
501 		 */
502 		if (edge) {
503 			list_del_init(&edge->list[UPPER]);
504 			cur = edge->node[UPPER];
505 		}
506 	} while (edge);
507 
508 	/* Finish the upper linkage of newly added edges/nodes */
509 	ret = btrfs_backref_finish_upper_links(cache, node);
510 	if (ret < 0) {
511 		err = ret;
512 		goto out;
513 	}
514 
515 	if (handle_useless_nodes(rc, node))
516 		node = NULL;
517 out:
518 	btrfs_backref_iter_free(iter);
519 	btrfs_free_path(path);
520 	if (err) {
521 		btrfs_backref_error_cleanup(cache, node);
522 		return ERR_PTR(err);
523 	}
524 	ASSERT(!node || !node->detached);
525 	ASSERT(list_empty(&cache->useless_node) &&
526 	       list_empty(&cache->pending_edge));
527 	return node;
528 }
529 
530 /*
531  * helper to add backref node for the newly created snapshot.
532  * the backref node is created by cloning backref node that
533  * corresponds to root of source tree
534  */
535 static int clone_backref_node(struct btrfs_trans_handle *trans,
536 			      struct reloc_control *rc,
537 			      struct btrfs_root *src,
538 			      struct btrfs_root *dest)
539 {
540 	struct btrfs_root *reloc_root = src->reloc_root;
541 	struct btrfs_backref_cache *cache = &rc->backref_cache;
542 	struct btrfs_backref_node *node = NULL;
543 	struct btrfs_backref_node *new_node;
544 	struct btrfs_backref_edge *edge;
545 	struct btrfs_backref_edge *new_edge;
546 	struct rb_node *rb_node;
547 
548 	if (cache->last_trans > 0)
549 		update_backref_cache(trans, cache);
550 
551 	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
552 	if (rb_node) {
553 		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
554 		if (node->detached)
555 			node = NULL;
556 		else
557 			BUG_ON(node->new_bytenr != reloc_root->node->start);
558 	}
559 
560 	if (!node) {
561 		rb_node = rb_simple_search(&cache->rb_root,
562 					   reloc_root->commit_root->start);
563 		if (rb_node) {
564 			node = rb_entry(rb_node, struct btrfs_backref_node,
565 					rb_node);
566 			BUG_ON(node->detached);
567 		}
568 	}
569 
570 	if (!node)
571 		return 0;
572 
573 	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
574 					    node->level);
575 	if (!new_node)
576 		return -ENOMEM;
577 
578 	new_node->lowest = node->lowest;
579 	new_node->checked = 1;
580 	new_node->root = btrfs_grab_root(dest);
581 	ASSERT(new_node->root);
582 
583 	if (!node->lowest) {
584 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
585 			new_edge = btrfs_backref_alloc_edge(cache);
586 			if (!new_edge)
587 				goto fail;
588 
589 			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
590 						new_node, LINK_UPPER);
591 		}
592 	} else {
593 		list_add_tail(&new_node->lower, &cache->leaves);
594 	}
595 
596 	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
597 				   &new_node->rb_node);
598 	if (rb_node)
599 		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
600 
601 	if (!new_node->lowest) {
602 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
603 			list_add_tail(&new_edge->list[LOWER],
604 				      &new_edge->node[LOWER]->upper);
605 		}
606 	}
607 	return 0;
608 fail:
609 	while (!list_empty(&new_node->lower)) {
610 		new_edge = list_entry(new_node->lower.next,
611 				      struct btrfs_backref_edge, list[UPPER]);
612 		list_del(&new_edge->list[UPPER]);
613 		btrfs_backref_free_edge(cache, new_edge);
614 	}
615 	btrfs_backref_free_node(cache, new_node);
616 	return -ENOMEM;
617 }
618 
619 /*
620  * helper to add 'address of tree root -> reloc tree' mapping
621  */
622 static int __must_check __add_reloc_root(struct btrfs_root *root)
623 {
624 	struct btrfs_fs_info *fs_info = root->fs_info;
625 	struct rb_node *rb_node;
626 	struct mapping_node *node;
627 	struct reloc_control *rc = fs_info->reloc_ctl;
628 
629 	node = kmalloc(sizeof(*node), GFP_NOFS);
630 	if (!node)
631 		return -ENOMEM;
632 
633 	node->bytenr = root->commit_root->start;
634 	node->data = root;
635 
636 	spin_lock(&rc->reloc_root_tree.lock);
637 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
638 				   node->bytenr, &node->rb_node);
639 	spin_unlock(&rc->reloc_root_tree.lock);
640 	if (rb_node) {
641 		btrfs_err(fs_info,
642 			    "Duplicate root found for start=%llu while inserting into relocation tree",
643 			    node->bytenr);
644 		return -EEXIST;
645 	}
646 
647 	list_add_tail(&root->root_list, &rc->reloc_roots);
648 	return 0;
649 }
650 
651 /*
652  * helper to delete the 'address of tree root -> reloc tree'
653  * mapping
654  */
655 static void __del_reloc_root(struct btrfs_root *root)
656 {
657 	struct btrfs_fs_info *fs_info = root->fs_info;
658 	struct rb_node *rb_node;
659 	struct mapping_node *node = NULL;
660 	struct reloc_control *rc = fs_info->reloc_ctl;
661 	bool put_ref = false;
662 
663 	if (rc && root->node) {
664 		spin_lock(&rc->reloc_root_tree.lock);
665 		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
666 					   root->commit_root->start);
667 		if (rb_node) {
668 			node = rb_entry(rb_node, struct mapping_node, rb_node);
669 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
670 			RB_CLEAR_NODE(&node->rb_node);
671 		}
672 		spin_unlock(&rc->reloc_root_tree.lock);
673 		ASSERT(!node || (struct btrfs_root *)node->data == root);
674 	}
675 
676 	/*
677 	 * We only put the reloc root here if it's on the list.  There's a lot
678 	 * of places where the pattern is to splice the rc->reloc_roots, process
679 	 * the reloc roots, and then add the reloc root back onto
680 	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
681 	 * list we don't want the reference being dropped, because the guy
682 	 * messing with the list is in charge of the reference.
683 	 */
684 	spin_lock(&fs_info->trans_lock);
685 	if (!list_empty(&root->root_list)) {
686 		put_ref = true;
687 		list_del_init(&root->root_list);
688 	}
689 	spin_unlock(&fs_info->trans_lock);
690 	if (put_ref)
691 		btrfs_put_root(root);
692 	kfree(node);
693 }
694 
695 /*
696  * helper to update the 'address of tree root -> reloc tree'
697  * mapping
698  */
699 static int __update_reloc_root(struct btrfs_root *root)
700 {
701 	struct btrfs_fs_info *fs_info = root->fs_info;
702 	struct rb_node *rb_node;
703 	struct mapping_node *node = NULL;
704 	struct reloc_control *rc = fs_info->reloc_ctl;
705 
706 	spin_lock(&rc->reloc_root_tree.lock);
707 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
708 				   root->commit_root->start);
709 	if (rb_node) {
710 		node = rb_entry(rb_node, struct mapping_node, rb_node);
711 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
712 	}
713 	spin_unlock(&rc->reloc_root_tree.lock);
714 
715 	if (!node)
716 		return 0;
717 	BUG_ON((struct btrfs_root *)node->data != root);
718 
719 	spin_lock(&rc->reloc_root_tree.lock);
720 	node->bytenr = root->node->start;
721 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
722 				   node->bytenr, &node->rb_node);
723 	spin_unlock(&rc->reloc_root_tree.lock);
724 	if (rb_node)
725 		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
726 	return 0;
727 }
728 
729 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
730 					struct btrfs_root *root, u64 objectid)
731 {
732 	struct btrfs_fs_info *fs_info = root->fs_info;
733 	struct btrfs_root *reloc_root;
734 	struct extent_buffer *eb;
735 	struct btrfs_root_item *root_item;
736 	struct btrfs_key root_key;
737 	int ret = 0;
738 	bool must_abort = false;
739 
740 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
741 	if (!root_item)
742 		return ERR_PTR(-ENOMEM);
743 
744 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
745 	root_key.type = BTRFS_ROOT_ITEM_KEY;
746 	root_key.offset = objectid;
747 
748 	if (root->root_key.objectid == objectid) {
749 		u64 commit_root_gen;
750 
751 		/* called by btrfs_init_reloc_root */
752 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
753 				      BTRFS_TREE_RELOC_OBJECTID);
754 		if (ret)
755 			goto fail;
756 
757 		/*
758 		 * Set the last_snapshot field to the generation of the commit
759 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
760 		 * correctly (returns true) when the relocation root is created
761 		 * either inside the critical section of a transaction commit
762 		 * (through transaction.c:qgroup_account_snapshot()) and when
763 		 * it's created before the transaction commit is started.
764 		 */
765 		commit_root_gen = btrfs_header_generation(root->commit_root);
766 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
767 	} else {
768 		/*
769 		 * called by btrfs_reloc_post_snapshot_hook.
770 		 * the source tree is a reloc tree, all tree blocks
771 		 * modified after it was created have RELOC flag
772 		 * set in their headers. so it's OK to not update
773 		 * the 'last_snapshot'.
774 		 */
775 		ret = btrfs_copy_root(trans, root, root->node, &eb,
776 				      BTRFS_TREE_RELOC_OBJECTID);
777 		if (ret)
778 			goto fail;
779 	}
780 
781 	/*
782 	 * We have changed references at this point, we must abort the
783 	 * transaction if anything fails.
784 	 */
785 	must_abort = true;
786 
787 	memcpy(root_item, &root->root_item, sizeof(*root_item));
788 	btrfs_set_root_bytenr(root_item, eb->start);
789 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
790 	btrfs_set_root_generation(root_item, trans->transid);
791 
792 	if (root->root_key.objectid == objectid) {
793 		btrfs_set_root_refs(root_item, 0);
794 		memset(&root_item->drop_progress, 0,
795 		       sizeof(struct btrfs_disk_key));
796 		btrfs_set_root_drop_level(root_item, 0);
797 	}
798 
799 	btrfs_tree_unlock(eb);
800 	free_extent_buffer(eb);
801 
802 	ret = btrfs_insert_root(trans, fs_info->tree_root,
803 				&root_key, root_item);
804 	if (ret)
805 		goto fail;
806 
807 	kfree(root_item);
808 
809 	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
810 	if (IS_ERR(reloc_root)) {
811 		ret = PTR_ERR(reloc_root);
812 		goto abort;
813 	}
814 	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
815 	reloc_root->last_trans = trans->transid;
816 	return reloc_root;
817 fail:
818 	kfree(root_item);
819 abort:
820 	if (must_abort)
821 		btrfs_abort_transaction(trans, ret);
822 	return ERR_PTR(ret);
823 }
824 
825 /*
826  * create reloc tree for a given fs tree. reloc tree is just a
827  * snapshot of the fs tree with special root objectid.
828  *
829  * The reloc_root comes out of here with two references, one for
830  * root->reloc_root, and another for being on the rc->reloc_roots list.
831  */
832 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
833 			  struct btrfs_root *root)
834 {
835 	struct btrfs_fs_info *fs_info = root->fs_info;
836 	struct btrfs_root *reloc_root;
837 	struct reloc_control *rc = fs_info->reloc_ctl;
838 	struct btrfs_block_rsv *rsv;
839 	int clear_rsv = 0;
840 	int ret;
841 
842 	if (!rc)
843 		return 0;
844 
845 	/*
846 	 * The subvolume has reloc tree but the swap is finished, no need to
847 	 * create/update the dead reloc tree
848 	 */
849 	if (reloc_root_is_dead(root))
850 		return 0;
851 
852 	/*
853 	 * This is subtle but important.  We do not do
854 	 * record_root_in_transaction for reloc roots, instead we record their
855 	 * corresponding fs root, and then here we update the last trans for the
856 	 * reloc root.  This means that we have to do this for the entire life
857 	 * of the reloc root, regardless of which stage of the relocation we are
858 	 * in.
859 	 */
860 	if (root->reloc_root) {
861 		reloc_root = root->reloc_root;
862 		reloc_root->last_trans = trans->transid;
863 		return 0;
864 	}
865 
866 	/*
867 	 * We are merging reloc roots, we do not need new reloc trees.  Also
868 	 * reloc trees never need their own reloc tree.
869 	 */
870 	if (!rc->create_reloc_tree ||
871 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
872 		return 0;
873 
874 	if (!trans->reloc_reserved) {
875 		rsv = trans->block_rsv;
876 		trans->block_rsv = rc->block_rsv;
877 		clear_rsv = 1;
878 	}
879 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
880 	if (clear_rsv)
881 		trans->block_rsv = rsv;
882 	if (IS_ERR(reloc_root))
883 		return PTR_ERR(reloc_root);
884 
885 	ret = __add_reloc_root(reloc_root);
886 	ASSERT(ret != -EEXIST);
887 	if (ret) {
888 		/* Pairs with create_reloc_root */
889 		btrfs_put_root(reloc_root);
890 		return ret;
891 	}
892 	root->reloc_root = btrfs_grab_root(reloc_root);
893 	return 0;
894 }
895 
896 /*
897  * update root item of reloc tree
898  */
899 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
900 			    struct btrfs_root *root)
901 {
902 	struct btrfs_fs_info *fs_info = root->fs_info;
903 	struct btrfs_root *reloc_root;
904 	struct btrfs_root_item *root_item;
905 	int ret;
906 
907 	if (!have_reloc_root(root))
908 		return 0;
909 
910 	reloc_root = root->reloc_root;
911 	root_item = &reloc_root->root_item;
912 
913 	/*
914 	 * We are probably ok here, but __del_reloc_root() will drop its ref of
915 	 * the root.  We have the ref for root->reloc_root, but just in case
916 	 * hold it while we update the reloc root.
917 	 */
918 	btrfs_grab_root(reloc_root);
919 
920 	/* root->reloc_root will stay until current relocation finished */
921 	if (fs_info->reloc_ctl->merge_reloc_tree &&
922 	    btrfs_root_refs(root_item) == 0) {
923 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
924 		/*
925 		 * Mark the tree as dead before we change reloc_root so
926 		 * have_reloc_root will not touch it from now on.
927 		 */
928 		smp_wmb();
929 		__del_reloc_root(reloc_root);
930 	}
931 
932 	if (reloc_root->commit_root != reloc_root->node) {
933 		__update_reloc_root(reloc_root);
934 		btrfs_set_root_node(root_item, reloc_root->node);
935 		free_extent_buffer(reloc_root->commit_root);
936 		reloc_root->commit_root = btrfs_root_node(reloc_root);
937 	}
938 
939 	ret = btrfs_update_root(trans, fs_info->tree_root,
940 				&reloc_root->root_key, root_item);
941 	btrfs_put_root(reloc_root);
942 	return ret;
943 }
944 
945 /*
946  * helper to find first cached inode with inode number >= objectid
947  * in a subvolume
948  */
949 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
950 {
951 	struct rb_node *node;
952 	struct rb_node *prev;
953 	struct btrfs_inode *entry;
954 	struct inode *inode;
955 
956 	spin_lock(&root->inode_lock);
957 again:
958 	node = root->inode_tree.rb_node;
959 	prev = NULL;
960 	while (node) {
961 		prev = node;
962 		entry = rb_entry(node, struct btrfs_inode, rb_node);
963 
964 		if (objectid < btrfs_ino(entry))
965 			node = node->rb_left;
966 		else if (objectid > btrfs_ino(entry))
967 			node = node->rb_right;
968 		else
969 			break;
970 	}
971 	if (!node) {
972 		while (prev) {
973 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
974 			if (objectid <= btrfs_ino(entry)) {
975 				node = prev;
976 				break;
977 			}
978 			prev = rb_next(prev);
979 		}
980 	}
981 	while (node) {
982 		entry = rb_entry(node, struct btrfs_inode, rb_node);
983 		inode = igrab(&entry->vfs_inode);
984 		if (inode) {
985 			spin_unlock(&root->inode_lock);
986 			return inode;
987 		}
988 
989 		objectid = btrfs_ino(entry) + 1;
990 		if (cond_resched_lock(&root->inode_lock))
991 			goto again;
992 
993 		node = rb_next(node);
994 	}
995 	spin_unlock(&root->inode_lock);
996 	return NULL;
997 }
998 
999 /*
1000  * get new location of data
1001  */
1002 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1003 			    u64 bytenr, u64 num_bytes)
1004 {
1005 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1006 	struct btrfs_path *path;
1007 	struct btrfs_file_extent_item *fi;
1008 	struct extent_buffer *leaf;
1009 	int ret;
1010 
1011 	path = btrfs_alloc_path();
1012 	if (!path)
1013 		return -ENOMEM;
1014 
1015 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1016 	ret = btrfs_lookup_file_extent(NULL, root, path,
1017 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1018 	if (ret < 0)
1019 		goto out;
1020 	if (ret > 0) {
1021 		ret = -ENOENT;
1022 		goto out;
1023 	}
1024 
1025 	leaf = path->nodes[0];
1026 	fi = btrfs_item_ptr(leaf, path->slots[0],
1027 			    struct btrfs_file_extent_item);
1028 
1029 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1030 	       btrfs_file_extent_compression(leaf, fi) ||
1031 	       btrfs_file_extent_encryption(leaf, fi) ||
1032 	       btrfs_file_extent_other_encoding(leaf, fi));
1033 
1034 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1035 		ret = -EINVAL;
1036 		goto out;
1037 	}
1038 
1039 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1040 	ret = 0;
1041 out:
1042 	btrfs_free_path(path);
1043 	return ret;
1044 }
1045 
1046 /*
1047  * update file extent items in the tree leaf to point to
1048  * the new locations.
1049  */
1050 static noinline_for_stack
1051 int replace_file_extents(struct btrfs_trans_handle *trans,
1052 			 struct reloc_control *rc,
1053 			 struct btrfs_root *root,
1054 			 struct extent_buffer *leaf)
1055 {
1056 	struct btrfs_fs_info *fs_info = root->fs_info;
1057 	struct btrfs_key key;
1058 	struct btrfs_file_extent_item *fi;
1059 	struct inode *inode = NULL;
1060 	u64 parent;
1061 	u64 bytenr;
1062 	u64 new_bytenr = 0;
1063 	u64 num_bytes;
1064 	u64 end;
1065 	u32 nritems;
1066 	u32 i;
1067 	int ret = 0;
1068 	int first = 1;
1069 	int dirty = 0;
1070 
1071 	if (rc->stage != UPDATE_DATA_PTRS)
1072 		return 0;
1073 
1074 	/* reloc trees always use full backref */
1075 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1076 		parent = leaf->start;
1077 	else
1078 		parent = 0;
1079 
1080 	nritems = btrfs_header_nritems(leaf);
1081 	for (i = 0; i < nritems; i++) {
1082 		struct btrfs_ref ref = { 0 };
1083 
1084 		cond_resched();
1085 		btrfs_item_key_to_cpu(leaf, &key, i);
1086 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1087 			continue;
1088 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1089 		if (btrfs_file_extent_type(leaf, fi) ==
1090 		    BTRFS_FILE_EXTENT_INLINE)
1091 			continue;
1092 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1093 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1094 		if (bytenr == 0)
1095 			continue;
1096 		if (!in_range(bytenr, rc->block_group->start,
1097 			      rc->block_group->length))
1098 			continue;
1099 
1100 		/*
1101 		 * if we are modifying block in fs tree, wait for readpage
1102 		 * to complete and drop the extent cache
1103 		 */
1104 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1105 			if (first) {
1106 				inode = find_next_inode(root, key.objectid);
1107 				first = 0;
1108 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1109 				btrfs_add_delayed_iput(inode);
1110 				inode = find_next_inode(root, key.objectid);
1111 			}
1112 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1113 				end = key.offset +
1114 				      btrfs_file_extent_num_bytes(leaf, fi);
1115 				WARN_ON(!IS_ALIGNED(key.offset,
1116 						    fs_info->sectorsize));
1117 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1118 				end--;
1119 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1120 						      key.offset, end);
1121 				if (!ret)
1122 					continue;
1123 
1124 				btrfs_drop_extent_cache(BTRFS_I(inode),
1125 						key.offset,	end, 1);
1126 				unlock_extent(&BTRFS_I(inode)->io_tree,
1127 					      key.offset, end);
1128 			}
1129 		}
1130 
1131 		ret = get_new_location(rc->data_inode, &new_bytenr,
1132 				       bytenr, num_bytes);
1133 		if (ret) {
1134 			/*
1135 			 * Don't have to abort since we've not changed anything
1136 			 * in the file extent yet.
1137 			 */
1138 			break;
1139 		}
1140 
1141 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1142 		dirty = 1;
1143 
1144 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1145 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1146 				       num_bytes, parent);
1147 		ref.real_root = root->root_key.objectid;
1148 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1149 				    key.objectid, key.offset);
1150 		ret = btrfs_inc_extent_ref(trans, &ref);
1151 		if (ret) {
1152 			btrfs_abort_transaction(trans, ret);
1153 			break;
1154 		}
1155 
1156 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1157 				       num_bytes, parent);
1158 		ref.real_root = root->root_key.objectid;
1159 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1160 				    key.objectid, key.offset);
1161 		ret = btrfs_free_extent(trans, &ref);
1162 		if (ret) {
1163 			btrfs_abort_transaction(trans, ret);
1164 			break;
1165 		}
1166 	}
1167 	if (dirty)
1168 		btrfs_mark_buffer_dirty(leaf);
1169 	if (inode)
1170 		btrfs_add_delayed_iput(inode);
1171 	return ret;
1172 }
1173 
1174 static noinline_for_stack
1175 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1176 		     struct btrfs_path *path, int level)
1177 {
1178 	struct btrfs_disk_key key1;
1179 	struct btrfs_disk_key key2;
1180 	btrfs_node_key(eb, &key1, slot);
1181 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1182 	return memcmp(&key1, &key2, sizeof(key1));
1183 }
1184 
1185 /*
1186  * try to replace tree blocks in fs tree with the new blocks
1187  * in reloc tree. tree blocks haven't been modified since the
1188  * reloc tree was create can be replaced.
1189  *
1190  * if a block was replaced, level of the block + 1 is returned.
1191  * if no block got replaced, 0 is returned. if there are other
1192  * errors, a negative error number is returned.
1193  */
1194 static noinline_for_stack
1195 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1196 		 struct btrfs_root *dest, struct btrfs_root *src,
1197 		 struct btrfs_path *path, struct btrfs_key *next_key,
1198 		 int lowest_level, int max_level)
1199 {
1200 	struct btrfs_fs_info *fs_info = dest->fs_info;
1201 	struct extent_buffer *eb;
1202 	struct extent_buffer *parent;
1203 	struct btrfs_ref ref = { 0 };
1204 	struct btrfs_key key;
1205 	u64 old_bytenr;
1206 	u64 new_bytenr;
1207 	u64 old_ptr_gen;
1208 	u64 new_ptr_gen;
1209 	u64 last_snapshot;
1210 	u32 blocksize;
1211 	int cow = 0;
1212 	int level;
1213 	int ret;
1214 	int slot;
1215 
1216 	ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1217 	ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1218 
1219 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1220 again:
1221 	slot = path->slots[lowest_level];
1222 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1223 
1224 	eb = btrfs_lock_root_node(dest);
1225 	level = btrfs_header_level(eb);
1226 
1227 	if (level < lowest_level) {
1228 		btrfs_tree_unlock(eb);
1229 		free_extent_buffer(eb);
1230 		return 0;
1231 	}
1232 
1233 	if (cow) {
1234 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1235 				      BTRFS_NESTING_COW);
1236 		if (ret) {
1237 			btrfs_tree_unlock(eb);
1238 			free_extent_buffer(eb);
1239 			return ret;
1240 		}
1241 	}
1242 
1243 	if (next_key) {
1244 		next_key->objectid = (u64)-1;
1245 		next_key->type = (u8)-1;
1246 		next_key->offset = (u64)-1;
1247 	}
1248 
1249 	parent = eb;
1250 	while (1) {
1251 		level = btrfs_header_level(parent);
1252 		ASSERT(level >= lowest_level);
1253 
1254 		ret = btrfs_bin_search(parent, &key, &slot);
1255 		if (ret < 0)
1256 			break;
1257 		if (ret && slot > 0)
1258 			slot--;
1259 
1260 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1261 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1262 
1263 		old_bytenr = btrfs_node_blockptr(parent, slot);
1264 		blocksize = fs_info->nodesize;
1265 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1266 
1267 		if (level <= max_level) {
1268 			eb = path->nodes[level];
1269 			new_bytenr = btrfs_node_blockptr(eb,
1270 							path->slots[level]);
1271 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1272 							path->slots[level]);
1273 		} else {
1274 			new_bytenr = 0;
1275 			new_ptr_gen = 0;
1276 		}
1277 
1278 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1279 			ret = level;
1280 			break;
1281 		}
1282 
1283 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1284 		    memcmp_node_keys(parent, slot, path, level)) {
1285 			if (level <= lowest_level) {
1286 				ret = 0;
1287 				break;
1288 			}
1289 
1290 			eb = btrfs_read_node_slot(parent, slot);
1291 			if (IS_ERR(eb)) {
1292 				ret = PTR_ERR(eb);
1293 				break;
1294 			}
1295 			btrfs_tree_lock(eb);
1296 			if (cow) {
1297 				ret = btrfs_cow_block(trans, dest, eb, parent,
1298 						      slot, &eb,
1299 						      BTRFS_NESTING_COW);
1300 				if (ret) {
1301 					btrfs_tree_unlock(eb);
1302 					free_extent_buffer(eb);
1303 					break;
1304 				}
1305 			}
1306 
1307 			btrfs_tree_unlock(parent);
1308 			free_extent_buffer(parent);
1309 
1310 			parent = eb;
1311 			continue;
1312 		}
1313 
1314 		if (!cow) {
1315 			btrfs_tree_unlock(parent);
1316 			free_extent_buffer(parent);
1317 			cow = 1;
1318 			goto again;
1319 		}
1320 
1321 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1322 				      path->slots[level]);
1323 		btrfs_release_path(path);
1324 
1325 		path->lowest_level = level;
1326 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1327 		path->lowest_level = 0;
1328 		if (ret) {
1329 			if (ret > 0)
1330 				ret = -ENOENT;
1331 			break;
1332 		}
1333 
1334 		/*
1335 		 * Info qgroup to trace both subtrees.
1336 		 *
1337 		 * We must trace both trees.
1338 		 * 1) Tree reloc subtree
1339 		 *    If not traced, we will leak data numbers
1340 		 * 2) Fs subtree
1341 		 *    If not traced, we will double count old data
1342 		 *
1343 		 * We don't scan the subtree right now, but only record
1344 		 * the swapped tree blocks.
1345 		 * The real subtree rescan is delayed until we have new
1346 		 * CoW on the subtree root node before transaction commit.
1347 		 */
1348 		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1349 				rc->block_group, parent, slot,
1350 				path->nodes[level], path->slots[level],
1351 				last_snapshot);
1352 		if (ret < 0)
1353 			break;
1354 		/*
1355 		 * swap blocks in fs tree and reloc tree.
1356 		 */
1357 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1358 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1359 		btrfs_mark_buffer_dirty(parent);
1360 
1361 		btrfs_set_node_blockptr(path->nodes[level],
1362 					path->slots[level], old_bytenr);
1363 		btrfs_set_node_ptr_generation(path->nodes[level],
1364 					      path->slots[level], old_ptr_gen);
1365 		btrfs_mark_buffer_dirty(path->nodes[level]);
1366 
1367 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1368 				       blocksize, path->nodes[level]->start);
1369 		ref.skip_qgroup = true;
1370 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1371 		ret = btrfs_inc_extent_ref(trans, &ref);
1372 		if (ret) {
1373 			btrfs_abort_transaction(trans, ret);
1374 			break;
1375 		}
1376 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1377 				       blocksize, 0);
1378 		ref.skip_qgroup = true;
1379 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1380 		ret = btrfs_inc_extent_ref(trans, &ref);
1381 		if (ret) {
1382 			btrfs_abort_transaction(trans, ret);
1383 			break;
1384 		}
1385 
1386 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1387 				       blocksize, path->nodes[level]->start);
1388 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1389 		ref.skip_qgroup = true;
1390 		ret = btrfs_free_extent(trans, &ref);
1391 		if (ret) {
1392 			btrfs_abort_transaction(trans, ret);
1393 			break;
1394 		}
1395 
1396 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1397 				       blocksize, 0);
1398 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1399 		ref.skip_qgroup = true;
1400 		ret = btrfs_free_extent(trans, &ref);
1401 		if (ret) {
1402 			btrfs_abort_transaction(trans, ret);
1403 			break;
1404 		}
1405 
1406 		btrfs_unlock_up_safe(path, 0);
1407 
1408 		ret = level;
1409 		break;
1410 	}
1411 	btrfs_tree_unlock(parent);
1412 	free_extent_buffer(parent);
1413 	return ret;
1414 }
1415 
1416 /*
1417  * helper to find next relocated block in reloc tree
1418  */
1419 static noinline_for_stack
1420 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1421 		       int *level)
1422 {
1423 	struct extent_buffer *eb;
1424 	int i;
1425 	u64 last_snapshot;
1426 	u32 nritems;
1427 
1428 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1429 
1430 	for (i = 0; i < *level; i++) {
1431 		free_extent_buffer(path->nodes[i]);
1432 		path->nodes[i] = NULL;
1433 	}
1434 
1435 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1436 		eb = path->nodes[i];
1437 		nritems = btrfs_header_nritems(eb);
1438 		while (path->slots[i] + 1 < nritems) {
1439 			path->slots[i]++;
1440 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1441 			    last_snapshot)
1442 				continue;
1443 
1444 			*level = i;
1445 			return 0;
1446 		}
1447 		free_extent_buffer(path->nodes[i]);
1448 		path->nodes[i] = NULL;
1449 	}
1450 	return 1;
1451 }
1452 
1453 /*
1454  * walk down reloc tree to find relocated block of lowest level
1455  */
1456 static noinline_for_stack
1457 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1458 			 int *level)
1459 {
1460 	struct extent_buffer *eb = NULL;
1461 	int i;
1462 	u64 ptr_gen = 0;
1463 	u64 last_snapshot;
1464 	u32 nritems;
1465 
1466 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1467 
1468 	for (i = *level; i > 0; i--) {
1469 		eb = path->nodes[i];
1470 		nritems = btrfs_header_nritems(eb);
1471 		while (path->slots[i] < nritems) {
1472 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1473 			if (ptr_gen > last_snapshot)
1474 				break;
1475 			path->slots[i]++;
1476 		}
1477 		if (path->slots[i] >= nritems) {
1478 			if (i == *level)
1479 				break;
1480 			*level = i + 1;
1481 			return 0;
1482 		}
1483 		if (i == 1) {
1484 			*level = i;
1485 			return 0;
1486 		}
1487 
1488 		eb = btrfs_read_node_slot(eb, path->slots[i]);
1489 		if (IS_ERR(eb))
1490 			return PTR_ERR(eb);
1491 		BUG_ON(btrfs_header_level(eb) != i - 1);
1492 		path->nodes[i - 1] = eb;
1493 		path->slots[i - 1] = 0;
1494 	}
1495 	return 1;
1496 }
1497 
1498 /*
1499  * invalidate extent cache for file extents whose key in range of
1500  * [min_key, max_key)
1501  */
1502 static int invalidate_extent_cache(struct btrfs_root *root,
1503 				   struct btrfs_key *min_key,
1504 				   struct btrfs_key *max_key)
1505 {
1506 	struct btrfs_fs_info *fs_info = root->fs_info;
1507 	struct inode *inode = NULL;
1508 	u64 objectid;
1509 	u64 start, end;
1510 	u64 ino;
1511 
1512 	objectid = min_key->objectid;
1513 	while (1) {
1514 		cond_resched();
1515 		iput(inode);
1516 
1517 		if (objectid > max_key->objectid)
1518 			break;
1519 
1520 		inode = find_next_inode(root, objectid);
1521 		if (!inode)
1522 			break;
1523 		ino = btrfs_ino(BTRFS_I(inode));
1524 
1525 		if (ino > max_key->objectid) {
1526 			iput(inode);
1527 			break;
1528 		}
1529 
1530 		objectid = ino + 1;
1531 		if (!S_ISREG(inode->i_mode))
1532 			continue;
1533 
1534 		if (unlikely(min_key->objectid == ino)) {
1535 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1536 				continue;
1537 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1538 				start = 0;
1539 			else {
1540 				start = min_key->offset;
1541 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1542 			}
1543 		} else {
1544 			start = 0;
1545 		}
1546 
1547 		if (unlikely(max_key->objectid == ino)) {
1548 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1549 				continue;
1550 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1551 				end = (u64)-1;
1552 			} else {
1553 				if (max_key->offset == 0)
1554 					continue;
1555 				end = max_key->offset;
1556 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1557 				end--;
1558 			}
1559 		} else {
1560 			end = (u64)-1;
1561 		}
1562 
1563 		/* the lock_extent waits for readpage to complete */
1564 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1565 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1566 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1567 	}
1568 	return 0;
1569 }
1570 
1571 static int find_next_key(struct btrfs_path *path, int level,
1572 			 struct btrfs_key *key)
1573 
1574 {
1575 	while (level < BTRFS_MAX_LEVEL) {
1576 		if (!path->nodes[level])
1577 			break;
1578 		if (path->slots[level] + 1 <
1579 		    btrfs_header_nritems(path->nodes[level])) {
1580 			btrfs_node_key_to_cpu(path->nodes[level], key,
1581 					      path->slots[level] + 1);
1582 			return 0;
1583 		}
1584 		level++;
1585 	}
1586 	return 1;
1587 }
1588 
1589 /*
1590  * Insert current subvolume into reloc_control::dirty_subvol_roots
1591  */
1592 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1593 			       struct reloc_control *rc,
1594 			       struct btrfs_root *root)
1595 {
1596 	struct btrfs_root *reloc_root = root->reloc_root;
1597 	struct btrfs_root_item *reloc_root_item;
1598 	int ret;
1599 
1600 	/* @root must be a subvolume tree root with a valid reloc tree */
1601 	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1602 	ASSERT(reloc_root);
1603 
1604 	reloc_root_item = &reloc_root->root_item;
1605 	memset(&reloc_root_item->drop_progress, 0,
1606 		sizeof(reloc_root_item->drop_progress));
1607 	btrfs_set_root_drop_level(reloc_root_item, 0);
1608 	btrfs_set_root_refs(reloc_root_item, 0);
1609 	ret = btrfs_update_reloc_root(trans, root);
1610 	if (ret)
1611 		return ret;
1612 
1613 	if (list_empty(&root->reloc_dirty_list)) {
1614 		btrfs_grab_root(root);
1615 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1616 	}
1617 
1618 	return 0;
1619 }
1620 
1621 static int clean_dirty_subvols(struct reloc_control *rc)
1622 {
1623 	struct btrfs_root *root;
1624 	struct btrfs_root *next;
1625 	int ret = 0;
1626 	int ret2;
1627 
1628 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1629 				 reloc_dirty_list) {
1630 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1631 			/* Merged subvolume, cleanup its reloc root */
1632 			struct btrfs_root *reloc_root = root->reloc_root;
1633 
1634 			list_del_init(&root->reloc_dirty_list);
1635 			root->reloc_root = NULL;
1636 			/*
1637 			 * Need barrier to ensure clear_bit() only happens after
1638 			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1639 			 */
1640 			smp_wmb();
1641 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1642 			if (reloc_root) {
1643 				/*
1644 				 * btrfs_drop_snapshot drops our ref we hold for
1645 				 * ->reloc_root.  If it fails however we must
1646 				 * drop the ref ourselves.
1647 				 */
1648 				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1649 				if (ret2 < 0) {
1650 					btrfs_put_root(reloc_root);
1651 					if (!ret)
1652 						ret = ret2;
1653 				}
1654 			}
1655 			btrfs_put_root(root);
1656 		} else {
1657 			/* Orphan reloc tree, just clean it up */
1658 			ret2 = btrfs_drop_snapshot(root, 0, 1);
1659 			if (ret2 < 0) {
1660 				btrfs_put_root(root);
1661 				if (!ret)
1662 					ret = ret2;
1663 			}
1664 		}
1665 	}
1666 	return ret;
1667 }
1668 
1669 /*
1670  * merge the relocated tree blocks in reloc tree with corresponding
1671  * fs tree.
1672  */
1673 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1674 					       struct btrfs_root *root)
1675 {
1676 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1677 	struct btrfs_key key;
1678 	struct btrfs_key next_key;
1679 	struct btrfs_trans_handle *trans = NULL;
1680 	struct btrfs_root *reloc_root;
1681 	struct btrfs_root_item *root_item;
1682 	struct btrfs_path *path;
1683 	struct extent_buffer *leaf;
1684 	int reserve_level;
1685 	int level;
1686 	int max_level;
1687 	int replaced = 0;
1688 	int ret = 0;
1689 	u32 min_reserved;
1690 
1691 	path = btrfs_alloc_path();
1692 	if (!path)
1693 		return -ENOMEM;
1694 	path->reada = READA_FORWARD;
1695 
1696 	reloc_root = root->reloc_root;
1697 	root_item = &reloc_root->root_item;
1698 
1699 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1700 		level = btrfs_root_level(root_item);
1701 		atomic_inc(&reloc_root->node->refs);
1702 		path->nodes[level] = reloc_root->node;
1703 		path->slots[level] = 0;
1704 	} else {
1705 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1706 
1707 		level = btrfs_root_drop_level(root_item);
1708 		BUG_ON(level == 0);
1709 		path->lowest_level = level;
1710 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1711 		path->lowest_level = 0;
1712 		if (ret < 0) {
1713 			btrfs_free_path(path);
1714 			return ret;
1715 		}
1716 
1717 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1718 				      path->slots[level]);
1719 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1720 
1721 		btrfs_unlock_up_safe(path, 0);
1722 	}
1723 
1724 	/*
1725 	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1726 	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1727 	 * block COW, we COW at most from level 1 to root level for each tree.
1728 	 *
1729 	 * Thus the needed metadata size is at most root_level * nodesize,
1730 	 * and * 2 since we have two trees to COW.
1731 	 */
1732 	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1733 	min_reserved = fs_info->nodesize * reserve_level * 2;
1734 	memset(&next_key, 0, sizeof(next_key));
1735 
1736 	while (1) {
1737 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1738 					     BTRFS_RESERVE_FLUSH_LIMIT);
1739 		if (ret)
1740 			goto out;
1741 		trans = btrfs_start_transaction(root, 0);
1742 		if (IS_ERR(trans)) {
1743 			ret = PTR_ERR(trans);
1744 			trans = NULL;
1745 			goto out;
1746 		}
1747 
1748 		/*
1749 		 * At this point we no longer have a reloc_control, so we can't
1750 		 * depend on btrfs_init_reloc_root to update our last_trans.
1751 		 *
1752 		 * But that's ok, we started the trans handle on our
1753 		 * corresponding fs_root, which means it's been added to the
1754 		 * dirty list.  At commit time we'll still call
1755 		 * btrfs_update_reloc_root() and update our root item
1756 		 * appropriately.
1757 		 */
1758 		reloc_root->last_trans = trans->transid;
1759 		trans->block_rsv = rc->block_rsv;
1760 
1761 		replaced = 0;
1762 		max_level = level;
1763 
1764 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1765 		if (ret < 0)
1766 			goto out;
1767 		if (ret > 0)
1768 			break;
1769 
1770 		if (!find_next_key(path, level, &key) &&
1771 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1772 			ret = 0;
1773 		} else {
1774 			ret = replace_path(trans, rc, root, reloc_root, path,
1775 					   &next_key, level, max_level);
1776 		}
1777 		if (ret < 0)
1778 			goto out;
1779 		if (ret > 0) {
1780 			level = ret;
1781 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1782 					      path->slots[level]);
1783 			replaced = 1;
1784 		}
1785 
1786 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1787 		if (ret > 0)
1788 			break;
1789 
1790 		BUG_ON(level == 0);
1791 		/*
1792 		 * save the merging progress in the drop_progress.
1793 		 * this is OK since root refs == 1 in this case.
1794 		 */
1795 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1796 			       path->slots[level]);
1797 		btrfs_set_root_drop_level(root_item, level);
1798 
1799 		btrfs_end_transaction_throttle(trans);
1800 		trans = NULL;
1801 
1802 		btrfs_btree_balance_dirty(fs_info);
1803 
1804 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1805 			invalidate_extent_cache(root, &key, &next_key);
1806 	}
1807 
1808 	/*
1809 	 * handle the case only one block in the fs tree need to be
1810 	 * relocated and the block is tree root.
1811 	 */
1812 	leaf = btrfs_lock_root_node(root);
1813 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1814 			      BTRFS_NESTING_COW);
1815 	btrfs_tree_unlock(leaf);
1816 	free_extent_buffer(leaf);
1817 out:
1818 	btrfs_free_path(path);
1819 
1820 	if (ret == 0) {
1821 		ret = insert_dirty_subvol(trans, rc, root);
1822 		if (ret)
1823 			btrfs_abort_transaction(trans, ret);
1824 	}
1825 
1826 	if (trans)
1827 		btrfs_end_transaction_throttle(trans);
1828 
1829 	btrfs_btree_balance_dirty(fs_info);
1830 
1831 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1832 		invalidate_extent_cache(root, &key, &next_key);
1833 
1834 	return ret;
1835 }
1836 
1837 static noinline_for_stack
1838 int prepare_to_merge(struct reloc_control *rc, int err)
1839 {
1840 	struct btrfs_root *root = rc->extent_root;
1841 	struct btrfs_fs_info *fs_info = root->fs_info;
1842 	struct btrfs_root *reloc_root;
1843 	struct btrfs_trans_handle *trans;
1844 	LIST_HEAD(reloc_roots);
1845 	u64 num_bytes = 0;
1846 	int ret;
1847 
1848 	mutex_lock(&fs_info->reloc_mutex);
1849 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1850 	rc->merging_rsv_size += rc->nodes_relocated * 2;
1851 	mutex_unlock(&fs_info->reloc_mutex);
1852 
1853 again:
1854 	if (!err) {
1855 		num_bytes = rc->merging_rsv_size;
1856 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1857 					  BTRFS_RESERVE_FLUSH_ALL);
1858 		if (ret)
1859 			err = ret;
1860 	}
1861 
1862 	trans = btrfs_join_transaction(rc->extent_root);
1863 	if (IS_ERR(trans)) {
1864 		if (!err)
1865 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1866 						num_bytes, NULL);
1867 		return PTR_ERR(trans);
1868 	}
1869 
1870 	if (!err) {
1871 		if (num_bytes != rc->merging_rsv_size) {
1872 			btrfs_end_transaction(trans);
1873 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1874 						num_bytes, NULL);
1875 			goto again;
1876 		}
1877 	}
1878 
1879 	rc->merge_reloc_tree = 1;
1880 
1881 	while (!list_empty(&rc->reloc_roots)) {
1882 		reloc_root = list_entry(rc->reloc_roots.next,
1883 					struct btrfs_root, root_list);
1884 		list_del_init(&reloc_root->root_list);
1885 
1886 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1887 				false);
1888 		if (IS_ERR(root)) {
1889 			/*
1890 			 * Even if we have an error we need this reloc root
1891 			 * back on our list so we can clean up properly.
1892 			 */
1893 			list_add(&reloc_root->root_list, &reloc_roots);
1894 			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1895 			if (!err)
1896 				err = PTR_ERR(root);
1897 			break;
1898 		}
1899 		ASSERT(root->reloc_root == reloc_root);
1900 
1901 		/*
1902 		 * set reference count to 1, so btrfs_recover_relocation
1903 		 * knows it should resumes merging
1904 		 */
1905 		if (!err)
1906 			btrfs_set_root_refs(&reloc_root->root_item, 1);
1907 		ret = btrfs_update_reloc_root(trans, root);
1908 
1909 		/*
1910 		 * Even if we have an error we need this reloc root back on our
1911 		 * list so we can clean up properly.
1912 		 */
1913 		list_add(&reloc_root->root_list, &reloc_roots);
1914 		btrfs_put_root(root);
1915 
1916 		if (ret) {
1917 			btrfs_abort_transaction(trans, ret);
1918 			if (!err)
1919 				err = ret;
1920 			break;
1921 		}
1922 	}
1923 
1924 	list_splice(&reloc_roots, &rc->reloc_roots);
1925 
1926 	if (!err)
1927 		err = btrfs_commit_transaction(trans);
1928 	else
1929 		btrfs_end_transaction(trans);
1930 	return err;
1931 }
1932 
1933 static noinline_for_stack
1934 void free_reloc_roots(struct list_head *list)
1935 {
1936 	struct btrfs_root *reloc_root, *tmp;
1937 
1938 	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1939 		__del_reloc_root(reloc_root);
1940 }
1941 
1942 static noinline_for_stack
1943 void merge_reloc_roots(struct reloc_control *rc)
1944 {
1945 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1946 	struct btrfs_root *root;
1947 	struct btrfs_root *reloc_root;
1948 	LIST_HEAD(reloc_roots);
1949 	int found = 0;
1950 	int ret = 0;
1951 again:
1952 	root = rc->extent_root;
1953 
1954 	/*
1955 	 * this serializes us with btrfs_record_root_in_transaction,
1956 	 * we have to make sure nobody is in the middle of
1957 	 * adding their roots to the list while we are
1958 	 * doing this splice
1959 	 */
1960 	mutex_lock(&fs_info->reloc_mutex);
1961 	list_splice_init(&rc->reloc_roots, &reloc_roots);
1962 	mutex_unlock(&fs_info->reloc_mutex);
1963 
1964 	while (!list_empty(&reloc_roots)) {
1965 		found = 1;
1966 		reloc_root = list_entry(reloc_roots.next,
1967 					struct btrfs_root, root_list);
1968 
1969 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1970 					 false);
1971 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1972 			if (IS_ERR(root)) {
1973 				/*
1974 				 * For recovery we read the fs roots on mount,
1975 				 * and if we didn't find the root then we marked
1976 				 * the reloc root as a garbage root.  For normal
1977 				 * relocation obviously the root should exist in
1978 				 * memory.  However there's no reason we can't
1979 				 * handle the error properly here just in case.
1980 				 */
1981 				ASSERT(0);
1982 				ret = PTR_ERR(root);
1983 				goto out;
1984 			}
1985 			if (root->reloc_root != reloc_root) {
1986 				/*
1987 				 * This is actually impossible without something
1988 				 * going really wrong (like weird race condition
1989 				 * or cosmic rays).
1990 				 */
1991 				ASSERT(0);
1992 				ret = -EINVAL;
1993 				goto out;
1994 			}
1995 			ret = merge_reloc_root(rc, root);
1996 			btrfs_put_root(root);
1997 			if (ret) {
1998 				if (list_empty(&reloc_root->root_list))
1999 					list_add_tail(&reloc_root->root_list,
2000 						      &reloc_roots);
2001 				goto out;
2002 			}
2003 		} else {
2004 			if (!IS_ERR(root)) {
2005 				if (root->reloc_root == reloc_root) {
2006 					root->reloc_root = NULL;
2007 					btrfs_put_root(reloc_root);
2008 				}
2009 				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2010 					  &root->state);
2011 				btrfs_put_root(root);
2012 			}
2013 
2014 			list_del_init(&reloc_root->root_list);
2015 			/* Don't forget to queue this reloc root for cleanup */
2016 			list_add_tail(&reloc_root->reloc_dirty_list,
2017 				      &rc->dirty_subvol_roots);
2018 		}
2019 	}
2020 
2021 	if (found) {
2022 		found = 0;
2023 		goto again;
2024 	}
2025 out:
2026 	if (ret) {
2027 		btrfs_handle_fs_error(fs_info, ret, NULL);
2028 		free_reloc_roots(&reloc_roots);
2029 
2030 		/* new reloc root may be added */
2031 		mutex_lock(&fs_info->reloc_mutex);
2032 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2033 		mutex_unlock(&fs_info->reloc_mutex);
2034 		free_reloc_roots(&reloc_roots);
2035 	}
2036 
2037 	/*
2038 	 * We used to have
2039 	 *
2040 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2041 	 *
2042 	 * here, but it's wrong.  If we fail to start the transaction in
2043 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2044 	 * have actually been removed from the reloc_root_tree rb tree.  This is
2045 	 * fine because we're bailing here, and we hold a reference on the root
2046 	 * for the list that holds it, so these roots will be cleaned up when we
2047 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2048 	 * will be cleaned up on unmount.
2049 	 *
2050 	 * The remaining nodes will be cleaned up by free_reloc_control.
2051 	 */
2052 }
2053 
2054 static void free_block_list(struct rb_root *blocks)
2055 {
2056 	struct tree_block *block;
2057 	struct rb_node *rb_node;
2058 	while ((rb_node = rb_first(blocks))) {
2059 		block = rb_entry(rb_node, struct tree_block, rb_node);
2060 		rb_erase(rb_node, blocks);
2061 		kfree(block);
2062 	}
2063 }
2064 
2065 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2066 				      struct btrfs_root *reloc_root)
2067 {
2068 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2069 	struct btrfs_root *root;
2070 	int ret;
2071 
2072 	if (reloc_root->last_trans == trans->transid)
2073 		return 0;
2074 
2075 	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2076 
2077 	/*
2078 	 * This should succeed, since we can't have a reloc root without having
2079 	 * already looked up the actual root and created the reloc root for this
2080 	 * root.
2081 	 *
2082 	 * However if there's some sort of corruption where we have a ref to a
2083 	 * reloc root without a corresponding root this could return ENOENT.
2084 	 */
2085 	if (IS_ERR(root)) {
2086 		ASSERT(0);
2087 		return PTR_ERR(root);
2088 	}
2089 	if (root->reloc_root != reloc_root) {
2090 		ASSERT(0);
2091 		btrfs_err(fs_info,
2092 			  "root %llu has two reloc roots associated with it",
2093 			  reloc_root->root_key.offset);
2094 		btrfs_put_root(root);
2095 		return -EUCLEAN;
2096 	}
2097 	ret = btrfs_record_root_in_trans(trans, root);
2098 	btrfs_put_root(root);
2099 
2100 	return ret;
2101 }
2102 
2103 static noinline_for_stack
2104 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2105 				     struct reloc_control *rc,
2106 				     struct btrfs_backref_node *node,
2107 				     struct btrfs_backref_edge *edges[])
2108 {
2109 	struct btrfs_backref_node *next;
2110 	struct btrfs_root *root;
2111 	int index = 0;
2112 	int ret;
2113 
2114 	next = node;
2115 	while (1) {
2116 		cond_resched();
2117 		next = walk_up_backref(next, edges, &index);
2118 		root = next->root;
2119 
2120 		/*
2121 		 * If there is no root, then our references for this block are
2122 		 * incomplete, as we should be able to walk all the way up to a
2123 		 * block that is owned by a root.
2124 		 *
2125 		 * This path is only for SHAREABLE roots, so if we come upon a
2126 		 * non-SHAREABLE root then we have backrefs that resolve
2127 		 * improperly.
2128 		 *
2129 		 * Both of these cases indicate file system corruption, or a bug
2130 		 * in the backref walking code.
2131 		 */
2132 		if (!root) {
2133 			ASSERT(0);
2134 			btrfs_err(trans->fs_info,
2135 		"bytenr %llu doesn't have a backref path ending in a root",
2136 				  node->bytenr);
2137 			return ERR_PTR(-EUCLEAN);
2138 		}
2139 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2140 			ASSERT(0);
2141 			btrfs_err(trans->fs_info,
2142 	"bytenr %llu has multiple refs with one ending in a non-shareable root",
2143 				  node->bytenr);
2144 			return ERR_PTR(-EUCLEAN);
2145 		}
2146 
2147 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2148 			ret = record_reloc_root_in_trans(trans, root);
2149 			if (ret)
2150 				return ERR_PTR(ret);
2151 			break;
2152 		}
2153 
2154 		ret = btrfs_record_root_in_trans(trans, root);
2155 		if (ret)
2156 			return ERR_PTR(ret);
2157 		root = root->reloc_root;
2158 
2159 		/*
2160 		 * We could have raced with another thread which failed, so
2161 		 * root->reloc_root may not be set, return ENOENT in this case.
2162 		 */
2163 		if (!root)
2164 			return ERR_PTR(-ENOENT);
2165 
2166 		if (next->new_bytenr != root->node->start) {
2167 			/*
2168 			 * We just created the reloc root, so we shouldn't have
2169 			 * ->new_bytenr set and this shouldn't be in the changed
2170 			 *  list.  If it is then we have multiple roots pointing
2171 			 *  at the same bytenr which indicates corruption, or
2172 			 *  we've made a mistake in the backref walking code.
2173 			 */
2174 			ASSERT(next->new_bytenr == 0);
2175 			ASSERT(list_empty(&next->list));
2176 			if (next->new_bytenr || !list_empty(&next->list)) {
2177 				btrfs_err(trans->fs_info,
2178 	"bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2179 					  node->bytenr, next->bytenr);
2180 				return ERR_PTR(-EUCLEAN);
2181 			}
2182 
2183 			next->new_bytenr = root->node->start;
2184 			btrfs_put_root(next->root);
2185 			next->root = btrfs_grab_root(root);
2186 			ASSERT(next->root);
2187 			list_add_tail(&next->list,
2188 				      &rc->backref_cache.changed);
2189 			mark_block_processed(rc, next);
2190 			break;
2191 		}
2192 
2193 		WARN_ON(1);
2194 		root = NULL;
2195 		next = walk_down_backref(edges, &index);
2196 		if (!next || next->level <= node->level)
2197 			break;
2198 	}
2199 	if (!root) {
2200 		/*
2201 		 * This can happen if there's fs corruption or if there's a bug
2202 		 * in the backref lookup code.
2203 		 */
2204 		ASSERT(0);
2205 		return ERR_PTR(-ENOENT);
2206 	}
2207 
2208 	next = node;
2209 	/* setup backref node path for btrfs_reloc_cow_block */
2210 	while (1) {
2211 		rc->backref_cache.path[next->level] = next;
2212 		if (--index < 0)
2213 			break;
2214 		next = edges[index]->node[UPPER];
2215 	}
2216 	return root;
2217 }
2218 
2219 /*
2220  * Select a tree root for relocation.
2221  *
2222  * Return NULL if the block is not shareable. We should use do_relocation() in
2223  * this case.
2224  *
2225  * Return a tree root pointer if the block is shareable.
2226  * Return -ENOENT if the block is root of reloc tree.
2227  */
2228 static noinline_for_stack
2229 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2230 {
2231 	struct btrfs_backref_node *next;
2232 	struct btrfs_root *root;
2233 	struct btrfs_root *fs_root = NULL;
2234 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2235 	int index = 0;
2236 
2237 	next = node;
2238 	while (1) {
2239 		cond_resched();
2240 		next = walk_up_backref(next, edges, &index);
2241 		root = next->root;
2242 
2243 		/*
2244 		 * This can occur if we have incomplete extent refs leading all
2245 		 * the way up a particular path, in this case return -EUCLEAN.
2246 		 */
2247 		if (!root)
2248 			return ERR_PTR(-EUCLEAN);
2249 
2250 		/* No other choice for non-shareable tree */
2251 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2252 			return root;
2253 
2254 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2255 			fs_root = root;
2256 
2257 		if (next != node)
2258 			return NULL;
2259 
2260 		next = walk_down_backref(edges, &index);
2261 		if (!next || next->level <= node->level)
2262 			break;
2263 	}
2264 
2265 	if (!fs_root)
2266 		return ERR_PTR(-ENOENT);
2267 	return fs_root;
2268 }
2269 
2270 static noinline_for_stack
2271 u64 calcu_metadata_size(struct reloc_control *rc,
2272 			struct btrfs_backref_node *node, int reserve)
2273 {
2274 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2275 	struct btrfs_backref_node *next = node;
2276 	struct btrfs_backref_edge *edge;
2277 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2278 	u64 num_bytes = 0;
2279 	int index = 0;
2280 
2281 	BUG_ON(reserve && node->processed);
2282 
2283 	while (next) {
2284 		cond_resched();
2285 		while (1) {
2286 			if (next->processed && (reserve || next != node))
2287 				break;
2288 
2289 			num_bytes += fs_info->nodesize;
2290 
2291 			if (list_empty(&next->upper))
2292 				break;
2293 
2294 			edge = list_entry(next->upper.next,
2295 					struct btrfs_backref_edge, list[LOWER]);
2296 			edges[index++] = edge;
2297 			next = edge->node[UPPER];
2298 		}
2299 		next = walk_down_backref(edges, &index);
2300 	}
2301 	return num_bytes;
2302 }
2303 
2304 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2305 				  struct reloc_control *rc,
2306 				  struct btrfs_backref_node *node)
2307 {
2308 	struct btrfs_root *root = rc->extent_root;
2309 	struct btrfs_fs_info *fs_info = root->fs_info;
2310 	u64 num_bytes;
2311 	int ret;
2312 	u64 tmp;
2313 
2314 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2315 
2316 	trans->block_rsv = rc->block_rsv;
2317 	rc->reserved_bytes += num_bytes;
2318 
2319 	/*
2320 	 * We are under a transaction here so we can only do limited flushing.
2321 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2322 	 * transaction and try to refill when we can flush all the things.
2323 	 */
2324 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2325 				BTRFS_RESERVE_FLUSH_LIMIT);
2326 	if (ret) {
2327 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2328 		while (tmp <= rc->reserved_bytes)
2329 			tmp <<= 1;
2330 		/*
2331 		 * only one thread can access block_rsv at this point,
2332 		 * so we don't need hold lock to protect block_rsv.
2333 		 * we expand more reservation size here to allow enough
2334 		 * space for relocation and we will return earlier in
2335 		 * enospc case.
2336 		 */
2337 		rc->block_rsv->size = tmp + fs_info->nodesize *
2338 				      RELOCATION_RESERVED_NODES;
2339 		return -EAGAIN;
2340 	}
2341 
2342 	return 0;
2343 }
2344 
2345 /*
2346  * relocate a block tree, and then update pointers in upper level
2347  * blocks that reference the block to point to the new location.
2348  *
2349  * if called by link_to_upper, the block has already been relocated.
2350  * in that case this function just updates pointers.
2351  */
2352 static int do_relocation(struct btrfs_trans_handle *trans,
2353 			 struct reloc_control *rc,
2354 			 struct btrfs_backref_node *node,
2355 			 struct btrfs_key *key,
2356 			 struct btrfs_path *path, int lowest)
2357 {
2358 	struct btrfs_backref_node *upper;
2359 	struct btrfs_backref_edge *edge;
2360 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2361 	struct btrfs_root *root;
2362 	struct extent_buffer *eb;
2363 	u32 blocksize;
2364 	u64 bytenr;
2365 	int slot;
2366 	int ret = 0;
2367 
2368 	/*
2369 	 * If we are lowest then this is the first time we're processing this
2370 	 * block, and thus shouldn't have an eb associated with it yet.
2371 	 */
2372 	ASSERT(!lowest || !node->eb);
2373 
2374 	path->lowest_level = node->level + 1;
2375 	rc->backref_cache.path[node->level] = node;
2376 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2377 		struct btrfs_ref ref = { 0 };
2378 
2379 		cond_resched();
2380 
2381 		upper = edge->node[UPPER];
2382 		root = select_reloc_root(trans, rc, upper, edges);
2383 		if (IS_ERR(root)) {
2384 			ret = PTR_ERR(root);
2385 			goto next;
2386 		}
2387 
2388 		if (upper->eb && !upper->locked) {
2389 			if (!lowest) {
2390 				ret = btrfs_bin_search(upper->eb, key, &slot);
2391 				if (ret < 0)
2392 					goto next;
2393 				BUG_ON(ret);
2394 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2395 				if (node->eb->start == bytenr)
2396 					goto next;
2397 			}
2398 			btrfs_backref_drop_node_buffer(upper);
2399 		}
2400 
2401 		if (!upper->eb) {
2402 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2403 			if (ret) {
2404 				if (ret > 0)
2405 					ret = -ENOENT;
2406 
2407 				btrfs_release_path(path);
2408 				break;
2409 			}
2410 
2411 			if (!upper->eb) {
2412 				upper->eb = path->nodes[upper->level];
2413 				path->nodes[upper->level] = NULL;
2414 			} else {
2415 				BUG_ON(upper->eb != path->nodes[upper->level]);
2416 			}
2417 
2418 			upper->locked = 1;
2419 			path->locks[upper->level] = 0;
2420 
2421 			slot = path->slots[upper->level];
2422 			btrfs_release_path(path);
2423 		} else {
2424 			ret = btrfs_bin_search(upper->eb, key, &slot);
2425 			if (ret < 0)
2426 				goto next;
2427 			BUG_ON(ret);
2428 		}
2429 
2430 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2431 		if (lowest) {
2432 			if (bytenr != node->bytenr) {
2433 				btrfs_err(root->fs_info,
2434 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2435 					  bytenr, node->bytenr, slot,
2436 					  upper->eb->start);
2437 				ret = -EIO;
2438 				goto next;
2439 			}
2440 		} else {
2441 			if (node->eb->start == bytenr)
2442 				goto next;
2443 		}
2444 
2445 		blocksize = root->fs_info->nodesize;
2446 		eb = btrfs_read_node_slot(upper->eb, slot);
2447 		if (IS_ERR(eb)) {
2448 			ret = PTR_ERR(eb);
2449 			goto next;
2450 		}
2451 		btrfs_tree_lock(eb);
2452 
2453 		if (!node->eb) {
2454 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2455 					      slot, &eb, BTRFS_NESTING_COW);
2456 			btrfs_tree_unlock(eb);
2457 			free_extent_buffer(eb);
2458 			if (ret < 0)
2459 				goto next;
2460 			/*
2461 			 * We've just COWed this block, it should have updated
2462 			 * the correct backref node entry.
2463 			 */
2464 			ASSERT(node->eb == eb);
2465 		} else {
2466 			btrfs_set_node_blockptr(upper->eb, slot,
2467 						node->eb->start);
2468 			btrfs_set_node_ptr_generation(upper->eb, slot,
2469 						      trans->transid);
2470 			btrfs_mark_buffer_dirty(upper->eb);
2471 
2472 			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2473 					       node->eb->start, blocksize,
2474 					       upper->eb->start);
2475 			ref.real_root = root->root_key.objectid;
2476 			btrfs_init_tree_ref(&ref, node->level,
2477 					    btrfs_header_owner(upper->eb));
2478 			ret = btrfs_inc_extent_ref(trans, &ref);
2479 			if (!ret)
2480 				ret = btrfs_drop_subtree(trans, root, eb,
2481 							 upper->eb);
2482 			if (ret)
2483 				btrfs_abort_transaction(trans, ret);
2484 		}
2485 next:
2486 		if (!upper->pending)
2487 			btrfs_backref_drop_node_buffer(upper);
2488 		else
2489 			btrfs_backref_unlock_node_buffer(upper);
2490 		if (ret)
2491 			break;
2492 	}
2493 
2494 	if (!ret && node->pending) {
2495 		btrfs_backref_drop_node_buffer(node);
2496 		list_move_tail(&node->list, &rc->backref_cache.changed);
2497 		node->pending = 0;
2498 	}
2499 
2500 	path->lowest_level = 0;
2501 
2502 	/*
2503 	 * We should have allocated all of our space in the block rsv and thus
2504 	 * shouldn't ENOSPC.
2505 	 */
2506 	ASSERT(ret != -ENOSPC);
2507 	return ret;
2508 }
2509 
2510 static int link_to_upper(struct btrfs_trans_handle *trans,
2511 			 struct reloc_control *rc,
2512 			 struct btrfs_backref_node *node,
2513 			 struct btrfs_path *path)
2514 {
2515 	struct btrfs_key key;
2516 
2517 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2518 	return do_relocation(trans, rc, node, &key, path, 0);
2519 }
2520 
2521 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2522 				struct reloc_control *rc,
2523 				struct btrfs_path *path, int err)
2524 {
2525 	LIST_HEAD(list);
2526 	struct btrfs_backref_cache *cache = &rc->backref_cache;
2527 	struct btrfs_backref_node *node;
2528 	int level;
2529 	int ret;
2530 
2531 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2532 		while (!list_empty(&cache->pending[level])) {
2533 			node = list_entry(cache->pending[level].next,
2534 					  struct btrfs_backref_node, list);
2535 			list_move_tail(&node->list, &list);
2536 			BUG_ON(!node->pending);
2537 
2538 			if (!err) {
2539 				ret = link_to_upper(trans, rc, node, path);
2540 				if (ret < 0)
2541 					err = ret;
2542 			}
2543 		}
2544 		list_splice_init(&list, &cache->pending[level]);
2545 	}
2546 	return err;
2547 }
2548 
2549 /*
2550  * mark a block and all blocks directly/indirectly reference the block
2551  * as processed.
2552  */
2553 static void update_processed_blocks(struct reloc_control *rc,
2554 				    struct btrfs_backref_node *node)
2555 {
2556 	struct btrfs_backref_node *next = node;
2557 	struct btrfs_backref_edge *edge;
2558 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2559 	int index = 0;
2560 
2561 	while (next) {
2562 		cond_resched();
2563 		while (1) {
2564 			if (next->processed)
2565 				break;
2566 
2567 			mark_block_processed(rc, next);
2568 
2569 			if (list_empty(&next->upper))
2570 				break;
2571 
2572 			edge = list_entry(next->upper.next,
2573 					struct btrfs_backref_edge, list[LOWER]);
2574 			edges[index++] = edge;
2575 			next = edge->node[UPPER];
2576 		}
2577 		next = walk_down_backref(edges, &index);
2578 	}
2579 }
2580 
2581 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2582 {
2583 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2584 
2585 	if (test_range_bit(&rc->processed_blocks, bytenr,
2586 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2587 		return 1;
2588 	return 0;
2589 }
2590 
2591 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2592 			      struct tree_block *block)
2593 {
2594 	struct extent_buffer *eb;
2595 
2596 	eb = read_tree_block(fs_info, block->bytenr, block->owner,
2597 			     block->key.offset, block->level, NULL);
2598 	if (IS_ERR(eb)) {
2599 		return PTR_ERR(eb);
2600 	} else if (!extent_buffer_uptodate(eb)) {
2601 		free_extent_buffer(eb);
2602 		return -EIO;
2603 	}
2604 	if (block->level == 0)
2605 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2606 	else
2607 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2608 	free_extent_buffer(eb);
2609 	block->key_ready = 1;
2610 	return 0;
2611 }
2612 
2613 /*
2614  * helper function to relocate a tree block
2615  */
2616 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2617 				struct reloc_control *rc,
2618 				struct btrfs_backref_node *node,
2619 				struct btrfs_key *key,
2620 				struct btrfs_path *path)
2621 {
2622 	struct btrfs_root *root;
2623 	int ret = 0;
2624 
2625 	if (!node)
2626 		return 0;
2627 
2628 	/*
2629 	 * If we fail here we want to drop our backref_node because we are going
2630 	 * to start over and regenerate the tree for it.
2631 	 */
2632 	ret = reserve_metadata_space(trans, rc, node);
2633 	if (ret)
2634 		goto out;
2635 
2636 	BUG_ON(node->processed);
2637 	root = select_one_root(node);
2638 	if (IS_ERR(root)) {
2639 		ret = PTR_ERR(root);
2640 
2641 		/* See explanation in select_one_root for the -EUCLEAN case. */
2642 		ASSERT(ret == -ENOENT);
2643 		if (ret == -ENOENT) {
2644 			ret = 0;
2645 			update_processed_blocks(rc, node);
2646 		}
2647 		goto out;
2648 	}
2649 
2650 	if (root) {
2651 		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2652 			/*
2653 			 * This block was the root block of a root, and this is
2654 			 * the first time we're processing the block and thus it
2655 			 * should not have had the ->new_bytenr modified and
2656 			 * should have not been included on the changed list.
2657 			 *
2658 			 * However in the case of corruption we could have
2659 			 * multiple refs pointing to the same block improperly,
2660 			 * and thus we would trip over these checks.  ASSERT()
2661 			 * for the developer case, because it could indicate a
2662 			 * bug in the backref code, however error out for a
2663 			 * normal user in the case of corruption.
2664 			 */
2665 			ASSERT(node->new_bytenr == 0);
2666 			ASSERT(list_empty(&node->list));
2667 			if (node->new_bytenr || !list_empty(&node->list)) {
2668 				btrfs_err(root->fs_info,
2669 				  "bytenr %llu has improper references to it",
2670 					  node->bytenr);
2671 				ret = -EUCLEAN;
2672 				goto out;
2673 			}
2674 			ret = btrfs_record_root_in_trans(trans, root);
2675 			if (ret)
2676 				goto out;
2677 			/*
2678 			 * Another thread could have failed, need to check if we
2679 			 * have reloc_root actually set.
2680 			 */
2681 			if (!root->reloc_root) {
2682 				ret = -ENOENT;
2683 				goto out;
2684 			}
2685 			root = root->reloc_root;
2686 			node->new_bytenr = root->node->start;
2687 			btrfs_put_root(node->root);
2688 			node->root = btrfs_grab_root(root);
2689 			ASSERT(node->root);
2690 			list_add_tail(&node->list, &rc->backref_cache.changed);
2691 		} else {
2692 			path->lowest_level = node->level;
2693 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2694 			btrfs_release_path(path);
2695 			if (ret > 0)
2696 				ret = 0;
2697 		}
2698 		if (!ret)
2699 			update_processed_blocks(rc, node);
2700 	} else {
2701 		ret = do_relocation(trans, rc, node, key, path, 1);
2702 	}
2703 out:
2704 	if (ret || node->level == 0 || node->cowonly)
2705 		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2706 	return ret;
2707 }
2708 
2709 /*
2710  * relocate a list of blocks
2711  */
2712 static noinline_for_stack
2713 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2714 			 struct reloc_control *rc, struct rb_root *blocks)
2715 {
2716 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2717 	struct btrfs_backref_node *node;
2718 	struct btrfs_path *path;
2719 	struct tree_block *block;
2720 	struct tree_block *next;
2721 	int ret;
2722 	int err = 0;
2723 
2724 	path = btrfs_alloc_path();
2725 	if (!path) {
2726 		err = -ENOMEM;
2727 		goto out_free_blocks;
2728 	}
2729 
2730 	/* Kick in readahead for tree blocks with missing keys */
2731 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2732 		if (!block->key_ready)
2733 			btrfs_readahead_tree_block(fs_info, block->bytenr,
2734 						   block->owner, 0,
2735 						   block->level);
2736 	}
2737 
2738 	/* Get first keys */
2739 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2740 		if (!block->key_ready) {
2741 			err = get_tree_block_key(fs_info, block);
2742 			if (err)
2743 				goto out_free_path;
2744 		}
2745 	}
2746 
2747 	/* Do tree relocation */
2748 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2749 		node = build_backref_tree(rc, &block->key,
2750 					  block->level, block->bytenr);
2751 		if (IS_ERR(node)) {
2752 			err = PTR_ERR(node);
2753 			goto out;
2754 		}
2755 
2756 		ret = relocate_tree_block(trans, rc, node, &block->key,
2757 					  path);
2758 		if (ret < 0) {
2759 			err = ret;
2760 			break;
2761 		}
2762 	}
2763 out:
2764 	err = finish_pending_nodes(trans, rc, path, err);
2765 
2766 out_free_path:
2767 	btrfs_free_path(path);
2768 out_free_blocks:
2769 	free_block_list(blocks);
2770 	return err;
2771 }
2772 
2773 static noinline_for_stack int prealloc_file_extent_cluster(
2774 				struct btrfs_inode *inode,
2775 				struct file_extent_cluster *cluster)
2776 {
2777 	u64 alloc_hint = 0;
2778 	u64 start;
2779 	u64 end;
2780 	u64 offset = inode->index_cnt;
2781 	u64 num_bytes;
2782 	int nr;
2783 	int ret = 0;
2784 	u64 prealloc_start = cluster->start - offset;
2785 	u64 prealloc_end = cluster->end - offset;
2786 	u64 cur_offset = prealloc_start;
2787 
2788 	BUG_ON(cluster->start != cluster->boundary[0]);
2789 	ret = btrfs_alloc_data_chunk_ondemand(inode,
2790 					      prealloc_end + 1 - prealloc_start);
2791 	if (ret)
2792 		return ret;
2793 
2794 	/*
2795 	 * On a zoned filesystem, we cannot preallocate the file region.
2796 	 * Instead, we dirty and fiemap_write the region.
2797 	 */
2798 	if (btrfs_is_zoned(inode->root->fs_info)) {
2799 		struct btrfs_root *root = inode->root;
2800 		struct btrfs_trans_handle *trans;
2801 
2802 		end = cluster->end - offset + 1;
2803 		trans = btrfs_start_transaction(root, 1);
2804 		if (IS_ERR(trans))
2805 			return PTR_ERR(trans);
2806 
2807 		inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
2808 		i_size_write(&inode->vfs_inode, end);
2809 		ret = btrfs_update_inode(trans, root, inode);
2810 		if (ret) {
2811 			btrfs_abort_transaction(trans, ret);
2812 			btrfs_end_transaction(trans);
2813 			return ret;
2814 		}
2815 
2816 		return btrfs_end_transaction(trans);
2817 	}
2818 
2819 	btrfs_inode_lock(&inode->vfs_inode, 0);
2820 	for (nr = 0; nr < cluster->nr; nr++) {
2821 		start = cluster->boundary[nr] - offset;
2822 		if (nr + 1 < cluster->nr)
2823 			end = cluster->boundary[nr + 1] - 1 - offset;
2824 		else
2825 			end = cluster->end - offset;
2826 
2827 		lock_extent(&inode->io_tree, start, end);
2828 		num_bytes = end + 1 - start;
2829 		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2830 						num_bytes, num_bytes,
2831 						end + 1, &alloc_hint);
2832 		cur_offset = end + 1;
2833 		unlock_extent(&inode->io_tree, start, end);
2834 		if (ret)
2835 			break;
2836 	}
2837 	btrfs_inode_unlock(&inode->vfs_inode, 0);
2838 
2839 	if (cur_offset < prealloc_end)
2840 		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2841 					       prealloc_end + 1 - cur_offset);
2842 	return ret;
2843 }
2844 
2845 static noinline_for_stack
2846 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2847 			 u64 block_start)
2848 {
2849 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2850 	struct extent_map *em;
2851 	int ret = 0;
2852 
2853 	em = alloc_extent_map();
2854 	if (!em)
2855 		return -ENOMEM;
2856 
2857 	em->start = start;
2858 	em->len = end + 1 - start;
2859 	em->block_len = em->len;
2860 	em->block_start = block_start;
2861 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2862 
2863 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2864 	while (1) {
2865 		write_lock(&em_tree->lock);
2866 		ret = add_extent_mapping(em_tree, em, 0);
2867 		write_unlock(&em_tree->lock);
2868 		if (ret != -EEXIST) {
2869 			free_extent_map(em);
2870 			break;
2871 		}
2872 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2873 	}
2874 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2875 	return ret;
2876 }
2877 
2878 /*
2879  * Allow error injection to test balance cancellation
2880  */
2881 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2882 {
2883 	return atomic_read(&fs_info->balance_cancel_req) ||
2884 		fatal_signal_pending(current);
2885 }
2886 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2887 
2888 static int relocate_file_extent_cluster(struct inode *inode,
2889 					struct file_extent_cluster *cluster)
2890 {
2891 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2892 	u64 page_start;
2893 	u64 page_end;
2894 	u64 offset = BTRFS_I(inode)->index_cnt;
2895 	unsigned long index;
2896 	unsigned long last_index;
2897 	struct page *page;
2898 	struct file_ra_state *ra;
2899 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2900 	int nr = 0;
2901 	int ret = 0;
2902 
2903 	if (!cluster->nr)
2904 		return 0;
2905 
2906 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2907 	if (!ra)
2908 		return -ENOMEM;
2909 
2910 	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
2911 	if (ret)
2912 		goto out;
2913 
2914 	file_ra_state_init(ra, inode->i_mapping);
2915 
2916 	ret = setup_extent_mapping(inode, cluster->start - offset,
2917 				   cluster->end - offset, cluster->start);
2918 	if (ret)
2919 		goto out;
2920 
2921 	index = (cluster->start - offset) >> PAGE_SHIFT;
2922 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
2923 	while (index <= last_index) {
2924 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2925 				PAGE_SIZE);
2926 		if (ret)
2927 			goto out;
2928 
2929 		page = find_lock_page(inode->i_mapping, index);
2930 		if (!page) {
2931 			page_cache_sync_readahead(inode->i_mapping,
2932 						  ra, NULL, index,
2933 						  last_index + 1 - index);
2934 			page = find_or_create_page(inode->i_mapping, index,
2935 						   mask);
2936 			if (!page) {
2937 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2938 							PAGE_SIZE, true);
2939 				btrfs_delalloc_release_extents(BTRFS_I(inode),
2940 							PAGE_SIZE);
2941 				ret = -ENOMEM;
2942 				goto out;
2943 			}
2944 		}
2945 		ret = set_page_extent_mapped(page);
2946 		if (ret < 0) {
2947 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2948 							PAGE_SIZE, true);
2949 			btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2950 			unlock_page(page);
2951 			put_page(page);
2952 			goto out;
2953 		}
2954 
2955 		if (PageReadahead(page)) {
2956 			page_cache_async_readahead(inode->i_mapping,
2957 						   ra, NULL, page, index,
2958 						   last_index + 1 - index);
2959 		}
2960 
2961 		if (!PageUptodate(page)) {
2962 			btrfs_readpage(NULL, page);
2963 			lock_page(page);
2964 			if (!PageUptodate(page)) {
2965 				unlock_page(page);
2966 				put_page(page);
2967 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2968 							PAGE_SIZE, true);
2969 				btrfs_delalloc_release_extents(BTRFS_I(inode),
2970 							       PAGE_SIZE);
2971 				ret = -EIO;
2972 				goto out;
2973 			}
2974 		}
2975 
2976 		page_start = page_offset(page);
2977 		page_end = page_start + PAGE_SIZE - 1;
2978 
2979 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
2980 
2981 		if (nr < cluster->nr &&
2982 		    page_start + offset == cluster->boundary[nr]) {
2983 			set_extent_bits(&BTRFS_I(inode)->io_tree,
2984 					page_start, page_end,
2985 					EXTENT_BOUNDARY);
2986 			nr++;
2987 		}
2988 
2989 		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start,
2990 						page_end, 0, NULL);
2991 		if (ret) {
2992 			unlock_page(page);
2993 			put_page(page);
2994 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2995 							 PAGE_SIZE, true);
2996 			btrfs_delalloc_release_extents(BTRFS_I(inode),
2997 			                               PAGE_SIZE);
2998 
2999 			clear_extent_bits(&BTRFS_I(inode)->io_tree,
3000 					  page_start, page_end,
3001 					  EXTENT_LOCKED | EXTENT_BOUNDARY);
3002 			goto out;
3003 
3004 		}
3005 		set_page_dirty(page);
3006 
3007 		unlock_extent(&BTRFS_I(inode)->io_tree,
3008 			      page_start, page_end);
3009 		unlock_page(page);
3010 		put_page(page);
3011 
3012 		index++;
3013 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
3014 		balance_dirty_pages_ratelimited(inode->i_mapping);
3015 		btrfs_throttle(fs_info);
3016 		if (btrfs_should_cancel_balance(fs_info)) {
3017 			ret = -ECANCELED;
3018 			goto out;
3019 		}
3020 	}
3021 	WARN_ON(nr != cluster->nr);
3022 	if (btrfs_is_zoned(fs_info) && !ret)
3023 		ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
3024 out:
3025 	kfree(ra);
3026 	return ret;
3027 }
3028 
3029 static noinline_for_stack
3030 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3031 			 struct file_extent_cluster *cluster)
3032 {
3033 	int ret;
3034 
3035 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3036 		ret = relocate_file_extent_cluster(inode, cluster);
3037 		if (ret)
3038 			return ret;
3039 		cluster->nr = 0;
3040 	}
3041 
3042 	if (!cluster->nr)
3043 		cluster->start = extent_key->objectid;
3044 	else
3045 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3046 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3047 	cluster->boundary[cluster->nr] = extent_key->objectid;
3048 	cluster->nr++;
3049 
3050 	if (cluster->nr >= MAX_EXTENTS) {
3051 		ret = relocate_file_extent_cluster(inode, cluster);
3052 		if (ret)
3053 			return ret;
3054 		cluster->nr = 0;
3055 	}
3056 	return 0;
3057 }
3058 
3059 /*
3060  * helper to add a tree block to the list.
3061  * the major work is getting the generation and level of the block
3062  */
3063 static int add_tree_block(struct reloc_control *rc,
3064 			  struct btrfs_key *extent_key,
3065 			  struct btrfs_path *path,
3066 			  struct rb_root *blocks)
3067 {
3068 	struct extent_buffer *eb;
3069 	struct btrfs_extent_item *ei;
3070 	struct btrfs_tree_block_info *bi;
3071 	struct tree_block *block;
3072 	struct rb_node *rb_node;
3073 	u32 item_size;
3074 	int level = -1;
3075 	u64 generation;
3076 	u64 owner = 0;
3077 
3078 	eb =  path->nodes[0];
3079 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3080 
3081 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3082 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3083 		unsigned long ptr = 0, end;
3084 
3085 		ei = btrfs_item_ptr(eb, path->slots[0],
3086 				struct btrfs_extent_item);
3087 		end = (unsigned long)ei + item_size;
3088 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3089 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3090 			level = btrfs_tree_block_level(eb, bi);
3091 			ptr = (unsigned long)(bi + 1);
3092 		} else {
3093 			level = (int)extent_key->offset;
3094 			ptr = (unsigned long)(ei + 1);
3095 		}
3096 		generation = btrfs_extent_generation(eb, ei);
3097 
3098 		/*
3099 		 * We're reading random blocks without knowing their owner ahead
3100 		 * of time.  This is ok most of the time, as all reloc roots and
3101 		 * fs roots have the same lock type.  However normal trees do
3102 		 * not, and the only way to know ahead of time is to read the
3103 		 * inline ref offset.  We know it's an fs root if
3104 		 *
3105 		 * 1. There's more than one ref.
3106 		 * 2. There's a SHARED_DATA_REF_KEY set.
3107 		 * 3. FULL_BACKREF is set on the flags.
3108 		 *
3109 		 * Otherwise it's safe to assume that the ref offset == the
3110 		 * owner of this block, so we can use that when calling
3111 		 * read_tree_block.
3112 		 */
3113 		if (btrfs_extent_refs(eb, ei) == 1 &&
3114 		    !(btrfs_extent_flags(eb, ei) &
3115 		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3116 		    ptr < end) {
3117 			struct btrfs_extent_inline_ref *iref;
3118 			int type;
3119 
3120 			iref = (struct btrfs_extent_inline_ref *)ptr;
3121 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3122 							BTRFS_REF_TYPE_BLOCK);
3123 			if (type == BTRFS_REF_TYPE_INVALID)
3124 				return -EINVAL;
3125 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3126 				owner = btrfs_extent_inline_ref_offset(eb, iref);
3127 		}
3128 	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3129 		btrfs_print_v0_err(eb->fs_info);
3130 		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3131 		return -EINVAL;
3132 	} else {
3133 		BUG();
3134 	}
3135 
3136 	btrfs_release_path(path);
3137 
3138 	BUG_ON(level == -1);
3139 
3140 	block = kmalloc(sizeof(*block), GFP_NOFS);
3141 	if (!block)
3142 		return -ENOMEM;
3143 
3144 	block->bytenr = extent_key->objectid;
3145 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3146 	block->key.offset = generation;
3147 	block->level = level;
3148 	block->key_ready = 0;
3149 	block->owner = owner;
3150 
3151 	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3152 	if (rb_node)
3153 		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3154 				    -EEXIST);
3155 
3156 	return 0;
3157 }
3158 
3159 /*
3160  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3161  */
3162 static int __add_tree_block(struct reloc_control *rc,
3163 			    u64 bytenr, u32 blocksize,
3164 			    struct rb_root *blocks)
3165 {
3166 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3167 	struct btrfs_path *path;
3168 	struct btrfs_key key;
3169 	int ret;
3170 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3171 
3172 	if (tree_block_processed(bytenr, rc))
3173 		return 0;
3174 
3175 	if (rb_simple_search(blocks, bytenr))
3176 		return 0;
3177 
3178 	path = btrfs_alloc_path();
3179 	if (!path)
3180 		return -ENOMEM;
3181 again:
3182 	key.objectid = bytenr;
3183 	if (skinny) {
3184 		key.type = BTRFS_METADATA_ITEM_KEY;
3185 		key.offset = (u64)-1;
3186 	} else {
3187 		key.type = BTRFS_EXTENT_ITEM_KEY;
3188 		key.offset = blocksize;
3189 	}
3190 
3191 	path->search_commit_root = 1;
3192 	path->skip_locking = 1;
3193 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3194 	if (ret < 0)
3195 		goto out;
3196 
3197 	if (ret > 0 && skinny) {
3198 		if (path->slots[0]) {
3199 			path->slots[0]--;
3200 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3201 					      path->slots[0]);
3202 			if (key.objectid == bytenr &&
3203 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3204 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3205 			      key.offset == blocksize)))
3206 				ret = 0;
3207 		}
3208 
3209 		if (ret) {
3210 			skinny = false;
3211 			btrfs_release_path(path);
3212 			goto again;
3213 		}
3214 	}
3215 	if (ret) {
3216 		ASSERT(ret == 1);
3217 		btrfs_print_leaf(path->nodes[0]);
3218 		btrfs_err(fs_info,
3219 	     "tree block extent item (%llu) is not found in extent tree",
3220 		     bytenr);
3221 		WARN_ON(1);
3222 		ret = -EINVAL;
3223 		goto out;
3224 	}
3225 
3226 	ret = add_tree_block(rc, &key, path, blocks);
3227 out:
3228 	btrfs_free_path(path);
3229 	return ret;
3230 }
3231 
3232 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3233 				    struct btrfs_block_group *block_group,
3234 				    struct inode *inode,
3235 				    u64 ino)
3236 {
3237 	struct btrfs_root *root = fs_info->tree_root;
3238 	struct btrfs_trans_handle *trans;
3239 	int ret = 0;
3240 
3241 	if (inode)
3242 		goto truncate;
3243 
3244 	inode = btrfs_iget(fs_info->sb, ino, root);
3245 	if (IS_ERR(inode))
3246 		return -ENOENT;
3247 
3248 truncate:
3249 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3250 						 &fs_info->global_block_rsv);
3251 	if (ret)
3252 		goto out;
3253 
3254 	trans = btrfs_join_transaction(root);
3255 	if (IS_ERR(trans)) {
3256 		ret = PTR_ERR(trans);
3257 		goto out;
3258 	}
3259 
3260 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3261 
3262 	btrfs_end_transaction(trans);
3263 	btrfs_btree_balance_dirty(fs_info);
3264 out:
3265 	iput(inode);
3266 	return ret;
3267 }
3268 
3269 /*
3270  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3271  * cache inode, to avoid free space cache data extent blocking data relocation.
3272  */
3273 static int delete_v1_space_cache(struct extent_buffer *leaf,
3274 				 struct btrfs_block_group *block_group,
3275 				 u64 data_bytenr)
3276 {
3277 	u64 space_cache_ino;
3278 	struct btrfs_file_extent_item *ei;
3279 	struct btrfs_key key;
3280 	bool found = false;
3281 	int i;
3282 	int ret;
3283 
3284 	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3285 		return 0;
3286 
3287 	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3288 		u8 type;
3289 
3290 		btrfs_item_key_to_cpu(leaf, &key, i);
3291 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3292 			continue;
3293 		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3294 		type = btrfs_file_extent_type(leaf, ei);
3295 
3296 		if ((type == BTRFS_FILE_EXTENT_REG ||
3297 		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3298 		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3299 			found = true;
3300 			space_cache_ino = key.objectid;
3301 			break;
3302 		}
3303 	}
3304 	if (!found)
3305 		return -ENOENT;
3306 	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3307 					space_cache_ino);
3308 	return ret;
3309 }
3310 
3311 /*
3312  * helper to find all tree blocks that reference a given data extent
3313  */
3314 static noinline_for_stack
3315 int add_data_references(struct reloc_control *rc,
3316 			struct btrfs_key *extent_key,
3317 			struct btrfs_path *path,
3318 			struct rb_root *blocks)
3319 {
3320 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3321 	struct ulist *leaves = NULL;
3322 	struct ulist_iterator leaf_uiter;
3323 	struct ulist_node *ref_node = NULL;
3324 	const u32 blocksize = fs_info->nodesize;
3325 	int ret = 0;
3326 
3327 	btrfs_release_path(path);
3328 	ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3329 				   0, &leaves, NULL, true);
3330 	if (ret < 0)
3331 		return ret;
3332 
3333 	ULIST_ITER_INIT(&leaf_uiter);
3334 	while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3335 		struct extent_buffer *eb;
3336 
3337 		eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL);
3338 		if (IS_ERR(eb)) {
3339 			ret = PTR_ERR(eb);
3340 			break;
3341 		}
3342 		ret = delete_v1_space_cache(eb, rc->block_group,
3343 					    extent_key->objectid);
3344 		free_extent_buffer(eb);
3345 		if (ret < 0)
3346 			break;
3347 		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3348 		if (ret < 0)
3349 			break;
3350 	}
3351 	if (ret < 0)
3352 		free_block_list(blocks);
3353 	ulist_free(leaves);
3354 	return ret;
3355 }
3356 
3357 /*
3358  * helper to find next unprocessed extent
3359  */
3360 static noinline_for_stack
3361 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3362 		     struct btrfs_key *extent_key)
3363 {
3364 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3365 	struct btrfs_key key;
3366 	struct extent_buffer *leaf;
3367 	u64 start, end, last;
3368 	int ret;
3369 
3370 	last = rc->block_group->start + rc->block_group->length;
3371 	while (1) {
3372 		cond_resched();
3373 		if (rc->search_start >= last) {
3374 			ret = 1;
3375 			break;
3376 		}
3377 
3378 		key.objectid = rc->search_start;
3379 		key.type = BTRFS_EXTENT_ITEM_KEY;
3380 		key.offset = 0;
3381 
3382 		path->search_commit_root = 1;
3383 		path->skip_locking = 1;
3384 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3385 					0, 0);
3386 		if (ret < 0)
3387 			break;
3388 next:
3389 		leaf = path->nodes[0];
3390 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3391 			ret = btrfs_next_leaf(rc->extent_root, path);
3392 			if (ret != 0)
3393 				break;
3394 			leaf = path->nodes[0];
3395 		}
3396 
3397 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3398 		if (key.objectid >= last) {
3399 			ret = 1;
3400 			break;
3401 		}
3402 
3403 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3404 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3405 			path->slots[0]++;
3406 			goto next;
3407 		}
3408 
3409 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3410 		    key.objectid + key.offset <= rc->search_start) {
3411 			path->slots[0]++;
3412 			goto next;
3413 		}
3414 
3415 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3416 		    key.objectid + fs_info->nodesize <=
3417 		    rc->search_start) {
3418 			path->slots[0]++;
3419 			goto next;
3420 		}
3421 
3422 		ret = find_first_extent_bit(&rc->processed_blocks,
3423 					    key.objectid, &start, &end,
3424 					    EXTENT_DIRTY, NULL);
3425 
3426 		if (ret == 0 && start <= key.objectid) {
3427 			btrfs_release_path(path);
3428 			rc->search_start = end + 1;
3429 		} else {
3430 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3431 				rc->search_start = key.objectid + key.offset;
3432 			else
3433 				rc->search_start = key.objectid +
3434 					fs_info->nodesize;
3435 			memcpy(extent_key, &key, sizeof(key));
3436 			return 0;
3437 		}
3438 	}
3439 	btrfs_release_path(path);
3440 	return ret;
3441 }
3442 
3443 static void set_reloc_control(struct reloc_control *rc)
3444 {
3445 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3446 
3447 	mutex_lock(&fs_info->reloc_mutex);
3448 	fs_info->reloc_ctl = rc;
3449 	mutex_unlock(&fs_info->reloc_mutex);
3450 }
3451 
3452 static void unset_reloc_control(struct reloc_control *rc)
3453 {
3454 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3455 
3456 	mutex_lock(&fs_info->reloc_mutex);
3457 	fs_info->reloc_ctl = NULL;
3458 	mutex_unlock(&fs_info->reloc_mutex);
3459 }
3460 
3461 static noinline_for_stack
3462 int prepare_to_relocate(struct reloc_control *rc)
3463 {
3464 	struct btrfs_trans_handle *trans;
3465 	int ret;
3466 
3467 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3468 					      BTRFS_BLOCK_RSV_TEMP);
3469 	if (!rc->block_rsv)
3470 		return -ENOMEM;
3471 
3472 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3473 	rc->search_start = rc->block_group->start;
3474 	rc->extents_found = 0;
3475 	rc->nodes_relocated = 0;
3476 	rc->merging_rsv_size = 0;
3477 	rc->reserved_bytes = 0;
3478 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3479 			      RELOCATION_RESERVED_NODES;
3480 	ret = btrfs_block_rsv_refill(rc->extent_root,
3481 				     rc->block_rsv, rc->block_rsv->size,
3482 				     BTRFS_RESERVE_FLUSH_ALL);
3483 	if (ret)
3484 		return ret;
3485 
3486 	rc->create_reloc_tree = 1;
3487 	set_reloc_control(rc);
3488 
3489 	trans = btrfs_join_transaction(rc->extent_root);
3490 	if (IS_ERR(trans)) {
3491 		unset_reloc_control(rc);
3492 		/*
3493 		 * extent tree is not a ref_cow tree and has no reloc_root to
3494 		 * cleanup.  And callers are responsible to free the above
3495 		 * block rsv.
3496 		 */
3497 		return PTR_ERR(trans);
3498 	}
3499 	return btrfs_commit_transaction(trans);
3500 }
3501 
3502 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3503 {
3504 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3505 	struct rb_root blocks = RB_ROOT;
3506 	struct btrfs_key key;
3507 	struct btrfs_trans_handle *trans = NULL;
3508 	struct btrfs_path *path;
3509 	struct btrfs_extent_item *ei;
3510 	u64 flags;
3511 	int ret;
3512 	int err = 0;
3513 	int progress = 0;
3514 
3515 	path = btrfs_alloc_path();
3516 	if (!path)
3517 		return -ENOMEM;
3518 	path->reada = READA_FORWARD;
3519 
3520 	ret = prepare_to_relocate(rc);
3521 	if (ret) {
3522 		err = ret;
3523 		goto out_free;
3524 	}
3525 
3526 	while (1) {
3527 		rc->reserved_bytes = 0;
3528 		ret = btrfs_block_rsv_refill(rc->extent_root,
3529 					rc->block_rsv, rc->block_rsv->size,
3530 					BTRFS_RESERVE_FLUSH_ALL);
3531 		if (ret) {
3532 			err = ret;
3533 			break;
3534 		}
3535 		progress++;
3536 		trans = btrfs_start_transaction(rc->extent_root, 0);
3537 		if (IS_ERR(trans)) {
3538 			err = PTR_ERR(trans);
3539 			trans = NULL;
3540 			break;
3541 		}
3542 restart:
3543 		if (update_backref_cache(trans, &rc->backref_cache)) {
3544 			btrfs_end_transaction(trans);
3545 			trans = NULL;
3546 			continue;
3547 		}
3548 
3549 		ret = find_next_extent(rc, path, &key);
3550 		if (ret < 0)
3551 			err = ret;
3552 		if (ret != 0)
3553 			break;
3554 
3555 		rc->extents_found++;
3556 
3557 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3558 				    struct btrfs_extent_item);
3559 		flags = btrfs_extent_flags(path->nodes[0], ei);
3560 
3561 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3562 			ret = add_tree_block(rc, &key, path, &blocks);
3563 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3564 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3565 			ret = add_data_references(rc, &key, path, &blocks);
3566 		} else {
3567 			btrfs_release_path(path);
3568 			ret = 0;
3569 		}
3570 		if (ret < 0) {
3571 			err = ret;
3572 			break;
3573 		}
3574 
3575 		if (!RB_EMPTY_ROOT(&blocks)) {
3576 			ret = relocate_tree_blocks(trans, rc, &blocks);
3577 			if (ret < 0) {
3578 				if (ret != -EAGAIN) {
3579 					err = ret;
3580 					break;
3581 				}
3582 				rc->extents_found--;
3583 				rc->search_start = key.objectid;
3584 			}
3585 		}
3586 
3587 		btrfs_end_transaction_throttle(trans);
3588 		btrfs_btree_balance_dirty(fs_info);
3589 		trans = NULL;
3590 
3591 		if (rc->stage == MOVE_DATA_EXTENTS &&
3592 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3593 			rc->found_file_extent = 1;
3594 			ret = relocate_data_extent(rc->data_inode,
3595 						   &key, &rc->cluster);
3596 			if (ret < 0) {
3597 				err = ret;
3598 				break;
3599 			}
3600 		}
3601 		if (btrfs_should_cancel_balance(fs_info)) {
3602 			err = -ECANCELED;
3603 			break;
3604 		}
3605 	}
3606 	if (trans && progress && err == -ENOSPC) {
3607 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3608 		if (ret == 1) {
3609 			err = 0;
3610 			progress = 0;
3611 			goto restart;
3612 		}
3613 	}
3614 
3615 	btrfs_release_path(path);
3616 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3617 
3618 	if (trans) {
3619 		btrfs_end_transaction_throttle(trans);
3620 		btrfs_btree_balance_dirty(fs_info);
3621 	}
3622 
3623 	if (!err) {
3624 		ret = relocate_file_extent_cluster(rc->data_inode,
3625 						   &rc->cluster);
3626 		if (ret < 0)
3627 			err = ret;
3628 	}
3629 
3630 	rc->create_reloc_tree = 0;
3631 	set_reloc_control(rc);
3632 
3633 	btrfs_backref_release_cache(&rc->backref_cache);
3634 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3635 
3636 	/*
3637 	 * Even in the case when the relocation is cancelled, we should all go
3638 	 * through prepare_to_merge() and merge_reloc_roots().
3639 	 *
3640 	 * For error (including cancelled balance), prepare_to_merge() will
3641 	 * mark all reloc trees orphan, then queue them for cleanup in
3642 	 * merge_reloc_roots()
3643 	 */
3644 	err = prepare_to_merge(rc, err);
3645 
3646 	merge_reloc_roots(rc);
3647 
3648 	rc->merge_reloc_tree = 0;
3649 	unset_reloc_control(rc);
3650 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3651 
3652 	/* get rid of pinned extents */
3653 	trans = btrfs_join_transaction(rc->extent_root);
3654 	if (IS_ERR(trans)) {
3655 		err = PTR_ERR(trans);
3656 		goto out_free;
3657 	}
3658 	ret = btrfs_commit_transaction(trans);
3659 	if (ret && !err)
3660 		err = ret;
3661 out_free:
3662 	ret = clean_dirty_subvols(rc);
3663 	if (ret < 0 && !err)
3664 		err = ret;
3665 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3666 	btrfs_free_path(path);
3667 	return err;
3668 }
3669 
3670 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3671 				 struct btrfs_root *root, u64 objectid)
3672 {
3673 	struct btrfs_path *path;
3674 	struct btrfs_inode_item *item;
3675 	struct extent_buffer *leaf;
3676 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
3677 	int ret;
3678 
3679 	if (btrfs_is_zoned(trans->fs_info))
3680 		flags &= ~BTRFS_INODE_PREALLOC;
3681 
3682 	path = btrfs_alloc_path();
3683 	if (!path)
3684 		return -ENOMEM;
3685 
3686 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3687 	if (ret)
3688 		goto out;
3689 
3690 	leaf = path->nodes[0];
3691 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3692 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3693 	btrfs_set_inode_generation(leaf, item, 1);
3694 	btrfs_set_inode_size(leaf, item, 0);
3695 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3696 	btrfs_set_inode_flags(leaf, item, flags);
3697 	btrfs_mark_buffer_dirty(leaf);
3698 out:
3699 	btrfs_free_path(path);
3700 	return ret;
3701 }
3702 
3703 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3704 				struct btrfs_root *root, u64 objectid)
3705 {
3706 	struct btrfs_path *path;
3707 	struct btrfs_key key;
3708 	int ret = 0;
3709 
3710 	path = btrfs_alloc_path();
3711 	if (!path) {
3712 		ret = -ENOMEM;
3713 		goto out;
3714 	}
3715 
3716 	key.objectid = objectid;
3717 	key.type = BTRFS_INODE_ITEM_KEY;
3718 	key.offset = 0;
3719 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3720 	if (ret) {
3721 		if (ret > 0)
3722 			ret = -ENOENT;
3723 		goto out;
3724 	}
3725 	ret = btrfs_del_item(trans, root, path);
3726 out:
3727 	if (ret)
3728 		btrfs_abort_transaction(trans, ret);
3729 	btrfs_free_path(path);
3730 }
3731 
3732 /*
3733  * helper to create inode for data relocation.
3734  * the inode is in data relocation tree and its link count is 0
3735  */
3736 static noinline_for_stack
3737 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3738 				 struct btrfs_block_group *group)
3739 {
3740 	struct inode *inode = NULL;
3741 	struct btrfs_trans_handle *trans;
3742 	struct btrfs_root *root;
3743 	u64 objectid;
3744 	int err = 0;
3745 
3746 	root = btrfs_grab_root(fs_info->data_reloc_root);
3747 	trans = btrfs_start_transaction(root, 6);
3748 	if (IS_ERR(trans)) {
3749 		btrfs_put_root(root);
3750 		return ERR_CAST(trans);
3751 	}
3752 
3753 	err = btrfs_get_free_objectid(root, &objectid);
3754 	if (err)
3755 		goto out;
3756 
3757 	err = __insert_orphan_inode(trans, root, objectid);
3758 	if (err)
3759 		goto out;
3760 
3761 	inode = btrfs_iget(fs_info->sb, objectid, root);
3762 	if (IS_ERR(inode)) {
3763 		delete_orphan_inode(trans, root, objectid);
3764 		err = PTR_ERR(inode);
3765 		inode = NULL;
3766 		goto out;
3767 	}
3768 	BTRFS_I(inode)->index_cnt = group->start;
3769 
3770 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3771 out:
3772 	btrfs_put_root(root);
3773 	btrfs_end_transaction(trans);
3774 	btrfs_btree_balance_dirty(fs_info);
3775 	if (err) {
3776 		if (inode)
3777 			iput(inode);
3778 		inode = ERR_PTR(err);
3779 	}
3780 	return inode;
3781 }
3782 
3783 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3784 {
3785 	struct reloc_control *rc;
3786 
3787 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3788 	if (!rc)
3789 		return NULL;
3790 
3791 	INIT_LIST_HEAD(&rc->reloc_roots);
3792 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3793 	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3794 	mapping_tree_init(&rc->reloc_root_tree);
3795 	extent_io_tree_init(fs_info, &rc->processed_blocks,
3796 			    IO_TREE_RELOC_BLOCKS, NULL);
3797 	return rc;
3798 }
3799 
3800 static void free_reloc_control(struct reloc_control *rc)
3801 {
3802 	struct mapping_node *node, *tmp;
3803 
3804 	free_reloc_roots(&rc->reloc_roots);
3805 	rbtree_postorder_for_each_entry_safe(node, tmp,
3806 			&rc->reloc_root_tree.rb_root, rb_node)
3807 		kfree(node);
3808 
3809 	kfree(rc);
3810 }
3811 
3812 /*
3813  * Print the block group being relocated
3814  */
3815 static void describe_relocation(struct btrfs_fs_info *fs_info,
3816 				struct btrfs_block_group *block_group)
3817 {
3818 	char buf[128] = {'\0'};
3819 
3820 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3821 
3822 	btrfs_info(fs_info,
3823 		   "relocating block group %llu flags %s",
3824 		   block_group->start, buf);
3825 }
3826 
3827 static const char *stage_to_string(int stage)
3828 {
3829 	if (stage == MOVE_DATA_EXTENTS)
3830 		return "move data extents";
3831 	if (stage == UPDATE_DATA_PTRS)
3832 		return "update data pointers";
3833 	return "unknown";
3834 }
3835 
3836 /*
3837  * function to relocate all extents in a block group.
3838  */
3839 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3840 {
3841 	struct btrfs_block_group *bg;
3842 	struct btrfs_root *extent_root = fs_info->extent_root;
3843 	struct reloc_control *rc;
3844 	struct inode *inode;
3845 	struct btrfs_path *path;
3846 	int ret;
3847 	int rw = 0;
3848 	int err = 0;
3849 
3850 	bg = btrfs_lookup_block_group(fs_info, group_start);
3851 	if (!bg)
3852 		return -ENOENT;
3853 
3854 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3855 		btrfs_put_block_group(bg);
3856 		return -ETXTBSY;
3857 	}
3858 
3859 	rc = alloc_reloc_control(fs_info);
3860 	if (!rc) {
3861 		btrfs_put_block_group(bg);
3862 		return -ENOMEM;
3863 	}
3864 
3865 	rc->extent_root = extent_root;
3866 	rc->block_group = bg;
3867 
3868 	ret = btrfs_inc_block_group_ro(rc->block_group, true);
3869 	if (ret) {
3870 		err = ret;
3871 		goto out;
3872 	}
3873 	rw = 1;
3874 
3875 	path = btrfs_alloc_path();
3876 	if (!path) {
3877 		err = -ENOMEM;
3878 		goto out;
3879 	}
3880 
3881 	inode = lookup_free_space_inode(rc->block_group, path);
3882 	btrfs_free_path(path);
3883 
3884 	if (!IS_ERR(inode))
3885 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
3886 	else
3887 		ret = PTR_ERR(inode);
3888 
3889 	if (ret && ret != -ENOENT) {
3890 		err = ret;
3891 		goto out;
3892 	}
3893 
3894 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3895 	if (IS_ERR(rc->data_inode)) {
3896 		err = PTR_ERR(rc->data_inode);
3897 		rc->data_inode = NULL;
3898 		goto out;
3899 	}
3900 
3901 	describe_relocation(fs_info, rc->block_group);
3902 
3903 	btrfs_wait_block_group_reservations(rc->block_group);
3904 	btrfs_wait_nocow_writers(rc->block_group);
3905 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
3906 				 rc->block_group->start,
3907 				 rc->block_group->length);
3908 
3909 	while (1) {
3910 		int finishes_stage;
3911 
3912 		mutex_lock(&fs_info->cleaner_mutex);
3913 		ret = relocate_block_group(rc);
3914 		mutex_unlock(&fs_info->cleaner_mutex);
3915 		if (ret < 0)
3916 			err = ret;
3917 
3918 		finishes_stage = rc->stage;
3919 		/*
3920 		 * We may have gotten ENOSPC after we already dirtied some
3921 		 * extents.  If writeout happens while we're relocating a
3922 		 * different block group we could end up hitting the
3923 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3924 		 * btrfs_reloc_cow_block.  Make sure we write everything out
3925 		 * properly so we don't trip over this problem, and then break
3926 		 * out of the loop if we hit an error.
3927 		 */
3928 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3929 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
3930 						       (u64)-1);
3931 			if (ret)
3932 				err = ret;
3933 			invalidate_mapping_pages(rc->data_inode->i_mapping,
3934 						 0, -1);
3935 			rc->stage = UPDATE_DATA_PTRS;
3936 		}
3937 
3938 		if (err < 0)
3939 			goto out;
3940 
3941 		if (rc->extents_found == 0)
3942 			break;
3943 
3944 		btrfs_info(fs_info, "found %llu extents, stage: %s",
3945 			   rc->extents_found, stage_to_string(finishes_stage));
3946 	}
3947 
3948 	WARN_ON(rc->block_group->pinned > 0);
3949 	WARN_ON(rc->block_group->reserved > 0);
3950 	WARN_ON(rc->block_group->used > 0);
3951 out:
3952 	if (err && rw)
3953 		btrfs_dec_block_group_ro(rc->block_group);
3954 	iput(rc->data_inode);
3955 	btrfs_put_block_group(rc->block_group);
3956 	free_reloc_control(rc);
3957 	return err;
3958 }
3959 
3960 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
3961 {
3962 	struct btrfs_fs_info *fs_info = root->fs_info;
3963 	struct btrfs_trans_handle *trans;
3964 	int ret, err;
3965 
3966 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3967 	if (IS_ERR(trans))
3968 		return PTR_ERR(trans);
3969 
3970 	memset(&root->root_item.drop_progress, 0,
3971 		sizeof(root->root_item.drop_progress));
3972 	btrfs_set_root_drop_level(&root->root_item, 0);
3973 	btrfs_set_root_refs(&root->root_item, 0);
3974 	ret = btrfs_update_root(trans, fs_info->tree_root,
3975 				&root->root_key, &root->root_item);
3976 
3977 	err = btrfs_end_transaction(trans);
3978 	if (err)
3979 		return err;
3980 	return ret;
3981 }
3982 
3983 /*
3984  * recover relocation interrupted by system crash.
3985  *
3986  * this function resumes merging reloc trees with corresponding fs trees.
3987  * this is important for keeping the sharing of tree blocks
3988  */
3989 int btrfs_recover_relocation(struct btrfs_root *root)
3990 {
3991 	struct btrfs_fs_info *fs_info = root->fs_info;
3992 	LIST_HEAD(reloc_roots);
3993 	struct btrfs_key key;
3994 	struct btrfs_root *fs_root;
3995 	struct btrfs_root *reloc_root;
3996 	struct btrfs_path *path;
3997 	struct extent_buffer *leaf;
3998 	struct reloc_control *rc = NULL;
3999 	struct btrfs_trans_handle *trans;
4000 	int ret;
4001 	int err = 0;
4002 
4003 	path = btrfs_alloc_path();
4004 	if (!path)
4005 		return -ENOMEM;
4006 	path->reada = READA_BACK;
4007 
4008 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4009 	key.type = BTRFS_ROOT_ITEM_KEY;
4010 	key.offset = (u64)-1;
4011 
4012 	while (1) {
4013 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4014 					path, 0, 0);
4015 		if (ret < 0) {
4016 			err = ret;
4017 			goto out;
4018 		}
4019 		if (ret > 0) {
4020 			if (path->slots[0] == 0)
4021 				break;
4022 			path->slots[0]--;
4023 		}
4024 		leaf = path->nodes[0];
4025 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4026 		btrfs_release_path(path);
4027 
4028 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4029 		    key.type != BTRFS_ROOT_ITEM_KEY)
4030 			break;
4031 
4032 		reloc_root = btrfs_read_tree_root(root, &key);
4033 		if (IS_ERR(reloc_root)) {
4034 			err = PTR_ERR(reloc_root);
4035 			goto out;
4036 		}
4037 
4038 		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4039 		list_add(&reloc_root->root_list, &reloc_roots);
4040 
4041 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4042 			fs_root = btrfs_get_fs_root(fs_info,
4043 					reloc_root->root_key.offset, false);
4044 			if (IS_ERR(fs_root)) {
4045 				ret = PTR_ERR(fs_root);
4046 				if (ret != -ENOENT) {
4047 					err = ret;
4048 					goto out;
4049 				}
4050 				ret = mark_garbage_root(reloc_root);
4051 				if (ret < 0) {
4052 					err = ret;
4053 					goto out;
4054 				}
4055 			} else {
4056 				btrfs_put_root(fs_root);
4057 			}
4058 		}
4059 
4060 		if (key.offset == 0)
4061 			break;
4062 
4063 		key.offset--;
4064 	}
4065 	btrfs_release_path(path);
4066 
4067 	if (list_empty(&reloc_roots))
4068 		goto out;
4069 
4070 	rc = alloc_reloc_control(fs_info);
4071 	if (!rc) {
4072 		err = -ENOMEM;
4073 		goto out;
4074 	}
4075 
4076 	rc->extent_root = fs_info->extent_root;
4077 
4078 	set_reloc_control(rc);
4079 
4080 	trans = btrfs_join_transaction(rc->extent_root);
4081 	if (IS_ERR(trans)) {
4082 		err = PTR_ERR(trans);
4083 		goto out_unset;
4084 	}
4085 
4086 	rc->merge_reloc_tree = 1;
4087 
4088 	while (!list_empty(&reloc_roots)) {
4089 		reloc_root = list_entry(reloc_roots.next,
4090 					struct btrfs_root, root_list);
4091 		list_del(&reloc_root->root_list);
4092 
4093 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4094 			list_add_tail(&reloc_root->root_list,
4095 				      &rc->reloc_roots);
4096 			continue;
4097 		}
4098 
4099 		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4100 					    false);
4101 		if (IS_ERR(fs_root)) {
4102 			err = PTR_ERR(fs_root);
4103 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4104 			btrfs_end_transaction(trans);
4105 			goto out_unset;
4106 		}
4107 
4108 		err = __add_reloc_root(reloc_root);
4109 		ASSERT(err != -EEXIST);
4110 		if (err) {
4111 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4112 			btrfs_put_root(fs_root);
4113 			btrfs_end_transaction(trans);
4114 			goto out_unset;
4115 		}
4116 		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4117 		btrfs_put_root(fs_root);
4118 	}
4119 
4120 	err = btrfs_commit_transaction(trans);
4121 	if (err)
4122 		goto out_unset;
4123 
4124 	merge_reloc_roots(rc);
4125 
4126 	unset_reloc_control(rc);
4127 
4128 	trans = btrfs_join_transaction(rc->extent_root);
4129 	if (IS_ERR(trans)) {
4130 		err = PTR_ERR(trans);
4131 		goto out_clean;
4132 	}
4133 	err = btrfs_commit_transaction(trans);
4134 out_clean:
4135 	ret = clean_dirty_subvols(rc);
4136 	if (ret < 0 && !err)
4137 		err = ret;
4138 out_unset:
4139 	unset_reloc_control(rc);
4140 	free_reloc_control(rc);
4141 out:
4142 	free_reloc_roots(&reloc_roots);
4143 
4144 	btrfs_free_path(path);
4145 
4146 	if (err == 0) {
4147 		/* cleanup orphan inode in data relocation tree */
4148 		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4149 		ASSERT(fs_root);
4150 		err = btrfs_orphan_cleanup(fs_root);
4151 		btrfs_put_root(fs_root);
4152 	}
4153 	return err;
4154 }
4155 
4156 /*
4157  * helper to add ordered checksum for data relocation.
4158  *
4159  * cloning checksum properly handles the nodatasum extents.
4160  * it also saves CPU time to re-calculate the checksum.
4161  */
4162 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
4163 {
4164 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4165 	struct btrfs_ordered_sum *sums;
4166 	struct btrfs_ordered_extent *ordered;
4167 	int ret;
4168 	u64 disk_bytenr;
4169 	u64 new_bytenr;
4170 	LIST_HEAD(list);
4171 
4172 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4173 	BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
4174 
4175 	disk_bytenr = file_pos + inode->index_cnt;
4176 	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4177 				       disk_bytenr + len - 1, &list, 0);
4178 	if (ret)
4179 		goto out;
4180 
4181 	while (!list_empty(&list)) {
4182 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4183 		list_del_init(&sums->list);
4184 
4185 		/*
4186 		 * We need to offset the new_bytenr based on where the csum is.
4187 		 * We need to do this because we will read in entire prealloc
4188 		 * extents but we may have written to say the middle of the
4189 		 * prealloc extent, so we need to make sure the csum goes with
4190 		 * the right disk offset.
4191 		 *
4192 		 * We can do this because the data reloc inode refers strictly
4193 		 * to the on disk bytes, so we don't have to worry about
4194 		 * disk_len vs real len like with real inodes since it's all
4195 		 * disk length.
4196 		 */
4197 		new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
4198 		sums->bytenr = new_bytenr;
4199 
4200 		btrfs_add_ordered_sum(ordered, sums);
4201 	}
4202 out:
4203 	btrfs_put_ordered_extent(ordered);
4204 	return ret;
4205 }
4206 
4207 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4208 			  struct btrfs_root *root, struct extent_buffer *buf,
4209 			  struct extent_buffer *cow)
4210 {
4211 	struct btrfs_fs_info *fs_info = root->fs_info;
4212 	struct reloc_control *rc;
4213 	struct btrfs_backref_node *node;
4214 	int first_cow = 0;
4215 	int level;
4216 	int ret = 0;
4217 
4218 	rc = fs_info->reloc_ctl;
4219 	if (!rc)
4220 		return 0;
4221 
4222 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4223 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4224 
4225 	level = btrfs_header_level(buf);
4226 	if (btrfs_header_generation(buf) <=
4227 	    btrfs_root_last_snapshot(&root->root_item))
4228 		first_cow = 1;
4229 
4230 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4231 	    rc->create_reloc_tree) {
4232 		WARN_ON(!first_cow && level == 0);
4233 
4234 		node = rc->backref_cache.path[level];
4235 		BUG_ON(node->bytenr != buf->start &&
4236 		       node->new_bytenr != buf->start);
4237 
4238 		btrfs_backref_drop_node_buffer(node);
4239 		atomic_inc(&cow->refs);
4240 		node->eb = cow;
4241 		node->new_bytenr = cow->start;
4242 
4243 		if (!node->pending) {
4244 			list_move_tail(&node->list,
4245 				       &rc->backref_cache.pending[level]);
4246 			node->pending = 1;
4247 		}
4248 
4249 		if (first_cow)
4250 			mark_block_processed(rc, node);
4251 
4252 		if (first_cow && level > 0)
4253 			rc->nodes_relocated += buf->len;
4254 	}
4255 
4256 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4257 		ret = replace_file_extents(trans, rc, root, cow);
4258 	return ret;
4259 }
4260 
4261 /*
4262  * called before creating snapshot. it calculates metadata reservation
4263  * required for relocating tree blocks in the snapshot
4264  */
4265 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4266 			      u64 *bytes_to_reserve)
4267 {
4268 	struct btrfs_root *root = pending->root;
4269 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4270 
4271 	if (!rc || !have_reloc_root(root))
4272 		return;
4273 
4274 	if (!rc->merge_reloc_tree)
4275 		return;
4276 
4277 	root = root->reloc_root;
4278 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4279 	/*
4280 	 * relocation is in the stage of merging trees. the space
4281 	 * used by merging a reloc tree is twice the size of
4282 	 * relocated tree nodes in the worst case. half for cowing
4283 	 * the reloc tree, half for cowing the fs tree. the space
4284 	 * used by cowing the reloc tree will be freed after the
4285 	 * tree is dropped. if we create snapshot, cowing the fs
4286 	 * tree may use more space than it frees. so we need
4287 	 * reserve extra space.
4288 	 */
4289 	*bytes_to_reserve += rc->nodes_relocated;
4290 }
4291 
4292 /*
4293  * called after snapshot is created. migrate block reservation
4294  * and create reloc root for the newly created snapshot
4295  *
4296  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4297  * references held on the reloc_root, one for root->reloc_root and one for
4298  * rc->reloc_roots.
4299  */
4300 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4301 			       struct btrfs_pending_snapshot *pending)
4302 {
4303 	struct btrfs_root *root = pending->root;
4304 	struct btrfs_root *reloc_root;
4305 	struct btrfs_root *new_root;
4306 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4307 	int ret;
4308 
4309 	if (!rc || !have_reloc_root(root))
4310 		return 0;
4311 
4312 	rc = root->fs_info->reloc_ctl;
4313 	rc->merging_rsv_size += rc->nodes_relocated;
4314 
4315 	if (rc->merge_reloc_tree) {
4316 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4317 					      rc->block_rsv,
4318 					      rc->nodes_relocated, true);
4319 		if (ret)
4320 			return ret;
4321 	}
4322 
4323 	new_root = pending->snap;
4324 	reloc_root = create_reloc_root(trans, root->reloc_root,
4325 				       new_root->root_key.objectid);
4326 	if (IS_ERR(reloc_root))
4327 		return PTR_ERR(reloc_root);
4328 
4329 	ret = __add_reloc_root(reloc_root);
4330 	ASSERT(ret != -EEXIST);
4331 	if (ret) {
4332 		/* Pairs with create_reloc_root */
4333 		btrfs_put_root(reloc_root);
4334 		return ret;
4335 	}
4336 	new_root->reloc_root = btrfs_grab_root(reloc_root);
4337 
4338 	if (rc->create_reloc_tree)
4339 		ret = clone_backref_node(trans, rc, root, reloc_root);
4340 	return ret;
4341 }
4342