xref: /linux/fs/btrfs/relocation.c (revision a67ff6a54095e27093ea501fb143fefe51a536c2)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "volumes.h"
29 #include "locking.h"
30 #include "btrfs_inode.h"
31 #include "async-thread.h"
32 #include "free-space-cache.h"
33 #include "inode-map.h"
34 
35 /*
36  * backref_node, mapping_node and tree_block start with this
37  */
38 struct tree_entry {
39 	struct rb_node rb_node;
40 	u64 bytenr;
41 };
42 
43 /*
44  * present a tree block in the backref cache
45  */
46 struct backref_node {
47 	struct rb_node rb_node;
48 	u64 bytenr;
49 
50 	u64 new_bytenr;
51 	/* objectid of tree block owner, can be not uptodate */
52 	u64 owner;
53 	/* link to pending, changed or detached list */
54 	struct list_head list;
55 	/* list of upper level blocks reference this block */
56 	struct list_head upper;
57 	/* list of child blocks in the cache */
58 	struct list_head lower;
59 	/* NULL if this node is not tree root */
60 	struct btrfs_root *root;
61 	/* extent buffer got by COW the block */
62 	struct extent_buffer *eb;
63 	/* level of tree block */
64 	unsigned int level:8;
65 	/* is the block in non-reference counted tree */
66 	unsigned int cowonly:1;
67 	/* 1 if no child node in the cache */
68 	unsigned int lowest:1;
69 	/* is the extent buffer locked */
70 	unsigned int locked:1;
71 	/* has the block been processed */
72 	unsigned int processed:1;
73 	/* have backrefs of this block been checked */
74 	unsigned int checked:1;
75 	/*
76 	 * 1 if corresponding block has been cowed but some upper
77 	 * level block pointers may not point to the new location
78 	 */
79 	unsigned int pending:1;
80 	/*
81 	 * 1 if the backref node isn't connected to any other
82 	 * backref node.
83 	 */
84 	unsigned int detached:1;
85 };
86 
87 /*
88  * present a block pointer in the backref cache
89  */
90 struct backref_edge {
91 	struct list_head list[2];
92 	struct backref_node *node[2];
93 };
94 
95 #define LOWER	0
96 #define UPPER	1
97 
98 struct backref_cache {
99 	/* red black tree of all backref nodes in the cache */
100 	struct rb_root rb_root;
101 	/* for passing backref nodes to btrfs_reloc_cow_block */
102 	struct backref_node *path[BTRFS_MAX_LEVEL];
103 	/*
104 	 * list of blocks that have been cowed but some block
105 	 * pointers in upper level blocks may not reflect the
106 	 * new location
107 	 */
108 	struct list_head pending[BTRFS_MAX_LEVEL];
109 	/* list of backref nodes with no child node */
110 	struct list_head leaves;
111 	/* list of blocks that have been cowed in current transaction */
112 	struct list_head changed;
113 	/* list of detached backref node. */
114 	struct list_head detached;
115 
116 	u64 last_trans;
117 
118 	int nr_nodes;
119 	int nr_edges;
120 };
121 
122 /*
123  * map address of tree root to tree
124  */
125 struct mapping_node {
126 	struct rb_node rb_node;
127 	u64 bytenr;
128 	void *data;
129 };
130 
131 struct mapping_tree {
132 	struct rb_root rb_root;
133 	spinlock_t lock;
134 };
135 
136 /*
137  * present a tree block to process
138  */
139 struct tree_block {
140 	struct rb_node rb_node;
141 	u64 bytenr;
142 	struct btrfs_key key;
143 	unsigned int level:8;
144 	unsigned int key_ready:1;
145 };
146 
147 #define MAX_EXTENTS 128
148 
149 struct file_extent_cluster {
150 	u64 start;
151 	u64 end;
152 	u64 boundary[MAX_EXTENTS];
153 	unsigned int nr;
154 };
155 
156 struct reloc_control {
157 	/* block group to relocate */
158 	struct btrfs_block_group_cache *block_group;
159 	/* extent tree */
160 	struct btrfs_root *extent_root;
161 	/* inode for moving data */
162 	struct inode *data_inode;
163 
164 	struct btrfs_block_rsv *block_rsv;
165 
166 	struct backref_cache backref_cache;
167 
168 	struct file_extent_cluster cluster;
169 	/* tree blocks have been processed */
170 	struct extent_io_tree processed_blocks;
171 	/* map start of tree root to corresponding reloc tree */
172 	struct mapping_tree reloc_root_tree;
173 	/* list of reloc trees */
174 	struct list_head reloc_roots;
175 	/* size of metadata reservation for merging reloc trees */
176 	u64 merging_rsv_size;
177 	/* size of relocated tree nodes */
178 	u64 nodes_relocated;
179 
180 	u64 search_start;
181 	u64 extents_found;
182 
183 	unsigned int stage:8;
184 	unsigned int create_reloc_tree:1;
185 	unsigned int merge_reloc_tree:1;
186 	unsigned int found_file_extent:1;
187 	unsigned int commit_transaction:1;
188 };
189 
190 /* stages of data relocation */
191 #define MOVE_DATA_EXTENTS	0
192 #define UPDATE_DATA_PTRS	1
193 
194 static void remove_backref_node(struct backref_cache *cache,
195 				struct backref_node *node);
196 static void __mark_block_processed(struct reloc_control *rc,
197 				   struct backref_node *node);
198 
199 static void mapping_tree_init(struct mapping_tree *tree)
200 {
201 	tree->rb_root = RB_ROOT;
202 	spin_lock_init(&tree->lock);
203 }
204 
205 static void backref_cache_init(struct backref_cache *cache)
206 {
207 	int i;
208 	cache->rb_root = RB_ROOT;
209 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
210 		INIT_LIST_HEAD(&cache->pending[i]);
211 	INIT_LIST_HEAD(&cache->changed);
212 	INIT_LIST_HEAD(&cache->detached);
213 	INIT_LIST_HEAD(&cache->leaves);
214 }
215 
216 static void backref_cache_cleanup(struct backref_cache *cache)
217 {
218 	struct backref_node *node;
219 	int i;
220 
221 	while (!list_empty(&cache->detached)) {
222 		node = list_entry(cache->detached.next,
223 				  struct backref_node, list);
224 		remove_backref_node(cache, node);
225 	}
226 
227 	while (!list_empty(&cache->leaves)) {
228 		node = list_entry(cache->leaves.next,
229 				  struct backref_node, lower);
230 		remove_backref_node(cache, node);
231 	}
232 
233 	cache->last_trans = 0;
234 
235 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
236 		BUG_ON(!list_empty(&cache->pending[i]));
237 	BUG_ON(!list_empty(&cache->changed));
238 	BUG_ON(!list_empty(&cache->detached));
239 	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
240 	BUG_ON(cache->nr_nodes);
241 	BUG_ON(cache->nr_edges);
242 }
243 
244 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
245 {
246 	struct backref_node *node;
247 
248 	node = kzalloc(sizeof(*node), GFP_NOFS);
249 	if (node) {
250 		INIT_LIST_HEAD(&node->list);
251 		INIT_LIST_HEAD(&node->upper);
252 		INIT_LIST_HEAD(&node->lower);
253 		RB_CLEAR_NODE(&node->rb_node);
254 		cache->nr_nodes++;
255 	}
256 	return node;
257 }
258 
259 static void free_backref_node(struct backref_cache *cache,
260 			      struct backref_node *node)
261 {
262 	if (node) {
263 		cache->nr_nodes--;
264 		kfree(node);
265 	}
266 }
267 
268 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
269 {
270 	struct backref_edge *edge;
271 
272 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
273 	if (edge)
274 		cache->nr_edges++;
275 	return edge;
276 }
277 
278 static void free_backref_edge(struct backref_cache *cache,
279 			      struct backref_edge *edge)
280 {
281 	if (edge) {
282 		cache->nr_edges--;
283 		kfree(edge);
284 	}
285 }
286 
287 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
288 				   struct rb_node *node)
289 {
290 	struct rb_node **p = &root->rb_node;
291 	struct rb_node *parent = NULL;
292 	struct tree_entry *entry;
293 
294 	while (*p) {
295 		parent = *p;
296 		entry = rb_entry(parent, struct tree_entry, rb_node);
297 
298 		if (bytenr < entry->bytenr)
299 			p = &(*p)->rb_left;
300 		else if (bytenr > entry->bytenr)
301 			p = &(*p)->rb_right;
302 		else
303 			return parent;
304 	}
305 
306 	rb_link_node(node, parent, p);
307 	rb_insert_color(node, root);
308 	return NULL;
309 }
310 
311 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
312 {
313 	struct rb_node *n = root->rb_node;
314 	struct tree_entry *entry;
315 
316 	while (n) {
317 		entry = rb_entry(n, struct tree_entry, rb_node);
318 
319 		if (bytenr < entry->bytenr)
320 			n = n->rb_left;
321 		else if (bytenr > entry->bytenr)
322 			n = n->rb_right;
323 		else
324 			return n;
325 	}
326 	return NULL;
327 }
328 
329 /*
330  * walk up backref nodes until reach node presents tree root
331  */
332 static struct backref_node *walk_up_backref(struct backref_node *node,
333 					    struct backref_edge *edges[],
334 					    int *index)
335 {
336 	struct backref_edge *edge;
337 	int idx = *index;
338 
339 	while (!list_empty(&node->upper)) {
340 		edge = list_entry(node->upper.next,
341 				  struct backref_edge, list[LOWER]);
342 		edges[idx++] = edge;
343 		node = edge->node[UPPER];
344 	}
345 	BUG_ON(node->detached);
346 	*index = idx;
347 	return node;
348 }
349 
350 /*
351  * walk down backref nodes to find start of next reference path
352  */
353 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
354 					      int *index)
355 {
356 	struct backref_edge *edge;
357 	struct backref_node *lower;
358 	int idx = *index;
359 
360 	while (idx > 0) {
361 		edge = edges[idx - 1];
362 		lower = edge->node[LOWER];
363 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
364 			idx--;
365 			continue;
366 		}
367 		edge = list_entry(edge->list[LOWER].next,
368 				  struct backref_edge, list[LOWER]);
369 		edges[idx - 1] = edge;
370 		*index = idx;
371 		return edge->node[UPPER];
372 	}
373 	*index = 0;
374 	return NULL;
375 }
376 
377 static void unlock_node_buffer(struct backref_node *node)
378 {
379 	if (node->locked) {
380 		btrfs_tree_unlock(node->eb);
381 		node->locked = 0;
382 	}
383 }
384 
385 static void drop_node_buffer(struct backref_node *node)
386 {
387 	if (node->eb) {
388 		unlock_node_buffer(node);
389 		free_extent_buffer(node->eb);
390 		node->eb = NULL;
391 	}
392 }
393 
394 static void drop_backref_node(struct backref_cache *tree,
395 			      struct backref_node *node)
396 {
397 	BUG_ON(!list_empty(&node->upper));
398 
399 	drop_node_buffer(node);
400 	list_del(&node->list);
401 	list_del(&node->lower);
402 	if (!RB_EMPTY_NODE(&node->rb_node))
403 		rb_erase(&node->rb_node, &tree->rb_root);
404 	free_backref_node(tree, node);
405 }
406 
407 /*
408  * remove a backref node from the backref cache
409  */
410 static void remove_backref_node(struct backref_cache *cache,
411 				struct backref_node *node)
412 {
413 	struct backref_node *upper;
414 	struct backref_edge *edge;
415 
416 	if (!node)
417 		return;
418 
419 	BUG_ON(!node->lowest && !node->detached);
420 	while (!list_empty(&node->upper)) {
421 		edge = list_entry(node->upper.next, struct backref_edge,
422 				  list[LOWER]);
423 		upper = edge->node[UPPER];
424 		list_del(&edge->list[LOWER]);
425 		list_del(&edge->list[UPPER]);
426 		free_backref_edge(cache, edge);
427 
428 		if (RB_EMPTY_NODE(&upper->rb_node)) {
429 			BUG_ON(!list_empty(&node->upper));
430 			drop_backref_node(cache, node);
431 			node = upper;
432 			node->lowest = 1;
433 			continue;
434 		}
435 		/*
436 		 * add the node to leaf node list if no other
437 		 * child block cached.
438 		 */
439 		if (list_empty(&upper->lower)) {
440 			list_add_tail(&upper->lower, &cache->leaves);
441 			upper->lowest = 1;
442 		}
443 	}
444 
445 	drop_backref_node(cache, node);
446 }
447 
448 static void update_backref_node(struct backref_cache *cache,
449 				struct backref_node *node, u64 bytenr)
450 {
451 	struct rb_node *rb_node;
452 	rb_erase(&node->rb_node, &cache->rb_root);
453 	node->bytenr = bytenr;
454 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
455 	BUG_ON(rb_node);
456 }
457 
458 /*
459  * update backref cache after a transaction commit
460  */
461 static int update_backref_cache(struct btrfs_trans_handle *trans,
462 				struct backref_cache *cache)
463 {
464 	struct backref_node *node;
465 	int level = 0;
466 
467 	if (cache->last_trans == 0) {
468 		cache->last_trans = trans->transid;
469 		return 0;
470 	}
471 
472 	if (cache->last_trans == trans->transid)
473 		return 0;
474 
475 	/*
476 	 * detached nodes are used to avoid unnecessary backref
477 	 * lookup. transaction commit changes the extent tree.
478 	 * so the detached nodes are no longer useful.
479 	 */
480 	while (!list_empty(&cache->detached)) {
481 		node = list_entry(cache->detached.next,
482 				  struct backref_node, list);
483 		remove_backref_node(cache, node);
484 	}
485 
486 	while (!list_empty(&cache->changed)) {
487 		node = list_entry(cache->changed.next,
488 				  struct backref_node, list);
489 		list_del_init(&node->list);
490 		BUG_ON(node->pending);
491 		update_backref_node(cache, node, node->new_bytenr);
492 	}
493 
494 	/*
495 	 * some nodes can be left in the pending list if there were
496 	 * errors during processing the pending nodes.
497 	 */
498 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
499 		list_for_each_entry(node, &cache->pending[level], list) {
500 			BUG_ON(!node->pending);
501 			if (node->bytenr == node->new_bytenr)
502 				continue;
503 			update_backref_node(cache, node, node->new_bytenr);
504 		}
505 	}
506 
507 	cache->last_trans = 0;
508 	return 1;
509 }
510 
511 
512 static int should_ignore_root(struct btrfs_root *root)
513 {
514 	struct btrfs_root *reloc_root;
515 
516 	if (!root->ref_cows)
517 		return 0;
518 
519 	reloc_root = root->reloc_root;
520 	if (!reloc_root)
521 		return 0;
522 
523 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
524 	    root->fs_info->running_transaction->transid - 1)
525 		return 0;
526 	/*
527 	 * if there is reloc tree and it was created in previous
528 	 * transaction backref lookup can find the reloc tree,
529 	 * so backref node for the fs tree root is useless for
530 	 * relocation.
531 	 */
532 	return 1;
533 }
534 /*
535  * find reloc tree by address of tree root
536  */
537 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
538 					  u64 bytenr)
539 {
540 	struct rb_node *rb_node;
541 	struct mapping_node *node;
542 	struct btrfs_root *root = NULL;
543 
544 	spin_lock(&rc->reloc_root_tree.lock);
545 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
546 	if (rb_node) {
547 		node = rb_entry(rb_node, struct mapping_node, rb_node);
548 		root = (struct btrfs_root *)node->data;
549 	}
550 	spin_unlock(&rc->reloc_root_tree.lock);
551 	return root;
552 }
553 
554 static int is_cowonly_root(u64 root_objectid)
555 {
556 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
557 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
558 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
559 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
560 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
561 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
562 		return 1;
563 	return 0;
564 }
565 
566 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
567 					u64 root_objectid)
568 {
569 	struct btrfs_key key;
570 
571 	key.objectid = root_objectid;
572 	key.type = BTRFS_ROOT_ITEM_KEY;
573 	if (is_cowonly_root(root_objectid))
574 		key.offset = 0;
575 	else
576 		key.offset = (u64)-1;
577 
578 	return btrfs_read_fs_root_no_name(fs_info, &key);
579 }
580 
581 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
582 static noinline_for_stack
583 struct btrfs_root *find_tree_root(struct reloc_control *rc,
584 				  struct extent_buffer *leaf,
585 				  struct btrfs_extent_ref_v0 *ref0)
586 {
587 	struct btrfs_root *root;
588 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
589 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
590 
591 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
592 
593 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
594 	BUG_ON(IS_ERR(root));
595 
596 	if (root->ref_cows &&
597 	    generation != btrfs_root_generation(&root->root_item))
598 		return NULL;
599 
600 	return root;
601 }
602 #endif
603 
604 static noinline_for_stack
605 int find_inline_backref(struct extent_buffer *leaf, int slot,
606 			unsigned long *ptr, unsigned long *end)
607 {
608 	struct btrfs_extent_item *ei;
609 	struct btrfs_tree_block_info *bi;
610 	u32 item_size;
611 
612 	item_size = btrfs_item_size_nr(leaf, slot);
613 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
614 	if (item_size < sizeof(*ei)) {
615 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
616 		return 1;
617 	}
618 #endif
619 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
620 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
621 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
622 
623 	if (item_size <= sizeof(*ei) + sizeof(*bi)) {
624 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
625 		return 1;
626 	}
627 
628 	bi = (struct btrfs_tree_block_info *)(ei + 1);
629 	*ptr = (unsigned long)(bi + 1);
630 	*end = (unsigned long)ei + item_size;
631 	return 0;
632 }
633 
634 /*
635  * build backref tree for a given tree block. root of the backref tree
636  * corresponds the tree block, leaves of the backref tree correspond
637  * roots of b-trees that reference the tree block.
638  *
639  * the basic idea of this function is check backrefs of a given block
640  * to find upper level blocks that refernece the block, and then check
641  * bakcrefs of these upper level blocks recursively. the recursion stop
642  * when tree root is reached or backrefs for the block is cached.
643  *
644  * NOTE: if we find backrefs for a block are cached, we know backrefs
645  * for all upper level blocks that directly/indirectly reference the
646  * block are also cached.
647  */
648 static noinline_for_stack
649 struct backref_node *build_backref_tree(struct reloc_control *rc,
650 					struct btrfs_key *node_key,
651 					int level, u64 bytenr)
652 {
653 	struct backref_cache *cache = &rc->backref_cache;
654 	struct btrfs_path *path1;
655 	struct btrfs_path *path2;
656 	struct extent_buffer *eb;
657 	struct btrfs_root *root;
658 	struct backref_node *cur;
659 	struct backref_node *upper;
660 	struct backref_node *lower;
661 	struct backref_node *node = NULL;
662 	struct backref_node *exist = NULL;
663 	struct backref_edge *edge;
664 	struct rb_node *rb_node;
665 	struct btrfs_key key;
666 	unsigned long end;
667 	unsigned long ptr;
668 	LIST_HEAD(list);
669 	LIST_HEAD(useless);
670 	int cowonly;
671 	int ret;
672 	int err = 0;
673 
674 	path1 = btrfs_alloc_path();
675 	path2 = btrfs_alloc_path();
676 	if (!path1 || !path2) {
677 		err = -ENOMEM;
678 		goto out;
679 	}
680 	path1->reada = 1;
681 	path2->reada = 2;
682 
683 	node = alloc_backref_node(cache);
684 	if (!node) {
685 		err = -ENOMEM;
686 		goto out;
687 	}
688 
689 	node->bytenr = bytenr;
690 	node->level = level;
691 	node->lowest = 1;
692 	cur = node;
693 again:
694 	end = 0;
695 	ptr = 0;
696 	key.objectid = cur->bytenr;
697 	key.type = BTRFS_EXTENT_ITEM_KEY;
698 	key.offset = (u64)-1;
699 
700 	path1->search_commit_root = 1;
701 	path1->skip_locking = 1;
702 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
703 				0, 0);
704 	if (ret < 0) {
705 		err = ret;
706 		goto out;
707 	}
708 	BUG_ON(!ret || !path1->slots[0]);
709 
710 	path1->slots[0]--;
711 
712 	WARN_ON(cur->checked);
713 	if (!list_empty(&cur->upper)) {
714 		/*
715 		 * the backref was added previously when processing
716 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
717 		 */
718 		BUG_ON(!list_is_singular(&cur->upper));
719 		edge = list_entry(cur->upper.next, struct backref_edge,
720 				  list[LOWER]);
721 		BUG_ON(!list_empty(&edge->list[UPPER]));
722 		exist = edge->node[UPPER];
723 		/*
724 		 * add the upper level block to pending list if we need
725 		 * check its backrefs
726 		 */
727 		if (!exist->checked)
728 			list_add_tail(&edge->list[UPPER], &list);
729 	} else {
730 		exist = NULL;
731 	}
732 
733 	while (1) {
734 		cond_resched();
735 		eb = path1->nodes[0];
736 
737 		if (ptr >= end) {
738 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
739 				ret = btrfs_next_leaf(rc->extent_root, path1);
740 				if (ret < 0) {
741 					err = ret;
742 					goto out;
743 				}
744 				if (ret > 0)
745 					break;
746 				eb = path1->nodes[0];
747 			}
748 
749 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
750 			if (key.objectid != cur->bytenr) {
751 				WARN_ON(exist);
752 				break;
753 			}
754 
755 			if (key.type == BTRFS_EXTENT_ITEM_KEY) {
756 				ret = find_inline_backref(eb, path1->slots[0],
757 							  &ptr, &end);
758 				if (ret)
759 					goto next;
760 			}
761 		}
762 
763 		if (ptr < end) {
764 			/* update key for inline back ref */
765 			struct btrfs_extent_inline_ref *iref;
766 			iref = (struct btrfs_extent_inline_ref *)ptr;
767 			key.type = btrfs_extent_inline_ref_type(eb, iref);
768 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
769 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
770 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
771 		}
772 
773 		if (exist &&
774 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
775 		      exist->owner == key.offset) ||
776 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
777 		      exist->bytenr == key.offset))) {
778 			exist = NULL;
779 			goto next;
780 		}
781 
782 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
783 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
784 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
785 			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
786 				struct btrfs_extent_ref_v0 *ref0;
787 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
788 						struct btrfs_extent_ref_v0);
789 				if (key.objectid == key.offset) {
790 					root = find_tree_root(rc, eb, ref0);
791 					if (root && !should_ignore_root(root))
792 						cur->root = root;
793 					else
794 						list_add(&cur->list, &useless);
795 					break;
796 				}
797 				if (is_cowonly_root(btrfs_ref_root_v0(eb,
798 								      ref0)))
799 					cur->cowonly = 1;
800 			}
801 #else
802 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
803 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
804 #endif
805 			if (key.objectid == key.offset) {
806 				/*
807 				 * only root blocks of reloc trees use
808 				 * backref of this type.
809 				 */
810 				root = find_reloc_root(rc, cur->bytenr);
811 				BUG_ON(!root);
812 				cur->root = root;
813 				break;
814 			}
815 
816 			edge = alloc_backref_edge(cache);
817 			if (!edge) {
818 				err = -ENOMEM;
819 				goto out;
820 			}
821 			rb_node = tree_search(&cache->rb_root, key.offset);
822 			if (!rb_node) {
823 				upper = alloc_backref_node(cache);
824 				if (!upper) {
825 					free_backref_edge(cache, edge);
826 					err = -ENOMEM;
827 					goto out;
828 				}
829 				upper->bytenr = key.offset;
830 				upper->level = cur->level + 1;
831 				/*
832 				 *  backrefs for the upper level block isn't
833 				 *  cached, add the block to pending list
834 				 */
835 				list_add_tail(&edge->list[UPPER], &list);
836 			} else {
837 				upper = rb_entry(rb_node, struct backref_node,
838 						 rb_node);
839 				BUG_ON(!upper->checked);
840 				INIT_LIST_HEAD(&edge->list[UPPER]);
841 			}
842 			list_add_tail(&edge->list[LOWER], &cur->upper);
843 			edge->node[LOWER] = cur;
844 			edge->node[UPPER] = upper;
845 
846 			goto next;
847 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
848 			goto next;
849 		}
850 
851 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
852 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
853 		if (IS_ERR(root)) {
854 			err = PTR_ERR(root);
855 			goto out;
856 		}
857 
858 		if (!root->ref_cows)
859 			cur->cowonly = 1;
860 
861 		if (btrfs_root_level(&root->root_item) == cur->level) {
862 			/* tree root */
863 			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
864 			       cur->bytenr);
865 			if (should_ignore_root(root))
866 				list_add(&cur->list, &useless);
867 			else
868 				cur->root = root;
869 			break;
870 		}
871 
872 		level = cur->level + 1;
873 
874 		/*
875 		 * searching the tree to find upper level blocks
876 		 * reference the block.
877 		 */
878 		path2->search_commit_root = 1;
879 		path2->skip_locking = 1;
880 		path2->lowest_level = level;
881 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
882 		path2->lowest_level = 0;
883 		if (ret < 0) {
884 			err = ret;
885 			goto out;
886 		}
887 		if (ret > 0 && path2->slots[level] > 0)
888 			path2->slots[level]--;
889 
890 		eb = path2->nodes[level];
891 		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
892 			cur->bytenr);
893 
894 		lower = cur;
895 		for (; level < BTRFS_MAX_LEVEL; level++) {
896 			if (!path2->nodes[level]) {
897 				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
898 				       lower->bytenr);
899 				if (should_ignore_root(root))
900 					list_add(&lower->list, &useless);
901 				else
902 					lower->root = root;
903 				break;
904 			}
905 
906 			edge = alloc_backref_edge(cache);
907 			if (!edge) {
908 				err = -ENOMEM;
909 				goto out;
910 			}
911 
912 			eb = path2->nodes[level];
913 			rb_node = tree_search(&cache->rb_root, eb->start);
914 			if (!rb_node) {
915 				upper = alloc_backref_node(cache);
916 				if (!upper) {
917 					free_backref_edge(cache, edge);
918 					err = -ENOMEM;
919 					goto out;
920 				}
921 				upper->bytenr = eb->start;
922 				upper->owner = btrfs_header_owner(eb);
923 				upper->level = lower->level + 1;
924 				if (!root->ref_cows)
925 					upper->cowonly = 1;
926 
927 				/*
928 				 * if we know the block isn't shared
929 				 * we can void checking its backrefs.
930 				 */
931 				if (btrfs_block_can_be_shared(root, eb))
932 					upper->checked = 0;
933 				else
934 					upper->checked = 1;
935 
936 				/*
937 				 * add the block to pending list if we
938 				 * need check its backrefs. only block
939 				 * at 'cur->level + 1' is added to the
940 				 * tail of pending list. this guarantees
941 				 * we check backrefs from lower level
942 				 * blocks to upper level blocks.
943 				 */
944 				if (!upper->checked &&
945 				    level == cur->level + 1) {
946 					list_add_tail(&edge->list[UPPER],
947 						      &list);
948 				} else
949 					INIT_LIST_HEAD(&edge->list[UPPER]);
950 			} else {
951 				upper = rb_entry(rb_node, struct backref_node,
952 						 rb_node);
953 				BUG_ON(!upper->checked);
954 				INIT_LIST_HEAD(&edge->list[UPPER]);
955 				if (!upper->owner)
956 					upper->owner = btrfs_header_owner(eb);
957 			}
958 			list_add_tail(&edge->list[LOWER], &lower->upper);
959 			edge->node[LOWER] = lower;
960 			edge->node[UPPER] = upper;
961 
962 			if (rb_node)
963 				break;
964 			lower = upper;
965 			upper = NULL;
966 		}
967 		btrfs_release_path(path2);
968 next:
969 		if (ptr < end) {
970 			ptr += btrfs_extent_inline_ref_size(key.type);
971 			if (ptr >= end) {
972 				WARN_ON(ptr > end);
973 				ptr = 0;
974 				end = 0;
975 			}
976 		}
977 		if (ptr >= end)
978 			path1->slots[0]++;
979 	}
980 	btrfs_release_path(path1);
981 
982 	cur->checked = 1;
983 	WARN_ON(exist);
984 
985 	/* the pending list isn't empty, take the first block to process */
986 	if (!list_empty(&list)) {
987 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
988 		list_del_init(&edge->list[UPPER]);
989 		cur = edge->node[UPPER];
990 		goto again;
991 	}
992 
993 	/*
994 	 * everything goes well, connect backref nodes and insert backref nodes
995 	 * into the cache.
996 	 */
997 	BUG_ON(!node->checked);
998 	cowonly = node->cowonly;
999 	if (!cowonly) {
1000 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1001 				      &node->rb_node);
1002 		BUG_ON(rb_node);
1003 		list_add_tail(&node->lower, &cache->leaves);
1004 	}
1005 
1006 	list_for_each_entry(edge, &node->upper, list[LOWER])
1007 		list_add_tail(&edge->list[UPPER], &list);
1008 
1009 	while (!list_empty(&list)) {
1010 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1011 		list_del_init(&edge->list[UPPER]);
1012 		upper = edge->node[UPPER];
1013 		if (upper->detached) {
1014 			list_del(&edge->list[LOWER]);
1015 			lower = edge->node[LOWER];
1016 			free_backref_edge(cache, edge);
1017 			if (list_empty(&lower->upper))
1018 				list_add(&lower->list, &useless);
1019 			continue;
1020 		}
1021 
1022 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1023 			if (upper->lowest) {
1024 				list_del_init(&upper->lower);
1025 				upper->lowest = 0;
1026 			}
1027 
1028 			list_add_tail(&edge->list[UPPER], &upper->lower);
1029 			continue;
1030 		}
1031 
1032 		BUG_ON(!upper->checked);
1033 		BUG_ON(cowonly != upper->cowonly);
1034 		if (!cowonly) {
1035 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1036 					      &upper->rb_node);
1037 			BUG_ON(rb_node);
1038 		}
1039 
1040 		list_add_tail(&edge->list[UPPER], &upper->lower);
1041 
1042 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1043 			list_add_tail(&edge->list[UPPER], &list);
1044 	}
1045 	/*
1046 	 * process useless backref nodes. backref nodes for tree leaves
1047 	 * are deleted from the cache. backref nodes for upper level
1048 	 * tree blocks are left in the cache to avoid unnecessary backref
1049 	 * lookup.
1050 	 */
1051 	while (!list_empty(&useless)) {
1052 		upper = list_entry(useless.next, struct backref_node, list);
1053 		list_del_init(&upper->list);
1054 		BUG_ON(!list_empty(&upper->upper));
1055 		if (upper == node)
1056 			node = NULL;
1057 		if (upper->lowest) {
1058 			list_del_init(&upper->lower);
1059 			upper->lowest = 0;
1060 		}
1061 		while (!list_empty(&upper->lower)) {
1062 			edge = list_entry(upper->lower.next,
1063 					  struct backref_edge, list[UPPER]);
1064 			list_del(&edge->list[UPPER]);
1065 			list_del(&edge->list[LOWER]);
1066 			lower = edge->node[LOWER];
1067 			free_backref_edge(cache, edge);
1068 
1069 			if (list_empty(&lower->upper))
1070 				list_add(&lower->list, &useless);
1071 		}
1072 		__mark_block_processed(rc, upper);
1073 		if (upper->level > 0) {
1074 			list_add(&upper->list, &cache->detached);
1075 			upper->detached = 1;
1076 		} else {
1077 			rb_erase(&upper->rb_node, &cache->rb_root);
1078 			free_backref_node(cache, upper);
1079 		}
1080 	}
1081 out:
1082 	btrfs_free_path(path1);
1083 	btrfs_free_path(path2);
1084 	if (err) {
1085 		while (!list_empty(&useless)) {
1086 			lower = list_entry(useless.next,
1087 					   struct backref_node, upper);
1088 			list_del_init(&lower->upper);
1089 		}
1090 		upper = node;
1091 		INIT_LIST_HEAD(&list);
1092 		while (upper) {
1093 			if (RB_EMPTY_NODE(&upper->rb_node)) {
1094 				list_splice_tail(&upper->upper, &list);
1095 				free_backref_node(cache, upper);
1096 			}
1097 
1098 			if (list_empty(&list))
1099 				break;
1100 
1101 			edge = list_entry(list.next, struct backref_edge,
1102 					  list[LOWER]);
1103 			list_del(&edge->list[LOWER]);
1104 			upper = edge->node[UPPER];
1105 			free_backref_edge(cache, edge);
1106 		}
1107 		return ERR_PTR(err);
1108 	}
1109 	BUG_ON(node && node->detached);
1110 	return node;
1111 }
1112 
1113 /*
1114  * helper to add backref node for the newly created snapshot.
1115  * the backref node is created by cloning backref node that
1116  * corresponds to root of source tree
1117  */
1118 static int clone_backref_node(struct btrfs_trans_handle *trans,
1119 			      struct reloc_control *rc,
1120 			      struct btrfs_root *src,
1121 			      struct btrfs_root *dest)
1122 {
1123 	struct btrfs_root *reloc_root = src->reloc_root;
1124 	struct backref_cache *cache = &rc->backref_cache;
1125 	struct backref_node *node = NULL;
1126 	struct backref_node *new_node;
1127 	struct backref_edge *edge;
1128 	struct backref_edge *new_edge;
1129 	struct rb_node *rb_node;
1130 
1131 	if (cache->last_trans > 0)
1132 		update_backref_cache(trans, cache);
1133 
1134 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1135 	if (rb_node) {
1136 		node = rb_entry(rb_node, struct backref_node, rb_node);
1137 		if (node->detached)
1138 			node = NULL;
1139 		else
1140 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1141 	}
1142 
1143 	if (!node) {
1144 		rb_node = tree_search(&cache->rb_root,
1145 				      reloc_root->commit_root->start);
1146 		if (rb_node) {
1147 			node = rb_entry(rb_node, struct backref_node,
1148 					rb_node);
1149 			BUG_ON(node->detached);
1150 		}
1151 	}
1152 
1153 	if (!node)
1154 		return 0;
1155 
1156 	new_node = alloc_backref_node(cache);
1157 	if (!new_node)
1158 		return -ENOMEM;
1159 
1160 	new_node->bytenr = dest->node->start;
1161 	new_node->level = node->level;
1162 	new_node->lowest = node->lowest;
1163 	new_node->checked = 1;
1164 	new_node->root = dest;
1165 
1166 	if (!node->lowest) {
1167 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1168 			new_edge = alloc_backref_edge(cache);
1169 			if (!new_edge)
1170 				goto fail;
1171 
1172 			new_edge->node[UPPER] = new_node;
1173 			new_edge->node[LOWER] = edge->node[LOWER];
1174 			list_add_tail(&new_edge->list[UPPER],
1175 				      &new_node->lower);
1176 		}
1177 	}
1178 
1179 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1180 			      &new_node->rb_node);
1181 	BUG_ON(rb_node);
1182 
1183 	if (!new_node->lowest) {
1184 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1185 			list_add_tail(&new_edge->list[LOWER],
1186 				      &new_edge->node[LOWER]->upper);
1187 		}
1188 	}
1189 	return 0;
1190 fail:
1191 	while (!list_empty(&new_node->lower)) {
1192 		new_edge = list_entry(new_node->lower.next,
1193 				      struct backref_edge, list[UPPER]);
1194 		list_del(&new_edge->list[UPPER]);
1195 		free_backref_edge(cache, new_edge);
1196 	}
1197 	free_backref_node(cache, new_node);
1198 	return -ENOMEM;
1199 }
1200 
1201 /*
1202  * helper to add 'address of tree root -> reloc tree' mapping
1203  */
1204 static int __add_reloc_root(struct btrfs_root *root)
1205 {
1206 	struct rb_node *rb_node;
1207 	struct mapping_node *node;
1208 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1209 
1210 	node = kmalloc(sizeof(*node), GFP_NOFS);
1211 	BUG_ON(!node);
1212 
1213 	node->bytenr = root->node->start;
1214 	node->data = root;
1215 
1216 	spin_lock(&rc->reloc_root_tree.lock);
1217 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1218 			      node->bytenr, &node->rb_node);
1219 	spin_unlock(&rc->reloc_root_tree.lock);
1220 	BUG_ON(rb_node);
1221 
1222 	list_add_tail(&root->root_list, &rc->reloc_roots);
1223 	return 0;
1224 }
1225 
1226 /*
1227  * helper to update/delete the 'address of tree root -> reloc tree'
1228  * mapping
1229  */
1230 static int __update_reloc_root(struct btrfs_root *root, int del)
1231 {
1232 	struct rb_node *rb_node;
1233 	struct mapping_node *node = NULL;
1234 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1235 
1236 	spin_lock(&rc->reloc_root_tree.lock);
1237 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1238 			      root->commit_root->start);
1239 	if (rb_node) {
1240 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1241 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1242 	}
1243 	spin_unlock(&rc->reloc_root_tree.lock);
1244 
1245 	BUG_ON((struct btrfs_root *)node->data != root);
1246 
1247 	if (!del) {
1248 		spin_lock(&rc->reloc_root_tree.lock);
1249 		node->bytenr = root->node->start;
1250 		rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1251 				      node->bytenr, &node->rb_node);
1252 		spin_unlock(&rc->reloc_root_tree.lock);
1253 		BUG_ON(rb_node);
1254 	} else {
1255 		list_del_init(&root->root_list);
1256 		kfree(node);
1257 	}
1258 	return 0;
1259 }
1260 
1261 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1262 					struct btrfs_root *root, u64 objectid)
1263 {
1264 	struct btrfs_root *reloc_root;
1265 	struct extent_buffer *eb;
1266 	struct btrfs_root_item *root_item;
1267 	struct btrfs_key root_key;
1268 	int ret;
1269 
1270 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1271 	BUG_ON(!root_item);
1272 
1273 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1274 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1275 	root_key.offset = objectid;
1276 
1277 	if (root->root_key.objectid == objectid) {
1278 		/* called by btrfs_init_reloc_root */
1279 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1280 				      BTRFS_TREE_RELOC_OBJECTID);
1281 		BUG_ON(ret);
1282 
1283 		btrfs_set_root_last_snapshot(&root->root_item,
1284 					     trans->transid - 1);
1285 	} else {
1286 		/*
1287 		 * called by btrfs_reloc_post_snapshot_hook.
1288 		 * the source tree is a reloc tree, all tree blocks
1289 		 * modified after it was created have RELOC flag
1290 		 * set in their headers. so it's OK to not update
1291 		 * the 'last_snapshot'.
1292 		 */
1293 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1294 				      BTRFS_TREE_RELOC_OBJECTID);
1295 		BUG_ON(ret);
1296 	}
1297 
1298 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1299 	btrfs_set_root_bytenr(root_item, eb->start);
1300 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1301 	btrfs_set_root_generation(root_item, trans->transid);
1302 
1303 	if (root->root_key.objectid == objectid) {
1304 		btrfs_set_root_refs(root_item, 0);
1305 		memset(&root_item->drop_progress, 0,
1306 		       sizeof(struct btrfs_disk_key));
1307 		root_item->drop_level = 0;
1308 	}
1309 
1310 	btrfs_tree_unlock(eb);
1311 	free_extent_buffer(eb);
1312 
1313 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1314 				&root_key, root_item);
1315 	BUG_ON(ret);
1316 	kfree(root_item);
1317 
1318 	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
1319 						 &root_key);
1320 	BUG_ON(IS_ERR(reloc_root));
1321 	reloc_root->last_trans = trans->transid;
1322 	return reloc_root;
1323 }
1324 
1325 /*
1326  * create reloc tree for a given fs tree. reloc tree is just a
1327  * snapshot of the fs tree with special root objectid.
1328  */
1329 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1330 			  struct btrfs_root *root)
1331 {
1332 	struct btrfs_root *reloc_root;
1333 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1334 	int clear_rsv = 0;
1335 
1336 	if (root->reloc_root) {
1337 		reloc_root = root->reloc_root;
1338 		reloc_root->last_trans = trans->transid;
1339 		return 0;
1340 	}
1341 
1342 	if (!rc || !rc->create_reloc_tree ||
1343 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1344 		return 0;
1345 
1346 	if (!trans->block_rsv) {
1347 		trans->block_rsv = rc->block_rsv;
1348 		clear_rsv = 1;
1349 	}
1350 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1351 	if (clear_rsv)
1352 		trans->block_rsv = NULL;
1353 
1354 	__add_reloc_root(reloc_root);
1355 	root->reloc_root = reloc_root;
1356 	return 0;
1357 }
1358 
1359 /*
1360  * update root item of reloc tree
1361  */
1362 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1363 			    struct btrfs_root *root)
1364 {
1365 	struct btrfs_root *reloc_root;
1366 	struct btrfs_root_item *root_item;
1367 	int del = 0;
1368 	int ret;
1369 
1370 	if (!root->reloc_root)
1371 		goto out;
1372 
1373 	reloc_root = root->reloc_root;
1374 	root_item = &reloc_root->root_item;
1375 
1376 	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1377 	    btrfs_root_refs(root_item) == 0) {
1378 		root->reloc_root = NULL;
1379 		del = 1;
1380 	}
1381 
1382 	__update_reloc_root(reloc_root, del);
1383 
1384 	if (reloc_root->commit_root != reloc_root->node) {
1385 		btrfs_set_root_node(root_item, reloc_root->node);
1386 		free_extent_buffer(reloc_root->commit_root);
1387 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1388 	}
1389 
1390 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1391 				&reloc_root->root_key, root_item);
1392 	BUG_ON(ret);
1393 
1394 out:
1395 	return 0;
1396 }
1397 
1398 /*
1399  * helper to find first cached inode with inode number >= objectid
1400  * in a subvolume
1401  */
1402 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1403 {
1404 	struct rb_node *node;
1405 	struct rb_node *prev;
1406 	struct btrfs_inode *entry;
1407 	struct inode *inode;
1408 
1409 	spin_lock(&root->inode_lock);
1410 again:
1411 	node = root->inode_tree.rb_node;
1412 	prev = NULL;
1413 	while (node) {
1414 		prev = node;
1415 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1416 
1417 		if (objectid < btrfs_ino(&entry->vfs_inode))
1418 			node = node->rb_left;
1419 		else if (objectid > btrfs_ino(&entry->vfs_inode))
1420 			node = node->rb_right;
1421 		else
1422 			break;
1423 	}
1424 	if (!node) {
1425 		while (prev) {
1426 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1427 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1428 				node = prev;
1429 				break;
1430 			}
1431 			prev = rb_next(prev);
1432 		}
1433 	}
1434 	while (node) {
1435 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1436 		inode = igrab(&entry->vfs_inode);
1437 		if (inode) {
1438 			spin_unlock(&root->inode_lock);
1439 			return inode;
1440 		}
1441 
1442 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1443 		if (cond_resched_lock(&root->inode_lock))
1444 			goto again;
1445 
1446 		node = rb_next(node);
1447 	}
1448 	spin_unlock(&root->inode_lock);
1449 	return NULL;
1450 }
1451 
1452 static int in_block_group(u64 bytenr,
1453 			  struct btrfs_block_group_cache *block_group)
1454 {
1455 	if (bytenr >= block_group->key.objectid &&
1456 	    bytenr < block_group->key.objectid + block_group->key.offset)
1457 		return 1;
1458 	return 0;
1459 }
1460 
1461 /*
1462  * get new location of data
1463  */
1464 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1465 			    u64 bytenr, u64 num_bytes)
1466 {
1467 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1468 	struct btrfs_path *path;
1469 	struct btrfs_file_extent_item *fi;
1470 	struct extent_buffer *leaf;
1471 	int ret;
1472 
1473 	path = btrfs_alloc_path();
1474 	if (!path)
1475 		return -ENOMEM;
1476 
1477 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1478 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1479 				       bytenr, 0);
1480 	if (ret < 0)
1481 		goto out;
1482 	if (ret > 0) {
1483 		ret = -ENOENT;
1484 		goto out;
1485 	}
1486 
1487 	leaf = path->nodes[0];
1488 	fi = btrfs_item_ptr(leaf, path->slots[0],
1489 			    struct btrfs_file_extent_item);
1490 
1491 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1492 	       btrfs_file_extent_compression(leaf, fi) ||
1493 	       btrfs_file_extent_encryption(leaf, fi) ||
1494 	       btrfs_file_extent_other_encoding(leaf, fi));
1495 
1496 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1497 		ret = 1;
1498 		goto out;
1499 	}
1500 
1501 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1502 	ret = 0;
1503 out:
1504 	btrfs_free_path(path);
1505 	return ret;
1506 }
1507 
1508 /*
1509  * update file extent items in the tree leaf to point to
1510  * the new locations.
1511  */
1512 static noinline_for_stack
1513 int replace_file_extents(struct btrfs_trans_handle *trans,
1514 			 struct reloc_control *rc,
1515 			 struct btrfs_root *root,
1516 			 struct extent_buffer *leaf)
1517 {
1518 	struct btrfs_key key;
1519 	struct btrfs_file_extent_item *fi;
1520 	struct inode *inode = NULL;
1521 	u64 parent;
1522 	u64 bytenr;
1523 	u64 new_bytenr = 0;
1524 	u64 num_bytes;
1525 	u64 end;
1526 	u32 nritems;
1527 	u32 i;
1528 	int ret;
1529 	int first = 1;
1530 	int dirty = 0;
1531 
1532 	if (rc->stage != UPDATE_DATA_PTRS)
1533 		return 0;
1534 
1535 	/* reloc trees always use full backref */
1536 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1537 		parent = leaf->start;
1538 	else
1539 		parent = 0;
1540 
1541 	nritems = btrfs_header_nritems(leaf);
1542 	for (i = 0; i < nritems; i++) {
1543 		cond_resched();
1544 		btrfs_item_key_to_cpu(leaf, &key, i);
1545 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1546 			continue;
1547 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1548 		if (btrfs_file_extent_type(leaf, fi) ==
1549 		    BTRFS_FILE_EXTENT_INLINE)
1550 			continue;
1551 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1552 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1553 		if (bytenr == 0)
1554 			continue;
1555 		if (!in_block_group(bytenr, rc->block_group))
1556 			continue;
1557 
1558 		/*
1559 		 * if we are modifying block in fs tree, wait for readpage
1560 		 * to complete and drop the extent cache
1561 		 */
1562 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1563 			if (first) {
1564 				inode = find_next_inode(root, key.objectid);
1565 				first = 0;
1566 			} else if (inode && btrfs_ino(inode) < key.objectid) {
1567 				btrfs_add_delayed_iput(inode);
1568 				inode = find_next_inode(root, key.objectid);
1569 			}
1570 			if (inode && btrfs_ino(inode) == key.objectid) {
1571 				end = key.offset +
1572 				      btrfs_file_extent_num_bytes(leaf, fi);
1573 				WARN_ON(!IS_ALIGNED(key.offset,
1574 						    root->sectorsize));
1575 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1576 				end--;
1577 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1578 						      key.offset, end,
1579 						      GFP_NOFS);
1580 				if (!ret)
1581 					continue;
1582 
1583 				btrfs_drop_extent_cache(inode, key.offset, end,
1584 							1);
1585 				unlock_extent(&BTRFS_I(inode)->io_tree,
1586 					      key.offset, end, GFP_NOFS);
1587 			}
1588 		}
1589 
1590 		ret = get_new_location(rc->data_inode, &new_bytenr,
1591 				       bytenr, num_bytes);
1592 		if (ret > 0) {
1593 			WARN_ON(1);
1594 			continue;
1595 		}
1596 		BUG_ON(ret < 0);
1597 
1598 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1599 		dirty = 1;
1600 
1601 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1602 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1603 					   num_bytes, parent,
1604 					   btrfs_header_owner(leaf),
1605 					   key.objectid, key.offset);
1606 		BUG_ON(ret);
1607 
1608 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1609 					parent, btrfs_header_owner(leaf),
1610 					key.objectid, key.offset);
1611 		BUG_ON(ret);
1612 	}
1613 	if (dirty)
1614 		btrfs_mark_buffer_dirty(leaf);
1615 	if (inode)
1616 		btrfs_add_delayed_iput(inode);
1617 	return 0;
1618 }
1619 
1620 static noinline_for_stack
1621 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1622 		     struct btrfs_path *path, int level)
1623 {
1624 	struct btrfs_disk_key key1;
1625 	struct btrfs_disk_key key2;
1626 	btrfs_node_key(eb, &key1, slot);
1627 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1628 	return memcmp(&key1, &key2, sizeof(key1));
1629 }
1630 
1631 /*
1632  * try to replace tree blocks in fs tree with the new blocks
1633  * in reloc tree. tree blocks haven't been modified since the
1634  * reloc tree was create can be replaced.
1635  *
1636  * if a block was replaced, level of the block + 1 is returned.
1637  * if no block got replaced, 0 is returned. if there are other
1638  * errors, a negative error number is returned.
1639  */
1640 static noinline_for_stack
1641 int replace_path(struct btrfs_trans_handle *trans,
1642 		 struct btrfs_root *dest, struct btrfs_root *src,
1643 		 struct btrfs_path *path, struct btrfs_key *next_key,
1644 		 int lowest_level, int max_level)
1645 {
1646 	struct extent_buffer *eb;
1647 	struct extent_buffer *parent;
1648 	struct btrfs_key key;
1649 	u64 old_bytenr;
1650 	u64 new_bytenr;
1651 	u64 old_ptr_gen;
1652 	u64 new_ptr_gen;
1653 	u64 last_snapshot;
1654 	u32 blocksize;
1655 	int cow = 0;
1656 	int level;
1657 	int ret;
1658 	int slot;
1659 
1660 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1661 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1662 
1663 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1664 again:
1665 	slot = path->slots[lowest_level];
1666 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1667 
1668 	eb = btrfs_lock_root_node(dest);
1669 	btrfs_set_lock_blocking(eb);
1670 	level = btrfs_header_level(eb);
1671 
1672 	if (level < lowest_level) {
1673 		btrfs_tree_unlock(eb);
1674 		free_extent_buffer(eb);
1675 		return 0;
1676 	}
1677 
1678 	if (cow) {
1679 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1680 		BUG_ON(ret);
1681 	}
1682 	btrfs_set_lock_blocking(eb);
1683 
1684 	if (next_key) {
1685 		next_key->objectid = (u64)-1;
1686 		next_key->type = (u8)-1;
1687 		next_key->offset = (u64)-1;
1688 	}
1689 
1690 	parent = eb;
1691 	while (1) {
1692 		level = btrfs_header_level(parent);
1693 		BUG_ON(level < lowest_level);
1694 
1695 		ret = btrfs_bin_search(parent, &key, level, &slot);
1696 		if (ret && slot > 0)
1697 			slot--;
1698 
1699 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1700 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1701 
1702 		old_bytenr = btrfs_node_blockptr(parent, slot);
1703 		blocksize = btrfs_level_size(dest, level - 1);
1704 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1705 
1706 		if (level <= max_level) {
1707 			eb = path->nodes[level];
1708 			new_bytenr = btrfs_node_blockptr(eb,
1709 							path->slots[level]);
1710 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1711 							path->slots[level]);
1712 		} else {
1713 			new_bytenr = 0;
1714 			new_ptr_gen = 0;
1715 		}
1716 
1717 		if (new_bytenr > 0 && new_bytenr == old_bytenr) {
1718 			WARN_ON(1);
1719 			ret = level;
1720 			break;
1721 		}
1722 
1723 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1724 		    memcmp_node_keys(parent, slot, path, level)) {
1725 			if (level <= lowest_level) {
1726 				ret = 0;
1727 				break;
1728 			}
1729 
1730 			eb = read_tree_block(dest, old_bytenr, blocksize,
1731 					     old_ptr_gen);
1732 			BUG_ON(!eb);
1733 			btrfs_tree_lock(eb);
1734 			if (cow) {
1735 				ret = btrfs_cow_block(trans, dest, eb, parent,
1736 						      slot, &eb);
1737 				BUG_ON(ret);
1738 			}
1739 			btrfs_set_lock_blocking(eb);
1740 
1741 			btrfs_tree_unlock(parent);
1742 			free_extent_buffer(parent);
1743 
1744 			parent = eb;
1745 			continue;
1746 		}
1747 
1748 		if (!cow) {
1749 			btrfs_tree_unlock(parent);
1750 			free_extent_buffer(parent);
1751 			cow = 1;
1752 			goto again;
1753 		}
1754 
1755 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1756 				      path->slots[level]);
1757 		btrfs_release_path(path);
1758 
1759 		path->lowest_level = level;
1760 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1761 		path->lowest_level = 0;
1762 		BUG_ON(ret);
1763 
1764 		/*
1765 		 * swap blocks in fs tree and reloc tree.
1766 		 */
1767 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1768 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1769 		btrfs_mark_buffer_dirty(parent);
1770 
1771 		btrfs_set_node_blockptr(path->nodes[level],
1772 					path->slots[level], old_bytenr);
1773 		btrfs_set_node_ptr_generation(path->nodes[level],
1774 					      path->slots[level], old_ptr_gen);
1775 		btrfs_mark_buffer_dirty(path->nodes[level]);
1776 
1777 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1778 					path->nodes[level]->start,
1779 					src->root_key.objectid, level - 1, 0);
1780 		BUG_ON(ret);
1781 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1782 					0, dest->root_key.objectid, level - 1,
1783 					0);
1784 		BUG_ON(ret);
1785 
1786 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1787 					path->nodes[level]->start,
1788 					src->root_key.objectid, level - 1, 0);
1789 		BUG_ON(ret);
1790 
1791 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1792 					0, dest->root_key.objectid, level - 1,
1793 					0);
1794 		BUG_ON(ret);
1795 
1796 		btrfs_unlock_up_safe(path, 0);
1797 
1798 		ret = level;
1799 		break;
1800 	}
1801 	btrfs_tree_unlock(parent);
1802 	free_extent_buffer(parent);
1803 	return ret;
1804 }
1805 
1806 /*
1807  * helper to find next relocated block in reloc tree
1808  */
1809 static noinline_for_stack
1810 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1811 		       int *level)
1812 {
1813 	struct extent_buffer *eb;
1814 	int i;
1815 	u64 last_snapshot;
1816 	u32 nritems;
1817 
1818 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1819 
1820 	for (i = 0; i < *level; i++) {
1821 		free_extent_buffer(path->nodes[i]);
1822 		path->nodes[i] = NULL;
1823 	}
1824 
1825 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1826 		eb = path->nodes[i];
1827 		nritems = btrfs_header_nritems(eb);
1828 		while (path->slots[i] + 1 < nritems) {
1829 			path->slots[i]++;
1830 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1831 			    last_snapshot)
1832 				continue;
1833 
1834 			*level = i;
1835 			return 0;
1836 		}
1837 		free_extent_buffer(path->nodes[i]);
1838 		path->nodes[i] = NULL;
1839 	}
1840 	return 1;
1841 }
1842 
1843 /*
1844  * walk down reloc tree to find relocated block of lowest level
1845  */
1846 static noinline_for_stack
1847 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1848 			 int *level)
1849 {
1850 	struct extent_buffer *eb = NULL;
1851 	int i;
1852 	u64 bytenr;
1853 	u64 ptr_gen = 0;
1854 	u64 last_snapshot;
1855 	u32 blocksize;
1856 	u32 nritems;
1857 
1858 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1859 
1860 	for (i = *level; i > 0; i--) {
1861 		eb = path->nodes[i];
1862 		nritems = btrfs_header_nritems(eb);
1863 		while (path->slots[i] < nritems) {
1864 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1865 			if (ptr_gen > last_snapshot)
1866 				break;
1867 			path->slots[i]++;
1868 		}
1869 		if (path->slots[i] >= nritems) {
1870 			if (i == *level)
1871 				break;
1872 			*level = i + 1;
1873 			return 0;
1874 		}
1875 		if (i == 1) {
1876 			*level = i;
1877 			return 0;
1878 		}
1879 
1880 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1881 		blocksize = btrfs_level_size(root, i - 1);
1882 		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
1883 		BUG_ON(btrfs_header_level(eb) != i - 1);
1884 		path->nodes[i - 1] = eb;
1885 		path->slots[i - 1] = 0;
1886 	}
1887 	return 1;
1888 }
1889 
1890 /*
1891  * invalidate extent cache for file extents whose key in range of
1892  * [min_key, max_key)
1893  */
1894 static int invalidate_extent_cache(struct btrfs_root *root,
1895 				   struct btrfs_key *min_key,
1896 				   struct btrfs_key *max_key)
1897 {
1898 	struct inode *inode = NULL;
1899 	u64 objectid;
1900 	u64 start, end;
1901 	u64 ino;
1902 
1903 	objectid = min_key->objectid;
1904 	while (1) {
1905 		cond_resched();
1906 		iput(inode);
1907 
1908 		if (objectid > max_key->objectid)
1909 			break;
1910 
1911 		inode = find_next_inode(root, objectid);
1912 		if (!inode)
1913 			break;
1914 		ino = btrfs_ino(inode);
1915 
1916 		if (ino > max_key->objectid) {
1917 			iput(inode);
1918 			break;
1919 		}
1920 
1921 		objectid = ino + 1;
1922 		if (!S_ISREG(inode->i_mode))
1923 			continue;
1924 
1925 		if (unlikely(min_key->objectid == ino)) {
1926 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1927 				continue;
1928 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1929 				start = 0;
1930 			else {
1931 				start = min_key->offset;
1932 				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
1933 			}
1934 		} else {
1935 			start = 0;
1936 		}
1937 
1938 		if (unlikely(max_key->objectid == ino)) {
1939 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1940 				continue;
1941 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1942 				end = (u64)-1;
1943 			} else {
1944 				if (max_key->offset == 0)
1945 					continue;
1946 				end = max_key->offset;
1947 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1948 				end--;
1949 			}
1950 		} else {
1951 			end = (u64)-1;
1952 		}
1953 
1954 		/* the lock_extent waits for readpage to complete */
1955 		lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1956 		btrfs_drop_extent_cache(inode, start, end, 1);
1957 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1958 	}
1959 	return 0;
1960 }
1961 
1962 static int find_next_key(struct btrfs_path *path, int level,
1963 			 struct btrfs_key *key)
1964 
1965 {
1966 	while (level < BTRFS_MAX_LEVEL) {
1967 		if (!path->nodes[level])
1968 			break;
1969 		if (path->slots[level] + 1 <
1970 		    btrfs_header_nritems(path->nodes[level])) {
1971 			btrfs_node_key_to_cpu(path->nodes[level], key,
1972 					      path->slots[level] + 1);
1973 			return 0;
1974 		}
1975 		level++;
1976 	}
1977 	return 1;
1978 }
1979 
1980 /*
1981  * merge the relocated tree blocks in reloc tree with corresponding
1982  * fs tree.
1983  */
1984 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1985 					       struct btrfs_root *root)
1986 {
1987 	LIST_HEAD(inode_list);
1988 	struct btrfs_key key;
1989 	struct btrfs_key next_key;
1990 	struct btrfs_trans_handle *trans;
1991 	struct btrfs_root *reloc_root;
1992 	struct btrfs_root_item *root_item;
1993 	struct btrfs_path *path;
1994 	struct extent_buffer *leaf;
1995 	unsigned long nr;
1996 	int level;
1997 	int max_level;
1998 	int replaced = 0;
1999 	int ret;
2000 	int err = 0;
2001 	u32 min_reserved;
2002 
2003 	path = btrfs_alloc_path();
2004 	if (!path)
2005 		return -ENOMEM;
2006 	path->reada = 1;
2007 
2008 	reloc_root = root->reloc_root;
2009 	root_item = &reloc_root->root_item;
2010 
2011 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2012 		level = btrfs_root_level(root_item);
2013 		extent_buffer_get(reloc_root->node);
2014 		path->nodes[level] = reloc_root->node;
2015 		path->slots[level] = 0;
2016 	} else {
2017 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2018 
2019 		level = root_item->drop_level;
2020 		BUG_ON(level == 0);
2021 		path->lowest_level = level;
2022 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2023 		path->lowest_level = 0;
2024 		if (ret < 0) {
2025 			btrfs_free_path(path);
2026 			return ret;
2027 		}
2028 
2029 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2030 				      path->slots[level]);
2031 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2032 
2033 		btrfs_unlock_up_safe(path, 0);
2034 	}
2035 
2036 	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2037 	memset(&next_key, 0, sizeof(next_key));
2038 
2039 	while (1) {
2040 		trans = btrfs_start_transaction(root, 0);
2041 		BUG_ON(IS_ERR(trans));
2042 		trans->block_rsv = rc->block_rsv;
2043 
2044 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved);
2045 		if (ret) {
2046 			BUG_ON(ret != -EAGAIN);
2047 			ret = btrfs_commit_transaction(trans, root);
2048 			BUG_ON(ret);
2049 			continue;
2050 		}
2051 
2052 		replaced = 0;
2053 		max_level = level;
2054 
2055 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2056 		if (ret < 0) {
2057 			err = ret;
2058 			goto out;
2059 		}
2060 		if (ret > 0)
2061 			break;
2062 
2063 		if (!find_next_key(path, level, &key) &&
2064 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2065 			ret = 0;
2066 		} else {
2067 			ret = replace_path(trans, root, reloc_root, path,
2068 					   &next_key, level, max_level);
2069 		}
2070 		if (ret < 0) {
2071 			err = ret;
2072 			goto out;
2073 		}
2074 
2075 		if (ret > 0) {
2076 			level = ret;
2077 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2078 					      path->slots[level]);
2079 			replaced = 1;
2080 		}
2081 
2082 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2083 		if (ret > 0)
2084 			break;
2085 
2086 		BUG_ON(level == 0);
2087 		/*
2088 		 * save the merging progress in the drop_progress.
2089 		 * this is OK since root refs == 1 in this case.
2090 		 */
2091 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2092 			       path->slots[level]);
2093 		root_item->drop_level = level;
2094 
2095 		nr = trans->blocks_used;
2096 		btrfs_end_transaction_throttle(trans, root);
2097 
2098 		btrfs_btree_balance_dirty(root, nr);
2099 
2100 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2101 			invalidate_extent_cache(root, &key, &next_key);
2102 	}
2103 
2104 	/*
2105 	 * handle the case only one block in the fs tree need to be
2106 	 * relocated and the block is tree root.
2107 	 */
2108 	leaf = btrfs_lock_root_node(root);
2109 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2110 	btrfs_tree_unlock(leaf);
2111 	free_extent_buffer(leaf);
2112 	if (ret < 0)
2113 		err = ret;
2114 out:
2115 	btrfs_free_path(path);
2116 
2117 	if (err == 0) {
2118 		memset(&root_item->drop_progress, 0,
2119 		       sizeof(root_item->drop_progress));
2120 		root_item->drop_level = 0;
2121 		btrfs_set_root_refs(root_item, 0);
2122 		btrfs_update_reloc_root(trans, root);
2123 	}
2124 
2125 	nr = trans->blocks_used;
2126 	btrfs_end_transaction_throttle(trans, root);
2127 
2128 	btrfs_btree_balance_dirty(root, nr);
2129 
2130 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2131 		invalidate_extent_cache(root, &key, &next_key);
2132 
2133 	return err;
2134 }
2135 
2136 static noinline_for_stack
2137 int prepare_to_merge(struct reloc_control *rc, int err)
2138 {
2139 	struct btrfs_root *root = rc->extent_root;
2140 	struct btrfs_root *reloc_root;
2141 	struct btrfs_trans_handle *trans;
2142 	LIST_HEAD(reloc_roots);
2143 	u64 num_bytes = 0;
2144 	int ret;
2145 
2146 	mutex_lock(&root->fs_info->reloc_mutex);
2147 	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2148 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2149 	mutex_unlock(&root->fs_info->reloc_mutex);
2150 
2151 again:
2152 	if (!err) {
2153 		num_bytes = rc->merging_rsv_size;
2154 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes);
2155 		if (ret)
2156 			err = ret;
2157 	}
2158 
2159 	trans = btrfs_join_transaction(rc->extent_root);
2160 	if (IS_ERR(trans)) {
2161 		if (!err)
2162 			btrfs_block_rsv_release(rc->extent_root,
2163 						rc->block_rsv, num_bytes);
2164 		return PTR_ERR(trans);
2165 	}
2166 
2167 	if (!err) {
2168 		if (num_bytes != rc->merging_rsv_size) {
2169 			btrfs_end_transaction(trans, rc->extent_root);
2170 			btrfs_block_rsv_release(rc->extent_root,
2171 						rc->block_rsv, num_bytes);
2172 			goto again;
2173 		}
2174 	}
2175 
2176 	rc->merge_reloc_tree = 1;
2177 
2178 	while (!list_empty(&rc->reloc_roots)) {
2179 		reloc_root = list_entry(rc->reloc_roots.next,
2180 					struct btrfs_root, root_list);
2181 		list_del_init(&reloc_root->root_list);
2182 
2183 		root = read_fs_root(reloc_root->fs_info,
2184 				    reloc_root->root_key.offset);
2185 		BUG_ON(IS_ERR(root));
2186 		BUG_ON(root->reloc_root != reloc_root);
2187 
2188 		/*
2189 		 * set reference count to 1, so btrfs_recover_relocation
2190 		 * knows it should resumes merging
2191 		 */
2192 		if (!err)
2193 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2194 		btrfs_update_reloc_root(trans, root);
2195 
2196 		list_add(&reloc_root->root_list, &reloc_roots);
2197 	}
2198 
2199 	list_splice(&reloc_roots, &rc->reloc_roots);
2200 
2201 	if (!err)
2202 		btrfs_commit_transaction(trans, rc->extent_root);
2203 	else
2204 		btrfs_end_transaction(trans, rc->extent_root);
2205 	return err;
2206 }
2207 
2208 static noinline_for_stack
2209 int merge_reloc_roots(struct reloc_control *rc)
2210 {
2211 	struct btrfs_root *root;
2212 	struct btrfs_root *reloc_root;
2213 	LIST_HEAD(reloc_roots);
2214 	int found = 0;
2215 	int ret;
2216 again:
2217 	root = rc->extent_root;
2218 
2219 	/*
2220 	 * this serializes us with btrfs_record_root_in_transaction,
2221 	 * we have to make sure nobody is in the middle of
2222 	 * adding their roots to the list while we are
2223 	 * doing this splice
2224 	 */
2225 	mutex_lock(&root->fs_info->reloc_mutex);
2226 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2227 	mutex_unlock(&root->fs_info->reloc_mutex);
2228 
2229 	while (!list_empty(&reloc_roots)) {
2230 		found = 1;
2231 		reloc_root = list_entry(reloc_roots.next,
2232 					struct btrfs_root, root_list);
2233 
2234 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2235 			root = read_fs_root(reloc_root->fs_info,
2236 					    reloc_root->root_key.offset);
2237 			BUG_ON(IS_ERR(root));
2238 			BUG_ON(root->reloc_root != reloc_root);
2239 
2240 			ret = merge_reloc_root(rc, root);
2241 			BUG_ON(ret);
2242 		} else {
2243 			list_del_init(&reloc_root->root_list);
2244 		}
2245 		btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0);
2246 	}
2247 
2248 	if (found) {
2249 		found = 0;
2250 		goto again;
2251 	}
2252 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2253 	return 0;
2254 }
2255 
2256 static void free_block_list(struct rb_root *blocks)
2257 {
2258 	struct tree_block *block;
2259 	struct rb_node *rb_node;
2260 	while ((rb_node = rb_first(blocks))) {
2261 		block = rb_entry(rb_node, struct tree_block, rb_node);
2262 		rb_erase(rb_node, blocks);
2263 		kfree(block);
2264 	}
2265 }
2266 
2267 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2268 				      struct btrfs_root *reloc_root)
2269 {
2270 	struct btrfs_root *root;
2271 
2272 	if (reloc_root->last_trans == trans->transid)
2273 		return 0;
2274 
2275 	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2276 	BUG_ON(IS_ERR(root));
2277 	BUG_ON(root->reloc_root != reloc_root);
2278 
2279 	return btrfs_record_root_in_trans(trans, root);
2280 }
2281 
2282 static noinline_for_stack
2283 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2284 				     struct reloc_control *rc,
2285 				     struct backref_node *node,
2286 				     struct backref_edge *edges[], int *nr)
2287 {
2288 	struct backref_node *next;
2289 	struct btrfs_root *root;
2290 	int index = 0;
2291 
2292 	next = node;
2293 	while (1) {
2294 		cond_resched();
2295 		next = walk_up_backref(next, edges, &index);
2296 		root = next->root;
2297 		BUG_ON(!root);
2298 		BUG_ON(!root->ref_cows);
2299 
2300 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2301 			record_reloc_root_in_trans(trans, root);
2302 			break;
2303 		}
2304 
2305 		btrfs_record_root_in_trans(trans, root);
2306 		root = root->reloc_root;
2307 
2308 		if (next->new_bytenr != root->node->start) {
2309 			BUG_ON(next->new_bytenr);
2310 			BUG_ON(!list_empty(&next->list));
2311 			next->new_bytenr = root->node->start;
2312 			next->root = root;
2313 			list_add_tail(&next->list,
2314 				      &rc->backref_cache.changed);
2315 			__mark_block_processed(rc, next);
2316 			break;
2317 		}
2318 
2319 		WARN_ON(1);
2320 		root = NULL;
2321 		next = walk_down_backref(edges, &index);
2322 		if (!next || next->level <= node->level)
2323 			break;
2324 	}
2325 	if (!root)
2326 		return NULL;
2327 
2328 	*nr = index;
2329 	next = node;
2330 	/* setup backref node path for btrfs_reloc_cow_block */
2331 	while (1) {
2332 		rc->backref_cache.path[next->level] = next;
2333 		if (--index < 0)
2334 			break;
2335 		next = edges[index]->node[UPPER];
2336 	}
2337 	return root;
2338 }
2339 
2340 /*
2341  * select a tree root for relocation. return NULL if the block
2342  * is reference counted. we should use do_relocation() in this
2343  * case. return a tree root pointer if the block isn't reference
2344  * counted. return -ENOENT if the block is root of reloc tree.
2345  */
2346 static noinline_for_stack
2347 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2348 				   struct backref_node *node)
2349 {
2350 	struct backref_node *next;
2351 	struct btrfs_root *root;
2352 	struct btrfs_root *fs_root = NULL;
2353 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2354 	int index = 0;
2355 
2356 	next = node;
2357 	while (1) {
2358 		cond_resched();
2359 		next = walk_up_backref(next, edges, &index);
2360 		root = next->root;
2361 		BUG_ON(!root);
2362 
2363 		/* no other choice for non-references counted tree */
2364 		if (!root->ref_cows)
2365 			return root;
2366 
2367 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2368 			fs_root = root;
2369 
2370 		if (next != node)
2371 			return NULL;
2372 
2373 		next = walk_down_backref(edges, &index);
2374 		if (!next || next->level <= node->level)
2375 			break;
2376 	}
2377 
2378 	if (!fs_root)
2379 		return ERR_PTR(-ENOENT);
2380 	return fs_root;
2381 }
2382 
2383 static noinline_for_stack
2384 u64 calcu_metadata_size(struct reloc_control *rc,
2385 			struct backref_node *node, int reserve)
2386 {
2387 	struct backref_node *next = node;
2388 	struct backref_edge *edge;
2389 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2390 	u64 num_bytes = 0;
2391 	int index = 0;
2392 
2393 	BUG_ON(reserve && node->processed);
2394 
2395 	while (next) {
2396 		cond_resched();
2397 		while (1) {
2398 			if (next->processed && (reserve || next != node))
2399 				break;
2400 
2401 			num_bytes += btrfs_level_size(rc->extent_root,
2402 						      next->level);
2403 
2404 			if (list_empty(&next->upper))
2405 				break;
2406 
2407 			edge = list_entry(next->upper.next,
2408 					  struct backref_edge, list[LOWER]);
2409 			edges[index++] = edge;
2410 			next = edge->node[UPPER];
2411 		}
2412 		next = walk_down_backref(edges, &index);
2413 	}
2414 	return num_bytes;
2415 }
2416 
2417 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2418 				  struct reloc_control *rc,
2419 				  struct backref_node *node)
2420 {
2421 	struct btrfs_root *root = rc->extent_root;
2422 	u64 num_bytes;
2423 	int ret;
2424 
2425 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2426 
2427 	trans->block_rsv = rc->block_rsv;
2428 	ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes);
2429 	if (ret) {
2430 		if (ret == -EAGAIN)
2431 			rc->commit_transaction = 1;
2432 		return ret;
2433 	}
2434 
2435 	return 0;
2436 }
2437 
2438 static void release_metadata_space(struct reloc_control *rc,
2439 				   struct backref_node *node)
2440 {
2441 	u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2;
2442 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes);
2443 }
2444 
2445 /*
2446  * relocate a block tree, and then update pointers in upper level
2447  * blocks that reference the block to point to the new location.
2448  *
2449  * if called by link_to_upper, the block has already been relocated.
2450  * in that case this function just updates pointers.
2451  */
2452 static int do_relocation(struct btrfs_trans_handle *trans,
2453 			 struct reloc_control *rc,
2454 			 struct backref_node *node,
2455 			 struct btrfs_key *key,
2456 			 struct btrfs_path *path, int lowest)
2457 {
2458 	struct backref_node *upper;
2459 	struct backref_edge *edge;
2460 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2461 	struct btrfs_root *root;
2462 	struct extent_buffer *eb;
2463 	u32 blocksize;
2464 	u64 bytenr;
2465 	u64 generation;
2466 	int nr;
2467 	int slot;
2468 	int ret;
2469 	int err = 0;
2470 
2471 	BUG_ON(lowest && node->eb);
2472 
2473 	path->lowest_level = node->level + 1;
2474 	rc->backref_cache.path[node->level] = node;
2475 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2476 		cond_resched();
2477 
2478 		upper = edge->node[UPPER];
2479 		root = select_reloc_root(trans, rc, upper, edges, &nr);
2480 		BUG_ON(!root);
2481 
2482 		if (upper->eb && !upper->locked) {
2483 			if (!lowest) {
2484 				ret = btrfs_bin_search(upper->eb, key,
2485 						       upper->level, &slot);
2486 				BUG_ON(ret);
2487 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2488 				if (node->eb->start == bytenr)
2489 					goto next;
2490 			}
2491 			drop_node_buffer(upper);
2492 		}
2493 
2494 		if (!upper->eb) {
2495 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2496 			if (ret < 0) {
2497 				err = ret;
2498 				break;
2499 			}
2500 			BUG_ON(ret > 0);
2501 
2502 			if (!upper->eb) {
2503 				upper->eb = path->nodes[upper->level];
2504 				path->nodes[upper->level] = NULL;
2505 			} else {
2506 				BUG_ON(upper->eb != path->nodes[upper->level]);
2507 			}
2508 
2509 			upper->locked = 1;
2510 			path->locks[upper->level] = 0;
2511 
2512 			slot = path->slots[upper->level];
2513 			btrfs_release_path(path);
2514 		} else {
2515 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2516 					       &slot);
2517 			BUG_ON(ret);
2518 		}
2519 
2520 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2521 		if (lowest) {
2522 			BUG_ON(bytenr != node->bytenr);
2523 		} else {
2524 			if (node->eb->start == bytenr)
2525 				goto next;
2526 		}
2527 
2528 		blocksize = btrfs_level_size(root, node->level);
2529 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2530 		eb = read_tree_block(root, bytenr, blocksize, generation);
2531 		if (!eb) {
2532 			err = -EIO;
2533 			goto next;
2534 		}
2535 		btrfs_tree_lock(eb);
2536 		btrfs_set_lock_blocking(eb);
2537 
2538 		if (!node->eb) {
2539 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2540 					      slot, &eb);
2541 			btrfs_tree_unlock(eb);
2542 			free_extent_buffer(eb);
2543 			if (ret < 0) {
2544 				err = ret;
2545 				goto next;
2546 			}
2547 			BUG_ON(node->eb != eb);
2548 		} else {
2549 			btrfs_set_node_blockptr(upper->eb, slot,
2550 						node->eb->start);
2551 			btrfs_set_node_ptr_generation(upper->eb, slot,
2552 						      trans->transid);
2553 			btrfs_mark_buffer_dirty(upper->eb);
2554 
2555 			ret = btrfs_inc_extent_ref(trans, root,
2556 						node->eb->start, blocksize,
2557 						upper->eb->start,
2558 						btrfs_header_owner(upper->eb),
2559 						node->level, 0);
2560 			BUG_ON(ret);
2561 
2562 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2563 			BUG_ON(ret);
2564 		}
2565 next:
2566 		if (!upper->pending)
2567 			drop_node_buffer(upper);
2568 		else
2569 			unlock_node_buffer(upper);
2570 		if (err)
2571 			break;
2572 	}
2573 
2574 	if (!err && node->pending) {
2575 		drop_node_buffer(node);
2576 		list_move_tail(&node->list, &rc->backref_cache.changed);
2577 		node->pending = 0;
2578 	}
2579 
2580 	path->lowest_level = 0;
2581 	BUG_ON(err == -ENOSPC);
2582 	return err;
2583 }
2584 
2585 static int link_to_upper(struct btrfs_trans_handle *trans,
2586 			 struct reloc_control *rc,
2587 			 struct backref_node *node,
2588 			 struct btrfs_path *path)
2589 {
2590 	struct btrfs_key key;
2591 
2592 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2593 	return do_relocation(trans, rc, node, &key, path, 0);
2594 }
2595 
2596 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2597 				struct reloc_control *rc,
2598 				struct btrfs_path *path, int err)
2599 {
2600 	LIST_HEAD(list);
2601 	struct backref_cache *cache = &rc->backref_cache;
2602 	struct backref_node *node;
2603 	int level;
2604 	int ret;
2605 
2606 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2607 		while (!list_empty(&cache->pending[level])) {
2608 			node = list_entry(cache->pending[level].next,
2609 					  struct backref_node, list);
2610 			list_move_tail(&node->list, &list);
2611 			BUG_ON(!node->pending);
2612 
2613 			if (!err) {
2614 				ret = link_to_upper(trans, rc, node, path);
2615 				if (ret < 0)
2616 					err = ret;
2617 			}
2618 		}
2619 		list_splice_init(&list, &cache->pending[level]);
2620 	}
2621 	return err;
2622 }
2623 
2624 static void mark_block_processed(struct reloc_control *rc,
2625 				 u64 bytenr, u32 blocksize)
2626 {
2627 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2628 			EXTENT_DIRTY, GFP_NOFS);
2629 }
2630 
2631 static void __mark_block_processed(struct reloc_control *rc,
2632 				   struct backref_node *node)
2633 {
2634 	u32 blocksize;
2635 	if (node->level == 0 ||
2636 	    in_block_group(node->bytenr, rc->block_group)) {
2637 		blocksize = btrfs_level_size(rc->extent_root, node->level);
2638 		mark_block_processed(rc, node->bytenr, blocksize);
2639 	}
2640 	node->processed = 1;
2641 }
2642 
2643 /*
2644  * mark a block and all blocks directly/indirectly reference the block
2645  * as processed.
2646  */
2647 static void update_processed_blocks(struct reloc_control *rc,
2648 				    struct backref_node *node)
2649 {
2650 	struct backref_node *next = node;
2651 	struct backref_edge *edge;
2652 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2653 	int index = 0;
2654 
2655 	while (next) {
2656 		cond_resched();
2657 		while (1) {
2658 			if (next->processed)
2659 				break;
2660 
2661 			__mark_block_processed(rc, next);
2662 
2663 			if (list_empty(&next->upper))
2664 				break;
2665 
2666 			edge = list_entry(next->upper.next,
2667 					  struct backref_edge, list[LOWER]);
2668 			edges[index++] = edge;
2669 			next = edge->node[UPPER];
2670 		}
2671 		next = walk_down_backref(edges, &index);
2672 	}
2673 }
2674 
2675 static int tree_block_processed(u64 bytenr, u32 blocksize,
2676 				struct reloc_control *rc)
2677 {
2678 	if (test_range_bit(&rc->processed_blocks, bytenr,
2679 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2680 		return 1;
2681 	return 0;
2682 }
2683 
2684 static int get_tree_block_key(struct reloc_control *rc,
2685 			      struct tree_block *block)
2686 {
2687 	struct extent_buffer *eb;
2688 
2689 	BUG_ON(block->key_ready);
2690 	eb = read_tree_block(rc->extent_root, block->bytenr,
2691 			     block->key.objectid, block->key.offset);
2692 	BUG_ON(!eb);
2693 	WARN_ON(btrfs_header_level(eb) != block->level);
2694 	if (block->level == 0)
2695 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2696 	else
2697 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2698 	free_extent_buffer(eb);
2699 	block->key_ready = 1;
2700 	return 0;
2701 }
2702 
2703 static int reada_tree_block(struct reloc_control *rc,
2704 			    struct tree_block *block)
2705 {
2706 	BUG_ON(block->key_ready);
2707 	readahead_tree_block(rc->extent_root, block->bytenr,
2708 			     block->key.objectid, block->key.offset);
2709 	return 0;
2710 }
2711 
2712 /*
2713  * helper function to relocate a tree block
2714  */
2715 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2716 				struct reloc_control *rc,
2717 				struct backref_node *node,
2718 				struct btrfs_key *key,
2719 				struct btrfs_path *path)
2720 {
2721 	struct btrfs_root *root;
2722 	int release = 0;
2723 	int ret = 0;
2724 
2725 	if (!node)
2726 		return 0;
2727 
2728 	BUG_ON(node->processed);
2729 	root = select_one_root(trans, node);
2730 	if (root == ERR_PTR(-ENOENT)) {
2731 		update_processed_blocks(rc, node);
2732 		goto out;
2733 	}
2734 
2735 	if (!root || root->ref_cows) {
2736 		ret = reserve_metadata_space(trans, rc, node);
2737 		if (ret)
2738 			goto out;
2739 		release = 1;
2740 	}
2741 
2742 	if (root) {
2743 		if (root->ref_cows) {
2744 			BUG_ON(node->new_bytenr);
2745 			BUG_ON(!list_empty(&node->list));
2746 			btrfs_record_root_in_trans(trans, root);
2747 			root = root->reloc_root;
2748 			node->new_bytenr = root->node->start;
2749 			node->root = root;
2750 			list_add_tail(&node->list, &rc->backref_cache.changed);
2751 		} else {
2752 			path->lowest_level = node->level;
2753 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2754 			btrfs_release_path(path);
2755 			if (ret > 0)
2756 				ret = 0;
2757 		}
2758 		if (!ret)
2759 			update_processed_blocks(rc, node);
2760 	} else {
2761 		ret = do_relocation(trans, rc, node, key, path, 1);
2762 	}
2763 out:
2764 	if (ret || node->level == 0 || node->cowonly) {
2765 		if (release)
2766 			release_metadata_space(rc, node);
2767 		remove_backref_node(&rc->backref_cache, node);
2768 	}
2769 	return ret;
2770 }
2771 
2772 /*
2773  * relocate a list of blocks
2774  */
2775 static noinline_for_stack
2776 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2777 			 struct reloc_control *rc, struct rb_root *blocks)
2778 {
2779 	struct backref_node *node;
2780 	struct btrfs_path *path;
2781 	struct tree_block *block;
2782 	struct rb_node *rb_node;
2783 	int ret;
2784 	int err = 0;
2785 
2786 	path = btrfs_alloc_path();
2787 	if (!path)
2788 		return -ENOMEM;
2789 
2790 	rb_node = rb_first(blocks);
2791 	while (rb_node) {
2792 		block = rb_entry(rb_node, struct tree_block, rb_node);
2793 		if (!block->key_ready)
2794 			reada_tree_block(rc, block);
2795 		rb_node = rb_next(rb_node);
2796 	}
2797 
2798 	rb_node = rb_first(blocks);
2799 	while (rb_node) {
2800 		block = rb_entry(rb_node, struct tree_block, rb_node);
2801 		if (!block->key_ready)
2802 			get_tree_block_key(rc, block);
2803 		rb_node = rb_next(rb_node);
2804 	}
2805 
2806 	rb_node = rb_first(blocks);
2807 	while (rb_node) {
2808 		block = rb_entry(rb_node, struct tree_block, rb_node);
2809 
2810 		node = build_backref_tree(rc, &block->key,
2811 					  block->level, block->bytenr);
2812 		if (IS_ERR(node)) {
2813 			err = PTR_ERR(node);
2814 			goto out;
2815 		}
2816 
2817 		ret = relocate_tree_block(trans, rc, node, &block->key,
2818 					  path);
2819 		if (ret < 0) {
2820 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2821 				err = ret;
2822 			goto out;
2823 		}
2824 		rb_node = rb_next(rb_node);
2825 	}
2826 out:
2827 	free_block_list(blocks);
2828 	err = finish_pending_nodes(trans, rc, path, err);
2829 
2830 	btrfs_free_path(path);
2831 	return err;
2832 }
2833 
2834 static noinline_for_stack
2835 int prealloc_file_extent_cluster(struct inode *inode,
2836 				 struct file_extent_cluster *cluster)
2837 {
2838 	u64 alloc_hint = 0;
2839 	u64 start;
2840 	u64 end;
2841 	u64 offset = BTRFS_I(inode)->index_cnt;
2842 	u64 num_bytes;
2843 	int nr = 0;
2844 	int ret = 0;
2845 
2846 	BUG_ON(cluster->start != cluster->boundary[0]);
2847 	mutex_lock(&inode->i_mutex);
2848 
2849 	ret = btrfs_check_data_free_space(inode, cluster->end +
2850 					  1 - cluster->start);
2851 	if (ret)
2852 		goto out;
2853 
2854 	while (nr < cluster->nr) {
2855 		start = cluster->boundary[nr] - offset;
2856 		if (nr + 1 < cluster->nr)
2857 			end = cluster->boundary[nr + 1] - 1 - offset;
2858 		else
2859 			end = cluster->end - offset;
2860 
2861 		lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2862 		num_bytes = end + 1 - start;
2863 		ret = btrfs_prealloc_file_range(inode, 0, start,
2864 						num_bytes, num_bytes,
2865 						end + 1, &alloc_hint);
2866 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2867 		if (ret)
2868 			break;
2869 		nr++;
2870 	}
2871 	btrfs_free_reserved_data_space(inode, cluster->end +
2872 				       1 - cluster->start);
2873 out:
2874 	mutex_unlock(&inode->i_mutex);
2875 	return ret;
2876 }
2877 
2878 static noinline_for_stack
2879 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2880 			 u64 block_start)
2881 {
2882 	struct btrfs_root *root = BTRFS_I(inode)->root;
2883 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2884 	struct extent_map *em;
2885 	int ret = 0;
2886 
2887 	em = alloc_extent_map();
2888 	if (!em)
2889 		return -ENOMEM;
2890 
2891 	em->start = start;
2892 	em->len = end + 1 - start;
2893 	em->block_len = em->len;
2894 	em->block_start = block_start;
2895 	em->bdev = root->fs_info->fs_devices->latest_bdev;
2896 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2897 
2898 	lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2899 	while (1) {
2900 		write_lock(&em_tree->lock);
2901 		ret = add_extent_mapping(em_tree, em);
2902 		write_unlock(&em_tree->lock);
2903 		if (ret != -EEXIST) {
2904 			free_extent_map(em);
2905 			break;
2906 		}
2907 		btrfs_drop_extent_cache(inode, start, end, 0);
2908 	}
2909 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2910 	return ret;
2911 }
2912 
2913 static int relocate_file_extent_cluster(struct inode *inode,
2914 					struct file_extent_cluster *cluster)
2915 {
2916 	u64 page_start;
2917 	u64 page_end;
2918 	u64 offset = BTRFS_I(inode)->index_cnt;
2919 	unsigned long index;
2920 	unsigned long last_index;
2921 	struct page *page;
2922 	struct file_ra_state *ra;
2923 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2924 	int nr = 0;
2925 	int ret = 0;
2926 
2927 	if (!cluster->nr)
2928 		return 0;
2929 
2930 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2931 	if (!ra)
2932 		return -ENOMEM;
2933 
2934 	ret = prealloc_file_extent_cluster(inode, cluster);
2935 	if (ret)
2936 		goto out;
2937 
2938 	file_ra_state_init(ra, inode->i_mapping);
2939 
2940 	ret = setup_extent_mapping(inode, cluster->start - offset,
2941 				   cluster->end - offset, cluster->start);
2942 	if (ret)
2943 		goto out;
2944 
2945 	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
2946 	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
2947 	while (index <= last_index) {
2948 		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
2949 		if (ret)
2950 			goto out;
2951 
2952 		page = find_lock_page(inode->i_mapping, index);
2953 		if (!page) {
2954 			page_cache_sync_readahead(inode->i_mapping,
2955 						  ra, NULL, index,
2956 						  last_index + 1 - index);
2957 			page = find_or_create_page(inode->i_mapping, index,
2958 						   mask);
2959 			if (!page) {
2960 				btrfs_delalloc_release_metadata(inode,
2961 							PAGE_CACHE_SIZE);
2962 				ret = -ENOMEM;
2963 				goto out;
2964 			}
2965 		}
2966 
2967 		if (PageReadahead(page)) {
2968 			page_cache_async_readahead(inode->i_mapping,
2969 						   ra, NULL, page, index,
2970 						   last_index + 1 - index);
2971 		}
2972 
2973 		if (!PageUptodate(page)) {
2974 			btrfs_readpage(NULL, page);
2975 			lock_page(page);
2976 			if (!PageUptodate(page)) {
2977 				unlock_page(page);
2978 				page_cache_release(page);
2979 				btrfs_delalloc_release_metadata(inode,
2980 							PAGE_CACHE_SIZE);
2981 				ret = -EIO;
2982 				goto out;
2983 			}
2984 		}
2985 
2986 		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2987 		page_end = page_start + PAGE_CACHE_SIZE - 1;
2988 
2989 		lock_extent(&BTRFS_I(inode)->io_tree,
2990 			    page_start, page_end, GFP_NOFS);
2991 
2992 		set_page_extent_mapped(page);
2993 
2994 		if (nr < cluster->nr &&
2995 		    page_start + offset == cluster->boundary[nr]) {
2996 			set_extent_bits(&BTRFS_I(inode)->io_tree,
2997 					page_start, page_end,
2998 					EXTENT_BOUNDARY, GFP_NOFS);
2999 			nr++;
3000 		}
3001 
3002 		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3003 		set_page_dirty(page);
3004 
3005 		unlock_extent(&BTRFS_I(inode)->io_tree,
3006 			      page_start, page_end, GFP_NOFS);
3007 		unlock_page(page);
3008 		page_cache_release(page);
3009 
3010 		index++;
3011 		balance_dirty_pages_ratelimited(inode->i_mapping);
3012 		btrfs_throttle(BTRFS_I(inode)->root);
3013 	}
3014 	WARN_ON(nr != cluster->nr);
3015 out:
3016 	kfree(ra);
3017 	return ret;
3018 }
3019 
3020 static noinline_for_stack
3021 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3022 			 struct file_extent_cluster *cluster)
3023 {
3024 	int ret;
3025 
3026 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3027 		ret = relocate_file_extent_cluster(inode, cluster);
3028 		if (ret)
3029 			return ret;
3030 		cluster->nr = 0;
3031 	}
3032 
3033 	if (!cluster->nr)
3034 		cluster->start = extent_key->objectid;
3035 	else
3036 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3037 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3038 	cluster->boundary[cluster->nr] = extent_key->objectid;
3039 	cluster->nr++;
3040 
3041 	if (cluster->nr >= MAX_EXTENTS) {
3042 		ret = relocate_file_extent_cluster(inode, cluster);
3043 		if (ret)
3044 			return ret;
3045 		cluster->nr = 0;
3046 	}
3047 	return 0;
3048 }
3049 
3050 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3051 static int get_ref_objectid_v0(struct reloc_control *rc,
3052 			       struct btrfs_path *path,
3053 			       struct btrfs_key *extent_key,
3054 			       u64 *ref_objectid, int *path_change)
3055 {
3056 	struct btrfs_key key;
3057 	struct extent_buffer *leaf;
3058 	struct btrfs_extent_ref_v0 *ref0;
3059 	int ret;
3060 	int slot;
3061 
3062 	leaf = path->nodes[0];
3063 	slot = path->slots[0];
3064 	while (1) {
3065 		if (slot >= btrfs_header_nritems(leaf)) {
3066 			ret = btrfs_next_leaf(rc->extent_root, path);
3067 			if (ret < 0)
3068 				return ret;
3069 			BUG_ON(ret > 0);
3070 			leaf = path->nodes[0];
3071 			slot = path->slots[0];
3072 			if (path_change)
3073 				*path_change = 1;
3074 		}
3075 		btrfs_item_key_to_cpu(leaf, &key, slot);
3076 		if (key.objectid != extent_key->objectid)
3077 			return -ENOENT;
3078 
3079 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3080 			slot++;
3081 			continue;
3082 		}
3083 		ref0 = btrfs_item_ptr(leaf, slot,
3084 				struct btrfs_extent_ref_v0);
3085 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3086 		break;
3087 	}
3088 	return 0;
3089 }
3090 #endif
3091 
3092 /*
3093  * helper to add a tree block to the list.
3094  * the major work is getting the generation and level of the block
3095  */
3096 static int add_tree_block(struct reloc_control *rc,
3097 			  struct btrfs_key *extent_key,
3098 			  struct btrfs_path *path,
3099 			  struct rb_root *blocks)
3100 {
3101 	struct extent_buffer *eb;
3102 	struct btrfs_extent_item *ei;
3103 	struct btrfs_tree_block_info *bi;
3104 	struct tree_block *block;
3105 	struct rb_node *rb_node;
3106 	u32 item_size;
3107 	int level = -1;
3108 	int generation;
3109 
3110 	eb =  path->nodes[0];
3111 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3112 
3113 	if (item_size >= sizeof(*ei) + sizeof(*bi)) {
3114 		ei = btrfs_item_ptr(eb, path->slots[0],
3115 				struct btrfs_extent_item);
3116 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3117 		generation = btrfs_extent_generation(eb, ei);
3118 		level = btrfs_tree_block_level(eb, bi);
3119 	} else {
3120 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3121 		u64 ref_owner;
3122 		int ret;
3123 
3124 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3125 		ret = get_ref_objectid_v0(rc, path, extent_key,
3126 					  &ref_owner, NULL);
3127 		if (ret < 0)
3128 			return ret;
3129 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3130 		level = (int)ref_owner;
3131 		/* FIXME: get real generation */
3132 		generation = 0;
3133 #else
3134 		BUG();
3135 #endif
3136 	}
3137 
3138 	btrfs_release_path(path);
3139 
3140 	BUG_ON(level == -1);
3141 
3142 	block = kmalloc(sizeof(*block), GFP_NOFS);
3143 	if (!block)
3144 		return -ENOMEM;
3145 
3146 	block->bytenr = extent_key->objectid;
3147 	block->key.objectid = extent_key->offset;
3148 	block->key.offset = generation;
3149 	block->level = level;
3150 	block->key_ready = 0;
3151 
3152 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3153 	BUG_ON(rb_node);
3154 
3155 	return 0;
3156 }
3157 
3158 /*
3159  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3160  */
3161 static int __add_tree_block(struct reloc_control *rc,
3162 			    u64 bytenr, u32 blocksize,
3163 			    struct rb_root *blocks)
3164 {
3165 	struct btrfs_path *path;
3166 	struct btrfs_key key;
3167 	int ret;
3168 
3169 	if (tree_block_processed(bytenr, blocksize, rc))
3170 		return 0;
3171 
3172 	if (tree_search(blocks, bytenr))
3173 		return 0;
3174 
3175 	path = btrfs_alloc_path();
3176 	if (!path)
3177 		return -ENOMEM;
3178 
3179 	key.objectid = bytenr;
3180 	key.type = BTRFS_EXTENT_ITEM_KEY;
3181 	key.offset = blocksize;
3182 
3183 	path->search_commit_root = 1;
3184 	path->skip_locking = 1;
3185 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3186 	if (ret < 0)
3187 		goto out;
3188 	BUG_ON(ret);
3189 
3190 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3191 	ret = add_tree_block(rc, &key, path, blocks);
3192 out:
3193 	btrfs_free_path(path);
3194 	return ret;
3195 }
3196 
3197 /*
3198  * helper to check if the block use full backrefs for pointers in it
3199  */
3200 static int block_use_full_backref(struct reloc_control *rc,
3201 				  struct extent_buffer *eb)
3202 {
3203 	u64 flags;
3204 	int ret;
3205 
3206 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3207 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3208 		return 1;
3209 
3210 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3211 				       eb->start, eb->len, NULL, &flags);
3212 	BUG_ON(ret);
3213 
3214 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3215 		ret = 1;
3216 	else
3217 		ret = 0;
3218 	return ret;
3219 }
3220 
3221 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3222 				    struct inode *inode, u64 ino)
3223 {
3224 	struct btrfs_key key;
3225 	struct btrfs_path *path;
3226 	struct btrfs_root *root = fs_info->tree_root;
3227 	struct btrfs_trans_handle *trans;
3228 	unsigned long nr;
3229 	int ret = 0;
3230 
3231 	if (inode)
3232 		goto truncate;
3233 
3234 	key.objectid = ino;
3235 	key.type = BTRFS_INODE_ITEM_KEY;
3236 	key.offset = 0;
3237 
3238 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3239 	if (IS_ERR_OR_NULL(inode) || is_bad_inode(inode)) {
3240 		if (inode && !IS_ERR(inode))
3241 			iput(inode);
3242 		return -ENOENT;
3243 	}
3244 
3245 truncate:
3246 	path = btrfs_alloc_path();
3247 	if (!path) {
3248 		ret = -ENOMEM;
3249 		goto out;
3250 	}
3251 
3252 	trans = btrfs_join_transaction(root);
3253 	if (IS_ERR(trans)) {
3254 		btrfs_free_path(path);
3255 		ret = PTR_ERR(trans);
3256 		goto out;
3257 	}
3258 
3259 	ret = btrfs_truncate_free_space_cache(root, trans, path, inode);
3260 
3261 	btrfs_free_path(path);
3262 	nr = trans->blocks_used;
3263 	btrfs_end_transaction(trans, root);
3264 	btrfs_btree_balance_dirty(root, nr);
3265 out:
3266 	iput(inode);
3267 	return ret;
3268 }
3269 
3270 /*
3271  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3272  * this function scans fs tree to find blocks reference the data extent
3273  */
3274 static int find_data_references(struct reloc_control *rc,
3275 				struct btrfs_key *extent_key,
3276 				struct extent_buffer *leaf,
3277 				struct btrfs_extent_data_ref *ref,
3278 				struct rb_root *blocks)
3279 {
3280 	struct btrfs_path *path;
3281 	struct tree_block *block;
3282 	struct btrfs_root *root;
3283 	struct btrfs_file_extent_item *fi;
3284 	struct rb_node *rb_node;
3285 	struct btrfs_key key;
3286 	u64 ref_root;
3287 	u64 ref_objectid;
3288 	u64 ref_offset;
3289 	u32 ref_count;
3290 	u32 nritems;
3291 	int err = 0;
3292 	int added = 0;
3293 	int counted;
3294 	int ret;
3295 
3296 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3297 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3298 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3299 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3300 
3301 	/*
3302 	 * This is an extent belonging to the free space cache, lets just delete
3303 	 * it and redo the search.
3304 	 */
3305 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3306 		ret = delete_block_group_cache(rc->extent_root->fs_info,
3307 					       NULL, ref_objectid);
3308 		if (ret != -ENOENT)
3309 			return ret;
3310 		ret = 0;
3311 	}
3312 
3313 	path = btrfs_alloc_path();
3314 	if (!path)
3315 		return -ENOMEM;
3316 	path->reada = 1;
3317 
3318 	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3319 	if (IS_ERR(root)) {
3320 		err = PTR_ERR(root);
3321 		goto out;
3322 	}
3323 
3324 	key.objectid = ref_objectid;
3325 	key.type = BTRFS_EXTENT_DATA_KEY;
3326 	if (ref_offset > ((u64)-1 << 32))
3327 		key.offset = 0;
3328 	else
3329 		key.offset = ref_offset;
3330 
3331 	path->search_commit_root = 1;
3332 	path->skip_locking = 1;
3333 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3334 	if (ret < 0) {
3335 		err = ret;
3336 		goto out;
3337 	}
3338 
3339 	leaf = path->nodes[0];
3340 	nritems = btrfs_header_nritems(leaf);
3341 	/*
3342 	 * the references in tree blocks that use full backrefs
3343 	 * are not counted in
3344 	 */
3345 	if (block_use_full_backref(rc, leaf))
3346 		counted = 0;
3347 	else
3348 		counted = 1;
3349 	rb_node = tree_search(blocks, leaf->start);
3350 	if (rb_node) {
3351 		if (counted)
3352 			added = 1;
3353 		else
3354 			path->slots[0] = nritems;
3355 	}
3356 
3357 	while (ref_count > 0) {
3358 		while (path->slots[0] >= nritems) {
3359 			ret = btrfs_next_leaf(root, path);
3360 			if (ret < 0) {
3361 				err = ret;
3362 				goto out;
3363 			}
3364 			if (ret > 0) {
3365 				WARN_ON(1);
3366 				goto out;
3367 			}
3368 
3369 			leaf = path->nodes[0];
3370 			nritems = btrfs_header_nritems(leaf);
3371 			added = 0;
3372 
3373 			if (block_use_full_backref(rc, leaf))
3374 				counted = 0;
3375 			else
3376 				counted = 1;
3377 			rb_node = tree_search(blocks, leaf->start);
3378 			if (rb_node) {
3379 				if (counted)
3380 					added = 1;
3381 				else
3382 					path->slots[0] = nritems;
3383 			}
3384 		}
3385 
3386 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3387 		if (key.objectid != ref_objectid ||
3388 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3389 			WARN_ON(1);
3390 			break;
3391 		}
3392 
3393 		fi = btrfs_item_ptr(leaf, path->slots[0],
3394 				    struct btrfs_file_extent_item);
3395 
3396 		if (btrfs_file_extent_type(leaf, fi) ==
3397 		    BTRFS_FILE_EXTENT_INLINE)
3398 			goto next;
3399 
3400 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3401 		    extent_key->objectid)
3402 			goto next;
3403 
3404 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3405 		if (key.offset != ref_offset)
3406 			goto next;
3407 
3408 		if (counted)
3409 			ref_count--;
3410 		if (added)
3411 			goto next;
3412 
3413 		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3414 			block = kmalloc(sizeof(*block), GFP_NOFS);
3415 			if (!block) {
3416 				err = -ENOMEM;
3417 				break;
3418 			}
3419 			block->bytenr = leaf->start;
3420 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3421 			block->level = 0;
3422 			block->key_ready = 1;
3423 			rb_node = tree_insert(blocks, block->bytenr,
3424 					      &block->rb_node);
3425 			BUG_ON(rb_node);
3426 		}
3427 		if (counted)
3428 			added = 1;
3429 		else
3430 			path->slots[0] = nritems;
3431 next:
3432 		path->slots[0]++;
3433 
3434 	}
3435 out:
3436 	btrfs_free_path(path);
3437 	return err;
3438 }
3439 
3440 /*
3441  * hepler to find all tree blocks that reference a given data extent
3442  */
3443 static noinline_for_stack
3444 int add_data_references(struct reloc_control *rc,
3445 			struct btrfs_key *extent_key,
3446 			struct btrfs_path *path,
3447 			struct rb_root *blocks)
3448 {
3449 	struct btrfs_key key;
3450 	struct extent_buffer *eb;
3451 	struct btrfs_extent_data_ref *dref;
3452 	struct btrfs_extent_inline_ref *iref;
3453 	unsigned long ptr;
3454 	unsigned long end;
3455 	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3456 	int ret;
3457 	int err = 0;
3458 
3459 	eb = path->nodes[0];
3460 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3461 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3462 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3463 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3464 		ptr = end;
3465 	else
3466 #endif
3467 		ptr += sizeof(struct btrfs_extent_item);
3468 
3469 	while (ptr < end) {
3470 		iref = (struct btrfs_extent_inline_ref *)ptr;
3471 		key.type = btrfs_extent_inline_ref_type(eb, iref);
3472 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3473 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3474 			ret = __add_tree_block(rc, key.offset, blocksize,
3475 					       blocks);
3476 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3477 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3478 			ret = find_data_references(rc, extent_key,
3479 						   eb, dref, blocks);
3480 		} else {
3481 			BUG();
3482 		}
3483 		ptr += btrfs_extent_inline_ref_size(key.type);
3484 	}
3485 	WARN_ON(ptr > end);
3486 
3487 	while (1) {
3488 		cond_resched();
3489 		eb = path->nodes[0];
3490 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3491 			ret = btrfs_next_leaf(rc->extent_root, path);
3492 			if (ret < 0) {
3493 				err = ret;
3494 				break;
3495 			}
3496 			if (ret > 0)
3497 				break;
3498 			eb = path->nodes[0];
3499 		}
3500 
3501 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3502 		if (key.objectid != extent_key->objectid)
3503 			break;
3504 
3505 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3506 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3507 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3508 #else
3509 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3510 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3511 #endif
3512 			ret = __add_tree_block(rc, key.offset, blocksize,
3513 					       blocks);
3514 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3515 			dref = btrfs_item_ptr(eb, path->slots[0],
3516 					      struct btrfs_extent_data_ref);
3517 			ret = find_data_references(rc, extent_key,
3518 						   eb, dref, blocks);
3519 		} else {
3520 			ret = 0;
3521 		}
3522 		if (ret) {
3523 			err = ret;
3524 			break;
3525 		}
3526 		path->slots[0]++;
3527 	}
3528 	btrfs_release_path(path);
3529 	if (err)
3530 		free_block_list(blocks);
3531 	return err;
3532 }
3533 
3534 /*
3535  * hepler to find next unprocessed extent
3536  */
3537 static noinline_for_stack
3538 int find_next_extent(struct btrfs_trans_handle *trans,
3539 		     struct reloc_control *rc, struct btrfs_path *path,
3540 		     struct btrfs_key *extent_key)
3541 {
3542 	struct btrfs_key key;
3543 	struct extent_buffer *leaf;
3544 	u64 start, end, last;
3545 	int ret;
3546 
3547 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3548 	while (1) {
3549 		cond_resched();
3550 		if (rc->search_start >= last) {
3551 			ret = 1;
3552 			break;
3553 		}
3554 
3555 		key.objectid = rc->search_start;
3556 		key.type = BTRFS_EXTENT_ITEM_KEY;
3557 		key.offset = 0;
3558 
3559 		path->search_commit_root = 1;
3560 		path->skip_locking = 1;
3561 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3562 					0, 0);
3563 		if (ret < 0)
3564 			break;
3565 next:
3566 		leaf = path->nodes[0];
3567 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3568 			ret = btrfs_next_leaf(rc->extent_root, path);
3569 			if (ret != 0)
3570 				break;
3571 			leaf = path->nodes[0];
3572 		}
3573 
3574 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3575 		if (key.objectid >= last) {
3576 			ret = 1;
3577 			break;
3578 		}
3579 
3580 		if (key.type != BTRFS_EXTENT_ITEM_KEY ||
3581 		    key.objectid + key.offset <= rc->search_start) {
3582 			path->slots[0]++;
3583 			goto next;
3584 		}
3585 
3586 		ret = find_first_extent_bit(&rc->processed_blocks,
3587 					    key.objectid, &start, &end,
3588 					    EXTENT_DIRTY);
3589 
3590 		if (ret == 0 && start <= key.objectid) {
3591 			btrfs_release_path(path);
3592 			rc->search_start = end + 1;
3593 		} else {
3594 			rc->search_start = key.objectid + key.offset;
3595 			memcpy(extent_key, &key, sizeof(key));
3596 			return 0;
3597 		}
3598 	}
3599 	btrfs_release_path(path);
3600 	return ret;
3601 }
3602 
3603 static void set_reloc_control(struct reloc_control *rc)
3604 {
3605 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3606 
3607 	mutex_lock(&fs_info->reloc_mutex);
3608 	fs_info->reloc_ctl = rc;
3609 	mutex_unlock(&fs_info->reloc_mutex);
3610 }
3611 
3612 static void unset_reloc_control(struct reloc_control *rc)
3613 {
3614 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3615 
3616 	mutex_lock(&fs_info->reloc_mutex);
3617 	fs_info->reloc_ctl = NULL;
3618 	mutex_unlock(&fs_info->reloc_mutex);
3619 }
3620 
3621 static int check_extent_flags(u64 flags)
3622 {
3623 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3624 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3625 		return 1;
3626 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3627 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3628 		return 1;
3629 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3630 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3631 		return 1;
3632 	return 0;
3633 }
3634 
3635 static noinline_for_stack
3636 int prepare_to_relocate(struct reloc_control *rc)
3637 {
3638 	struct btrfs_trans_handle *trans;
3639 	int ret;
3640 
3641 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root);
3642 	if (!rc->block_rsv)
3643 		return -ENOMEM;
3644 
3645 	/*
3646 	 * reserve some space for creating reloc trees.
3647 	 * btrfs_init_reloc_root will use them when there
3648 	 * is no reservation in transaction handle.
3649 	 */
3650 	ret = btrfs_block_rsv_add(rc->extent_root, rc->block_rsv,
3651 				  rc->extent_root->nodesize * 256);
3652 	if (ret)
3653 		return ret;
3654 
3655 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3656 	rc->search_start = rc->block_group->key.objectid;
3657 	rc->extents_found = 0;
3658 	rc->nodes_relocated = 0;
3659 	rc->merging_rsv_size = 0;
3660 
3661 	rc->create_reloc_tree = 1;
3662 	set_reloc_control(rc);
3663 
3664 	trans = btrfs_join_transaction(rc->extent_root);
3665 	BUG_ON(IS_ERR(trans));
3666 	btrfs_commit_transaction(trans, rc->extent_root);
3667 	return 0;
3668 }
3669 
3670 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3671 {
3672 	struct rb_root blocks = RB_ROOT;
3673 	struct btrfs_key key;
3674 	struct btrfs_trans_handle *trans = NULL;
3675 	struct btrfs_path *path;
3676 	struct btrfs_extent_item *ei;
3677 	unsigned long nr;
3678 	u64 flags;
3679 	u32 item_size;
3680 	int ret;
3681 	int err = 0;
3682 	int progress = 0;
3683 
3684 	path = btrfs_alloc_path();
3685 	if (!path)
3686 		return -ENOMEM;
3687 	path->reada = 1;
3688 
3689 	ret = prepare_to_relocate(rc);
3690 	if (ret) {
3691 		err = ret;
3692 		goto out_free;
3693 	}
3694 
3695 	while (1) {
3696 		progress++;
3697 		trans = btrfs_start_transaction(rc->extent_root, 0);
3698 		BUG_ON(IS_ERR(trans));
3699 restart:
3700 		if (update_backref_cache(trans, &rc->backref_cache)) {
3701 			btrfs_end_transaction(trans, rc->extent_root);
3702 			continue;
3703 		}
3704 
3705 		ret = find_next_extent(trans, rc, path, &key);
3706 		if (ret < 0)
3707 			err = ret;
3708 		if (ret != 0)
3709 			break;
3710 
3711 		rc->extents_found++;
3712 
3713 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3714 				    struct btrfs_extent_item);
3715 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3716 		if (item_size >= sizeof(*ei)) {
3717 			flags = btrfs_extent_flags(path->nodes[0], ei);
3718 			ret = check_extent_flags(flags);
3719 			BUG_ON(ret);
3720 
3721 		} else {
3722 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3723 			u64 ref_owner;
3724 			int path_change = 0;
3725 
3726 			BUG_ON(item_size !=
3727 			       sizeof(struct btrfs_extent_item_v0));
3728 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3729 						  &path_change);
3730 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3731 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3732 			else
3733 				flags = BTRFS_EXTENT_FLAG_DATA;
3734 
3735 			if (path_change) {
3736 				btrfs_release_path(path);
3737 
3738 				path->search_commit_root = 1;
3739 				path->skip_locking = 1;
3740 				ret = btrfs_search_slot(NULL, rc->extent_root,
3741 							&key, path, 0, 0);
3742 				if (ret < 0) {
3743 					err = ret;
3744 					break;
3745 				}
3746 				BUG_ON(ret > 0);
3747 			}
3748 #else
3749 			BUG();
3750 #endif
3751 		}
3752 
3753 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3754 			ret = add_tree_block(rc, &key, path, &blocks);
3755 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3756 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3757 			ret = add_data_references(rc, &key, path, &blocks);
3758 		} else {
3759 			btrfs_release_path(path);
3760 			ret = 0;
3761 		}
3762 		if (ret < 0) {
3763 			err = ret;
3764 			break;
3765 		}
3766 
3767 		if (!RB_EMPTY_ROOT(&blocks)) {
3768 			ret = relocate_tree_blocks(trans, rc, &blocks);
3769 			if (ret < 0) {
3770 				if (ret != -EAGAIN) {
3771 					err = ret;
3772 					break;
3773 				}
3774 				rc->extents_found--;
3775 				rc->search_start = key.objectid;
3776 			}
3777 		}
3778 
3779 		ret = btrfs_block_rsv_check(rc->extent_root, rc->block_rsv, 5);
3780 		if (ret < 0) {
3781 			if (ret != -EAGAIN) {
3782 				err = ret;
3783 				WARN_ON(1);
3784 				break;
3785 			}
3786 			rc->commit_transaction = 1;
3787 		}
3788 
3789 		if (rc->commit_transaction) {
3790 			rc->commit_transaction = 0;
3791 			ret = btrfs_commit_transaction(trans, rc->extent_root);
3792 			BUG_ON(ret);
3793 		} else {
3794 			nr = trans->blocks_used;
3795 			btrfs_end_transaction_throttle(trans, rc->extent_root);
3796 			btrfs_btree_balance_dirty(rc->extent_root, nr);
3797 		}
3798 		trans = NULL;
3799 
3800 		if (rc->stage == MOVE_DATA_EXTENTS &&
3801 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3802 			rc->found_file_extent = 1;
3803 			ret = relocate_data_extent(rc->data_inode,
3804 						   &key, &rc->cluster);
3805 			if (ret < 0) {
3806 				err = ret;
3807 				break;
3808 			}
3809 		}
3810 	}
3811 	if (trans && progress && err == -ENOSPC) {
3812 		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
3813 					      rc->block_group->flags);
3814 		if (ret == 0) {
3815 			err = 0;
3816 			progress = 0;
3817 			goto restart;
3818 		}
3819 	}
3820 
3821 	btrfs_release_path(path);
3822 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
3823 			  GFP_NOFS);
3824 
3825 	if (trans) {
3826 		nr = trans->blocks_used;
3827 		btrfs_end_transaction_throttle(trans, rc->extent_root);
3828 		btrfs_btree_balance_dirty(rc->extent_root, nr);
3829 	}
3830 
3831 	if (!err) {
3832 		ret = relocate_file_extent_cluster(rc->data_inode,
3833 						   &rc->cluster);
3834 		if (ret < 0)
3835 			err = ret;
3836 	}
3837 
3838 	rc->create_reloc_tree = 0;
3839 	set_reloc_control(rc);
3840 
3841 	backref_cache_cleanup(&rc->backref_cache);
3842 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3843 
3844 	err = prepare_to_merge(rc, err);
3845 
3846 	merge_reloc_roots(rc);
3847 
3848 	rc->merge_reloc_tree = 0;
3849 	unset_reloc_control(rc);
3850 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3851 
3852 	/* get rid of pinned extents */
3853 	trans = btrfs_join_transaction(rc->extent_root);
3854 	if (IS_ERR(trans))
3855 		err = PTR_ERR(trans);
3856 	else
3857 		btrfs_commit_transaction(trans, rc->extent_root);
3858 out_free:
3859 	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
3860 	btrfs_free_path(path);
3861 	return err;
3862 }
3863 
3864 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3865 				 struct btrfs_root *root, u64 objectid)
3866 {
3867 	struct btrfs_path *path;
3868 	struct btrfs_inode_item *item;
3869 	struct extent_buffer *leaf;
3870 	int ret;
3871 
3872 	path = btrfs_alloc_path();
3873 	if (!path)
3874 		return -ENOMEM;
3875 
3876 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3877 	if (ret)
3878 		goto out;
3879 
3880 	leaf = path->nodes[0];
3881 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3882 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3883 	btrfs_set_inode_generation(leaf, item, 1);
3884 	btrfs_set_inode_size(leaf, item, 0);
3885 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3886 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3887 					  BTRFS_INODE_PREALLOC);
3888 	btrfs_mark_buffer_dirty(leaf);
3889 	btrfs_release_path(path);
3890 out:
3891 	btrfs_free_path(path);
3892 	return ret;
3893 }
3894 
3895 /*
3896  * helper to create inode for data relocation.
3897  * the inode is in data relocation tree and its link count is 0
3898  */
3899 static noinline_for_stack
3900 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3901 				 struct btrfs_block_group_cache *group)
3902 {
3903 	struct inode *inode = NULL;
3904 	struct btrfs_trans_handle *trans;
3905 	struct btrfs_root *root;
3906 	struct btrfs_key key;
3907 	unsigned long nr;
3908 	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
3909 	int err = 0;
3910 
3911 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
3912 	if (IS_ERR(root))
3913 		return ERR_CAST(root);
3914 
3915 	trans = btrfs_start_transaction(root, 6);
3916 	if (IS_ERR(trans))
3917 		return ERR_CAST(trans);
3918 
3919 	err = btrfs_find_free_objectid(root, &objectid);
3920 	if (err)
3921 		goto out;
3922 
3923 	err = __insert_orphan_inode(trans, root, objectid);
3924 	BUG_ON(err);
3925 
3926 	key.objectid = objectid;
3927 	key.type = BTRFS_INODE_ITEM_KEY;
3928 	key.offset = 0;
3929 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
3930 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
3931 	BTRFS_I(inode)->index_cnt = group->key.objectid;
3932 
3933 	err = btrfs_orphan_add(trans, inode);
3934 out:
3935 	nr = trans->blocks_used;
3936 	btrfs_end_transaction(trans, root);
3937 	btrfs_btree_balance_dirty(root, nr);
3938 	if (err) {
3939 		if (inode)
3940 			iput(inode);
3941 		inode = ERR_PTR(err);
3942 	}
3943 	return inode;
3944 }
3945 
3946 static struct reloc_control *alloc_reloc_control(void)
3947 {
3948 	struct reloc_control *rc;
3949 
3950 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3951 	if (!rc)
3952 		return NULL;
3953 
3954 	INIT_LIST_HEAD(&rc->reloc_roots);
3955 	backref_cache_init(&rc->backref_cache);
3956 	mapping_tree_init(&rc->reloc_root_tree);
3957 	extent_io_tree_init(&rc->processed_blocks, NULL);
3958 	return rc;
3959 }
3960 
3961 /*
3962  * function to relocate all extents in a block group.
3963  */
3964 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
3965 {
3966 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3967 	struct reloc_control *rc;
3968 	struct inode *inode;
3969 	struct btrfs_path *path;
3970 	int ret;
3971 	int rw = 0;
3972 	int err = 0;
3973 
3974 	rc = alloc_reloc_control();
3975 	if (!rc)
3976 		return -ENOMEM;
3977 
3978 	rc->extent_root = extent_root;
3979 
3980 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
3981 	BUG_ON(!rc->block_group);
3982 
3983 	if (!rc->block_group->ro) {
3984 		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
3985 		if (ret) {
3986 			err = ret;
3987 			goto out;
3988 		}
3989 		rw = 1;
3990 	}
3991 
3992 	path = btrfs_alloc_path();
3993 	if (!path) {
3994 		err = -ENOMEM;
3995 		goto out;
3996 	}
3997 
3998 	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
3999 					path);
4000 	btrfs_free_path(path);
4001 
4002 	if (!IS_ERR(inode))
4003 		ret = delete_block_group_cache(fs_info, inode, 0);
4004 	else
4005 		ret = PTR_ERR(inode);
4006 
4007 	if (ret && ret != -ENOENT) {
4008 		err = ret;
4009 		goto out;
4010 	}
4011 
4012 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4013 	if (IS_ERR(rc->data_inode)) {
4014 		err = PTR_ERR(rc->data_inode);
4015 		rc->data_inode = NULL;
4016 		goto out;
4017 	}
4018 
4019 	printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
4020 	       (unsigned long long)rc->block_group->key.objectid,
4021 	       (unsigned long long)rc->block_group->flags);
4022 
4023 	btrfs_start_delalloc_inodes(fs_info->tree_root, 0);
4024 	btrfs_wait_ordered_extents(fs_info->tree_root, 0, 0);
4025 
4026 	while (1) {
4027 		mutex_lock(&fs_info->cleaner_mutex);
4028 
4029 		btrfs_clean_old_snapshots(fs_info->tree_root);
4030 		ret = relocate_block_group(rc);
4031 
4032 		mutex_unlock(&fs_info->cleaner_mutex);
4033 		if (ret < 0) {
4034 			err = ret;
4035 			goto out;
4036 		}
4037 
4038 		if (rc->extents_found == 0)
4039 			break;
4040 
4041 		printk(KERN_INFO "btrfs: found %llu extents\n",
4042 			(unsigned long long)rc->extents_found);
4043 
4044 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4045 			btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1);
4046 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4047 						 0, -1);
4048 			rc->stage = UPDATE_DATA_PTRS;
4049 		}
4050 	}
4051 
4052 	filemap_write_and_wait_range(fs_info->btree_inode->i_mapping,
4053 				     rc->block_group->key.objectid,
4054 				     rc->block_group->key.objectid +
4055 				     rc->block_group->key.offset - 1);
4056 
4057 	WARN_ON(rc->block_group->pinned > 0);
4058 	WARN_ON(rc->block_group->reserved > 0);
4059 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4060 out:
4061 	if (err && rw)
4062 		btrfs_set_block_group_rw(extent_root, rc->block_group);
4063 	iput(rc->data_inode);
4064 	btrfs_put_block_group(rc->block_group);
4065 	kfree(rc);
4066 	return err;
4067 }
4068 
4069 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4070 {
4071 	struct btrfs_trans_handle *trans;
4072 	int ret;
4073 
4074 	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4075 	BUG_ON(IS_ERR(trans));
4076 
4077 	memset(&root->root_item.drop_progress, 0,
4078 		sizeof(root->root_item.drop_progress));
4079 	root->root_item.drop_level = 0;
4080 	btrfs_set_root_refs(&root->root_item, 0);
4081 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4082 				&root->root_key, &root->root_item);
4083 	BUG_ON(ret);
4084 
4085 	ret = btrfs_end_transaction(trans, root->fs_info->tree_root);
4086 	BUG_ON(ret);
4087 	return 0;
4088 }
4089 
4090 /*
4091  * recover relocation interrupted by system crash.
4092  *
4093  * this function resumes merging reloc trees with corresponding fs trees.
4094  * this is important for keeping the sharing of tree blocks
4095  */
4096 int btrfs_recover_relocation(struct btrfs_root *root)
4097 {
4098 	LIST_HEAD(reloc_roots);
4099 	struct btrfs_key key;
4100 	struct btrfs_root *fs_root;
4101 	struct btrfs_root *reloc_root;
4102 	struct btrfs_path *path;
4103 	struct extent_buffer *leaf;
4104 	struct reloc_control *rc = NULL;
4105 	struct btrfs_trans_handle *trans;
4106 	int ret;
4107 	int err = 0;
4108 
4109 	path = btrfs_alloc_path();
4110 	if (!path)
4111 		return -ENOMEM;
4112 	path->reada = -1;
4113 
4114 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4115 	key.type = BTRFS_ROOT_ITEM_KEY;
4116 	key.offset = (u64)-1;
4117 
4118 	while (1) {
4119 		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4120 					path, 0, 0);
4121 		if (ret < 0) {
4122 			err = ret;
4123 			goto out;
4124 		}
4125 		if (ret > 0) {
4126 			if (path->slots[0] == 0)
4127 				break;
4128 			path->slots[0]--;
4129 		}
4130 		leaf = path->nodes[0];
4131 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4132 		btrfs_release_path(path);
4133 
4134 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4135 		    key.type != BTRFS_ROOT_ITEM_KEY)
4136 			break;
4137 
4138 		reloc_root = btrfs_read_fs_root_no_radix(root, &key);
4139 		if (IS_ERR(reloc_root)) {
4140 			err = PTR_ERR(reloc_root);
4141 			goto out;
4142 		}
4143 
4144 		list_add(&reloc_root->root_list, &reloc_roots);
4145 
4146 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4147 			fs_root = read_fs_root(root->fs_info,
4148 					       reloc_root->root_key.offset);
4149 			if (IS_ERR(fs_root)) {
4150 				ret = PTR_ERR(fs_root);
4151 				if (ret != -ENOENT) {
4152 					err = ret;
4153 					goto out;
4154 				}
4155 				mark_garbage_root(reloc_root);
4156 			}
4157 		}
4158 
4159 		if (key.offset == 0)
4160 			break;
4161 
4162 		key.offset--;
4163 	}
4164 	btrfs_release_path(path);
4165 
4166 	if (list_empty(&reloc_roots))
4167 		goto out;
4168 
4169 	rc = alloc_reloc_control();
4170 	if (!rc) {
4171 		err = -ENOMEM;
4172 		goto out;
4173 	}
4174 
4175 	rc->extent_root = root->fs_info->extent_root;
4176 
4177 	set_reloc_control(rc);
4178 
4179 	trans = btrfs_join_transaction(rc->extent_root);
4180 	if (IS_ERR(trans)) {
4181 		unset_reloc_control(rc);
4182 		err = PTR_ERR(trans);
4183 		goto out_free;
4184 	}
4185 
4186 	rc->merge_reloc_tree = 1;
4187 
4188 	while (!list_empty(&reloc_roots)) {
4189 		reloc_root = list_entry(reloc_roots.next,
4190 					struct btrfs_root, root_list);
4191 		list_del(&reloc_root->root_list);
4192 
4193 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4194 			list_add_tail(&reloc_root->root_list,
4195 				      &rc->reloc_roots);
4196 			continue;
4197 		}
4198 
4199 		fs_root = read_fs_root(root->fs_info,
4200 				       reloc_root->root_key.offset);
4201 		BUG_ON(IS_ERR(fs_root));
4202 
4203 		__add_reloc_root(reloc_root);
4204 		fs_root->reloc_root = reloc_root;
4205 	}
4206 
4207 	btrfs_commit_transaction(trans, rc->extent_root);
4208 
4209 	merge_reloc_roots(rc);
4210 
4211 	unset_reloc_control(rc);
4212 
4213 	trans = btrfs_join_transaction(rc->extent_root);
4214 	if (IS_ERR(trans))
4215 		err = PTR_ERR(trans);
4216 	else
4217 		btrfs_commit_transaction(trans, rc->extent_root);
4218 out_free:
4219 	kfree(rc);
4220 out:
4221 	while (!list_empty(&reloc_roots)) {
4222 		reloc_root = list_entry(reloc_roots.next,
4223 					struct btrfs_root, root_list);
4224 		list_del(&reloc_root->root_list);
4225 		free_extent_buffer(reloc_root->node);
4226 		free_extent_buffer(reloc_root->commit_root);
4227 		kfree(reloc_root);
4228 	}
4229 	btrfs_free_path(path);
4230 
4231 	if (err == 0) {
4232 		/* cleanup orphan inode in data relocation tree */
4233 		fs_root = read_fs_root(root->fs_info,
4234 				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4235 		if (IS_ERR(fs_root))
4236 			err = PTR_ERR(fs_root);
4237 		else
4238 			err = btrfs_orphan_cleanup(fs_root);
4239 	}
4240 	return err;
4241 }
4242 
4243 /*
4244  * helper to add ordered checksum for data relocation.
4245  *
4246  * cloning checksum properly handles the nodatasum extents.
4247  * it also saves CPU time to re-calculate the checksum.
4248  */
4249 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4250 {
4251 	struct btrfs_ordered_sum *sums;
4252 	struct btrfs_sector_sum *sector_sum;
4253 	struct btrfs_ordered_extent *ordered;
4254 	struct btrfs_root *root = BTRFS_I(inode)->root;
4255 	size_t offset;
4256 	int ret;
4257 	u64 disk_bytenr;
4258 	LIST_HEAD(list);
4259 
4260 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4261 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4262 
4263 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4264 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4265 				       disk_bytenr + len - 1, &list, 0);
4266 
4267 	while (!list_empty(&list)) {
4268 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4269 		list_del_init(&sums->list);
4270 
4271 		sector_sum = sums->sums;
4272 		sums->bytenr = ordered->start;
4273 
4274 		offset = 0;
4275 		while (offset < sums->len) {
4276 			sector_sum->bytenr += ordered->start - disk_bytenr;
4277 			sector_sum++;
4278 			offset += root->sectorsize;
4279 		}
4280 
4281 		btrfs_add_ordered_sum(inode, ordered, sums);
4282 	}
4283 	btrfs_put_ordered_extent(ordered);
4284 	return ret;
4285 }
4286 
4287 void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4288 			   struct btrfs_root *root, struct extent_buffer *buf,
4289 			   struct extent_buffer *cow)
4290 {
4291 	struct reloc_control *rc;
4292 	struct backref_node *node;
4293 	int first_cow = 0;
4294 	int level;
4295 	int ret;
4296 
4297 	rc = root->fs_info->reloc_ctl;
4298 	if (!rc)
4299 		return;
4300 
4301 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4302 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4303 
4304 	level = btrfs_header_level(buf);
4305 	if (btrfs_header_generation(buf) <=
4306 	    btrfs_root_last_snapshot(&root->root_item))
4307 		first_cow = 1;
4308 
4309 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4310 	    rc->create_reloc_tree) {
4311 		WARN_ON(!first_cow && level == 0);
4312 
4313 		node = rc->backref_cache.path[level];
4314 		BUG_ON(node->bytenr != buf->start &&
4315 		       node->new_bytenr != buf->start);
4316 
4317 		drop_node_buffer(node);
4318 		extent_buffer_get(cow);
4319 		node->eb = cow;
4320 		node->new_bytenr = cow->start;
4321 
4322 		if (!node->pending) {
4323 			list_move_tail(&node->list,
4324 				       &rc->backref_cache.pending[level]);
4325 			node->pending = 1;
4326 		}
4327 
4328 		if (first_cow)
4329 			__mark_block_processed(rc, node);
4330 
4331 		if (first_cow && level > 0)
4332 			rc->nodes_relocated += buf->len;
4333 	}
4334 
4335 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) {
4336 		ret = replace_file_extents(trans, rc, root, cow);
4337 		BUG_ON(ret);
4338 	}
4339 }
4340 
4341 /*
4342  * called before creating snapshot. it calculates metadata reservation
4343  * requried for relocating tree blocks in the snapshot
4344  */
4345 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4346 			      struct btrfs_pending_snapshot *pending,
4347 			      u64 *bytes_to_reserve)
4348 {
4349 	struct btrfs_root *root;
4350 	struct reloc_control *rc;
4351 
4352 	root = pending->root;
4353 	if (!root->reloc_root)
4354 		return;
4355 
4356 	rc = root->fs_info->reloc_ctl;
4357 	if (!rc->merge_reloc_tree)
4358 		return;
4359 
4360 	root = root->reloc_root;
4361 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4362 	/*
4363 	 * relocation is in the stage of merging trees. the space
4364 	 * used by merging a reloc tree is twice the size of
4365 	 * relocated tree nodes in the worst case. half for cowing
4366 	 * the reloc tree, half for cowing the fs tree. the space
4367 	 * used by cowing the reloc tree will be freed after the
4368 	 * tree is dropped. if we create snapshot, cowing the fs
4369 	 * tree may use more space than it frees. so we need
4370 	 * reserve extra space.
4371 	 */
4372 	*bytes_to_reserve += rc->nodes_relocated;
4373 }
4374 
4375 /*
4376  * called after snapshot is created. migrate block reservation
4377  * and create reloc root for the newly created snapshot
4378  */
4379 void btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4380 			       struct btrfs_pending_snapshot *pending)
4381 {
4382 	struct btrfs_root *root = pending->root;
4383 	struct btrfs_root *reloc_root;
4384 	struct btrfs_root *new_root;
4385 	struct reloc_control *rc;
4386 	int ret;
4387 
4388 	if (!root->reloc_root)
4389 		return;
4390 
4391 	rc = root->fs_info->reloc_ctl;
4392 	rc->merging_rsv_size += rc->nodes_relocated;
4393 
4394 	if (rc->merge_reloc_tree) {
4395 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4396 					      rc->block_rsv,
4397 					      rc->nodes_relocated);
4398 		BUG_ON(ret);
4399 	}
4400 
4401 	new_root = pending->snap;
4402 	reloc_root = create_reloc_root(trans, root->reloc_root,
4403 				       new_root->root_key.objectid);
4404 
4405 	__add_reloc_root(reloc_root);
4406 	new_root->reloc_root = reloc_root;
4407 
4408 	if (rc->create_reloc_tree) {
4409 		ret = clone_backref_node(trans, rc, root, reloc_root);
4410 		BUG_ON(ret);
4411 	}
4412 }
4413