1 /* 2 * Copyright (C) 2009 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/rbtree.h> 24 #include <linux/slab.h> 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "volumes.h" 29 #include "locking.h" 30 #include "btrfs_inode.h" 31 #include "async-thread.h" 32 #include "free-space-cache.h" 33 #include "inode-map.h" 34 35 /* 36 * backref_node, mapping_node and tree_block start with this 37 */ 38 struct tree_entry { 39 struct rb_node rb_node; 40 u64 bytenr; 41 }; 42 43 /* 44 * present a tree block in the backref cache 45 */ 46 struct backref_node { 47 struct rb_node rb_node; 48 u64 bytenr; 49 50 u64 new_bytenr; 51 /* objectid of tree block owner, can be not uptodate */ 52 u64 owner; 53 /* link to pending, changed or detached list */ 54 struct list_head list; 55 /* list of upper level blocks reference this block */ 56 struct list_head upper; 57 /* list of child blocks in the cache */ 58 struct list_head lower; 59 /* NULL if this node is not tree root */ 60 struct btrfs_root *root; 61 /* extent buffer got by COW the block */ 62 struct extent_buffer *eb; 63 /* level of tree block */ 64 unsigned int level:8; 65 /* is the block in non-reference counted tree */ 66 unsigned int cowonly:1; 67 /* 1 if no child node in the cache */ 68 unsigned int lowest:1; 69 /* is the extent buffer locked */ 70 unsigned int locked:1; 71 /* has the block been processed */ 72 unsigned int processed:1; 73 /* have backrefs of this block been checked */ 74 unsigned int checked:1; 75 /* 76 * 1 if corresponding block has been cowed but some upper 77 * level block pointers may not point to the new location 78 */ 79 unsigned int pending:1; 80 /* 81 * 1 if the backref node isn't connected to any other 82 * backref node. 83 */ 84 unsigned int detached:1; 85 }; 86 87 /* 88 * present a block pointer in the backref cache 89 */ 90 struct backref_edge { 91 struct list_head list[2]; 92 struct backref_node *node[2]; 93 }; 94 95 #define LOWER 0 96 #define UPPER 1 97 98 struct backref_cache { 99 /* red black tree of all backref nodes in the cache */ 100 struct rb_root rb_root; 101 /* for passing backref nodes to btrfs_reloc_cow_block */ 102 struct backref_node *path[BTRFS_MAX_LEVEL]; 103 /* 104 * list of blocks that have been cowed but some block 105 * pointers in upper level blocks may not reflect the 106 * new location 107 */ 108 struct list_head pending[BTRFS_MAX_LEVEL]; 109 /* list of backref nodes with no child node */ 110 struct list_head leaves; 111 /* list of blocks that have been cowed in current transaction */ 112 struct list_head changed; 113 /* list of detached backref node. */ 114 struct list_head detached; 115 116 u64 last_trans; 117 118 int nr_nodes; 119 int nr_edges; 120 }; 121 122 /* 123 * map address of tree root to tree 124 */ 125 struct mapping_node { 126 struct rb_node rb_node; 127 u64 bytenr; 128 void *data; 129 }; 130 131 struct mapping_tree { 132 struct rb_root rb_root; 133 spinlock_t lock; 134 }; 135 136 /* 137 * present a tree block to process 138 */ 139 struct tree_block { 140 struct rb_node rb_node; 141 u64 bytenr; 142 struct btrfs_key key; 143 unsigned int level:8; 144 unsigned int key_ready:1; 145 }; 146 147 #define MAX_EXTENTS 128 148 149 struct file_extent_cluster { 150 u64 start; 151 u64 end; 152 u64 boundary[MAX_EXTENTS]; 153 unsigned int nr; 154 }; 155 156 struct reloc_control { 157 /* block group to relocate */ 158 struct btrfs_block_group_cache *block_group; 159 /* extent tree */ 160 struct btrfs_root *extent_root; 161 /* inode for moving data */ 162 struct inode *data_inode; 163 164 struct btrfs_block_rsv *block_rsv; 165 166 struct backref_cache backref_cache; 167 168 struct file_extent_cluster cluster; 169 /* tree blocks have been processed */ 170 struct extent_io_tree processed_blocks; 171 /* map start of tree root to corresponding reloc tree */ 172 struct mapping_tree reloc_root_tree; 173 /* list of reloc trees */ 174 struct list_head reloc_roots; 175 /* size of metadata reservation for merging reloc trees */ 176 u64 merging_rsv_size; 177 /* size of relocated tree nodes */ 178 u64 nodes_relocated; 179 180 u64 search_start; 181 u64 extents_found; 182 183 unsigned int stage:8; 184 unsigned int create_reloc_tree:1; 185 unsigned int merge_reloc_tree:1; 186 unsigned int found_file_extent:1; 187 unsigned int commit_transaction:1; 188 }; 189 190 /* stages of data relocation */ 191 #define MOVE_DATA_EXTENTS 0 192 #define UPDATE_DATA_PTRS 1 193 194 static void remove_backref_node(struct backref_cache *cache, 195 struct backref_node *node); 196 static void __mark_block_processed(struct reloc_control *rc, 197 struct backref_node *node); 198 199 static void mapping_tree_init(struct mapping_tree *tree) 200 { 201 tree->rb_root = RB_ROOT; 202 spin_lock_init(&tree->lock); 203 } 204 205 static void backref_cache_init(struct backref_cache *cache) 206 { 207 int i; 208 cache->rb_root = RB_ROOT; 209 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 210 INIT_LIST_HEAD(&cache->pending[i]); 211 INIT_LIST_HEAD(&cache->changed); 212 INIT_LIST_HEAD(&cache->detached); 213 INIT_LIST_HEAD(&cache->leaves); 214 } 215 216 static void backref_cache_cleanup(struct backref_cache *cache) 217 { 218 struct backref_node *node; 219 int i; 220 221 while (!list_empty(&cache->detached)) { 222 node = list_entry(cache->detached.next, 223 struct backref_node, list); 224 remove_backref_node(cache, node); 225 } 226 227 while (!list_empty(&cache->leaves)) { 228 node = list_entry(cache->leaves.next, 229 struct backref_node, lower); 230 remove_backref_node(cache, node); 231 } 232 233 cache->last_trans = 0; 234 235 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 236 BUG_ON(!list_empty(&cache->pending[i])); 237 BUG_ON(!list_empty(&cache->changed)); 238 BUG_ON(!list_empty(&cache->detached)); 239 BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root)); 240 BUG_ON(cache->nr_nodes); 241 BUG_ON(cache->nr_edges); 242 } 243 244 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 245 { 246 struct backref_node *node; 247 248 node = kzalloc(sizeof(*node), GFP_NOFS); 249 if (node) { 250 INIT_LIST_HEAD(&node->list); 251 INIT_LIST_HEAD(&node->upper); 252 INIT_LIST_HEAD(&node->lower); 253 RB_CLEAR_NODE(&node->rb_node); 254 cache->nr_nodes++; 255 } 256 return node; 257 } 258 259 static void free_backref_node(struct backref_cache *cache, 260 struct backref_node *node) 261 { 262 if (node) { 263 cache->nr_nodes--; 264 kfree(node); 265 } 266 } 267 268 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 269 { 270 struct backref_edge *edge; 271 272 edge = kzalloc(sizeof(*edge), GFP_NOFS); 273 if (edge) 274 cache->nr_edges++; 275 return edge; 276 } 277 278 static void free_backref_edge(struct backref_cache *cache, 279 struct backref_edge *edge) 280 { 281 if (edge) { 282 cache->nr_edges--; 283 kfree(edge); 284 } 285 } 286 287 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 288 struct rb_node *node) 289 { 290 struct rb_node **p = &root->rb_node; 291 struct rb_node *parent = NULL; 292 struct tree_entry *entry; 293 294 while (*p) { 295 parent = *p; 296 entry = rb_entry(parent, struct tree_entry, rb_node); 297 298 if (bytenr < entry->bytenr) 299 p = &(*p)->rb_left; 300 else if (bytenr > entry->bytenr) 301 p = &(*p)->rb_right; 302 else 303 return parent; 304 } 305 306 rb_link_node(node, parent, p); 307 rb_insert_color(node, root); 308 return NULL; 309 } 310 311 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 312 { 313 struct rb_node *n = root->rb_node; 314 struct tree_entry *entry; 315 316 while (n) { 317 entry = rb_entry(n, struct tree_entry, rb_node); 318 319 if (bytenr < entry->bytenr) 320 n = n->rb_left; 321 else if (bytenr > entry->bytenr) 322 n = n->rb_right; 323 else 324 return n; 325 } 326 return NULL; 327 } 328 329 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr) 330 { 331 332 struct btrfs_fs_info *fs_info = NULL; 333 struct backref_node *bnode = rb_entry(rb_node, struct backref_node, 334 rb_node); 335 if (bnode->root) 336 fs_info = bnode->root->fs_info; 337 btrfs_panic(fs_info, errno, "Inconsistency in backref cache " 338 "found at offset %llu\n", bytenr); 339 } 340 341 /* 342 * walk up backref nodes until reach node presents tree root 343 */ 344 static struct backref_node *walk_up_backref(struct backref_node *node, 345 struct backref_edge *edges[], 346 int *index) 347 { 348 struct backref_edge *edge; 349 int idx = *index; 350 351 while (!list_empty(&node->upper)) { 352 edge = list_entry(node->upper.next, 353 struct backref_edge, list[LOWER]); 354 edges[idx++] = edge; 355 node = edge->node[UPPER]; 356 } 357 BUG_ON(node->detached); 358 *index = idx; 359 return node; 360 } 361 362 /* 363 * walk down backref nodes to find start of next reference path 364 */ 365 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 366 int *index) 367 { 368 struct backref_edge *edge; 369 struct backref_node *lower; 370 int idx = *index; 371 372 while (idx > 0) { 373 edge = edges[idx - 1]; 374 lower = edge->node[LOWER]; 375 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 376 idx--; 377 continue; 378 } 379 edge = list_entry(edge->list[LOWER].next, 380 struct backref_edge, list[LOWER]); 381 edges[idx - 1] = edge; 382 *index = idx; 383 return edge->node[UPPER]; 384 } 385 *index = 0; 386 return NULL; 387 } 388 389 static void unlock_node_buffer(struct backref_node *node) 390 { 391 if (node->locked) { 392 btrfs_tree_unlock(node->eb); 393 node->locked = 0; 394 } 395 } 396 397 static void drop_node_buffer(struct backref_node *node) 398 { 399 if (node->eb) { 400 unlock_node_buffer(node); 401 free_extent_buffer(node->eb); 402 node->eb = NULL; 403 } 404 } 405 406 static void drop_backref_node(struct backref_cache *tree, 407 struct backref_node *node) 408 { 409 BUG_ON(!list_empty(&node->upper)); 410 411 drop_node_buffer(node); 412 list_del(&node->list); 413 list_del(&node->lower); 414 if (!RB_EMPTY_NODE(&node->rb_node)) 415 rb_erase(&node->rb_node, &tree->rb_root); 416 free_backref_node(tree, node); 417 } 418 419 /* 420 * remove a backref node from the backref cache 421 */ 422 static void remove_backref_node(struct backref_cache *cache, 423 struct backref_node *node) 424 { 425 struct backref_node *upper; 426 struct backref_edge *edge; 427 428 if (!node) 429 return; 430 431 BUG_ON(!node->lowest && !node->detached); 432 while (!list_empty(&node->upper)) { 433 edge = list_entry(node->upper.next, struct backref_edge, 434 list[LOWER]); 435 upper = edge->node[UPPER]; 436 list_del(&edge->list[LOWER]); 437 list_del(&edge->list[UPPER]); 438 free_backref_edge(cache, edge); 439 440 if (RB_EMPTY_NODE(&upper->rb_node)) { 441 BUG_ON(!list_empty(&node->upper)); 442 drop_backref_node(cache, node); 443 node = upper; 444 node->lowest = 1; 445 continue; 446 } 447 /* 448 * add the node to leaf node list if no other 449 * child block cached. 450 */ 451 if (list_empty(&upper->lower)) { 452 list_add_tail(&upper->lower, &cache->leaves); 453 upper->lowest = 1; 454 } 455 } 456 457 drop_backref_node(cache, node); 458 } 459 460 static void update_backref_node(struct backref_cache *cache, 461 struct backref_node *node, u64 bytenr) 462 { 463 struct rb_node *rb_node; 464 rb_erase(&node->rb_node, &cache->rb_root); 465 node->bytenr = bytenr; 466 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 467 if (rb_node) 468 backref_tree_panic(rb_node, -EEXIST, bytenr); 469 } 470 471 /* 472 * update backref cache after a transaction commit 473 */ 474 static int update_backref_cache(struct btrfs_trans_handle *trans, 475 struct backref_cache *cache) 476 { 477 struct backref_node *node; 478 int level = 0; 479 480 if (cache->last_trans == 0) { 481 cache->last_trans = trans->transid; 482 return 0; 483 } 484 485 if (cache->last_trans == trans->transid) 486 return 0; 487 488 /* 489 * detached nodes are used to avoid unnecessary backref 490 * lookup. transaction commit changes the extent tree. 491 * so the detached nodes are no longer useful. 492 */ 493 while (!list_empty(&cache->detached)) { 494 node = list_entry(cache->detached.next, 495 struct backref_node, list); 496 remove_backref_node(cache, node); 497 } 498 499 while (!list_empty(&cache->changed)) { 500 node = list_entry(cache->changed.next, 501 struct backref_node, list); 502 list_del_init(&node->list); 503 BUG_ON(node->pending); 504 update_backref_node(cache, node, node->new_bytenr); 505 } 506 507 /* 508 * some nodes can be left in the pending list if there were 509 * errors during processing the pending nodes. 510 */ 511 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 512 list_for_each_entry(node, &cache->pending[level], list) { 513 BUG_ON(!node->pending); 514 if (node->bytenr == node->new_bytenr) 515 continue; 516 update_backref_node(cache, node, node->new_bytenr); 517 } 518 } 519 520 cache->last_trans = 0; 521 return 1; 522 } 523 524 525 static int should_ignore_root(struct btrfs_root *root) 526 { 527 struct btrfs_root *reloc_root; 528 529 if (!root->ref_cows) 530 return 0; 531 532 reloc_root = root->reloc_root; 533 if (!reloc_root) 534 return 0; 535 536 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 537 root->fs_info->running_transaction->transid - 1) 538 return 0; 539 /* 540 * if there is reloc tree and it was created in previous 541 * transaction backref lookup can find the reloc tree, 542 * so backref node for the fs tree root is useless for 543 * relocation. 544 */ 545 return 1; 546 } 547 /* 548 * find reloc tree by address of tree root 549 */ 550 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 551 u64 bytenr) 552 { 553 struct rb_node *rb_node; 554 struct mapping_node *node; 555 struct btrfs_root *root = NULL; 556 557 spin_lock(&rc->reloc_root_tree.lock); 558 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 559 if (rb_node) { 560 node = rb_entry(rb_node, struct mapping_node, rb_node); 561 root = (struct btrfs_root *)node->data; 562 } 563 spin_unlock(&rc->reloc_root_tree.lock); 564 return root; 565 } 566 567 static int is_cowonly_root(u64 root_objectid) 568 { 569 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 570 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 571 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 572 root_objectid == BTRFS_DEV_TREE_OBJECTID || 573 root_objectid == BTRFS_TREE_LOG_OBJECTID || 574 root_objectid == BTRFS_CSUM_TREE_OBJECTID) 575 return 1; 576 return 0; 577 } 578 579 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 580 u64 root_objectid) 581 { 582 struct btrfs_key key; 583 584 key.objectid = root_objectid; 585 key.type = BTRFS_ROOT_ITEM_KEY; 586 if (is_cowonly_root(root_objectid)) 587 key.offset = 0; 588 else 589 key.offset = (u64)-1; 590 591 return btrfs_read_fs_root_no_name(fs_info, &key); 592 } 593 594 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 595 static noinline_for_stack 596 struct btrfs_root *find_tree_root(struct reloc_control *rc, 597 struct extent_buffer *leaf, 598 struct btrfs_extent_ref_v0 *ref0) 599 { 600 struct btrfs_root *root; 601 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0); 602 u64 generation = btrfs_ref_generation_v0(leaf, ref0); 603 604 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID); 605 606 root = read_fs_root(rc->extent_root->fs_info, root_objectid); 607 BUG_ON(IS_ERR(root)); 608 609 if (root->ref_cows && 610 generation != btrfs_root_generation(&root->root_item)) 611 return NULL; 612 613 return root; 614 } 615 #endif 616 617 static noinline_for_stack 618 int find_inline_backref(struct extent_buffer *leaf, int slot, 619 unsigned long *ptr, unsigned long *end) 620 { 621 struct btrfs_key key; 622 struct btrfs_extent_item *ei; 623 struct btrfs_tree_block_info *bi; 624 u32 item_size; 625 626 btrfs_item_key_to_cpu(leaf, &key, slot); 627 628 item_size = btrfs_item_size_nr(leaf, slot); 629 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 630 if (item_size < sizeof(*ei)) { 631 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 632 return 1; 633 } 634 #endif 635 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 636 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 637 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 638 639 if (key.type == BTRFS_EXTENT_ITEM_KEY && 640 item_size <= sizeof(*ei) + sizeof(*bi)) { 641 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 642 return 1; 643 } 644 if (key.type == BTRFS_METADATA_ITEM_KEY && 645 item_size <= sizeof(*ei)) { 646 WARN_ON(item_size < sizeof(*ei)); 647 return 1; 648 } 649 650 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 651 bi = (struct btrfs_tree_block_info *)(ei + 1); 652 *ptr = (unsigned long)(bi + 1); 653 } else { 654 *ptr = (unsigned long)(ei + 1); 655 } 656 *end = (unsigned long)ei + item_size; 657 return 0; 658 } 659 660 /* 661 * build backref tree for a given tree block. root of the backref tree 662 * corresponds the tree block, leaves of the backref tree correspond 663 * roots of b-trees that reference the tree block. 664 * 665 * the basic idea of this function is check backrefs of a given block 666 * to find upper level blocks that refernece the block, and then check 667 * bakcrefs of these upper level blocks recursively. the recursion stop 668 * when tree root is reached or backrefs for the block is cached. 669 * 670 * NOTE: if we find backrefs for a block are cached, we know backrefs 671 * for all upper level blocks that directly/indirectly reference the 672 * block are also cached. 673 */ 674 static noinline_for_stack 675 struct backref_node *build_backref_tree(struct reloc_control *rc, 676 struct btrfs_key *node_key, 677 int level, u64 bytenr) 678 { 679 struct backref_cache *cache = &rc->backref_cache; 680 struct btrfs_path *path1; 681 struct btrfs_path *path2; 682 struct extent_buffer *eb; 683 struct btrfs_root *root; 684 struct backref_node *cur; 685 struct backref_node *upper; 686 struct backref_node *lower; 687 struct backref_node *node = NULL; 688 struct backref_node *exist = NULL; 689 struct backref_edge *edge; 690 struct rb_node *rb_node; 691 struct btrfs_key key; 692 unsigned long end; 693 unsigned long ptr; 694 LIST_HEAD(list); 695 LIST_HEAD(useless); 696 int cowonly; 697 int ret; 698 int err = 0; 699 bool need_check = true; 700 701 path1 = btrfs_alloc_path(); 702 path2 = btrfs_alloc_path(); 703 if (!path1 || !path2) { 704 err = -ENOMEM; 705 goto out; 706 } 707 path1->reada = 1; 708 path2->reada = 2; 709 710 node = alloc_backref_node(cache); 711 if (!node) { 712 err = -ENOMEM; 713 goto out; 714 } 715 716 node->bytenr = bytenr; 717 node->level = level; 718 node->lowest = 1; 719 cur = node; 720 again: 721 end = 0; 722 ptr = 0; 723 key.objectid = cur->bytenr; 724 key.type = BTRFS_METADATA_ITEM_KEY; 725 key.offset = (u64)-1; 726 727 path1->search_commit_root = 1; 728 path1->skip_locking = 1; 729 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 730 0, 0); 731 if (ret < 0) { 732 err = ret; 733 goto out; 734 } 735 BUG_ON(!ret || !path1->slots[0]); 736 737 path1->slots[0]--; 738 739 WARN_ON(cur->checked); 740 if (!list_empty(&cur->upper)) { 741 /* 742 * the backref was added previously when processing 743 * backref of type BTRFS_TREE_BLOCK_REF_KEY 744 */ 745 BUG_ON(!list_is_singular(&cur->upper)); 746 edge = list_entry(cur->upper.next, struct backref_edge, 747 list[LOWER]); 748 BUG_ON(!list_empty(&edge->list[UPPER])); 749 exist = edge->node[UPPER]; 750 /* 751 * add the upper level block to pending list if we need 752 * check its backrefs 753 */ 754 if (!exist->checked) 755 list_add_tail(&edge->list[UPPER], &list); 756 } else { 757 exist = NULL; 758 } 759 760 while (1) { 761 cond_resched(); 762 eb = path1->nodes[0]; 763 764 if (ptr >= end) { 765 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 766 ret = btrfs_next_leaf(rc->extent_root, path1); 767 if (ret < 0) { 768 err = ret; 769 goto out; 770 } 771 if (ret > 0) 772 break; 773 eb = path1->nodes[0]; 774 } 775 776 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 777 if (key.objectid != cur->bytenr) { 778 WARN_ON(exist); 779 break; 780 } 781 782 if (key.type == BTRFS_EXTENT_ITEM_KEY || 783 key.type == BTRFS_METADATA_ITEM_KEY) { 784 ret = find_inline_backref(eb, path1->slots[0], 785 &ptr, &end); 786 if (ret) 787 goto next; 788 } 789 } 790 791 if (ptr < end) { 792 /* update key for inline back ref */ 793 struct btrfs_extent_inline_ref *iref; 794 iref = (struct btrfs_extent_inline_ref *)ptr; 795 key.type = btrfs_extent_inline_ref_type(eb, iref); 796 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 797 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 798 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 799 } 800 801 if (exist && 802 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 803 exist->owner == key.offset) || 804 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 805 exist->bytenr == key.offset))) { 806 exist = NULL; 807 goto next; 808 } 809 810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 811 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY || 812 key.type == BTRFS_EXTENT_REF_V0_KEY) { 813 if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 814 struct btrfs_extent_ref_v0 *ref0; 815 ref0 = btrfs_item_ptr(eb, path1->slots[0], 816 struct btrfs_extent_ref_v0); 817 if (key.objectid == key.offset) { 818 root = find_tree_root(rc, eb, ref0); 819 if (root && !should_ignore_root(root)) 820 cur->root = root; 821 else 822 list_add(&cur->list, &useless); 823 break; 824 } 825 if (is_cowonly_root(btrfs_ref_root_v0(eb, 826 ref0))) 827 cur->cowonly = 1; 828 } 829 #else 830 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 831 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 832 #endif 833 if (key.objectid == key.offset) { 834 /* 835 * only root blocks of reloc trees use 836 * backref of this type. 837 */ 838 root = find_reloc_root(rc, cur->bytenr); 839 BUG_ON(!root); 840 cur->root = root; 841 break; 842 } 843 844 edge = alloc_backref_edge(cache); 845 if (!edge) { 846 err = -ENOMEM; 847 goto out; 848 } 849 rb_node = tree_search(&cache->rb_root, key.offset); 850 if (!rb_node) { 851 upper = alloc_backref_node(cache); 852 if (!upper) { 853 free_backref_edge(cache, edge); 854 err = -ENOMEM; 855 goto out; 856 } 857 upper->bytenr = key.offset; 858 upper->level = cur->level + 1; 859 /* 860 * backrefs for the upper level block isn't 861 * cached, add the block to pending list 862 */ 863 list_add_tail(&edge->list[UPPER], &list); 864 } else { 865 upper = rb_entry(rb_node, struct backref_node, 866 rb_node); 867 BUG_ON(!upper->checked); 868 INIT_LIST_HEAD(&edge->list[UPPER]); 869 } 870 list_add_tail(&edge->list[LOWER], &cur->upper); 871 edge->node[LOWER] = cur; 872 edge->node[UPPER] = upper; 873 874 goto next; 875 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 876 goto next; 877 } 878 879 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */ 880 root = read_fs_root(rc->extent_root->fs_info, key.offset); 881 if (IS_ERR(root)) { 882 err = PTR_ERR(root); 883 goto out; 884 } 885 886 if (!root->ref_cows) 887 cur->cowonly = 1; 888 889 if (btrfs_root_level(&root->root_item) == cur->level) { 890 /* tree root */ 891 BUG_ON(btrfs_root_bytenr(&root->root_item) != 892 cur->bytenr); 893 if (should_ignore_root(root)) 894 list_add(&cur->list, &useless); 895 else 896 cur->root = root; 897 break; 898 } 899 900 level = cur->level + 1; 901 902 /* 903 * searching the tree to find upper level blocks 904 * reference the block. 905 */ 906 path2->search_commit_root = 1; 907 path2->skip_locking = 1; 908 path2->lowest_level = level; 909 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 910 path2->lowest_level = 0; 911 if (ret < 0) { 912 err = ret; 913 goto out; 914 } 915 if (ret > 0 && path2->slots[level] > 0) 916 path2->slots[level]--; 917 918 eb = path2->nodes[level]; 919 WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) != 920 cur->bytenr); 921 922 lower = cur; 923 need_check = true; 924 for (; level < BTRFS_MAX_LEVEL; level++) { 925 if (!path2->nodes[level]) { 926 BUG_ON(btrfs_root_bytenr(&root->root_item) != 927 lower->bytenr); 928 if (should_ignore_root(root)) 929 list_add(&lower->list, &useless); 930 else 931 lower->root = root; 932 break; 933 } 934 935 edge = alloc_backref_edge(cache); 936 if (!edge) { 937 err = -ENOMEM; 938 goto out; 939 } 940 941 eb = path2->nodes[level]; 942 rb_node = tree_search(&cache->rb_root, eb->start); 943 if (!rb_node) { 944 upper = alloc_backref_node(cache); 945 if (!upper) { 946 free_backref_edge(cache, edge); 947 err = -ENOMEM; 948 goto out; 949 } 950 upper->bytenr = eb->start; 951 upper->owner = btrfs_header_owner(eb); 952 upper->level = lower->level + 1; 953 if (!root->ref_cows) 954 upper->cowonly = 1; 955 956 /* 957 * if we know the block isn't shared 958 * we can void checking its backrefs. 959 */ 960 if (btrfs_block_can_be_shared(root, eb)) 961 upper->checked = 0; 962 else 963 upper->checked = 1; 964 965 /* 966 * add the block to pending list if we 967 * need check its backrefs, we only do this once 968 * while walking up a tree as we will catch 969 * anything else later on. 970 */ 971 if (!upper->checked && need_check) { 972 need_check = false; 973 list_add_tail(&edge->list[UPPER], 974 &list); 975 } else 976 INIT_LIST_HEAD(&edge->list[UPPER]); 977 } else { 978 upper = rb_entry(rb_node, struct backref_node, 979 rb_node); 980 BUG_ON(!upper->checked); 981 INIT_LIST_HEAD(&edge->list[UPPER]); 982 if (!upper->owner) 983 upper->owner = btrfs_header_owner(eb); 984 } 985 list_add_tail(&edge->list[LOWER], &lower->upper); 986 edge->node[LOWER] = lower; 987 edge->node[UPPER] = upper; 988 989 if (rb_node) 990 break; 991 lower = upper; 992 upper = NULL; 993 } 994 btrfs_release_path(path2); 995 next: 996 if (ptr < end) { 997 ptr += btrfs_extent_inline_ref_size(key.type); 998 if (ptr >= end) { 999 WARN_ON(ptr > end); 1000 ptr = 0; 1001 end = 0; 1002 } 1003 } 1004 if (ptr >= end) 1005 path1->slots[0]++; 1006 } 1007 btrfs_release_path(path1); 1008 1009 cur->checked = 1; 1010 WARN_ON(exist); 1011 1012 /* the pending list isn't empty, take the first block to process */ 1013 if (!list_empty(&list)) { 1014 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1015 list_del_init(&edge->list[UPPER]); 1016 cur = edge->node[UPPER]; 1017 goto again; 1018 } 1019 1020 /* 1021 * everything goes well, connect backref nodes and insert backref nodes 1022 * into the cache. 1023 */ 1024 BUG_ON(!node->checked); 1025 cowonly = node->cowonly; 1026 if (!cowonly) { 1027 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1028 &node->rb_node); 1029 if (rb_node) 1030 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1031 list_add_tail(&node->lower, &cache->leaves); 1032 } 1033 1034 list_for_each_entry(edge, &node->upper, list[LOWER]) 1035 list_add_tail(&edge->list[UPPER], &list); 1036 1037 while (!list_empty(&list)) { 1038 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1039 list_del_init(&edge->list[UPPER]); 1040 upper = edge->node[UPPER]; 1041 if (upper->detached) { 1042 list_del(&edge->list[LOWER]); 1043 lower = edge->node[LOWER]; 1044 free_backref_edge(cache, edge); 1045 if (list_empty(&lower->upper)) 1046 list_add(&lower->list, &useless); 1047 continue; 1048 } 1049 1050 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1051 if (upper->lowest) { 1052 list_del_init(&upper->lower); 1053 upper->lowest = 0; 1054 } 1055 1056 list_add_tail(&edge->list[UPPER], &upper->lower); 1057 continue; 1058 } 1059 1060 BUG_ON(!upper->checked); 1061 BUG_ON(cowonly != upper->cowonly); 1062 if (!cowonly) { 1063 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1064 &upper->rb_node); 1065 if (rb_node) 1066 backref_tree_panic(rb_node, -EEXIST, 1067 upper->bytenr); 1068 } 1069 1070 list_add_tail(&edge->list[UPPER], &upper->lower); 1071 1072 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1073 list_add_tail(&edge->list[UPPER], &list); 1074 } 1075 /* 1076 * process useless backref nodes. backref nodes for tree leaves 1077 * are deleted from the cache. backref nodes for upper level 1078 * tree blocks are left in the cache to avoid unnecessary backref 1079 * lookup. 1080 */ 1081 while (!list_empty(&useless)) { 1082 upper = list_entry(useless.next, struct backref_node, list); 1083 list_del_init(&upper->list); 1084 BUG_ON(!list_empty(&upper->upper)); 1085 if (upper == node) 1086 node = NULL; 1087 if (upper->lowest) { 1088 list_del_init(&upper->lower); 1089 upper->lowest = 0; 1090 } 1091 while (!list_empty(&upper->lower)) { 1092 edge = list_entry(upper->lower.next, 1093 struct backref_edge, list[UPPER]); 1094 list_del(&edge->list[UPPER]); 1095 list_del(&edge->list[LOWER]); 1096 lower = edge->node[LOWER]; 1097 free_backref_edge(cache, edge); 1098 1099 if (list_empty(&lower->upper)) 1100 list_add(&lower->list, &useless); 1101 } 1102 __mark_block_processed(rc, upper); 1103 if (upper->level > 0) { 1104 list_add(&upper->list, &cache->detached); 1105 upper->detached = 1; 1106 } else { 1107 rb_erase(&upper->rb_node, &cache->rb_root); 1108 free_backref_node(cache, upper); 1109 } 1110 } 1111 out: 1112 btrfs_free_path(path1); 1113 btrfs_free_path(path2); 1114 if (err) { 1115 while (!list_empty(&useless)) { 1116 lower = list_entry(useless.next, 1117 struct backref_node, upper); 1118 list_del_init(&lower->upper); 1119 } 1120 upper = node; 1121 INIT_LIST_HEAD(&list); 1122 while (upper) { 1123 if (RB_EMPTY_NODE(&upper->rb_node)) { 1124 list_splice_tail(&upper->upper, &list); 1125 free_backref_node(cache, upper); 1126 } 1127 1128 if (list_empty(&list)) 1129 break; 1130 1131 edge = list_entry(list.next, struct backref_edge, 1132 list[LOWER]); 1133 list_del(&edge->list[LOWER]); 1134 upper = edge->node[UPPER]; 1135 free_backref_edge(cache, edge); 1136 } 1137 return ERR_PTR(err); 1138 } 1139 BUG_ON(node && node->detached); 1140 return node; 1141 } 1142 1143 /* 1144 * helper to add backref node for the newly created snapshot. 1145 * the backref node is created by cloning backref node that 1146 * corresponds to root of source tree 1147 */ 1148 static int clone_backref_node(struct btrfs_trans_handle *trans, 1149 struct reloc_control *rc, 1150 struct btrfs_root *src, 1151 struct btrfs_root *dest) 1152 { 1153 struct btrfs_root *reloc_root = src->reloc_root; 1154 struct backref_cache *cache = &rc->backref_cache; 1155 struct backref_node *node = NULL; 1156 struct backref_node *new_node; 1157 struct backref_edge *edge; 1158 struct backref_edge *new_edge; 1159 struct rb_node *rb_node; 1160 1161 if (cache->last_trans > 0) 1162 update_backref_cache(trans, cache); 1163 1164 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1165 if (rb_node) { 1166 node = rb_entry(rb_node, struct backref_node, rb_node); 1167 if (node->detached) 1168 node = NULL; 1169 else 1170 BUG_ON(node->new_bytenr != reloc_root->node->start); 1171 } 1172 1173 if (!node) { 1174 rb_node = tree_search(&cache->rb_root, 1175 reloc_root->commit_root->start); 1176 if (rb_node) { 1177 node = rb_entry(rb_node, struct backref_node, 1178 rb_node); 1179 BUG_ON(node->detached); 1180 } 1181 } 1182 1183 if (!node) 1184 return 0; 1185 1186 new_node = alloc_backref_node(cache); 1187 if (!new_node) 1188 return -ENOMEM; 1189 1190 new_node->bytenr = dest->node->start; 1191 new_node->level = node->level; 1192 new_node->lowest = node->lowest; 1193 new_node->checked = 1; 1194 new_node->root = dest; 1195 1196 if (!node->lowest) { 1197 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1198 new_edge = alloc_backref_edge(cache); 1199 if (!new_edge) 1200 goto fail; 1201 1202 new_edge->node[UPPER] = new_node; 1203 new_edge->node[LOWER] = edge->node[LOWER]; 1204 list_add_tail(&new_edge->list[UPPER], 1205 &new_node->lower); 1206 } 1207 } else { 1208 list_add_tail(&new_node->lower, &cache->leaves); 1209 } 1210 1211 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1212 &new_node->rb_node); 1213 if (rb_node) 1214 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr); 1215 1216 if (!new_node->lowest) { 1217 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1218 list_add_tail(&new_edge->list[LOWER], 1219 &new_edge->node[LOWER]->upper); 1220 } 1221 } 1222 return 0; 1223 fail: 1224 while (!list_empty(&new_node->lower)) { 1225 new_edge = list_entry(new_node->lower.next, 1226 struct backref_edge, list[UPPER]); 1227 list_del(&new_edge->list[UPPER]); 1228 free_backref_edge(cache, new_edge); 1229 } 1230 free_backref_node(cache, new_node); 1231 return -ENOMEM; 1232 } 1233 1234 /* 1235 * helper to add 'address of tree root -> reloc tree' mapping 1236 */ 1237 static int __must_check __add_reloc_root(struct btrfs_root *root) 1238 { 1239 struct rb_node *rb_node; 1240 struct mapping_node *node; 1241 struct reloc_control *rc = root->fs_info->reloc_ctl; 1242 1243 node = kmalloc(sizeof(*node), GFP_NOFS); 1244 if (!node) 1245 return -ENOMEM; 1246 1247 node->bytenr = root->node->start; 1248 node->data = root; 1249 1250 spin_lock(&rc->reloc_root_tree.lock); 1251 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1252 node->bytenr, &node->rb_node); 1253 spin_unlock(&rc->reloc_root_tree.lock); 1254 if (rb_node) { 1255 btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found " 1256 "for start=%llu while inserting into relocation " 1257 "tree\n", node->bytenr); 1258 kfree(node); 1259 return -EEXIST; 1260 } 1261 1262 list_add_tail(&root->root_list, &rc->reloc_roots); 1263 return 0; 1264 } 1265 1266 /* 1267 * helper to update/delete the 'address of tree root -> reloc tree' 1268 * mapping 1269 */ 1270 static int __update_reloc_root(struct btrfs_root *root, int del) 1271 { 1272 struct rb_node *rb_node; 1273 struct mapping_node *node = NULL; 1274 struct reloc_control *rc = root->fs_info->reloc_ctl; 1275 1276 spin_lock(&rc->reloc_root_tree.lock); 1277 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1278 root->commit_root->start); 1279 if (rb_node) { 1280 node = rb_entry(rb_node, struct mapping_node, rb_node); 1281 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1282 } 1283 spin_unlock(&rc->reloc_root_tree.lock); 1284 1285 if (!node) 1286 return 0; 1287 BUG_ON((struct btrfs_root *)node->data != root); 1288 1289 if (!del) { 1290 spin_lock(&rc->reloc_root_tree.lock); 1291 node->bytenr = root->node->start; 1292 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1293 node->bytenr, &node->rb_node); 1294 spin_unlock(&rc->reloc_root_tree.lock); 1295 if (rb_node) 1296 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1297 } else { 1298 spin_lock(&root->fs_info->trans_lock); 1299 list_del_init(&root->root_list); 1300 spin_unlock(&root->fs_info->trans_lock); 1301 kfree(node); 1302 } 1303 return 0; 1304 } 1305 1306 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1307 struct btrfs_root *root, u64 objectid) 1308 { 1309 struct btrfs_root *reloc_root; 1310 struct extent_buffer *eb; 1311 struct btrfs_root_item *root_item; 1312 struct btrfs_key root_key; 1313 u64 last_snap = 0; 1314 int ret; 1315 1316 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1317 BUG_ON(!root_item); 1318 1319 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1320 root_key.type = BTRFS_ROOT_ITEM_KEY; 1321 root_key.offset = objectid; 1322 1323 if (root->root_key.objectid == objectid) { 1324 /* called by btrfs_init_reloc_root */ 1325 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1326 BTRFS_TREE_RELOC_OBJECTID); 1327 BUG_ON(ret); 1328 1329 last_snap = btrfs_root_last_snapshot(&root->root_item); 1330 btrfs_set_root_last_snapshot(&root->root_item, 1331 trans->transid - 1); 1332 } else { 1333 /* 1334 * called by btrfs_reloc_post_snapshot_hook. 1335 * the source tree is a reloc tree, all tree blocks 1336 * modified after it was created have RELOC flag 1337 * set in their headers. so it's OK to not update 1338 * the 'last_snapshot'. 1339 */ 1340 ret = btrfs_copy_root(trans, root, root->node, &eb, 1341 BTRFS_TREE_RELOC_OBJECTID); 1342 BUG_ON(ret); 1343 } 1344 1345 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1346 btrfs_set_root_bytenr(root_item, eb->start); 1347 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1348 btrfs_set_root_generation(root_item, trans->transid); 1349 1350 if (root->root_key.objectid == objectid) { 1351 btrfs_set_root_refs(root_item, 0); 1352 memset(&root_item->drop_progress, 0, 1353 sizeof(struct btrfs_disk_key)); 1354 root_item->drop_level = 0; 1355 /* 1356 * abuse rtransid, it is safe because it is impossible to 1357 * receive data into a relocation tree. 1358 */ 1359 btrfs_set_root_rtransid(root_item, last_snap); 1360 btrfs_set_root_otransid(root_item, trans->transid); 1361 } 1362 1363 btrfs_tree_unlock(eb); 1364 free_extent_buffer(eb); 1365 1366 ret = btrfs_insert_root(trans, root->fs_info->tree_root, 1367 &root_key, root_item); 1368 BUG_ON(ret); 1369 kfree(root_item); 1370 1371 reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key); 1372 BUG_ON(IS_ERR(reloc_root)); 1373 reloc_root->last_trans = trans->transid; 1374 return reloc_root; 1375 } 1376 1377 /* 1378 * create reloc tree for a given fs tree. reloc tree is just a 1379 * snapshot of the fs tree with special root objectid. 1380 */ 1381 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1382 struct btrfs_root *root) 1383 { 1384 struct btrfs_root *reloc_root; 1385 struct reloc_control *rc = root->fs_info->reloc_ctl; 1386 int clear_rsv = 0; 1387 int ret; 1388 1389 if (root->reloc_root) { 1390 reloc_root = root->reloc_root; 1391 reloc_root->last_trans = trans->transid; 1392 return 0; 1393 } 1394 1395 if (!rc || !rc->create_reloc_tree || 1396 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1397 return 0; 1398 1399 if (!trans->block_rsv) { 1400 trans->block_rsv = rc->block_rsv; 1401 clear_rsv = 1; 1402 } 1403 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1404 if (clear_rsv) 1405 trans->block_rsv = NULL; 1406 1407 ret = __add_reloc_root(reloc_root); 1408 BUG_ON(ret < 0); 1409 root->reloc_root = reloc_root; 1410 return 0; 1411 } 1412 1413 /* 1414 * update root item of reloc tree 1415 */ 1416 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1417 struct btrfs_root *root) 1418 { 1419 struct btrfs_root *reloc_root; 1420 struct btrfs_root_item *root_item; 1421 int del = 0; 1422 int ret; 1423 1424 if (!root->reloc_root) 1425 goto out; 1426 1427 reloc_root = root->reloc_root; 1428 root_item = &reloc_root->root_item; 1429 1430 if (root->fs_info->reloc_ctl->merge_reloc_tree && 1431 btrfs_root_refs(root_item) == 0) { 1432 root->reloc_root = NULL; 1433 del = 1; 1434 } 1435 1436 __update_reloc_root(reloc_root, del); 1437 1438 if (reloc_root->commit_root != reloc_root->node) { 1439 btrfs_set_root_node(root_item, reloc_root->node); 1440 free_extent_buffer(reloc_root->commit_root); 1441 reloc_root->commit_root = btrfs_root_node(reloc_root); 1442 } 1443 1444 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1445 &reloc_root->root_key, root_item); 1446 BUG_ON(ret); 1447 1448 out: 1449 return 0; 1450 } 1451 1452 /* 1453 * helper to find first cached inode with inode number >= objectid 1454 * in a subvolume 1455 */ 1456 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1457 { 1458 struct rb_node *node; 1459 struct rb_node *prev; 1460 struct btrfs_inode *entry; 1461 struct inode *inode; 1462 1463 spin_lock(&root->inode_lock); 1464 again: 1465 node = root->inode_tree.rb_node; 1466 prev = NULL; 1467 while (node) { 1468 prev = node; 1469 entry = rb_entry(node, struct btrfs_inode, rb_node); 1470 1471 if (objectid < btrfs_ino(&entry->vfs_inode)) 1472 node = node->rb_left; 1473 else if (objectid > btrfs_ino(&entry->vfs_inode)) 1474 node = node->rb_right; 1475 else 1476 break; 1477 } 1478 if (!node) { 1479 while (prev) { 1480 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1481 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 1482 node = prev; 1483 break; 1484 } 1485 prev = rb_next(prev); 1486 } 1487 } 1488 while (node) { 1489 entry = rb_entry(node, struct btrfs_inode, rb_node); 1490 inode = igrab(&entry->vfs_inode); 1491 if (inode) { 1492 spin_unlock(&root->inode_lock); 1493 return inode; 1494 } 1495 1496 objectid = btrfs_ino(&entry->vfs_inode) + 1; 1497 if (cond_resched_lock(&root->inode_lock)) 1498 goto again; 1499 1500 node = rb_next(node); 1501 } 1502 spin_unlock(&root->inode_lock); 1503 return NULL; 1504 } 1505 1506 static int in_block_group(u64 bytenr, 1507 struct btrfs_block_group_cache *block_group) 1508 { 1509 if (bytenr >= block_group->key.objectid && 1510 bytenr < block_group->key.objectid + block_group->key.offset) 1511 return 1; 1512 return 0; 1513 } 1514 1515 /* 1516 * get new location of data 1517 */ 1518 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1519 u64 bytenr, u64 num_bytes) 1520 { 1521 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1522 struct btrfs_path *path; 1523 struct btrfs_file_extent_item *fi; 1524 struct extent_buffer *leaf; 1525 int ret; 1526 1527 path = btrfs_alloc_path(); 1528 if (!path) 1529 return -ENOMEM; 1530 1531 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1532 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode), 1533 bytenr, 0); 1534 if (ret < 0) 1535 goto out; 1536 if (ret > 0) { 1537 ret = -ENOENT; 1538 goto out; 1539 } 1540 1541 leaf = path->nodes[0]; 1542 fi = btrfs_item_ptr(leaf, path->slots[0], 1543 struct btrfs_file_extent_item); 1544 1545 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1546 btrfs_file_extent_compression(leaf, fi) || 1547 btrfs_file_extent_encryption(leaf, fi) || 1548 btrfs_file_extent_other_encoding(leaf, fi)); 1549 1550 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1551 ret = 1; 1552 goto out; 1553 } 1554 1555 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1556 ret = 0; 1557 out: 1558 btrfs_free_path(path); 1559 return ret; 1560 } 1561 1562 /* 1563 * update file extent items in the tree leaf to point to 1564 * the new locations. 1565 */ 1566 static noinline_for_stack 1567 int replace_file_extents(struct btrfs_trans_handle *trans, 1568 struct reloc_control *rc, 1569 struct btrfs_root *root, 1570 struct extent_buffer *leaf) 1571 { 1572 struct btrfs_key key; 1573 struct btrfs_file_extent_item *fi; 1574 struct inode *inode = NULL; 1575 u64 parent; 1576 u64 bytenr; 1577 u64 new_bytenr = 0; 1578 u64 num_bytes; 1579 u64 end; 1580 u32 nritems; 1581 u32 i; 1582 int ret; 1583 int first = 1; 1584 int dirty = 0; 1585 1586 if (rc->stage != UPDATE_DATA_PTRS) 1587 return 0; 1588 1589 /* reloc trees always use full backref */ 1590 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1591 parent = leaf->start; 1592 else 1593 parent = 0; 1594 1595 nritems = btrfs_header_nritems(leaf); 1596 for (i = 0; i < nritems; i++) { 1597 cond_resched(); 1598 btrfs_item_key_to_cpu(leaf, &key, i); 1599 if (key.type != BTRFS_EXTENT_DATA_KEY) 1600 continue; 1601 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1602 if (btrfs_file_extent_type(leaf, fi) == 1603 BTRFS_FILE_EXTENT_INLINE) 1604 continue; 1605 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1606 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1607 if (bytenr == 0) 1608 continue; 1609 if (!in_block_group(bytenr, rc->block_group)) 1610 continue; 1611 1612 /* 1613 * if we are modifying block in fs tree, wait for readpage 1614 * to complete and drop the extent cache 1615 */ 1616 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1617 if (first) { 1618 inode = find_next_inode(root, key.objectid); 1619 first = 0; 1620 } else if (inode && btrfs_ino(inode) < key.objectid) { 1621 btrfs_add_delayed_iput(inode); 1622 inode = find_next_inode(root, key.objectid); 1623 } 1624 if (inode && btrfs_ino(inode) == key.objectid) { 1625 end = key.offset + 1626 btrfs_file_extent_num_bytes(leaf, fi); 1627 WARN_ON(!IS_ALIGNED(key.offset, 1628 root->sectorsize)); 1629 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 1630 end--; 1631 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1632 key.offset, end); 1633 if (!ret) 1634 continue; 1635 1636 btrfs_drop_extent_cache(inode, key.offset, end, 1637 1); 1638 unlock_extent(&BTRFS_I(inode)->io_tree, 1639 key.offset, end); 1640 } 1641 } 1642 1643 ret = get_new_location(rc->data_inode, &new_bytenr, 1644 bytenr, num_bytes); 1645 if (ret > 0) { 1646 WARN_ON(1); 1647 continue; 1648 } 1649 BUG_ON(ret < 0); 1650 1651 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1652 dirty = 1; 1653 1654 key.offset -= btrfs_file_extent_offset(leaf, fi); 1655 ret = btrfs_inc_extent_ref(trans, root, new_bytenr, 1656 num_bytes, parent, 1657 btrfs_header_owner(leaf), 1658 key.objectid, key.offset, 1); 1659 BUG_ON(ret); 1660 1661 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1662 parent, btrfs_header_owner(leaf), 1663 key.objectid, key.offset, 1); 1664 BUG_ON(ret); 1665 } 1666 if (dirty) 1667 btrfs_mark_buffer_dirty(leaf); 1668 if (inode) 1669 btrfs_add_delayed_iput(inode); 1670 return 0; 1671 } 1672 1673 static noinline_for_stack 1674 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1675 struct btrfs_path *path, int level) 1676 { 1677 struct btrfs_disk_key key1; 1678 struct btrfs_disk_key key2; 1679 btrfs_node_key(eb, &key1, slot); 1680 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1681 return memcmp(&key1, &key2, sizeof(key1)); 1682 } 1683 1684 /* 1685 * try to replace tree blocks in fs tree with the new blocks 1686 * in reloc tree. tree blocks haven't been modified since the 1687 * reloc tree was create can be replaced. 1688 * 1689 * if a block was replaced, level of the block + 1 is returned. 1690 * if no block got replaced, 0 is returned. if there are other 1691 * errors, a negative error number is returned. 1692 */ 1693 static noinline_for_stack 1694 int replace_path(struct btrfs_trans_handle *trans, 1695 struct btrfs_root *dest, struct btrfs_root *src, 1696 struct btrfs_path *path, struct btrfs_key *next_key, 1697 int lowest_level, int max_level) 1698 { 1699 struct extent_buffer *eb; 1700 struct extent_buffer *parent; 1701 struct btrfs_key key; 1702 u64 old_bytenr; 1703 u64 new_bytenr; 1704 u64 old_ptr_gen; 1705 u64 new_ptr_gen; 1706 u64 last_snapshot; 1707 u32 blocksize; 1708 int cow = 0; 1709 int level; 1710 int ret; 1711 int slot; 1712 1713 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1714 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1715 1716 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1717 again: 1718 slot = path->slots[lowest_level]; 1719 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1720 1721 eb = btrfs_lock_root_node(dest); 1722 btrfs_set_lock_blocking(eb); 1723 level = btrfs_header_level(eb); 1724 1725 if (level < lowest_level) { 1726 btrfs_tree_unlock(eb); 1727 free_extent_buffer(eb); 1728 return 0; 1729 } 1730 1731 if (cow) { 1732 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1733 BUG_ON(ret); 1734 } 1735 btrfs_set_lock_blocking(eb); 1736 1737 if (next_key) { 1738 next_key->objectid = (u64)-1; 1739 next_key->type = (u8)-1; 1740 next_key->offset = (u64)-1; 1741 } 1742 1743 parent = eb; 1744 while (1) { 1745 level = btrfs_header_level(parent); 1746 BUG_ON(level < lowest_level); 1747 1748 ret = btrfs_bin_search(parent, &key, level, &slot); 1749 if (ret && slot > 0) 1750 slot--; 1751 1752 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1753 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1754 1755 old_bytenr = btrfs_node_blockptr(parent, slot); 1756 blocksize = btrfs_level_size(dest, level - 1); 1757 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1758 1759 if (level <= max_level) { 1760 eb = path->nodes[level]; 1761 new_bytenr = btrfs_node_blockptr(eb, 1762 path->slots[level]); 1763 new_ptr_gen = btrfs_node_ptr_generation(eb, 1764 path->slots[level]); 1765 } else { 1766 new_bytenr = 0; 1767 new_ptr_gen = 0; 1768 } 1769 1770 if (new_bytenr > 0 && new_bytenr == old_bytenr) { 1771 WARN_ON(1); 1772 ret = level; 1773 break; 1774 } 1775 1776 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1777 memcmp_node_keys(parent, slot, path, level)) { 1778 if (level <= lowest_level) { 1779 ret = 0; 1780 break; 1781 } 1782 1783 eb = read_tree_block(dest, old_bytenr, blocksize, 1784 old_ptr_gen); 1785 if (!eb || !extent_buffer_uptodate(eb)) { 1786 ret = (!eb) ? -ENOMEM : -EIO; 1787 free_extent_buffer(eb); 1788 break; 1789 } 1790 btrfs_tree_lock(eb); 1791 if (cow) { 1792 ret = btrfs_cow_block(trans, dest, eb, parent, 1793 slot, &eb); 1794 BUG_ON(ret); 1795 } 1796 btrfs_set_lock_blocking(eb); 1797 1798 btrfs_tree_unlock(parent); 1799 free_extent_buffer(parent); 1800 1801 parent = eb; 1802 continue; 1803 } 1804 1805 if (!cow) { 1806 btrfs_tree_unlock(parent); 1807 free_extent_buffer(parent); 1808 cow = 1; 1809 goto again; 1810 } 1811 1812 btrfs_node_key_to_cpu(path->nodes[level], &key, 1813 path->slots[level]); 1814 btrfs_release_path(path); 1815 1816 path->lowest_level = level; 1817 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1818 path->lowest_level = 0; 1819 BUG_ON(ret); 1820 1821 /* 1822 * swap blocks in fs tree and reloc tree. 1823 */ 1824 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1825 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1826 btrfs_mark_buffer_dirty(parent); 1827 1828 btrfs_set_node_blockptr(path->nodes[level], 1829 path->slots[level], old_bytenr); 1830 btrfs_set_node_ptr_generation(path->nodes[level], 1831 path->slots[level], old_ptr_gen); 1832 btrfs_mark_buffer_dirty(path->nodes[level]); 1833 1834 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize, 1835 path->nodes[level]->start, 1836 src->root_key.objectid, level - 1, 0, 1837 1); 1838 BUG_ON(ret); 1839 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize, 1840 0, dest->root_key.objectid, level - 1, 1841 0, 1); 1842 BUG_ON(ret); 1843 1844 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize, 1845 path->nodes[level]->start, 1846 src->root_key.objectid, level - 1, 0, 1847 1); 1848 BUG_ON(ret); 1849 1850 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize, 1851 0, dest->root_key.objectid, level - 1, 1852 0, 1); 1853 BUG_ON(ret); 1854 1855 btrfs_unlock_up_safe(path, 0); 1856 1857 ret = level; 1858 break; 1859 } 1860 btrfs_tree_unlock(parent); 1861 free_extent_buffer(parent); 1862 return ret; 1863 } 1864 1865 /* 1866 * helper to find next relocated block in reloc tree 1867 */ 1868 static noinline_for_stack 1869 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1870 int *level) 1871 { 1872 struct extent_buffer *eb; 1873 int i; 1874 u64 last_snapshot; 1875 u32 nritems; 1876 1877 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1878 1879 for (i = 0; i < *level; i++) { 1880 free_extent_buffer(path->nodes[i]); 1881 path->nodes[i] = NULL; 1882 } 1883 1884 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1885 eb = path->nodes[i]; 1886 nritems = btrfs_header_nritems(eb); 1887 while (path->slots[i] + 1 < nritems) { 1888 path->slots[i]++; 1889 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1890 last_snapshot) 1891 continue; 1892 1893 *level = i; 1894 return 0; 1895 } 1896 free_extent_buffer(path->nodes[i]); 1897 path->nodes[i] = NULL; 1898 } 1899 return 1; 1900 } 1901 1902 /* 1903 * walk down reloc tree to find relocated block of lowest level 1904 */ 1905 static noinline_for_stack 1906 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1907 int *level) 1908 { 1909 struct extent_buffer *eb = NULL; 1910 int i; 1911 u64 bytenr; 1912 u64 ptr_gen = 0; 1913 u64 last_snapshot; 1914 u32 blocksize; 1915 u32 nritems; 1916 1917 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1918 1919 for (i = *level; i > 0; i--) { 1920 eb = path->nodes[i]; 1921 nritems = btrfs_header_nritems(eb); 1922 while (path->slots[i] < nritems) { 1923 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1924 if (ptr_gen > last_snapshot) 1925 break; 1926 path->slots[i]++; 1927 } 1928 if (path->slots[i] >= nritems) { 1929 if (i == *level) 1930 break; 1931 *level = i + 1; 1932 return 0; 1933 } 1934 if (i == 1) { 1935 *level = i; 1936 return 0; 1937 } 1938 1939 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 1940 blocksize = btrfs_level_size(root, i - 1); 1941 eb = read_tree_block(root, bytenr, blocksize, ptr_gen); 1942 if (!eb || !extent_buffer_uptodate(eb)) { 1943 free_extent_buffer(eb); 1944 return -EIO; 1945 } 1946 BUG_ON(btrfs_header_level(eb) != i - 1); 1947 path->nodes[i - 1] = eb; 1948 path->slots[i - 1] = 0; 1949 } 1950 return 1; 1951 } 1952 1953 /* 1954 * invalidate extent cache for file extents whose key in range of 1955 * [min_key, max_key) 1956 */ 1957 static int invalidate_extent_cache(struct btrfs_root *root, 1958 struct btrfs_key *min_key, 1959 struct btrfs_key *max_key) 1960 { 1961 struct inode *inode = NULL; 1962 u64 objectid; 1963 u64 start, end; 1964 u64 ino; 1965 1966 objectid = min_key->objectid; 1967 while (1) { 1968 cond_resched(); 1969 iput(inode); 1970 1971 if (objectid > max_key->objectid) 1972 break; 1973 1974 inode = find_next_inode(root, objectid); 1975 if (!inode) 1976 break; 1977 ino = btrfs_ino(inode); 1978 1979 if (ino > max_key->objectid) { 1980 iput(inode); 1981 break; 1982 } 1983 1984 objectid = ino + 1; 1985 if (!S_ISREG(inode->i_mode)) 1986 continue; 1987 1988 if (unlikely(min_key->objectid == ino)) { 1989 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1990 continue; 1991 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1992 start = 0; 1993 else { 1994 start = min_key->offset; 1995 WARN_ON(!IS_ALIGNED(start, root->sectorsize)); 1996 } 1997 } else { 1998 start = 0; 1999 } 2000 2001 if (unlikely(max_key->objectid == ino)) { 2002 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 2003 continue; 2004 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 2005 end = (u64)-1; 2006 } else { 2007 if (max_key->offset == 0) 2008 continue; 2009 end = max_key->offset; 2010 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 2011 end--; 2012 } 2013 } else { 2014 end = (u64)-1; 2015 } 2016 2017 /* the lock_extent waits for readpage to complete */ 2018 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2019 btrfs_drop_extent_cache(inode, start, end, 1); 2020 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2021 } 2022 return 0; 2023 } 2024 2025 static int find_next_key(struct btrfs_path *path, int level, 2026 struct btrfs_key *key) 2027 2028 { 2029 while (level < BTRFS_MAX_LEVEL) { 2030 if (!path->nodes[level]) 2031 break; 2032 if (path->slots[level] + 1 < 2033 btrfs_header_nritems(path->nodes[level])) { 2034 btrfs_node_key_to_cpu(path->nodes[level], key, 2035 path->slots[level] + 1); 2036 return 0; 2037 } 2038 level++; 2039 } 2040 return 1; 2041 } 2042 2043 /* 2044 * merge the relocated tree blocks in reloc tree with corresponding 2045 * fs tree. 2046 */ 2047 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 2048 struct btrfs_root *root) 2049 { 2050 LIST_HEAD(inode_list); 2051 struct btrfs_key key; 2052 struct btrfs_key next_key; 2053 struct btrfs_trans_handle *trans; 2054 struct btrfs_root *reloc_root; 2055 struct btrfs_root_item *root_item; 2056 struct btrfs_path *path; 2057 struct extent_buffer *leaf; 2058 int level; 2059 int max_level; 2060 int replaced = 0; 2061 int ret; 2062 int err = 0; 2063 u32 min_reserved; 2064 2065 path = btrfs_alloc_path(); 2066 if (!path) 2067 return -ENOMEM; 2068 path->reada = 1; 2069 2070 reloc_root = root->reloc_root; 2071 root_item = &reloc_root->root_item; 2072 2073 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2074 level = btrfs_root_level(root_item); 2075 extent_buffer_get(reloc_root->node); 2076 path->nodes[level] = reloc_root->node; 2077 path->slots[level] = 0; 2078 } else { 2079 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2080 2081 level = root_item->drop_level; 2082 BUG_ON(level == 0); 2083 path->lowest_level = level; 2084 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2085 path->lowest_level = 0; 2086 if (ret < 0) { 2087 btrfs_free_path(path); 2088 return ret; 2089 } 2090 2091 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2092 path->slots[level]); 2093 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2094 2095 btrfs_unlock_up_safe(path, 0); 2096 } 2097 2098 min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2099 memset(&next_key, 0, sizeof(next_key)); 2100 2101 while (1) { 2102 trans = btrfs_start_transaction(root, 0); 2103 BUG_ON(IS_ERR(trans)); 2104 trans->block_rsv = rc->block_rsv; 2105 2106 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 2107 BTRFS_RESERVE_FLUSH_ALL); 2108 if (ret) { 2109 BUG_ON(ret != -EAGAIN); 2110 ret = btrfs_commit_transaction(trans, root); 2111 BUG_ON(ret); 2112 continue; 2113 } 2114 2115 replaced = 0; 2116 max_level = level; 2117 2118 ret = walk_down_reloc_tree(reloc_root, path, &level); 2119 if (ret < 0) { 2120 err = ret; 2121 goto out; 2122 } 2123 if (ret > 0) 2124 break; 2125 2126 if (!find_next_key(path, level, &key) && 2127 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2128 ret = 0; 2129 } else { 2130 ret = replace_path(trans, root, reloc_root, path, 2131 &next_key, level, max_level); 2132 } 2133 if (ret < 0) { 2134 err = ret; 2135 goto out; 2136 } 2137 2138 if (ret > 0) { 2139 level = ret; 2140 btrfs_node_key_to_cpu(path->nodes[level], &key, 2141 path->slots[level]); 2142 replaced = 1; 2143 } 2144 2145 ret = walk_up_reloc_tree(reloc_root, path, &level); 2146 if (ret > 0) 2147 break; 2148 2149 BUG_ON(level == 0); 2150 /* 2151 * save the merging progress in the drop_progress. 2152 * this is OK since root refs == 1 in this case. 2153 */ 2154 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2155 path->slots[level]); 2156 root_item->drop_level = level; 2157 2158 btrfs_end_transaction_throttle(trans, root); 2159 2160 btrfs_btree_balance_dirty(root); 2161 2162 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2163 invalidate_extent_cache(root, &key, &next_key); 2164 } 2165 2166 /* 2167 * handle the case only one block in the fs tree need to be 2168 * relocated and the block is tree root. 2169 */ 2170 leaf = btrfs_lock_root_node(root); 2171 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2172 btrfs_tree_unlock(leaf); 2173 free_extent_buffer(leaf); 2174 if (ret < 0) 2175 err = ret; 2176 out: 2177 btrfs_free_path(path); 2178 2179 if (err == 0) { 2180 memset(&root_item->drop_progress, 0, 2181 sizeof(root_item->drop_progress)); 2182 root_item->drop_level = 0; 2183 btrfs_set_root_refs(root_item, 0); 2184 btrfs_update_reloc_root(trans, root); 2185 } 2186 2187 btrfs_end_transaction_throttle(trans, root); 2188 2189 btrfs_btree_balance_dirty(root); 2190 2191 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2192 invalidate_extent_cache(root, &key, &next_key); 2193 2194 return err; 2195 } 2196 2197 static noinline_for_stack 2198 int prepare_to_merge(struct reloc_control *rc, int err) 2199 { 2200 struct btrfs_root *root = rc->extent_root; 2201 struct btrfs_root *reloc_root; 2202 struct btrfs_trans_handle *trans; 2203 LIST_HEAD(reloc_roots); 2204 u64 num_bytes = 0; 2205 int ret; 2206 2207 mutex_lock(&root->fs_info->reloc_mutex); 2208 rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2209 rc->merging_rsv_size += rc->nodes_relocated * 2; 2210 mutex_unlock(&root->fs_info->reloc_mutex); 2211 2212 again: 2213 if (!err) { 2214 num_bytes = rc->merging_rsv_size; 2215 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2216 BTRFS_RESERVE_FLUSH_ALL); 2217 if (ret) 2218 err = ret; 2219 } 2220 2221 trans = btrfs_join_transaction(rc->extent_root); 2222 if (IS_ERR(trans)) { 2223 if (!err) 2224 btrfs_block_rsv_release(rc->extent_root, 2225 rc->block_rsv, num_bytes); 2226 return PTR_ERR(trans); 2227 } 2228 2229 if (!err) { 2230 if (num_bytes != rc->merging_rsv_size) { 2231 btrfs_end_transaction(trans, rc->extent_root); 2232 btrfs_block_rsv_release(rc->extent_root, 2233 rc->block_rsv, num_bytes); 2234 goto again; 2235 } 2236 } 2237 2238 rc->merge_reloc_tree = 1; 2239 2240 while (!list_empty(&rc->reloc_roots)) { 2241 reloc_root = list_entry(rc->reloc_roots.next, 2242 struct btrfs_root, root_list); 2243 list_del_init(&reloc_root->root_list); 2244 2245 root = read_fs_root(reloc_root->fs_info, 2246 reloc_root->root_key.offset); 2247 BUG_ON(IS_ERR(root)); 2248 BUG_ON(root->reloc_root != reloc_root); 2249 2250 /* 2251 * set reference count to 1, so btrfs_recover_relocation 2252 * knows it should resumes merging 2253 */ 2254 if (!err) 2255 btrfs_set_root_refs(&reloc_root->root_item, 1); 2256 btrfs_update_reloc_root(trans, root); 2257 2258 list_add(&reloc_root->root_list, &reloc_roots); 2259 } 2260 2261 list_splice(&reloc_roots, &rc->reloc_roots); 2262 2263 if (!err) 2264 btrfs_commit_transaction(trans, rc->extent_root); 2265 else 2266 btrfs_end_transaction(trans, rc->extent_root); 2267 return err; 2268 } 2269 2270 static noinline_for_stack 2271 void free_reloc_roots(struct list_head *list) 2272 { 2273 struct btrfs_root *reloc_root; 2274 2275 while (!list_empty(list)) { 2276 reloc_root = list_entry(list->next, struct btrfs_root, 2277 root_list); 2278 __update_reloc_root(reloc_root, 1); 2279 free_extent_buffer(reloc_root->node); 2280 free_extent_buffer(reloc_root->commit_root); 2281 kfree(reloc_root); 2282 } 2283 } 2284 2285 static noinline_for_stack 2286 int merge_reloc_roots(struct reloc_control *rc) 2287 { 2288 struct btrfs_trans_handle *trans; 2289 struct btrfs_root *root; 2290 struct btrfs_root *reloc_root; 2291 u64 last_snap; 2292 u64 otransid; 2293 u64 objectid; 2294 LIST_HEAD(reloc_roots); 2295 int found = 0; 2296 int ret = 0; 2297 again: 2298 root = rc->extent_root; 2299 2300 /* 2301 * this serializes us with btrfs_record_root_in_transaction, 2302 * we have to make sure nobody is in the middle of 2303 * adding their roots to the list while we are 2304 * doing this splice 2305 */ 2306 mutex_lock(&root->fs_info->reloc_mutex); 2307 list_splice_init(&rc->reloc_roots, &reloc_roots); 2308 mutex_unlock(&root->fs_info->reloc_mutex); 2309 2310 while (!list_empty(&reloc_roots)) { 2311 found = 1; 2312 reloc_root = list_entry(reloc_roots.next, 2313 struct btrfs_root, root_list); 2314 2315 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2316 root = read_fs_root(reloc_root->fs_info, 2317 reloc_root->root_key.offset); 2318 BUG_ON(IS_ERR(root)); 2319 BUG_ON(root->reloc_root != reloc_root); 2320 2321 ret = merge_reloc_root(rc, root); 2322 if (ret) { 2323 __update_reloc_root(reloc_root, 1); 2324 free_extent_buffer(reloc_root->node); 2325 free_extent_buffer(reloc_root->commit_root); 2326 kfree(reloc_root); 2327 goto out; 2328 } 2329 } else { 2330 list_del_init(&reloc_root->root_list); 2331 } 2332 2333 /* 2334 * we keep the old last snapshod transid in rtranid when we 2335 * created the relocation tree. 2336 */ 2337 last_snap = btrfs_root_rtransid(&reloc_root->root_item); 2338 otransid = btrfs_root_otransid(&reloc_root->root_item); 2339 objectid = reloc_root->root_key.offset; 2340 2341 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1); 2342 if (ret < 0) { 2343 if (list_empty(&reloc_root->root_list)) 2344 list_add_tail(&reloc_root->root_list, 2345 &reloc_roots); 2346 goto out; 2347 } else if (!ret) { 2348 /* 2349 * recover the last snapshot tranid to avoid 2350 * the space balance break NOCOW. 2351 */ 2352 root = read_fs_root(rc->extent_root->fs_info, 2353 objectid); 2354 if (IS_ERR(root)) 2355 continue; 2356 2357 trans = btrfs_join_transaction(root); 2358 BUG_ON(IS_ERR(trans)); 2359 2360 /* Check if the fs/file tree was snapshoted or not. */ 2361 if (btrfs_root_last_snapshot(&root->root_item) == 2362 otransid - 1) 2363 btrfs_set_root_last_snapshot(&root->root_item, 2364 last_snap); 2365 2366 btrfs_end_transaction(trans, root); 2367 } 2368 } 2369 2370 if (found) { 2371 found = 0; 2372 goto again; 2373 } 2374 out: 2375 if (ret) { 2376 btrfs_std_error(root->fs_info, ret); 2377 if (!list_empty(&reloc_roots)) 2378 free_reloc_roots(&reloc_roots); 2379 } 2380 2381 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2382 return ret; 2383 } 2384 2385 static void free_block_list(struct rb_root *blocks) 2386 { 2387 struct tree_block *block; 2388 struct rb_node *rb_node; 2389 while ((rb_node = rb_first(blocks))) { 2390 block = rb_entry(rb_node, struct tree_block, rb_node); 2391 rb_erase(rb_node, blocks); 2392 kfree(block); 2393 } 2394 } 2395 2396 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2397 struct btrfs_root *reloc_root) 2398 { 2399 struct btrfs_root *root; 2400 2401 if (reloc_root->last_trans == trans->transid) 2402 return 0; 2403 2404 root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset); 2405 BUG_ON(IS_ERR(root)); 2406 BUG_ON(root->reloc_root != reloc_root); 2407 2408 return btrfs_record_root_in_trans(trans, root); 2409 } 2410 2411 static noinline_for_stack 2412 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2413 struct reloc_control *rc, 2414 struct backref_node *node, 2415 struct backref_edge *edges[], int *nr) 2416 { 2417 struct backref_node *next; 2418 struct btrfs_root *root; 2419 int index = 0; 2420 2421 next = node; 2422 while (1) { 2423 cond_resched(); 2424 next = walk_up_backref(next, edges, &index); 2425 root = next->root; 2426 BUG_ON(!root); 2427 BUG_ON(!root->ref_cows); 2428 2429 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2430 record_reloc_root_in_trans(trans, root); 2431 break; 2432 } 2433 2434 btrfs_record_root_in_trans(trans, root); 2435 root = root->reloc_root; 2436 2437 if (next->new_bytenr != root->node->start) { 2438 BUG_ON(next->new_bytenr); 2439 BUG_ON(!list_empty(&next->list)); 2440 next->new_bytenr = root->node->start; 2441 next->root = root; 2442 list_add_tail(&next->list, 2443 &rc->backref_cache.changed); 2444 __mark_block_processed(rc, next); 2445 break; 2446 } 2447 2448 WARN_ON(1); 2449 root = NULL; 2450 next = walk_down_backref(edges, &index); 2451 if (!next || next->level <= node->level) 2452 break; 2453 } 2454 if (!root) 2455 return NULL; 2456 2457 *nr = index; 2458 next = node; 2459 /* setup backref node path for btrfs_reloc_cow_block */ 2460 while (1) { 2461 rc->backref_cache.path[next->level] = next; 2462 if (--index < 0) 2463 break; 2464 next = edges[index]->node[UPPER]; 2465 } 2466 return root; 2467 } 2468 2469 /* 2470 * select a tree root for relocation. return NULL if the block 2471 * is reference counted. we should use do_relocation() in this 2472 * case. return a tree root pointer if the block isn't reference 2473 * counted. return -ENOENT if the block is root of reloc tree. 2474 */ 2475 static noinline_for_stack 2476 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans, 2477 struct backref_node *node) 2478 { 2479 struct backref_node *next; 2480 struct btrfs_root *root; 2481 struct btrfs_root *fs_root = NULL; 2482 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2483 int index = 0; 2484 2485 next = node; 2486 while (1) { 2487 cond_resched(); 2488 next = walk_up_backref(next, edges, &index); 2489 root = next->root; 2490 BUG_ON(!root); 2491 2492 /* no other choice for non-references counted tree */ 2493 if (!root->ref_cows) 2494 return root; 2495 2496 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2497 fs_root = root; 2498 2499 if (next != node) 2500 return NULL; 2501 2502 next = walk_down_backref(edges, &index); 2503 if (!next || next->level <= node->level) 2504 break; 2505 } 2506 2507 if (!fs_root) 2508 return ERR_PTR(-ENOENT); 2509 return fs_root; 2510 } 2511 2512 static noinline_for_stack 2513 u64 calcu_metadata_size(struct reloc_control *rc, 2514 struct backref_node *node, int reserve) 2515 { 2516 struct backref_node *next = node; 2517 struct backref_edge *edge; 2518 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2519 u64 num_bytes = 0; 2520 int index = 0; 2521 2522 BUG_ON(reserve && node->processed); 2523 2524 while (next) { 2525 cond_resched(); 2526 while (1) { 2527 if (next->processed && (reserve || next != node)) 2528 break; 2529 2530 num_bytes += btrfs_level_size(rc->extent_root, 2531 next->level); 2532 2533 if (list_empty(&next->upper)) 2534 break; 2535 2536 edge = list_entry(next->upper.next, 2537 struct backref_edge, list[LOWER]); 2538 edges[index++] = edge; 2539 next = edge->node[UPPER]; 2540 } 2541 next = walk_down_backref(edges, &index); 2542 } 2543 return num_bytes; 2544 } 2545 2546 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2547 struct reloc_control *rc, 2548 struct backref_node *node) 2549 { 2550 struct btrfs_root *root = rc->extent_root; 2551 u64 num_bytes; 2552 int ret; 2553 2554 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2555 2556 trans->block_rsv = rc->block_rsv; 2557 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2558 BTRFS_RESERVE_FLUSH_ALL); 2559 if (ret) { 2560 if (ret == -EAGAIN) 2561 rc->commit_transaction = 1; 2562 return ret; 2563 } 2564 2565 return 0; 2566 } 2567 2568 static void release_metadata_space(struct reloc_control *rc, 2569 struct backref_node *node) 2570 { 2571 u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2; 2572 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes); 2573 } 2574 2575 /* 2576 * relocate a block tree, and then update pointers in upper level 2577 * blocks that reference the block to point to the new location. 2578 * 2579 * if called by link_to_upper, the block has already been relocated. 2580 * in that case this function just updates pointers. 2581 */ 2582 static int do_relocation(struct btrfs_trans_handle *trans, 2583 struct reloc_control *rc, 2584 struct backref_node *node, 2585 struct btrfs_key *key, 2586 struct btrfs_path *path, int lowest) 2587 { 2588 struct backref_node *upper; 2589 struct backref_edge *edge; 2590 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2591 struct btrfs_root *root; 2592 struct extent_buffer *eb; 2593 u32 blocksize; 2594 u64 bytenr; 2595 u64 generation; 2596 int nr; 2597 int slot; 2598 int ret; 2599 int err = 0; 2600 2601 BUG_ON(lowest && node->eb); 2602 2603 path->lowest_level = node->level + 1; 2604 rc->backref_cache.path[node->level] = node; 2605 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2606 cond_resched(); 2607 2608 upper = edge->node[UPPER]; 2609 root = select_reloc_root(trans, rc, upper, edges, &nr); 2610 BUG_ON(!root); 2611 2612 if (upper->eb && !upper->locked) { 2613 if (!lowest) { 2614 ret = btrfs_bin_search(upper->eb, key, 2615 upper->level, &slot); 2616 BUG_ON(ret); 2617 bytenr = btrfs_node_blockptr(upper->eb, slot); 2618 if (node->eb->start == bytenr) 2619 goto next; 2620 } 2621 drop_node_buffer(upper); 2622 } 2623 2624 if (!upper->eb) { 2625 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2626 if (ret < 0) { 2627 err = ret; 2628 break; 2629 } 2630 BUG_ON(ret > 0); 2631 2632 if (!upper->eb) { 2633 upper->eb = path->nodes[upper->level]; 2634 path->nodes[upper->level] = NULL; 2635 } else { 2636 BUG_ON(upper->eb != path->nodes[upper->level]); 2637 } 2638 2639 upper->locked = 1; 2640 path->locks[upper->level] = 0; 2641 2642 slot = path->slots[upper->level]; 2643 btrfs_release_path(path); 2644 } else { 2645 ret = btrfs_bin_search(upper->eb, key, upper->level, 2646 &slot); 2647 BUG_ON(ret); 2648 } 2649 2650 bytenr = btrfs_node_blockptr(upper->eb, slot); 2651 if (lowest) { 2652 BUG_ON(bytenr != node->bytenr); 2653 } else { 2654 if (node->eb->start == bytenr) 2655 goto next; 2656 } 2657 2658 blocksize = btrfs_level_size(root, node->level); 2659 generation = btrfs_node_ptr_generation(upper->eb, slot); 2660 eb = read_tree_block(root, bytenr, blocksize, generation); 2661 if (!eb || !extent_buffer_uptodate(eb)) { 2662 free_extent_buffer(eb); 2663 err = -EIO; 2664 goto next; 2665 } 2666 btrfs_tree_lock(eb); 2667 btrfs_set_lock_blocking(eb); 2668 2669 if (!node->eb) { 2670 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2671 slot, &eb); 2672 btrfs_tree_unlock(eb); 2673 free_extent_buffer(eb); 2674 if (ret < 0) { 2675 err = ret; 2676 goto next; 2677 } 2678 BUG_ON(node->eb != eb); 2679 } else { 2680 btrfs_set_node_blockptr(upper->eb, slot, 2681 node->eb->start); 2682 btrfs_set_node_ptr_generation(upper->eb, slot, 2683 trans->transid); 2684 btrfs_mark_buffer_dirty(upper->eb); 2685 2686 ret = btrfs_inc_extent_ref(trans, root, 2687 node->eb->start, blocksize, 2688 upper->eb->start, 2689 btrfs_header_owner(upper->eb), 2690 node->level, 0, 1); 2691 BUG_ON(ret); 2692 2693 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2694 BUG_ON(ret); 2695 } 2696 next: 2697 if (!upper->pending) 2698 drop_node_buffer(upper); 2699 else 2700 unlock_node_buffer(upper); 2701 if (err) 2702 break; 2703 } 2704 2705 if (!err && node->pending) { 2706 drop_node_buffer(node); 2707 list_move_tail(&node->list, &rc->backref_cache.changed); 2708 node->pending = 0; 2709 } 2710 2711 path->lowest_level = 0; 2712 BUG_ON(err == -ENOSPC); 2713 return err; 2714 } 2715 2716 static int link_to_upper(struct btrfs_trans_handle *trans, 2717 struct reloc_control *rc, 2718 struct backref_node *node, 2719 struct btrfs_path *path) 2720 { 2721 struct btrfs_key key; 2722 2723 btrfs_node_key_to_cpu(node->eb, &key, 0); 2724 return do_relocation(trans, rc, node, &key, path, 0); 2725 } 2726 2727 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2728 struct reloc_control *rc, 2729 struct btrfs_path *path, int err) 2730 { 2731 LIST_HEAD(list); 2732 struct backref_cache *cache = &rc->backref_cache; 2733 struct backref_node *node; 2734 int level; 2735 int ret; 2736 2737 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2738 while (!list_empty(&cache->pending[level])) { 2739 node = list_entry(cache->pending[level].next, 2740 struct backref_node, list); 2741 list_move_tail(&node->list, &list); 2742 BUG_ON(!node->pending); 2743 2744 if (!err) { 2745 ret = link_to_upper(trans, rc, node, path); 2746 if (ret < 0) 2747 err = ret; 2748 } 2749 } 2750 list_splice_init(&list, &cache->pending[level]); 2751 } 2752 return err; 2753 } 2754 2755 static void mark_block_processed(struct reloc_control *rc, 2756 u64 bytenr, u32 blocksize) 2757 { 2758 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2759 EXTENT_DIRTY, GFP_NOFS); 2760 } 2761 2762 static void __mark_block_processed(struct reloc_control *rc, 2763 struct backref_node *node) 2764 { 2765 u32 blocksize; 2766 if (node->level == 0 || 2767 in_block_group(node->bytenr, rc->block_group)) { 2768 blocksize = btrfs_level_size(rc->extent_root, node->level); 2769 mark_block_processed(rc, node->bytenr, blocksize); 2770 } 2771 node->processed = 1; 2772 } 2773 2774 /* 2775 * mark a block and all blocks directly/indirectly reference the block 2776 * as processed. 2777 */ 2778 static void update_processed_blocks(struct reloc_control *rc, 2779 struct backref_node *node) 2780 { 2781 struct backref_node *next = node; 2782 struct backref_edge *edge; 2783 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2784 int index = 0; 2785 2786 while (next) { 2787 cond_resched(); 2788 while (1) { 2789 if (next->processed) 2790 break; 2791 2792 __mark_block_processed(rc, next); 2793 2794 if (list_empty(&next->upper)) 2795 break; 2796 2797 edge = list_entry(next->upper.next, 2798 struct backref_edge, list[LOWER]); 2799 edges[index++] = edge; 2800 next = edge->node[UPPER]; 2801 } 2802 next = walk_down_backref(edges, &index); 2803 } 2804 } 2805 2806 static int tree_block_processed(u64 bytenr, u32 blocksize, 2807 struct reloc_control *rc) 2808 { 2809 if (test_range_bit(&rc->processed_blocks, bytenr, 2810 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2811 return 1; 2812 return 0; 2813 } 2814 2815 static int get_tree_block_key(struct reloc_control *rc, 2816 struct tree_block *block) 2817 { 2818 struct extent_buffer *eb; 2819 2820 BUG_ON(block->key_ready); 2821 eb = read_tree_block(rc->extent_root, block->bytenr, 2822 block->key.objectid, block->key.offset); 2823 if (!eb || !extent_buffer_uptodate(eb)) { 2824 free_extent_buffer(eb); 2825 return -EIO; 2826 } 2827 WARN_ON(btrfs_header_level(eb) != block->level); 2828 if (block->level == 0) 2829 btrfs_item_key_to_cpu(eb, &block->key, 0); 2830 else 2831 btrfs_node_key_to_cpu(eb, &block->key, 0); 2832 free_extent_buffer(eb); 2833 block->key_ready = 1; 2834 return 0; 2835 } 2836 2837 static int reada_tree_block(struct reloc_control *rc, 2838 struct tree_block *block) 2839 { 2840 BUG_ON(block->key_ready); 2841 if (block->key.type == BTRFS_METADATA_ITEM_KEY) 2842 readahead_tree_block(rc->extent_root, block->bytenr, 2843 block->key.objectid, 2844 rc->extent_root->leafsize); 2845 else 2846 readahead_tree_block(rc->extent_root, block->bytenr, 2847 block->key.objectid, block->key.offset); 2848 return 0; 2849 } 2850 2851 /* 2852 * helper function to relocate a tree block 2853 */ 2854 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2855 struct reloc_control *rc, 2856 struct backref_node *node, 2857 struct btrfs_key *key, 2858 struct btrfs_path *path) 2859 { 2860 struct btrfs_root *root; 2861 int release = 0; 2862 int ret = 0; 2863 2864 if (!node) 2865 return 0; 2866 2867 BUG_ON(node->processed); 2868 root = select_one_root(trans, node); 2869 if (root == ERR_PTR(-ENOENT)) { 2870 update_processed_blocks(rc, node); 2871 goto out; 2872 } 2873 2874 if (!root || root->ref_cows) { 2875 ret = reserve_metadata_space(trans, rc, node); 2876 if (ret) 2877 goto out; 2878 release = 1; 2879 } 2880 2881 if (root) { 2882 if (root->ref_cows) { 2883 BUG_ON(node->new_bytenr); 2884 BUG_ON(!list_empty(&node->list)); 2885 btrfs_record_root_in_trans(trans, root); 2886 root = root->reloc_root; 2887 node->new_bytenr = root->node->start; 2888 node->root = root; 2889 list_add_tail(&node->list, &rc->backref_cache.changed); 2890 } else { 2891 path->lowest_level = node->level; 2892 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2893 btrfs_release_path(path); 2894 if (ret > 0) 2895 ret = 0; 2896 } 2897 if (!ret) 2898 update_processed_blocks(rc, node); 2899 } else { 2900 ret = do_relocation(trans, rc, node, key, path, 1); 2901 } 2902 out: 2903 if (ret || node->level == 0 || node->cowonly) { 2904 if (release) 2905 release_metadata_space(rc, node); 2906 remove_backref_node(&rc->backref_cache, node); 2907 } 2908 return ret; 2909 } 2910 2911 /* 2912 * relocate a list of blocks 2913 */ 2914 static noinline_for_stack 2915 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2916 struct reloc_control *rc, struct rb_root *blocks) 2917 { 2918 struct backref_node *node; 2919 struct btrfs_path *path; 2920 struct tree_block *block; 2921 struct rb_node *rb_node; 2922 int ret; 2923 int err = 0; 2924 2925 path = btrfs_alloc_path(); 2926 if (!path) { 2927 err = -ENOMEM; 2928 goto out_free_blocks; 2929 } 2930 2931 rb_node = rb_first(blocks); 2932 while (rb_node) { 2933 block = rb_entry(rb_node, struct tree_block, rb_node); 2934 if (!block->key_ready) 2935 reada_tree_block(rc, block); 2936 rb_node = rb_next(rb_node); 2937 } 2938 2939 rb_node = rb_first(blocks); 2940 while (rb_node) { 2941 block = rb_entry(rb_node, struct tree_block, rb_node); 2942 if (!block->key_ready) { 2943 err = get_tree_block_key(rc, block); 2944 if (err) 2945 goto out_free_path; 2946 } 2947 rb_node = rb_next(rb_node); 2948 } 2949 2950 rb_node = rb_first(blocks); 2951 while (rb_node) { 2952 block = rb_entry(rb_node, struct tree_block, rb_node); 2953 2954 node = build_backref_tree(rc, &block->key, 2955 block->level, block->bytenr); 2956 if (IS_ERR(node)) { 2957 err = PTR_ERR(node); 2958 goto out; 2959 } 2960 2961 ret = relocate_tree_block(trans, rc, node, &block->key, 2962 path); 2963 if (ret < 0) { 2964 if (ret != -EAGAIN || rb_node == rb_first(blocks)) 2965 err = ret; 2966 goto out; 2967 } 2968 rb_node = rb_next(rb_node); 2969 } 2970 out: 2971 err = finish_pending_nodes(trans, rc, path, err); 2972 2973 out_free_path: 2974 btrfs_free_path(path); 2975 out_free_blocks: 2976 free_block_list(blocks); 2977 return err; 2978 } 2979 2980 static noinline_for_stack 2981 int prealloc_file_extent_cluster(struct inode *inode, 2982 struct file_extent_cluster *cluster) 2983 { 2984 u64 alloc_hint = 0; 2985 u64 start; 2986 u64 end; 2987 u64 offset = BTRFS_I(inode)->index_cnt; 2988 u64 num_bytes; 2989 int nr = 0; 2990 int ret = 0; 2991 2992 BUG_ON(cluster->start != cluster->boundary[0]); 2993 mutex_lock(&inode->i_mutex); 2994 2995 ret = btrfs_check_data_free_space(inode, cluster->end + 2996 1 - cluster->start); 2997 if (ret) 2998 goto out; 2999 3000 while (nr < cluster->nr) { 3001 start = cluster->boundary[nr] - offset; 3002 if (nr + 1 < cluster->nr) 3003 end = cluster->boundary[nr + 1] - 1 - offset; 3004 else 3005 end = cluster->end - offset; 3006 3007 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3008 num_bytes = end + 1 - start; 3009 ret = btrfs_prealloc_file_range(inode, 0, start, 3010 num_bytes, num_bytes, 3011 end + 1, &alloc_hint); 3012 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3013 if (ret) 3014 break; 3015 nr++; 3016 } 3017 btrfs_free_reserved_data_space(inode, cluster->end + 3018 1 - cluster->start); 3019 out: 3020 mutex_unlock(&inode->i_mutex); 3021 return ret; 3022 } 3023 3024 static noinline_for_stack 3025 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 3026 u64 block_start) 3027 { 3028 struct btrfs_root *root = BTRFS_I(inode)->root; 3029 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3030 struct extent_map *em; 3031 int ret = 0; 3032 3033 em = alloc_extent_map(); 3034 if (!em) 3035 return -ENOMEM; 3036 3037 em->start = start; 3038 em->len = end + 1 - start; 3039 em->block_len = em->len; 3040 em->block_start = block_start; 3041 em->bdev = root->fs_info->fs_devices->latest_bdev; 3042 set_bit(EXTENT_FLAG_PINNED, &em->flags); 3043 3044 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3045 while (1) { 3046 write_lock(&em_tree->lock); 3047 ret = add_extent_mapping(em_tree, em, 0); 3048 write_unlock(&em_tree->lock); 3049 if (ret != -EEXIST) { 3050 free_extent_map(em); 3051 break; 3052 } 3053 btrfs_drop_extent_cache(inode, start, end, 0); 3054 } 3055 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3056 return ret; 3057 } 3058 3059 static int relocate_file_extent_cluster(struct inode *inode, 3060 struct file_extent_cluster *cluster) 3061 { 3062 u64 page_start; 3063 u64 page_end; 3064 u64 offset = BTRFS_I(inode)->index_cnt; 3065 unsigned long index; 3066 unsigned long last_index; 3067 struct page *page; 3068 struct file_ra_state *ra; 3069 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 3070 int nr = 0; 3071 int ret = 0; 3072 3073 if (!cluster->nr) 3074 return 0; 3075 3076 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3077 if (!ra) 3078 return -ENOMEM; 3079 3080 ret = prealloc_file_extent_cluster(inode, cluster); 3081 if (ret) 3082 goto out; 3083 3084 file_ra_state_init(ra, inode->i_mapping); 3085 3086 ret = setup_extent_mapping(inode, cluster->start - offset, 3087 cluster->end - offset, cluster->start); 3088 if (ret) 3089 goto out; 3090 3091 index = (cluster->start - offset) >> PAGE_CACHE_SHIFT; 3092 last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT; 3093 while (index <= last_index) { 3094 ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE); 3095 if (ret) 3096 goto out; 3097 3098 page = find_lock_page(inode->i_mapping, index); 3099 if (!page) { 3100 page_cache_sync_readahead(inode->i_mapping, 3101 ra, NULL, index, 3102 last_index + 1 - index); 3103 page = find_or_create_page(inode->i_mapping, index, 3104 mask); 3105 if (!page) { 3106 btrfs_delalloc_release_metadata(inode, 3107 PAGE_CACHE_SIZE); 3108 ret = -ENOMEM; 3109 goto out; 3110 } 3111 } 3112 3113 if (PageReadahead(page)) { 3114 page_cache_async_readahead(inode->i_mapping, 3115 ra, NULL, page, index, 3116 last_index + 1 - index); 3117 } 3118 3119 if (!PageUptodate(page)) { 3120 btrfs_readpage(NULL, page); 3121 lock_page(page); 3122 if (!PageUptodate(page)) { 3123 unlock_page(page); 3124 page_cache_release(page); 3125 btrfs_delalloc_release_metadata(inode, 3126 PAGE_CACHE_SIZE); 3127 ret = -EIO; 3128 goto out; 3129 } 3130 } 3131 3132 page_start = page_offset(page); 3133 page_end = page_start + PAGE_CACHE_SIZE - 1; 3134 3135 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 3136 3137 set_page_extent_mapped(page); 3138 3139 if (nr < cluster->nr && 3140 page_start + offset == cluster->boundary[nr]) { 3141 set_extent_bits(&BTRFS_I(inode)->io_tree, 3142 page_start, page_end, 3143 EXTENT_BOUNDARY, GFP_NOFS); 3144 nr++; 3145 } 3146 3147 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL); 3148 set_page_dirty(page); 3149 3150 unlock_extent(&BTRFS_I(inode)->io_tree, 3151 page_start, page_end); 3152 unlock_page(page); 3153 page_cache_release(page); 3154 3155 index++; 3156 balance_dirty_pages_ratelimited(inode->i_mapping); 3157 btrfs_throttle(BTRFS_I(inode)->root); 3158 } 3159 WARN_ON(nr != cluster->nr); 3160 out: 3161 kfree(ra); 3162 return ret; 3163 } 3164 3165 static noinline_for_stack 3166 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3167 struct file_extent_cluster *cluster) 3168 { 3169 int ret; 3170 3171 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3172 ret = relocate_file_extent_cluster(inode, cluster); 3173 if (ret) 3174 return ret; 3175 cluster->nr = 0; 3176 } 3177 3178 if (!cluster->nr) 3179 cluster->start = extent_key->objectid; 3180 else 3181 BUG_ON(cluster->nr >= MAX_EXTENTS); 3182 cluster->end = extent_key->objectid + extent_key->offset - 1; 3183 cluster->boundary[cluster->nr] = extent_key->objectid; 3184 cluster->nr++; 3185 3186 if (cluster->nr >= MAX_EXTENTS) { 3187 ret = relocate_file_extent_cluster(inode, cluster); 3188 if (ret) 3189 return ret; 3190 cluster->nr = 0; 3191 } 3192 return 0; 3193 } 3194 3195 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3196 static int get_ref_objectid_v0(struct reloc_control *rc, 3197 struct btrfs_path *path, 3198 struct btrfs_key *extent_key, 3199 u64 *ref_objectid, int *path_change) 3200 { 3201 struct btrfs_key key; 3202 struct extent_buffer *leaf; 3203 struct btrfs_extent_ref_v0 *ref0; 3204 int ret; 3205 int slot; 3206 3207 leaf = path->nodes[0]; 3208 slot = path->slots[0]; 3209 while (1) { 3210 if (slot >= btrfs_header_nritems(leaf)) { 3211 ret = btrfs_next_leaf(rc->extent_root, path); 3212 if (ret < 0) 3213 return ret; 3214 BUG_ON(ret > 0); 3215 leaf = path->nodes[0]; 3216 slot = path->slots[0]; 3217 if (path_change) 3218 *path_change = 1; 3219 } 3220 btrfs_item_key_to_cpu(leaf, &key, slot); 3221 if (key.objectid != extent_key->objectid) 3222 return -ENOENT; 3223 3224 if (key.type != BTRFS_EXTENT_REF_V0_KEY) { 3225 slot++; 3226 continue; 3227 } 3228 ref0 = btrfs_item_ptr(leaf, slot, 3229 struct btrfs_extent_ref_v0); 3230 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0); 3231 break; 3232 } 3233 return 0; 3234 } 3235 #endif 3236 3237 /* 3238 * helper to add a tree block to the list. 3239 * the major work is getting the generation and level of the block 3240 */ 3241 static int add_tree_block(struct reloc_control *rc, 3242 struct btrfs_key *extent_key, 3243 struct btrfs_path *path, 3244 struct rb_root *blocks) 3245 { 3246 struct extent_buffer *eb; 3247 struct btrfs_extent_item *ei; 3248 struct btrfs_tree_block_info *bi; 3249 struct tree_block *block; 3250 struct rb_node *rb_node; 3251 u32 item_size; 3252 int level = -1; 3253 int generation; 3254 3255 eb = path->nodes[0]; 3256 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3257 3258 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3259 item_size >= sizeof(*ei) + sizeof(*bi)) { 3260 ei = btrfs_item_ptr(eb, path->slots[0], 3261 struct btrfs_extent_item); 3262 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3263 bi = (struct btrfs_tree_block_info *)(ei + 1); 3264 level = btrfs_tree_block_level(eb, bi); 3265 } else { 3266 level = (int)extent_key->offset; 3267 } 3268 generation = btrfs_extent_generation(eb, ei); 3269 } else { 3270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3271 u64 ref_owner; 3272 int ret; 3273 3274 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3275 ret = get_ref_objectid_v0(rc, path, extent_key, 3276 &ref_owner, NULL); 3277 if (ret < 0) 3278 return ret; 3279 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL); 3280 level = (int)ref_owner; 3281 /* FIXME: get real generation */ 3282 generation = 0; 3283 #else 3284 BUG(); 3285 #endif 3286 } 3287 3288 btrfs_release_path(path); 3289 3290 BUG_ON(level == -1); 3291 3292 block = kmalloc(sizeof(*block), GFP_NOFS); 3293 if (!block) 3294 return -ENOMEM; 3295 3296 block->bytenr = extent_key->objectid; 3297 block->key.objectid = rc->extent_root->leafsize; 3298 block->key.offset = generation; 3299 block->level = level; 3300 block->key_ready = 0; 3301 3302 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3303 if (rb_node) 3304 backref_tree_panic(rb_node, -EEXIST, block->bytenr); 3305 3306 return 0; 3307 } 3308 3309 /* 3310 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3311 */ 3312 static int __add_tree_block(struct reloc_control *rc, 3313 u64 bytenr, u32 blocksize, 3314 struct rb_root *blocks) 3315 { 3316 struct btrfs_path *path; 3317 struct btrfs_key key; 3318 int ret; 3319 bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info, 3320 SKINNY_METADATA); 3321 3322 if (tree_block_processed(bytenr, blocksize, rc)) 3323 return 0; 3324 3325 if (tree_search(blocks, bytenr)) 3326 return 0; 3327 3328 path = btrfs_alloc_path(); 3329 if (!path) 3330 return -ENOMEM; 3331 again: 3332 key.objectid = bytenr; 3333 if (skinny) { 3334 key.type = BTRFS_METADATA_ITEM_KEY; 3335 key.offset = (u64)-1; 3336 } else { 3337 key.type = BTRFS_EXTENT_ITEM_KEY; 3338 key.offset = blocksize; 3339 } 3340 3341 path->search_commit_root = 1; 3342 path->skip_locking = 1; 3343 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3344 if (ret < 0) 3345 goto out; 3346 3347 if (ret > 0 && skinny) { 3348 if (path->slots[0]) { 3349 path->slots[0]--; 3350 btrfs_item_key_to_cpu(path->nodes[0], &key, 3351 path->slots[0]); 3352 if (key.objectid == bytenr && 3353 (key.type == BTRFS_METADATA_ITEM_KEY || 3354 (key.type == BTRFS_EXTENT_ITEM_KEY && 3355 key.offset == blocksize))) 3356 ret = 0; 3357 } 3358 3359 if (ret) { 3360 skinny = false; 3361 btrfs_release_path(path); 3362 goto again; 3363 } 3364 } 3365 BUG_ON(ret); 3366 3367 ret = add_tree_block(rc, &key, path, blocks); 3368 out: 3369 btrfs_free_path(path); 3370 return ret; 3371 } 3372 3373 /* 3374 * helper to check if the block use full backrefs for pointers in it 3375 */ 3376 static int block_use_full_backref(struct reloc_control *rc, 3377 struct extent_buffer *eb) 3378 { 3379 u64 flags; 3380 int ret; 3381 3382 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3383 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3384 return 1; 3385 3386 ret = btrfs_lookup_extent_info(NULL, rc->extent_root, 3387 eb->start, btrfs_header_level(eb), 1, 3388 NULL, &flags); 3389 BUG_ON(ret); 3390 3391 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3392 ret = 1; 3393 else 3394 ret = 0; 3395 return ret; 3396 } 3397 3398 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3399 struct inode *inode, u64 ino) 3400 { 3401 struct btrfs_key key; 3402 struct btrfs_path *path; 3403 struct btrfs_root *root = fs_info->tree_root; 3404 struct btrfs_trans_handle *trans; 3405 int ret = 0; 3406 3407 if (inode) 3408 goto truncate; 3409 3410 key.objectid = ino; 3411 key.type = BTRFS_INODE_ITEM_KEY; 3412 key.offset = 0; 3413 3414 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3415 if (IS_ERR(inode) || is_bad_inode(inode)) { 3416 if (!IS_ERR(inode)) 3417 iput(inode); 3418 return -ENOENT; 3419 } 3420 3421 truncate: 3422 ret = btrfs_check_trunc_cache_free_space(root, 3423 &fs_info->global_block_rsv); 3424 if (ret) 3425 goto out; 3426 3427 path = btrfs_alloc_path(); 3428 if (!path) { 3429 ret = -ENOMEM; 3430 goto out; 3431 } 3432 3433 trans = btrfs_join_transaction(root); 3434 if (IS_ERR(trans)) { 3435 btrfs_free_path(path); 3436 ret = PTR_ERR(trans); 3437 goto out; 3438 } 3439 3440 ret = btrfs_truncate_free_space_cache(root, trans, path, inode); 3441 3442 btrfs_free_path(path); 3443 btrfs_end_transaction(trans, root); 3444 btrfs_btree_balance_dirty(root); 3445 out: 3446 iput(inode); 3447 return ret; 3448 } 3449 3450 /* 3451 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3452 * this function scans fs tree to find blocks reference the data extent 3453 */ 3454 static int find_data_references(struct reloc_control *rc, 3455 struct btrfs_key *extent_key, 3456 struct extent_buffer *leaf, 3457 struct btrfs_extent_data_ref *ref, 3458 struct rb_root *blocks) 3459 { 3460 struct btrfs_path *path; 3461 struct tree_block *block; 3462 struct btrfs_root *root; 3463 struct btrfs_file_extent_item *fi; 3464 struct rb_node *rb_node; 3465 struct btrfs_key key; 3466 u64 ref_root; 3467 u64 ref_objectid; 3468 u64 ref_offset; 3469 u32 ref_count; 3470 u32 nritems; 3471 int err = 0; 3472 int added = 0; 3473 int counted; 3474 int ret; 3475 3476 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3477 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3478 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3479 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3480 3481 /* 3482 * This is an extent belonging to the free space cache, lets just delete 3483 * it and redo the search. 3484 */ 3485 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3486 ret = delete_block_group_cache(rc->extent_root->fs_info, 3487 NULL, ref_objectid); 3488 if (ret != -ENOENT) 3489 return ret; 3490 ret = 0; 3491 } 3492 3493 path = btrfs_alloc_path(); 3494 if (!path) 3495 return -ENOMEM; 3496 path->reada = 1; 3497 3498 root = read_fs_root(rc->extent_root->fs_info, ref_root); 3499 if (IS_ERR(root)) { 3500 err = PTR_ERR(root); 3501 goto out; 3502 } 3503 3504 key.objectid = ref_objectid; 3505 key.type = BTRFS_EXTENT_DATA_KEY; 3506 if (ref_offset > ((u64)-1 << 32)) 3507 key.offset = 0; 3508 else 3509 key.offset = ref_offset; 3510 3511 path->search_commit_root = 1; 3512 path->skip_locking = 1; 3513 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3514 if (ret < 0) { 3515 err = ret; 3516 goto out; 3517 } 3518 3519 leaf = path->nodes[0]; 3520 nritems = btrfs_header_nritems(leaf); 3521 /* 3522 * the references in tree blocks that use full backrefs 3523 * are not counted in 3524 */ 3525 if (block_use_full_backref(rc, leaf)) 3526 counted = 0; 3527 else 3528 counted = 1; 3529 rb_node = tree_search(blocks, leaf->start); 3530 if (rb_node) { 3531 if (counted) 3532 added = 1; 3533 else 3534 path->slots[0] = nritems; 3535 } 3536 3537 while (ref_count > 0) { 3538 while (path->slots[0] >= nritems) { 3539 ret = btrfs_next_leaf(root, path); 3540 if (ret < 0) { 3541 err = ret; 3542 goto out; 3543 } 3544 if (ret > 0) { 3545 WARN_ON(1); 3546 goto out; 3547 } 3548 3549 leaf = path->nodes[0]; 3550 nritems = btrfs_header_nritems(leaf); 3551 added = 0; 3552 3553 if (block_use_full_backref(rc, leaf)) 3554 counted = 0; 3555 else 3556 counted = 1; 3557 rb_node = tree_search(blocks, leaf->start); 3558 if (rb_node) { 3559 if (counted) 3560 added = 1; 3561 else 3562 path->slots[0] = nritems; 3563 } 3564 } 3565 3566 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3567 if (key.objectid != ref_objectid || 3568 key.type != BTRFS_EXTENT_DATA_KEY) { 3569 WARN_ON(1); 3570 break; 3571 } 3572 3573 fi = btrfs_item_ptr(leaf, path->slots[0], 3574 struct btrfs_file_extent_item); 3575 3576 if (btrfs_file_extent_type(leaf, fi) == 3577 BTRFS_FILE_EXTENT_INLINE) 3578 goto next; 3579 3580 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3581 extent_key->objectid) 3582 goto next; 3583 3584 key.offset -= btrfs_file_extent_offset(leaf, fi); 3585 if (key.offset != ref_offset) 3586 goto next; 3587 3588 if (counted) 3589 ref_count--; 3590 if (added) 3591 goto next; 3592 3593 if (!tree_block_processed(leaf->start, leaf->len, rc)) { 3594 block = kmalloc(sizeof(*block), GFP_NOFS); 3595 if (!block) { 3596 err = -ENOMEM; 3597 break; 3598 } 3599 block->bytenr = leaf->start; 3600 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3601 block->level = 0; 3602 block->key_ready = 1; 3603 rb_node = tree_insert(blocks, block->bytenr, 3604 &block->rb_node); 3605 if (rb_node) 3606 backref_tree_panic(rb_node, -EEXIST, 3607 block->bytenr); 3608 } 3609 if (counted) 3610 added = 1; 3611 else 3612 path->slots[0] = nritems; 3613 next: 3614 path->slots[0]++; 3615 3616 } 3617 out: 3618 btrfs_free_path(path); 3619 return err; 3620 } 3621 3622 /* 3623 * helper to find all tree blocks that reference a given data extent 3624 */ 3625 static noinline_for_stack 3626 int add_data_references(struct reloc_control *rc, 3627 struct btrfs_key *extent_key, 3628 struct btrfs_path *path, 3629 struct rb_root *blocks) 3630 { 3631 struct btrfs_key key; 3632 struct extent_buffer *eb; 3633 struct btrfs_extent_data_ref *dref; 3634 struct btrfs_extent_inline_ref *iref; 3635 unsigned long ptr; 3636 unsigned long end; 3637 u32 blocksize = btrfs_level_size(rc->extent_root, 0); 3638 int ret = 0; 3639 int err = 0; 3640 3641 eb = path->nodes[0]; 3642 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3643 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3644 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3645 if (ptr + sizeof(struct btrfs_extent_item_v0) == end) 3646 ptr = end; 3647 else 3648 #endif 3649 ptr += sizeof(struct btrfs_extent_item); 3650 3651 while (ptr < end) { 3652 iref = (struct btrfs_extent_inline_ref *)ptr; 3653 key.type = btrfs_extent_inline_ref_type(eb, iref); 3654 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3655 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3656 ret = __add_tree_block(rc, key.offset, blocksize, 3657 blocks); 3658 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3659 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3660 ret = find_data_references(rc, extent_key, 3661 eb, dref, blocks); 3662 } else { 3663 BUG(); 3664 } 3665 if (ret) { 3666 err = ret; 3667 goto out; 3668 } 3669 ptr += btrfs_extent_inline_ref_size(key.type); 3670 } 3671 WARN_ON(ptr > end); 3672 3673 while (1) { 3674 cond_resched(); 3675 eb = path->nodes[0]; 3676 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3677 ret = btrfs_next_leaf(rc->extent_root, path); 3678 if (ret < 0) { 3679 err = ret; 3680 break; 3681 } 3682 if (ret > 0) 3683 break; 3684 eb = path->nodes[0]; 3685 } 3686 3687 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3688 if (key.objectid != extent_key->objectid) 3689 break; 3690 3691 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3692 if (key.type == BTRFS_SHARED_DATA_REF_KEY || 3693 key.type == BTRFS_EXTENT_REF_V0_KEY) { 3694 #else 3695 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 3696 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3697 #endif 3698 ret = __add_tree_block(rc, key.offset, blocksize, 3699 blocks); 3700 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3701 dref = btrfs_item_ptr(eb, path->slots[0], 3702 struct btrfs_extent_data_ref); 3703 ret = find_data_references(rc, extent_key, 3704 eb, dref, blocks); 3705 } else { 3706 ret = 0; 3707 } 3708 if (ret) { 3709 err = ret; 3710 break; 3711 } 3712 path->slots[0]++; 3713 } 3714 out: 3715 btrfs_release_path(path); 3716 if (err) 3717 free_block_list(blocks); 3718 return err; 3719 } 3720 3721 /* 3722 * helper to find next unprocessed extent 3723 */ 3724 static noinline_for_stack 3725 int find_next_extent(struct btrfs_trans_handle *trans, 3726 struct reloc_control *rc, struct btrfs_path *path, 3727 struct btrfs_key *extent_key) 3728 { 3729 struct btrfs_key key; 3730 struct extent_buffer *leaf; 3731 u64 start, end, last; 3732 int ret; 3733 3734 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3735 while (1) { 3736 cond_resched(); 3737 if (rc->search_start >= last) { 3738 ret = 1; 3739 break; 3740 } 3741 3742 key.objectid = rc->search_start; 3743 key.type = BTRFS_EXTENT_ITEM_KEY; 3744 key.offset = 0; 3745 3746 path->search_commit_root = 1; 3747 path->skip_locking = 1; 3748 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3749 0, 0); 3750 if (ret < 0) 3751 break; 3752 next: 3753 leaf = path->nodes[0]; 3754 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3755 ret = btrfs_next_leaf(rc->extent_root, path); 3756 if (ret != 0) 3757 break; 3758 leaf = path->nodes[0]; 3759 } 3760 3761 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3762 if (key.objectid >= last) { 3763 ret = 1; 3764 break; 3765 } 3766 3767 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3768 key.type != BTRFS_METADATA_ITEM_KEY) { 3769 path->slots[0]++; 3770 goto next; 3771 } 3772 3773 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3774 key.objectid + key.offset <= rc->search_start) { 3775 path->slots[0]++; 3776 goto next; 3777 } 3778 3779 if (key.type == BTRFS_METADATA_ITEM_KEY && 3780 key.objectid + rc->extent_root->leafsize <= 3781 rc->search_start) { 3782 path->slots[0]++; 3783 goto next; 3784 } 3785 3786 ret = find_first_extent_bit(&rc->processed_blocks, 3787 key.objectid, &start, &end, 3788 EXTENT_DIRTY, NULL); 3789 3790 if (ret == 0 && start <= key.objectid) { 3791 btrfs_release_path(path); 3792 rc->search_start = end + 1; 3793 } else { 3794 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3795 rc->search_start = key.objectid + key.offset; 3796 else 3797 rc->search_start = key.objectid + 3798 rc->extent_root->leafsize; 3799 memcpy(extent_key, &key, sizeof(key)); 3800 return 0; 3801 } 3802 } 3803 btrfs_release_path(path); 3804 return ret; 3805 } 3806 3807 static void set_reloc_control(struct reloc_control *rc) 3808 { 3809 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3810 3811 mutex_lock(&fs_info->reloc_mutex); 3812 fs_info->reloc_ctl = rc; 3813 mutex_unlock(&fs_info->reloc_mutex); 3814 } 3815 3816 static void unset_reloc_control(struct reloc_control *rc) 3817 { 3818 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3819 3820 mutex_lock(&fs_info->reloc_mutex); 3821 fs_info->reloc_ctl = NULL; 3822 mutex_unlock(&fs_info->reloc_mutex); 3823 } 3824 3825 static int check_extent_flags(u64 flags) 3826 { 3827 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3828 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3829 return 1; 3830 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3831 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3832 return 1; 3833 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3834 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3835 return 1; 3836 return 0; 3837 } 3838 3839 static noinline_for_stack 3840 int prepare_to_relocate(struct reloc_control *rc) 3841 { 3842 struct btrfs_trans_handle *trans; 3843 int ret; 3844 3845 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root, 3846 BTRFS_BLOCK_RSV_TEMP); 3847 if (!rc->block_rsv) 3848 return -ENOMEM; 3849 3850 /* 3851 * reserve some space for creating reloc trees. 3852 * btrfs_init_reloc_root will use them when there 3853 * is no reservation in transaction handle. 3854 */ 3855 ret = btrfs_block_rsv_add(rc->extent_root, rc->block_rsv, 3856 rc->extent_root->nodesize * 256, 3857 BTRFS_RESERVE_FLUSH_ALL); 3858 if (ret) 3859 return ret; 3860 3861 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3862 rc->search_start = rc->block_group->key.objectid; 3863 rc->extents_found = 0; 3864 rc->nodes_relocated = 0; 3865 rc->merging_rsv_size = 0; 3866 3867 rc->create_reloc_tree = 1; 3868 set_reloc_control(rc); 3869 3870 trans = btrfs_join_transaction(rc->extent_root); 3871 if (IS_ERR(trans)) { 3872 unset_reloc_control(rc); 3873 /* 3874 * extent tree is not a ref_cow tree and has no reloc_root to 3875 * cleanup. And callers are responsible to free the above 3876 * block rsv. 3877 */ 3878 return PTR_ERR(trans); 3879 } 3880 btrfs_commit_transaction(trans, rc->extent_root); 3881 return 0; 3882 } 3883 3884 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3885 { 3886 struct rb_root blocks = RB_ROOT; 3887 struct btrfs_key key; 3888 struct btrfs_trans_handle *trans = NULL; 3889 struct btrfs_path *path; 3890 struct btrfs_extent_item *ei; 3891 u64 flags; 3892 u32 item_size; 3893 int ret; 3894 int err = 0; 3895 int progress = 0; 3896 3897 path = btrfs_alloc_path(); 3898 if (!path) 3899 return -ENOMEM; 3900 path->reada = 1; 3901 3902 ret = prepare_to_relocate(rc); 3903 if (ret) { 3904 err = ret; 3905 goto out_free; 3906 } 3907 3908 while (1) { 3909 progress++; 3910 trans = btrfs_start_transaction(rc->extent_root, 0); 3911 if (IS_ERR(trans)) { 3912 err = PTR_ERR(trans); 3913 trans = NULL; 3914 break; 3915 } 3916 restart: 3917 if (update_backref_cache(trans, &rc->backref_cache)) { 3918 btrfs_end_transaction(trans, rc->extent_root); 3919 continue; 3920 } 3921 3922 ret = find_next_extent(trans, rc, path, &key); 3923 if (ret < 0) 3924 err = ret; 3925 if (ret != 0) 3926 break; 3927 3928 rc->extents_found++; 3929 3930 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3931 struct btrfs_extent_item); 3932 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 3933 if (item_size >= sizeof(*ei)) { 3934 flags = btrfs_extent_flags(path->nodes[0], ei); 3935 ret = check_extent_flags(flags); 3936 BUG_ON(ret); 3937 3938 } else { 3939 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3940 u64 ref_owner; 3941 int path_change = 0; 3942 3943 BUG_ON(item_size != 3944 sizeof(struct btrfs_extent_item_v0)); 3945 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner, 3946 &path_change); 3947 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID) 3948 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK; 3949 else 3950 flags = BTRFS_EXTENT_FLAG_DATA; 3951 3952 if (path_change) { 3953 btrfs_release_path(path); 3954 3955 path->search_commit_root = 1; 3956 path->skip_locking = 1; 3957 ret = btrfs_search_slot(NULL, rc->extent_root, 3958 &key, path, 0, 0); 3959 if (ret < 0) { 3960 err = ret; 3961 break; 3962 } 3963 BUG_ON(ret > 0); 3964 } 3965 #else 3966 BUG(); 3967 #endif 3968 } 3969 3970 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3971 ret = add_tree_block(rc, &key, path, &blocks); 3972 } else if (rc->stage == UPDATE_DATA_PTRS && 3973 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3974 ret = add_data_references(rc, &key, path, &blocks); 3975 } else { 3976 btrfs_release_path(path); 3977 ret = 0; 3978 } 3979 if (ret < 0) { 3980 err = ret; 3981 break; 3982 } 3983 3984 if (!RB_EMPTY_ROOT(&blocks)) { 3985 ret = relocate_tree_blocks(trans, rc, &blocks); 3986 if (ret < 0) { 3987 if (ret != -EAGAIN) { 3988 err = ret; 3989 break; 3990 } 3991 rc->extents_found--; 3992 rc->search_start = key.objectid; 3993 } 3994 } 3995 3996 ret = btrfs_block_rsv_check(rc->extent_root, rc->block_rsv, 5); 3997 if (ret < 0) { 3998 if (ret != -ENOSPC) { 3999 err = ret; 4000 WARN_ON(1); 4001 break; 4002 } 4003 rc->commit_transaction = 1; 4004 } 4005 4006 if (rc->commit_transaction) { 4007 rc->commit_transaction = 0; 4008 ret = btrfs_commit_transaction(trans, rc->extent_root); 4009 BUG_ON(ret); 4010 } else { 4011 btrfs_end_transaction_throttle(trans, rc->extent_root); 4012 btrfs_btree_balance_dirty(rc->extent_root); 4013 } 4014 trans = NULL; 4015 4016 if (rc->stage == MOVE_DATA_EXTENTS && 4017 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4018 rc->found_file_extent = 1; 4019 ret = relocate_data_extent(rc->data_inode, 4020 &key, &rc->cluster); 4021 if (ret < 0) { 4022 err = ret; 4023 break; 4024 } 4025 } 4026 } 4027 if (trans && progress && err == -ENOSPC) { 4028 ret = btrfs_force_chunk_alloc(trans, rc->extent_root, 4029 rc->block_group->flags); 4030 if (ret == 0) { 4031 err = 0; 4032 progress = 0; 4033 goto restart; 4034 } 4035 } 4036 4037 btrfs_release_path(path); 4038 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY, 4039 GFP_NOFS); 4040 4041 if (trans) { 4042 btrfs_end_transaction_throttle(trans, rc->extent_root); 4043 btrfs_btree_balance_dirty(rc->extent_root); 4044 } 4045 4046 if (!err) { 4047 ret = relocate_file_extent_cluster(rc->data_inode, 4048 &rc->cluster); 4049 if (ret < 0) 4050 err = ret; 4051 } 4052 4053 rc->create_reloc_tree = 0; 4054 set_reloc_control(rc); 4055 4056 backref_cache_cleanup(&rc->backref_cache); 4057 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 4058 4059 err = prepare_to_merge(rc, err); 4060 4061 merge_reloc_roots(rc); 4062 4063 rc->merge_reloc_tree = 0; 4064 unset_reloc_control(rc); 4065 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 4066 4067 /* get rid of pinned extents */ 4068 trans = btrfs_join_transaction(rc->extent_root); 4069 if (IS_ERR(trans)) 4070 err = PTR_ERR(trans); 4071 else 4072 btrfs_commit_transaction(trans, rc->extent_root); 4073 out_free: 4074 btrfs_free_block_rsv(rc->extent_root, rc->block_rsv); 4075 btrfs_free_path(path); 4076 return err; 4077 } 4078 4079 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 4080 struct btrfs_root *root, u64 objectid) 4081 { 4082 struct btrfs_path *path; 4083 struct btrfs_inode_item *item; 4084 struct extent_buffer *leaf; 4085 int ret; 4086 4087 path = btrfs_alloc_path(); 4088 if (!path) 4089 return -ENOMEM; 4090 4091 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 4092 if (ret) 4093 goto out; 4094 4095 leaf = path->nodes[0]; 4096 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 4097 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 4098 btrfs_set_inode_generation(leaf, item, 1); 4099 btrfs_set_inode_size(leaf, item, 0); 4100 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 4101 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 4102 BTRFS_INODE_PREALLOC); 4103 btrfs_mark_buffer_dirty(leaf); 4104 btrfs_release_path(path); 4105 out: 4106 btrfs_free_path(path); 4107 return ret; 4108 } 4109 4110 /* 4111 * helper to create inode for data relocation. 4112 * the inode is in data relocation tree and its link count is 0 4113 */ 4114 static noinline_for_stack 4115 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 4116 struct btrfs_block_group_cache *group) 4117 { 4118 struct inode *inode = NULL; 4119 struct btrfs_trans_handle *trans; 4120 struct btrfs_root *root; 4121 struct btrfs_key key; 4122 u64 objectid = BTRFS_FIRST_FREE_OBJECTID; 4123 int err = 0; 4124 4125 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4126 if (IS_ERR(root)) 4127 return ERR_CAST(root); 4128 4129 trans = btrfs_start_transaction(root, 6); 4130 if (IS_ERR(trans)) 4131 return ERR_CAST(trans); 4132 4133 err = btrfs_find_free_objectid(root, &objectid); 4134 if (err) 4135 goto out; 4136 4137 err = __insert_orphan_inode(trans, root, objectid); 4138 BUG_ON(err); 4139 4140 key.objectid = objectid; 4141 key.type = BTRFS_INODE_ITEM_KEY; 4142 key.offset = 0; 4143 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 4144 BUG_ON(IS_ERR(inode) || is_bad_inode(inode)); 4145 BTRFS_I(inode)->index_cnt = group->key.objectid; 4146 4147 err = btrfs_orphan_add(trans, inode); 4148 out: 4149 btrfs_end_transaction(trans, root); 4150 btrfs_btree_balance_dirty(root); 4151 if (err) { 4152 if (inode) 4153 iput(inode); 4154 inode = ERR_PTR(err); 4155 } 4156 return inode; 4157 } 4158 4159 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 4160 { 4161 struct reloc_control *rc; 4162 4163 rc = kzalloc(sizeof(*rc), GFP_NOFS); 4164 if (!rc) 4165 return NULL; 4166 4167 INIT_LIST_HEAD(&rc->reloc_roots); 4168 backref_cache_init(&rc->backref_cache); 4169 mapping_tree_init(&rc->reloc_root_tree); 4170 extent_io_tree_init(&rc->processed_blocks, 4171 fs_info->btree_inode->i_mapping); 4172 return rc; 4173 } 4174 4175 /* 4176 * function to relocate all extents in a block group. 4177 */ 4178 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start) 4179 { 4180 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4181 struct reloc_control *rc; 4182 struct inode *inode; 4183 struct btrfs_path *path; 4184 int ret; 4185 int rw = 0; 4186 int err = 0; 4187 4188 rc = alloc_reloc_control(fs_info); 4189 if (!rc) 4190 return -ENOMEM; 4191 4192 rc->extent_root = extent_root; 4193 4194 rc->block_group = btrfs_lookup_block_group(fs_info, group_start); 4195 BUG_ON(!rc->block_group); 4196 4197 if (!rc->block_group->ro) { 4198 ret = btrfs_set_block_group_ro(extent_root, rc->block_group); 4199 if (ret) { 4200 err = ret; 4201 goto out; 4202 } 4203 rw = 1; 4204 } 4205 4206 path = btrfs_alloc_path(); 4207 if (!path) { 4208 err = -ENOMEM; 4209 goto out; 4210 } 4211 4212 inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group, 4213 path); 4214 btrfs_free_path(path); 4215 4216 if (!IS_ERR(inode)) 4217 ret = delete_block_group_cache(fs_info, inode, 0); 4218 else 4219 ret = PTR_ERR(inode); 4220 4221 if (ret && ret != -ENOENT) { 4222 err = ret; 4223 goto out; 4224 } 4225 4226 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4227 if (IS_ERR(rc->data_inode)) { 4228 err = PTR_ERR(rc->data_inode); 4229 rc->data_inode = NULL; 4230 goto out; 4231 } 4232 4233 printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n", 4234 rc->block_group->key.objectid, rc->block_group->flags); 4235 4236 ret = btrfs_start_all_delalloc_inodes(fs_info, 0); 4237 if (ret < 0) { 4238 err = ret; 4239 goto out; 4240 } 4241 btrfs_wait_all_ordered_extents(fs_info, 0); 4242 4243 while (1) { 4244 mutex_lock(&fs_info->cleaner_mutex); 4245 ret = relocate_block_group(rc); 4246 mutex_unlock(&fs_info->cleaner_mutex); 4247 if (ret < 0) { 4248 err = ret; 4249 goto out; 4250 } 4251 4252 if (rc->extents_found == 0) 4253 break; 4254 4255 printk(KERN_INFO "btrfs: found %llu extents\n", 4256 rc->extents_found); 4257 4258 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4259 btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1); 4260 invalidate_mapping_pages(rc->data_inode->i_mapping, 4261 0, -1); 4262 rc->stage = UPDATE_DATA_PTRS; 4263 } 4264 } 4265 4266 filemap_write_and_wait_range(fs_info->btree_inode->i_mapping, 4267 rc->block_group->key.objectid, 4268 rc->block_group->key.objectid + 4269 rc->block_group->key.offset - 1); 4270 4271 WARN_ON(rc->block_group->pinned > 0); 4272 WARN_ON(rc->block_group->reserved > 0); 4273 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4274 out: 4275 if (err && rw) 4276 btrfs_set_block_group_rw(extent_root, rc->block_group); 4277 iput(rc->data_inode); 4278 btrfs_put_block_group(rc->block_group); 4279 kfree(rc); 4280 return err; 4281 } 4282 4283 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4284 { 4285 struct btrfs_trans_handle *trans; 4286 int ret, err; 4287 4288 trans = btrfs_start_transaction(root->fs_info->tree_root, 0); 4289 if (IS_ERR(trans)) 4290 return PTR_ERR(trans); 4291 4292 memset(&root->root_item.drop_progress, 0, 4293 sizeof(root->root_item.drop_progress)); 4294 root->root_item.drop_level = 0; 4295 btrfs_set_root_refs(&root->root_item, 0); 4296 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4297 &root->root_key, &root->root_item); 4298 4299 err = btrfs_end_transaction(trans, root->fs_info->tree_root); 4300 if (err) 4301 return err; 4302 return ret; 4303 } 4304 4305 /* 4306 * recover relocation interrupted by system crash. 4307 * 4308 * this function resumes merging reloc trees with corresponding fs trees. 4309 * this is important for keeping the sharing of tree blocks 4310 */ 4311 int btrfs_recover_relocation(struct btrfs_root *root) 4312 { 4313 LIST_HEAD(reloc_roots); 4314 struct btrfs_key key; 4315 struct btrfs_root *fs_root; 4316 struct btrfs_root *reloc_root; 4317 struct btrfs_path *path; 4318 struct extent_buffer *leaf; 4319 struct reloc_control *rc = NULL; 4320 struct btrfs_trans_handle *trans; 4321 int ret; 4322 int err = 0; 4323 4324 path = btrfs_alloc_path(); 4325 if (!path) 4326 return -ENOMEM; 4327 path->reada = -1; 4328 4329 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4330 key.type = BTRFS_ROOT_ITEM_KEY; 4331 key.offset = (u64)-1; 4332 4333 while (1) { 4334 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, 4335 path, 0, 0); 4336 if (ret < 0) { 4337 err = ret; 4338 goto out; 4339 } 4340 if (ret > 0) { 4341 if (path->slots[0] == 0) 4342 break; 4343 path->slots[0]--; 4344 } 4345 leaf = path->nodes[0]; 4346 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4347 btrfs_release_path(path); 4348 4349 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4350 key.type != BTRFS_ROOT_ITEM_KEY) 4351 break; 4352 4353 reloc_root = btrfs_read_fs_root(root, &key); 4354 if (IS_ERR(reloc_root)) { 4355 err = PTR_ERR(reloc_root); 4356 goto out; 4357 } 4358 4359 list_add(&reloc_root->root_list, &reloc_roots); 4360 4361 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4362 fs_root = read_fs_root(root->fs_info, 4363 reloc_root->root_key.offset); 4364 if (IS_ERR(fs_root)) { 4365 ret = PTR_ERR(fs_root); 4366 if (ret != -ENOENT) { 4367 err = ret; 4368 goto out; 4369 } 4370 ret = mark_garbage_root(reloc_root); 4371 if (ret < 0) { 4372 err = ret; 4373 goto out; 4374 } 4375 } 4376 } 4377 4378 if (key.offset == 0) 4379 break; 4380 4381 key.offset--; 4382 } 4383 btrfs_release_path(path); 4384 4385 if (list_empty(&reloc_roots)) 4386 goto out; 4387 4388 rc = alloc_reloc_control(root->fs_info); 4389 if (!rc) { 4390 err = -ENOMEM; 4391 goto out; 4392 } 4393 4394 rc->extent_root = root->fs_info->extent_root; 4395 4396 set_reloc_control(rc); 4397 4398 trans = btrfs_join_transaction(rc->extent_root); 4399 if (IS_ERR(trans)) { 4400 unset_reloc_control(rc); 4401 err = PTR_ERR(trans); 4402 goto out_free; 4403 } 4404 4405 rc->merge_reloc_tree = 1; 4406 4407 while (!list_empty(&reloc_roots)) { 4408 reloc_root = list_entry(reloc_roots.next, 4409 struct btrfs_root, root_list); 4410 list_del(&reloc_root->root_list); 4411 4412 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4413 list_add_tail(&reloc_root->root_list, 4414 &rc->reloc_roots); 4415 continue; 4416 } 4417 4418 fs_root = read_fs_root(root->fs_info, 4419 reloc_root->root_key.offset); 4420 if (IS_ERR(fs_root)) { 4421 err = PTR_ERR(fs_root); 4422 goto out_free; 4423 } 4424 4425 err = __add_reloc_root(reloc_root); 4426 BUG_ON(err < 0); /* -ENOMEM or logic error */ 4427 fs_root->reloc_root = reloc_root; 4428 } 4429 4430 err = btrfs_commit_transaction(trans, rc->extent_root); 4431 if (err) 4432 goto out_free; 4433 4434 merge_reloc_roots(rc); 4435 4436 unset_reloc_control(rc); 4437 4438 trans = btrfs_join_transaction(rc->extent_root); 4439 if (IS_ERR(trans)) 4440 err = PTR_ERR(trans); 4441 else 4442 err = btrfs_commit_transaction(trans, rc->extent_root); 4443 out_free: 4444 kfree(rc); 4445 out: 4446 if (!list_empty(&reloc_roots)) 4447 free_reloc_roots(&reloc_roots); 4448 4449 btrfs_free_path(path); 4450 4451 if (err == 0) { 4452 /* cleanup orphan inode in data relocation tree */ 4453 fs_root = read_fs_root(root->fs_info, 4454 BTRFS_DATA_RELOC_TREE_OBJECTID); 4455 if (IS_ERR(fs_root)) 4456 err = PTR_ERR(fs_root); 4457 else 4458 err = btrfs_orphan_cleanup(fs_root); 4459 } 4460 return err; 4461 } 4462 4463 /* 4464 * helper to add ordered checksum for data relocation. 4465 * 4466 * cloning checksum properly handles the nodatasum extents. 4467 * it also saves CPU time to re-calculate the checksum. 4468 */ 4469 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4470 { 4471 struct btrfs_ordered_sum *sums; 4472 struct btrfs_ordered_extent *ordered; 4473 struct btrfs_root *root = BTRFS_I(inode)->root; 4474 int ret; 4475 u64 disk_bytenr; 4476 LIST_HEAD(list); 4477 4478 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4479 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4480 4481 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4482 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr, 4483 disk_bytenr + len - 1, &list, 0); 4484 if (ret) 4485 goto out; 4486 4487 disk_bytenr = ordered->start; 4488 while (!list_empty(&list)) { 4489 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4490 list_del_init(&sums->list); 4491 4492 sums->bytenr = disk_bytenr; 4493 disk_bytenr += sums->len; 4494 4495 btrfs_add_ordered_sum(inode, ordered, sums); 4496 } 4497 out: 4498 btrfs_put_ordered_extent(ordered); 4499 return ret; 4500 } 4501 4502 void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4503 struct btrfs_root *root, struct extent_buffer *buf, 4504 struct extent_buffer *cow) 4505 { 4506 struct reloc_control *rc; 4507 struct backref_node *node; 4508 int first_cow = 0; 4509 int level; 4510 int ret; 4511 4512 rc = root->fs_info->reloc_ctl; 4513 if (!rc) 4514 return; 4515 4516 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4517 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4518 4519 level = btrfs_header_level(buf); 4520 if (btrfs_header_generation(buf) <= 4521 btrfs_root_last_snapshot(&root->root_item)) 4522 first_cow = 1; 4523 4524 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4525 rc->create_reloc_tree) { 4526 WARN_ON(!first_cow && level == 0); 4527 4528 node = rc->backref_cache.path[level]; 4529 BUG_ON(node->bytenr != buf->start && 4530 node->new_bytenr != buf->start); 4531 4532 drop_node_buffer(node); 4533 extent_buffer_get(cow); 4534 node->eb = cow; 4535 node->new_bytenr = cow->start; 4536 4537 if (!node->pending) { 4538 list_move_tail(&node->list, 4539 &rc->backref_cache.pending[level]); 4540 node->pending = 1; 4541 } 4542 4543 if (first_cow) 4544 __mark_block_processed(rc, node); 4545 4546 if (first_cow && level > 0) 4547 rc->nodes_relocated += buf->len; 4548 } 4549 4550 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) { 4551 ret = replace_file_extents(trans, rc, root, cow); 4552 BUG_ON(ret); 4553 } 4554 } 4555 4556 /* 4557 * called before creating snapshot. it calculates metadata reservation 4558 * requried for relocating tree blocks in the snapshot 4559 */ 4560 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans, 4561 struct btrfs_pending_snapshot *pending, 4562 u64 *bytes_to_reserve) 4563 { 4564 struct btrfs_root *root; 4565 struct reloc_control *rc; 4566 4567 root = pending->root; 4568 if (!root->reloc_root) 4569 return; 4570 4571 rc = root->fs_info->reloc_ctl; 4572 if (!rc->merge_reloc_tree) 4573 return; 4574 4575 root = root->reloc_root; 4576 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4577 /* 4578 * relocation is in the stage of merging trees. the space 4579 * used by merging a reloc tree is twice the size of 4580 * relocated tree nodes in the worst case. half for cowing 4581 * the reloc tree, half for cowing the fs tree. the space 4582 * used by cowing the reloc tree will be freed after the 4583 * tree is dropped. if we create snapshot, cowing the fs 4584 * tree may use more space than it frees. so we need 4585 * reserve extra space. 4586 */ 4587 *bytes_to_reserve += rc->nodes_relocated; 4588 } 4589 4590 /* 4591 * called after snapshot is created. migrate block reservation 4592 * and create reloc root for the newly created snapshot 4593 */ 4594 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4595 struct btrfs_pending_snapshot *pending) 4596 { 4597 struct btrfs_root *root = pending->root; 4598 struct btrfs_root *reloc_root; 4599 struct btrfs_root *new_root; 4600 struct reloc_control *rc; 4601 int ret; 4602 4603 if (!root->reloc_root) 4604 return 0; 4605 4606 rc = root->fs_info->reloc_ctl; 4607 rc->merging_rsv_size += rc->nodes_relocated; 4608 4609 if (rc->merge_reloc_tree) { 4610 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4611 rc->block_rsv, 4612 rc->nodes_relocated); 4613 if (ret) 4614 return ret; 4615 } 4616 4617 new_root = pending->snap; 4618 reloc_root = create_reloc_root(trans, root->reloc_root, 4619 new_root->root_key.objectid); 4620 if (IS_ERR(reloc_root)) 4621 return PTR_ERR(reloc_root); 4622 4623 ret = __add_reloc_root(reloc_root); 4624 BUG_ON(ret < 0); 4625 new_root->reloc_root = reloc_root; 4626 4627 if (rc->create_reloc_tree) 4628 ret = clone_backref_node(trans, rc, root, reloc_root); 4629 return ret; 4630 } 4631